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Of fundamental interest in the field of spintronics is the mechanism of indirect exchange coupling between
magnetic impurities embedded in metallic hosts. A range of physical features, such as magnetotransport and
overall magnetic moment formation, are predicated upon this magnetic coupling, often referred to as the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Recent theoretical studies on the RKKY in graphene
have been motivated by possible spintronic applications of magnetically doped graphene systems. In this paper
a combination of analytic and numerical techniques are used to examine the effects of defect dimensionality
on such an interaction. We show, in a mathematically transparent manner, that moving from single magnetic
impurities to extended lines of impurities effectively reduces the dimensionality of the system and increases the
range of the interaction. This has important consequences for the spintronic application of magnetically-doped
systems, and we illustrate this with a simple magnetoresistance device.

DOI: 10.1103/PhysRevB.90.125411 PACS number(s): 81.05.ue, 75.30.Hx, 75.75.−c

I. INTRODUCTION

Interest in graphene has been spreading within the scientific
community due to its potential for applications in myriad fields
such as photonics, sensor technology, and spintronics [1–3].
Graphene’s weak spin-orbit and hyperfine interactions, which
are the sources of spin relaxation and decoherence in other
materials, make spintronic applications particularly attractive.

Of particular interest in the field of spintronics is the
mechanism of the interaction, mediated by the conduction
electrons of the host material, between localized magnetic
moments embedded in nanoscale systems. This indirect
exchange coupling (IEC) manifests as an energy difference
between different alignments of the localized moments and is
usually calculated within the Ruderman-Kittel-Kasuya-Yosida
(RKKY) approximation [4–7]. This interaction has been
extensively studied in graphene, nanoribbons, and nanotubes
for a wide variety of impurities. The behavior of this interaction
has been found to depend on the host [8–11], impurity type
[12–17], and impurity configuration [18–21]. Since a range
of effects are predicated on exchange interactions, methods of
modifying the interaction via strain, edges, magnetic fields,
doping, and lattice defects have also been studied [22–26].

An important aspect of the RKKY interaction is the rate
at which it decays as a function of the separation D between
magnetic impurities. In undoped graphene a decay rate of
D−3 for substitutional, top-adsorbed, and bridge-adsorbed
impurities is found, while a much faster decay rate of D−7 is
found for center-adsorbed impurities [13,14,20,23]. This decay
rate is faster than the D−2 decay expected for conventional
two-dimensional materials and arises from the vanishing
density of states at the Fermi energy in graphene [27]. This fast
decay rate results in the interaction being very short ranged,
and any method of amplifying the coupling to extend its range
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could prove useful for both the experimental detection of the
RKKY interaction and future spintronic applications.

The sign of the coupling, which determines the ferro-
magnetic (FM) or antiferromagnetic (AFM) alignment of the
moments, should oscillate as a function of their separation,
but in graphene this is masked by the coincidence of the
Fermi surface and the corners of the Brillouin zone when
the Fermi level coincides with the Dirac point. This causes
the sign of the coupling, within the RKKY interaction, to
depend only on whether the two moments occupy the same
or opposite sublattices. When graphene is doped or gated, the
Fermi surface and Brillouin zone no longer coincide in this
manner [27], so sign-changing oscillations are recovered and
the interaction is found to decay as D−2.

There is currently a large and growing interest in nanopat-
terning graphene. Atomically precise tailoring of 2D materials,
the addition of absorbants or vacancies, allows for a complex
manipulation of the electronic properties of the material. Re-
cent studies have examined how larger structures of impurities
or vacancies can be used to modify the electronic properties
of graphene allotropes. One such study looks at how the
controlled growth of a line of defects in graphene can be
used for gate-tunable valley filtering [28], while another study
looks at how transition-metal nanowires result in long-range
magnetic order and magnetic anisotropy in graphyne [28,29].

