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Probabilistic Forecasts of Solar Irradiance by
Stochastic Differential Equations

E. B. Iversena∗ J. M. Moralesa, J. K. Møllera, H. Madsena

Summary: Probabilistic forecasts of renewable energy production provide users with valuable information

about the uncertainty associated with the expected generation. Current state-of-the-art forecasts for solar

irradiance have focused on producing reliable point forecasts. The additional information included in

probabilistic forecasts may be paramount for decision makers to efficiently make use of this uncertain and

variable generation. In this paper, a stochastic differential equation (SDE) framework for modeling the

uncertainty associated with the solar irradiance point forecast is proposed. This modeling approach allows

for characterizing both the interdependence structure of prediction errors of short-term solar irradiance and

their predictive distribution. A series of different SDE models are fitted to a training set and subsequently

evaluated on a one-year test set. The final model proposed is defined on a bounded and time-varying state

space with zero probability almost surely of events outside this space.

Keywords: Forecasting; Stochastic differential equations; Solar power; Probabilistic forecast;

Predictive distributions.

1. INTRODUCTION

The operation of electric energy systems is today challenged by the increasing level of

uncertainty in the electricity supply brought in by the larger and larger share of renewables

in the generation mix. Decision-making, operational and planning problems in electricity

markets can be characterized by time-varying and asymmetric costs. These asymmetric

costs are caused by the need to continuously balance the electricity system to guarantee
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a reliable and secure supply of power. An understanding of the underlying uncertainty is,

therefore, essential to satisfactorily manage the electricity system. This introduces the need

for forecasts describing the entire variation of the renewable generation.

Solar irradiance is a source of renewable energy and, along with wind and hydro, is taking

shape as a potential driver for a future free of fossil fuels. The worldwide installed capacity of

photovoltaic energy systems has seen a rapid increase from 9.5 GW in 2007 to more than 100

GW by the end of 2012 (European Photovoltaic Industry Association (2013)). The energy

generation from solar irradiance is subject to weather conditions and, as such, it constitutes

a variable and uncertain energy source.

Current state-of-the-art forecasts for solar energy have focused on point forecasts, that is,

the most likely or the average outcome. Such point forecasts, however, do not adequately

describe the uncertainty of the power production. This is recognized by the abundance of

significant works on probabilistic forecasting for wind power, see for ex. Pinson et al. (2007)

and Zhou et al. (2013).

In the literature, a variety of different approaches have been taken to provide reliable solar

power forecasts, based on time series (Huang et al. (2013), Boland (2008), Ji and Chee (2011),

Bacher et al. (2009), Yang et al. (2012)), Artificial Neural Networks (Mihalakakou et al.

(2000), Chen et al. (2011)), cloud motion forecasts (Perez et al. (2010)) and statistical models

(Ridley et al. (2010), Kaplanis and Kaplani (2010)). A review of some of these approaches

is found in Pedro and Coimbra (2012). In Chen et al. (2011) Artifical Neural Networks are

used in combination with a weather type classification, to provide point forecasts of PV

production. In Lorenz et al. (2009), a forecast method that makes use of a clear sky model

and numerical weather predictions is developed, also accounting for orientation and tilt of

the PV panel. The paper by Bhardwaj et al. (2013) introduces a hidden Markov model for

solar irradiance based on fuzzy logic. They exploit inputs such as humidity, temperature,
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air pressure and wind speed, among others. A time-series model for predicting one-hour-

ahead solar power production is considered in Yang et al. (2012). This paper employs a

cloud cover index to model the absorption and refraction of the incoming light through

the atmosphere. In Bacher et al. (2009), an auto-regressive model with exogenous input is

proposed. It predicts weighing the past observations and the numerical weather prediction

and introduces a clear sky model to capture the diurnal variation.

Probabilistic forecasting of solar irradiance is, though, in its infancy. One work in this area

is the one by Mathiesen et al. (2013), where post-processing of numerical weather predictions

are applied to obtain probabilistic forecasts. Previous work on stochastic differential

equations and solar irradiance is, to the best of our knowledge, limited to Soubdhan and

Emilion (2010), which formulates a very simple stochastic differential equation model for

solar irradiance. As a consequence of its simplicity, the model was largely unsuccessful at

forecasting. Stochastic differential equations are fruitfully used for wind power forecasting

in Møller et al. (2013) by considering state-dependent diffusions and external input.

