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Sammendrag 

Fisk fra opdræt er ekstra udsatte for at få vævsskader fra en række sider såsom bidsår fra andre 

fisk eller prædatorer, hårdhændet håndtering eller infektion. Sårheling hos zebrafisk er relativt 

velundersøgt, men mest i forbindelse med regenerering af amputerede finner. Sårheling hos de 

store, hurtigvoksende fiskearter, der opdrættes i konsumøjemed, er kun undersøgt i meget 

ringe grad. 

Målet med dette PhD-studium var at undersøge visuelle og molekylære ændringer under 

sårheling af hud og muskel hos karpe (Cyprinus carpio) og regnbueørred (Oncorhynchus mykiss). 

Begge arter er vigtige produktionsdyr, men i forskellige dele af verden. Karpen er en 

varmtvandsart, mens regnbueørreden trives i kolde og tempererede egne. De to arters 

livsstrategi adskiller sig desuden på flere andre områder, og de er ligeledes relativt fjernt 

beslægtede, hvilket yderligere giver studierne et komparativt tilsnit. 

Vi benyttede os hovedsagligt af en model hvor en cylinder med hud og muskel blev fjernet med 

en biopsistanse. En større biopsistanse blev brugt til at udtage standardiserede vævsprøver 

under sårhelingen. Samtidig optog vi løbende digitale billeder af sårene til billedanalyse af 

sårlukningen. Under sårhelingen tilsatte vi bakterier eller immunmodulerende stoffer såsom β-

glukaner. 

Sårhelingen var hurtigere hos karpen end hos regnbueørreden. Hos begge arter regenererede 

huden hurtigt, og selv om det beskadigede område i starten adskilte sig fra intakt hud ved at 

være mørkere, aftog denne hyperpigmentering langsomt med tiden. Huden, der dækkede såret 

hos karperne, vedblev med at være svagt mørkere, mens den hos regnbueørreden stort set 

lignede intakt hud et år efter skaden var påført. Derimod regenererede regnbueørredens skæl 

ikke i det område, hvor huden var fjernet. Vi undersøgte også sårhelingskapaciteten hos karper 

helt ned til 7 dage efter befrugtning. Disse unge karpelarver udviste en komplet regenerering af 

det beskadigede væv i løbet af kort tid, hvorimod denne evne var drastisk nedsat efter 

metamorfosen. 

Vi undersøgte udtrykket af en række gener, der er involveret i forskellige stadier af sårhelingen. 

En række af disse har ikke tidligere været beskrevet fra fisk. 

I de tidlige udviklingsstadier havde karperne et meget begrænset transkriptionsrespons. De helt 

små karpelarver opregulerede dog udtrykket af metalloproteinasen MMP9 og immunglobulinet 

IgZ1 som følge af vævsbeskadigelse. Efter metamorfosen udviste karperne ingen 
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vævsskadeinduceret regulering af disse gener. Voksne karper havde en hurtig og kortvarig 

inflammatorisk respons, der allerede var aftaget efter 3 dage. Regnbueørrederne havde derimod 

en langtrukken inflammationsfase, der først aftog efter to uger. Ligeledes var transkriptionen af 

de gener, der var relateret til vævsgendannelse, sent opreguleret. Til gengæld var de stadig 

opregulerede på den sidste prøvetagningsdag 100 dage efter såret blev påført. 

MacroGard er et β-glukan produkt, der er almindeligt brugt som immunmodulator i 

fiskeopdræt. Vi tilsatte MacroGard til vandet og viste at det stimulerede karper til en hurtigere 

sårlukning, mens det ikke havde nogen visuel effekt på sårhelingen hos regnbueørred. 

MacroGard havde kun lille effekt på udtrykket af de undersøgte gener hos begge arter. 

Selvom huden hos begge undersøgte arter havde relativt gode regenereringsegenskaber, var det 

gendannede muskelvæv fibrøst, og var hårdere end ubeskadiget muskel selv efter et år. Da 

teksturen er en vigtig sensorisk kvalitetsparameter for fødevarer, vil muskelbeskadigelse have 

indflydelse på spisekvaliteten selv på lang sigt. Desuden tyder vores resultater på at 

vævsbeskadigelse ikke udelukkende påvirker selve det beskadigede område, men i en hvis 

udstrækning har en fibrotisk effekt på hele fisken. 

Vores undersøgelser har givet ny viden om udtrykket af en række gener under sårheling hos de 

to undersøgte arter. I karpens larvestadie var vævsgendannelsen perfekt efter påført skade, 

mens denne evne aftog efter metamorfosen. Hos voksne karper og regnbueørreder var evnen til 

at gendanne muskelvæv stærkt nedsat. For fiskeopdrætsindustrien betyder dette at 

produktionsforholdene ikke blot påvirker fiskens velfærd, men også spisekvaliteten af det 

endelige produkt. 
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Summary 

Fish produced in aquaculture are subjected to potential tissue damage from a range of sources 

such as conspecific biting, handling and infection. While wound healing of especially fins has 

been studied extensively in small model fish species such as the zebrafish, not much is known 

about wound healing in the larger species produced for consumption. 

The aim of this PhD study was to investigate wound healing in carp (Cyprinus carpio) and 

rainbow trout (Oncorhynchus mykiss) and the long-term visual and molecular effect of wounding 

on skin and muscle. Both species are important production animals in different parts of the 

world. They have very different life-strategies and habitat use. Carp is a warm-water species, 

whereas rainbow trout inhabit cold and temperate waters. They are distantly related and thus 

offer comparative aspects to the studies. 

We mostly used a model of full-thickness excisional cutaneous wounds with standardized 

sampling of the wound edge for gene expression and standardized image capture for analysis of 

wound closure dynamics. We manipulated wound healing by addition of bacteria or 

immunomodulators such as β-glucans. 

Wounds heal faster in carp than in rainbow trout. We found that the skin of both species heal 

with a large degree of regeneration, although the initial hyperpigmentation of the affected area 

persist in adult carp although at much lower levels, whereas rainbow trout skin is only weakly 

long-term hyperpigmented. On the other hand, rainbow trout scales fail to regenerate over the 

damage area. We also investigated wound healing in carp as young as 7 days post-fertilization. 

These carp larvae heal wounds very rapidly and with perfect regeneration, whereas this ability 

diminishes after metamorphosis. 

We investigated the expression of a range of genes involved in different wound healing stages. 

The expression of several of these genes has not previously been investigated in fish. 

Carp larvae and juveniles had a very limited transcriptional response to wound healing. 

However, larvae upregulated the metalloproteinase MMP9 and the immunoglobulin IgZ1 as a 

result of wounding, whereas juveniles did not show this response. Adult carp had a short 

inflammatory response, which was largely resolved by day 3, whereas the inflammation phase 

was much longer in rainbow trout, and did not resolve until after two weeks post-wounding. 

The induction of the investigated genes related to production of new tissue was delayed until a 



 13 

week or more post-wounding, but these were upregulated in wounds at least until 100 days 

post-wounding. 

Subjecting wounded fish to the β-glucan product MacroGard, which is an immunomodulator 

often used in aquaculture, stimulated wound closure in carp, but not in rainbow trout. 

MacroGard had only a very minor effect on gene expression in both species. 

Muscle healed with a large degree of fibrosis, and as long as one-year post-damage muscle 

tissue was still significantly tougher than uninjured muscle. Since texture is an important 

sensory quality parameter for foods a history of muscle damage will affect the quality of the 

final consumer product. Additionally, our results indicate that there is a small systemic fibrotic 

effect of damage even in muscle tissue not directly affected.  

In conclusion the investigations provided new insights into gene expression in muscle during 

wound healing in the two investigated species, showed a high regenerative capacity in carp 

larvae and a very limited regenerative ability of muscle in adult fish. From a production 

viewpoint it is thus important to avoid injuries to the fish not only out of consideration for fish 

welfare but also due to implications for the final product quality. 
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1. Objectives of the PhD study 

The aim of this PhD project was to study the progression of wound healing in fish with a 

methodological focus on gene expression and wound image analysis. 

We focused on two distantly related species that are popular production animals over much of 

the globe: The common carp (Cyprinus carpio) and the rainbow trout (Oncorhynchus mykiss). 

For most of the experiments we used a biopsy punch to inflict standardized full-thickness 

excisional cutaneous wounds that penetrated into the muscle. The healing of these wounds was 

followed visually by digital image analysis and at the molecular level by gene expression. 

We not only followed the natural progression of wound healing, but also manipulated the 

wounds in different ways, mostly by exposing the wound to different pathogen-associated 

molecular patterns (PAMPs), and measured the effect on wound closure kinetics and expression 

of genes relevant to different stages in wound healing. 

In relation to aquaculture the muscle (or fillet) is the most relevant part of the fish on which to 

investigate the effect of wounding, since this is the part that is mostly consumed. Ultimately the 

objective was thus to gain more insight into the neglected area of healing of deep cutaneous 

wounds in fish. 
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2. General introduction 

It is not uncommon for fish in aquaculture to be subject to injury from a variety of sources. Viral 

and bacterial pathogens can cause internal hemorrhages and parasites disrupt the mucosal 

surfaces  [1-5]. Wounds can also result from predators or from conspecific biting  [6, 7], or from 

abrasion against raceways or contusions from sorting procedures. 

Wounding leads to poor welfare on the part of the fish and to downgrading of the fillets due to 

mostly poor visual appeal to the consumer  [8]. However, there has been relatively little 

research focus on the potential effect of such injuries on the sensory quality of the fillet. Some 

studies report a detrimental effect on flesh quality by previous bacterial or parasitic infection  

[9-11], but the effect of sterile mechanical trauma to the muscle has received almost no 

attention in relation to aquaculture. 

The zebrafish (Danio rerio) is a popular model in many areas of biology, and also in wound 

healing. Much of what is known about the molecular basis of fish wound healing comes from 

this species, although very little attention has been awarded muscle wounds. Most 

investigations have involved fin amputation, which does not affect muscle. Injured fins and 

many other tissues heal almost perfectly in zebrafish, which is one of the reasons that fish have 

earned the reputation of having a good regenerative potential. However, it is starting to emerge 

that muscle does not have the same regenerative capacity  [12]. Moreover, the small size and 

determinate growth pattern probably does not make zebrafish a very good model for fast 

growing aquaculture fish species. 

We instead turned our focus to rainbow trout (Oncorhynchus mykiss) and common carp 

(Cyprinus carpio), which are both important aquaculture species. However, they are distantly 

related and differ considerably in their life-strategy (see table 1), and they thus provide 

comparative aspects to the studies. Throughout most of the experiments we conducted during 

this PhD study we employed a model of full-thickness cutaneous wounds inflicted with a biopsy 

punch. We investigated the temporal changes in gene expression and wound size over the 

course of healing. 
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Table 1. Different characteristics of carp and rainbow trout (partially from www.fishbase.org). 

 

We tried to manipulate wound healing by exposing the open wounds to known 

immunomodulators such as β-glucan as well as to pathogenic bacteria to investigate if there was 

a transcriptional response or an effect on visual parameters. β-glucan products – and especially 

MacroGard – are the most common immunomodulators used in aquaculture. The immuno-

modulatory effect of these have often been demonstrated when incorporated into feed or when 

 Cyprinus carpio Oncorhynchus mykiss 

Muscle Red, white, pink Red, white 

Muscle utilized for energy during sexual 

maturation 

Scales Few large (varies) Many 

Skin Club cells 

Dermis and epidermis separate easily 

Extensive epidermal vascularization. 

No club cells 

Skin thickens during sexual maturation 

Well developed stratum compactum 

Habitat and 

life strategy 
Warm water species (20-25°C optimum) 

Freshwater, lakes and slow flowing 

rivers, often in turbid water. 

Native to Asia. 

Temperate water species (10-15°C 

optimum). 

Freshwater (but can adopt an 

anadromous life-strategy), many 

habitats, but spawning in fast flowing 

clear water. 

Native to North America 

Diet Omnivorous Carnivorous 

Max weight 45-50kg 20-25kg 

Aquaculture Cultured for more than 4000 years. 

Popular culture species throughout 

southern Eurasia for consumption as 

well as the aquarium trade. 

Cultured for consumption around the 

temperate parts of the globe. 

Most important aquaculture species in 

Denmark 
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cells are stimulated in vitro, but the in vivo effect of direct exposure to injured tissue has not 

been studied previously. 

In the following literature review I provide an overview of the different wound healing stages 

and the cells that are involved in them. Much of the basic knowledge comes from mammals, but 

where available I will draw on piscine or amphibian investigations. A multitude of genes are 

differentially regulated during the wound healing stages and in different cell types. I have 

chosen to investigate the expression of a few handfuls of some of the more studied genes, which 

collectively represent different healing stages and cell types. In the thesis, focus will be on these 

factors, and the deliberate omission of other factors does not necessarily reflect an inferior role 

of these in wound healing. The involvement of specific stages, cells and factors are temporally 

intertwined during the course of wound healing, and it is not possible to explain them all in a 

meaningful, continuous manner. However, each stage and cell type relevant for wound healing, 

as well as the chosen genes, have each been awarded separate sections. It is thus possible to 

consult these sections for additional information when needed. 
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2.1 Wound healing in vertebrates 

 

 

Figure 1. Graphical representation of changes in the regenerative capacity of selected structures 
during development in zebrafish (a), urodele amphibians and axolotl (b), frogs (c) and mammals (d). 
Perfect regenerate ability is scored with 5 and 0 represents no regeneration (from  [13]). 

 

2.1.1 Mammals 

Wound healing can proceed through repair or regeneration. Repair can be more or less fibrotic, 

but by definition results in a loss of pre-wounding tissue architecture and/or function. On the 

other hand, regeneration is wound healing with complete gain of function and tissue 

architecture. 
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Adult mammalian wound healing is prone to repair, but some tissues such as liver, palatal 

mucosa and the very tips of digits heal without a scar  [14]. Lower vertebrates have a higher 

regenerative potential (fig. 1), but the overall progression of wound healing is evolutionarily 

conserved, and consists of a number of partially overlapping stages that varies in magnitude and 

extent (regeneration from a comparative aspect is reviewed by Brockes and Kumar  [15]). 

Wound healing progression differs with developmental stage, but it may also differ between 

closely related species or even between races  [16]. For example, rodent wound closure occurs 

mainly by contraction, whereas human wound closure is mostly by re-epithelialisation, and in 

ponies the inflammation phase is short and robust, whereas in horses it is prolonged but weak  

[16]. This is well-worth to keep in mind also for fish wound healing when extrapolating from 

model species such as the zebrafish (Danio rerio). 

Mammalian embryos and fetuses are known for their ability to rapidly regenerate wounded 

tissue without scarring  [17-19]. Thus comparing adult and fetal wound healing can provide 

important information that can be used in wound treatment. For example, fetal wounds have a 

rapid induction of integrin expression, less inflammation with reduced expression of interleukin 

(IL)-1β, IL-6 and transforming growth factor (TGF)-β1, but with increased expression of TGF-

β3, matrix metalloproteinase (MMP)9 and other MMPs  [20, 21]. No differentiation of fibroblasts 

to myofibroblasts is observed during fetal wound healing, and lysyl oxidase (LOX) expression is 

low  [20]. In contrast, dedifferentiation to mesenchymal cells is more often observed in 

regeneration models than in repair models  [14]. These factors, cells and stages will be 

described in detail later. 

One of the central questions in regeneration studies is from where the regenerating tissue 

derives. There are three basic ways that new, differentiated cells can arise: By dedifferentiation 

(in which already differentiated cells dedifferentiate, divide and redifferentiate); by 

transdifferentiation (in which already differentiated cells are reprogrammed to other cell 

types); and from progenitor cells, that can be either pluripotent or lineage-restricted  [22, 23]. 

This question has been mostly studied in amphibian limb regeneration, where cells do 

dedifferentiate. However, this is a relatively rare event in vertebrates, and mammalian muscle 

does not dedifferentiate following injury, but instead regenerate from progenitor satellite cells. 

However, dedifferentiation can be induced experimentally, e.g. by ectopic expression of msx1, 

which is an important factor for dedifferentiation of myofibers in the urodele and piscine 

blastema  [24-29]. 
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2.1.2 Amphibians 

Lower vertebrates heal with less scarring compared to mammals. A special case of regeneration 

is epimorphic regeneration. Xenopus and urodele amphibians such as the axolotl (Ambystoma 

mexicanum) have become important models due to their impressive ability to perfectly 

regenerate amputated limbs, tails, gills, jaws, lens and heart  [14]. Epimorphic regeneration 

relies on the formation of a blastema consisting of nondifferentiated cells. In recent years it has 

become increasingly clear that the blastema is not a mass of pluripotent stem cells, but a 

collection of tissue-specific resident cells with different and restricted potentials  [22, 23]. In the 

case of salamander muscle cells these seem to arise from a combination of stem cells (satellite 

cells) and dedifferentiating muscle cells  [22, 30-32], whereas Xenopus muscle cells do not 

dedifferentiate  [33]. The blastema is formed after epithelial coverage of the wound, which is 

called the apical ectodermal cap and which secretes factors that promote proliferation and keep 

blastema cells undifferentiated  [14]. Although epimorphic regeneration has been mostly 

studied in association with appendages, Xenopus trunk skin wounds seem to regenerate by a 

similar mechanism  [34]. Reports of blastema formation is rare in higher vertebrates, but is 

reported to occur during antler regeneration in deer  [35], and interestingly blastema formation 

was recently reported during skin regeneration in the African spiny mouse (Acomys spp.), which 

is the first report of blastema formation during skin regeneration in a mammal  [36]. Compared 

to mammals axolotl full-thickness excisional skin wounds have little bleeding, and thus limited 

clot formation. Re-epithelialization is fast, but there is a relatively long delay in production of 

new extracellular matrix (ECM)  [37]. 

 

2.1.3 Fish 

Larval fish have the same ability of regeneration as urodele amphibians and fetal mammals, and 

this ability persists to some extent into adulthood. However, fish appear not to regenerate as 

extensively as the more advanced urodele amphibians as well as more primitive chordates  [38]. 

Injuries to adult fish fins and heart regenerate almost perfectly, and small fish species have 

become important wound healing models. These include most notably zebrafish (Danio rerio), 

but also medaka (Oryzias latipes)  [12, 39, 40]. Fin amputation is the most common injury 

studied in fish, but heart, nerve and eye have also received some attention  [41, 42]. Fish fin 

regeneration proceeds through the formation of a blastema as in the amphibian limb  [43], and 

some, but limited, dedifferentiation is reported for several tissues  [33, 44]. However, the fin is 

devoid of muscle, and is thus not a very good model of wound healing of full-thickness 

excisional wounds to the trunk, such as the ones that have been the focus of this PhD study. Not 

much is known about skeletal muscle regeneration in fish, but very recently a few articles have 
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been published on the subject  [12, 33, 45, 46]. Rodrigues et al  [33] amputated the fin at the tail 

base of zebrafish larvae, thus including muscle tissue. They found that dedifferentiation was not 

apparent in myofibers. Gymnotiform electric fishes are emerging as interesting models of 

particularly nerve and muscle regeneration  [46], and Unguez report similar results to those 

found by Richardson and co-workers. After tail amputation in the gymnotiform Sternopygus 

macrourus, epitelium covered the wound within 24h, a blastema formed within about a week 

and the tail regenerated its structure in three weeks, although the original size was not attained  

[46]. Richardson and co-workers  [12] reported that dermal and epidermal regeneration is 

almost perfect following infliction of deep full-thickness cutaneous wounds in zebrafish. 

However, the affected muscle tissue did not regenerate to the same extent, and it contained 

more adipocytes. 

The transparency of larval zebrafish makes them ideally suited to study individual cells in vivo 

3D, and a transgenic zebrafish that stays transparent into adulthood (Pinky) has also been 

developed  [47]. Several other transgenic zebrafish lines have been created that are useful in the 

study of wound healing in fish  [48], such as transgenic zebrafish with traceable neutrophils  

[49, 50], macrophages  [51] and lymphocytes  [52], as well as a model facilitating spatio-

temporal-specific cell ablation  [53] and one for studying cell proliferation in vivo  [54]. All in all 

the zebrafish has become one of the most important models for live-imaging of leukocyte 

migration  [55], and much valuable information on wound healing will likely come from such 

models in the years ahead. 

The larger fish species that are cultured for consumption have been the subject of some wound 

healing studies, but most of these were carried out in the last century at a time when molecular 

studies were limited in fish. Instead they often relied on histological description. Several 

investigations on cyprinid nerve, fin and skin regeneration date back to the 1930s (e.g.  [56, 

57]). Thus not much is known about the molecular basis of healing in these, and since size 

matters, also in the world of wounds, it is not ideal to extrapolate healing of the relatively small 

wounds in the model fish species such as zebrafish and medaka to those of larger fish. 

Many consumers and recreative fishermen will have noticed the crippled fins of cultured and re-

stocked salmonids. These have obviously not fully regenerated. The salmonid adipose fin has no 

regenerative ability and never grows back when amputated. This knowledge is actively used in 

fisheries management where adipose fin clipping is common practice for salmonids as a way to 

distinguish wild from restocked specimens when (re-)captured. However, no investigations 

have focused on the molecular basis for these observations.  
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The following sections provide first an introduction to the tissues investigated in the present 

PhD study, namely skin and muscle, before continuing with a description of the wound healing 

stages and the cells involved in these stages before finally describing some of the molecules that 

are important in shaping the wound healing response. 
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2.2 Teleost skin and muscle structure 
 

2.2.1 Skin 

Teleost and mammalian skin differs substantially. Among the most immediate differences is the 

production of mucus by goblet cells in the teleost skin, and the fact that the epithelium is 

composed of living cells, that are not cornified  [5]. Since water supports an abundance of 

pathogens, skin and mucus provide an important barrier against infection, and it is important to 

quickly reconstruct this barrier following injury. Thus, re-epithelialization is fast in teleosts. 

Fish skin is a multipurpose organ, and in different species can serve functions such as sensory 

perception, respiration, osmoregulation and excretion  [5]. The outer epithelial cells have 

microridges that have been proposed to serve various functions, including involvement in re-

epithelialization after wounding  [58, 59]. Adult teleost skin consists (apart from the mucus 

layer) of a squamous stratified epithelium with a basement membrane separating it from an 

underlying dermis. The dermis can be divided into an outer stratum spongiosum and an inner 

stratum compactum. The adult teleost epithelium is 5-10 cell layers thick. Goblet cells and 

melanophores  [60, 61] are interspersed between the epithelial cells. Club cells (in the case of 

ostariophysans such as the common carp) can also be found in the epidermis in addition to 

other secretory cells such as sacciform cells  [59]. Several types of chromatophores are also 

found in the skin. One of these is the melanophore. Melanophores in the skin of the cyprinid 

Rohu (Labeo rohita) are of two types: Epidermal and dermal. Epidermal melanophores have 

long dendritic processes, whereas the dermal melanophores have a more regular, condensed 

star-shape  [61]. Most chromatophores, however, are located in the dermis or just below the 

dermis in a fatty layer (called the hypodermis in some species) containing adipocytes that are 

likely derived from fibroblast/adipocyte progenitors  [5, 59, 62, 63]. Fibroblasts, lymphocytes, 

macrophages and granulocytes can all be found in variable numbers in dermis as well as 

epidermis in salmonids and cyprinids  [5, 63-69]. Dendritic cells are common in mammalian 

epidermis, where they are called Langerhans cells  [70]. Dendritic cells have been elusive in 

teleosts, and were only recently described  [71, 72]. However, teleost dendritic cells may reflect 

a more primitive cell-type with common features of macrophages and dendritic cells, since a 

melanin-producing macrophage cell line from Atlantic salmon (SHK-1) express a homolog of the 

human dendritic cell marker CD83  [73]. The skin is also innervated and vascularized – the 

latter is especially apparent in mirror carp (see fig. 6)  [59, 63]. 
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2.2.2 Muscle 

Piscine skeletal muscle differs substantially in architecture from their mammalian counterparts, 

although many of the same constituents are present, such as muscle fibers, muscle precursor 

cells, nerves, fibroblasts, osteocytes, adipocytes and vascular endothelial cells. Red and white 

muscle fibers are not interspersed as in mammals, but rather exist in discrete areas. White 

muscle constitutes the bulk of muscle in most fish species with an area of lateral, subcutaneous 

red muscle spanning the length of the fish and increasing its relative muscle contribution 

caudally. However, the distribution of muscle types varies somewhat with species  [74]. In 

addition, some fish species may have an intermediate pink muscle situated between the red and 

white muscle. Salmonids do not have pink muscle while cyprinids do. White muscle fibers are 

larger in diameter than red muscle and they provide 5-10 times more power during swimming  

[74]. 

Myofibrillar genesis and composition appear conserved from invertebrates through teleosts to 

mammals. Myogenesis involves myoblast proliferation, migration, fusion and terminal 

differentiation. Muscle fibers in fish are not arranged into long bundles, but instead are short 

and arranged in sheets of myotomes separated by myocommata. The trunk muscles of fish are 

divided in left and right halves by a median septum, and in many species these are also divided 

in upper and lower halves. Within these blocks individual myotomes are divided by myosepta. 

Teleost muscle fibers are short and insert into the myosepta via tendons  [74]. Adipocytes and 

fibroblasts are present between muscle fibers. In mammals, the ECM of muscle consists mostly 

of Collagen type I, in addition to several other types of collagen as well as proteoglycans, 

elastins, laminins and others  [75]. ECM molecules have not been studied to a very large extent 

in fish, but it is known that while many ECM molecules (including fibrillar collagens and 

laminins) arose early in metazoan evolution, fibronectin (FN) arose and the collagen family 

expanded in the vertebrate lineage  [76]. The fibrillar collagens type I and V have been 

described from a number of fish species, including rainbow trout (only the type I is published, 

but a type V homolog was found by GenBank EST database BLAST search (authors own 

observation)) and carp  [77, 78], whereas type III, which is often present in the wound ECM of 

mammals and amphibians, does not seem to exist in fish  [37, 79], and a GenBank teleost EST 

database BLAST search did not produce any clear type III homologs, but did produce homologs 

of several other types of collagen. However, it should be noted that Brüggemann and Lawson  

[80] reported the apparent presence of collagen type III in Atlantic cod muscle by using 

antibodies for human type III collagen. 

Many fish species have a more or less indeterminate growth pattern, and continue to grow 

throughout life. Muscle is post-mitotic, and cannot grow by hyperplasia. Instead, normal muscle 
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growth in teleosts initially occurs by recruitment of satellite cells to produce new fibers, but 

from a certain (and apparently species-specific) size increase in muscle mass is mostly due to 

increase in individual fiber size, with very little contribution of new fibers  [81]. For rainbow 

trout this shift takes place when the fish is around 50cm long. It has been proposed that the shift 

in muscle growth from recruitment of new fibers to growth of existing fibers is due to 

exhaustion of an initial pool of satellite cells  [81]. These satellite cells can be considered muscle 

stem cells, and a body size-related exhaustion of these will result in poor muscle regenerative 

ability. In addition, in many fish species muscle mass fluctuates as a result of sexual maturation 

stage, as muscle proteins can be mobilized for energy during gonadal maturation  [74]. 

Salmonids are a case where this muscle mobilization for energy is particularly extreme during 

the gonadal maturation and spawning migration. Season (light and temperature) also influences 

myogenesis – especially in temperate regions  [74].  How these changes in muscle mass 

influences wound healing has not been investigated. 
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2.3 Stages of wound healing 
 

Following tissue damage an intricate cascade of reactions commences aiming at containing the 

injury and restoring homeostasis, combatting infection, clear cellular debris and regain cellular 

composition and ECM architecture and, if possible, function  [82]. Very short and simply put, 

vertebrate wound healing consist of the following sequential, but overlapping stages: 1) 

Hemostasis and clotting; 2) inflammation; 3) proliferation; and finally 4) remodeling. The 

proliferation phase includes re-epithelialization (in birds and mammals), granulation tissue 

formation, neovascularization, contraction, and ECM deposition (fig. 2). 

In simple sterile human incisional wounds the inflammation phase typically lasts until day 4 or 

5, the proliferation phase follows and lasts 2-3 weeks, and this transists into the remodeling 

phase, which may last for more than a year  [83].  However, in reality wound healing is a highly 

complex sequence of events that involve a plethora of cell types, molecules and physiological 

processes. Excisional wounds take longer to heal and different healing phases can coexist in 

different locations in the wound  [83]. 

