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Preface

This thesis was prepared at the Section of Thermal Energy Systems, Department

of Mechanical Engineering, Technical University of Denmark (DTU) and at

DONG Energy - Thermal Power A/S Frederica. It was submitted in partial

fulfilment of the requirements for acquiring the Ph.D. degree. The work is carried

out from February 2009 to March 2013, with leave of absence in two periods

a total of 13 months. The project was under the supervision of Associate Prof.

Brian Elmegaard (DTU), Senior engineer Torkild Kristensen (DONG Energy -

Thermal Power) and the co-supervision of Ph.D. Professor Jens Nørkær Sørensen

(DTU). The project was financed by the Danish Agency for Science, Technology

and Innovation, under the industrial Ph.D. program and by DONG Energy -

Thermal Power. The thesis is written as a monograph, and it contains various

analyses of the evaporator tubes based on both traditional smooth inclined boiler

tubes and vertical internally rifled boiler tubes. Numerical models of varying

complexity are used to illuminate the dynamic behaviour of the heated boiler

tubes. Furthermore, the thesis describes the development and implementation of

the numerical models used in this work, which are written in the programming

language C++.

Lyngby, March 2013

Axel Ohrt Johansen
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Abstract

The main objective of this Ph.D. thesis is to describe and analyse the most recent

knowledge about operational flexibility in steam power plant evaporators, based

on mathematical / numerical methods. The thesis addresses a mathematical study

of steam power plant evaporators and involves the reader in many of the complex

considerations-, that are necessary to initiate such a study of thermal-hydraulic

two-phase flows. The model complexity is increased with the transport of a

fluid that changes phase from a sub-cooled liquid state, to a superheated vapour

through the evaporator. The mathematical models include analysis of static

stability, in the form of studies of mal-distribution in panel walls and Ledinegg

stability. Additionally dynamic studies of start-up conditions and load control

examples are performed. The choice of the numerical scheme has focused on a

higher-order scheme, which can handle steep gradients, discontinuities and shock

in the solution and can handle dynamic effects through boundary conditions

and initial fields. Furthermore, the thermodynamic properties associated with

the flowing media are modelled as a fast look-up table, which in this case is

water/steam. The reader will be introduced to basic concepts in the power sector,

including lifetime terms, such as corrosion, creep and fatigue, related to the

evaporator tubes, which are responsible for the transfer of energy from the boiler

to the water / steam circuit of a power plant. New evaporator technologies are

briefly described, followed by a simulation of a steam power plant evaporator

of Skærbækværket (SKV3), which is one of DONG Energy’s ten central CHP

plants, built in 1998 and located in Skærbæk at the mouth of Kolding Fjord in

Denmark. Here different heating profiles of the evaporator are investigated, as

well as an examination of the consequences of a feed water preheater outfall and

reduced evaporator pressure, which are some among many other actions that can

be analysed to adjust the thermal power stations to the new market conditions

requiring increased green energy. The numeric scheme is particularly well suited

to handle strong oscillations and slugs in relation to the two-phase flow, and in

spite of the associated water / steam library being designed as a fast bilinear

’look-up’ table, the calculation time is long. The structure of the application

is generic in the sense that other fluids can be used. The simulation tools are

implemented in C++ and can communicate with various commercial tools, for

the purpose of post processing of the calculation results.
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Resumé

Formålet med denne afhandling er at beskrive og analysere driftsfleksibilitet

i fordampere, baseret på matematiske / numeriske metoder. Afhandling om-

handler matematiske studier af fordampere og inddrager læseren i mange af de

komplekse overvejelser, som er nødvendige for at kunne indlede et studie af

thermo-hydrauliske to-fase strømninger. Model kompleksiteten forøges af, at vi

har at gøre med transport af en fluid, som ændre fase undervejs, fra en tilstand

som underkølet vædske ved indløbet til fordamperen og til overhedet damp ved

udløbet af fordamperen. De matematiske modeller omfatter både en analyse

af statisk stabilitet i form at undersøgelser af flow fordeling i panelvægge og

Ledinegg stabilitet samt dynamiske studier af opstartsforhold og lastregulerings

eksempler. I valget af numerisk skema er der lagt vægt et højere ordens skema,

som kan håndtere store lastspring, diskontinuiteter og shock i løsningen samt kan

håndtere dynamiske påvirkninger via randbetingelser og initialfelter. Desuden er

der modelleret passende udtryk for de termodynamiske tilstandsstørrelser som

knytter sig til det strømmende medie, som i dette tilfælde er vand/damp. Læseren

vil blive introduceret til grundlæggende begreber inden for kraftværkssektoren,

herunder levetidsbegreber som korrosion, krybning og udmattelse, som kan re-

lateres til fordamperrøret, som er ansvarlig for overførsel af energi fra fyrrummet

til vand/damp kredsløbet i et termiske kraftværk. Nye fordamper teknologier er

kort blevet beskrevet, efterfulgt af simuleringer af en kraftværksfordamper fra

Skærbækværket (SKV3), som er beliggende ved Kolding Fjord. Her analyseres

forskellige driftsforhold på fordamperen med hensyn til fyringsprofil. Endvidere

undersøges konsekvensen af udfald af en fødevands forvarmer samt reduceret

fordampertryk, som er nogle blandt mange af de tiltag, som kan anvendes til

at tilpasse de termiske kraftværker til de nye markedsvilkår med øget grøn en-

ergi. Det numeriske skema viser sig særdeles velegnet til at håndtere kraftige

oscillationer og slugs i relation til to-fase strømninger. Det tilhørende vand/damp

biblioteket er opbygget som en hurtig bilineær ’look up’ table som har reduceret

beregningstiden betydeligt. Applikation er generisk opbygget, således at andre

fluider kan anvendes. Simuleringsværktøjerne er implementeret i C++ og kan

kommunikere med forskellige kommercielle værktøjer, med henblik på post

processering af beregningsresultaterne.
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Nomenclature

Symbol Description Unit

A Cross-sectional flow area of pipe m2

Bo Boiling Number (A.2) −
Br Brinkman Number (A.2) −
Bc Buoyancy Modulus (A.2) −
a Acceleration due to swirl (centrifugal forces) m/s2

c Volume fraction of layer −
cp Specific heat capacity (fixed pressure) kJ/kgoC

cv Specific heat capacity (fixed volume) kJ/kgoC

C Virtual mass force coefficient −
e Specific energy m2/s2

Ec Eckert Number (A.2) −
Eo Eötvö Number (A.2) −
Eu Euler Number (A.2) −
F Force N

Fr Froude Number (A.2) −
f Shear stress (friction force) N/m2

g Acceleration due to gravity m/s2

G Mass flux kg/m2s

Gr Grashofs Number (A.2) −
h Enthalpy kJ/kgoC

Ja Jakob Number (A.2) −
k Thermal conductivity w/moC

l Length of pipe/geometry/film m

ṁ Mass flux kg/m2s

Ṁ Mass flow rate kg/s

Nu Nusseltl Number (A.2) −
P Pressure of fluid Pa

Pr Prandts Number (A.2) −
q heat flux w/m2

Q heat uptake w

R Radius of pipe m

Ra Rayleigh Number (A.2) −
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Re Reynolds Number (A.2) −
Ri Richardson Number (A.2) −
S Perimeter wetted m

Sh Sherwood Number (A.2) −
St Stanton Number (A.2) −
t Time coordinate s

T Temperature (absolute) oC

u Axial flow m/s

v Redial flow velocity m/s

x Dryness (steam quality) −
z Spatial coordinate m

Greek letters

α Thermal diffusivity m2/s

β Volumetric thermal expansion coeff. (A.2) oC−1

δ Difference between two terms −

Δ Difference between two terms −

ε void (presence) fraction −

γ angle of fins rad

Γ phase change rate kg/m3s

λ Eigenvalues to homogeneous transport equations m/s

Λ Vector of eigenvalues to transport equations m/s

ω frequency of fluid rotation s−1

τ shear stress / time constant in pipe wall Pa / s

θ pipe inclination to horizontal plane rad

ρ density of fluid kg/m3

μ dynamic viscosity kg/ms

σ surface tension N/m

ϕ angle of rotation (fluid element) rad

φ bubble entrainment and disengagement rates kg/m3s

Φ droplet entrainment and deposition rates kg/m3s

δ layer thickness m

ζ pipe length over pipe diameter −

Subscripts

b bubbles
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1. Introduction

The deregulation of electricity markets and the massive investments in renewable

energy in Europe have increased the request for flexibilization of large central

power plants. Denmark was the first country really to experience the challenges

that the stochastic nature of wind impose on the electricity systems. The chal-

lenges with renewable sources began in west Denmark as early as around the

year 2000 and have ever since just increased as more wind farms have been

commissioned. The average generation from renewables in Denmark is some

28.1% by 2011, according to the annual energy statistics from the Danish Energy

Authority, [1]. Denmark plans to increase renewable energy with an additional

2000 MW by 2020. Looking beyond Denmark’s borders, Germany is about to

impose even greater challenges up on themselves and their thermal power plants.