This paper describes a new approach to solar irradiance forecasting based on stochastic

differential equations (SDEs). Modeling with SDEs has multiple benefits, among others:

• SDE models are able to produce reliable point forecasts as well as probabilistic forecasts.

• Model extensions are easy to formulate and have an intuitive interpretation. We can

start with a simplistic model and extend it to a sufficient degree of complexity.

• We can model processes that are bounded and assign zero probability to events outside

the bounded interval, which is essential for correct probabilistic forecasts of solar

irradiance.

• We leave the discrete-time realm of Gaussian innovations and consider instead the more

general class of continuous-time processes with continuous trajectories.

• SDEs span a large class of stochastic processes with classical time-series models as

special cases.
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The rest of this paper is structured as follows: Section 2 gives a general introduction to the

stochastic differential equation framework and describes an estimation procedure. Section 3

starts with a simple SDE model. secondly we propose a mechanistic model which captures

some of the key physical qualities of solar irradiance. Lastly, in Section 3, we provide a

SDE model that extends the mechanistic model to overcome some statistical deficiencies. In

Section 4, the different models are compared to simple as well as complex benchmarks and

the performance of the finished model is assessed. Lastly, Section 5 concludes the paper.

2. STOCHASTIC DIFFERENTIAL EQUATIONS

Suppose that we have the continuous time processXt ∈ X ⊂ Rn. In general, it is only possible

to observe continuous time processes in discrete time. We observe the process Xt through

an observation equation at discrete times. Denote the observation at time tk by Yk ∈ Y ⊂ Rl

for k ∈ {0, . . . , N}. Let the observation equation be given by:

Yk = h(Xtk , tk, ek), (1)

where the variable tk allows for dependence on an external input at time tk, ek ∈ Rl is the

random observation error, and h(·) ∈ Rl is the function that links the process state to the

observation. The simplest form of the observation equation is h(·) = Xtk + ek.

2.1. Definition of Stochastic Differential Equations

In the ordinary differential equation setting, the evolution in time of the state variable Xt is

given by the deterministic system equation

dXt

dt
= f(Xt, t), (2)
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where t ∈ R and f(·) ∈ Rn. Complex systems such as weather systems are subject to random

perturbations of the input or processes that are not specified in the model description.

This suggests introducing a stochastic component in the state evolution to capture such

perturbations. This can be done by formulating the state evolution as a stochastic differential

equation (SDE), as done in Øksendal (2010). Thus, we can formulate the time evolution of

the state of the process by the form:

dXt

dt
= f(Xt, t) + g(Xt, t)Wt, (3)

where Wt ∈ Rm is an m-dimensional standard Wiener process and g(·) ∈ Rn×m is a matrix

function (Øksendal, 2010). Multiplying with dt on both sides of (3) we get the standard SDE

formulation:

dXt = f(Xt, t)dt+ g(Xt, t)dWt. (4)

Notice that we allow for a complex dependence on t, including external input at time t.

While this form is the most common for SDEs, it is not well defined, as the derivative of

Wt, dWt, does not exist. Instead, it should be interpreted as an informal way of writing the

integral equation:

Xt = X0 +

∫ t

0

f(Xs, s)ds+

∫ t

0

g(Xs, s, )dWs. (5)

In Equation (5), the behavior of the continuous time stochastic process Xt is expressed as

the sum of an initial stochastic variable, an ordinary Lebesgue integral, and an Ito integral.

In a deterministic ordinary differential equation setting, the solution would be a single

point for each future time t. In the SDE setting, in contrast, the solution is the probability

density of Xt for any state, x, and any future time, t. For an Itō process given by the

stochastic differential equation defined in (4) with drift f(Xt, t) and diffusion coefficient

g(Xt, t) =
√

2D(Xt, t), the probability density j(x, t) in the state x at time t of the random
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variable Xt is given as the solution to the partial differential equation known as the Fokker-

Planck equation (Björk, 2009):

∂

∂t
j(x, t) = − ∂

∂x
[f(x, t)j(x, t)] +

∂2

∂x2
[D(x, t)j(x, t)] . (6)

Thus, given a specific SDE, we can find the density at any future time by solving a partial

differential equation.