  

 

Figure 2. Graphical representation of the extent of different wound healing stages in a prototypical 
mammal and the axolotl. Adult mammals heal with scarring in most cases, whereas axolotl wound 
healing is most often scar-free (modified from  [37]) 
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2.3.1 Hemostasis and clotting 

Within the first seconds and minutes after wounding – provided the wounding is severe enough 

to include the vascular system – blood vessels constrict to prevent excessive blood loss, 

platelets aggregate and blood coagulates to plug the wound and provide a matrix for infiltrating 

cells  [84, 85]. This scenario is similar in all vertebrates. 

The coagulation pathway includes several factors, but essentially prothrombin is converted to 

thrombin, which in turn converts fibrinogen to fibrin, which polymerizes to form a clot  [84]. 

Most of these factors are present in zebrafish  [86]. 

Minutes after wounding when the clot is formed, factors such as serotonin, 5-

hydroxytryptamine and histamine induce the reversion from vasoconstriction to vasodilation 

and reversible opening of the junctions between endothelial cells to allow the diapedesis of 

myeloid cells into the wound site  [87]. Blood vessels are stimulated by proinflammatory 

cytokines released from the wound to increase expression of adhesion molecules (selectins and 

ICAMs) essential for leukocyte diapedesis  [88].  Bacterial products can accelerate the attraction 

of neutrophils to the wound. 

In mammals the aggregated platelets degranulate, thereby releasing factors such as PDGF, 

which amplifies aggregation and clotting, and attracts and activates inflammatory cells, 

endothelial cells and fibroblasts, which also themselves produce PDGF  [84, 89]. PDGF 

stimulates fibroblasts to secrete non-collagen ECM and collagenases such as MMP13. It also 

stimulates integrin expression. On the other hand, platelets also release the profibrotic cytokine 

TGF-β1, which stimulates collagen synthesis and decreases ECM degradation  [84]. 

Despite the apparent similarities between mammalian and piscine blood clotting and the factors 

released (e.g. PDGF) by their respective platelets or thrombocytes, there is no significant 

formation of an external blood clot in zebrafish or axolotl following cutaneous injury  [12, 37]. 

Consequently, amphibians and fish have no eschar covering the healing wound as in higher 

vertebrates, and an attempt to block any clotting with warfarin did not affect healing in 

zebrafish  [12]. 

 

2.3.2 Initiation of inflammation 

The initial response to wounding is likely multifaceted, but one possible pathway was recently 

proposed based mainly on findings from the worm Caenorhabditis elegans and zebrafish. These 

show that a calcium wave, which may be caused by changes in mechanical tension or electrical 

fields at the wound site, is an immediate response to damage  [15, 90-93] and H2O2 produced by 
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the NADPH oxidase Duox minutes after wounding forms a gradient emanating from the wound, 

which provides the initial signal to attract leukocytes  [93, 94]. The reactivity of H2O2 makes it a 

powerful signaling molecule through protein modification not only in the initial phases of 

wound healing  [82]. Since Duox is regulated by calcium it was proposed that these two events 

were connected  [82, 92], and this was recently confirmed  [95]. The SRC family kinase (SFK) 

Lyn functions as a redox sensor for H2O2 in leukocytes. SFK and calcium signaling is important 

for epimorphic regeneration in zebrafish fin amputation studies  [93]. 

Inflammasomes are multimolecular complexes that stimulate inflammation through the 

activation of caspase-1 (ICE), which in turn cleaves proIL-1β and other proinflammatory 

cytokines to their active form  [85, 96]. However, pro-IL-1β released from necrotic cells can also 

be cleaved to its active form by neutrophil-derived proteases present at the wound site  [97, 98]. 

The most studied inflammasome is NLRP3  [85, 99], but even so the exact mechanisms by which 

the NLRP3 inflammasome is activated in mammals is still unclear. It is known, however, that the 

assembly requires the presence of reactive oxygen species (ROS) such as H2O2  [85, 100] in 

addition to other triggers such as DAMPs or PAMPs  [101, 102]. 

Pathogen-associated molecular patterns (PAMPs) signal through pattern-recognition receptors 

(PRRs) such as Toll-like receptors (TLRs) and receptor for advanced glycation end products 

(RAGE), which are likewise receptors for many damage-associated molecular patterns (DAMPs)  

[103]. Tissue damage caused by pathogens or by sterile means thus has different triggers, but 

ultimately converges in a similar inflammatory response  [104]. 

TLRs are the most potent inducers of the inflammatory response, and the IL-1 receptor and 

TLRs share many signaling components  [105]. Most mammalian TLRs have been discovered in 

fish, although some are absent in some taxa  [106], and in addition some fish-specific TLRs have 

been discovered (TLR14 and TLR19-26)  [107-109]. 

 

It appears that an NLRP3 ortholog is not present in fish  [107, 110]. However, the functional 

response to injury is similar in all vertebrates, although it is unclear if inflammasomes are 

involved in piscine pyroptosis and inflammation  [111]. 

Inflammation is an important defense against invading bacterial pathogens, and many 

pathogens produce substances that interfere with inflammasome activation  [99]. 
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PAMPs, DAMPs, MAMPs, RAMPs, DAMPERs and alarmins 
Since PRRs recognize ligands that are not restricted to pathogenic bacteria, but also 

commensals, MAMP (microorganism-associated molecular pattern) has been proposed as a 

more suitable name for these molecules  [112]. Similarly, endogenous molecules that are 

released concomitantly with DAMPs, but which have anti-inflammatory properties (including 

some heat-shock proteins (HSPs)) have been recently described and termed resolution-

associated molecular patterns (RAMPs) or DAMPERs  [113, 114]. The term alarmin is 

sometimes used for an endogenous molecule that triggers inflammation. In that terminology 

alarmins and PAMPs are considered subsets of DAMPs  [115]. However, the more prevailing 

terms PAMP (for prototypical exogenous molecules derived from microorganisms) and DAMPs 

(for endogenous molecules released from necrotic cells) will be used in this thesis. 

Most DAMPs are intracellular molecules that are released from necrotic cells. These include high 

mobility group B1 (HMGB1), S100 proteins, heat shock proteins, the interleukin (IL)-1-family 

members IL-1α and IL-33, ATP, uric acid and dsDNA, but some ECM fragments also function as 

DAMPs  [82, 104, 116]. In addition, many of these DAMPs are not exclusively released from 

necrotic cells, but also actively from cells under homeostatic conditions  [117-121]. 

HMBG1 has become the prototypical DAMP, and it is also present in fish  [122]. On the other 

hand, IL-1α and IL-33 appear absent  [123]. 

 

β-glucans are immunomodulatory PAMPs 
β-glucans are a heterogeneous group of glucose-based polysaccharides that perform structural 

functions in a wide array of plants, algae and fungi. They are known for their 

immunomodulatory properties, and their effect on properties of the fish immune system has 

been documented in a number of studies (see  [124] for a review). 

In mammals, Dectin-1 is the main β-glucan receptor. However, Dectin-1 is apparently not 

present in fish  [107]. Other receptors for β-glucans in mammals include complement receptor 3 

(CR3 or CD11b/CD18, present in fish  [125, 126], lactosylceramide (present in fish  [127, 128]) 

and CD5 (not described from fish  [129, 130]). CR3 may be at least partly responsible for β-

glucan recognition in carp and channel catfish  [131, 132]. Nothing more is known about how β-

glucans are recognized in fish, but fish have a different PRR repertoire than mammals and thus 

likely recognize β-glucans differently  [107]. 

β-glucans have mostly been delivered in feed, and with apparent effect  [124]. Ramesh and 

Maridass  [133] tested the effect of adding chitosan to the feed of common carp for 4 weeks 

prior to full-thickness wounding. Carp fed chitosan-supplemented feed had faster wound 
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healing (re-epithelialization, contraction, angiogenesis and formation of connective tissue). It is 

important to realize that immunostimulation is not constant and that timing is important. 

Feeding live yeast to gilthead seabream resulted in very different gene expression 2 and 4 

weeks after start of yeast feeding, with a general upregulation of immune-relevant genes at 

week 2 and a downregulation at week 4  [60]. 

Others have injected β-glucans and found a positive effect by increased resistance to infection 

with pathogenic bacteria  [134-136]. In carp, higher alternative complement pathway activity 

and increased phagocytic cell activity have been reported following injection  [135-137]. 

Injection of carp with β-glucans reduced the number of circulating eosinophils and basophils in 

blood, and at high concentrations these cell types disappeared from blood entirely. Conversely, 

monocytes and neutrophils increased in number, while lymphocyte numbers were relatively 

constant  [138]. 

Very recently it was reported from carp that β-glucans protect NET degradation by the fish 

pathogenic bacterium Aeromonas hydrophila  [139] and that β-glucans stimulate a fast and 

strong respiratory burst response in carp head kidney leukocytes, compared to a low but 

prolonged effect of DAMP stimulation  [140]. 

In Paper I we report for the first time an effect of β-glucan bathing on wound healing in 

common carp, and in Paper III we show no effect on wound healing in rainbow trout. 

 

2.3.3 Resolution of inflammation 

Regeneration usually coincides with no or limited inflammation and excessive scarring 

conversely coincides with an exacerbated inflammatory response  [14, 141, 142]. As one of the 

few exceptions, substantial inflammation can still be followed by scarless healing in zebrafish 

larvae and adults  [12, 143, 144], and conversely pu.1 mutants (lacking myeloid cells) 

regenerate their caudal fins similar to wild type fish  [15, 143]. 

Nonetheless, any inflammation needs to be terminated for healing to proceed. Resolution of 

inflammation is an active process, not just a slow dissipation of inflammatory molecules. 

Neutrophils are a source of proinflammatory factors, and apoptosis and retrograde migration of 

neutrophils is an important step in the resolution of inflammation  [48]. However, the 

facilitation of regeneration by apoptosis of neutrophils is not just due to the loss of 

proinflammatory cytokines and tissue destructive proteases and radicals. Cells in which the 

apoptotic cascade has been initiated provide proliferation signals, a phenomenon called 

apoptosis-induced compensatory proliferation  [145]. Caspases are central executioners of 
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apoptosis, and caspases also induce production of prostaglandin E2 (PGE2)  [146]. PGE2 and 

Wnt signaling are master regulators of regeneration in zebrafish  [147]. Apoptosis itself is not 

only necessary, but also sufficient for regeneration in Hydra  [145], and apoptosis is also crucial 

for regeneration in Xenopus larvae  [148]. 

The resolution phase marks a switch from production of proinflammatory to anti-inflammatory 

cytokines and a lipid-mediator switch from proinflammatory prostaglandins and leukotrienes 

(derived from AA) to anti-inflammatory lipoxins (derived from AA), resolvins and protectins 

(both derived from EPA and DHA)  [149]. 

In case of severely infected wounds where acute inflammation is not sufficient to clear the 

pathogen, inflammation persists but is now dominated by macrophages and T cells  [150, 151]. 

IL-10 is a prototypic anti-inflammatory cytokine, and many reports describe the role of IL-10 in 

resolution of inflammation and prevention of fibrosis. Recently Kieran et al  [152] investigated 

the effect of IL-10 on three mammalian species. IL-10/IL-4 KO mice had elevated inflammation 

and excessive scar formation, conversely exogenous application of IL-10 to wild type rat and 

human cutaneous wounds led to better tissue architecture with less scarring. Other anti-

inflammatory molecules include IL-4, IL-13, IL-22, soluble TNF receptor and IL-1ra  [153]. 

IL-10 and IL-22 are members of the IL-10 family of cytokines. IL-10 is produced by Th1 and 

CD8+ T cells, natural killer cells and dendritic cells. These also produce IL-22. In addition, IL-22 

is produced by Th17, Th22 and LTi cells. IL-10 exerts its effect mainly on leukocytes, whereas 

IL-22 affects mostly epithelial cells  [154]. IL-4 is mainly produced by eosinophils with minor 

contributions from mast cells, and IL-13 is produced by Th2 cells and group II ILCs  [155]. 

However, as usual in biology, spatiotemporal context is important, and priming with type I 

interferons (IFNs) result in proinflammatory properties of IL-10 and IL-22  [154]. 

 

2.3.4 Wound closure: Re-epithelialization and wound contraction 

The wound closes by a combination of re-epithelialization and contraction. In many aquatic 

organisms the epidermis rapidly seals the affected area to regain osmotic homeostasis. 

Embryonic wound epithelia do not migrate, and show no signs of lamellipodia or filopodia  [20]. 

Instead, epithelial wound closure happens by a different mechanism in which actomyosin cables 

connect the cells of the leading edge and draw on them in a purse-string fashion to close the 

wound  [156]. This has been demonstrated in invertebrates as well as vertebrates  [19]. 
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In adult mammals, epithelial cells start migrating over the wound as a sheet (epiboly), and they 

generally do not start proliferating until continuity of the epithelial layer is achieved. FN and 

tenascin-C (TN-C) function as guides over which the epithelial cells migrate  [84]. 

In the axolotl, wound re-epithelialization is faster than in mammals. There is a lag phase of only 

1-2h before keratinocyte migration starts, whereas this phase can be more than 24h in 

mammals  [14]. The exact mechanisms for this fast re-epithelialization are not known, but it is 

known that keratinocyte growth factor (KGF) and FN are important and that expression of 

MMPs such as the stromelysins and MMP9 is highly elevated in the migrating epidermal front  

[14, 37]. 

The wound epithelium does more than just seal off the wound from the environment. It is also 

actively phagocytic  [157] and provides important cues for regeneration. If autologous skin is 

grafted onto an amputated newt limb it fails to regenerate  [15, 32]. 

Skin wounds are also covered rapidly by migrating epidermal cells in adult as well as larval fish. 

After metamorphosis the fish epidermis becomes multilayered and epithelium covers the 

wound by a combination of migration and proliferation of epidermal cells  [158]. Migration is 

much faster in epidermal wounds than in full-thickness wounds including epidermis as well as 

dermis. In the case of the former, migration rates of up to 0.4mm per hour have been reported  

[159]. In plaice (Pleuronectes platessa) larvae, the rate of migration increased with temperature 

and to some extent also developmental stage  [159, 160]. In vitro migration rates of epidermal 

cells from several fish species are also temperature dependent, and reach a maximum migration 

rate of 2mm per hour at their optimal temperature in some species  [161]. In the cyprinid Rohu 

(Labeo rohita) 5mm wide and 2-3mm deep cutaneous wounds had fully re-epithelialized after 

4-6 hours (at 25°C)  [61]. 

Contraction takes place later, and is due to the action of fibroblasts and myofibroblasts applying 

contraction force to the extracellular matrix through mainly α-smooth muscle actin (α-SMA)  

[84]. 

 

2.3.5 Granulation tissue formation and neovascularization 

In mammalian wound healing inflammation, re-epithelialization, granulation tissue formation 

and neovascularization coincide to a large extent  [162]. However, in fish, re-epithelialization 

precedes granulation tissue formation. 



 33 

Hyaluronic acid (HA) is a large glycosaminoglycan that together with fibrin form the main part 

of the initial provisional wound matrix in mammals  [84]. HA suppresses the expression of other 

ECM molecules such as collagen type I and III and FN by fibroblasts  [163]. However, fibroblasts 

later digest HA using hyaluronidase. The initial fibrin-rich wound matrix is replaced by a new 

matrix called granulation tissue due to its granular appearance. Granulation tissue is especially 

rich in FN, but TN-C and collagen is also part of this matrix. Initially collagen is mainly in the 

form of type III, which is a makes a thinner, more pliable fiber than type I, which is produced 

later  [84]. Granulation tissue is considered responsible for the wound contraction observed 

during the proliferation phase in adult wound healing  [20]. After wound contraction only little 

TN-C and FN remain  [164]. Granulation tissue also seeds the ground for the process of re-

epithelialization in mammals  [20].  

In zebrafish, re-epithelialization of cutaneous wounds takes place within hours, whereas 

granulation tissue does not start to form until day 2 after wounding, and it reaches its greatest 

extent after 4 days. This granulation tissue contains type I collagen, FN and TN-C. 

Neovascularization lags slightly behind granulation tissue formation, and only starts to be 

recognizable by day 4, with considerably more new vessel apparent at day 6 and 8  [12]. 

Oxygen is scarce in wounds due to disruption of the vascular system and the high oxygen 

consumption. Low oxygen levels stimulate proliferation via growth factors. At the same time 

lactate levels increase, which stimulates the production of enzymes involved in collagen 

synthesis  [87]. It is important that the granulation tissue becomes properly vascularized as 

myoblasts are unable to proliferate or differentiate more than 150µm away from a blood vessel  

[165]. Vascularization of wound tissue may occur by sprouting from existing blood vessels 

(angiogenesis) or from the formation and fusion of new vessels (neovascularization). FGF-2 and 

VEGF are important growth factors promoting angiogenesis  [19]. These are expressed by 

macrophages and damaged epithelium, and FGF-2 also by endothelial cells and nerves  [19, 

162]. FN and NO also stimulate blood vessel formation  [82, 162]. TGF-β on the other hand 

promotes endothelial quiescence and thus counteracts the effects of FGF-2, VEGF, FN and NO  

[166]. Once the wound has contracted and sufficient amounts of new ECM have been produced 

the granulation tissue transist into more mature tissue by apoptosis of endothelial cells and 

fibroblasts and by remodeling of the ECM. 

2.3.6 Remodeling 

The ECM is constantly being remodeled during homeostasis, but the pace picks up in wounds  

[167]. There must be a delicate balance between proteases, their inhibitors and ECM molecules. 

Remodeling starts already from a few weeks after injury, but may last for years. During 
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remodeling of muscle ECM molecules that form the provisional matrix (such as collagen type III 

and FN) are gradually replaced by collagen type I. At the same time fibers are aligned along the 

lines of tension instead of the haphazard arrangement during the earlier stages of wound 

healing. Wound strength increases rapidly during the first weeks of remodeling, but only slowly 

afterwards, and it never reaches more than around 80% of the original strength in mammals. 

LOX is the major collagen cross-linking enzyme. Cross-linking of collagen fibers increases 

wound tensile strength  [84]. 

Once the provisional matrix has been replaced by a collagen-rich matrix collagen-production 

returns to normal. Healed tissue is relatively acellular, and apoptosis is important event during 

the remodeling stage as it is for the resolution of inflammation. However, instead of neutrophils, 

the apoptotic cells in the remodeling phase are fibroblasts, myofibroblasts and endothelial cells. 

Blood vessels are abundant in granulation tissue, and endothelial apoptosis is important for 

vascular regression  [88, 162]. Failure of fibroblasts and myofibroblasts to undergo apoptosis 

leads to extensive ECM deposition and thus scarring  [168]. In open wounds in the rat, 

myofibroblast as well as endothelial cell apoptosis peaked around day 20 – five days after the 

wound had closed. Interestingly, artificial and premature closing of the wound by skin grafting 

induced myofibroblast apoptosis in a matter of hours  [83]. 
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2.4 Cell types involved in wound healing 
 

In normal mammalian wound healing neutrophils start invading wound from 2h post-wounding 

and their numbers peak 6-24h post-wounding. Macrophages and fibroblasts invade the wound 

after 24h with a peak after 4 days, but some persist well into the remodeling phase  [83, 165]. 

Eosinophils infiltrate the wound at an intermediate time between neutrophils and macrophages  

[169]. After about two days the macrophage population shifts from M1 to M2. After about a 

week fibroblasts start to differentiate into myofibroblasts  [170]. Muscle progenitors also start 

invading the wound around 24h post-wounding  [165]. 

The sequence and extent of cell infiltration is species specific in fish, and the timing also 

depends on temperature. The studies by Iger and Abraham  [157] and Mawdesley-Thomas and 

Bucke  [171] provide examples of cell infiltration into different wound types in cyprinids kept at 

around 20°C. The sequence of cell infiltration into the wound largely resembles that of 

mammals with the exception that basophils are the most abundant leukocyte from a few hours 

and up until 1-2 days post-wounding  [157]. 

The following section describes how the cell types found in fish wounds may contribute to the 

healing process. Most of the information comes from mammals. 

 

2.4.1 Thrombocytes 

Thrombocytes are the lower vertebrate equivalent of platelets. Platelets are initially involved in 

hemostasis and thrombosis, by aggregation and secretion of coagulation factors  [172]. Human 

platelet and zebrafish thrombocyte hemostasis is quite similar  [86, 173]. 

Platelets contain a plethora of factors (including PDGF, TGF-β, FGF-2, IL-1β and FN) that are 

stored in granules and released following activation  [172, 174]. However, these factors are also 

produced by other cells, and platelets are not essential for normal adult mammalian wound 

healing  [20]. The integrin α-chain CD41 is a marker for platelets, and it dimerizes with an 

integrin β-chain (CD61) to form the functional integrin CD41/CD61, which is the most 

important receptor involved in platelet aggregation, and the most abundant molecule in the cell 

membrane of human platelets  [175]. CD41 expression during wound healing in rainbow trout is 

described in Paper III. 

Thrombocyte function has not been much studied in fish. Channel catfish (Ictalurus punctatus) 

thrombocytes were found to likely aggregate due to the binding of CD41/CD61 homologs  [176]. 

In humans and mice as well as zebrafish, two CD41+-populations exist (CD41high and CD41low). 
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Lin et al  [177] cloned zebrafish CD41 and created a CD41-GFP-transgenic zebrafish. In humans 

and mice these two populations have been shown to consist respectively of platelets and very 

early hematopoietic progenitors in which the cd41 gene is silenced as cells develop. This is 

similar in zebrafish, with the CD41low cells having hematopoietic properties when grafted into 

irradiated zebrafish, while the CD41high cells do not  [178]. Rainbow trout thrombocytes also 

express cytokines such as IL-1β, TNF-α and TGF-β and produce eicosanoids just as in mammals  

[179]. 

However, there are also numerous differences between mammalian platelets and piscine 

thrombocytes. Piscine thrombocytes are nucleated cells that are morphologically very similar to 

lymphocytes. Platelets are much more numerous in human blood than thrombocytes are in fish 

blood. A platelet count of more than 105 µL-1 is normal in human blood, while teleost 

thrombocytes usually number less than 104 µL-1  [180, 181]. 

In addition, teleosts lack an ortholog of the collagen receptor GVPI, which is important for 

activation and aggregation of mammalian platelets. However, a different receptor performing 

similar functions was recently described  [182, 183]. This receptor was also expressed on 

erythrocytes in some species, and these may thus contribute to hemostasis in fish. 

Thrombocytes also share some of the same features of B1 lymphocytes, such as being 

phagocytic  [184-188]. Rainbow trout thrombocytes additionally express MHC class II, TAP1 

and TAP2 (involved in antigen presentation), and CCR7 (which in mammals is involved in the 

homing of T cells to lymph nodes, and probably have a similar function in rainbow trout despite 

the lack of true lymph nodes  [189]), and thus potentially participate in adaptive immune 

responses  [190, 191]. Piscine nucleated thrombocytes could be speculated to persist for some 

time in the wound, and to continue to secrete cytokines and growth factors, as well as actively 

helping clear the wound of pathogens and cell debris by phagocytosis. 

 

2.4.2 Granulocytes 

In mammals the granulocytes are divided into neutrophils, eosinophils, basophils and mast 

cells. 

In fish, the granulocyte nomenclature is not so fixed, and the staining characteristics and 

composition of granulocytes vary considerably between species  [69, 192, 193]. For example, in 

carp wounds basophils are one of the most prominent infiltrating cell types  [157], whereas 

basophils are rarely observed in salmonids altogether  [194]. In salmonids cells with 

characteristics of both mast cells and eosinophils (coined MC/EGCs by some authors) are 
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common in mucosa-associated lymphoid tissue, and are recruited to inflammatory sites  [69, 

195].  

Apart from neutrophils the involvement of granulocytes in wound healing has been under-

studied in mammals as well as fish, and these are more commonly associated with allergy and 

anti-parasitic responses  [196, 197]. However, anti-parasitic responses are also aimed at 

containing the concomitant tissue damage caused by large parasites, and may thus have 

important functions in wound healing. In fact, it has been proposed that Th2 immunity evolved 

mainly as a repair response to the tissue destruction caused by metazoan parasites  [198]. 

Neutrophils 
The neutrophil is one of the main inflammatory cells. Neutrophils circulate in blood, and are 

trapped together with platelets and erythrocytes in the blood clot  [142]. Neutrophils are also 

the first leukocytes to actively infiltrate the mammalian wound in large numbers  [142]. Here 

they secrete eicosanoids, reactive oxygen and nitrogen species, proteases that debride the 

wound and a range of chemokines and cytokines that attract more neutrophils as well as 

macrophages and T cells to the wound site  [142, 150, 199, 200]. It was recently shown in mice 

that the DAMP IL-1α released from necrotic cells specifically recruits neutrophils, whereas IL-1β 

recruits macrophages  [201]. Neutrophil secretion factors also promote angiogenesis and the 

migration and proliferation of keratinocytes and fibroblasts  [202]. 

Another important part of neutrophil function is programmed cell death. Initially when entering 

the wound, neutrophils downregulate proapoptotic and upregulate anti-apoptotic genes  [202], 

but at later stages apoptosis is an important part of neutrophil function. One apoptotic pathway 

used by neutrophils is NETosis  [203, 204]. NETosis results in the release of a so-called 

neutrophil extracellular trap (NET) consisting of decondensed chromatin. This NET is decorated 

with proteases, histones and myeloperoxidase, all of which have a bactericidal effect  [205]. 

NETs may also have a function in homeostasis as Nox-2 deficient mice (i.e. NETs cannot be 

formed) are more prone to lupus than wild-type mice  [206]. However, neutrophils do not all 

undergo apoptosis and/or are cleared by macrophages and fibroblasts at the wound site. 

Neutrophils also actively leave the wound site, and reversion of chemotaxis to chemorepulsion 

in neutrophils in response to an unknown signal is important in resolution of inflammation  

[207]. In fact, neutrophil emigration appears to be more common than apoptosis during the 

resolution phase in zebrafish  [55]. Neutrophils are even reported to migrate from virally 

infected dermal sites to the bone marrow to help prime CD8+ T cells and a range of other 

functions of neutrophils are emerging  [208, 209]. 
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Morphologically fish neutrophils of some species differ from those of mammals, since not all fish 

species have neutrophils that are polymorphonuclear. Nevertheless these seem to function in a 

very similar manner  [210]. They typically start arriving at the site of injury after about an hour 

and their numbers peak after 48h  [211]. Fish neutrophils are phagocytic, but unlike their 

mammalian counterpart they have relatively poor bactericidal activity compared to 

macrophages  [181, 211]. Surprisingly non-specific cytotoxicity has been reported from rainbow 

trout neutrophils  [212]. NET formation was also described from fathead minnow (Pimephelas 

bromelas), zebrafish and carp, and it is probably found in all fish as the principle is an ancient 

defense strategy also found in invertebrate hemocytes  [213-215].  

Non-neutrophilic granulocytes 
Mammalian mast cells have abundant granules of histamine, serotonin and heparin. These have 

several biological effects including vasodilation and chemoattraction of neutrophils  [216], and 

can be released upon stimulation with or without the concomitant release of lipid mediators, 

cytokines and growth factors. However, mast cells can also respond by chemokine synthesis in 

the absence of degranulation  [217]. Mast cells bind and respond to the DAMP IL-33 through ST-

2, however, mast cells do not respond to other DAMPs such as HMBG1, adenosine or uric acid, 

and in fact IL-33 appeared to be the sole factor from necrotic cells that stimulated a response 

from mast cells  [218]. This response was proinflammatory through the release of TNF-α, IL-6 

and leukotrienes. IL-33 does not trigger degranulation on its own, but potentiates the response 

to degranulation signals. On the other hand, mammalian basophils release the Th2 cytokines IL-

4 and IL-13 when stimulated with IL-33  [217]. 

Recently it was discovered that eosinophils (and to a lesser degree mast cells) are the main IL-4 

producing cells in regenerating muscles of mice  [155]. In addition it was shown that il4-/-il13-/- 

mice failed to resolve inflammation, and that inflammatory cells and debris persisted at the 

wound site. Thus, mast cells and especially eosinophils are important for the switch from an 

inflammatory Th1 to a resolving Th2 environment – at least in mice. 

Eosinophils produce a range of (mainly Th2-type) cytokines, chemokines, lipid mediators and 

cytotoxic cationic proteins. These are mainly considered to partake in the immune response 

towards parasites. In addition, eosinophils produce a number of proresolving EPA- and DHA-

derived lipid mediators, which have only been discovered within the last decade  [169]. These 

include resolvins, protectins, and maresins. They inhibit neutrophil infiltration and stimulate 

macrophage phagocytosis of apoptotic neutrophils. Depletion of eosinophils or knock-out of 

12/15-lipoxygenase prolongs the resolution phase  [169]. 