The possibility and ease of depositing a line of magnetic
impurities in graphene has increased with the recent work
of Duesberg et al. [30,31] In these works the electronic
structure of graphene is altered via folding—sometimes called
graphene origami. This folding is achieved by depositing the
graphene over a corrugated surface which, in conjunction with
an applied magnetic field, has recently been shown to open
a band gap in graphene [32]. The ridges created during this
process act as traps for magnetic impurities and open up the
possibility of depositing impurities in straight parallel lines.
Alternatively, increased reactivity near grain boundaries [33]
or simple kinks [34] may also lead to the formation of impurity
lines. A sublattice preference of the impurities along zigzag
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FIG. 1. (Color online) Schematic representation of the graphene
lattice showing the armchair (AC) and zigzag (ZZ) directions. The
filled and hollow symbols (•,◦) represent sites on different sublattices.
The red circles represent two parallel lines of magnetic impurities,
A and B, separated by a distance D = 1 (in units of 3a, where
a = 2.64 Å) in the armchair direction, with a dimensionless quantity
s (here s = 1) indicating the zigzag separation between moments.

lines, as shown in Fig. 1, is expected due to similar behavior
predicted for zigzag edged nanoribbons [35]. Although the
RKKY interaction in graphene has been intensively studied,
one aspect that has yet to be examined is how lines of
impurities, which change the dimensionality of the interaction,
affect the coupling.

With the motivation of understanding the magnetic inter-
action strength, and providing some theoretical foundation,
we will examine the role of dimensionality in the RKKY
interaction. In this paper we will apply analytical and nu-
merical techniques to a system containing two parallel lines
of magnetic impurities (Fig. 1), and present a method for
calculating the coupling between lines of impurities embedded
or adsorbed in a host material. Some analogues can be
made between our setup and 1D systems such as carbon
nanotubes and nanoribbons [11], as well as systems with
two ferromagnetic monolayers embedded in a nonmagnetic
metal [36,37], where the Ruderman-Kittel theory can be
used to derive a D−2 decay rate for the coupling between
the ferromagnetic layers [38]. We start by introducing the
general formalism used to calculate the magnetic coupling,
which is written entirely in terms of the real-space single-
particle Green’s functions (GFs) of the host graphene sheet.
We show in a mathematically transparent manner how the
standard coupling equation may be modified to calculate the
RKKY interaction between two infinite lines of impurities.
We find that the interaction of finite lines of impurities quickly
tends towards the interaction of infinite lines, and that the
reduced dimensionality of the system leads to smaller decay
rates and longer ranged interactions. These predictions are
confirmed using numerical calculations. Finally, we examine
the magnetoresistance response of a simple device based on the
setup discussed in this paper and which may motivate further

studies of graphene spintronics based on magnetic defect lines.
In this paper we only consider a graphene host, but the method
is easily generalized to other two-dimensional materials.

II. METHODS

The indirect exchange coupling J is defined as the change
in energy between impurities in FM and AFM alignments. This
can be calculated conveniently using the Lloyd formula [39],
which allows the total change in energy �E between FM and
AFM alignments to be determined without requiring that the
total energy of either system be calculated. This is given as

J = �E(EF ) = 1

π
Im

∫
dE f (E)ln(det(Î − ĜV̂s)), (1)

where f (E) is the Fermi function, Ĝ represents the GF of the
system containing impurities, and V̂s is the spin perturbation
matrix which rotates specific impurities by an angle θ . A
nearest-neighbor tight-binding Hamiltonian is used to describe
the electronic properties of the system and calculate the
GFs. The impurities are introduced to the pristine system via
Dyson’s equation

Ĝ = (Î − ĝV̂I )−1ĝ, (2)

where the characteristics of the impurities are contained
within the perturbation matrix V̂I , and ĝ is the pristine
graphene GF calculated from a nearest-neighbor tight-binding
approximation Hamiltonian.