SDEs are a general class of processes. This is stated by the Lévy-Itō decomposition, which

says that, under sufficient regularity conditions, all stochastic processes with continuous

trajectories can be written as SDEs (Øksendal, 2010). Hence many of the ordinary discrete-

time stochastic processes can be seen as a SDE being sampled at discrete times, and

therefore, SDEs is a generalization of generic time-series models in discrete time. Other

useful introductions to SDEs are among others Kloeden and Pearson (1977) and Mikosch

(1998).

2.2. Parameter Estimation

In this section, we outline how to estimate parameters in a SDE of a general form and, in

particular, with a state-dependent diffusion term. A thorough description of the procedure

used here (and other estimation procedures) is found in Jazwinski (2007). First, we go into

detail on the estimation procedure of the parameters of a SDE with a state-independent

diffusion term. Second, we show how to transform a process with state-dependent diffusion

term into a process with a unit diffusion term, whereby the previously mentioned estimation

procedure can be applied.

Consider the model defined by Equations (1) and (4) given by:

dXt = f(Xt, t)dt+ g(Xt, t)dWt (7)

Yk = h(Xtk , tk, ek). (8)
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On the basis that we want to estimate the parameters in the above model, the problem can

be formulated as follows: Find a parameter vector, θ̂ ∈ Θ, that maximizes some objective

function of θ. There are several possible choices for an objective function. A natural choice

in this framework is to choose an objective function that maximizes the probability of seeing

the observations given by YN = {Y0, . . . , YN}. This leads to choosing the likelihood function

as objective function, i.e.,

L (θ;YN) = p (YN |θ) =

(
N∏
k=1

p (Yk|Yk−1, θ)

)
p(Y0|θ). (9)

Even though this problem could, in principle, be solved using the Fokker-Planck equation,

this is only feasible for systems with simple structures, as it involves solving a complex partial

differential equation.

The estimation procedure, which we shall introduce next, relies on the system having a

specific form, namely:

dXt = f(Xt, t)dt+ g(t)dWt (10)

Yk = h(Xtk , tk) + ek. (11)

In the system defined by Equations (10) and (11), we assume that g(·) ∈ Rn×n does

not depend on the state Xt. Also, we assume that the observation noise is an additive

Gaussian white noise, i.e., ek ∼ N (0, Sk(tk)), where Sk(tk) is some covariance matrix,

possibly depending on time. It is clear that restricting g(·) to not depend on Xt limits

our model framework severely. As we shall see, this can, to some degree, be remedied by a

transformation using Itō-calculus. The restriction of having additive Gaussian measurement

noise should be dealt with by transformations of the observations.

As the system defined by Equations (10) and (11) is driven by Wiener noise, which has

Gaussian increments, and the observation noise is Gaussian, it is reasonable to assume

that the density of Yk|Yk−1 can be approximated by a Gaussian distribution. Note that the
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Gaussian distribution is completely characterized by its mean and covariance. This implies

that using the extended Kalman filter, which is linear, is appropriate.

The one-step predictions for the mean and variance are defined as:

Ŷk|k−1 = E [Yk|Yk−1, θ] (12)

Rk|k−1 = V [Yk|Yk−1, θ] , (13)

where E [·] and V [·] denote the expectation and variance, respectively. The innovation is

given by

εk = Yk − Ŷk|k−1. (14)

Using this, we can now write the likelihood function as

L (θ;YN) =

 N∏
k=1

exp
(
−1

2
ε>k R

−1
k|k−1εk

)
√

det
(
Rk|k−1

) (√
2π
)l
 p(Y0|θ), (15)

where l is the dimension of the sample space and (·)> denotes the vector transpose. The

estimate of θ can be found by solving the optimization problem

θ̂ = arg max
θ∈Θ

(log(L (θ;YN))) . (16)

The Kalman gain governs how much the one-step prediction of the underlying state, X̂k|k−1,

should be adjusted to form the state update, X̂k|k, from the new observation. This is given

by

Kk = Pk|k−1C
>R−1

k|k−1, (17)
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where C is the first order expansion of h(·), i.e., the Jacobian, and Pk|k−1 is the covariance

of the one-step prediction. The state update is then given by

X̂k|k = X̂k|k−1 +Kkεk (18)

Pk|k = Pk|k−1 −KkR
−1
k|k−1K

>
k . (19)

Hence, the state update is a combination of the previous state estimate and the new

information obtained from the k’th observation, Yk.