 39 

Piscine mast cells contain granules with enzymes such as phosphatases and lysozyme as in 

mammals, but no serotonin. Histamine and piscidins (antimicrobial peptides) are only found in 

mast cells of the advanced order perciformes  [219, 220], and thus neither in cypriniformes, nor 

salmoniformes. Teleosts also lack an IgE and IL-33 homolog  [123], although the IL-33 receptor 

ST2 is apparently present  [221]. Ligand binding to IgE and ST2 is known to activate mast cells 

in mammals. Nonetheless, Mulero et al  [220] found perciform mast cells to functionally respond 

to stimulation much like mammalian mast cells. Likewise, Balla et al  [222] found zebrafish 

eosinophils to share a number of features with mammalian eosinophils, including similar 

responses to stimulation. However, neither IL-5 nor its receptor is apparently present in the 

zebrafish genome, and this signaling pathway is central for mammalian eosinophil function  

[197]. Another difference is that eosinophils are not very common in zebrafish compared to 

mammals and salmonids, and appears to play a minor role  [48, 222], whereas basophils are 

abundant in wounds of common carp  [157, 223]. 

In addition, a unique and enigmatic cell type called the rodlet cell is only found in fish. It 

somewhat resembles MC/EGCs, but has characteristic club-like inclusions. Rodlet cells are often 

found alongside MC/EGCs during parasitic infections  [69, 192, 224, 225]. With the theory of the 

evolution of eosinophilic granulocytes to maintain tissue homeostasis during the tissue 

destructing infection with large metazoan parasites in mind, they could thus be speculated to 

perform an as yet uninvestigated role in piscine wound healing. 

 

2.4.3 Macrophages 

Macrophages are key orchestrators of wound healing through phagocytosis of apoptotic cells as 

well as secretion of growth factors and cytokines. They are arguably the most studied cell type 

in relation to wound healing. 

Macrophages at the wound site can derive from either local tissue macrophages residing in the 

vicinity of the wound, or from circulating monocytes. The former perform homeostatic functions 

and are thus anti-inflammatory. It was recently discovered that tissue-resident macrophages 

self-maintain locally throughout adult life with minimal contribution from circulating 

monocytes, and that monocytes and tissue-resident macrophages should be considered 

independent lineages  [226]. However, at least in mammals, tissue-resident macrophages are 

relatively scarce, and apparently only make a minor contribution to wound healing  [151]. 

Following damage monocytes extravasate from the circulation into the wound site and 

transform initially into M1 macrophages, which facilitate the eradication of any microbial 
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organisms that might enter the wound. However, this phenotype is tissue destructive, and it is 

important for healing that the wound milieu changes to Th2/M2  [227]. Under normal wound 

healing conditions in mammals, this shift to the resolving M2c-type CD163+ macrophages takes 

place already within two days  [199], and after less than a week macrophage numbers start 

declining in the wound  [165].  

Macrophage polarization is reversible, but it is not known exactly to what extent the transition 

of the wound macrophage population is due to a change in phenotype of the macrophages 

already in the wound, or due to M2 polarization of newly arriving monocytes, although the 

former scenario may be the predominating  [151, 228]. Mainly M2 macrophages are responsible 

for efferocytosis of apoptotic and necrotic cells  [229], and it appears that M1 macrophages are 

themselves actively triggering their change to M2 when they phagocytose apoptotic cells  [151]. 

Macrophage polarization is not only dependent on the chemical environment, but also on 

physical structure of tissue as shown by cell culture on electrospun scaffolds. A loose tissue with 

large pores favors M2 polarization, whereas smaller pores favor the M1 phenotype  [227]. 

The M1 phenotype is proinflammatory and is induced by IFN-γ and PAMPs  [230-232]. M1 

macrophages typically produce proinflammatory cytokines such as IL-1β, IL-6 and TNF-α as 

well as reactive oxygen species, nitrogen intermediates (produced by iNOS) and a number of 

proteases  [233, 234]. 

The M2 phenotype is mostly anti-inflammatory and quite diverse. M2 macrophages are usually 

subdivided into M2a, M2b and M2c macrophages, which are induced by IL-4/IL-13, immune 

complexes/TLR agonists and IL-17/IL-10/glucocorticoids respectively [227, 234, 235]. The M2c 

phenotype is the one mainly associated with CD163 expression as well as clearance of apoptotic 

neutrophils, and thus with resolution of inflammation  [235, 236]. Murine M2 macrophages are 

characterized by expression of Ym1, arginase 1, scavenger (e.g. CD163) and mannose receptors 

and anti-inflammatory cytokines (e.g. IL-10, IL-1ra, TGF-β), and also MMP9 and insulin-like 

growth factor (IGF-1)  [230, 232, 237]. Arginase 1 competes with iNOS for L-arginine and thus 

suppresses inflammation  [238]. However, the markers used to characterize these macrophage 

phenotypes vary with species  [239], and human M2 macrophages do not upregulate Ym1 or 

arginase-1  [239, 240]. Regardless of polarization, macrophages are able to attract myogenic 

cells by release of HMGB1 and TNF-α (in the case of M1) or MMP-9 (in the case of M2)  [241]. 
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Figure 3. Illustration of the 
involvement of macrophages in 
healing of wounds to the 
muscle. M1 polarized macro-
phages found in the inflammation 
phase release factors that 
stimulate myoblast proliferation. 
M2 polarized macrophages are 
found at later wound healing 
stages and the promote myoblast 
differentiation and fusion (from 
Kharraz et al 2013). 

 

In the absence of macrophages in the early stages after injury, adult mammalian muscle show 

defective healing, and it is thought that this is due to cross talk between macrophages and 

pericytes/satellite cells (fig. 3)  [142, 153, 232, 242], and it was recently shown that 

macrophages were absolutely required for limb regeneration during the first 24h after limb 

amputation in axolotl  [243]. However, the gene expression dynamics of wound macrophages in 

the axolotl differs somewhat from the mammalian system, and pro- and anti-inflammatory 

cytokines are induced simultaneously during this time. Macrophage depletion decreases MMP9, 

TGF-β and FN expression in the wound. However, re-epithelialization in the axolotl is not 

affected by macrophage depletion  [243] as it is in mammals  [242]. Later depletion of 

macrophages (after blastema formation) resulted only in delayed limb regeneration. 

Fish macrophages seem to function much like in mammals, but the key mammalian myeloid 

growth factors IL-3 and GM-CSF seem not to be present in fish  [244]. CSF-1R has recently been 

shown to be a pan-macrophage-lineage marker in goldfish  [245]. Macrophage polarization in 

fish has not been extensively studied, but seem to functionally resemble the mammalian 

paradigm  [246], although the PRR repertoire in fish is quite different from mammals, and also 
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between different fish taxa  [106-108, 247], and the molecular pathway and level of response to 

PAMPs such as LPS (which is commonly used to induce the M1 phenotype) differs  [246]. 

 

2.4.4 Lymphocytes 

The lymphocyte lineage has classically been associated with adaptive immunity with the 

exception of natural killer cells. Several subsets of B cells (e.g. B1a, B1b and B2) and T cells (e.g. 

Tc, Treg, Th1, Th2, Th17 and Th22) have been described. T and B lymphocytes are scarce in 

uninfected mammalian wounds, which may explain why the involvement of these cell types in 

wound healing is understudied  [248]. However, normal human skin harbors intraepithelial 

lymphocytes (IELs) of which most are CD8+ and γδ T cells  [181, 249]. Innate-like γδ T cells are 

involved in wound healing and skin homeostasis  [250], and T cells persist to become the most 

numerous leukocyte during the tissue maturation phase of human skin wound healing  [142]. γδ 

T cells constitutively express CCR6 and RORγt, and IL-1R activation leads to transcription of the 

cytokine IL-17A  [249]. 

Recently it was also shown that B lymphocytes participate in wound healing, although not 

locally. Instead circulating autoantibodies bind to targets at the wound site and enhance 

cutaneous wound healing in mice, presumably by enhancing phagocytosis. Interestingly, these 

antibodies were not IgM, which is the most common isotype of innate antibodies especially in 

lower vertebrates  [251, 252], but IgG1  [248].  

Within the last decade the separation between adaptive and innate branches of the immune 

system has faded. Several innate lymphoid subsets (innate lymphoid cells; ILCs) without 

variable receptors or innate-like lymphoid cells (e.g. innate natural killer T (iNKT) cells and 

mucosal-associated invariant T cells (MAITs)) with limited variability of their receptors have 

been discovered in mammals, and many of these appear to be involved in wound healing  [249, 

253, 254]. 

Considering the layering hypothesis  [255, 256] and the primitive adaptive immune system fish 

(teleosts respond relatively poorly to immunization, resulting in low affinity antibodies with limited 

affinity maturation and a poor secondary response  [257-261]), it is plausible that lymphoid cells 

with more innate properties like the recently discovered mammalian ILCs will also be 

discovered in fish. 

Due to the recent discovery of ILCs, the terminology has not yet been fixed, but it was recently 

proposed to group them into three groups; I (including NK cells), II and III. Group I ILCs produce 

mainly Th1-type cytokines, group II ILCs Th2 cytokines and group III Th17 cytokines  [262]. 
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Group II and III ILCs are involved in parasitic defenses and tissue healing at mucosal surfaces 

through expression of IL-4, IL-13  [263] and IL-22. In addition, group III ILCs also produce IL-

17A  [249, 262], which promotes M2c macrophage polarization  [264] and has antifibrotic 

properties by downregulating connective tissue growth factor (CTGF) and collagen type I  [265]. 

IL-17A is also produced by γδ T cells, Th17 cells and NKT cells  [265]. 

Group II ILCs thus could play a role in the switch from a Th1- to a Th2-dominated milieu during 

the resolution phase of wound healing. Group II ILCs (nuocytes and natural helper (NH) cells) 

express ST-2, which is a receptor for the DAMP IL-33. Nuocytes were originally described as IL-

25 (IL-17E) responsive and IL-4, -5 and (especially) -13-producing in response to helminth 

infection  [263]. However, nuocytes are also responsive to IL-33 and produce IL-6, IL-10 and 

GM-CSF  [266]. NH cells are mostly found in adipose tissue and produce IL-5 and IL-13 in 

response to stimulation with IL-33 (in addition to IL-2, IL-7 or thymic stromal lymphopoietin 

(TSLP)). Using intravital microscopy it was established that a group II ILC subset in mouse 

dermis are found in contact with mast cells. This subset potentially modulates mast cell 

activation through paracrine IL-13 secretion  [267]. They thus seem implicated in switching the 

area of tissue damage from a Th1 to a Th2 response  [249]. 

For several decades lymphocytes have been known to be present in fish skin and to infiltrate 

wounds  [64, 157, 171]. However, lymphocytes have not been specifically studied in relation to 

wound healing in fish, and studies of lymphocyte subsets in fish have altogether been hampered 

by a lack of monoclonal antibodies (MAbs) and other molecular tools. It is likely in my opinion 

that these lymphocytes may include as yet undescribed piscine ILCs. 

B cells, CD4+ helper and CD8+ cytotoxic T cells and some innate-type lymphocytes are 

described from fish. B cells can be subdivided on the basis of their B cell receptors, but no 

distinction between B1a, B1b and B2 subsets as in mammals have been reported, although the 

properties of piscine B cells resemble those of mammalian B1 cells  [268]. Likewise, no T helper 

cell subsets are firmly established in fish, although based on cytokine and transcription factor 

expression patterns there seems to be Treg, Th1, Th2 and Th17-type responses  [269, 270], as 

well as γδ T cells  [271, 272]. The innate-like lymphocytes in fish are described as natural killer-

like cells or natural cytotoxic cells (NCCs) [269]. NCCs are described from rainbow trout  [273], 

but innate-like lymphocytes have been mostly investigated in the channel catfish, where several 

subsets of NCCs are described  [274]. 

However, in the recent few years slow advances have been made in the study of lymphocyte 

subsets  [275, 276]. Takizawa et al  [272] identified at least some of these to be CD8+ and TCRγ+ 

lymphocytes in rainbow trout gills using an anti-CD8 MAb. However, these were not very 
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common in skin  [269]. In addition, Dixon et al  [277] characterized CCR6 from rainbow trout 

and found constitutive expression in gills, thymus and PBLs. A RORγt homolog is induced by LPS 

stimulation in the skin of rainbow trout, suggesting a role in bacterial protection  [278], and the 

transcription factor GATA-3 is expressed in Atlantic salmon skin  [279]. These transcription 

factors characterize ILC class III and ILC class II, respectively in mammals  [262, 280], although 

GATA-3 is not so restricted in its cellular expression. 

 

2.4.5 Fibroblasts and myofibroblasts 

Following injury, and especially injury with volumetric loss, the production of new extracellular 

matrix molecules is essential for wound healing. Fibroblasts and myofibroblasts secrete most of 

the ECM molecules (including collagens, FN and TN-C) and proteases (including MMP9 and 

MMP13) required for new matrix production and remodeling  [168, 281, 282]. They also secrete 

a wide range of cytokines and growth factors, such as FGF-2, TGF-β and VEGF that promote re-

epithelialization, vascularization and granulation tissue formation  [283]. IGF-1 secreted by M2 

macrophages blocks the apoptotic pathway in fibroblasts and thus leads to fibroplasia, and in 

non-infected wounds fibroblasts are the main cell type by day 3-5 after wounding  [83]. 

The fibrocyte is a circulating fibroblast precursor  [281]. Fibroblasts are spindle-shaped cells 

widely distributed in especially connective tissue  [281]. They express the cytoskeletal 

component vimentin, but not desmin or α-SMA  [281]. 

Myofibroblasts are phenotypically intermediate between fibroblasts and smooth muscle cells  

[281]. They are distinct from fibroblasts by extensive cell-matrix and cell-cell interactions as 

well as contractile cytoplasmic microfilaments such as α-SMA  [281], α-SMA is the most 

commonly used histological marker of myofibroblasts, and it is expressed prior to and during 

wound contraction  [168]. Local fibroblasts are considered the main source of wound 

myofibroblasts  [170]. However, myofibroblasts may derive from several sources other than 

fibroblasts such as pericytes, epithelial cells and circulating progenitors  [166, 168, 282]. α-SMA 

is also expressed by pericytes and is an early differentiation marker of vascular smooth muscle 

cells  [88]. In a recent study on rat excisional muscle wounds myofibroblasts apparently solely 

arose from blood vessel pericytes and perifollicular dermal sheath cells  [284].  

Fibroblasts differentiate into myofibroblasts, only in the presence of the ED-A splice variant of 

FN (which is expressed by macrophages and myofibroblasts themselves), mechanical stress and 

TGF-β1  [170, 285]. 
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The myofibroblast is the main cell type involved in wound contraction. Contractile forces 

proximate the wound edges and myofibroblasts function as clamps to hold the tissue together 

until remodeling has resulted in adequate strength  [281]. α-SMA is not absolutely required for 

production of cell traction force, but α-SMA is able to generate more contraction force than 

other actin isoforms, and thus enhances contraction  [281, 286]. In rat wounds proto-

myofibroblasts appear 6 days after wounding with fully mature myofibroblasts peaking after 9 

days, coinciding with the contraction phase  [170, 284]. After the ECM has been reconstructed it 

takes over the mechanical load from the myofibroblasts and these die from apoptosis  [170, 

286]. 

To some extent fibroblasts can stand in for inflammatory cells in pu.1 knock-out mice, which 

heal wounds with minimal scarring  [20]. Fish fibroblasts have not been very much studies, but 

several fibroblast cell lines exist for fish, and appropriate stimulation of these with PAMPs (LPS) 

and DAMPs (cell debris and collagen motifs) show that they also produce immune-related 

factors  [287, 288]. 

 

2.4.6 Pericytes and satellites 

Pericytes (also called mesangioblasts) and satellite cells are distinct precursors important for 

wound healing  [166, 232, 289]. Pericytes are associated with blood vessels, and are typically 

linked with vascular formation and function  [166]. Satellite cells are situated between the 

muscle cells and the muscle basement membrane and are stem-like cells associated with 

postnatal mammalian muscle regeneration  [290]. 

However, both these cell types constitute a very heterogeneous population, and no specific 

pericyte markers exist. Mesenchymal and adipose-derived stem cells also possess pericyte-like 

properties and these give rise to myofibers as well as other tissues, and pericytes can also give 

rise to myofibroblast-like cells  [166]. Additionally, pericytes in the brain have been shown to 

attain macrophage-like properties following injury, but this has not been shown for pericytes in 

muscle  [291]. Muscle- and bone marrow-derived mesenchymal stem cell populations 

contribute to the satellite cell pool  [165]. Exactly how stem cells and progenitors contribute to 

the pool of different tissue-regenerating cells is still largely unexplored  [292]. 

Dulmovits and Herman  [166] recently reviewed the involvement of pericytes in wound healing, 

and this matter shall not be further elaborated here. However, after this review was published 

an interesting discovery was reported: It had been known for some time that myeloid cells 

made frequent contact with pericytes during recruitment to inflammatory loci, and it was 
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shown that the pericytes stimulate these myeloid cells to express prosurvival and promigratory 

molecules, such as MMP9 and integrins  [293, 294]. 

Satellite cells contain very little cytoplasm and are quiescent in the absence of muscle damage. 

Pax-7 is a marker of muscle satellite cells. When activated (e.g. by muscle injury, which releases 

growth factors such as FGF-2 from the ECM) satellite cells start expressing muscle regulatory 

transcription factors (MRFs) such as MyoD, Myf-5 and myogenin  [295]. This is also the case in 

fish  [46, 165, 296-301]. Pax-7, MyoD and myogenin is expressed in the mentioned order during 

the transition from quiescent satellite cells to differentiated myoblasts, and the relative 

expression levels have been proposed to be useful in establishing the stage of muscle 

regeneration  [300]. The myoblasts then form myotubes, which fuse with existing myofibers  

[165]. Olguín and Pisconti  [300] provide a good and brief overview of important transcriptional 

pathways that regulate myogenesis through activation of satellite cells. 

Inflammatory molecules such as TNF-α and IL-6 promote satellite cell chemotaxis and the 

former also proliferation. On the other hand, TGF-β1 suppresses proliferation of satellite cells  

[302]. Like other wound-infiltrating cells such as macrophages and fibroblasts, satellite cells 

also release gelatinases and other MMPs when entering the wound. These ECM degrading 

enzymes liberate growth factors to stimulate cell migration, proliferation and differentiation  

[165]. Myoblasts express MMP9 prior to formation of myotubes  [303]. 

The shift from a Th1 to a Th2 environment coincides with myogenic differentiation, and FN, IL-4 

and IL-10 all induce migration of myoblasts, and fusion and maturation of myotubes  [165, 199, 

303]. The IL-4 receptor is found on myeloid cells and common fibrocyte/adipocyte progenitors 

(FAPs), and it was recently shown that myeloid-specific loss of this receptor did not 

substantially affect regeneration, but complete loss did  [155]. In the same study it was also 

found that FAPs were more important for clearing necrotic cell debris from the wound than 

myeloid cells were. 

IGF-1 and hepatocyte growth factor (HGF) are main growth factors involved in regulating 

skeletal muscle repair, and IGF-1 is critical myoblast proliferation and differentiation and thus 

for muscle growth (see section 3.2)  [165]. On the other hand, TGF-β is the factor thought to 

have the greatest inhibitory effect on muscle progenitor cell proliferation, recruitment and 

differentiation  [165, 295]. 

Satellite cells have been discovered, isolated and studied from several fish species  [297, 304]. 

Satellite cells and myoblasts have also been investigated in salmonids, and these largely 

respond to the same stimuli and in the same way as in mammals, although in some respects 
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they are more like fetal myoblasts  [297]. In addition, several paralogs of MyoD exist in Atlantic 

salmon, and these are differentially expressed during different maturation stages  [298]. 

Most fish have a relatively indeterminate growth pattern, i.e. they continue to grow throughout 

life. This is not so for zebrafish, and this may make it a good model for mammalian muscle 

regeneration, but peculiarly so maybe not for fish. However, the closely related giant danio 

(Devario aequipinnatus) does have an indeterminate growth pattern. By comparing these two 

species Froehlich et al  [305] identified Pax3 and/or Myf-5 as possible factors involved in this 

difference in growth pattern. 

 

2.4.7 Secretory cells 

Goblet cells are the main mucus producing cells in fish. They contain a diverse range of mucins 

as well as immune factors  [306, 307]. They are abundant in the epidermis, and apparently 

differentiate from cells in the lower epidermis and mature as they move towards the upper 

epidermis. However, we found mucin expression in healing muscle of carp two weeks after 

wound infliction. This could indicate that goblet cells may originate from deeper locations than 

epidermis (Paper I). When they reach the surface, the cell membrane ruptures, spilling the 

mucus onto the surface of the skin and the goblet cell then dies. Irritants or wounding induces 

secretion of goblet cell content. The secretory cells of fish are diverse, and are separated by their 

shape, size and staining characteristics  [59, 61, 307]. 

The fishes in the superorder Ostariophysi have a special cell type called the club cell located in 

the epithelium. These were originally described as a reservoir of “fear factors” that are released 

by skin injury and which can be sensed by conspecifics and produce a flight response  [308, 

309]. However, this may just be a secondary function, and club cell constituents may be 

primarily involved in protection from UVB light and bacterial and parasitic pathogens  [310]. 

Club cell function has not been investigated in relation to wounding, but Skoric et al  [6] 

observed that common carp surviving cormorant attacks (with resulting damage to the skin and 

sometimes muscle) had increased number of club cells and melanocytes compared to non-

injured fish. 

 

2.4.8 Melanophores 

The melanophore is one of several chromatophore types found in fish  [59]. As early as the 

1930s Smith (1931) noted the association of melanophores with healing skin wounds in 

goldfish. Since then several investigators have observed and described this phenomenon in 
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different fish species  [6, 45, 61, 311-313]. In fact, wound hyperpigmentation is a recurring 

feature in the animal kingdom  [314, 315]. Wound hyperpigmentation in zebrafish was recently 

linked to inflammation  [45]. During wound healing in Rohu the chromatophores degenerate 

and reform  [61]. However, exactly how melanophores contribute to healing is not yet clear. 

For more on melanophores in wound healing see section 3.1. 

 

2.4.9 Nerves 

Nerves were shown to be important for salamander limb regeneration as early as 1952  [316], 

and in 1988 Margaret Egar showed that ectopic accessory limbs could be induced in Axolotl by 

surgically deviating large limb nerves from their normal path  [317]. She proposed that three 

factors were necessary for this to occur: Wound epidermis; a source of neurotrophic factor; and 

a source of proliferating cells. The nerve provided the latter two and the surgical procedure the 

first. Since then it is becoming clear that nerves are important for epidermal dedifferentiation 

during wound healing the axolotl  [318], and nerves supply important factors (such as FGFs and 

newt anterior-gradient (nAG)) during salamander regeneration  [14, 32]. In vertebrates, 

nervous signals are not needed for the initial stages in muscle regeneration, but subsequent 

growth and maturation of regenerating muscle fibers require innervation  [319], and loss of 

innervation leads to muscle atrophy  [165]. Further indicating the importance of nerve signals 

in wound healing is the fact that naturally poorly innervated parts of the body also exhibit poor 

wound healing  [19]. 
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2.5 Investigated genes 
 

Here I present the genes that are investigated in Paper I-III. IGF-1 and FGF-2 expression was 

investigated in an unpublished experiment and are instead briefly described herein (section 

3.2). CD41 is a thrombocyte marker and was described in section 2.4.1 on thrombocytes. 

 

2.5.1 Interleukin (IL)-1β 

Inflammation is in most situations a fundamental response to various sterile and non-sterile 

stimuli, and IL-1β is well-established as a proinflammatory cytokine in all vertebrates. Its 

expression is highly inducible after pathogenic, chemical or mechanical stimulation  [123]. IL-1β 

and other proinflammatory cytokines increases expression of cell adhesion molecules on 

endothelial cells, thereby facilitating diapedesis through interaction with β1(CD18)-integrins on 

myeloid cells  [153]. IL-1β also stimulates fibroblast proliferation  [320]. 

Several teleost species have more than one IL-1β isoform  [123]. Rainbow trout and Atlantic 

salmon have three, and Atlantic salmon has an additional IL-1β pseudo gene  [321, 322]. 

Common carp has at least two  [323], whereas only one has been described from zebrafish  

[321]. Carp IL-1β1 is constitutively expressed mainly in head kidney, whereas IL-1β2 is more 

broadly expressed. Stimulating head kidney cells with LPS led to upregulation of both  [323]. 

The salmonid IL-β3 isoform also seems to play a role in inflammation  [321]. Recently Chris 

Secombes’ group compared their genetic structure and found that they clustered into two 

groups termed type I and II  [321]. However, functionally this division is not so simple, as the 

expression of type II salmonid isoform 1 is more mammalian IL-1β-like than the two other 

functional isoforms, whereas the carp IL-1β isoforms as well as the single zebrafish IL-1β are of 

type I  [321]. 

Another feature of fish IL-1βs is the lack of an apparent prototypical caspase-1 (also called 

interleukin-1-converting enzyme (ICE)) cut site. However, earlier indications of IL-1β activation 

through cleavage by caspase-1  [123, 324, 325], has recently been confirmed in a zebrafish, 

where it was shown that following bacterial infection IL-1β in primary leukocytes is cleaved by 

a caspase-1 ortholog and secreted in a manner similar to that seen in mammals  [326]. On the 

other hand, in gilthead seabream, IL-1β processing and release is apparently caspase-

independent altogether, and the authors propose that in fish IL-1β processing is coupled to its 

synthesis, instead of the delayed activation of proIL-1β in mammals  [111]. 

IL-1β expression is described in papers I-III. 
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2.5.2 Inducible nitric oxide synthase (iNOS) 

Nitric oxide (NO) is a small free radical produced by nitric oxides synthases. Three isoforms of 

NOS exist in mammals; neuronal (nNOS/NOS1), inducible (iNOS/NOS2) and endothelial 

(eNOS/NOS3). nNOS and eNOS are constitutively expressed, whereas iNOS is only present at 

low levels under homeostatic conditions  [327]. iNOS is expressed by macrophages, 

lymphocytes, neutrophils, keratinocytes and fibroblasts after wounding  [328]. 

NO is important for the eradication of pathogens in combination with H2O2, and also an 

important cell-signaling molecule  [327]. It can also activate nociceptors and thus cause a 

sensation of pain  [329]. 

Anderson  [330] reported more than a decade ago that NO is important for muscle regeneration 

through its effect on muscle satellite cell proliferation, differentiation and fusion to form new 

myofibers  [330]. A recent report builds on these and later results by looking at the specific 

involvement of iNOS in murine skeletal muscle regeneration  [331]. Rigamonti and co-workers 

find that iNOS expression in injured muscle is mainly restricted to infiltrating macrophages, and 

that myogenic precursor cells of iNOS-/- mice fail to proliferate and differentiate  [331]. These 

mice also have an increased infiltration of neutrophils and a persistent infiltration of 

macrophages. In mice, iNOS expression peaks one day after wounding, and returns to control 

values by day 10 after wounding  [331]. 

The effect of wounding and PAMP bathing on iNOS expression in rainbow trout and on 

respiratory burst activity in carp head kidney macrophages is reported in Paper III and Paper 

I, respectively. 

 

2.5.3 Transforming growth factor (TGF)-βs 

Transforming growth factor-βs (TGF-βs) are secreted as latent precursor complexes that are 

bound to the extracellular matrix (ECM) via latency-associated peptide (LAP) and latent TGF-β-

binding protein (LTBP). Only after being separated from these factors (e.g. by plasmin, MMP9, 

thrombospondin-1, integrins and reactive oxygen species, which are found in areas of damage 

and/or inflammation) can TGF-β bind to its receptor  [332, 333]. In this sense TGF-β can be 

considered a sensor of damage to the ECM  [332]. TGF-β is secreted by many cell types, and 

TGF-β also induces its own expression  [333]. TGF-β is thus present from the early stages of 

wound healing, and is one of the most studied molecular factors in wound healing. 
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TGF-βs exist in three isoforms in birds and mammals; TGF-β1, -2 and -3, which all have several 

important, but differing functions in wound healing and development. 

During normal development in mice TGF-βs are expressed from early on, and the perinatal 

death of null mutants for all three TGF-β isotypes underlines the importance of these molecules 

for normal development  [334]. 

In fetal wounds TGF-β1 expression is lower and resolved faster compared to adult wounds. On 

the other hand, TGF-β3 expression is increased and prolonged in fetal wounds  [21, 333, 335]. 

TGF-β1 is one of the most potent profibrotic cytokines  [265], since it attracts neutrophils, 

macrophages and fibroblasts to the wound  [333], and induces fibroblasts ECM production  [20, 

333, 336]. It also is responsible for the differentiation of fibroblasts into α-SMA-expressing 

myofibroblasts in the presence of mechanical stress and the ED-A splice form of FN  [170, 286]. 