They have invested massively in renewables, both wind and photovoltaic genera-

tion, and plan to have all nuclear generation phased out by 2023. Both Denmark

and Germany already have massive challenges with the momentarly balancing

of power consumption and generation which is a prerequisite for a stable power

system. To balance consumption and generation it is necessary to operate the

thermal power plants ’as the wind blows and the sun shines’. The flexibility

requirements impose on thermal units are especially:

• The request for lower minimum load such that the units are ready to ramp

up if the generation from renewables suddenly fails (e.g, forecast errors)

• The request for faster start-up (again typically forecast errors)

• The request for larger ramping rates (typically because fewer units are in

operation but the total demanded load gradient remains the same)

All three flexibilization initiatives mentioned above are important for the inclu-

sion of even more renewables. However, if one digs further into the technical

challenges, it becomes clear that the lower stable minimum boiler load is one of

the most important issues for the flexibility-optimisation and thus the integration

of renewables. This is discussed below:

The number of thermal power plants in daily operation (in both Denmark and

Germany) have already been reduced to a minimum. This minimum is either

defined by power transmission stability requirements set forth by the TSO, or by

district heating requirements. In general, it is thus not possible to shut down the

remaining units in operation; they must be kept in operation and so to speak run
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idle and be ready for high load operation in case of forecast errors, incidents and

the like. When an incident occurs, a high ramping rate is of course desired in

order to respond and balance the grid as quickly as possible.

DONG Energy has put much effort in reducing the minimum load on the larger

400 MW Benson-type, or once-through boiler, power units during the last one to

two decades. Most of the units today are operated smoothly down to 20% boiler

load and some even to a significantly lower load. However, the Benson boilers

are here operated in boiler start-up mode, which means that not all feed water

entering the evaporator furnace walls is evaporated. The boiler is in fact operated

as a drum boiler at this low load. One consequence of this ’boiler start-up oper-

ation mode’ is, that the unit efficiency drops and steam temperatures decrease,

and this again has a negative impact on the fatigue of thick-walled components

downstream the evaporator, when the boiler load e.g, one hour later, is rapidly

increased again. During high wind periods, in order to save fuel and reduce

material life-time consumption, it is thus desirable to seek to reduce the boiler

load where transition from once-through operation (with high ramping rates) to

boiler start-up mode (with lower ramping rate) takes place. The challenges to this

issue are many, notably the following aspects: (1) evaporator flow stability and

adequate cooling of furnace walls with feed water; (2) burner/flame stability; (3)

flue gas inlet temperature to DeNox; (4) boiler control.

Approximately in 2006 DONG Energy decided to build and operate two 800 MW

hard coal-fired units, located near the city of Greifswald in northern Germany.

During the design phase of the boiler and turbine, much effort was put into op-

timizing the flexibility of the entire unit. Some of the most important issues that

were addressed during the design phase, were to achieve as low stable minimum

load and as high ramping rates as possible. The boiler furnace was designed with

internal rifled vertical evaporator tubes instead of the traditional spiral wound

furnace wall tubes. This Siemens Low Mass flux principle (SLMF) concept made

it possible to operate the boiler stable in once-through mode down to some 20%

of boiler base load. The traditional spiral wound tube concept normally only

allows once-through operation down to approximately 35-40%.

DONG Energy had little knowledge on the thermo-hydraulics of the vertical

arrangement. It was thus desirable to initiate this Ph.D project in order to achieve

a fundamental comprehension of the thermo-hydraulics and load dynamics that

we would face in daily operation at Greifswald, when the unit went into operation.

Unfortunately, due to the economic crisis that Europe faced by 2008, the Greif-

swald project was canceled by 2009. Knowing that the dynamics of evaporator
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processes are vital for low load boiler operation, focus in this Ph.D. project was

changed towards a more general understanding of the dynamics of evaporator

processes.

1.1. A brief review of boiler technologies

A power plant boiler is a heat exchanger which includes several units: economizer,

evaporator, superheaters, reheaters and air preheater. The more general boiler

design will not be touched on here, as this is assumed to be known. Also, focus is

entirely on the furnace and water walls, or the evaporator part. In the evaporator

part, the fuel is burned on the furnace side and the combustion product is a hot flue

gas exchanging radiant heat to the water on the other side of the heat exchanger.

The boiler is traditionally built as a tower: inside the hot gas is produced, and

the walls of the boiler are made of pipes welded together in which the water flows.

Most of the power plants are nowadays built as super-critical power plants,

in order to obtain maximum efficiency, meaning that they are sized to operate in

the super-critical region during high load operation, but in low load operation they

will enter the sub-critical region. The difference between a super-critical and a

sub-critical boiler is, that the latter is equipped with a drum boiler operating below

the critical pressure. The drum acts as a water/steam separation unit. For the

super-critical boiler, this part has become superfluous. Contrary to a drum boiler,

where the water may pass the evaporation zone several times before it leaves for

super-heating, the omission of the drum means that the water evaporates in one

pass. For this reason, a super-critical boiler is called a Once-through boiler. The

simplest of these is called the Benson boiler after its inventor. For Benson boilers

there is a challenge at low load; at this working point the water does not fully

evaporate, thus it is necessary to divert the outlet flow into a cyclone to separate

the steam from the liquid. The liquid is finally collected and pumped back into

the main feed water circuit. The outlet steam goes through a cyclone. That device

is called a connecting vessel and typically consists of a high cylinder with a small

diameter.

The super-critical power plants, operated in sliding pressure mode, which have

been built over the last many years, are characterized by having high efficiency

and improved load dynamics compared to drum boilers.

The heat flux in the central part of the furnace of a coal-fired power plant evapor-

ator is approximately 200-400 [kW/m2] and appears as radiation. In a gas-fired

plant, the combustion zone is more controlled; therefore the temperature of the

vapor leaving the approximately 200 parallel evaporator tubes is more stable,

which is illustrated in figures (1.1) and (1.2).

Both figures show enthalpy measurements at separator vessel versus pressure
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from SKV3 and NJV3. The coloured dots (cyan, red, green and blue) refer to

the thermodynamic state after the four panel walls; front, back, right and left,

all measured [2]. Note that the outlet enthalpy at SKV3 is much less stratified

than at NJV3. The two units are geometrically identical, but SKV3 is gas-fired

and NJV3 hard coal-fired, which apparently makes a significant difference in the

heat uptake of the evaporator. The super-critical once-through boilers, built in

Figure 1.1.: Enthalpy at cyclones (evaporator outlet) versus pressure at cyclones. Read-

ings from SKV3. Black thick line is lower and upper saturation curve. Red

lines are enthalpy set point (dotted) and min/max enthalpy curves. From

MOBE project [2].

Denmark, are all of the Benson type. They are partly characterized by requiring

a minimum flow rate,which secures a relatively uniform flow rate through all

parallel water tubes. The mass flux flow rate at base load is in general approxim-

ately 2200-2500 [kg/s/m2]. The mass flux flow rate decreases linearly with boiler

load and is approximately 800 [kg/s/m2] at minimum load. This corresponds to

an evaporator flow rate (ECO minimum flow) at SKV3 at some 90 [kg/s]. The

Benson boilers at SKV3 and NJV3 are operated in sliding pressure mode down

to approximately 35% load. Here below the evaporator pressure is kept constant

at approximately 90 [bar]. Lower pressure than 90 [bar] increases the risk of

flow oscillations. If possible, it is desirable to reduce both the pressure and flow

further, so DONG Energy’s boilers are operated in ultra-low load ("micro load").

By reducing the ECO minimum flow in an evaporator, it is possible to lower the

Benson minimum, and thus increase the ramp rate at low load.
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Figure 1.2.: Enthalpy at cyclones (evaporator outlet) versus pressure at cyclones. Read-

ings from NJV3. Black thick line is lower and upper saturation curve. Red

lines are enthalpy set point (dotted) and min/max enthalpy curves. From

MOBE projekt [2].

One of the easier interventions for rapid load control, is to close down one

or more of the high-pressure feedwater preheaters, whereby the amount of steam

through the turbine train is increased, and thus the electricity production. The

negative effect is reduced unit efficiency and a considerable stress on the econom-

iser and evaporator due to reduced inlet temperatures. This can be compensated

for by controlling the feed water flow quickly.

Siemens has invested years in developing a new evaporator concept where the

Benson minimum can be reduced even further, see; [3]. The evaporator is con-

structed with vertical boiler tubes lined with internal rifles (SLMF). These can be

used for very specific evaporator systems. The advantages of using SLMF are that

the boiler’s primary operating area (the Benson minimum) can be moved from

the traditional 35-40 % load to around 20 % load. The Benson transition point

which often must be passed at low ramping rate due to swelling and large material

temperature gradients, is thus moved to a lower load. This allows the boiler to be

’parked’ at low load with very low fuel consumption and be immediately available

when market conditions again become attractive. There is limited literature on the

subject, and there is a modest material relating to the mathematical description

of the heat transfer and pressure drop in rifled boiler tubes. Foster Wheeler have
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constructed a boiler for Longview Power in the US, which was in commercial op-

eration in 2011. Finally, a unit in China was retrofitted (Yaomeng), but this boiler

is operated at sub-critical condition. There is very limited operating experience

with the SLMF principle.

1.2. Motivation

As discussed in previously, one of the primary areas of interest concerning flex-

ibility optimization is the reduction of minimum load on the power plant, for

both existing and new power plants. A reduced minimum load of the unit will (1)

reduce fuel cost during periods when the unit is not in operation, and (2) keep

the unit in operation such that it can be ramped up when the market conditions

again are favorable. In other words, the power plant is available for load dispatch

many more hours a year. This will improve the possibilities for enhanced revenue.

In recent years the market conditions for new power plants in Europe have

become dramatically poor. Consequently the focus has changed, and today the

flex-optimization of older power plants is of primary interest. Thus, it is not

only interesting to study the thermo-hydraulic conditions in new plants, like the

flow in vertical internal rifled evaporator tubes, but also certainly the dynamical

thermo-hydraulic behaviour in existing power plants with the traditional spiral

wound furnace wall tubes.

Danish central power plants are all once-through boilers of the Benson type.