The calculation of the coupling between two parallel
lines of impurities A and B of length N , which we will
denote JN

AB , is relatively simple. However, the necessary
introduction of a 2N × 2N perturbation matrix V̂I creates a
computational problem: The matrix inversion present in the
coupling calculation becomes cumbersome as N becomes
large. What follows is a method which allows for the rapid
calculation, as well as yielding an analytic form, of the
coupling between two infinite parallel lines of impurities. The
finite-line coupling JN

AB and infinite-line couplingJAB are then
compared in the results section.

The coupling calculation can be greatly simplified by
keeping the GF partially in reciprocal space when introducing
the perturbation. We will introduce our perturbation as a line
of impurities along the y (zigzag) direction, though a similar
procedure may be used for impurities in the x (armchair)
direction (Fig. 1). When dealing with lines of impurities in
the y direction, we make the projection 〈x,ky,α|ĝ|x ′,ky,β〉 =
g

αβ

xx ′ (ky), where ĝ is the GF of the pristine system, and α and
β are sublattice labels. This can be written as

g
αβ

xx ′ (ky) = 1

Nx

∑
kx

Nαβ(E,ky)eikx (x ′−x)

E2 − |f (kx,ky)|2 , (3)

where Nαβ is a sublattice dependent term

Nαβ =
{
E α = β

f (kx,ky) α �= β
, (4)

and f (kx,ky) is the dispersion relation

f (kx,ky) = t + 2t cos(kx)eiky . (5)
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For neatness we will neglect the superscripts α and β from
the following equations, which should be taken to be same
sublattice (α = β), unless otherwise stated. Since we are
considering two infinite parallel lines that extend in the zigzag
direction, the separation between these lines must necessarily
be in the armchair direction. We no longer refer to the sites as x

and x ′, but as A and B, which represent each line of impurities,
respectively; the new separation is now just D = x ′ − x. The
sum over kx may be converted into an integral over the kx

direction in the Brillouin zone, which can then be performed
by contour integration. This results in an analytic form for
the GF,

gAB(ky) = i

4t2

N (E,ky)eiq(aky )D

cos
( aky

2

)
sin (q(aky))

, (6)

with

q(ky) = ± cos−1

[
E2 − t2 − 4t2 cos2

( aky

2

)
4t2 cos

( aky

2

)
]

, (7)

where t is the hopping integral and a is the graphene lattice
parameter.

Considering Dyson’s equation, we may greatly reduce our
analytical workload by writing our GFs as Bloch matrices
ĝAA = ∑

ky
|A,ky〉gAA(ky)〈A,ky |, so that

Î − ĝV̂ = Î −

⎛
⎜⎝

ĝAA ĝAB · · ·
ĝBA ĝBB

...
. . .

⎞
⎟⎠

⎛
⎜⎝

τ Î 0 · · ·
0 τ Î
... 0

⎞
⎟⎠, (8)

where our perturbation, with change in onsite energy τ , has
been trivially transformed to the same basis by a Fourier
transformation

V̂I =
∑

n

τ |A,ns〉〈A,ns| + τ |B,ns〉〈B,ns|,

= 1

s

∑
ky

τ |A,ky〉〈A,ky | + τ |B,ky〉〈B,ky |, (9)

where s is a dimensionless quantity describing the separation
of impurities along the zigzag direction as shown in Fig. 1, and
n is summed over all sites. Since all but the first two columns
are zero, we can find the desired elements by just considering
the 2 × 2 matrix multiplication. Similar identities facilitate the
inversion, and our new GF Ĝ can be calculated in a relatively
transparent manner

The spin perturbation is introduced as

V̂s =
∑
ky

|B,ky〉V̂θ 〈B,ky |, (10)

where V̂θ is a 2D spin perturbation matrix which introduces the
exchange splitting Vex between the bands and leads to a greater
occupation of up-spin electrons and hence to the formation of
a magnetic moment, and rotates the spins on line B through
an angle of θ , and is defined as

V̂θ = −Vex

(
cos θ − 1 sin θ

sin θ 1 − cos θ

)
. (11)

Calculating Î − ĝV̂ for the spin perturbation is more involved,
but the basic method is the same. For θ = π we can now write

det(Î − ĜV̂s) = det((Î − 2Vexĝ
↑
BB)(Î + 2Vexĝ

↓
BB)),

=
∏
ky

[(1 − 2Vexg
↑
BB(ky))(1 + 2Vexg

↓
BB(ky))],

(12)

where all of the terms are diagonal Bloch matrices in ky space,
which allows us to write the determinant as a product.