TGF-β1 is expressed early at the wound site, but is not able to stimulate myofibroblast 

differentiation until a sufficiently stiff ECM has being laid down. Conversely, myofibroblasts fail 

to develop under sufficient mechanical stress in the absence of TGF-β1  [170]. TGF-β1 has also 

been found to induce leukocyte apoptosis, which is important during transition between the 

different wound healing phases  [83]. In simple in vitro settings, TGF-β1 and -3 often have 

similar effects  [337]. However, in vivo one of the most successful clinical mediators of TGF-β1 is 

TGF-β3  [165], although in some experiments TGF-β3 has made no difference on wound healing 

outcome  [333]. In humans, one action of TGF-β3 is to differentially control migration of dermal 

and epidermal cells. Dermal fibroblast migration is halted with no restriction on epidermal 

keratinocytes  [338, 339]. This supports wound closure whilst limiting fibrosis. 

All three isoforms have been described from fish, although only TGF-β1 and -2 from carp  [340-

343]. TGF-β3 was reported from Siberian sturgeon (Acipenser baeri), rainbow trout and 

European eel (Anguilla anguilla) more than a decade ago  [342], but the expression of this 

isoform was not studied in fish until very recently in zebrafish  [344]. Here it was found that 

TGF-β3 expression was upregulated in the wound for longer than the other two isoforms. A 

fourth TGF-β isotype with high expression levels in muscle and skin was described from 

gilthead sea bream (Sparus aurata)  [345] and a second paralog of TGF-β1 was recently 

described from of rainbow trout  [346]. 

TGF-β1-stimulated in vitro fibroblast proliferation is reported from a cyprinid teleost and TGF-

β1 thus possibly also stimulates fibrosis in fish as in mammals  [347]. A few other studies have 

investigated the effect of teleost TGF-β1 in vitro, and these investigations collectively suggest a 
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pleiotropic role of TGF-β also in teleosts, as the effect of TGF-β1 is strongly influenced by cell 

type and activation level  [347-351]. 

The expression of TGF-βs are reported in Papers II and III. 

 

2.5.4 Interleukin (IL)-6 and IL-6 family member M17 

IL-6 family cytokines include IL-6 and the fish-specific member M17. IL-6 family members share 

a common signal transducing receptor protein (glycoprotein 130 (gp130)), which results in 

partially overlapping biological functions  [352]. 

IL-6 is important for several events in wound healing. IL-6 plays an important role in 

fibroproliferative diseases  [265], but also promotes neutrophil apoptosis  [353]. IL-6 knock-out 

mice and wild-type mice injected with anti-IL-6 antibodies show delayed wound healing due to 

dysregulation of several events including leukocyte infiltration, re-epithelialization, 

angiogenesis and collagen accumulation  [354, 355]. IL-6 and IGFs are involved in 

differentiation of myogenic progenitors into mature myotubes  [155], and IL-6 has also been 

described as a “myokine” since it is upregulated in working muscle  [356]. Rats immobilized 

following wounding had an accelerated granulation tissue formation, but if kept immobilized 

beyond 5 days they had excessive wound contraction and scarring  [357]. 

IL-6 has been cloned in rainbow trout  [358]. In many respects rainbow trout IL-6 function 

resembles mammalian IL-6. It is induced in rainbow trout macrophages by the addition of 

PAMPs (LPS and polyI:C) and IL-1β. In addition, recombinant IL-6 induced STAT3 

phosphorylation and expression of SOCS1 and -3, CISH and IRF-1 as in mammals  [359]. 

Treating macrophages with IL-6 had an anti-inflammatory effect by induction of antimicrobial 

peptides and downregulation of IL-1β and TNF-α  [359]. 

The IL-6 family member M17 shares sequence similarities (albeit not high) to other higher 

vertebrate IL-6 family members such as ciliary neurotrophic factor (CNTF) and leukemia 

inhibitory factor (LIF). LIF is anti-inflammatory and is upregulated in regenerating skeletal 

muscle, and knock-down negatively affects regeneration  [360]. Orthologs of CNTF or LIF have 

not been described from teleosts  [361]. 

Rakus et al  [362] found M17 to be upregulated following a viral infection, but this was seen 

only in the carp line R3, and not in the carp line K. Fujiki et al  [363] found M17 expression in 

brain and in activated peritoneal macrophages of carp. A similar expression pattern was found 

for goldfish M17, and treatment of goldfish macrophages with recombinant M17 stimulated 



 53 

proliferation and activation  [364]. In other teleosts M17 expression is similar, but slightly more 

skewed towards immune-related cells and tissues, and M17 is induced by PAMPs just as IL-6  

[361, 365]. Evidence thus points to an immune function of M17 as well as involvement in the 

nervous system. 

The expression of IL-6 was investigated during rainbow trout wound healing (Paper III) and 

M17 during carp wound healing (Papers I and II). See these papers for more information on IL-

6 and M17. 

 

2.5.5 Matrix metalloproteinase (MMP) 9 and MMP13 

MMPs are zinc-dependent endopeptidases. Two of the MMPs that have been most investigated 

in the context of injury are MMP9 and MMP13, although the former has received the most 

attention, also in fish. MMP9 (also called gelatinase B) is a type IV collagenase, which mainly 

degrades basement membrane collagen  [233], and MMP13 (collagenase 3) mainly degrades 

collagen type II, but also other fibrillar collagens such as type I and III  [366]. 

MMP9 facilitates epidermal migration by detachment from the basement membrane  [19, 367, 

368]. In fact, epithelial migration seems to be the event mainly affected by MMP-9 in vivo  [369, 

370]. However MMP9 is also involved in initiation of inflammation  [233, 371-373], resolution 

of inflammation  [372, 374, 375] and angiogenesis  [376]. 

MMP13 is important for several events during wound healing, including epithelial migration, 

angiogenesis, granulation tissue formation and wound contraction  [369, 370]. MMP13 also 

induces MMP9 and other MMPs, and MMP13 KO mice have a lower expression of these MMPs 

after wounding  [370]. 

In humans, MMP9 is expressed mostly by epithelial cells and myeloid cells  [233]. However, 

other cells such as fibroblasts and endothelial cells also produce MMP9  [318, 376-379]. MMP9 

expression is induced by TLR activation in human epidermal keratinocytes, and thus by 

wounding or infection  [380]. In fact, MMP9 is one of the genes that are most highly upregulated 

in wounds  [367, 381]. In fetal wound healing MMP9 expression is even higher than in adults  

[21, 382]. 

MMP9 and -13 are also important during wound healing in fish  [4, 367, 383-385]. In salmonids 

infected with sea louse (ectoparasites which essentially inflict excisional dermal wounds) MMP9 

and MMP13 are differentially regulated  [4, 386]. In carp, MMP9 seems to be involved in 

inflammation and remodeling phases  [385]. 



 54 

In adult teleosts MMP9 expression is highest in leukocyte-rich organs  [385, 387, 388]. When 

comparing acidophilic granulocyte and macrophage MMP expression in gilthead seabream 

Castillo-Briceño et al  [387] found that macrophages have a higher expression of MMP2 (c. 100-

fold), similar expression of MMP9 and lower expression of MMP13 (c. 10-fold). However, in fat 

snook (Centropomus paralellus), neutrophils were the only peripheral blood leukocytes positive 

for MMP9  [188]. These studies could thus indicate that MMP9 expression in fish is also mainly 

restricted to myeloid cells, although to different types in different species. However, in zebrafish 

fin regeneration studies expression of MMP9 induced at the wound edge is mostly from cells 

that are not of myeloid origin  [383, 388]. 

In this thesis MMP9 expression is investigated in carp wound healing and development in 

Paper II and MMP9 as well as MMP13 expression during rainbow trout wound healing in Paper 

III. 

 

2.5.6 CD163 

CD163 is a membrane scavenger receptor of the cysteine-rich scavenger receptor super family 

type B. It is a receptor for haemoglobin-haptoglobin complexes and is thus involved in the 

clearance of haemoglobin, and this interaction triggers expression of anti-inflammatory IL-10  

[389, 390]. In addition, CD163 has been found to interact with bacteria, in which case the pro-

inflammatory cytokine TNF-α is produced  [389]. 

Its expression is restricted to circulating monocytes and macrophage subsets, with a higher 

expression in mature tissue macrophages than in monocytes  [389, 391]. Infiltrating 

macrophages are CD163-negative  [389]. Macrophages expressing high levels of CD163 are the 

predominant macrophages during the resolution phase of inflammation, and CD163 expression 

is stimulated by anti-inflammatory mediators such as IL-10 and glucocorticoids, but also by the 

more pleiotropic IL-6  [389, 392]. 

A CD163 homolog is also present in the genome of several fish species, but curiously apparently 

not in birds and amphibians  [393]. However, CD163 has not been coupled to macrophage 

polarization in fish, but CD163 wound healing expression patterns are consistent with such a 

link in rainbow trout (Paper III). 
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2.5.7 Tenascin-C (TN-C) and fibronectin (FN) 

Fibronectin (FN) is a glycoprotein dimer produced in a soluble or insoluble form. The former is 

produced by the liver and constitutes a significant fraction of plasma proteins. This type of FN is 

initially deposited from plasma after injury, and is replaced by insoluble FN, which is initially 

produced at the wound site by macrophages and later by fibroblasts and myofibroblasts  [168, 

394]. 

FN guides fibroblasts and inflammatory cells to the wound  [168], and many growth factors that 

participate in the differentiation of fibroblasts into myofibroblasts are bound to FN  [282]. FN is 

a necessary prerequisite for collagen deposition  [395], and FN fragments are thought to be 

involved in wound contraction through their interaction with α4β1-integrins  [396]. 

Tenascin-C (TN-C) is a glycoprotein structurally similar to FN. During homeostatic conditions 

TN-C is expressed at the dermal-epidermal border and in larger blood vessels. It is induced 

already early in wound healing and TN-C promotes epithelial cell migration and proliferation  

[397]. IL-1β has recently been shown to stimulate fibroblasts to produce TN-C  [398]. TN-C and 

especially FN form a major part of the granulation tissue, but they play somewhat different roles 

as full-length TN-C antagonizes the cell adhesive effect of FN and stimulates fibroblast migration  

[20]. However, degraded TN-C fragments inhibit migration  [399]. The granulation tissue is rich 

in newly forming blood vessel, and the high expression of TN-C in granulation tissue seems to 

stem specifically from the endothelial cells of sprouting vessels  [397].  

TN-C is involved in several stages of wound healing, and has a highly pleiotropic role. TN-C 

induces inflammation when injected into mice, and in vitro studies show that macrophages and 

fibroblasts are stimulated to produce pro-inflammatory cytokines by TN-C  [397]. TN-C null 

mice have a faster resolution of inflammation, a lower collagen and FN expression  [168, 397] 

and generally do not exhibit fibrosis  [282]. On the other hand, in some aspects TN-C seems to 

favour a Th2 environment as it has an inhibitory effect on monocyte chemotaxis, but stimulates 

lymphocyte chemotaxis, and additionally lymphocytes are stimulated to produce the Th2 

cytokines IL-4, IL-5 and IL-13, although also IFN-γ [397, 400]. 

TN-C is upregulated from a couple of days and onwards in the regenerating limb of the 

salamander. It is specifically expressed in the blastema, where it provides important instructive 

cues to satellite cells and dedifferentiating skeletal muscle by stimulating myoblast migration 

and myotube fragmentation. On the other hand, FN stimulates fusion of myoblasts and is 

downregulated in the blastema  [31]. Compared to mammals axolotl full-thickness excisional 

skin wounds a relatively long delay in production of new ECM, and this consists of less FN and 

more TN-C than in mammals  [37]. 
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TN-C and FN expression was investigation in relation to wounding in rainbow trout (Paper III). 

 

2.5.8 Collagen type I 

At least 27 types of collagen are found in vertebrates. Collagen type I is the main fibrillar 

collagen found in muscles, and is structurally important for the transmission of muscle 

contraction forces  [303].  

Collagen III mainly produced during the early proliferative phase, is later replaced by the 

stronger and stiffer collagen I during late proliferative and remodelling phases  [401]. 

Fibroblast and especially myofibroblasts are the main cell types responsible for the production 

of ECM molecules, including collagens. In mammals, collagen production is initiated about 3-5 

days after injury by growth factors such as TGF-β, PDGF, FGF-2 and IGF-1 mainly secreted by 

macrophages  [151]. 

Collagen has not been much studied in fish in the context of wound healing, but in gilthead 

seabream collagen fragments were able to stimulate production of IL-1β and MMP9 and -13 in 

acidophilic granulocytes, macrophages and fibroblasts in vitro  [288, 402]. 

Collagen type I α1-chain expression was investigated in wounded rainbow trout (Paper III). 

 

2.5.9 Prolyl 4-hydroxylase (P4H) 

Secretion of collagen (and a few other matrix molecules such as elastin) from fibroblasts into 

the ECM only occurs when in the triple-helical form. Hydroxylation of certain proline residues of 

collagen pro-α-chains is essential for this triple helix formation, and the principal enzyme 

involved in this process is prolyl 4-hydroxylase (P4H)  [403]. 

There are several forms of prolyl 4-hydroxylases (P4Hs). Apart from the P4Hs involved in 

collagen production (C-P4Hs), two other P4H families are found in vertebrates, but these do not 

contribute to collagen triple helix production. Three forms of C-P4Hs are found in humans 

depending on their use of α-chain. C-P4Hs are tetramers with two common β2-subunits and two 

identical subunits of either α1, α2, or α3, and the resulting tetramers are called C-P4H-I, -II and –

III, respectively  [404]. C-P4H-I is the most common form in most human cell types and tissues, 

and it is the expression of the α1-subunit that is investigated in Paper III. C-P4H-II is expressed 

mostly in chondrocytes  [405] and C-P4H-III at much lower levels than the other two types 

anywhere. C-P4H activity is increased in several fibrotic disorders  [404]. 
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2.5.10 Lysyl oxidase (LOX) 

The main function of LOX is oxidation of lysine residues in collagens and elastins to form 

spontaneously reacting peptidyl lysines. This facilitates cross-linking of these matrix molecules, 

which provides rigidity and tensile strength to the matrix  [406]. 

Since the mechanical properties of the matrix influences the cells within it, LOX activity is an 

important regulator of wound healing processes. LOX is upregulated during tissue repair and 

fibrosis  [407], and it is induced by TGF-β  [408]. In rat, LOX expression in the skin peaked 3 

days after wounding, which was prior to a rise in expression of collagen type III, a fibrillar 

collagen often produced in wounds and later replaced by collagen type I  [409]. Conversely, LOX 

expression is downregulated in fetal scarless wound healing  [410]. LOX is essential for normal 

muscle function, and LOX null mice die perinatally  [406]. LOX is also important for keratinocyte 

differentiation and maintenance of epidermal homeostasis  [411]. 

LOX expression has not been previously studied in fish, but the hydroxylysyl pyridinoline cross-

links formed by its action has been studied in Atlantic salmon, where these have been shown to 

have a strong influence on texture  [412, 413]. 

Neither P4H nor LOX expression has been previously studied in fish. Paper III describes the 

expression of these enzymes during wound healing in rainbow trout. 

 

2.5.11 Heat shock protein (HSP) 70 

HSPs were originally discovered in Drosophila following acute heat shock, but have since been 

implicated in a wide range of stressful conditions. They function as molecular chaperones, 

which aid in folding and transport of proteins  [414], and as such they participate in the 

initiation of adaptive immune response by chaperoning peptide antigens  [206]. HSP70 is 

considered an inducible HSP with no or limited constitutive expression  [415]. 

HSP70 is also stress inducible in fish. Consequently, most studies on teleost HSPs have focused 

on their involvement during temperature stress, but also during osmotic stress and in the 

presence of environmental stressors such as Cadmium and Copper. A number of studies have 

looked at the involvement of HSPs in wound healing and during ontogeny in fish  [414]. These 

studies generally report constitutive expression of HSP70, but levels vary with species, cell type 

and tissue as well as developmental stage  [414, 416-422]. 

HSPs have previously been considered DAMPs, but recently this view has been challenged  [114, 

206], partly because they are not only intracellular but are also actively released. Contrary to 
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the effects of (other) DAMPs HSPs are usually reported to have anti-inflammatory or 

homeostatic properties  [114, 118, 423-426], and in humans, thermal pre-conditioning is used 

prior to surgery to dampen inflammation and enhance healing of the surgical wound through an 

induction of HSP70 expression  [427, 428]. 

In vitro, extracellular HSP70 inhibits TGF-β signaling through interaction with its receptors  

[429]. Subcutaneous injection with exogenous HSP70 accelerates wound healing in mammals, 

and this effect is partially through upregulation of macrophage-mediated phagocytosis  [430]. 

HSP70 at the wound edge mostly derives from epidermal and myeloid cells  [431, 432]. 

HSP70 expression during ontogeny in wounded carp is followed in Paper II. 

 

2.5.12 Complement factor C3 

The complement system is a complex system of secreted and membrane-associated proteins in 

which complement component 3 (C3) takes a central role. It is mostly regarded as an important 

part of innate immunity. However, complement has a range of functions, and the complement 

cascade is also activated after injury  [84] and is important for regeneration in urodele 

amphibians  [433, 434]. C3a (a cleavage product of C3) attracts neutrophils and macrophages 

and stimulates histamine and leukotriene (C4 and D4) release from mast cells  [84]. Another 

effector function of complement is clearing of apoptotic cells and debris by C3a thus avoiding 

release of danger signals and reducing inflammation  [229, 435-437]. Complement thus 

participates in initiation as well as resolution of inflammation. 

The teleost complement system has received great deal of interest, and in particular in species 

within the cyprinid family  [437]. While mammals are reported to possess only one isoform of 

C3, common carp has five  [438] and other fish also have more than one  [439-443]. Of the five 

carp C3 isoforms one is probably non-functional and the other four differ in expression levels 

and hemolytic activity  [444]. Another intriguing discovery is that all five carp C3 isoforms are 

more similar to each other than C3 from other species. The implications of this have yet to be 

elucidated  [441], and carp C3 has not been investigated in relation to wound healing. 

C3 expression was investigated in Paper II. 
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2.5.13 Innate antibodies 

Although antibodies are normally considered part of the adaptive immune system, the so-called 

natural or innate antibodies have a broad binding spectrum and low affinity and are more 

innate-like. In mammals they are produced by B-1 cells very early in development  [445]. 

Immunoglobulins are not usually directly implicated in wound healing of non-infected wounds, 

but innate antibodies also bind self-antigens, and are involved in removal of aberrant and 

apoptotic cells  [252, 445, 446] also during wound healing  [248]. In fish, innate antibodies are 

likely to be of particular importance compared to higher vertebrates since teleosts respond 

relatively poorly to immunization, resulting in low affinity antibodies with limited affinity 

maturation and a poor secondary response  [257-261, 268, 447], and it appears that the poorer 

the response, the higher the titers of innate antibodies  [445, 448, 449]. Additional hints for B1 

properties of piscine B-cells comes from the fact that innate mammalian antibodies are mainly 

IgM  [251, 445], which is the major immunoglobulin in fish and the fact that antigen-specific 

responses and persistent memory of B1 cells can occur in the absence of germinal centers, 

which are primitive in teleosts  [268, 450-453]. 

In teleost fish, three immunoglobulin classes are recognized; IgM, IgD and IgT/IgZ  [449]. There 

is no class switch in fish and IgT+ and IgM+ B lymphocytes form separate lineages  [268]. IgT and 

IgZ were discovered simultaneously in rainbow trout and zebrafish and represent the same 

isotype despite the different name. The channel catfish (Ictalurus punctatus) is the only teleost 

investigated thus far to lack IgT, and the coelacanth (Latimeria chalumnae) the only fish to lack 

IgM  [454]. On the other hand subclasses exist in some fish. Carp have two subclasses of IgZ, 

namely IgZ1 and IgZ2 [455]. IgM and IgT/IgZ are usually described as systemic and mucosal 

immunoglobulins, respectively  [456], while the function of IgD is still largely unknown  [457, 

458]. IgZ1 is more similar than IgZ2 to the prototypic teleost IgT with regards to gene structure, 

but nonetheless is speculated by Ryo et al. to have a systemic role while IgZ2 is more mucosal  

[455]. However, Przybylska  [459] found a high induction of IgZ1 expression in the skin of adult 

carp following intravenous injection with β-glucan. 
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It was an interesting and new observation that the expression of the immunoglobulin IgZ1 was 

upregulated following wounding in carp larvae (discussed in Paper II). In this study we 

investigated the local gene expression by removing head and viscera prior to RNA extraction. A 

few fish were processed whole, but were not included in the article since they were too few for a 

reliable statistical analysis. However, they do support the finding that IgZ1 is upregulated as a 

result of the wounding and are presented in figure 4. The only significant wound-induced 

difference in gene expression was found 3 days post-wounding in larvae wounded 7 days post-

fertilization for IgZ1. On this particular day two wounded larvae were sampled whole and these 

had a very high IgZ1 expression. Whole larvae from wounded as well as control fish were 

sampled on day 3 post-wounding for larvae wounded 14 days post-fertilization and juveniles 

wounded 49 days post-fertilization. On both days IgZ1 expression was higher for the wounded 

fish. Another interesting result is that Ig transcript levels are comparable in whole fish and fish 

in which primary lymphoid organs are removed before RNA extraction. This indicates that B 

lymphocytes are found in significant numbers in the periphery already from the earliest life 

stages. And in the case of IgM there is even a tendency (although based on very few samples) for 

IgM expression to be higher in the periphery than in primary lymphoid organs at the late larval 

stages. 

 

 

 

Figure 4. Expression of the immunoglobulin genes IgZ1 (A) and IgM (B) in carp larvae and 
juveniles wounded 7, 14, 28 and 49 days post-fertilization and sampled 1, 3 and 7 days post-
wounding. Black closed circles and open squares represent local responses (head and viscera 
removed) while red and blue triangles represent gene expression from whole fish. For further 
description and discussion see Paper II. 
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2.6 Pain 
A relevant question when conducting potentially painful experimental procedures on fish, or 

any animal for that matter, is whether it experiences a sensation of pain. Unfortunately, the 

answer to this question is a matter of continued debate  [460, 461].  

The International Association for the Study of Pain (IASP) defines pain as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage or 

described in terms of such damage”. 

Establishing whether or not fish feel pain is thus difficult due to the cognitive and subjective 

nature of pain. Since fish are animals that we are not able to communicate meaningfully with 

this matter can only be approached by: 1) Investigating whether fish have the apparatus 

necessary to perceive pain, and; 2) identify behaviour that can be interpreted as associated with 

pain as it has been done in the more popular experimental mammals such as mouse, rat and 

rabbit  [462]. 

It is clear that fish respond to noxious stimuli  [461]. A-γ nociceptors are relatively common in 

teleosts, but in humans these are more linked with avoidance responses than pain. C type 

nociceptors are responsible for severe pain in humans, and while these receptors are present in 

teleosts, they are rare. In addition, homologs of the cortical regions of the brain responsible for 

pain perception in humans are not found in fish  [460], although anatomical homology is a poor 

indicator of functional homology in comparative studies on the brain (professor Jesper 

Mogensen, pers. comm.). 

There have been several investigations identifying behavioural changes in fish following 

stimulation with potentially painful substances, such as injection with acid or bee venom, or by 

infliction of surgical wounds  [461]. These behavioural changes involve a rocking motion while 

resting on the bottom of the aquarium and rubbing of the affected area. Cyprinids and 

salmonids are among the most investigated species in this respect. 

During my studies I have not systematically made behavioural observations. However, during 

my daily routines in the fish-keeping facilities (feeding fish, changing water etc) I have not 

noticed any behavioural difference between wounded and control fish. 

The use of analgesics in fish research is not common practice. However, this is not due to a lack 

of responsiveness to analgesics. Two basic forms of analgesics are used; opiates and non-sterical 

anti-inflammatory drugs (NSAIDs). Fish have µ and k receptors for opiates, thus making it 

reasonable to expect an effect of opiates. Fish also have the COX enzymes that NSAIDs inhibit  

[461]. 
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Harms et al  [463] investigated the effect of the analgesics butorphanol (an opiate) and 

ketoprofen (an NSAID) on post-operative behaviour and clinical pathological changes of Koi 

carp. They found a positive effect of butorphanol on the behaviour of post-operative carp, with 

less signs of putative pain such as reduced activity and feeding. In addition, intra-operative 

administration of ketoprofen led to reduced muscle damage – likely through the anti-

inflammatory property of this drug. 

Thus in relation to wound healing studies the use of NSAIDs would likely have an undesirable 

influence on the healing process. Opiates are probably a better alternative. However, MS-222 (a 

sodium channel blocker) also has analgesic properties, although it is more commonly used on 

fish due to its anaesthetic effects  [461]. MS-222-induced anaesthesia may itself indirectly affect 

wound healing, since it can lead to increased stress hormone and lactate levels in fish  [461]. 

Stress as well as corticosteroids administered after wounding impair wound healing in 

mammals by leading to reduced inflammation, collagen production and contraction  [84, 464]. 

On the other hand, lactate is known to stimulate VEGF production (and thus angiogenesis) and 

collagen production by fibroblasts  [465]. 
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2.7 The wound healing model 
 

2.7.1 The investigated species 

Cyprinids and salmonids are among the most investigated teleost taxa, also regarding wound 

healing. Common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) are large 

representatives for the two taxa respectively. They are both important species in aquaculture, 

and many ESTs and annotated genes are available in GenBank for both species. In addition, 

common carp is a close relative of the zebrafish, a model organism in vertebrate wound healing 

the genome of which is completely sequenced. Thus these species were appropriate for gene 

expression studies. Carp had the added advantage over rainbow trout to be available in a 

domesticated strain called mirror carp, which has few, scattered scales. The scaleless areas are 

ideal for infliction of standardized wounds, since it eliminates the need for prior removal of 

scales and thus disrupting the epidermis in a larger area than the actual wound site. Table 1 (see 

section 2) lists some of the characteristics of the two species. 

 

2.7.2 Biopsy punch wounds 

The biopsy punch (fig. 5) is a standard tool for 

wound healing studies, since it is easy to use 

and creates wounds of a completely 

standardized size. The progression of healing of 

the excisional wounds created this way is easy 

to monitor continuously by different 

macroscopic imaging techniques in vivo (fig. 6). 

In addition sampling for gene expression 

studies can be equally standardized by use of 

larger biopsy punches (see Paper I for an 

illustration). 

 

              Figure 5. A biopsy punch. 
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Figure 6. Healing of a full-thickness cutaneous 6mm biopsy punch wound in a common carp. D 
is day after wounding. A scale is seen in the top of the images, and is marked with an asterisk on the 
top left image. Notice the initial retraction and lightening of the wound edges on day 3. The lightening 
of the wound edge is probably a result of epidermal cells having migrated over the wound bed and 
thus exposed the lighter dermis at the edges. The wound edge starts to darken after about a week, 
and at the same time the wound starts contracting. In this example the wound is fully closed and 
contracted at day 21 and the wound area is now very dark. From now on the hyperpigmented area 
expands and fades. This could be due to myofibroblast apoptosis, and thus release of the contractile 
forces in the wound. Spots appear at day 28. These are most often found in the periphery of the 
wound and are possible melanomacrophage centers (see Discussion). They often start forming 
around three weeks post-wounding and persist for a few weeks. Blood vessels appear in the skin 
around the wound area at the late stages of wound healing. In this case external visual progression of 
wound healing was monitored until day 119 after wounding. 

 

2.7.3 Gene expression 

Since availability of antibodies and other molecular tools for studying rainbow trout and carp 

are limited, but many nucleotide sequences are available, gene expression is arguably the best 

method of studying wound healing at the molecular level in the chosen species. 
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Gene expression studies with carp and the fish louse Argulus have indicated that fish skin may in 

some respects act as a well-defined organ since gene expression in infected and non-infected 

areas of infected fish have similar changes in gene expression compared to non-infected fish  

[466]. To test if the same could the case with muscle tissue, we included internal (a non-

wounded site in a wounded fish) as well as external (non-wounded fish) control samples in one 

of the studies (Paper III). 

A pitfall with gene expression analysis in fish, and especially salmonids, is the presence of 

several isoforms and/or pseudogenes following one (two in salmonids) whole-genome 

duplication events in the teleost lineage  [74]. These duplicate genes may be redundant, or have 

evolved to perform different functions. 

 
2.7.4 Image acquisition and analysis 

One of the objectives of the study was to test different imaging systems on the healing wounds. 