The water walls are typically constructed of some 200 tubes connected in parallel,

running from hopper to furnace outlet with an inclination angle of approximately

15 degrees. Each of these tubes must at any instant be sufficiently cooled at any

location along the tube. Normally this corresponds to a tube mass flux rate of

700-800 [kg/s/m2] at minimum stable generation and 2000-2500 [kg/s/m2] at

rated capacity (Effenberger, [4], p. 518). If cooling fails for a certain time, the

tube in question will be damaged (material creep and cyclic hoop stress) and

eventually burst. Consequently, each power plant has a minimum feed water flow

rate, which must be respected in order to avoid trip of the plant. Typically, the

boiler is tripped after only 10 seconds, if the flow rate is too low. This trip cri-

terium is very problematic and imposes huge challenges for the control engineer

at low load operation, for example, during start-up/shut-down of the second feed

pump or during swelling.

There is presumably a ’however’: that the plants were designed for base load

during the 1980-1990 when extreme low load was not an issue at all, and this

leads to the belief that further low load optimization is possible. Based on other
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basic flexibility challenges in power plants, solved with success, it is our belief

that a thorough understanding of the thermo-hydraulic problems - paired with our

existing knowledge on material creep and fatigue (FEM calculations), furnace

load (CFD calculations) and more intelligent furnace control of the feed water,

fuel and combustion control systems, restricted by an intelligent distributed con-

trol system (DCS) - will make it possible to further improve the low or micro

load properties of a plant, which again eventually will lead to enhanced low load

operation. This again may allow for further penetration of renewables like wind

and photovoltaic. All aspects related to this optimization, except for the thor-

ough comprehension of the thermo-hydraulics of the water walls, have already

been thoroughly studied by DONG Energy Thermal Power during the past decade.

The purpose of this Ph.D. study is to demonstrate that it is possible to develop

a robust numerical model able to dissolve the excessive dynamics that occur in

connection with an evaporation process, taking place at varying feed water inlet

conditions, evaporation pressures (fixed or sliding pressure operation) and heat

flux rates and profiles along the pipe. If we can achieve a better understanding

of the processes, mechanisms and boundary conditions that affect the dynamic

evaporation process in a power plant boiler, then we have the fundamental basics

for any further flex-optimization.

DONG Energy - Thermal Power A/S require a comprehensive description of

the evaporator stability, in order to optimize the dynamic flexibility on the large

central power plants in Denmark. Therefore, there are some added chapters to

this thesis, which do not have the character of research efforts, but are included to

provide a better understanding of the overall picture of the operational flexibility

of power plants. This is particularly related to the CFD analysis of the boiler

room, temperature profiles in the tube wall associated to its life cycle assessments

in Chapter (4) and a description of the equation of states for water / steam (EOS)

in Chapter (6). The novelty of the report is to be found in the section on flow

distribution and dynamic stability, including interpolation and the use of the latest

numerical techniques in connection with dynamic evaporator modeling.

1.3. Literature review

Much effort has been put into modelling evaporators. Focus was especially on

the dynamic regulatory technical features of the power plant boilers, but there

is not much literature on dynamic modelling of the evaporation process in the

power plant boiler and the consequent load limits. There are some references
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about experimental studies of evaporators, and much of this material is based

on standards and is well documented in [5]. In [6] there is the modeling of a

complete circuit distribution of a flow network system in a water wall of an

ultra-supercritical boiler with vertical tubes. The model is steady, state and

good agreement is achieved between the calculated mass flux distribution in

the lower front wall and the plant data; the maximum relative difference is

between 5.6 and 9.7 %. A dynamic evaporator model, which is able to simulate

the entire vaporization process, including the sub-cooled liquid at the entrance

and super-heated fluid at the outlet, has not been seen in published literature,

due to the complexity around the saturation curve, which basically includes a

singularity in the gradient of the density. With respect to internal rifled boiler

tubes (IRBT), Harald Griem, [7] wrote back in 1985 on the subject, and both

KEMA, [8] and Siemens have performed considerable experimental work that

is considered properietary information, see [3] and [9]. Other authors have

dealt with the experimental topic, with special focus on internal rifled boiler

tubes; see [10], [11], [12] and [13]. Here consistent algebraic function terms are

developed for the frictional pressure drop and heat transfer in IRBT. A thermo-

hydraulic analysis of an ultra-supercritical boiler at full load is performed in [6],

but no studies of part load conditions. Since this thesis deals with many specific

subject areas, there is a detailed literature review in each individual chapter and

literature references related to the topics discussed, and each subject is supported

by literature references in relation to the articles developed in this study; see [14],

[15], [16] and [17].

1.4. Thesis statement

Evaporator stability is very much related to the increased request for flexibiliza-

tion of large central power plants. Therefore it is crucial to understand the basic

concepts, related to the stability of a power plant evaporator, which is the absolute

largest component in a thermal power plant, where the steam is used in both

the production of electricity and district heating. In principle it is a questionof

understanding the physics associated with an evaporation process and understand-

ing the mechanisms which impose restrictions on large load dynamics.There are

many factors to be illuminated in this context, such as the circumstances of com-

bustion in the furnace related to the strength of the heat flux, materials technology,

design of boiler tubes, an in-depth understanding of the physics that describe

both the heat absorbed and pressure drop in the evaporator tubes, and finally an

understanding of the market conditions of today. In addition, it is important to

understand the fluid dynamic conditions prevailing in the evaporator tubes as well

as selecting the correct mathematical/numerical methods to simulate the dynamic

conditions in the evaporator. It is believed that the key for a more flexible energy
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production is hidden in the understanding of the stability conditions of a power

plant boiler, both static as well as dynamic.

1.4.1. Objectives and hypothesis

The main hypothesis of this study is linked to the idea of being able to model

the temperature fluctuations that occur in the evaporator tubes. These temperat-

ures are initiated by fluid temperatures as well as the heat flux from the furnace.

Therefore a basic understanding of the fluid dynamics as well as material condi-

tions in the form of heat transfer and lifetime analysis are essential in this work.

The main objective of this Ph.D. thesis is to describe and analyse the up-to-date

knowledge about operational flexibility in steam power plant evaporators, based

on mathematical / numerical methods. More specifically, the Ph.D. thesis aims

to:

• Examine the advantages and disadvantages in using internal rifled boiler

tubes (IRBT) in steam power plants.

• Give a description of the furnace conditions, time dynamics of the heat

tube material for power plant evaporators and the corresponding methods

for estimating the lifetime of boiler tubes due to fatigue and creep.

• Obtain a detailed understanding of the phenomena leading to flow mal-

distribution and Ledinegg stability under different operation pressures

including flow regime maps for the flowing fluid.

• Outline the various equations of states (EOS) for modelling tasks and

specify concrete implementation proposals, which adequately take into

account both the accuracy and calculation speed.

• Map the dynamic response of the power plant evaporators especially for

the start-up of a plant.

• Describe and implement a robust numerical solver for handling the very

strong thermal-hydraulic transients that can occur in a power plant evap-

orator. Point out the numerical challenges and choose methods for imple-

menting a dynamic solver, tested on a homogeneous thermo-hydraulic flow

model.

• Develop mathematical models for simulating the dynamics of power plant

boilers in order to understand the mechanisms that occur in an evaporation

process and point out some coupling examples, which can lead to increased

operational flexibility in power plants.
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1.4.2. Methodology

This thesis develops mathematical models for simulating power plant evaporators,

in order to answer the above questions and meet the objectives. The steady

state models are implemented in the EES software package, while the dynamic

model is based on a new numerical scheme (WENO). The dynamic modesl are

implemented in C++ in order to optimise the performance of the application.

The equations of state are based on IAPWS-97 (International Association for the

Properties of Water and Steam) and are implemented in an interpolation scheme

in order to speed up the simulation. However, we have been given access to

readings from the control system of Skærbækværket, and have focused on four

stable and common load situations. The measurements did not quite satisfy high

time resolution, but we can use the measured data for model calibration. We

will primarily model traditional spiral wound furnace wall tubes with smooth

boiler tubes, which are totally dominant in the Danish energy market, but will

also perform simulations of the IRBT, which in size corresponds to a SKV3

boiler.

1.4.3. General delimitations

DONG Energy-Thermal Power have several different modelling tools for sub-

sequent analysis of more complex energy systems, where the boiler is integrated

with other control systems and turbine components. These systems, however,

suffer from the weakness of not having advanced boiler models, or rather a spatial

discretization of an evaporator tube, so we lack a general understanding of how an

evaporator behaves in a dynamic context. In order to reduce the complexity and

computation time, we analyse only the evaporator, and we force our numerical

models with conservative downstream boundary conditions, especially in terms

of pressure, which is assumed to be a fixed boundary condition at tube outlet.

This is a truth with modifications, as the pressure in general is determined by

the swallowing capacity of the downstream steam turbine, thereby building up

a pressure level, which initially is fixed at the condenser and / or district heat-

ing condenser. This pressure build-up through the turbine train causes a form

of compressibility and elasticity of the downstream boundary condition on the

evaporator. Therefore, the dynamic response represents a worst case scenario in

the case of forcing the model with fixed upstream pressure boundaries.

Another limiting factor is the introduction of artificial diffusion in sub-areas,

where the equation of state (EOS) for water/steam provides dedicated singular-

ities in the first derivative of the fluid density. Here the artificial diffusion is

introduced, scaled from relations derived from a Boussinesq approximation of

thermal-hydraulic fluid flow. The intention is to attenuate unwanted pressure

waves initiated from the above-mentioned singularities.
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1.5. Thesis outline

The thesis is organized in the following way and contains 12 chapters and 17

appendixes. The contents are as follows:

Chapter 1 is the introduction which contains the thesis statement, motivation, an

overall literature review, objectives, approach and an introduction to the back-

ground and fundamental aspects of the commercial energy market in Denmark.

Chapter 2 provides an introduction to power plant boiler technology and corres-

ponding loading conditions. The internal rifled boiler tubes are introduced.