To see the distance dependence in the coupling, we use
Dyson’s equation to write the coupling in terms of the spin
dependent Green’s function between each line of impurities,
g

↑/↓
AB . This is done by calculating the effect at site B of raising

the energy of the down-spin channel on sites A and B

g
↓
BB = g

↑
BB + 2Vexg

↑
BBg

↓
BB + 2Vexg

↑
BAg

↓
AB. (13)

By rearranging this, expanding out Eq. (12), and using the
properties of logarithms, we can now write the coupling per
atom pair AB, JAB , in a convenient form

JAB = − s

Nyπ
Im

∫ EF

−∞
dE

×
∑
ky

ln
(
1 + 4V 2

exg
↑
BA(E,ky)g↓

AB(E,ky)
)
. (14)

The sum may be converted to an integral over the Brillouin
zone in the ky direction. We may also write kZ = a

2 ky ,
exploiting the symmetries of the GF, and use the analyticity of
the integrand in the upper half plane to change the integration
to the imaginary axis. This gives us a form of the coupling that
is suitable for evaluation using numerical methods,

JAB = 2

π2

∫ ∞

η

dy

∫ π
2

0
dkZ

× ln
(|1 + 4V 2

exg
↑
BA(EF + iy,kZ)g↓

AB(Ef + iy,kZ)|).
(15)

To obtain a useful analytic form of the coupling we make
several approximations which are similar in form to the RKKY
approximation. We first expand the log in Eq. (14) to first order
by assuming a small exchange coupling Vex. We then make the
approximation g

↓
AB = g

↑
BA = gAB so that the coupling, which

we now write as JAB to distinguish it from the numerical
form above, is given by

JAB ≈ −4V 2
ex

π2
Im

∫ EF

−∞
dE

∫ π
2

− π
2

dkZ [gAB(E,kZ)]2 . (16)

At large separations the integrand oscillates quickly and only
select points contribute to the integral over kZ . This allows us
to use the stationary phase approximation (SPA) to write the
integral in a fully analytic form. The SPA has previously been
used [27] to write the pristine Green’s functions of graphene
in an analytic form. This allows one to calculate the coupling
between two impurities. Here we use the SPA to calculate the
integral over Green’s functions that already contain impurities,∫ π

2

− π
2

dkZ [gAB(E,kZ)]2 = A(E)ei2Q(E)D

√
D

, (17)
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where A(E) captures the specific sublattice dependencies, and
noncontributing terms have been ignored. The symmetry in
the zigzag direction allows us to use the SPA in this manner.

We can now write our coupling equation as

JAB = −4V 2
ex

π2
Im

∫ EF

−∞
dE

A(E)ei2Q(E)D

√
D

. (18)

The integration procedure is now identical to that for single
impurities in graphene [27]. The functions A(E) and Q(E)
are expanded around EF and the integral can be reduced to a
sum over Matsubara frequencies, which in the low temperature
limit gives

JAB = V 2
exIm

∑
	

A(	)ei2Q(E)|D|(−1)	

(2iQ(1))	+1D	+ 3
2

. (19)

The decay rate of the coupling is now determined by the first
nonvanishing A(	), where this notation is defined as the 	th

derivative of A with respect to energy evaluated at the Fermi
energy.