The classical imaging technique used on healing wounds is conventional light, confocal, 

transmission electron or scanning electron microscopic images of histological sections. 

However, in recent years new imaging techniques such as two-photon imaging combined with 

biological models (e.g. transgenic zebrafish) have brought new insight into in vivo cell migration 

and communication  [70, 467]. However, creating transgenic carp and trout were outside the 

scope of this study. 

Multi- and hyperspectral imaging 
We instead tested two related imaging techniques: Multispectral and hyperspectral imaging. 

These imaging techniques both result in a number of grayscale images that each represents a 

narrow range of wavelengths. In the case of the multispectral images we used a VideometerLab 

(Videometer A/S, Hørshom, Denmark). This imaging and lighting device is equipped with 20 

different diodes each with a narrow emission range within the electromagnetic spectrum. Each 

diode strobes sequentially and an image is acquired each time. The 20 individual images cover 

the range from ultraviolet (UV, 375nm) over the visual spectrum to near-infrared (NIR, 

1050nm). The longer wavelengths penetrate deeper into the tissue than the shorter, thus each 

of the 20 images provide different information of the wound area (see Fig. 7 for samples). A 

drawback to this technique is the large image files created (the image cube has the dimensions 

of 1280x960x20 pixels), and the lack of specific software to analyze them, which makes the 

image analysis time consuming. We instead decided to shift to ordinary digital RGB images and 

an imaging set-up with uniform lighting. 
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Figure 7. VideometerLab images of healing wounds in rainbow trout (Paper III). The images 
are samples that show the different features that can potentially be discerned with this imaging 
technique. Each row represents a random fish from each sampling day (days 1, 3, 7, 14, 38 and 
100 after wounding). The left column shows pseudo RGB image representations of the grayscale 
images. Each of the other columns are different combinations of selected wavelengths. 

 

Wound closure 
We used the multispectral as well as ordinary RGB digital images to estimate wound closure. 

For the purpose of the studies included in this thesis we did not consider re-epithelialization 

wound closure. Instead we measured the open wound area as the area inside the dermal wound 

edge. This was very easy to demarcate accurately at early wound healing stages. However, as 

the wound healing progressed and the wound edge became hyperpigmented it was increasingly 

difficult to define. In addition, the intensity of the hyperpigmented wound edge was individually 

variable. At our hands wound closure is thus likely a combination of contraction and thickening 

of the epidermis at the wound edges, and a reconstruction of dermis. We created MatLab scripts 
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to automatically calculate the open wound area, but wound edge detection failed at late healing 

stages due to the variable nature of the appearances of the wounds. We instead traced the 

wound edge manually and imported these into MatLab where the wound area was measured. 
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3. Unpublished results 
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3.1 Number of melanin-based skin spots negatively correlates with 
wound closure in rainbow trout (Oncorhynchus mykiss) – an 
image analysis study 

 

 

Graphical illustration of the relationship of stress, number of skin spots and speed of 
wound healing. A relationship between the number of melanin-based skin spots and 
the stress response has been demonstrated previously. Here we demonstrate that 
number of skin spots correlate with wound healing. However, a definitive connection 
between wound healing and stress response could not be made. 

 

Introduction 

Physiological stress (elevated corticosteroid levels) is negatively correlated with wound 

contraction and overall wound healing in mammals  [464, 468, 469]. One of the most recognized 

effects of corticosteroids is the attenuation of acute inflammation with a reduction in 

production of proinflammatory molecules such as TNF-α, IL-1β and IL-8, and also MMP9, in the 

wound  [464, 470]. Nonetheless, inflammation in mammals is usually associated with 

accelerated wound healing, but at the expense of scarring  [153]. 

Inflammation has a limited influence on wound healing, at least in zebrafish  [143], but how 

stress influenced wound healing has not been directly addressed in fish. However, recently 

Krasnov et al  [3] studied the effect of intraperitoneal cortisol injection on skin gene expression 
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of sea lice-infected Atlantic salmon. Sea lice are ectoparasitic crustaceans that feed on the skin 

and in severe cases also muscle, and thus induce chronic ulcers. Skin was sampled 20 days after 

cortisol injection (18 days after infection with sea lice). Transcription of inflammatory cytokines 

and extracellular matrix molecules were downregulated, and the authors conclude that the gene 

expression profile was consistent with compromised wound healing in cortisol-injected salmon 

when comparing to mammals. However, MMP9 and MMP13 were upregulated in the skin of 

cortisol-treated salmon, and these are important for wound healing e.g. by facilitating epidermal 

migration and wound contraction  [369, 370]. In zebrafish Mathew and co-workers  [143] found 

that corticosteroids had no apparent effect on inflammation, but that they did adversely affect 

blastema formation and thus healing of amputated caudal fins. 

Kittilsen and co-workers  [471] noticed that two rainbow trout strains that had been selected 

for high and low cortisol response to stress through four generations differed with respect to 

the number of melanin-based skin spots. Salmonids show a large degree of plasticity of the 

number, size and pattern of skin spots. This skin spot pattern is relatively fixed in each 

individual fish, and the number of skin spots shows a strong heritability and a limited 

environmental influence  [472]. It was further speculated by Kittilsen and co-workers  [471] 

whether the spots were a manifestation of the coupling of the hypothalamus-pituitary-

interrenal (HPI)-axis with melanin-based pigmentation. To test if this divergent spot pattern 

was just an artefact of the selection for stress response, or if it was indeed correlated to the 

stress response, a non-selected population of another salmonid Atlantic salmon (Salmo salar) 

was divided into two groups: One group contained fish with few spots, and one group contained 

fish with many spots. These two groups were used to test the stress response by observing 

behavioural and physiological traits. This experiment demonstrated that the group with many 

spots had lower post-stress levels of cortisol and had a higher feed intake after stress  [471]. 

This correlation with stress response and feed intake is well in line with previous studies in 

rainbow trout in which low cortisol levels were associated with social dominance  [473]. 

Given this correlation of fish skin spots><stress response, and mammalian stress><wound 

healing, we tested whether number of skin spots in rainbow trout correlated with wound 

healing by measuring wound closure kinetics. 
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Materials and methods 

 

Experimental set-up 
Rainbow trout (size at start of experiment: 109.5±15.5g, 20.8±1.2cm) were sorted into five 250L 

aquaria, 25 fish in each. The aquaria were fitted with Eheim classic filter pumps and airstones 

(Eheim, Germany). In addition, half the water was substituted with fresh, temperature-adjusted, 

oxygenated tap water daily. The temperature was kept at 15±1°C, and the light cycle was 12:12h 

light:dark. 

 

 

Figure 3.1.1. The experimental facilities at DTU FOOD where the fish were kept during the course of 
the experiment. 

 

The fish were kept in the experimental facilities for 14 days prior to commencing the 

experiment. The fish had been kept on minimal fed until being moved to the experimental 

facilities. Here they were fed 1.3% initial body weight daily from day 14 prior to the start of the 

experiment and throughout the experimental period. Clock automatic feeders were used to 

spread the feeding over a course of several hours.  
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On the day of starting the experiment, the fish were anaesthetized in 100mg/L MS-222 one by 

one, and a cylinder of tissue was excised with an 8mm Ø biopsy punch (Medinor, Oslo, Norway) 

on the left side, thus creating a wound with a diameter of 8mm and a depth of approximately 

2mm. The wound was made in an area just above the lateral line, below the dorsal fin. A digital 

image was acquired using a special box with uniform lighting and a digital Canon SLR camera. 

The fish was then measured and weighed before being released back into the aquarium. 

On days 14, 21 and 28 post-wounding, the fish were once again anaesthetized before a digital 

image was acquired. However, on day 28 the experiment was terminated and the fish were 

killed in an overdose of MS-222 and weighed and measured. 

The wound edges on the digital images were outlined manually, BLOBs (Binary Large OBjects) 

corresponding to size of the wound openings were created with Adobe Photoshop and the 

relative size of the BLOBs was determined using MatLab (fig. 3.1.2). 

Figure 3.1.2. Digital images and BLOBs. Top row: Examples of the digital RGB images of fish on 
each of the days 0, 14, 21 and 28 after wounding. Bottom row: BLOBs from 25 fish from one of the 
aquaria. 

 

Data analysis 
Each digital RGB image was imported into MatLab. In simple terms, the MatLab workflow 

started with rotating the image. Then the wound and lateral line was identified, and the image 

was divided into four quadrants by a vertical line running through the center of the wound and 

Day 0 Day 14 Day 21 Day 28 
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a horizontal line starting at the lateral line just below the wound. The spots were then counted 

in the upper left quadrant (Fig. 3.1.3). 

 

 

 

                      

 

  

 

  

 

Figure 3.1.3. Sample images of stages in the spot detection. To the left is an example 
of a rainbow trout with few spots, and to the right an example of a rainbow trout with many 
spots. The fish are from day 28. The blue cross on the lower images represents the two 
lines running through the center of the wound and along the lateral line. Each red circle 
represents a detected skin spot. The spot detection is not perfect. Especially on the dorsal 
part of the fish where there is less contrast between the background and the spots, these 
are not detected. 
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The correlation of wound size and number of skin spots was tested with Pearson’s r due to the 

apparent linear and elliptical distribution pattern (Spearman’s rank test was also tested with 

similar results). 

 

Results 

There was an increasingly positive correlation between wound size and number of skin spots 

from day 0 to day 28 after wounding, which was only significant at day 28 (Table 3.1.1 and 

figure 3.1.4). 

 
Pearson’s 
correlation P-value 

 Table 3.1.1. Pearson's correlation and P-values 
for wound size and number of skin spots. The 
asterisk marks a statistically significantly positive 
Pearson’s correlation at day 28 after wounding. Day 0 0.058 0.527  

Day 14 0.094 0.301  

Day 21 0.145 0.111  

Day 28 0.201 0.029*  
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Figure 3.1.4. XY plots of wound size and number of skin spots with trend line at days 0, 14, 
21 and 28 after wounding. There is an increasingly positive Pearson’s correlation from day 0 
to day 28, which is significant at day 28. 
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Discussion 

The influence of skin spots on wound healing was small but significant. Contrary to what could 

be expected based on the mammalian wound healing response to stress the fish with more 

spots (and thus a lower stress response, although this was only circumstantial evidence) were 

slower healers. 

In mammals, melanins are synthesized by melanocytes, which are pigment cells derived from 

the neural crest mesenchyme  [8]. Fish melanocytes are also melanin-producing. In addition to 

melanocytes lower vertebrate macrophages (melanomacrophages) also produce melanin, and 

these are not derived from the neural tube  [8]. 

The melanization of fish skin wounds appears to be due to the presence of melanocytes  [45, 

61], but the abnormal presence of pigments in salmon visceral organs and musculature results 

from aggregates of melanomacrophages  [8]. 

Tyrosinase (as well as 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase (TRP1) and 

dopachrome tautomerase (TRP2)) is involved in the melanogenic pathway, and the Atlantic 

salmon macrophage cell line (SKH-1) expresses tyrosinase, TRP1 and TRP2  [8]. In this cell line 

the tyrosinase gene is highly upregulated at 20°C, there is some expression at 15°C, but none at 

10°C  [474]. Since 20°C is stressful for a cold-water species such as the Atlantic salmon, it 

appears that melanin is not directly involved in immunity, but is a powerful antioxidant that 

protects cells during stress  [474]. 

It could thus be interesting to further investigate the involvement of these two melanin-

producing cell types in fish inflammatory responses in full-thickness cutaneous wounds. To this 

end, transparent transgenic zebrafish such as pinky (pk) may be useful. Pk was designed to 

visually study cell migration in vivo  [47], and has a dramatic reduction in chromatophore 

numbers. 
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3.2 Effect of the fish pathogen Vibrio anguillarum on wound healing 
in rainbow trout 

 

 

Graphical illustration of the cohabitation experiment. Trojans were infected with 
Vibrio anguillarum intraperitoneally. They were released into a tank with non-injected 
cohabitant rainbow trout with or without wounds. The cohabitants were exposed to 
bacteria deriving from the Trojans. 

 

• Mortality was not affected by wounding, regardless of bacterial challenge. 

• Scratch-wounded fish may function as secondary seeder fish. 

• Wound closure was not significantly affected by bacterial challenge. 

• Challenge-related differences in gene expression were most prominent at day 12, when 

expression of IGF-1 and collagen type I was higher in challenged fish. 

• IGF-1 was downregulated and FGF-2 was upregulated in wounds on day 12. 

 

Introduction 

We used a cohabitation model of infection, where rainbow trout (Oncorhynchus mykiss) were 

intraperitoneally injected with Vibrio anguillarum. These so-called Trojan fish subsequently 

infected the cohabitants in the tank. We inflicted two kinds of wounds prior to challenge; 

superficial wounds by scraping or deep wounds created with a biopsy punch. 
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The following month we registered mortality daily and healing of punch wounds at day 3, 12 

and 29 after wounding. On days 12 and 29 we additionally measured the combined effect of 

cohabitation and wounding on expression of Collagen type I α1 chain (Col1a1), fibroblast 

growth factor 2 (FGF-2) and insulin-like growth factor 1 (IGF-1) in the healing wound. 

FGF-2 is important for granulation tissue formation following wounding in mammals. The 

importance of FGF signaling for granulation tissue formation has also been demonstrated in 

zebrafish, where the wound is almost completely devoid of fibroblasts if FGF signaling is 

blocked  [12]. Among other extracellular matrix molecules, fibroblasts secrete collagen type I, 

which is the most prominent constituent of muscle. IGF-1 is important for muscle regeneration 

partially through stimulating proliferation and differentiation of satellite cells  [165, 475]. 

 

Materials and methods 

Experimental set-up 
The challenge/wounding trial was carried out at the infection facilities at BioMar A/S, Hirtshals, 

Denmark. The fish were kept in cylindrical 200L plastic tanks with a conical bottom for 

collection of waste. At the onset of the experiment each tank contained 180 fish with an initial 

weight of 53.6±11.8g and an initial length of 16.3±1.4cm (FL). All tanks were connected to the 

same filter and aeration system, and outflowing water underwent rigorous UV sterilization 

before re-entering the tanks. The fish were kept at a 12:12 light:dark cycle and at 15°C. 

 

 No challenge 
(n=3) 

Challenge 1 
(n=2) 

Challenge 2 
(n=4) 

Unwounded control fish 130 110 60 

Trojans  20 20 

Punch wounded 50 50  

1x Scrape   50 

2x Scrape   50 

 

Table 3.2.1. Number of differently treated fish in each tank for the 
experiment. 2-4 replicate tanks were used for each combination of 
treatments (n). 
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Wounding 
Prior to wounding the fish were anaesthetized in 50mg/L MS-222. For each No challenge and 

Challenge 1 tank, 50 fish were wounded with a 6mm biopsy punch in an area anterior the dorsal 

fin and above the lateral line on the left side of the fish. The wound penetrated 3-4mm into the 

muscle. For the Challenge 2 tanks, 50 fish were scraped with a microscope glass slide on one 

side (1x Scrape), and 50 fish were scraped on both sides (2x Scrape). The affected area was 

approximately 2x3cm and located in the same position as the biopsy punch wounds, and 

disrupted the epidermis and removed most of the scales. 

Challenge 
Simultaneous to the wounding, 20 fish were anaesthetized similar to the wounded fish and 

injected intraperitoneally with 106 CFU of Vibrio anguillarum in phosphate-buffered saline. 

Wound closure 
Images were acquired on days 6, 12 and 29 after wounding with a multispectral imaging device 

called a VideometerLab (VideometerLab A/S, Hørsholm, Denmark). An advantage of the 

VideometerLab is its ability to acquire standardized images. The wound edge was manually 

outlined on the images, and wound size was measured in MatLab (MathWorks). The fish were 

anaesthetized as previously described prior to image acquisition, except for the fish that were 

sacrificed for gene expression studies. These were instead killed in an overdose of MS-222. 

Gene expression 
Muscle was sampled from biopsy punch wounded fish on days 3, 12 and 29, but the samples 

from day 3 were lost. 5 fish from each treatment (No challenge and Challenge 1) were sampled 

at each sampling day. Muscle samples were collected from the wound as well as a similar area 

on the opposite side of the fish (internal control) using an 8mm biopsy punch and removing any 

skin before immersing in RNAlater® in cryotubes. The samples were kept at 4°C or on ice for 

24h, and then at -20°C until further processing. 

The protocol for extraction of RNA, cDNA production and qPCR is described in paper III. All 

OD260:280 values were between 2.03 and 2.17. 

The primer set for Collagen type I α1 chain is described in paper III, and the primers for IGF-1 

and FGF-2 were designed with the Primer3 software and supplied by Sigma-Aldrich (Brøndby, 

Denmark). The primers were tested for specificity by melt curve analysis. 
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Gene Primer Sequence (5’-3’) GenBank Acc. No. Amplicon 
length 

RPS20 Forward AGCCGCAACGTCAAGTCT AY953432 104 

(reference) Reverse GTCTTGGTGGGCATACGG   

IGF-1 Forward AGCGGTCATTTCTTCCAGTG M95183.1 78 

 Reverse GAGGGTGTGGGTACAGGAGA   

FGF-2 Forward ATGGCCACAGGAGAAATCAC AY878375.1 149 

 Reverse TCCACGCTTCCGTTAGAGTT   

Col1α1 Forward TGAGGGAACTCCTGGTAACG CK897549 74 

 Reverse ACTCACCACGTTCTCCCTTG   

 

Table 3.2.2. Sequences of the primers used for gene expression in the experiment. 

 

 

Results 

The Trojan fish in both challenge experiments had close to 70% mortality, with the most deaths 

occurring between 2 and 4 days after challenge (fig. 3.2.1). Deep wounding with a biopsy punch 

did not affect mortality, whether in the presence of Vibrio anguillarum or not (0% mortality). In 

Challenge 2 there was a surprisingly high mortality of the unwounded control fish (about 35%), 

and this was even slightly higher than for the scratch-wounded fish (25 and 28%). 

Vibrio anguillarum did not significantly affect wound closure of the biopsy punch wounded fish 

(Fig. 3.2.2). 

The expression of IGF-1 was downregulated in the wound relative to internal control at day 12, 

but had returned to normal at day 29 (Fig. 3.2.3) in challenge and control groups. The 

downregulation was significantly affected by the bacterial challenge and was greater in the 

control fish compared to the cohabitants. FGF-2 was upregulated in wounds on day 12, and on 

day 29 FGF-2 expression was still significantly higher in the wounds than in control muscle of 

cohabitants. Challenge increased FGF-2 upregulation in wounds. There was a limited effect on 

expression of Col1a1, but it was significantly upregulated in the wound at day 12 in the 

challenged group. 
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Figure 3.2.1. Survival rates in the three experiments. The far 
majority of Trojans die between 2 and 4 days after challenge. In 
the absence of bacteria (no challenge) there is no mortality. The 
cohabitants in challenge 2 start dying after a week, and in 
challenge 1 after 10 days, but mortality is much lower in 
challenge 1 than challenge 2. There is very little mortality after 
three weeks. The mortality between day 29 and 30 in challenge 
1 was due to a technical problem in one of the tanks leading to 
low oxygen levels. 

 

 

 

 

 

 

 

Figure 3.2.2. Wound size. The 
size of the open wounds were 
measured on days 6, 12 and 29 
after wounding. There was no 
significant difference between 
the challenge and non-
challenge groups. 
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Discussion 

The bacterial load is presumably highest around the time of death of the Trojans, and the 

infection pressure in the tanks is thus highest around day 3 or 4. Considering the re-

epithelialization rates of fish wounds, the smaller (albeit deeper) punch-wounds were probably 

completely re-epithelialized at this time, whereas the larger scratch-wounds were not yet 

covered by epidermis. The scratch-wounded fish may thus have been lethally or sublethally 

infected and may have acted as secondary seeder fish, which may explain the high mortality in 

the challenge 2 experiment. 

  

  

 

 

Figure 3.2.3. Expression of IGF-1, FGF-2 and 
Col1a1 in wounds relative to internal control 
samples. Columns are shown as means with 
standard deviation. Statistical difference 
between wound and internal control samples, 
between days 12 and 29 and between 
challenged and unchallenged groups was 
tested with the t-test. *=P<0.05, **=P<0.01, 
***=P<0.001. 
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Ingerslev et al  [11] demonstrated that rainbow trout infected with Vibrio anguillarum had more 

tough and fibrous fillets seven months after infection. We could thus expect that the challenge 

results in increased expression of collagen type I. However, we did not expect this upregulation 

to happen as early as 12 days post-wounding, as the initial wound matrix is dominated by non-

collagen molecules. 

The expression of IGF-1 and FGF-2 is higher in the wounds of fish challenged with Vibrio 

anguillarum. It thus seems that the bacterial challenge stimulates muscle repair and fibrosis. 

This is consistent with the observations by Ingerslev et al  [11]. 

We were not able to demonstrate an effect of challenge on wound closure. However, the wound 

closure kinetics was subject to a high individual variability. It thus takes a large sample size to 

observe significant differences in wound closure. 

The difficulties in controlling and standardizing the pathogen load in infection trials contributed 

to our decision of turning our focus to stimulation with non-infectious agents such as heat-killed 

bacteria and purified PAMPs. 
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3.3 Rainbow trout muscle texture is still affected by excisional 
wounding one year later 

 

 

 

 
Graphical illustration of the compression of a cylinder of tissue (top) with a Texture 
Analyzer. The plots illustrate the compression force (Newton, Y-axis) as a function of time 
(seconds, X-axis) of wounded (top) and control (bottom) tissue. Notice the irregular curve 
pattern of wounds as a result of slipping of the tough tissue. These sudden changes in 
compression resistance are not observed for the softer control tissue.  

 

 

• Excisional wounding had long-term effects on texture in rainbow trout. The wound site 

was fibrotic one year after excisional wounding, and more force was needed to 

compress post-wounded muscle tissue than control tissue from a non-wounded fish. 

 

Introduction 

Salmonids are important aquaculture production animals. In aquaculture, injuries and 

intramuscular bleedings can results from size sorting, biting and abrasion or from predators, 
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parasites and pathogens. Intramuscular bleedings result in inflammation and can lead to 

subsequent darkening (melanogenesis) of the fillet  [476]. This leads to downgrading. Apart 

from the visually unappealing properties of fillets with a history of tissue damage, wound repair 

is associated with fibrosis in adult higher vertebrates. However, very little is known about 

injury-associated muscle fibrosis in fish. In zebrafish, initial fibrotic muscle tissue is apparently 

completely regenerated within a couple of weeks  [12]. However, this observation was a purely 

visual evaluation. Apart from a recent experiment by Ingerslev and co-workers  [11] there has 

been no focus on the effect of muscle damage on texture – an important sensory parameter for 

the consumer. Ingerslev et al  [11] showed that that previous muscle injury (multiple needle 

puncture) in rainbow trout had no effect on textural properties 7 months post-wounding when 

the fillets were cold-smoked or heat-treated and evaluated by a sensory panel  [11]. 

In this experiment we instead used a texture analyzer to measure texture of muscle samples 

taken locally in the wound area of fresh post-rigor fillets. 

 

Materials and methods 

Experimental set-up 
The fish used in the present experiment were 31 fish in surplus from the experiment in Paper 

III. When the experiment in Paper III was terminated after 100 days, the remaining fish were 

PIT-tagged to identify treatment (± β-glucan and ± wound) and pooled in a 600L tank in the 

same facility under the same conditions, except the temperature was higher and more stable 

(14.0±1.7°C) for the remainder of the experiment. The fish were kept until one year (365 days) 

after the original experiment was initiated. The fish were then killed in 200mg/L MS-222, 

followed by a sharp blow to the head. The fish were photographed, measured (40.8±2.6cm) and 

weighed (1090±193g). Finally the ventral aorta was severed and the fish was left in ice-water 

for 5-10mins to bleed before being placed upright at 2°C. The sampling was carried out in 

December and the fish were committed to sexual maturation. It was thus clear from external 

morphological traits that out of the 31 fish, three were male. The males were sampled, but not 

included in the analysis in order to optimize homogeneity of the sampling groups. After 4 days 

when the fish were in post-rigor they were brought to the lab on ice. The wound area was still 

clearly visible, since scales had not regenerated in the affected areas (fig. 3.3.1) and a cylinder of 

tissue was removed from the wound area with an 8mm biopsy punch. Once removed from the 

fish the cylinder was trimmed to approximately 5mm. It was then placed with the skin side 

down (the skin was still attached to the muscle), and texture was measured immediately after to  
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avoid heating and drying out. Texture was 

measured using a Texture Analyzer TA-XT2 

(Stable Micro Systems, Surrey, England) fitted 

with a flat-ended 15mm stainless steel cylinder 

probe set to move at 0.5 mm s-1. Compression 

force was measured every 5ms until the tissue 

was compressed to 70% of its original height. 

Data analysis 
 Since the original experiment (Paper III) 

showed no effect of β-glucan treatment the two 

groups were pooled, and thus only two groups 

remained: Wounded and control. 

Due to the heterogeneous temporal changes in 

physical behaviour of the muscle under 

compression, it was decided that maximum force 

(Nmax) was the most consistent measure. An 

unpaired two-tailed t-test was used to compare 

Nmax of wounded and control groups. 

 

Results and discussion 

The muscle tissue taken from wounded areas on average required almost twice as much force to 

compress 70% (fig. 3.3.2). This difference was statistically very sound (P=0.0144). The large 

standard deviation in the wounded group can be explained by the occasional slipping of the 

sample under the flat cylinder during compression (see graphical illustration at the beginning of 

section 3.3). This was more common for the firmer wounded tissue, and led to an 

underestimation of the required compression force. Thus, the actual difference may in fact have 

been larger than observed. 

 

 

Figure 3.3.1. The scales had not 
regenerated one year after excisional 
wounding in any of the rainbow trout. 
However, pigmentation resembled that 
of unwounded skin. An example is 
shown here. 

 

  

 

Figure 3.3.2. shows the average maximal 
force (measured in Newton; N) required 
for compression of wound tissue one year 
after wounding compared to unwounded fish 
kept under the same conditions. There is a 
significant difference between the two groups 
(P=0.0144). 
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4. Discussion and conclusions 

We are just beginning to scratch the surface of muscle wound healing in fish. Our experiments 

show that deep excisional cutaneous wounding has long-term effects on muscle texture and on 

the visual appearance of the skin. 

 

The influence of previous muscle damage on sensory properties of the fillet has received 

relatively little attention in the aquaculture industry as well as the scientific community. Several 

handling practices introduce tissue damage. Fish are particularly prone to damage when 

handled out of water and suffer contusions during sorting procedures. Fish producers are well 

aware that such procedures can result in lethargy and reduced apetite in the following days, but 

less aware of the long-term influence on the quality of the final consumer product. Optimal 

production systems and gentler handling will thus not only increase fish welfare, but also fish 

growth, profit and product quality. 

The overriding observations across all the conducted experiments are: 1) There is a large 

individual difference in wound closure dynamics in both of the two investigated species; and 2) 

wound closure dynamics are apparently to a large extent difficult to affect. These two 

observations leads to the conclusion that large experimental groups are generally needed to 

  

Figure 8. As the wound healing progresses the wound contracts. This results in distortion in the 
otherwise regular scale pattern. The image on the left shows a full-thickness excisional cutaneous 
wound from a rainbow trout 14 days post-wounding. The image on the right is acquired 100 days 
post-wounding. The images are from two different specimens. 
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show a statistically significant effect of experimental wound closure manipulations.  Apart from 

the presented experiments, we also investigated the effect on wound closure of different feed 

types or of exposure to heat-killed pathogenic bacteria. None of these affected wound closure 

(results not shown). 

The bullet points on the following pages provide an overview of important findings of the PhD 

study. These are presented in no particular order of importance. 
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1. Bathing in β-glucan-containing products stimulated wound healing in common carp 

(Paper I) as measured by visual wound closure dynamics of open full-thickness 

excisional wounds to the trunk. A similar experiment on rainbow trout (Paper III) 

resulted in no effect of β-glucan stimulation. Whether temperature (8.5±1.7°C for the 

rainbow trout and 21±1°C for the carp) or species was mainly responsible for this 

different outcome could not be established. However, the rainbow trout from Paper III 

had considerably longer wound closure kinetics than trout kept at 15±1°C (section 3.2 

and 3.3) (wound closure kinetics from these experiments have been combined in fig. 9). 

 

2. Carp wounds apparently closed with a much higher degree of contraction than rainbow 

trout wounds did. This may be related to the structure of the skin. The stratum 

compactum is less well developed in cyprinids than in the salmonids  [477], and it is 

known from mammals that wound closure in tight-skinned species (e.g. humans) is 

mainly due to re-epithelialization, whereas in species with a loose skin structure (e.g. 

rodents) it is mostly by contraction  [16].  