Chapter 3 presents a case study of Skærbækværket (SKV3) with a brief plant

description and discussion of corresponding measurements.

Chapter 4 describes the heat flux distributions in the furnace of SKV3, modelled

by CFD, and discusses the corresponding furnace tube wall (panel wall) condi-

tions together with a tube lifetime description.

Chapter 5 presents the physical mechanisms of the most common flow instabilit-

ies; among these phenomena, we choose and analyse those that can trigger an

oscillation. Various flow regimes are described in relation to the heat transfer

calculations. Primarily focus is on mal-distribution, based on an optimisation

problem of mal-distribution, as a function of heat uptake on two parallel tubes,

for varying samples of measurements and an Ledinegg stability analysis in panel

walls including gravitational pressure drop. The chapter ends with a brief conclu-

sion on the static stability and what we need to focus on when designing a steam

power plant evaporator.

Chapter 6 presents the most common equation of state (EOS) for the water

/ steam media, for use in multi-layer models. Here the liquid and the gas (steam)

phases are typically separated.

Chapter 7 deals with compact numerical interpolation schemes, for fast cal-

culation of the thermodynamic properties, based on the IAPWS-97 (International

Association for the Properties of Water and Steam). These methods are based on

linear, bilinear and second-order interpolation elements. The accuracy and com-

puting speed of the interpolation schemes have been compared to the IAPWS-97

standard, which is the reference application in this work.

Chapter 8 presents a two-phase flow model for predominantly one-dimensional
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flow. The model can be adapted to different flow regime patterns (vertical as well

as horizontal stratification) and handle tubes with or without rifling. The model

uses a non-equilibrium approach and consist of two continuity equations, two

momentum equations and two energy equations. Phenomena such as relaxation

terms in the context of Riemann surfaces and discontinuities are briefly described

and various eigenvalue analysis of the system Jacobians of two phase systems are

presented as well as relations for the speed of sound in the two phase fluid for

different flow regimes. A homogeneous model, based on the two layer approach

is outlined. Finally a four-field model for detailed description of flow regimes in

two-phase flow is mentioned.

Chapter 9 deals with solving hyperbolic systems of partial differential equations

and contains a brief introduction to some of the fundamental concepts and an

overview of the primary challenges in solving hyperbolic partial differential

equations. The WENO approach is outlined and tested against the most common

test cases from the literature.

Chapter10 gives a general overview of the dynamic flow stability in boiler

systems. A homogeneous two-phase model is setup and is configured in order to

simulate the impact of four different heat flux profiles during a start-up situation.

Also effects of a high-pressure preheater failure on SKV3 is modelled and finally

the low-pressure operation (turbine bypass) of a power plant evaporator is cla-

rified, in order to generate district heat at the expense of the electricity production.

Chapter11 contains a discussion of the principal areas of work.

Chapter12 covers the conclusions of the thesis and the recommendations for

further research and product development.

Appendix A is a detailed description of the dimensional analysis with the most

common constants in fluid mechanics and thermodynamics.

Appendix B includes a list of static cycle calculations of the thermal power

plant SKV3. The calculations are based on the consolidated simulation tool

Turabs 2, developed by DONG Energy-Thermal Power A/S. The simulations

have the aim of identifying a complete operating range in terms of both heat and

net electricity production. The output from calculation results is a so-called PQ

diagram.

Appendix C outlines the net cross-section area of an internal rifled boiler tube

(IRBT).
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Appendix D outlines the net cross-section area of an internal rifled boiler tube

(IRBT).

Appendix E is a derivation of the classical formula that reflects pressure drop

and heat transfer for internal two-phase flows in pipes.

Appendix F contains four sets of measurements (samples 1-4) from October

2011 at the power plant SKV3. Measurements are recorded in the control system

of the power plant and processed further into a InSql® database where data can

be treated. Measurement data covers typical operating situations where the boiler

is operated in Benson or circulation mode.

Appendix G contains a brief description of the estimation of lifetime in heated

tubes with respect to fatigue and creep.

Appendix H includes additional curves due to mal-distribution analysis, show-

ing the correlation between the relative friction pressure, mass flow and outlet

enthalpy as a function of the relative distribution of heat between two heat pipes.

Appendix I provides a comparison of three different setups of interpolation

maps of IAPWS-97 from the analysis performed in Chapter (6).

Appendix J is a brief description of algorithms for solving an implicit given lin-

ear system of equations created by discretization of partial differential equations.

The solver is based on a fast sparse technique, and is used in solving the poisson

equation of heat conductivity in heat pipe walls.

Appendix K lists the most important partial derivatives describing the equa-

tions of state for the one-phase and two-phase regions of a fluid.

Appendix L deals with the fluent combustion model and describes both the

flow model as well as the combustion reaction and gas phase reaction models.

Appendix M presents a four-layer incompressible flow model with a time-

averaging of the velocity fluctuations. For vertical flow, a non isotherm stratifica-

tion of the flow fields is caused by a swirl initiated by the IRBT. The model is

able to describe different flow regimes.

Appendix N presents a journal paper (Computers and Fluids); Implementation

and test of a higher order hybrid solver for hyperbolic and parabolic balance laws.
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Appendix O presents a journal paper (Applied Thermal Engineering); Finite

Element Method Interpolation Scheme for Fast Calculation of Water/Steam Prop-

erties.

Appendix P presents a journal paper (Heat and Fluid Flow); Homogeneous

two-phase flow model of a vertical steam evaporator implemented in a fifth order

Central WENO scheme for hyperbolic balance laws.

Appendix Q presents a conference paper (SIMS 2012, Reykjavik, Iceland);

A homogeneous two-phase flow model of an evaporator with internally rifled

tubes, modelled by a fifth order Central WENO scheme for solving hyperbolic

balance laws.
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This chapter provides an introduction to the power plant boiler technology and

the corresponding loading conditions. Here is a brief description of a specific

power plant (Skærbækværket Unit 3) with the boiler and the loading regulatory

aspects in relation to the technical limitations that exist in power plant techno-

logy.

2.1. Furnace design

This section will outline two types of furnace designs in relation to the Benson

once-through technology, the traditional spiral wound furnaces and the new boiler

concept with vertical, internal rifled boiler tubes. Both technologies have ad-

vantages and disadvantages, and these will briefly be highlighted below. The

operation experience gained at Yaomeng Unit 1, which underwent a retrofit in

2002 and was converted to low mass flux boiler technology, will be highlighted,

too.

The ideal furnace design would be able to support its own weight and be capable

of variable pressure operation over the load range while exhibiting natural cir-

culation flow characteristics with flow increasing as heat absorption increases,

thus preventing high temperature differentials between adjacent tubes. The boiler

ramp rates today are a very important issue due to the deregulation of the electri-

city market.

2.1.1. Spiral tube furnace design

Spiral wound furnaces have tubes that are wound at an angle of 10o to 25o around

the furnace perimeter from the lower furnace inlet headers to above the burner

zone; see figure (2.1). This arrangement allows each tube in the furnace to pass

through the various heat zones so that the heat absorption for adjacent tubes is

reasonably uniform. By wrapping each furnace enclosure tube through each of

the four furnace enclosure walls, each tube goes through approximately the same

variation in heat absorption, both axially and radially. A high mass flux is required

to maintain effective heat transfer across the boiler load range as well as to avoid

stratification of the two phases of water and steam at minimum load. The danger

of stratification or inadequate heat transfer at low loads limits the minimum

once-through load (Benson load) of spiral furnaces. Also the high mass flux

causes a high pressure drop in the tubes, which means feed water pump power is

correspondingly high, again leading to a high dynamic friction loss compared to
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Figure 2.1.: A: Spiral furnace. B) Vertical tube low-mass-flux furnace. see [18]

the static pressure loss (hydrostatic loss). Additionally the spiral wound furnace

has negative flow response characteristics for a high mass flux system. The

water flow must decrease with higher heat input to maintain the system pressure

loss, which illustrates that the furnace wall tube metal temperature is adversely

affected, as tube flow is reduced when there is an above-average heat supply. The

ramping rate of spiral wound furnaces is restricted by the construction of the

furnace. Because spiral wound tubes cannot support their own weight, vertical

support straps are required on the outside of the furnace. This leads to thermal

stresses between tubes and support straps during dynamic load conditions, which

limits the start-up speed of the boiler as the strap temperature lags behind the

tube temperature.

2.1.2. Vertical tube furnace design

The use of vertical internal rifled boiler tubes is the key to a low mass flow boiler

design, because the spiral ribs force the heavy fluid phase (water) to the tube

wall, thus maintaining the water film up to a higher steam quality. Figure (2.3)

illustrates the dry-out boiling crises for both the ribbed and the smooth boiler tube.

The ribbed tubes postpone the dry-out so it occurs at higher steam qualities. One

of the major benefits of a vertical tube furnace design is the positive flow response

characteristics for a low mass flux system. The tube characteristics are positive,

which means that the water flow must increase with higher heat input to maintain

the system pressure loss. These characteristics of a once-through boiler furnace

design are highly desirable. An advantage of the low mass flux system is also a

general reduction in pressure loss through the furnace, so the feed pump power is
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Figure 2.2.: Pressure equalizing zones between panel wall and pressure wessel, from

[4].

reduced and the cycle efficiency is correspondingly increased. One of the major

disadvantages is that the flow distribution through the vertical boiler tubes is very

sensitive to the heat flux distribution in the boiler and to a uniform distribution

of feed water to each tube from the inlet headers, result in varying heat uptake

through the panel walls, which can result in local instability in the flow field lead

to very low or zero flow conditions and departure from nucleate boiling DNB
or in the worst case a melting tube wall. To prevent this phenomenon, some

boiler manufacturers have built in pressure equalizing zones or even temperature

mixing vessels in the evaporator at approximately half height; this was considered

for the Griefswald boiler. This is done to reduce the temperature disparity in

the evaporator, thereby ensuring a more uniform flow through the evaporator.