The procedure of estimating the parameters is currently being implemented as an R package

and is described in Juhl et al. (2013). The estimation procedure is done in the statistical

software R. we use the extended Kalman filter as provided by Juhl et al. (2013) to give

predictions of future observation and implement the likelihood function directly in R. The

likelihood function is then optimized using the nlminb routine for constrained optimization.

2.3. Itō Calculus and the Lamperti Transform

We will now discuss how a SDE of the form in Equation (7) can be transformed to the form in

Equation (10) to allow for the estimation procedure previously introduced. The fundamental

tool for the transformation of SDEs is Itō’s lemma, as stated in Øksendal (2010). Below we

introduce the 1-dimensional Itō formula and the Lamperti transform. The multidimensional

Itō formula is covered in Øksendal (2010). For a more detailed description of the Lamperti

transform and how to apply it to multivariate processes, see Møller and Madsen (2010).

Theorem 1 (The 1-dimensional Itō formula ) Let Xt be an Itō process given by

dXt = f(Xt, t)dt+ g(Xt, t)dWt. (20)

Let ψ(x, t) ∈ C2([0,∞))× R. Then

Zt = ψ(Xt, t) (21)

9



Environmetrics E. B. Iversen et al.

is again an Itō process, and

dZt =
∂ψ

∂t
(Xt, t)dt+

∂ψ

∂x
(Xt, t)dXt +

1

2

∂2ψ

∂x2
(Xt, t)(dXt)

2, (22)

where (dXt)
2 is calculated according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt. (23)

The Itō formula stated in Theorem 1 can be used to transform the process to a SDE with

unit diffusion by the Lamperti transform.

Theorem 2 (Lamperti transform) Let Xt be an Itō process defined as in (20), and define

ψ(Xt, t) =

∫
1

g(x, t)
dx

∣∣∣∣
x=Xt

. (24)

If ψ represents a one to one mapping from the state space of Xt onto R for every t ∈ [0,∞),

then choose Zt = ψ(Xt, t). Then Zt is governed by the SDE

dZt =

(
ψt(ψ

−1(Zt, t), t) +
f(ψ−1(Zt, t), t)

g(ψ−1(Zt, t), t)
(25)

−1

2
gx(ψ

−1(Zt, t), t)

)
dt+ dWt, (26)

where gx(·) and gt(·) denote the derivatives of g(·) with regard to x and t, respectively, and

ψt denotes the derivative of ψ with respect to t.

This result is obtained by applying the Itō formula.

3. SOLAR IRRADIANCE

In this section we apply the theory in Section 2 to build a model for solar irradiance. The

approach is to start out with a simple model and extend it until we reach a model that

captures the dynamics adequately. Firstly we extend the simple model from a mechanistic

10
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understanding of solar irradiance, for instance that solar irradiance is a bound process and

our dynamical model should reflect this. Secondly, we extend the mechanistic model by

identifying statistical deficiencies and extending the model to resolve those. Thus, we should

end up with a model, that captures the mechanics of the system and is statistically sound.

3.1. Data

The data set at our disposal belongs to a meteorological station located in the western part

of Denmark. The data include hourly observations of irradiance on a flat surface together

with predictions for irradiance based on a numerical weather prediction model from the

Danish Meteorological Institute. The numerical weather prediction (NWP) provides a 48-

hour forecast of the irradiance, which is updated every 6 hours. We use the most recent

forecast in the model. The data covers a period of three years from 01/01-2009 to 31/12-

2011. We divide the period into a training and a test set, with the training set covering the

first two years and the test set the last year.

3.2. Model 1: A Simple Model Tracking the NWP

We start by introducing a simple SDE model for solar irradiance that tracks the numerical

weather prediction provided by the Danish Meteorological Institute, i.e.,

dXt = θx(ptµx −Xt)dt+ σxdWt (27)

Yk = Xtk + εk. (28)

In this model and the following, we denote the observed solar irradiance at time tk by Yk.

pt, is an external input representing the predicted irradiance at time t. In the model, we

have parameter µx, which allows for a local scaling of the pt, such that it does not over or

under shoot on average. The parameter θx determines how rapidly the model reverts to the

11
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predicted level of irradiance. The system noise is controlled by parameter σx. The observation

error is denoted εk and is a stochastic variable with distribution N (0, σε).