 
 

 

 

Figure 9. Wound closure kinetics of rainbow trout and carp at different temperatures. 
Difference between wound closure of 6mm and 8mm diameter wounds at 15°C is also 
shown. 
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3. At 15°C cohabitation challenge with the fish-pathogenic bacterium Vibrio anguillarum 

did not significantly affect mortality or wound closure dynamics, but did result in a 

higher expression of collagen type I and IGF-1 in the wound. This indicates a profibrotic 

effect of the challenge. 

 

4. Larval and juvenile carp respond with very limited inflammation and regulation of 

immune-relevant genes when wounded by incisional needle piercing of skin and muscle. 

However, the immunoglobulin isotype IgZ1 is upregulated by the wounding at the larval 

stage. The wounds heal with visually perfect regeneration within 3 days in larval carp. 

After metamorphosis the wound site is still visible even after 7 days. 

 

5. Healing of full-thickness excisional wounds is slow in rainbow trout kept at 8.5±1.7°C 

(Paper III). Gene expression data indicate that the inflammation phase (IL-1β 

expression) peaks around 14 days after injury, and is almost resolved by day 38. The 

expression of genes relevant for ECM production is initially downregulated, but is 

upregulated from one week after injury. The only exception to this is collagen type I α1-

chain, the upregulation of which is delayed until day 38. 

 

6. Paper III is the first report of gene expression of LOX, P4H and CD163 in fish, and until 

recently also of TGF-β3  [344]. LOX and P4H expression may be useful markers of 

muscle texture properties in future studies. CD163 expression correlated with expected 

presence of M2 polarized macrophages, and further investigations may validate CD163 

is a valuable marker of fish M2 polarized macrophages. 

 

7. Rainbow trout muscle does not regenerate following excisional wounding. Instead the 

healing wound is fibrotic, and there is a long-term effect on muscle texture. When 

texture is measured by compression with a texture analyzer one year after wounding, 

post-wounded muscle is significantly harder to compress than control muscle. This was 

not investigated in carp, but in this species the wound area was still raised, darker and 

harder to the touch relative to un-wounded areas one year after wounding (personal 

observations). 

 

8. The number of melanin-based skin spots negatively correlates with wound closure in 

rainbow trout. The number of skin spots has been shown by others  [471] to correlate 
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with the stress response, but it remains to be demonstrated if the effect of number of 

skin spots on wound healing observed here is linked to the stress response. 

 

9. Scales at the site of excisional wounding did not show signs of regeneration in rainbow 

trout up to one year after the procedure (fig. 3.3.1), whereas carp scales regenerated 

within a few weeks, although not perfectly (fig. 11). However, these two situations 

cannot be directly compared since only the scale was removed in the carp, not the 

underlying skin and muscle. Skin pigmentation returns to almost normal in both species, 

but the affected area remains slightly darker than the surrounding skin. 

 
10. It was observed that carp commonly bled profusely following wounding (fig. 10), 

whereas bleeding was more limited or in some cases appeared completely absent in 

rainbow trout, which thus more resembled the limited hemostasis also observed when 

inflicting wounds in the axolotl  [37]. The implications of this were not investigated 

further. However, a blood clot apparently has no effect on wound healing in zebrafish  

[12]. 

 

 

Figure 10. Extensive bleeding from a 
biopsy punch wound on the flank of a 
carp immediately after it was inflicted. 
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Figure 11. Scale regeneration 
in carp. In a mirror carp with 
unusually many scales, several 
scales were removed prior to 
biopsy punch wounding. These 
regenerated within the same 
time frame as wound closure. 
However, the scales were 
distorted at the site of insult, 
whereas a neighboring scale 
not affected by the wound 
regenerated perfectly. D is day 
after wounding. 
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5. Perspectives for future research 

Wound contraction 
It was difficult to identify and outline the wound edge accurately at later stages in wound 

healing due to hyperpigmentation of the wound area. It could thus be valuable to instead 

develop a method to estimate wound contraction by analyzing the distortion in the otherwise 

very regular scale pattern in rainbow trout (see fig. 8). 

Another interesting observation regarding wound contraction was made in carp in which 

anterior wounds healed with more contraction compared to more posterior wounds. We 

speculate that this is due to the increase in body movement towards the tail during swimming, 

and thus in more strain put on the wound matrix. Different wound locations could thus provide 

interesting clues to the molecular basis for differences in wound contraction in carp. 

 

Melanomacrophage centers? 
Another interesting observation is the temporal presence of dark spots in the periphery of the 

wounded area in carp. These spots typically start forming two to three weeks after wounding, 

and persist for three to four weeks before disappearing again.  We speculate that these dark 

spots could be melanomacrophage centers (MMCs), which have been proposed to be primitive 

analogs of mammalian germinal centers  [450]. At the present MMCs are most often often 

studied histologically in the kidney, which requires sacrificing the fish. It also makes it difficult 

to study the kinetics of their formation. Thus, if these spots are indeed MMCs, they could 

provide valuable information on B-cell development and antibody responses, since they can be 

easily visually observed and studied in vivo at different time-points in their lifetime from 

formation to dispersion. The spots can be harvested with minimal distress for the fish, and be 

used for gene expression studies, immunohistochemistry or other purposes. This information 

could potentially be used to improve vaccine efficacy in aquaculture. 

 

Effect of β-glucan 
β-glucans promoted wound contraction in carp (Paper I), but had no effect on rainbow trout 

(Paper III) wound healing. The reasons for the differing effects of β-glucan in the rainbow trout 

and carp study could not be determined. It would be interesting to repeat the experiment for the 

trout at a higher temperature and carp at a lower temperature to establish whether the 

response to PAMP stimulation is temperature and/or species dependent. 
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Thrombocyte function 
CD41 expression levels in the wound peaked on the first day after wounding in rainbow trout, 

but expression levels were consistently elevated for at least two weeks after wounding (Paper 

III). This could indicate a persistence of thrombocytes in the wound. Since thrombocytes are 

possibly antigen presenting and phagocytosing in rainbow trout  [184, 190, 191], it would be 

interesting to take a closer look at the involvement of thrombocytes in later stages in wound 

healing. 

 

M2 marker? 
CD163 upregulation in the wound of rainbow trout coincided with resolution of inflammation at 

a time when the M2 macrophage phenotype would theoretically predominate in the wound 

(Paper III). CD163 is a marker of mammalian M2c macrophages, but it is not known if this is 

also the case in fish. There is a general lack of fish M2 macrophage markers. It would thus be 

interesting to investigate closer the expression of this gene in isolated and properly stimulated 

macrophages, as well as in different cells and tissues to hopefully establish CD163 as a marker 

of M2 macrophages also in fish. 

 

Skin spots 
We found that the number of melanin-based spots in the skin of rainbow trout correlated 

positively with wound size (section 3.1). In other words, fish with many spots were slower 

healers. Kittilsen et al.  [471] demonstrated that the salmonid stress response was lower in fish 

with many skin spots compared to fish with few skin spots. We were not able connect the final 

dots and establish if stress does indeed speed up wound healing, since we did not measure 

cortisol levels or other stress parameters. However, when we exposed rainbow trout to 

bacterial challenge we subjected them to stress (section 3.2). We did not see an effect on 

wound closure, but wound closure is subject to large individual variation, and we had only few 

fish. However, the gene expression was consistent with a faster healing, perhaps with fibrosis as 

a trade-off. Stress may thus promote wound healing at the expense of fibrosis in fish. This would 

go against the observations from mammals, which show that stress impairs wound healing. 

Furthermore, aquaculture itself can be stressful for the fish, and how stress affects wound 

healing and fibrosis would be of interest for the aquaculture industry, since it influences not 

only fish welfare, but also the quality of the final product. Thus this subject would be interesting 

to pursue. 
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Although the correlation was significant in our experiment, it was quite weak. Since the 

regulation of tyrosinase expression is very much influenced by temperature in the Atlantic 

salmon head kidney-derived cell line HKL-1 [474], it would be worth to repeat the experiment 

at a higher temperature and sample blood for cortisol measurement to correlate wound healing 

with the stress response. To exacerbate the stress response it would also be valuable to include 

another stressor apart from the elevated temperature and the wounding procedure itself. This 

experiment could be coupled to the proposed repetition of the PAMP-bathing experiment to 

reduce the use of experimental fish. 

 

Melanophores 
It appears that the melanin producing cells melanophores and melanomacrophages are 

associated with inflammation in skin and muscle respectively  [8, 45, 61, 476]. The immune-

related properties of macrophages are well described, but not much is known about the 

involvement of the melanophore. It may be that melanophores contribute with no more than the 

anti-oxidant effect of melanin  [474], but it would be interesting to investigate if melanophores 

had immune-related properties, perhaps by contributing with cytokines and growth factors. 

 

Wound type 
We used excisional wounding as the overriding method of wounding in our experiments. This is 

a good model for wounds created by for example leeches, fish lice (Argulus spp. and 

Lepeotheirus salmonis) and lampreys. It would be interesting to also investigate the effect of 

other types of wounds on textural, visual and molecular parameters. Fish out of water are 

susceptible to contusions – e.g. during vaccination and size sorting procedures. Since all 

production fish are usually handled at some time points during their lifetime, contusions are 

likely a very relevant form of wounding in aquaculture, and one that is relevant to investigate. 

Contusions are truly sterile since the mucosal surface is not breached, as opposed to open 

wounds that are never entirely sterile. They may thus be more suitable to investigate the effect 

of PAMPs versus DAMPs. 
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Abstract 

We investigated the effect of full-thickness incisional wounding on expression of genes related to the 

immune system in larvae and juveniles of common carp (Cyprinus carpio). The wounds were inflicted 

by needle puncture immediately below the anterior part of the dorsal fin on days 7, 14, 28 and 49 after 

fertilization. We followed the local gene expression 1, 3 and 7 days after wounding by removing head 

and viscera before extracting RNA from the remaining part of the fish, including the wound area. In 

addition, we visually followed wound healing. Overall the wounds had regenerated to a point where 

they were microscopically indistinguishable from normal tissue by day 3 post-wounding in all but the 

juvenile carp wounded on day 49 post-fertilization. In these juveniles the wounded area was still 

visible even 7 days post-wounding. On the transcriptional level a very limited response was observed 

in the investigated genes as a result of the wounding. HSP70 was downregulated 1 and 3 days post-

wounding in the smallest larvae. However, HSP70 was differentially expressed at different time-

points in a similar manner in wounded and mock-wounded groups, thus suggesting a stress effect of 

the handling, which may have overshadowed some transcriptional effects of the wounding. MMP-9, 

TGF-β1 and IgZ1 were slightly but significantly upregulated at few time-points, while no effect of 

wounding was detected on the expression of IgM, C3, IL-1β and IL-6 family member M17. 

 

1. Introduction 

The objective of this study was to investigate the local transcriptional response of immune-related 

genes to mechanical damage during ontogeny of common carp (Cyprinus carpio) larvae and 

juveniles. Thus we aimed at examining not the timing of the first detection of hematopoietic cells and 

immune system-related transcripts, but the ontogeny of a functional response to tissue damage. The 

genes investigated were interleukin (IL)-1β, the IL-6 family member M17 (M17), heat-shock protein 

70 (HSP70), transforming growth factor-β1 (TGF-β1), complement component C3 (C3), matrix 

metalloproteinase-9 (MMP-9) and the immunoglobulins IgM and IgZ1. In addition we visually 

followed the progression of wound healing. 

 

1.1. Inflammation and wound healing 

Most functional studies on the immune system in fish have focused on the response to challenge with 

pathogens or with pathogen-associated molecular patterns (PAMPs). However, the innate immune 

system not only provides protection from invading pathogens but also is intimately involved in wound 

healing (Eming et al., 2009), and tissue damage caused by pathogens or by sterile means have 

different triggers, but ultimately converges in a similar inflammatory response (Rock et al., 2010). 
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Wound healing proceeds either through scarless regeneration or repair with various degrees of 

scarring. Vertebrate fetuses and urodele amphibians are known for their ability to perfectly regenerate 

wounded tissue without scarring (Roy and Gatien, 2008, Roy and Lévesque, 2006). Mammalian fetal 

wounds exhibit less inflammation with reduced expression of IL-1β, IL-6 and TGF-β1, but with 

increased expression of MMP-9 and other MMPs (Dang et al., 2003, Rolfe and Grobbelaar, 2012). 

Larval fish have the same ability of regeneration, which persists to some extent into adulthood 

(Richardson et al., 2013, Yoshinari and Kawakami, 2011). Inflammation is in most situations a 

fundamental response to various sterile or non-sterile injuries. However, perfect regeneration usually 

coincides with no or limited inflammation, and excessive scarring conversely coincides with an 

exacerbated inflammatory response (Eming et al., 2009, Martin and Parkhurst, 2004). Nevertheless, 

scarless healing is possible even after substantial inflammation in zebrafish larvae and adults (Cvejic 

et al., 2008, Richardson et al., 2013). We followed the visual healing of the wounds and compared this 

to the extent of inflammation using IL-1β expression as a marker. 

IL-1β is well established as a proinflammatory cytokine in all vertebrates. Its expression is highly 

inducible after pathogenic, chemical or mechanical stimulation (Secombes et al., 2011). Among many 

effects IL-1β recruits macrophages to the site of injury (Rider et al., 2011). Macrophages are 

important players in wound healing through phagocytosis of debris and apoptotic cells as well as 

secretion of growth factors and cytokines. Experimentally impairing macrophage infiltration into the 

wound delays healing in mammals (Eming et al., 2007, Eming et al., 2009), although zebrafish fin 

amputation studies show that they are not required for regeneration (Mathew et al., 2007, Niethammer 

et al., 2009). 

The matrix metalloproteinase MMP-9 is important for leukocyte migration through the 

extracellular matrix (ECM) to the site of injury (Kolaczkowska et al., 2009), but also potentiates 

inflammation through cleavage of IL-1β, TGF-β and IL-8 (Schonbeck et al., 1998, Van den Steen et 

al., 2002, Yu and Stamenkovic, 2000). MMP-9 can thus be considered a proinflammatory enzyme. 

MMP-9 is one of the genes whose transcription is most highly upregulated in wounds, also in carp 

and other teleosts (Chadzinska et al., 2008, d'Alençon et al., 2010, Murakami et al., 2006, Yoong et 

al., 2007). MMP-9 is also likely important during ontogeny as maternal MMP-9 transcripts are 

deposited in the unfertilized zebrafish oocytes and autologous transcripts are detected as early as 12 

hours post-fertilization in the notochord and hours later transiently in the mesoderm (Yoong et al., 

2007). 
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1.2. Similarities between morphogenesis and tissue repair 

Wound healing and developmental morphogenesis share many features (Lee et al., 2012, Martin and 

Parkhurst, 2004), and many of the factors that are implicated in wound healing are also important 

during development. 

One of these factors is TGF-β, which has been considered a sensor of damage since latent 

precursor TGF-β complexes bound to the ECM can be activated by plasmin, gelatinases, 

thrombospondin-1, integrins and reactive oxygen species, which are found in areas of damage and/or 

inflammation (Annes et al., 2003). Activated TGF-β is pleiotropic with numerous functions including 

increasing the expression of ECM components by fibroblasts (Klass et al., 2009), and in mammals all 

three TGF-β isoforms are critical for wound healing as well as normal development (Dünker and 

Krieglstein, 2000, Penn et al., 2012). A few studies have investigated the effect of teleost TGF-β1 in 

vitro, and these investigations collectively suggest a pleiotropic role of TGF-β also in teleosts (Cai et 

al., 2010, Haddad et al., 2008, Jang et al., 1994, Yang and Zhou, 2008, Yang et al., 2012). 

IL-6 and M17 are both members of the IL-6 family of cytokines. Apart from structural similarities, 

IL-6 family cytokines have a common signal transducing receptor protein (glycoprotein 130 (gp130)), 

which results in partially overlapping functions (Taga and Kishimoto, 1997). IL-6 not only mediates 

pro- as well as anti-inflammatory responses (Scheller et al., 2011), but has been implicated in a range 

of non-inflammatory functions in vertebrates (Rincon, 2012). IL-6 is implicated in wound healing, 

and Il-6 knockout mice show attenuated leukocyte infiltration and delay in collagen production and 

overall wound healing (Lin et al., 2003). The IL-6 family member M17 was first described from 

common carp in 2003 (Fujiki et al., 2003) and have since been described from a number of fish 

species (Hanington and Belosevic, 2007, Hwang et al., 2007, Wang and Secombes, 2009). M17 has 

not been described from non-teleost taxa, and thus appears to be an exclusively piscine cytokine. The 

few investigations so far on M17 function points to an involvement in the immune and nervous 

systems (Fujiki et al., 2003, Hanington and Belosevic, 2007, Hwang et al., 2007, Rakus et al., 2012, 

Wang and Secombes, 2009). It is not known whether it plays a role in wound healing. 

Although generally regarded as an important component of the innate immune system complement 

is also emerging as an important player in development and regeneration of the nervous system 

(Rutkowski et al., 2010) as well as other tissues (Ricklin et al., 2010). The complement component C3 

has been shown to be important for neural crest migration in early embryogenesis in Xenopus and 

zebrafish (Carmona-Fontaine et al., 2011) as well as regeneration of limbs and lens of urodele 

amphibians (Del Rio-Tsonis et al., 1998, Kimura et al., 2003). The liver is the main contributor of C3 

(and most other complement components) in mammals (Lange et al., 2006, Li et al., 2007, Qin and 

Gao, 2006), and liver is also a main contributor in adult fish (Abelseth et al., 2003, Mauri et al., 2011). 

However, in early life stages of some teleosts (including carp) extrahepatic C3 expression is found in 

a variety of tissues (Lange et al., 2004a, Lange et al., 2004b, Lange et al., 2005, Lange et al., 2006, 
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Løvoll et al., 2007a, Løvoll et al., 2007b, Nakao et al., 2011). The observations that complement 

factors are expressed at different levels in different tissues during ontogeny indicate that the 

complement system may also be important for non-immune-related events during teleost ontogeny. 

 

1.3. Is antibody expression induced by wounding? 

In addition to innate factors, we also followed the expression of the two immunoglobins IgM and 

IgZ1. Immunoglobulins are normally considered part of the adaptive immune system and are not often 

implicated in healing of non-infected wounds (Schäffer and Barbul, 1998). However, the so-called 

natural or innate antibodies have a broad binding spectrum and also bind self-antigens. They are 

involved in removal of aberrant and apoptotic cells (Baumgarth, 2013, Chow et al., 1999, Kim et al., 

2002, Lutz, 2007, Whyte, 2007) and antibodies enhance wound healing in mice (Nishio et al., 2009). 

In mammals innate antibodies are produced by B-1 cells, which are present from very early in 

development (Boes, 2000, Whyte, 2007). B-1 cells are found in the periphery as well as lymphoid 

organs (Baumgarth, 2013), are self-replenishing (Ghosn et al., 2012, Kantor et al., 1995), share a 

developmental kinship with myeloid cells (Gao et al., 2012, Popi et al., 2012), migrate to sites of 

inflammation (Popi et al., 2004) and are phagocytic (Gao et al., 2012, Parra et al., 2012). The latter is 

also a feature of B-cells from other vertebrate taxa, including fish (Li et al., 2006, Nakashima et al., 

2012, Øverland et al., 2010, Zimmerman et al., 2010). Murine B-1 cells participate in wound healing 

where they have an anti-inflammatory effect (Oliveira et al., 2010), but this has not been 

demonstrated for fish. 

The carp adaptive immune system develops at a very early age compared to many other fish 

species (Tatner, 1996), and immunoglobulin transcripts are present already from the embryonic stage 

(Ryo et al., 2010). Carp are considered embryos until the end of yolk absorption and start of first 

feeding at approximately 5 days post-fertilization (dpf) (Huttenhuis, 2005), while the larval to juvenile 

transition (metamorphosis) takes place at 20-25mm standard length (~20-30dpf) (Vilizzi and Walker, 

1999). 

IgM and IgT/IgZ are usually described as systemic and mucosal immunoglobulins, respectively 

(Zhang et al., 2010). The mucosal immune system is important in adult fish, but could be speculated 

to be even more important in larvae as the relative surface area is larger (Vilizzi and Walker, 1999). In 

fact, at the time of discovery IgZ was already found to be expressed early in development and IgZ+ B-

cells were speculated to be equivalent to mammalian B-1 cells (Danilova et al., 2005) despite the fact 

that these B-1 cells produce immunoglobulin of mainly the IgM class (Baumgarth, 2013). We were 

interested in investigating if antibodies were involved in wound healing, and if so; whether IgZ1 

could be relatively more important than IgM in larvae compared to juveniles due to the higher surface 

to volume ratio in the former. 
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In summary, we wanted to investigate the developmental and comparative response of carp larvae and 

juveniles to wounding. We did this by following the transcriptional response of select immune-related 

genes as well as the visual healing of the inflicted wounds. 

 

2. Materials and methods 

 

2.1. Fish 

Fertilized eggs from the R3xR8 strain of common carp (Cyprinus carpio L.) were moved from the 

facilities at Wageningen University in The Netherlands to the facilities at The Technical University of 

Denmark where the majority hatched the day after arrival (2 days post-fertilization), and the 

remainder one day later. They were kept in 30L aquaria at 25°C and 12:12 light:dark photoperiod at 

all times. The fish were fed Artemia nauplii (including unhatched eggs) initially, but this diet was 

supplemented with dry granulate feed from day 36 post-fertilization. 

 

2.2. Experimental setup, experimental wounding and sampling 

In order to standardize the stimulus for a subject that changes substantially in morphometrics as well 

as size during the investigated period we decided to use a hypodermic needle to inflict an incisional 

wound. The tapering of the needle to some extent addressed the change in size. 

On day 7 post-fertilization some of the fish were brought to the lab. They were moved individually 

with a plastic pipette to anaesthesia (tricaine methanesulfonate (MS-222); Sigma, Broendby, 

Denmark). Once anaesthetized, the fish was moved to a small plastic dish under a dissection 

microscope. Here it was experimentally wounded by complete piercing from left to right with a 25 G 

needle in an area just below the anterior part of the dorsal fin. A digital image was acquired after 

which the fish was placed in an aquarium with freshwater. Every second fish underwent a mock 

procedure in which only the piercing with the needle was left out. In addition, 7 unhandled control 

fish were killed in an overdose of MS-222, measured and weighed and placed in an eppendorf tube 

containing RNAlater (Ambion, Austin, Texas) on ice. Wounded and mock-wounded fish were kept 

in separate aquaria at all times. On days 1, 3 and 7 post-wounding seven mock-wounded fish and 

seven wounded fish were brought to the lab. One by one they were placed in anaesthesia, but this time 

in a lethal dose of MS-222. Each fish was then placed under the dissection microscope and an image 

acquired in which total length was measured. The fish was then weighed and finally placed in an 

eppendorf tube containing RNAlater on ice. On every sampling day additional close-up microscopic 

images of the wounds were acquired of one or two representative fish that were wounded in surplus. 

After all sampling of the day had been performed samples were placed at 4°C for 24h, and then 

moved to -20°C until further processing. 



 149 

This procedure was copied for fish at days 14, 28 and 49 post-fertilization. The only difference 

was that the larger fish were handled with a small spoon when anesthetized and a small net when not. 

No fish died as a result of the wounding. The experiment was conducted according to Danish 

legislation and by scientists accredited by the Federation of Laboratory Animal Science Associations 

(FELASA). 

Condition factor was calculated from length and weight data and was used as a simplified 

approximation of the volume:surface relationship. 

 

2.3. RNA extraction 

For the extraction of mRNA, the fish were moved from the RNAlater and placed under a dissection 

microscope where the head and viscera were removed with a scalpel and discarded (see fig. 1). RNA 

was then extracted from the remaining part of the fish using GenElute™ Mammalian Total RNA 

Miniprep Kit (Sigma-Aldrich, Broendby, Denmark) and following the manufacturer’s instructions. 

Tissue was disrupted by sonication in lysis buffer (using a Sonics Vibracell sonicator, Sweden, fitted 

with a model CV18 probe and set to 20s, pulse 2, amplitude 70 %). The RNA was eluted in a final 

volume of 30µl. 

The extracted RNA was treated with DNase 1, Amplification Grade (AMPD1-1KT, Sigma-

Aldrich, Broendby, Denmark) according to manufacturer’s instructions to remove contaminating 

genomic DNA. Immediately hereafter RNA quantity and purity (OD260:OD280 ratio) was measured on 

the NanoDrop 1000 (Thermo Fisher Scientific, Germany). All OD260:OD280 values were between 1.87 

and 2.24. 

 

 
Figure 1. Prior to extraction of RNA from the samples, head and viscera were removed by cutting with 
a scalpel at the two lines illustrated in this figure. Only the remaining dorsocaudal part was used for 
further analysis, except in a few cases as described in the article. A one day old wound can be clearly 
seen below the dorsal fin of this 15dpf carp larva. 
 

 

2.4. Reverse transcription 

The RNA was reverse transcribed with TaqMan® Reverse Transcription reagents (N808-0234, 

Applied Biosystems, Foster City, USA) primed with random hexamer primers (2µl 10x RT buffer, 4.4  
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Gene  Primer sequence (5’–>3’) Amplicon 
size (bp) 

GenBank 
acc. no. 

Reference 

40S Forward GTTGAAGGAAGTGGCAAGGA 
 

146 AB012087 González 
et al., 
2007a  Reverse AGAATACGGCCTCTGATGGA 

 
  

IL-1β Forward AAGGAGGCCAGTGGCTCTGT 
 

69 AJ245635 González 
et al., 
2007a  Reverse CCTGAAGAAGAGGAGGCTGTCA 

 
  

M17 Forward CCGCACATGAAGACAGTGAT 
 

150 AY102632 Przybylska 
et al., 2013 

 Reverse GGGTATATTTGGCTGCAGGA 
 

  

HSP70 Forward GGCAGAAGGTGACAAATGCA 
 

No data AY120894 Stolte et 
al., 2009 

 Reverse TGGGCTCGTTGATGTTCTCA 
 

  

TGF-β1 Forward ACGTTTATTCCCAACCAAA 
 

97 AF136947 Huttenhuis 
et al., 
2006a  Reverse GAAATCCTTGCTCTGCCTCA 

 
  

IgM Forward CACAAGGCGGGAAATGAAGA 
 

No data No data Ryo et al., 
2010 

 Reverse GGAGGCACTATATGAACAGCA 
 

  

IgZ1 Forward TACAAACAGCATGAGCCAGCT 
 

No data No data Ryo et al., 
2010 

 Reverse ACTCCCTGGTGTGTGACCTC 
 

  

C3 Forward GTCGGTCCTGGACTGTCTCT 
 

113 AB016211- 
AB016215 

González 
et al., 
2006b  Reverse AGTGCACTGCTTCTCCTGCT 

 
  

MMP-9 Forward ATGGGAAAGATGGACTGCT 
 

No data AB057407 Chadzinska 
et al., 2008 

 Reverse TCAAACAGGAAGGGGAAGT   
      
 

Table 1. Data for primers used for real-time qPCR. 
 

 

µl 25mM MgCl2, 4µl dNTP mix, 1µl Random Hexamer Primers, 0.4µl RNase inhibitor, 1.25µl  

Multiscribe Reverse Transcriptase and 400ng RNA diluted in 6.95µl RNase free water; final reaction 

volume 20µl). Samples were prepared in 0.2µl tubes which were placed in a thermocycler (Veriti, 



 151 

Applied Biosystems, Foster City, USA) and run for 10min at 25°C, 60min at 37°C and finally 5min at 

95°C. The samples were then diluted 1:10 in MilliQ water and stored at -20°C. 