One example of a general pressure equalizing zone is illustrated in figure (2.2).

According to reference [19], there are obvious structural benefits to using SLMF

technology. The Low Mass Flux furnace design for a typical 800 MWe boiler

is lighter by approximately 300-400,000 kg, has about 4,000 fewer welds, and

will require close to 50,000 fewer construction hours to erect than a typical 800

MWe universal pressure boiler. The vertical wall panels are also much easier to

fabricate, thereby reducing manufacturing cost. Another advantage is that the

Benson load can be reduced to some 20 % boiler load for a Low Mass Flux boiler,

which leads to smaller start-up systems. This could, e.g, eliminate the need for a

recirculation pump.

2.1.3. Operating experience with the low mass flux boilers

The Yaomeng Power Plant is situated in the central southern area of Henan

Province of China. The plant consists of four 300 MWe sub-critical boiler units.

The original boilers consist of traditional spiral wound furnace wall tubes with

smooth boiler tubes, once-through units designed for base load operations. The

success of the retrofit of Unit 1, which began in May 2000, can clearly be seen

through the improved availability and the unit’s ability to change load rapidly.
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Figure 2.3.: Comparing the dryout characteristics of ribbed and smooth boiler tubes the

ribbed tubes postpone dryout which then occurs at higher steam qualities;

see [19].

Before the retrofit in 2000, the unit availability was 88.7 % and after the retrofit it

is 95 % according to [19]. The boiler ramp rate is improved from 1 %/min. to 3

%/min. Even though Yaomeng Unit 1 was the first low mass flux Benson boiler

unit in China, there have been no ribbed tube failures, caused by overheating or

high temperature differentials of adjacent tubes in its seven years of operation.

Furnace temperature and metal temperatures in the panel walls are simultaneous

recorded. The temperature difference between adjacent tubes has been reduced

from 70oC to between 20oC and 30oC. As a result, no boiler wall tubes have

failed, and the unit can now reduce the load to 40 % without oil-firing assistance -

something never achieved with the original boiler.

In the Yaomeng Unit 1 boiler, the once-through boiler has its basic evaporator

zone in the low heat flux region, where the tube metal temperature is minimized.

The water purity has to be high to avoid corrosion, deposition, and carry over of

dissolved solids. As the ribbed boiler tubes have an optimized profile, Yaomeng

Power Generation Ltd (YPGL) questioned how the positive flow response would

be affected by the potential deposit build-up on the inside of the tubes. It can be

inferred that the positive flow response is still active, if it can be shown that the

metal temperature has not risen above material limits and that tube failures caused

by adjacent tube temperature differences do not occur, even if there is a high

deposit weight density. Tube samples containing internal deposits were removed

from the high flux heat areas of the furnace to determine deposit thickness in
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July 2008. The tubes were then arranged by firing side and nonfiring side, which

clearly shows deposit build-up on the ribs of the furnace wall tubes before acid

cleaning. The build-up on the non firing side shows a more uniform distribution

of deposit. The deposit was analysed during every outage to determine the weight

density. The results show an increase in deposit weight density is also apparent

on the non-firing side, but the increase is less uniform over time.

The major conclusions of the retrofit of Yaomeng Unit 1 plant are, according to

[19], that the new boiler steam output as well as thermal efficiency have both met

the guaranteed conditions and peak levels in steam production. Major environ-

mental improvements are achieved, where NOx levels are reduced and unburned

carbon has decreased with approximately 75 % as well as the particulates issued

from the chimney have been reduced approximately by 90 %. The customer

YPGL, has expressed satisfaction with the results of the retrofit. As has been

demonstrated, the full scale heat transfer and pressure loss test data, on which the

Yaomeng design was based, extends to super-critical pressure conditions. Thus

the technology for super-critical plants is available now, and there is every reason

to believe that the move towards higher pressures will be equally if not more

successful.

2.2. Geometry of boiler tubes

One parameter that determines the single-phase heat transfer rate on the inside of

a heat pipe, is the fluid velocity near the inner pipe wall. If the velocity can be

increased without increasing the net mass flux through the boiler, the heat transfer

rate can be increased. With that assumption it is possible to build a more compact

boiler, without taking the theory of combustion into account. Internally rifled

boiler tubes (IRBT) are an attempt to speed up the velocity at the wall without

leaving the vertical tube of a boiler construction. The mass flux through the IRBT

is usually in the range of 1000 [kg/m2s] at base load and is less than the half as

seen in traditional Benson boiler panel walls, with a moderate pipe inclination. In

addition to the rise in heat transfer, the IRBTs are characterised by an excellent

performance concerning two-phase flow. The swirl is very good for separat liquid

from gas. The centrifugal force increases the rate of light fluid to the centre of the

pipe and forces the heavy fluid components to near the wall, improving the cool-

ing of the pipe and thereby increasing the heat transfer and decreasing the wall

temperature of the pipe. Additionally the IRBT has the following advantages: the

rifles will enlarge the surface of convective heat transfer, increasing the turbulent

intensity in the boundary layer and increasing the relative velocity between the

wall and the core fluid by the rotational flow.

The advantages of the IRBT have a price. The relative pressure loss is higher

19



2. Power plants

Figure 2.4.: Center cutting of an internal rifled boiler tube

than that in the traditional boiler tubes, but it can be used in a constructive way.

When super-critical boilers are partly loaded, stability problems can occur. The

problem is usually solved by inserting orifices in the tubes that adjust the pressure

loss of each individual tube. Thus the increased pressure loss in the IRBT can be

utilized to replace the traditional built in pressure loss and thereby not increase

the pumping power. The wall shear stress in an internal rifled boiler tube is given

by

τw = fwξ ρ̄
U · |U |

2

= fwξ
G · |G|

2ρ̄
(2.1)

where the term fw is the friction coefficient under single-phase flow, and ξ is the

dimensionless friction coefficient based on the single-phase frictional coefficient

in heated rifled tubes:

ξ =
a

Reb + c. (2.2)

In table (2.1) we propose coefficients based on the Blasius formulation given by

[7], for different rifled profiles. In [11] the same formulation of ξ is used, and an

absolute relative error less than 6.3 % is reported by the author for specific rifled

tubes. In two-phase flow the friction loss can be expressed by (2.1), where fw
is adjusted by the two-phase multiplier given by equation (E.42) in Appendix E.

The cross-section area of a fin is illustrated in figure (C.1) and can be calculated

by using equation (C.6).
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Table 2.1.: Algebraic relations of fw for different profiles. [7]

type RR6 RR5 RR4 RR2

a 1702 0.56 16.26 1.65

b 1.18 0.32 0.71 0.44

c 0.032 0.01309 0.01509 0.02344

2.2.1. Summary

In this chapter we have described the benefits of using IRBT compared to a

traditional spiral wound furnace. In brief the advantages are of both a constructive

and a fluid mechanical nature, as there are obvious structural benefits of using

SLMF as the boiler is lighter and becomes a self-supporting structure without

requiring straps that affect the dynamic response. Furthermore, the low mass

flux boiler has a completely different operating profile, by having a positive flow

response characteristic, in the sense that the tube flow response requires the water

flow to increase with higher heat input to maintain the system pressure loss,

while the spiral wound furnace has a negative flow response characteristic for

a high mass flux. The dry-out characteristics of ribbed boiler tubes occurs at

higher steam qualities, which gives a much better cooling of the tube wall. Last

but not least, the Benson load can be lower for a low mass flux boiler, which

leads to smaller start-up systems that could eliminate the need for a recirculation

pump. One of the major disadvantages of vertical evaporator tubes is that the

flow distribution through the vertical boiler tubes is very sensitive to the heat flux

distribution in the boiler, resulting in varying heat flux through the panel walls,

which in the worst case can result in local instability in the flow and ultimately

cause a melting tube wall. In the spiral wound furnace, each tube passes through

each of the four furnace enclosure walls, and goes through approximately the

same variation in heat absorption, both axially and radially, but at low load there

is a potential of stratification or inadequate heat transfer, limits the minimum

once-through load (the Benson minimum load).
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3. Case study - Skærbækværket

This chapter describes the design and layout of Skærbækværket (SKV3) thermal

power plant complemented by measurement campaigns taken from its control

systems. Skærbækværket is one of DONG Energy’s ten central CHP plants, built

in 1998, with a capacity of 392 [MW] and located in Skærbæk at the mouth

of Kolding Fjord. The utilisation of natural gas entails that the environmental

impact is reduced to a minimum. By firing natural gas, the power plant ensures

that no particles, fly ash or considerable amounts of sulphur are produced during

operation. The use of low-NOx burners reduces the formation of nitric oxides

in the flue gas. The heat and power production at SKV3 is primarily based on

natural gas, and the production is made with a strong focus on the environment

and cost effectiveness. The combined heat and power production at SKV3 means

optimum utilisation of fuel, ensuring an advantage in terms of savings in resources

and protection. An identical power plant based on coal combustion is located

in Aalborg in northern Jutland. The plant is named Nordjyllandsværket Unit 3

(NJV3).

3.1. Plant flexibility

According to the immediate production requirements, the steam may either be

taken out on its way through the turbine steps and used for district heating

production in the heat exchangers - or it may be used for maximum power

production in which case the steam leaves the turbine after the LP part to be

cooled in the condenser. The SKV3 Unit 3 is a combined heat and power

plant which both produces power for the high voltage grid and supplies district

heating to the Triangle Region Denmark. Figure (3.1) shows a PQ-diagram,

indicating the entire operational flexibility range for SKV3 with respect to power

(P) and district heating (Q). The Cv-value is a frequently used figure for the

pricing of district heating production, which expresses a relation between loss in

power production caused by district heat production and the actual district heat

production:

Cv =
Pcond −Pactual

QDH
. (3.1)

Here Pcond is the net power production in condensed mode and Pactual is the

net power production for the same boiler load, but with district heating (QDH).