3.3. Model 2: A Mechanistic Extension

Some physical characteristics of solar irradiance are clearly not captured in Model 1. Among

these are issues related to the bounded nature of solar irradiance: It is never below zero and

also never above some upper bound determined by the light emitted by the sun and the

season. We will remedy this issue and others with the following model:

dXt = θx

(
pt + βx
γmt + δ

µx −Xt

)
dt+ σxXt(1−Xt)dWt (29)

Yk = γmtkXtk + εk. (30)

Solar irradiance is highly cyclical. To capture this, we extend the simple SDE model defined

in (27)-(28) by introducing the maximum irradiance in hour t, mt, as a scaling factor. Here

we compute mt according to Bird and Hulstrom (1981), where the refraction and absorption

in the atmosphere is set to zero. This leads to a formulation where we let the stochastic

process Xt denote the proportion of extra terrestrial irradiance (i.e., the irradiance that

would arrive at the surface if there were no atmosphere) that reaches the surface.

The above process is, however, undefined at night, when mt = 0. To overcome this, we can

instead think of Xt as a process that describes the state of the atmosphere and how much

solar irradiance there would potentially be allowed through. In this context, it clearly makes

sense to have Xt defined at night. Thus, we can solve the issue of having mt = 0 by adding

a small constant, say δ = 0.01. Given that the pt is also equal to zero at night, we introduce

another parameter βx (to be estimated) that is added to pt such that Xt is not forced to

tend to zero at night.

Also we note that in this set-up the proportion of solar irradiance that reaches the surface

is naturally bounded to be between zero and one. Thus we want to introduce bounds for
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the process Xt. This is easily done by introducing a state-dependent diffusion, where the

diffusion term decreases to zero as the process approaches the bounds. This implies that the

drift term takes over near the bounds. Furthermore, since we assume that θx > 0 and have

that 1 > pt+βx
mt+δ

> 0, the drift term eventually pulls the process away from the bounds.

We have assumed the extra terrestrial irradiance, mt, as the upper limit for the solar

irradiance. It should be clear, however, that this level can never be attained, because there

will always be some refraction by the atmosphere. Hence, we can possibly scale down the

upper limit, mt, to improve the model. This is done by introducing a factor, γ, on the

maximum solar irradiance. An improvement of the model would be to consider the air mass

Kasten and Young (1989), which takes care of the fact that the distance the light travels

through the atmosphere is longer, when the sun is near the horizon. This, however, will be

left to future work.

In the estimation procedure we have assumed that the noise is non-state dependent, which

is clearly not the case here. Therefore, we need to work with the Lamperti transformed

process. The Lamperti transformation is given by:

Zt = ψ (Xt, t) =

∫
1

σxx(1− x)
dx

∣∣∣∣
x=Xt

= − 1

σx
log

(
1− x
x

)
(31)

Xt = ψ−1 (Zt, t) =
1

1 + e−σxZt
. (32)

Noting that ψt(·) = 0 and gx(x, t) = σx(1− 2x), we can now make use of the Lamperti

transform to obtain the process on the transformed Z-space, which becomes:

dZt =

 θx

(
pt+βx
γmt+δ

µx − 1
1+e−σxZt

)
σx

1
1+e−σxZt

(
1− 1

1+e−σxZt

) − σx
2

(
1− 2

1

1 + e−σxZt

) dt+ dWt (33)

Yk = γmtk

1

1 + e−σxZt
+ εk. (34)

In the sequel, we shall only state the model in the original domain and not in the Lamperti

transformed domain, as they are equivalent in the sense of yielding the same output

13
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[Figure 1 about here.]

In this mechanistic model, we want to consider any deficiencies to improve. This can, among

other approaches, be done by considering the autocorrelation of the studentized residuals.

In Figure 1 we show the autocorrelation of the studentized residuals of Model 2. We see that

there are significant lags at the first lags and that there is some periodicity in the lags. This

points in the direction of some statistical improvements that can be made to the model,

which we consider next in Model 3.

3.4. Model 3: Statistical Extensions

How fast Xt is attracted to its predicted level may vary over time. This may be due to the

NWP being more accurate at some times than at others. Furthermore, there is a lag in the

numerical weather prediction as it takes 4 hours to solve the NWP model. As the NWP

model is only run every 6 hours, this leads to the NWP being between 4 and 10 hours old,

which may also cause us to have varying confidence in the NWP.