III. RESULTS

Unless otherwise specified the results that follow refer to
the case s = 1, i.e., that the impurities are separated by the
minimum distance in the zigzag direction. The stationary phase
approximation (SPA) used in the derivation of Eq. (18) relies
on the assumption of large separations between the lines of
impurities, so it is important to check the accuracy of this
approximation at reasonable separations. The SPA coupling
JAB was compared against the full numerical calculation
of the coupling JAB for a variety of Fermi energies and
exchange splittings. A representative sample of these checks
is shown in Fig. 2, where the agreement is seen to be very
good even for reasonably small separations and increases
in accuracy as separation increases. The approximation is
therefore concluded to be sufficiently accurate for our uses
here.
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D

J

FIG. 2. (Color online) A comparison of the coupling, J αα
AB

(lines), and the SPA of coupling, J αα
AB (dots), for different exchange

splittings Vex and at different Fermi energies EF . (a) Vex = 0.01,
EF = 0.1. (b) Vex = 0.01, EF = 0.3. (c) Vex = 0.1, EF = 0.1. (d)
Vex = 0.1, EF = 0.3.
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FIG. 3. (Color online) A plot of the numerical evaluation of the
finite-line coupling J N

AB against separation D for a pair of finite lines of
length (a) N = 1, (b) N = 10, (c) N = 50, (d) N = 500. In each case
the numerical evaluation of the infinite-line coupling JAB (Eq. 15) is
represented by the red dots.

Figure 3 plots the coupling between several pairs of line
segments, of length N , against an infinite pair of lines. As
we increase the length of the line segments the magnitude
and phase of the coupling are seen to approach that of the
infinite line segment (red dots). At a length of N = 500
[Fig. 3(d)], the coupling can be seen to converge to that
of an infinite line of impurities. For shorter lines, N ∼ 50
[Fig. 3(c)] the coupling closely resembles that between the
infinite lines, with only slight discrepancies in magnitude and
phase. These discrepancies increase as the line is shortened to
N ∼ 10 [Fig. 3(b)], however even the coupling between line
segments as short as N = 10 are seen to behave much closer
to the infinite case than to the case of individual impurities
[cf. Fig. 3(a)]. Thus Eq. (19) is a useful tool for quickly
calculating the coupling between finite lines of impurities,
since it is clear that as the length N of the lines increases the
interaction converges to that of the infinite case.

An important feature of the coupling is its overall rate of
decay with separation D−α , which is determined from the
analytic form of the coupling in Eq. (19). Here the coupling
is represented as a sum of terms over 	, with decay rates that
increase as D−	− 3

2 . The decay rate is therefore determined by
the first nonzero term in the series, as subsequent terms decay
much more rapidly. It is the quantity A(	)(E) that determines
whether or not the whole term will vanish. For the case of lines
of impurities occupying the same sublattice (α = β), where the
interaction is ferromagnetic, we have

(Aαα(E))(0) = −
√

±iπ

(E2 + 3t2)

E2

2(E2t2 − E4)
3
4

. (20)

It is clear from examination that A(0) is nonzero whenever E
is nonzero, and thus away from the Fermi energy we would
expect a decay rate that goes as ∼D− 3

2 .
In Fig. 4 we compare the coupling with the expected value

of its decay rate at several Fermi energies. We find that
for values of the Fermi energy not equal to zero (EF �= 0)
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FIG. 4. (Color online) A log-log plot of the numerical evaluation
of the coupling, J, between two lines of impurities as a function of
of their separation, D, for (a) EF = 0.1, (b) EF = 0.3, (c) EF = 0.5,
(d) EF = 0. In each case the log of the coupling is represented by the
solid black line and the dashed red line represents a decay rate of 1.5.

that our theoretical predictions hold. At precisely EF = 0,
corresponding to an undoped graphene sheet, the analytical
approximation no longer holds and a faster decay rate of
∼D−2 is found. This difference of behavior at the Dirac point
is a hallmark of such interactions in graphene and is also
seen for the single impurity case. However, both of the linear
defect results correspond to an increased interaction range
compared to single site impurities, where we would expect
to find decay rates of D−2 and D−3 for doped and undoped
graphene, respectively [27].