Corresponding simulated PQ diagrams provide DONG Energy with a continuous

picture of the fuel amount and the Cv-value within the operating areas of all power
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stations, which enables optimisation of the mutual operation of the power station

units. The PQ-diagram are based on the simulations performed in tables (B.2) and

(B.3). The corresponding abbreviations are listed in table (B.1). The design model

of SKV3 is illustrated in figure (3.4) and covers only the water / steam circuit of

SKV3. The model forms the basis of the displayed PQ diagram with associated

tables (B.2) and (B.3). The design model consists of approximately 850 unknown

variables (Principal DOFs) and 2000 secondary DOFs.

Figure 3.1.: Operational area for SKV3 with respect to district heat and power, based on

tables (B.2) and (B.3).

3.2. Description of the SKV3 plant

Over time Denmark has been dependent on foreign fuel resources, and this has

been a continuous incentive to try to obtain higher efficiency at power stations.

It was therefore a natural consequence to build a unit with double reheat and

super-critical steam data. The efficiency is thus 48% at SKV3 in condensing

mode with a fuel utilisation of up to 93% by combined heat and power production.

The overall efficiency of the unit is up to 49% by installation of an expansion

turbine, which by reducing the pressure of the natural gas, supplies a net output

to the power production of 4 [MW] at full load. Unit 3 consists of a 90 m high

boiler house, a 32 m high turbine building, a 48 m high district heat storage tank

and a 120 m high stack. The boiler is built as a 75 m high tower boiler with a

furnace volume of 59,000 [m3].
The unit is equipped with an Alstom ® turbine extraction unit, designed with
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maximum capacity for district heat production. The turbine plant comprises five

turbine parts:

• A very high-pressure turbine with 14 stages.

• A compact module with a high-pressure and an intermediate pressure part

(HP/IP0) with 6 and 9 stages, respectively.

• An asymmetric intermediate-pressure part IP1 and IP2 with 5 and 7 steps,

respectively. Steam extraction for two serial connected district heat ex-

changers from the first (IP1) and the second (IP2) part, respectively.

• Two double-pass (butterfly) low-pressure turbines (LP1 and LP2).

The steam is reheated to 580◦C both after the very high-pressure turbine (VHP)

and after the high-pressure turbine (HP). The double reheat results in the efficiency

of the plant being increased by approximately 1 percentage point compared to a

plant with single reheat. The turbine plant is throttle-controlled and is normally

run in slide pressure mode, which results in the best available efficiency. Due

to the slide pressure mode, the up or the down throttle of the plant takes place

based on the boiler pressure while the control valves of the turbine are wide

open. The live steam pressure varies from 285 [bar] at full load to 90 [bar]

in circulation mode. The outlet pressure from the VHP turbine is 78 [bar]. In

the high-pressure turbine the steam is expanded from 76 [bar] to 20.5 [bar]

and in the first intermediate-pressure turbine (IP0) it is expanded from 19 [bar]

to 7 [bar], after which the steam is led to the asymmetrical IP1/IP2 turbine.

Here the steam is expanded to a pressure of 2.3 [bar] by outlet from IP1 and

to approximately 1 [bar] by outlet from IP2. From here the steam is led either

to the district heat exchangers or to LP1 and LP2, respectively, and further on

to the condenser. The regulation capacity of the plant is according to DONG

Energy’s load gradient requirement of maximum 8 % of maximum continuous

capacity (MCR) per minute, see figure (3.2). The marked red line in figure (3.2)

illustrates the transition area where the boiler is moves from circulation-mode

to Benson-mode. The last 10% load, from 90% to 100% is reduced to only 3

[%/min] to ensure stable temperature and calm operating conditions at full load

range, where the temperature is 582 [◦C], which is close to the material limits that

super-heater material like Esshete 1250 and fine-grained, austenitic steel TP-347

H FG dictates. By running down the plant through the transition region from

Benson to circulation mode, a corresponding reduction of the load gradient is

seen (from 8 to 3 [%/min]) to avoid major temperature fluctuations in the bottle

and thick-walled components caused by the sliding pressure curve and low flow

rates.
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Figure 3.2.: DONG Energy’s load gradient requirements for SKV3.

3.2.1. Main cooling-water system

The plant is cooled using seawater, and the main cooling-water system is op-

timised for an inlet temperature of 10 [◦C]. The condenser at the cooling-water

side is divided into two parts. Operation can thus be maintained while one part

is cut off. The condenser pipes and the tube plates are made of titanium to

avoid corrosion at the seawater side. Cooling water is taken in from Kolding

fiord and led through two 50% main cooling pumps to the cooling-water intake

structure with automatic cleaning grating and on through two mussel filters to

the condenser. The total amount of cooling water for supply of the main cooling

system is 14,000 [kg/s] at 100% load.

3.2.2. District heating

District heating is supplied to the surrounding towns with a total population of

approximately 250,000 inhabitants. At SKV3 steam for the district heat produc-

tion is extracted at two outlets of the asymmetrical double-current intermediate-

pressure turbine and led to the two heat exchangers. These heat exchangers are

serially connected in order to achieve the best possible reduction of the power pro-

duction combined with heat production. The outlet pressure and the temperature

are 1.34 [bar] and 220 [◦C] and 0.46 [bar] and 113 [◦C], respectively. The district

26



Description of the SKV3 plant

heating water is heated to a forward temperature of 105 to 120 [◦C]. The return

temperature is normally 48 [◦C]. The maximum district heat production is 465

[MJ/s] in back pressure mode only (and up to 530 MJ/s in overload condition).

The local area can at most take 400 [MJ/s] district heating. The remaining pro-

duction capacity can be used for storage in a district heat storage tank balancing

economy and energy in relation to heat and power production. The district heat

production can be regulated from zero to the required output, being subject to,

however, the usual interdependence between power and heat production. The

district heat storage tank holds 25000 [m3] and can instantaneously release a

power production capacity of approximately 60 [MW].

3.2.3. Boiler system

The boiler is a super-critical once-through tower boiler of the Benson type with

double reheat, and the boiler efficiency is 95.7% by gas-firing. The furnace

walls are with helical tubing. By using special materials, it has been possible

to design the plant to very advanced steam data. Below 540 [◦C] the following

materials are used for the super-heater and reheater tubes: 15Mo3, 13CrMo44

(T11), 10CrMoV910 (T22) and X20CrMoV121. For the final super-heater and

the reheaters, Esshete 1250 and fine-grained, austenitic steel TP-347 H FG are

used to guarantee good control of the steam side oxidation and high temperature

corrosion on the flue gas side of the tubes. For the headers and external piping in

the HP system, martensitic steel P 91 is used from the HP 1 outlet header and

above. Flue gas recirculation, including the reheating of the flue gas in a special

sector in the quad sector rotating air heater, is installed as part of the control of the

IP outlet temperature. The once-through boiler is designed by Danish Burmeister

& Wain Energi (BWE).

The firing is tangential with low NOx burners and staged combustion. The main

steam is controlled by sliding pressure operation and fully open turbine valves.

The top of the boiler house is some 90 m above ground level for the double reheat

cycles. Figure (3.3) shows a schematic view of the boiler for SKV3. The water

walls are spirally wound up to approximately 40 m above the bottom of the boiler,

and special attention has been given to the choice of materials for the water walls,

the final super heaters, the high-pressure outlet header and the pre-separator. The

well-known 13CrMo44 (T11) has been foreseen for the water wall tubes, but

further improvements of steam parameters will need better steel for the water

walls.

3.2.4. Control system

The control system performs all the tasks of control, regulation, supervision and

protection of the boiler, turbine, generator, and condensate system, including

auxiliary systems and district heating and system consumption. The operating

27



3. Case study - Skærbækværket

Screen Screen

Feedwater

ECO

RH1 in

RH2 in

RH2 out

SH outRH1 out

Water
separators

Water
collection
tank

Flue gas out

MT1.2 HT2

HT1A

HT1B MT2.2

MT1.1B

MT2.1

MT1.1A

Figure 3.3.: Schematic view of the boiler for SKV3.

situation and the development in the efficiency of the individual plant components

are continuously supervised by means of calculations in the control system.

Results of this supervision and measuring signals from several parts of the

process make up around 6000 tags per plant, which are transferred to a central

InSql® database where data can be compared and analysed over time to obtain

optimum operation both financially and technically, based on online performance

simulations (Turabs Online); see [20]. It is also possible to compare operational

results from DONG Energy’s other power stations as all control systems send

data to the central InSql® database.

3.3. Steady state modelling

Numerical modelling of SKV3 is performed by Turabs II. Turabs II is a simulation

programme developed by DONG Energy - Thermal Power A/S for calculation of

turbine and water/steam circuits in general. Turabs II is the result of more than
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Steady state modelling

15 years of continuous development and is tuned through the experience gained

from energy projects worldwide. The system is a static calculation programme,

which with a comprehensive component library and advanced water/steam and

gas library, can be used for design and consequence calculations of power station

units. Turabs II equips engineers to carry out accurate pressure, temperature and

flow analysis from a position of knowledge, and rapidly achieve an optimised

design. This cuts production costs and improves product quality. The system runs

on a Windows platform and comprises a pre-processor, which can run in a design

and in an off-design mode so that based on a design calculation, consequence cal-

culations can quickly be established in the form of off-design calculation. Turabs

II includes a multi-stage equation solver (search directions), which numerically

is very robust. Turabs II solves (minimises a functional) a constrained non-linear

equation system by establishing a Jacobiant matrix which is solved iteratively by

means of a modified Newton Rapson algorithm. A Cholesky decomposition [21]

is used in connection with an iterative solution of the equation system and at the

same time a Cuthil McKey re-numeration of the equation system is used. The

solution vector is accepted during an iteration process when the Euclidean norm

is less than a user specified accuracy, which is the convergence criterion. The

solution vector is supervised by a control routine, ensuring that the solution will

always be within a predefined definition interval. The following solver algorithms

(search directions) are available:

• The Line Search Method, [22] page 116.