To address this issue, we have introduced the stochastic process At, which reverts to the

level µA. The speed at which this reversion occurs is determined by θA, while the system

noise is governed by σA. At governs how rapidly Xt tends to its predicted level. Also, there

might be variations over the day in the accuracy of the numerical weather prediction. This

leads to the following model:

dXt = eAt
(
pt + βx
γmt + δ

(
µx − ω1 sin

(
2π

24
t+ ω2

))
−Xt

)
dt (35)

+σxXt(1−Xt)dW1,t

dAt = θA(µA − At)dt+ σAdW2,t (36)

Yk = γmtkXtk + εk. (37)

Firstly, note that we use a sinusoid to describe a periodic behaviour. Secondly, we work in
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hourly time steps, which explains 2π
24
t. We then introduce a period shift, ω2, and an amplitude,

ω1. The sinusoid is added to the scaling of the meteorological prediction, which translates

into the pt being more accurate in some hours of the day than in others.

We have ended up with a model that includes a maximum hourly irradiance, a numerical

weather prediction as external input, stochastic time constants, and a non-Gaussian system

noise that confines the process between zero and the extra terrestrial irradiance. In the

following section, validation results of the final model are presented.

4. MODEL VALIDATION

In this section, the different models are fitted to the data pertaining to the training set and

evaluated in terms of their likelihood and information criteria.

In terms of computational costs, we have done the computations on a network mainframe

with 20 1.8 GHz processors with a partial paralellization of the optimization problem. In this

setup and the models fitted to the test set of two years of hourly data Model 1 is optimized

in less than 3 minutes, Model 2 is optimized in just under 16 minutes and the fitting of

Model 3 is completed 41 minutes. It should be noted, however, that the paralellization has

diminishing returns to scale. For comparison we have fitted Model 3 on a personal computer

with a 2.7 GHz processor and 8 GB of ram in just over 2 hours.

[Table 1 about here.]

As we propose a model for solar irradiance based partially on physical characteristics of

the system, a first step in validating the model is to consider if the parameter estimates are

feasible in terms of the physics of the system. Specifically, from the physics of the system,

we would expect µx around 1, βx to be smaller than 0.01 and γ close to, but smaller than 1.

We see that all these conditions are satisfied.
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To compare the models with more classical alternatives, we consider an autoregressive

model with external input (ARX) and an autoregressive model with external input and

time-varying system variability, where the prediction variance is modelled using a generalized

linear model (ARX-GLM). The AR model is specified as follows:

Yk = ψ0 +

p∑
i=1

ψiYk−i + εk, where εk ∼ N (0, σ2). (38)

The ARX model takes the form

Yk = ψ0 +

p∑
i=1

ψiYk−i + φpk + εk, εk ∼ N (0, σ2). (39)

The ARX-GLM model is specified as

Yk = ψ0 +

p∑
i=1

ψiYk−i + φpk + εk, ε̃k+1 ∼ N
(
0, fε̃(·)2

)
. (40)

We find, after a fitting procedure, that an appropriate form of the variance scaling in the

generalized linear model is

fε̃(k + 1) = σ
(
mtk+1

)3/4
, (41)

where mtk+1
is specified as in Model 2. For a general introduction to generalized linear models

see Madsen and Thyregod (2011).

Additionally, we benchmark against climatological forecasts. The näıve forecast method is

to use the empirical distribution, with no time dependence, to predict the solar irradiance.

A slightly less näıve approach is to use the empirical distribution of irradiance as a function

of hour-of-day. A third climatological benchmark is to use both hour-of-day and month-of-

year to predict the distribution. These benchmarks are clearly näıve as they do not use the

previous observation to predict. Also, as the climatological approach is non-parametric, we

use the empirical likelihood, see for instance Bera and Bilias (2002), to evaluate the fit.
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[Table 2 about here.]

The results of the different models are presented in Table 2. When computing the likelihood

values, we let only observations during the day contribute with likelihood. This is done as to

not obstruct the picture by fitting solar irradiance models at night. This holds true both for

the benchmarks as well as the fitted SDE models. We see that Model 3 best describes the

data in the training set, as well as in the test set. Furthermore note that the improvement

from the quite näıve Model 1 to Model 2 is huge, which justifies the change in the state

space.