The form of Aαβ(E) was also examined for the the case of
opposite sublattice occupation (α �= β), where the interaction
is antiferromagnetic, as well as the case where one line is offset
by half a lattice spacing. These cases produced similar results
to the initial case examined above in both coupling decay rate
and the convergence of finite lines to the infinite case. For the
cases where the impurities are spaced in the zigzag direction by
a larger length s > 1, we again find that the coupling between
lines quickly converges to that of the infinite case as N is
increased.

IV. MAGNETORESISTANCE

RKKY interactions in multilayered systems play a key
role in the giant magnetoresistance (GMR) effect. Up- and
down-spin electrons have different transmission probabilities
through a magnetic layer of a certain orientation. The most
energetically favorable configuration of layer orientations is
determined by RKKY interactions and will have a certain
total transmission. Aligning all the layers with an applied
magnetic field can lead to markedly different transmission
probabilities and a resulting change in the resistance of
the system [40,41]. Previous studies have considered the
possibility of magnetoresistance devices based on graphene
systems [42–44], but it is worth examining whether a magne-
toresistance signal emerges using devices based on the system
we have considered in this paper. We consider two lines of

FIG. 5. (Color online) Magnetoresistance percentage as a func-
tion of Fermi energy for a simple device based on magnetic lines in
a graphene sheet. The inset shows the initial AFM orientation of two
lines of moments on opposite sublattices with D = 9.

magnetic impurities, one on each sublattice, as shown in the
inset of Fig. 5. The total conductance 
AFM/FM through such
a system is calculated as the sum of the conductances of
up-spin and down-spin electrons. These are calculated using
the standard Landauer-Buttiker approach with recursively
calculated Green’s functions and spin-dependent potentials at
each of the magnetic impurity sites. We assume that these lines
initially have an antiferromagnetic relative orientation [45],
and the magnetoresistance is calculated from the relative
change in the resistance when a small magnetic field is applied
to force a ferromagnetic alignment

MR = 
−1
FM − 
−1

AFM


−1
AFM

. (21)

The magnetoresistance, expressed as a percentage, is plotted
in the main panel of Fig. 5. The overall magnitude of
the magnetoresistance will vary with Vex and thus depend
on the exact impurity species and may be considerably
smaller than our calculated value with an arbitrarily chosen
Vex = 0.2|t |. However, the qualitative features observed here
are robust over a wide range of impurity parametrizations.
Furthermore, it should be noted that this calculation only
considers two impurity lines. A more realistic device could
contain many more lines, and this would increase the mag-
netoresistance significantly by increasing the discrepancy in
potential landscapes experienced by electrons with or without
an applied magnetic field. Nonetheless, this simple example
demonstrates the potential for magnetic impurity lines to play
a part in graphene-based spintronics and motivates further
studies of such systems and the RKKY interactions on which
magnetoresistance effects are predicated.

V. CONCLUSIONS

In this paper we have derived an analytic expression for
the RKKY interaction in graphene between two lines of
magnetic impurities separated along the armchair direction.
We have shown that the coupling between lines of impurities

125411-5
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quickly converges to the coupling of the infinite case as their
length increases. The analytic form is therefore a useful way
to approximate the interaction between line segments. We
also use this analytic form to predict the rate of decay of
this interaction, away from EF = 0, which is slower than
the rate of decay for two impurity interactions. Furthermore
we have shown that it is the reduced dimensionality of the
system that increases the range of the RKKY interaction. This
increased range may ease the detection of the RKKY which is
notoriously hard to examine experimentally. We also show that
these extended line defects may have interesting magnetoresis-
tance properties which motivates further study. Since a whole
range of physical features, such as magnetotransport and
overall magnetic moment formation, are predicated upon the

magnetic coupling, it is hoped that this work may lead to
interesting spintronic applications.
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