• The Double Dog Leg Step Method, [22] page 139.

• The Locally Constrained Optimal Hook Step Method, [22] page 134.

• The Method of Bisection, [22] page 25.

The various solvers are extensively described in [22]. The Turabs II system

includes an algorithm, which utilises a hierarchic priority of the above search

directions dependent on the convergence speed of the equation solver at the actual

operating point. The hierarchy indicates how fast the line search and the dog leg

methods are compared to the method of bisection. The method of bisection is not

used until it is absolutely necessary. Moreover Turabs II includes a comprehensive

component library of turbines, generators, condensers, pre-heaters, pipes, valves

and controllers which are all implemented in the Turabs II code. In general

the involved components are very detailed and fulfil the above descriptions of

the actual plant. A comprehensive modified water/steam (IAPWS 97) and gas

library [23] is connected covering the pressure range from 0 to 800 [bar] and the

temperature range from 0 to 1000 [◦C]. The application runs on a wide range of

high performance PCs including MS Windows 7, 64 bit.
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3. Case study - Skærbækværket

Figure 3.4.: Design model of water / steam circuit of SKV3, performed by Turabs II.
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Measurements - SKV3 evaporator

3.4. Measurements - SKV3 evaporator

A measurement campaign has been established in order to identify the tube wall

temperature of the panel walls of the evaporator of SKV3. The measurement

campaign matches the requirement to cover both a stationary period as well as a

dynamic period where there is a jump in temperature, mass flow and pressure.

A total of four measurement campaigns are listed in table (3.1). The data are

measured every second, and the resolution of the data is subject to a measure-

ment signal window for determination of when changes to the measurement data

logged. This is to save disk space, so that data volumes are not too extensive.

Every second 6000 data are measured on SKV3. Unfortunately, we find that

this measurement window is disadvantageous placed for many of the pipe wall

temperature measurements that we measure, because data is only applicable as

a signal value for any alarm for high tube wall temperature. We have chosen

to log the metal temperature at the panel wall every second. These wall tem-

peratures are found in figures (F.3) to (F.6), (F.9) to (F.12), (F.15) to (F.18) and

(F.21) to (F.24). The measurements are located physically by their KKS number-

Table 3.1.: Measurement campaigns.

Sample nr. Date tstart tend Description Sentence of burners

1 17.10.2011 07 : 55 : 00 08 : 10 : 00 Benson mode Full

2 17.10.2011 11 : 25 : 00 11 : 40 : 00 Benson mode Full

3 29.10.2011 17 : 30 : 00 17 : 50 : 00 Transition to Benson mode High

4 30.10.2011 17 : 00 : 00 17 : 20 : 00 Boiler circulation mode High

ing system, which is an unique identification number based on the Kreftwerke

Kennzeichnen System; see [24]. From each sample period it is possible to cal-

culate the entire heat production in the boiler, which is illustrated in figure (3.5).

The measurement tags are defined for each panel section (X = 1 to 4), front, rear,

left and right sections, where signals for pressure and temperature before and

after the evaporator are given by the following KKS numbers: HAD3XCP02,

HAD3XFT001, HAD1XCP001 and HAD1XFT001. Furthermore, a mass flow

measurement before the economiser and an enthalpy measurement upstream

the bottle are registered so that a complete energy balance can be made for the

entire evaporator. Hence the power absorbed in the wall panel and hub can be

calculated and is illustrated in figure (3.5). The corresponding averaged data for

the four samples can be summarised in the following table (3.2). Depicting the

pressure drop curve for the SKV3 boiler is attempted on figure (3.7) on the basis

of the four samples showing immediately a linear correlation, with an overall

correlation coefficient of 0.99562. Taking into account the hydrostatic pressure, a

non-linear relationship is indicated between Δp and mass flow. The hydrostatic
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Figure 3.5.: Power input in the boiler for samples 1 to 4.

Figure 3.6.: Pressure drop in the boiler for samples 1 to 4.

Sample nr. ṁ hin hout q̇ Pin Pout ΔP Load

Units [kg/s] [kJ/kg] [kJ/kg] [MW] [bar] [bar] [bar] [%]

1 195.46 1514.27 2894.32 269.75 244.20 230,05 14.15 80.5

2 258.11 1566.09 2835.05 335.27 325.20 306.29 18.91 100.0

3 89.54 1169.20 2819.71 140.48 110.89 105.58 5.31 41.9

4 90.04 1187.70 2720.25 137.99 96.87 92.38 4.49 41.2

Table 3.2.: Mean values for heat and pressure balance for the four samples.
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Measurements - SKV3 evaporator

Figure 3.7.: Pressure drop as a function of mass flow in the boiler for samples 1 to 4.

pressure Δpgeo is estimated to be approximately 2.5 [bar], corresponding to the

hydrostatic pressure drop in the evaporator. Assuming an average density of ap-

proximately 700 [kg/m3] at 90 [bar] and a bottle operation flow of approximately

90 [kg/s] corresponding to the ECO minimum flow at low load, the geodetic

height can be estimated to 35 [m], which is consistent with project drawings

for the boiler plant. Measurement data from SKV3 are obtained from the plant

control systems, where the sampling frequency is lowered. One of the major

challenges in a Benson boiler is to ensure uniform flow distribution to each of

the evaporator tubes. Normally, a certain degree of sub-cooling is needed, in

order to ensure a single-phase flow; otherwise having resistors incorporated is

necessary to ensure a uniform flow to the individual orifices. The thermo sensors

provided on the panel walls are of type N (thermocouple), welded to the panel

wall. It is therefore difficult to calibrate the gauges, but the supplier of thermo

couples provide the information that they are constructed from the same roll of

wire; hence we assume that their temperature characteristics and tolerances are

largely identical. Normally we expect a temperature tolerance of 1-2 [oC] for

the calibrated type N thermo sensors. If we only want to look at differences in

temperature between the evaporator tubes, we can ignore the temperature offsets

of the thermo-elements and only look at the temperature difference relative to

the mean temperature within a batch of, e.g seven thermocouples. The thermo

sensors provided on the panel walls are located in a reference elevation of 43.2
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3. Case study - Skærbækværket

[m] above mean sea level, which corresponds to a position immediately above the

top burner floor. The other thermocouples used in this measurement campaign

are also based on the type N, which can operate in a temperature range from -180

[oC] to 1300 [oC]. Measurement uncertainty is here stated to be below 1-2 [oC].

Pressure transducers are calibrated each year, and according to the certificates,

the measurement uncertainty is found below 0.3% on all transducers.

Figure 3.8.: Burner load - SKV3 samples 1 and 2.

Figure 3.9.: Burner load - SKV3 samples 3 and 4.

The thermo sensors are located on the back of the evaporator tubes, thus loc-

ated on the cold side and are in principle measuring the surface temperature of
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the heat pipe. The KKS numbers are named HAD21CTXXR, HAD22CTXXR,

HAD23CTXXR and HAD24CTXXR, corresponding to the left side, back wall,

front wall and right side, respectively. XX is the pipe number on each side,

starting from 01 to 55. Only every second pipe is included in this measurement

campaign.

In table (3.3) is an overview of the five measurement campaigns. The measure-

ments are grouped into four sections, each consisting of seven heat pipes and are

available as a time series of 15-20 minute sampling periods (Samples 1-4). Mean

values for each group (of seven measurements) are analysed, and the maximum

deviation from the mean value in each group (signed) are shown in table (3.3) for

groups: 1-13, 15-27, 29-41 and 43-55. Furthermore, the absolute maximum and

minimum deviation of all measurements (1-55) are located in column ’Max’ and

’Min’, and the corresponding standard deviation is shown in column ’S.Dev’.

Sample nr. Panel 1-13 15-27 29-41 43-55 Max. Min. S.Dev.

1

Front 4.167 -5.350 5.628 7.211 7.211 -5.350 3.344

Right -4.525 -2.676 12.934 -9.419 12.924 -9.419 4.270

Back 6.926 5.691 4.933 4.508 6.926 -5.962 2.833

Left -4.666 8.597 5.671 -5.327 6.152 -8.597 2.930

2

Front 1.804 4.204 2.877 4.231 4.231 -4.131 2.019

Right -3.685 -4.324 8.151 -5.692 8.151 -5.692 2.951

Back -3.774 4.129 3.045 -3.318 4.129 -3.774 2.073

Left -2.220 -5.760 3.131 -4.123 3.477 -5.760 1.953

3

Front 12.336 22.606 36.260 27.167 36.260 -29.027 15.725

Right -24.446 -29.676 -39.644 -29.525 34.396 -39.644 17.770

Back 26.839 -24.885 8.705 6.769 26.839 -26.201 10.827

Left -2.585 2.827 3.360 3.832 3.832 -2.686 1.283

4

Front -0.400 -0.710 -0.359 0.743 0.743 0.710 0.278

Right 0.193 -0.256 1.205 0.666 1.205 -0.832 0.376

Back -0.385 0.478 0.722 -0.298 0.722 -0.450 0.234

Left -0.356 0.572 0.823 0.552 0.823 -0.615 0.288

Table 3.3.: Measurements of panel wall temperature differences.