 

2.5. Gene expression analysis 

Gene expression was quantified with real-time quantitative polymerase chain reaction (qPCR) using 

SYBR Green on a Stratagene MX3000P thermocytable 2cler. Primer specificity was confirmed by 

a melt curve analysis. The investigated genes were IL-1β (the IL-1β1 isoform, not the IL-1β2 

isoform), M17, HSP70, TGF-β1, C3 (the primer set was designed to amplify all five isoforms present 

in carp), MMP-9, IgM and IgZ1. 40S ribosomal protein S11 (40S) was used as an internal reference 

gene. 40S has previously been demonstrated to be stably expressed in developing carp larvae as well 

as in juvenile carp subjected to damage (Gonzalez et al., 2007, Huttenhuis et al., 2005). Primer 

sequences, amplicon lengths and GenBank accession numbers are shown in table 1. All genes for each 

sample were investigated in the same run, including reference gene and non-template control. A 

master mix was prepared from SYBR Green JumpStart Taq ReadyMix kit (S4438, Sigma-

Aldrich, Broendby, Denmark) using the following relative volumes (shown as final volume per well): 

12.5µL SYBR Green JumpStart Taq ReadyMix, 0.5µL ROX reference dye (deleted 10X) and 

9.0µL DEPC-treated water (Sigma-Aldrich, Broendby, Denmark). This mix was aliquoted into tubes 

corresponding to the number of cDNA samples tested on the given day and diluted cDNA was added 

(corresponding to 1.0µL per well). The mix was transferred to a 96-well plate and forward and reverse 

primers were added (1.0µL of each per well). The cycling conditions were 2min at 94°C followed by 

42 cycles of 15s at 94°C and 1min at 60°C. Primer specificity was subsequently confirmed by a melt 

curve analysis, which was initiated with a denaturing step for 1min at 94°C followed by a gradual 

increase from 60°C to 94°C with fluorescence measurements at short intervals. 

 

2.6. Statistical analysis 

Due to few replicates a normal distribution could not be assumed, thus the Mann-Whitney U-test was 

used to calculate gene expression differences between wounded and control fish as well as between 

time-points. Fold difference between the wounded and unwounded groups was calculated with the 2-

ΔΔCt method. Differences were regarded as significant at P<0.05. In the cases were no Ct values were 

obtained these samples were left out of the analysis. The software Prism version 4.03 (Graph Pad, La 

Jolla, CA, USA) was used for the statistical analysis and the graphic representation of the expression 

data and the condition factor data. 
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Figure 2. Fold differences (2-ΔΔCt) in expression of the investigated genes of wounded versus 
unwounded groups normalized to 40S ribosomal RNA. Data is shown as the mean with standard 
deviation. Asterisks denote statistic significance (Mann-Whitney U test) between wounded and 
unwounded groups at the given time-point (*=P<0.05, **=P<0.01). dpf=days post-fertilization. The 
number of replicates (n) are 4≤n≤7 for the different groups, and specifically number of replicates (n) 
for the statistically significant results are: IgZ1 day 7+3, n=5; TGF-β1 day 14+7, n=7; TGF-β1 day 
49+3, n=5; HSP70 day 7+1 and 7+3, n=5; MMP9 day 7+1, n=5. 
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3. Results and discussion 

 

3.1. All investigated genes were expressed at all investigated time-points, but wounding had little 

effect on gene expression  

All investigated genes were expressed at all investigated developmental stages, whether wounded or 

not. Larvae wounded 5dpf had a significantly higher expression of MMP-9 (P<0.05) and a lower 

expression of HSP70 (P<0.05) 1 day post-wounding (dpw) compared to mock-wounded, and at 3dpw 

HSP70 expression was still lower (P<0.01) while IgZ1 was now significantly upregulated (P<0.05). 

TGF-β expression was significantly higher in 14+7 (age at time of wounding in dpf+dpw) larvae 

(P<0.05) and 47+3 juveniles (P<0.01; fig. 2). 

 

Since IL-1β is a very inducible, prototypic marker of inflammation, the lack of significant 

upregulation indicates either a limited or lacking inflammatory response to the stimuli or a fast 

resolution preceding the first sample point at 1dpw. 

In zebrafish it is possible to follow myeloid cell migration in vivo. In 2dpf zebrafish embryos 

inflammatory myeloid cells starts infiltrating a wound within minutes, numbers peak after 3-6 hours 

and most are gone already after 24h (Lévesque et al., 2013). In adult zebrafish wounds myeloid cell 

numbers peak at 12h and gradually decline until pre-wounding levels are reached 3dpw (Richardson 

et al., 2013), and in adult carp granulocyte numbers peak 12-24h post-wounding and macrophage 

numbers 4dpw in full-thickness incisional wounds (Iger and Abraham, 1990). We thus expected 

minimal detectable inflammation in early larvae, but substantial inflammation until at least day 1 post-

wounding in juveniles. However, this was not the case. 

Similarly to IL-1β MMP-9 is highly expressed in adult wounds, but was only significantly 

upregulated at one time-point in this experiment. In zebrafish larval fin amputation sites MMP-9 is 

still strongly expressed 4dpw (Yoshinari et al., 2009), so the limited wound-induction of MMP-9 was 

unexpected, also considering the elevated MMP-9 expression observed in mammalian fetal 

macrophages and wounds (Dreymueller et al., 2013, Rolfe and Grobbelaar, 2012). However, 

amputation is a more severe injury than an incisional wound, and it is possible that excisional wounds 

would have resulted in a stronger inflammatory response. 

At least in mice, upregulation of C3 expression also depends on an inflammatory response. PU.1 

null mice (which are deficient in myeloid cells) have a similar constitutive expression of C3 in intact 

skin as wild type mice, but a severely reduced induction following wounding (Cooper et al., 2004). 

Given the absence of inflammation, it is not surprising that no effect of wounding on C3 expression 

was observed. 

In the case of M17, expression levels were quite low and variable, and it is not possible to draw 

any clear conclusions on the involvement of M17 in wound healing based on this experiment. 
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The lack of significant regulation of inflammation-related genes may be explained by similarities 

between morphogenesis and tissue repair. The effects at the wound site may to some extent be 

mirrored by events that are already taking place in the fish. 

 

3.2. Handling effects may have overshadowed wound effects 

HSP70 is considered a stress inducible HSP with no or limited constitutive expression (Krone et al., 

1997), and HSP70 is also stress inducible in fish (Deane and Woo, 2011). 

There was apparently an effect of the experimental procedure notwithstanding the actual 

wounding, since repetitive patterns were observed in the expression levels of HSP70 after mock 

wounding. In fact these temporal differences were much more pronounced than the wound effects 

(fig. 3F). The juveniles appear to be less affected than the larvae, and there is no significant effect of 

handling nor wounding on HSP70 expression at this developmental stage. 

A number of studies have looked at the involvement of HSPs in wound healing and during 

ontogeny. These studies generally report constitutive expression of HSP70, but levels vary with 

species, cell type and tissue as well as developmental stage (Campos et al., 2013, Deane and Woo, 

2011, Dietz and Somero, 1993, Fuzzen et al., 2011, Oyarbide et al., 2012, Yeh and Hsu, 2000, Yeh 

and Hsu, 2002). In zebrafish HSP70 is involved in angiogenesis and lens development, as well as in 

optic nerve regeneration following damage (Blechinger et al., 2002, Bruns et al., 2012, Evans et al., 

2007, Nagashima et al., 2011). The induction of HSP70 at damaged sites is an ancient response found 

in invertebrates as well as vertebrates (Evans et al., 2007, Laplante et al., 1998, McMurtry et al., 1999, 

Zampell et al., 2011). 

Since a sudden temperature shift is a strong inducer of HSP70, heat stress could be speculated to 

be caused by the supposed elevated temperature under the dissection microscope (although this was 

not measured). However, gene expression of unhandled controls was only investigated on the day of 

wounding, thus it cannot be completely ruled out that the observed differences are due to natural 

developmental events. 

 

3.3. Basal expression of IgM, IgZ1 and MMP-9 increase during the larval stage, but levels off before 

the end of metamorphosis 

Most of the investigated genes were expressed at comparable levels at all times 7-56dpf (fig. 3). 

However, in the case of MMP-9, IgZ1 and IgM there was an initial gradual increase in expression 

(figure 3A, 3B, 3H). This increase was approximately 30-50 fold for all three genes, but the kinetics 

differed with MMP-9 and IgZ1 expression reaching a plateau around 14-15dpf, and IgM expression 

increasing until circa 28dpf. The mRNA levels were consistently greater for IgM than for IgZ1. 

Keratinocytes and myeloid cells are the main source of MMP-9 in humans (Van den Steen et al., 2002). 

This may be similar in fish as adult teleost MMP-9 expression is highest in leukocyte-rich organs 

(Castillo-Briceño et al., 2010, Chadzinska et al., 2008, Yoong et al., 2007) and in zebrafish and 
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Figure 3. Expression of the investigated genes during ontogeny shown as -1/ΔCt values relative to 

40S ribosomal RNA. Experimental groups of fish are plotted as the mean with standard error. Closed 

circles are wounded fish, open squares are unwounded control fish. Lower ticks on the X-axis show the 

day of the wounding, upper ticks are the days (1, 3 and 7) after each of the days of wounding. Please 

note log scale of the Y-axis. Figure 3F additionally shows significant differences in HSP70 expression in 

control fish (statistical data for wounded fish not shown) on different days after mock-wounding (Mann-

Whitney U test, *=P<0.05, **=P<0.01). The temporal expression differences of HSP70 are far greater 

than the wound-induced differences (cf. fig. 2F). HSP70 is stress inducible. Thus, there is a likely stress 

effect of the wounding procedure notwithstanding the actual wounding, although an unhandled control 

was not available to completely rule out if the differences were mere natural fluctuations during 

ontogeny. 

 

 

fat snook (Centropomus parallelus) neutrophils appear to be the main MMP-9 expressing cell type (da 

Silva et al., 2011, Yoong et al., 2007). However, in zebrafish fin regeneration studies expression of 

MMP-9 induced proximal to the wound edge is mostly from cells that are not of myeloid origin, but are 

more likely epidermal/mesodermal (Yoshinari et al., 2009). In the present experiment MMP-9 was only 

wound-induced in 7+1 larvae (fig. 2H), but the ontogenetic increase in expression may reflect a 

developmental increase in myelopoiesis. 

Similarly, the increase in IgZ1 and IgM transcript levels could reflect expansion of the IgZ+ and 

IgM+ lineages of B cells. However, it is surprising that we obtain very similar results to those reported 

for IgZ1 and IgM by Ryo et al. (Ryo et al., 2010) for whole larvae. Removing the head and viscera – 

and thereby important primary and secondary lymphoid organs such as thymus, kidney and spleen – 

was expected to result in lower expression levels in the remainder of the fish. Thus, these results 

demonstrate an early peripheral expression of immunoglobulins. 

 

 

The IgZ1 to IgM ratio increases until metamorphosis after which it decreases rapidly and remains 

relatively constant (fig. 4). IgZ1 thus seems to be relatively more important in larvae than in juveniles. 

 

Figure 4. Ratio of IgZ1 to IgM expression. 
Closed circles are wounded fish, open squares 
are unwounded control fish. Values are shown 
as the average ΔCt values of IgZ1/IgM. Note log 
scale of Y-axis. 
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Before metamorphosis growth is allometric with respect to most traits, but from onset of the juvenile 

period growth is largely isometric (Vilizzi and Walker, 1999). One of the traits that change 

allometrically during the larval period is the volume to surface ratio. Condition factor is used here as a 

crude estimate of volume to surface ratio, and hence systemic to skin mucosal ratio. The condition 

factor of the carp increases from close to 0.5 at 7dpf to more than 1.5 at 56dpf (fig. 5), indicating 

relatively more surface to volume in larvae. Thus a higher IgZ1 to IgM expression ratio concurs with 

a higher surface to volume ratio. 

 

 

 

Figure 5. Condition factor of the carp from 7dpf 
to 56dpf. The condition factor changes from 
close to 0.5 at 7dpf to more than 1.5 at 56dpf. 
Compare to the morphometrics of the carp in fig. 
7. An interesting repetitive feature is the stepwise 
increase in condition factor between 1 and 3dpw. 
 

 

3.4. Visual wound healing 

All experimental fish were photographed under the dissection microscope on the day of sampling 

before being put into RNAlater. In addition, on each sampling day one or two representative fish, 

which were not used for gene expression studies, were used for higher resolution images under a 

conventional light microscope (fig. 6). 

The wound site was visible 1dpw in all investigated carp, although in 7+1 larvae this usually 

manifested itself as no more than a vaguely opaque area. In larger fish there was still varying amounts 

of blood visible 1dpw. For the carp wounded 7, 14 and 28dpf the wound site was not visually 

distinguishable from normal tissue in most carp at 3dpw, and in all carp at 7dpw (table 2). However, 

the wound was still visible even 7dpw in all but one of the carp wounded 49dpf. In these juveniles 

there was still a rosy hue at the wound site 3dpw, possibly due to unresolved bleeding. This was not 

present 7dpw. At 3 and 7dpw the wound area was pale and devoid of large melanophores, but with 

numerous smaller dark spots. In the cyprinid Rohu (Labeo rohita) similar smaller spots at wound sites 

are also reported to be melanophores (Rai et al., 2012). The absence of (large) melanophores at the 

wound site correlates well with the failure to detect inflammation through upregulated expression of 

IL-1β, since wound hyperpigmentation depends on an inflammatory response in zebrafish (Lévesque 

et al., 2013). 
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Figure 6. Images showing representative carp immediately after wounding 7, 14, 28 and 49 days 
post-fertilization (dpf). Arrows point to the wound site. Note that there is so little muscle tissue in the 
smallest larvae that the needle puncture also affects the notochord, which introduces a temporary 
small bend in the larvae. The notochord can also be seen at higher magnification at the centre of fig. 
8A, with the angled lines of myosepta visible at both sides. Dotted squares outline the approximate 
location of the images in fig. 8. Black bars=1mm. 
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 160 

Figure 7. Images showing the progression of wound healing in carp larvae and juveniles. The 
wound was inflicted with a 25G hypodermic needle 7 days post-fertilization (dpf; A, B), 14dpf (C, D, 
E), 28dpf (F, G, H) or 49dpf (I, J, K), and the images show the wound site 1, 3 and 7 days post-
wounding (dpw) in a representative fisha that was wounded at the same time as the fish that were 
processed for gene expression. For all carp the wound site was still visible 1dpw. At 3dpw the wound 
had generally visually healed in all but the 49+3 juveniles. There was no visual evidence of the wound 
in any of the 7+7 and 14+7 larvae and 28+7 young juveniles. However, in all but one of the 49+7 
juveniles the wound site was still visible and there were no large melanophores at the wound site. The 
length of the black bar in the upper right corner of each image is 500µm. 
a It should be noted that the fish in image D (14+3) was not a good representative for its group as it 
was smaller and lagging in development as can be seen by the larval fin fold with no apparent fin 
rays. 
 

 

 1dpw 3dpw 7dpw  Table 2. Visual healing of wounds. The table shows the 
number of fish (out of 7) in which the wound site was 
visible. dpf = day of wounding post-fertilization; dpw = day 
post-wounding. The darker the background, the more 
individuals with completely regenerated wounds. 
Black=wounds healed in all fish. White=wounds visible on 
all fish. 

 

7dpf 7 0 0  

14dpf 7 1 0  

28dpf 7 2 0  

49dpf 7 7 6  

 

 

 

Conclusion 

In conclusion, a very limited transcriptional response to wounding was observed. Natural events in the 

rapidly transforming carp larvae may mirror and mask the wound-induced tissue rearrangement and 

gene regulation. 

In this experiment, HSP70 expression data indicate possible handling stress, and this may 

additionally have confounded some of the wound effects. 

The immunoglobulins IgM and IgZ1 were expressed in the periphery from the earliest investigated 

time-points, and IgZ1 was significantly upregulated as a result of the wounding in the smallest larvae. 

Wounds regenerate faster in larvae than in juveniles. In larvae the wound had generally 

regenerated by day 3 post-wounding, whereas the wound was still visible after 7 days in juveniles. 
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Abstract 

We followed the healing of full-thickness excisional cutaneous wounds over the course 

of 100 days in rainbow trout (Oncorhynchus mykiss) subjected to a bathing in a β-glucan 

product (MacroGard). At regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding) 

we sampled muscle at the wound edge for gene expression and acquired digital images 

for analysis of visual wound closure kinetics. The investigated genes have all previously 

been investigated in relation to wound healing, but only few in relation to wound 

healing in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth 

factor (TGF)-β1 and -3, matrix metalloproteinase (MMP)9 and -13, inducible Nitric 

Oxide Synthase (iNOS), fibronectin (FN), tenscin-C (TN-C), prolyl 4-hydroxylase α1-

chain (P4Hα1), lysyl oxidase (LOX) and collagen type I α1-chain (ColIα1). The genes 

were chosen as representatives of different wound healing stages such as inflammation, 

granulation and mature matrix formation, and matrix remodeling. In addition we 

included cell specific marker genes for thrombocytes (CD41) and a potential marker for 

M2 polarized macrophages (CD163). 

We found no effect of β-glucan treatment on wound closure and very limited effect on 

gene expression. In both groups wound healing progressed very slowly. The 

inflammation phase lasted more than 14 days, and the genes related to production and 

remodeling of new matrix exhibited a delayed but prolonged upregulation starting 7-14 

days post-wounding and lasting until at least 100 days post-wounding. The gene 

expression patterns indicate limited capacity for muscle regeneration in rainbow trout, 

and texture analyses confirm that wounds heal with fibrosis. CD41 expression was 

significantly elevated in the wounds until 38 days post-wounding indicating persistence 

of thrombocytes in the wound and possible active lasting involvement in wound healing 

beyond hemostasis. CD163 only showed borderline significant changes in expression 

until day 100 post-wounding when CD163 was significantly upregulated. This is 

consistent with the expected timing of presence of “wound healing” M2c macrophages. 

CD163 may thus potentially prove a valuable marker of M2 macrophages – or a subset 

hereof – in fish. 
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1. Introduction 

Healing of damaged muscle tissue has been the subject of only few investigations at the 

molecular level in fish. Instead, fin amputation is the method of choice for piscine regeneration 

studies and zebrafish (Danio rerio) the species of choice. These studies show that the zebrafish 

fin heals quickly and with almost perfect regeneration (Yoshinari and Kawakami, 2011). However, 

fish fins do not contain muscle. Healing of deep cutaneous wounds was recently described from 

zebrafish, and in this study muscle did not regenerate to the same extent as skin and contained 

additional adipocytes (Richardson et al., 2013). The zebrafish is a small, warm water species with 

a determinate growth pattern, and thus not a very good model for fish such as salmonids, which 

are mostly natural inhabitants of fast flowing cold-water rivers, with the possibility of adopting 

an anadromous strategy. Ingerslev et al (Ingerslev et al., 2010) investigated the effect of 

incisional needle damage on gene expression in rainbow trout muscle. Here we follow the 

expression of a different set of genes day 1-100 post-wounding in an excisional wound model. 

Several of the selected genes have not yet been investigated in salmonids. 

 

We recently reported that PAMP bathing resulted in accelerated wound contraction in common 

carp (Cyprinus carpio) (Przybylska-Diaz et al., 2013). The immune strategies deployed by these 

two species have likely evolved as a consequence of their very different use of habitat and thus 

their natural exposure level to PAMPs. Here we investigate the effect of PAMP bathing on wound 

healing in rainbow trout. 

 

Wound healing consists of several partially temporally overlapping events. Briefly described, 

these include hemostasis, inflammation, granulation tissue formation, angiogenesis, re-

epithelialization, wound contraction, and maturation and remodeling of the extracellular matrix. 

 

We used image analysis to investigate differences in wound closure kinetics and real-time 

quantitative PCR (RT-qPCR) to investigate gene expression kinetics in the injured muscle over 

the course of 100 days. The investigated genes were chosen as representatives of some of the 

phases and cells involved in wound healing, and the expression of several of these genes have 

not yet been investigated in rainbow trout. These included cytokines and proteases mainly 

expressed during the inflammatory phase (IL-1β, IL-6, TGF-β1, TGF-β3, MMP9 and MMP13), 

genes involved in rebuilding of the extracellular matrix (ECM) (FN, TN-C, ColIα1, LOX and 

P4Hα1) as well as CD41, iNOS and CD163. The latter three are mammalian markers for platelets 

and M1 and M2 polarized macrophages respectively. While CD41 in zebrafish (Danio rerio) is 

reported to mirror the cellular expression pattern of mammals (Ma et al., 2011), markers of 

macrophage subsets are not very established in fish (Forlenza et al., 2011) 
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2. Materials and methods 

2.1. Animals and experimental facilities 

The rainbow trout used in this study were kept from small fingerlings at the experimental 

facilities in aerated 600L freshwater tanks. At the start of the experiment they had a weight of 

112.2±20.9g and a fork length of 20.6±1.2cm. The experimental facilities consisted of a modified 

30’ container mounted with air condition, water and lighting in addition to tanks and a water 

filtration system. The container was not isolated.  The experiment was initiated in early 

December 2010, and the air conditioner was not able to keep the temperature constant at the 

desired 12°C during the unusually cold winter. In addition, the tanks were regularly 

supplemented by a slow flow of fresh tap water (which was typically 6-7°C). The water 

temperature in the tanks thus varied considerably as a result of ambient air temperature 

changes and water change. Water temperature in the tanks was measured manually 

immediately before and after water change with 0.5°C accuracy. The data plotted in figure 1 

thus represents the temperature extremes experienced by the fish. The light:dark cycle was 

12:12h. Throughout the experimental period the fish were hand fed a standard commercial feed 

(EFICO Enviro 920, BioMar A/S, Brande, Denmark) at 0.8% body weight per day. 

 

 
Figure 1. Temperature measurements to nearest 0.5°C during the experiment. Vertical dotted lines 
represent sampling days. 
 

 

2.2. MacroGard 

MacroGard (Biorigin, Oslo, Norway) is a β-glucan product prepared from Baker’s yeast 

(Saccharomyces cerevisiae) cell walls. It contains >60% β-1,3/1,6-glucans. It is thus a source of a 
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range of potential PAMPs, with β-glucans constituting the majority of these. MacroGard stock 

solution was prepared by dissolving 0.5 g of MacroGard in 500mL of MilliQ water while stirring 

for 1h at 90°C. The solution was then autoclaved (121oC, 15min, 1atm). 

 

2.3. Experimental setup 

The fish were divided into two identical 200L tanks with aerated tap water. Half of the fish in 

each tank were wounded and the other half were left unharmed. To one of the tanks was added 

MacroGard stock solution to a final concentration of 0.1mg/L. The other contained only tap 

water. Thus the experiment contained four treatment groups of fish. For the first 14 days after 

the experiment was initiated the tanks were sealed off from the filter system and water was 

changed daily with tap water and MacroGard added anew. After 14 days the treatment with 

MacroGard was stopped, the tanks were re-opened to recirculation and the two tanks were now 

part of the same recirculation system for the remainder of the experiment. 

 

2.4. Wounding 

Anaesthesia was induced in ten fish at a time in 125 mg/L tricaine methanesulfonate (MS-222, 

Sigma-Aldrich, Broendby, Denmark) after which the fish were moved to 50 mg/L MS-222. Four 

cylinders of tissue were excised with a 6mm biopsy punch (Miltex, York, USA) and scalpel from 

an area between the lateral line and the dorsal fin on the left side of the fish. The wounds were 

approximately spaced 1cm apart, they were 3mm deep and penetrated into the muscle. The fish 

were alternately released into each of the two tanks with or without MacroGard. A mock 

procedure was carried out with the non-wounded control fish. The procedure was repeated 

until each experimental tank contained 77 fish (only 60 fish from each tank were used for this 

experiment). 

 

2.5. Sampling 

On day 0 (the day of wounding), five non-wounded/non-treated fish were sampled as baseline 

controls (figure 2). On days 1, 3, 7, 14, 38 and 100 post-wounding (dpw) samples were collected 

from five fish from each group (wounded/ MacroGard, non-wounded/MacroGard, wounded/ no 

MacroGard, non-wounded/no MacroGard,). 

Five fish at a time were taken from one of the tanks and killed in 125 mg/L MS-222. Weight and 

fork length was recorded (figure 3) and an image of the wounded area was acquired using a 

multispectral imaging device (VideometerLab, Hoersholm, Denmark). 

The fish was then immersed in liquid nitrogen until frozen solid after which it was moved to a -

20°C freezer until all fish of the given sampling day were killed and frozen. Immediately 

hereafter, the fish were then removed from the freezer a few at a time. It was not possible to 
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sample the fish at -20°C so they were kept at room temperature until they had reached a 

temperature that allowed sampling. The fish were still frozen at this time, which allowed for 

sampling of the periphery of each wound in an accurate and consistent manner with an 8mm 

biopsy punch. The frozen skin and muscle separated relatively easily from each other compared 

to fresh tissue. The muscle tissue was put into cryotubes which were initially placed in liquid 

nitrogen and then stored at -80°C until RNA extraction. Also a similar area was sampled from 

the right side of wounded fish (internal control) as well as the left side of non-wounded fish 

(external control). 

 

 

  

Figure 2. Basal expression of the 
investigated genes measured on muscle 
from 5 individual rainbow trout on the day 
the experiment was initiated, but before 
wounds were inflicted. Values are plotted 
as ΔCt values. Open circles above the 
dotted lines represent samples for which 
an expression was not detected (ND). 

 

 

2.6. Extraction of RNA and reverse transcription 

RNA was extracted with the GenElute™ Mammalian Total RNA Miniprep Kit (Sigma-Aldrich, 

Broendby, Denmark) and following the manufacturer’s instructions. Frozen tissue was 

immersed in lysis buffer and disrupted by sonication (using a Sonics Vibracell sonicator, 

Sweden, fitted with a model CV 18 probe and set to 40s, pulse 2, amplitude 70 %). The RNA was 

eluted in a final volume of 30µl. The extracted RNA was treated with DNase 1, Amplification 

Grade (AMPD1-1KT, Sigma-Aldrich, Broendby, Denmark) according to manufacturer’s 

instructions to remove contaminating genomic DNA. RNA quantity and purity (OD260:OD280 

ratio) was then measured on a NanoDrop 1000 (Thermo Fisher Scientific, Germany). The 

sampling procedure was not favorable for the preservation of RNA, and considerable 

degradation was apparent in some samples. Samples with an OD260:OD280 ratio of less than 1.9 

and/or an RNA quantity of less than 20 ng/µL were discarded (26 samples out of a total of 180 

samples). 
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The RNA was reverse transcribed with TaqMan® Reverse Transcription reagents (N808-0234, 

Applied Biosystems, Foster City, USA) primed with random hexamer primers (2µl 10x RT buffer, 

4.4 µl 25mM MgCl2, 4µl dNTP mix, 1µl Random Hexamer Primers, 0.4µl RNase inhibitor, 1.25µl 

Multiscribe Reverse Transcriptase and 400ng RNA diluted in 6.95µl RNase free water; final 

reaction volume 20µl). Samples were prepared in 0.2µl tubes which were placed in a 

thermocycler (Veriti, Applied Biosystems, Foster City, USA) and run for 10min at 25°C, 60min at 

37°C and finally 5min at 95°C. The samples were then diluted 1:10 in MilliQ water and stored at 

-20°C. 

 

 

 
Figure 3. Weight of the sampled fish (shown as mean with standard deviation). There was no 
significant difference in growth of the experimental groups over the course of the experiment. 
 

 

 

2.7. Primer design 

When possible already published primer sets were used. When not, these were designed from 

sequences deposited in GenBank (Table 1). In the cases of genes where relevant annotated 

rainbow trout nucleotide sequences were not found in the NCBI database, annotated nucleotide 

sequences of closely related species were used to make BLAST searches in salmonid EST 

databases. Primer sequences were designed using the Primer3 software (Untergasser et al., 

2012). Primers were designed for a 60°C annealing temperature and an amplicon length 

between 75 and 150bp. 

 

 

 



 176 

Gene  Primer sequence Reference Amplicon 
length (bp) 

Primer 
efficiency 

RPS20 F AGCCGCAACGTCAAGTCT (Ingerslev et al., 
2010) 

104 1,905 
 R GTCTTGGTGGGCATACGG   
 P TGTGCAGACCTTATCCGTGGAGCT   
IL-1β F GCTGGAGAGTGCTGTGGAAGAACATATA

G 
(Castro et al., 2011) 179 1,748 

 R CCTGGAGCATCATGGCGTG   
IL-6 F ACTCCCCTCTGTCACACACC (Castro et al., 2011) 91 1,870* 
 R GGCAGACAGGTCCTCCACTA   
iNOS F CCAACAGGTGTCCGTTTTCT NM_001124359 104 1,894* 
 R TGATGTGCATGGTTGGTTCT    
CD163 F CAACGTCATCCAGCCAGATA FP321512 78 1,932* 
 R ACTGTGGGGGTACAAACCAA    
TGF-β1 F AGCTCTCGGAAGAAACGACA X99303 136 1,874 

 R AGTAGCCAGTGGGTTCATGG    

TGF-β3 F TCCACGAGCCTAAGGGATAC AJ318928 116 1,94 
 R CTCAGGGTTCAGGGTGTTGT    
MMP9 F AGACATGGGAGCCTCTCTGA AJ320533 130 1,759 
 R TGCTTTTCCAAATGACACCA    
MMP13 F GCTTCACCACCTTCGACAAT (Sutherland et al., 

2011) 
103 1,814 

 R ATGGAGTTGTCCACCTCAGC   
LOX F TGGCACAAGGTACCATCAGA EF514520 139 1,899 
 R AGCCGAACTTGACAAGCAAT    
P4Hα1 F TGAATCCTTCCTTGGTGTCC DV200837 86 1,993 
 R CAACGCCTTCAAACTGATGA    
FN F AACGCCCTGAAGAAACTGAA CU071374 119 1,91 
 R TGAGGAGGAGGATGTGGTTC    
TN-C F AAATTCACGATCGCAGAACC CU073092 149 1,884 
 R AGTGCACAGTTGGTGACAGC    
ColIα1 F TGAGGGAACTCCTGGTAACG (Ingerslev et al., 

2010) 
74 1,8 

 R ACTCACCACGTTCTCCCTTG   
 P CTTCTGGTCGCGATGGTGCT   
CD41 F AGGAGCATCCTGCTGACCTA CX257497 123 1,856 
 R CATGGTGATGGGTAGGGAAC    

 

Table 2. Primer sequences used for qPCR. F, forward primer, R, reverse primer, P, probe. The 
asterisks indicate primer pairs for which efficiency could not be calculated due to low expression. 
Since the RNA quality was suboptimal amplification efficiency was influenced by amplicon length, and 
efficiency estimates were instead extrapolated based on efficiency of the other primer sets. 