[Figure 2 about here.]

An important analysis tool is the autocorrelation function. We compute this function for

the studentized residuals. The autocorrelation for different lags for the different models is

shown in Figure 2. Observe that the range of the y-axis is (−0.05, 0.25) to better show

the significance levels for the different lags. In Figure 2, we see that Model 1 has many

autocorrelation coefficients that are significant, indicating that this model clearly does not

properly capture the dynamics of the solar irradiance process. In contrast, for Model 2,

only a couple of the first lags along with lags around lag 24 are still significant. We then

end up with model 3, in which the first 22 lags are insignificant in predicting the next

time-step. Notice, however, that around lag number 24, we again begin to see significant

autocorrelation coefficients. This is most likely caused by local conditions like shadowing (by

trees or buildings) or local recurrent weather phenomena such as sea breeze (Bacher et al.

(2013)).

[Figure 3 about here.]

The output of the SDE models is the conditional predictive density at each point in time.

We obtain these predictive densities by Monte Carlo simulation, however, other numerical

procedures are also possible such as solving equation (6). In Figure 3 the observations are
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shown along with the predictive densities given by Model 3, with warmer colors having

higher probability. Initially we may note that the conditional density seems to cover the

obsercations. Another feature of this model is that it assigns zero probability to events

outside the state space, that is, for values of irradiance higher than the maximum or lower

than zero. Notice, in the bottom plot of Figure 3, that the density spreads out, as here we

represent predictions issued 24 hours ahead instead of 1 hour ahead. A further illustration

of this is seen in Figure 4,

[Figure 4 about here.]

where the 95% prediction interval is shaded in gray. Note from this figure that this interval

decreases as we approach the limits of the state space, that is, when the process comes

closer to the maximum irradiance or to zero. Also, notice that the prediction interval is

not symmetric around the point prediction, especially when approaching the limits. Upon

careful inspection, it can be found that the prediction interval is the widest when we predict

around 50%, which is to be expected from the physics of the system. Besides, notice that

the 24-hour ahead forecast has a wider 95% prediction interval.

To validate the accuracy of the predictive density, we can evaluate the predictive quantiles

in the distribution. This is done by counting how many observations lie on each side of the

predictive quantile in question and comparing it to the expected number.

[Table 3 about here.]

In Table 3 the exceedances of the predictive quantiles for Model 3 are shown. The predictive

distribution is found by simulating the process via Monte Carlo simulation for a large number

of trajectories. In a perfect data fit, the expected quantiles match the observed ones exactly.

For the 1-hour prediction on the training set, we see an excellent performance, with the

frequency of exceedences quite close to the expected one in a perfect fit.t For the 24-hour

prediction horizon, we observe a slightly lower number of exceedances than expected. This is
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also true for the test set, especially for the 24-hour ahead quantiles. It should be taken into

account hat Model 3 has been fitted on the basis of one-step-ahead predictions, that is, the

prediction of the next hour on the training set. Thus, the model is not tuned to predictions

for a 24-hour horizon, even though it seems to perform reasonably well.

[Figure 5 about here.]

To evaluate the long term behaviour of the fitted model we can compare the quantiles of

the data with quantiles generated by simulating the model. This is done in Figure 5. We

see that the empirical and theoretical quantiles lie on a somewhat straight line. We see that

the performance on the training set is better than on the test set, as we would expect. The

stationary distribution of the model on the test set, nevertheless, seems to be aligned with

the empirical distribution.

5. CONCLUDING REMARKS

With the increasing penetration of renewable generation in energy systems, forecasting

renewable production is becoming crucial for its efficient integration. Especially asymmetric

costs in time requires an understanding of the uncertainty associated with the stochastic

renewable production. An example of this is ex. the power market in the nordic countries,

where power is sold 12-36 hours ahead of generation. If the seller is then not able to deliver,

she is required to procure the power in balancing markets where the power is typically many

times more expensive. This paper proposes a stochastic differential equation framework for

modeling the uncertainty associated with solar irradiance. It allows us to model a process

that is confined to a bounded state space by physical restrictions on the system. This can

also be done by truncating distributions, however, internalizing it in the model dynamics

provides a more realistic model with better performance and also it is useful for probabilistic

forecasting.
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The starting point for the modeling done in this paper is a simple SDE that tracks the

expected solar irradiance from a numerical weather prediction. By normalizing the weather

prediction with the maximum irradiance, we can capture the periodic behaviour in the

dynamics, and consequently, achieve major improvements. We can tune the diffusion term

to model the actual behaviour of the process and confine it to a bounded interval. The

SDE formulation allows for formulating complex model structures and to track conditional

distributions at any point in time. Our proposed SDE modeling approach outperforms simple

as well as more complex benchmarks.