 

2.8. Gene expression analysis 

Gene expression was quantified with real-time quantitative polymerase chain reaction (qPCR) 

using SYBR© Green on a Stratagene MX3000P™ thermocycler for all genes except for collagen 

type I α-chain. Here the fluorescence in the reaction was instead provided by a dual-labelled 

TaqMan® probe conjugated with a 5’ FAM fluorophor and a 3’ BHQ1 quencher for collagen type I 

α-chain as well as RPS20 (Sigma-Aldrich, Brøndby, Denmark). We used ribosomal protein S20 
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(RPS20) as a reference gene, as it was previously shown to be stably expressed in injured and 

non-injured muscle of salmonids (Ingerslev et al., 2010, Ingerslev et al., 2006). The primer set for 

RPS20 was efficient for use with or without probe. 

For the SYBR© Green qPCR a master mix was prepared from SYBR© Green JumpStart™ Taq 

ReadyMix™ kit (S4438, Sigma-Aldrich, Broendby, Denmark) using the following relative 

volumes (shown as final volume per well): 12.5µL SYBR© Green JumpStart™ Taq ReadyMix™, 

0.5µL ROX reference dye (deleted 10X) and 9.0µL DEPC-treated water (Sigma-Aldrich, 

Broendby, Denmark). This mix was aliquoted into tubes corresponding to the number of cDNA 

samples tested on the given day and diluted cDNA was added (corresponding to 1.0µL per well). 

The mix was transferred to a 96-well plate and forward and reverse primers were added (1.0µL 

of each per well). Primer specificity was subsequently confirmed by a melt curve analysis, which 

was initiated with a denaturing step for 1min at 94°C followed by a gradual increase from 60°C 

to 94°C with fluorescence measurements at short intervals. 

For the probe-based qPCR each well contained 5µL JumpStart™ Taq ReadyMix™ kit (D7440, 

Sigma-Aldrich, Broendby, Denmark), 0.45µL forward and reverse primer (20µM), 1µL probe 

(2.5µM) and 2.6µL DEPC-treated water (Sigma-Aldrich, Broendby, Denmark). For probe-based 

as well as SYBR© Green-based qPCR the cycling conditions were 10min at 95°C followed by 40 

cycles of 15s at 95°C and 1min at 60°C. 

Amplification efficiency was calculated with triplicate dilution series. However, in the case of 

iNOS, CD163 and IL-6, expression was so low that reliable dilution series could not be made. 

Due to the poor RNA quality there was an effect of amplicon length on the PCR reaction 

efficiency, and iNOS, CD163 and IL-6 efficiency was instead estimated based on measured 

amplification efficiencies of the other primer sets. 

 

2.10. Statistical analysis of gene expression data 

In a situation where there are considerable differences in amplification efficiency between the 

gene of interest (GOI) and the reference gene (Ref) one would normally use the Pfaffl method 

(Pfaffl, 2001) to calculate expression differences. However, with this method efficiency is applied 

to group averages. Due to few replicates in some experimental groups we used regression 

models, and the Pfaffl approach was thus not applicable. We instead transformed the Ct values 

for GOI and Ref in the following way: 

 

𝑁𝑒𝑤 𝐶𝑡 = (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶𝑡) × log2(𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) 

𝑁𝑒𝑤 𝑑𝐶𝑡 =  𝑁𝑒𝑤 𝐶𝑡𝐺𝑂𝐼 − 𝑁𝑒𝑤 𝐶𝑡𝑅𝑒𝑓 

The New dCt values were then used in the regression analysis. 
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Some of the investigated genes had a low basal expression, which meant that the cycle threshold 

was not reached within 40 cycles (the programmed number of cycles in the amplification step) 

for some samples. These samples were censored. Most of the censored samples were internal (I) 

or external (E) control samples, whereas most wound (W) samples gave a Ct value. Data for 

these genes were analyzed with tobit regression (a censored regression model). The tobit 

regression builds on the assumption that the data have a normal distribution, since this was the 

case for the genes that were analyzed without censoring. 

For each GOI there are two sets of analyses. In the first set of analyses data is used from the 

wounded side of the fish and the external control fish (data set WE) and the second set of 

analyses uses data from the non-wounded side of the wounded fish (internal control) and the 

external control fish (data set IE). 

For both data sets the cycle differences are analysed using normal or tobit regression models. 

To test the effect of MacroGard an initial model is fitted including the main effects of day (1, 3, 7, 

14, 38 and 100), type of fish (E or W/I) and MacroGard (yes/no) and the pairwise interactions 

between these factors. The initial model is reduced by stepwise testing using likelihood ratio 

tests. Results are considered significant at P<0.05. Model control is carried out using regression 

plots and QQ plots to verify the assumptions underlying the normal models. 

The genes for which some samples were censored were MMP13 (1), IL-1β (33), IL-6 (99), iNOS 

(29), CD41 (3) and CD163 (46) (the number of censored samples out of the total 154 are shown 

in brackets). IL-6 expression was very low in homeostatic tissue and very few control samples 

(internal as well as external) reached the threshold within 40 cycles. All external control 

samples were censored on 7dpw, 38dpw and 100dpw. Thus we could not calculate estimates for 

all combinations of variables, and we could not plot estimated ΔΔCt values as for the other 

genes. Instead we show the IL-6 results as observed ΔCt values (figure 5). 

 

2.9. Image acquisition and analysis 

Multispectral images of the wounds were acquired using a VideometerLab (Videometer A/S, 

Hørsholm, Denmark). The VideometerLab produces standardized images with diffuse 

illumination from light-emitting diodes. The wound edge was outlined manually and the size of 

the open wound area was determined using MatLab (The MathWorks Inc., Natick, MA, USA). 

Differences in open wound area between MacroGard-treated and control groups were tested using 

an unpaired t-test. Wound size relative to original size (%) is plotted as mean with standard deviation 

(figure 4). 
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3. Results 

 

3.1. Effect of MacroGard treatment 

There was no effect of MacroGard on the visual wound closure kinetics (figure 4). On the gene 

expression level the effect of MacroGard treatment was weak. There was no effect on any of the 

non-censored genes, but some effect on the expression of MMP13 14dpw (5.4-fold lower 

expression in the MacroGard-treated WE group, P=0.0002), IL-6 14dpw (8.6-fold higher 

expression in the MacroGard-treated WE group, P=0.0062) and iNOS 1dpw (33.6-fold lower 

expression in the MacroGard-treated IE group, P=0.0043; 8.4-fold lower expression in the 

MacroGard-treated WE group, P=0.0072) and 100dpw (29.7-fold lower expression in the 

MacroGard-treated IE group, P=0.0041; 13.8-fold lower expression in the MacroGard-treated 

WE group, P=0.0015) (not shown). 

 

 

 
Figure 4. Wound closure kinetics shown as relative to original wound size at time of infliction (%). 
Note Log2 scale of X-axis. There is an initial increase in wound size until day 14 post-wounding after 
which wound size decreases. There was no significant effect of MacroGard treatment on wound 
closure. 
 

 

3.2. Systemic effect of wounding 

There was a minor gene expression effect of wounding in non-wounded internal control tissue 

compared to non-wounded external control tissue. The greatest effect was found at 14dpw. On 

this day MMP9 (4.9-fold, P=0.0007), MMP13 (6.4-fold, P=0.0008), TGF-β1 (2.5-fold, P=0.0189), 

LOX (2.8-fold, P=0.0049) and P4Hα1 (2.2-fold, P=0.0137) were expressed at significantly higher 
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levels in internal control tissue than in external control fish. At 1dpw iNOS (17.9-fold, P=0.0187) 

was expressed at significantly lower levels in internal control tissue than in external control fish 

adjusted for MacroGard treatment. 

 

 
Figure 5. Expression of IL-6 was very low in control muscle, and in most cases beyond the level of 
detection. The table (top) shows the number of individual fish for which no IL-6 expression was 
detected (ND). The two MacroGard treatment groups have been pooled, and only the sample groups 
wounded (top), internal control (middle) and external control (bottom) remain. Individual ΔCt values 
are shown in the scatter plot below. Each group contain a maximum of 10 fish. 
 

3.3. Effect of wounding on gene transcription in the wound area 

The expression pattern of the investigated genes can largely be divided into two groups: Genes 

with an early induction until 14dpw; and genes with a late induction after 14dpw (figure 6). 

 

3.3.1. Genes induced during the inflammation phase 

IL-1β is highly upregulated 1dpw through 14dpw (1288-fold 1dpw; 1734-fold 3dpw; 1642-fold 

7dpw; 2511-fold 14dpw, all days P<0.0001). Between days 14 and 38 there is a sharp drop in 

IL-1β transcription, but it is still significantly higher than external control fish (35-fold 38dpw, 

P<0.0001; 9.6-fold 100dpw, P=0.0002) (figure 6E). 

MMP9 and MMP13 both follow an expression pattern very similar to that of IL-1β. The 

expression of these MMPs is, however, not upregulated as fast IL-1β and peaks at a lower level. 

The upregulation is highly significant on all days for both genes (P<0.0001). 

MMP9 is upregulated: 211-fold 1dpw; 810-fold 3dpw; 959-fold 7dpw; 1507-fold 14dpw; 65-

fold 38dpw; 9.1-fold 100dpw (figure 6C). MMP13 is upregulated: 571-fold 1dpw; 1631-fold 

3dpw; 1896-fold 7dpw; 1895-fold 14dpw; 65-fold 38dpw; 9.1-fold 100dpw (figure 6D). 
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Figure 6. Expression of the investigated genes shown as fold difference regulation in wound tissue 
(closed circles) and internal control tissue (open squares) relative to tissue from external control fish. 
Both axes are log2. Asterisks above the X-axis represent significant differences between wound and 
external control and asterisks below the X-axis represent differences between internal and external 
controls. *0.05>P>0.01, **0.01>P>0.001, ***0.001>P>0.0001, ****0.0001>P. 
 

iNOS expression in wounds relative to external control tissue is upregulated 1dpw through 

38dpw with a peak at 14dpw (65-fold 1dpw; 83-fold 3dpw; 449-fold 7dpw; 1532-fold 14dpw, 

all days 1-14 P<0.0001; 6.4-fold 38dpw, P=0.0184). At 100dpw expression is similar to that of 

control tissue (figure 6A). 

It was not possible to test for wound-induced differences in IL-6 expression with or without 

censoring as very few control samples gave a Ct value. However, from figure 5 it is evident that 

IL-6 expression was highly upregulated in wounds through 14dpw. 

CD41 expression is significantly upregulated 1dpw through 38dpw with the highest peak 

1dpw and a smaller peak 14dpw (46-fold 1dpw; 7.0-fold 3dpw; 6.3-fold 7dpw; 15-fold 14dpw, 
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all days 1-14 P<0.0001; 2.4-fold 38dpw, P=0.0065). At 100dpw expression is similar to that of 

control tissue (figure 6M). 

TGF-β1 expression is upregulated with high significance (P<0.0001) on all days. Expression 

levels peak at 14dpw (9.8-fold 1dpw; 10.8-fold 3dpw; 20-fold 7dpw; 43-fold 14dpw; 13-fold 

38dpw; 4.9-fold 100dpw) (figure 6K). 

 

3.3.2. Genes induced after the inflammation phase 

These remaining investigated genes exhibit a much more limited regulation that rarely exceeds 

one order of magnitude. 

 

TGF-β3 is downregulated 3dpw (3.0-fold, P=0.0011) and upregulated 38dpw and 100dpw (5.4- 

and 5.8-fold respectively, P<0.0001) (figure 6L). 

CD163 expression varied considerably between individual fish and although CD163 

expression was upregulated 10-fold 1dpw and 3dpw, this was only borderline significant 

(P=0.0432 and P=0.0458, respectively). The main difference in CD163 expression between 

wound and external control was at 100dpw (17-fold upregulation, P=0.0057) (figure 6B). 

TN-C and FN are upregulated 7-100dpw with a peak at 38dpw. TN-C is upregulated: 2.9-fold 

7dpw, P=0.0078; 2.7-fold 14dpw, P=0.0101; 13-fold 38dpw, P<0.0001; 6.9-fold 100dpw, 

P=0.0001. FN is upregulated: 2.6-fold 7dpw, P=0.0370; 4.0-fold 14dpw, P=0.0009; 9.0-fold 

38dpw, P<0.0001; 5.3-fold 100dpw, P=0.0001. TN-C is additionally weakly significantly 

upregulated 1dpw (2.2-fold, P=0.0322)( figures 6F and 6G). 

LOX and P4Hα1 are both downregulated 3dpw (1.7-fold, P=0.0185; 4.0-fold, P<0.0001, 

respectively) and upregulated 14dpw (4.2-fold, P=0.0180; 3.1-fold, P=0.0003, respectively) and 

38dpw (6.9-fold, P=0.0015; 3.0-fold, P=0.0004, respectively). LOX is still significantly 

upregulated 100dpw (3.8-fold, P=0.0237), whereas P4Hα1 expression is at control values 

(figures 6H and 6I). 

ColIα1 expression kinetics is similar to its cognate cross-linking enzymes, but is delayed 

relative to these with significant downregulation 7dpw (2.8-fold, P=0.0030) and upregulation 

38dpw (4.0-fold, P<0.0001)(figure 6J). 

 

3.4. Wound closure 

There was no effect of MacroGard-treatment on the wound closure kinetics. The open wound 

area initially enlarged until 14dpw, after which it became progressively smaller on the following 

days (figure 7). The wounds closed with relatively little contraction and had only completely 

closed (or very nearly so) in two of the fish 100dpw. 
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1dpw 3dpw 7dpw   

Figure 7. Grayscale VideometerLab 
images of wounds taken on different days 
after wounding (dpw). The six images are 
from six different fish. 

   

 

14dpw 38dpw 100dpw  

   

 

 

 

4. Discussion 

4.1. PAMP bathing did not affect wound healing 

Wound closure was not affected by the added PAMPs and only the genes MMP13, IL-6 and iNOS 

were transcribed at different levels in wounds of MacroGard-treated and non-treated fish. These 

genes are all highly transcribed in M1 polarized macrophages (Castillo-Briceño et al., 2010, Costa 

et al., 2011, Kou and Babensee, 2011, Rigamonti et al., 2013), which is the cell type most often 

associated with recognition and response to PAMPs (Boltaña et al., 2011). However, compared to 

the effect of wounding on the regulation of transcription of these genes (more than three orders 

of magnitude) the effect of MacroGard was minor. The only significant effect of MacroGard on 

MMP13 and IL-6 expression was at 14dpw. When injecting rainbow trout intraperitoneally with 

β-glucans Jørgensen et al (Jørgensen et al., 1993) also found the largest effect on bactericidal 

activity of isolated head kidney macrophages two weeks after injection. The limited response to 

PAMP stimulation in rainbow trout is probably not an effect of the low temperature since 

rainbow trout macrophage activation is not inhibited at low temperatures (Hardie et al., 1994). 

However, stress from temperature fluctuations could be part of the explanation, since heat-

shock protein 70 released as a result of temperature stress has anti-inflammatory properties 

(Borges et al., 2012, Deane and Woo, 2011, Harper and Wolf, 2009). Yet another explanation for 

the minor effect of PAMP bathing on gene expression in muscle is the fast epithelial coverage of 

wound in fish (Rai et al., 2012, Ream et al., 2003). Thus the wounded muscle is not exposed to the 

external environment for a very long time. For wounded common carp subjected to a similar 

treatment as in the present study we recently reported no observed effect on gene expression, 

but a faster contraction of the wounds (Przybylska-Diaz et al., 2013). The PAMP bathing thus 
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probably mainly affects the epidermis, which could be speculated to convey signals to 

fibroblasts to induce differentiation into contractile myofibroblasts. From mammals it is known 

that skin structure affects wound contraction (Volk and Bohling, 2013), and differences in skin 

structure may explain the different wound contraction responses to PAMP stimulation in the 

two species. Even in the absence of PAMP stimulation the extent of contraction of wounds in 

carp is greater than in rainbow trout (personal observations). Another possibility is that carp 

are highly responsive to PAMP stimulation compared to rainbow trout, since they naturally 

inhabit waters which are more turbid and rich in microorganisms. It is thus important with a 

fast response to PAMPs if the epithelial barrier is breached. In fact, carp are known to tolerate 

higher bacterial pathogen loads without developing signs of disease and isolated carp 

phagocytes have a stronger response to bacterial pathogens than those of rainbow trout (Sakai 

et al., 1996). 

 

4.2. Gene expression in the wound 

Gene expression during healing of injured muscle has not previously been studied over such a 

prolonged period in a teleost. The results show that phases, which last for days in mammals or 

warm-water cyprinids last for weeks or even months in this cold-water teleost. 

 

4.2.1. Hemostasis and thrombocytes 

Hemostasis is one if the first events that take place following tissue damage in vertebrates. 

Hemostasis involves vasoconstriction, activation of the blood clotting cascade, and adhesion and 

activation of platelets or thrombocytes. Thrombocytes are nucleated lower vertebrate 

equivalents of platelets. Their involvement in hemostasis is conserved from fish to mammals 

(Lang et al., 2010), and the integrin α-chain CD41 is specifically expressed by 

platelets/thrombocytes at high levels and by very early hematopoietic progenitors at low levels 

in zebrafish as well as humans (Lin et al., 2005). We thus chose CD41 as a marker also for 

rainbow trout thrombocytes. 

Apart from hemostasis, piscine thrombocytes may perform different functions than platelets, 

since it was demonstrated that rainbow trout thrombocytes are phagocytic (Hill and Rowley, 

1998) and possibly antigen-presenting (Köllner et al., 2004). Thus, we speculated that they could 

persist in wounds for longer than their mammalian counterparts, as well as to actively migrate 

out of the wounds to sites of antigen presentation. Our results show an early increase in CD41 

transcripts at the wound site 46-fold that of control tissue levels 1dpw. The transcript levels are 

lower from 3dpw onwards, but still significantly upregulated through 38dpw. This expression 

pattern is consistent with persisting thrombocytes in the wound. It would be tempting to 

explain the biphasic expression profile by an initial upregulation due to trapping of 
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thrombocytes and the second (smaller) peak by granulation tissue formation, which is rich in 

blood vessels and thus in circulating thrombocytes. However, even as late as 100dpw the 

muscle samples were much more red compared to the pale control samples (and thus more 

vascularized) and the expression of FN and TN-C (which are important granulation tissue ECM 

molecules) was still elevated. Degree of vascularization thus seemed to have little effect on the 

measured expression of CD41. It will be interesting to take a more detailed look at the long-term 

involvement of piscine thrombocytes in wound healing. 

 

4.2.2. Inflammation 

IL-1β was included as a marker for the inflammatory phase, as it is a prototypic marker of 

inflammation. Whether it is mainly activated by caspase dependent or independent mechanisms 

is still not entirely clear, but could be species specific (Angosto et al., 2012, Secombes et al., 2011, 

Vojtech et al., 2012). Among many effects IL-1β attracts macrophages which themselves produce 

IL-1β and contribute to the inflammatory response (Rider et al., 2011). 

 

We recently showed that when the same wound model was applied to carp IL-1β expression 

was only significantly upregulated 1dpw and was not significantly different from control values 

already 3dpw (Przybylska-Diaz et al., 2013). However, in the present experiment inflammation 

was not resolved until sometime between 14dpw and 38dpw – and even 38dpw and 100dpw 

IL-1β expression was still significantly elevated, but at much lower levels. 

 

In mammals, inducible nitric oxide synthase (iNOS) is a marker for inflammatory M1 polarized 

macrophages, and the scavenger receptor CD163 as a marker for M2 polarized macrophages of 

the M2c subset. iNOS is also considered a marker of classically activated M1 macrophages in fish 

(Forlenza et al., 2011), while the suitability of CD163 as an M2 marker has not yet been 

investigated in fish. iNOS can also be expressed by lymphocytes, neutrophils, keratinocytes and 

fibroblasts after wounding (Bernatchez et al., 2013), but it was recently described that in mice 

iNOS expression in injured muscle is restricted to infiltrating macrophages and furthermore 

that iNOS is important for muscle regeneration (Rigamonti et al., 2013). 

M2 macrophages are more diverse than the classically activated, inflammatory M1 phenotype. 

Macrophage polarization is very plastic and a clear-cut distinction between subsets is difficult to 

establish, but three subsets of M2 are usually described in mammals. These include M2a, -b and 

-c. CD163 is not expressed by M1 polarized macrophages, but by non-activated circulating 

monocytes and all three subsets of M2 macrophages, although mostly by the M2c subset (David 

and Kroner, 2011, Zizzo and Cohen, 2013). 
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All three subsets potentially play a role in wound healing. The M2c subset has important 

functions in resolution of inflammation and in regaining tissue homeostasis (Kharraz et al., 2013, 

Zizzo and Cohen, 2013) and CD163+ macrophages are associated with regenerating myofibers in 

the rat (Arnold et al., 2007). 

Markers for M2 macrophages in fish are scarce, and may differ between species. Arginase 

activity may for the moment be the best marker, but probably mainly for macrophages more 

closely resembling the M2a subset (Forlenza et al., 2011). In this experiment CD163 was included 

as a possible novel M2 subset marker in the rainbow trout. The expression of CD163 was 

generally quite low and variable in our experiment, and the observed regulation of transcription 

was thus not highly significant. However, there was an early upregulation of CD163 in the 

wound 1dpw and 3dpw, which may reflect an influx of non-activated monocytes expressing 

CD163. These then assumedly switch to an M1 phenotype from 7dpw to 38dpw when CD163 

expression in the wound is not significantly different from control tissue. At 100dpw CD163 is 

upregulated, and may mark the switch to an anti-inflammatory and tissue homeostatic milieu. 

 

IL-6 is a pleiotropic cytokine predominantly expressed during the inflammatory phase, and is 

involved in several events in wound healing, such as promotion of neutrophil apoptosis 

(Ganeshan et al., 2013) and re-epithelialization, angiogenesis and collagen accumulation (Lin et 

al., 2003, O'Reilly et al., 2012). IL-6 is also involved in muscle regeneration through 

differentiation of myogenic progenitors into mature myotubes (Heredia et al., 2013). IL-1β and 

PAMPs induce IL-6 expression in rainbow trout macrophages (Costa et al., 2011), and in our 

experiments IL-6 expression was higher in MacroGard treated fish 14dpw. IL-6 expression is 

strongly upregulated in wounds only until 14dpw, which indicates a limited involvement of this 

cytokine (or myokine, as it has also been called (Pedersen and Fischer, 2007)) in trout muscle 

regeneration, and perhaps a limited regeneration capacity of trout muscle altogether. 

The matrix metalloproteinases MMP9 and MMP13 degrade mainly basement membrane 

collagens and fibrillar collagens respectively (Leeman et al., 2002, Van den Steen et al., 2002). 

They are both important for several early events during wound healing, including epithelial 

migration, angiogenesis, granulation tissue formation and wound contraction (Hattori et al., 

2009, Toriseva et al., 2012). They also contribute to inflammation as MMP13 induces MMP9 

expression (Toriseva et al., 2012) and MMP9 can boost inflammation by activation of 

proinflammatory cytokines (Van den Steen et al., 2002). The expression of these proteases to a 

large extent mirrors that of IL-1β, and they thus are involved in wound healing mainly during 

the inflammatory stage. 
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4.2.3. Production and remodeling of ECM 

In mammals as well as fish there are three isoforms of TGF-β: 1, 2 and 3. However, a fourth 

isoform has been discovered in gilthead seabream (Sparus aurata) and a second TGF-β1 

paralogue in rainbow trout (Funkenstein et al., 2010, Maehr et al., 2013). TGF-β1 is a profibrotic 

cytokine (Haddad et al., 2008, Wick et al., 2013), which is required for differentiation of 

fibroblasts into myofibroblasts in the presence of a stiff matrix and the ED-A splice form of 

fibronectin (Hinz, 2010), and thus for extracellular matrix production and wound contraction. 

Conversely, the isoform TGF-β3 is often associated with regeneration and ameliorates the 

profibrotic effects of TGF-β1 (Klass et al., 2009, Turner and Badylak, 2012). Fetal wounds heal with 

perfect regeneration, and here TGF-β3 expression is increased and prolonged compared to adult 

wounds (Klass et al., 2009, Rolfe and Grobbelaar, 2012, Shah et al., 1995). TGF-β3 is also expressed 

for longer than the two other isoforms in the regenerating zebrafish fin (Page et al., 2013). The 

publication by Page et al (2013) is the first on TGF-β3 expression fish, and the present is the 

first from rainbow trout. In our experiments the basal expression level of TGF-β3 is greater than 

that of TGF-β1, but TGF-β1 is more induced throughout the investigated 100 days. TGF-β3 is not 

upregulated until quite late in wound healing, and this is preceded by induction of ECM-related 

genes. Considering the extended upregulation during the zebrafish fin, which represents a 

structure that heals with almost perfect regeneration, the upregulation of TGF-β3 expression in 

rainbow trout muscle could thus be too little too late to prevent fibrosis and support 

regeneration. 

The ECM glycoproteins FN and TN-C are both laid down as a replacement for the initial fibrin 

clot to form the granulation tissue, which is rich in blood vessels (Satish and Kathju, 2010). Later 

these are replaced by collagen type I (Lorenz and Longaker, 2003). Collagen type I is the main 

fibrillar collagen found in muscles (Myllyharju, 2008). We included FN and TN-C as markers of 

early granulation tissue and collagen type I α1-chain (ColIα1) as a marker for more mature 

tissue. In addition, we included prolyl 4-hydroxylase α1-chain (P4Hα1) and lysyl oxidase (LOX) 

as markers of the mature tissue production and remodeling phases. These are enzymes 

responsible for collagen triple helix formation and cross-linking, respectively (Franklin and 

Hitchen, 1989, Myllyharju, 2008, Xiao and Ge, 2012). They are thus important for the functional 

and textural properties of muscle. It is interesting that the upregulation of the enzymes 

responsible for processing of single collagen chains to provide tissue structure precedes the 

upregulation of ColIα1. However, collagen production is still maintained at high levels (figure 2), 

and the elevated expression of LOX and P4Hα1 indicates fibrosis in the healing wound. This is 
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supported by textural analyses showing that injured rainbow trout muscle tissue is tougher one 

year post-wounding than muscle of non-wounded fish (data not shown). 

4.3. Gene expression in non-injured muscle was only slightly influenced by wounding elsewhere 

The difference between gene expression in internal and external control samples was very 

limited. Inflammation in the wound peaked at 14dpw and on this day expression of the enzymes 

MMP9, MMP13, LOX and P4Hα1 as well as the growth factor TGF-β1 was significantly higher. 

This indicates a mild fibrotic effect of wounding on non-injured muscle systemically. 

 

There is still a lot to learn about fish wound healing, and it would be interesting to investigate 

further what role factors such as phylogeny, temperature and swimming activity has on the 

progression of wound healing and on the effect of PAMPs. Here we reported greatly prolonged 

healing dynamics of rainbow trout deep cutaneous wounds. Wound closure, Inflammation, 

granulation tissue formation lasted for weeks instead of days as observed in most other 

vertebrates. CD163 expression was consistent with use as a marker of M2 polarized 

macrophages, although this requires further investigations to establish firmly. CD41 expression 

indicates that active thrombocytes are retained at wound site for several weeks. 
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