Even though there is a relation between solar irradiance and produced power from a

photovoltaic panel, such a relation is not trivial. It depends on tilt and orientation of the

PV panel as well as on its efficiency, which may vary as the panel gets dirty or deteriorates

over time. To address this, an adaptive estimation approach would be appropriate. Future

studies will be directed at constructing models to capture this and produce probabilistic

forecasts for solar power via a power curve. Since what is important to the energy system

is the total input of renewable energy, future studies will also be directed at co-modeling

wind and solar power, as these are expected to be main contributors to the energy mix of

the future. Another potential line of future research is the modeling of the interdependence

between the power output of solar farms at different locations.
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Figure 1. Autocorrelation function for the studentized residuals of Model 2.

23



Environmetrics FIGURES

0 10 20 30 40

−
0.

05
0.

20

0 5 10 15 20 25 30 35 40

0 10 20 30 40

−
0.

05
0.

20

0 5 10 15 20 25 30 35 40

01−2009 06−2009 12−2009 06−2010 12−2010 0 10 20 30 40
−

0.
05

0.
20

0 5 10 15 20 25 30 35 40

Figure 2. Studentized residuals and autocorrelation function for the residuals. Here the plots in the top line are from Model 1

continueing to the plots in the bottom line from Model 3.
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Figure 3.Observations of solar irradiance plotted together with the 1-h ahead predictive densities (top) and 24-h ahead (bottom).

Warmer colors indicate a higher probability of seeing this realization.
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Figure 4.Observations of solar irradiance in black plotted along with the 1-h ahead (top) and 24-h ahead (bottom) 95 % prediction

intervals in gray and the prediction in red.
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Figure 5.Q-Q plots for the training set (left) and test set (right) based on the empirical data and simulated data from the model

over the respective period.
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TABLES

θ̂x µ̂x σ̂x σ̂ε β̂x γ̂ θ̂A µ̂A σ̂A ω̂1 ω̂2

Model 1 0.699 0.845 113 0.00101 - - - - - - -

Model 2 0.345 0.804 0.701 2.92 0.00409 0.902 - - - - -

Model 3 - 0.879 0.655 2.89 0.00298 0.887 1.16 -1.08 1.60 0.172 0.116

Table 1. Parameter estimates for the different models.
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Training Set Test Set

d.f. LL AIC BIC LL

Clim.1 - -96397 - - -48421

Clim.2 - -65060 - - -33801
Clim.3 - -48038 - - -24547

AR 6 -50218 - - -25172

ARX 7 -49024 - - -24567
ARX-GLM 7 -46904 - - -23361

Model 1 5 -50286 100582 100621 -25230

Model 2 7 -44413 88840 88894 -22252
Model 3 12 -44162 88348 88441 -22102

Table 2. In this table the log-likelihood of the different models are shown on the training and
test set along with information criteria and degrees of freedom. The climatological predictors

are evaluated in terms of empirical likelihood.
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Training Set Test Set

Quantile function Expected 1h 24h 1h 24h

Q(0.1) 0.10 0.088 0.079 0.076 0.061

Q(0.2) 0.20 0.176 0.170 0.156 0.141
Q(0.3) 0.30 0.273 0.261 0.253 0.220

Q(0.4) 0.40 0.376 0.348 0.349 0.301

Q(0.5) 0.50 0.486 0.440 0.458 0.392
Q(0.6) 0.60 0.603 0.540 0.589 0.473

Q(0.7) 0.70 0.720 0.645 0.712 0.580

Q(0.8) 0.80 0.818 0.763 0.811 0.728
Q(0.9) 0.90 0.901 0.885 0.902 0.858

Table 3. Frequency of observed exceedances for selected quantiles of the predictive density
given by the quantile function Q(·).
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