3.5. Summary

The calculated temperature imbalances in the different sequential sections (1-13,

15-27, 29-41 and 43-55) are illustrated in table (3.3). What immediately catches

the eye is sample 4, which is very homogeneous in the temperature level. The

maximum deviation relative to the mean value is approximately +/- 1 [oC], which

is a steady state situation with a pressure loss of approximately 5 [bar] over the

boiler, running in circulation mode. On the other hand we have sample 3, which is

distinguished by intense temperature gradients between the tube elements in the

panel wall. Here is recorded up to +36 [oC] and -39 [oC] difference in relation to

the mean temperature in each group of seven tubes. This is a dramatic deviation
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and can be a result of an asymmetric flow distribution in the panel walls. In

sample 3, the boiler is in a transition phase, from circulation operation to Benson

operation, and this results in substantial imbalances in the flow distribution, be-

cause some tubes contain more steam than others, so that the total pressure of

the evaporator dictates the flow distribution in the panel wall. This is a dynamic

phenomenon, which will stabilize when the boiler gets into a stationary operation

again, as seen in sample 3. It is exclusively a dynamic phenomenon, that is initi-

ated by the transition point from circulation to Benson operation. Generally, there

is not much difference in the thermal imbalances in the various panels (’Front’,

’Right’, ’Back’ and ’Left’), apart from sample 3, where the gaps are remarkably

higher, than in the other panels. For example, there are disparities in the order

of +/- 30 [oC] in the ’Front’, ’Right’ and ’Back’ panels, while in the ’Left’ panel

there only occurs a bias of +/- 3 [oC]. This may be due to that the fluid here exists

in the two-phase region and thus is not subject to local superheating of steam.

Another possibility is the burner composition, which stabilizes the flow of the

Left panel. At high load steady state operation, we see insignificant fluctuations in

the panel wall temperature, where the maximum/minimum temperature deviation

is approximately +/- 10 [oC] from the average temperature at 80 % load and only

+/- 5 [oC] from the average temperature at 100 % load. In both high load cases, a

uniform behaviour is observed for all panels.

In figure (3.5) time series of the power absorbed in the panel walls is calculated.

It is only in sample 3 that significant variations in the load may be registered,

in the form of higher departure enthalpy (temperature). The superheated steam

contributions are confined to the total enthalpy departure, because the latent

heat is so large at part load. The inlet condition to the evaporator is depicted

in figure (F.2), (F.8), (F.14) and (F.18), where samples 1 and 2 are operating

above the critical point, while samples 3-4 are sub-critical. It appears from

the sub-critical scenarios, that the inlet conditions are sub-cooled water and the

outlet conditions from the evaporator are typically super-heated steam, apart

from sample 4, where super heating is found at the end of the measurement

period; otherwise the exit conditions are in a two-phase region by circulating

operation.
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In this paragraph, an attempt is made to clear out the effect of heat flux profiles

on the stability of a boiler system as well as describe the temperature cross-

section profile of a heat tube wall in relation to creep and fatigue phenomena.

Our starting point is the boiler geometry as described for SKV3. Therefore, we

can ask if the hypothesis of constant heat flux is realistic. A certain residence

time in the combustion zone, which creates a time delay, is required in order to

obtain a complete combustion. Therefore, we must assume some bias in heat

flux profile, centred, with a maximum, in the middle of the furnace. The burners

are combined in a ring on each floor around the combustion chamber. When the

load is changed, the heat flux profile can vary according to the order in which

the burners are turned off and affect the temperature distribution in panel walls

drastically.

4.1. Heat flux profiles in the SKV3 furnace

For the simulation of combustion processes in the SKV3 power plant boiler

FLUENT® 13.0 is used. The application is able to handle a 3D thermo hydraulic-

simulation, combined with a complex internal combustion model. DONG Energy

- Thermal Power has extensive experience in the use of CFD simulation and

optimization of combustion processes in power plant boilers, and therefore used

this tool to estimate the flux distributions in the power plant boiler on SKV3,

rather than use a technical measuring approach that is both more costly and

time-consuming and not necessarily more precise. Heat fluxes are one outcome

of the simulations that can be determined along the surfaces and some lines

specified by the user. These flux profiles can give us an idea of what kind of heat

profile is realistic to use on an evaporator model. Below is a brief description

of the assumptions, that form the basis for determining the heat flux along the

typical heating surface elements of a power plant boiler like SKV3, which in this

case is gas-fired. The governing fluid dynamic equations and the corresponding

combustion processes are described in Appendix L. For further details, see the

user documentation of FLUENT® 13.0.

4.1.1. Model setup

The SKV3 boiler is modelled using only half of the furnace volume, because

the furnace approximately can be treated as being axi-symmetric around the x-z

plane. In the following setup a standard air mixture is taken as the fluid and is

assumed to be incompressible. Bulk axial velocity in the upper portion of the
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boiler, before flue gas entry into the super-heater section, is around 18 [m/s] at

base load. The flue gas temperature in the same region is around 1875 [K] leading

to an approximate Reynolds number of 6.0e+5, meaning turbulent flow. The

model is forced by fixed thermal boundaries to absorb the heat produced during

the combustion processes. The model is constructed by mainly hexahedral cells

except for the central part of the boiler volume which has been meshed using

polyhedral cells. This has been necessary to interface the mesh structure of the

circular concentric burners while maintaining a high mesh quality. The model

geometry is generated by the pre-processor of FLUENT® 13.0, and a total of

2.44 million computational cells are used to resolve the modelled geometry. The

average cell volume differs in the various parts of the model and is listed in table

(4.1).

Table 4.1.: Average cell volumes in various parts of the SKV3 model.

Average volume Average side length

Section [cm3] [cm]

Burners 85 4

Main furnace (combustion volume) 2200 13

OFA volume 2600 14

SH volume 4750 17

Top of boiler 6800 19

Bottom of furnace 9000 21

4.1.2. Boundary conditions

Boundary conditions for burner registers (air and gas), OBA (Over Burner Air)

and OFA (Over Fire Air) nozzles are assumed to be uniform across the designated

inlet cross-sections. This applies to all fields (velocity, temperature and species

concentrations). To simplify the combustion chemistry, the fuel is assumed to

consist of methane, and the mass flow of gas is adjusted accordingly to ensure

correct thermal input. The final part of the gas burners has been geometrically

resolved, as is seen in figure (4.1). The model describes a half boiler, which is

symmetric in the x-z plane, so that the flux distribution is symmetrical in this

plane. The wall boundary conditions applied for the boiler simulation are steam

side temperatures supplemented by the thermal resistance of the pipe wall, where

only the one-dimensional heat transfer component normal to the pipe wall is

taken into account. The steam side temperature variation is assumed to vary

(approximately) linearly as a function of the exposed surface area, as illustrated

in figure (4.2). In other words, the coupled problem is not solved directly, since

the computed local heat flux is not allowed to alter the assumed steam side

temperature. Instead, the integral heat uptake for the evaporator is calibrated to
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Figure 4.1.: Plot showing geometry and mesh structure around the burners of SKV 3.

The temperature field is shown on the coordinate plane illustrated.

fit actual evaporator uptakes, by changing radiate and heat resistive properties of

the wall (the wall emissivity and the wall thickness). The wall thickness is varied

only as a convenient way to modify the overall heat transfer coefficient, which is

a function of the furnace side fouling, steal properties, steam side fouling and the

steam convective heat transfer coefficient.

4.1.3. Simulation results

The simulation result is a steady state picture of the thermal-dynamic and hy-

drodynamic flow condition, balanced with the inflowing species as source terms,

combusted by the chemical reaction given in (L.12). Our goal is to get a qualified

estimate of the heat flux perpendicular to the evaporator surface, as this will be

the boundary condition for the two-phase tube model. The heat flux, given in

[W/m2], is illustrated as a 3D illustration in figure (4.3), and the corresponding

line series of heat fluxes as vertical lines along the boiler surface are illustrated

in figure (4.5), with the positions of the vertical line series indicated in figure

(4.4). The 100 % load simulation shows clearly that the radiation flux varies

a lot along the vertical z-axis of the boiler, despite the fact that all burners are

active. A comparison of the heat flux distribution along line 1 versus line 4 and

line 2 versus line 6 is reasonably symmetrical along the y-z plane and x-z plane.

It is therefore reasonable to project the flux distribution onto the individual tubes,

which we model in this project.
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Figure 4.2.: Steam side wall temperature variation assumed for the SKV3 full boiler

thermal load case.

Figure 4.3.: ANSYS CFD simulation of surface heat flux at SKV3 furnace (100% load).
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Figure 4.4.: Cross-section of SKV3 furnace with indication of Flux line series as ver-

tical lines.

4.1.4. Summary

The model is a steady state model, running until a converge criterion is fulfilled

(approximately 0.1 % in absolute flow). The model ensures mass balance, so

that the velocity distribution on the downstream edge, just matches the fuel and

airflow into the boiler. The total power input must be balanced by the heat uptake,

which takes place in the water / steam circuit. Hence there are two conditions

that must be met - the mass and energy balances. The heat flux distributions on

the panel walls can be projected onto the evaporator tubes, which are wound at

an angle of 10o to 12o around the furnace perimeter from the lower furnace inlet

headers to above the burner zone; see figure (2.3) and provide the necessary heat

uptake. We can see a high degree of symmetry in the heat flux distribution, as

lines 1 and 4 largely coincide; lines 2 and 3 and lines 5 and 6 also coincide. The

flux distribution on slightly rising heat pipes in the evaporator, which embraces

the whole boiler room, can be reasonably assumed to follow the trend of a heat

flux distribution function with a maximum heat flux in the middle of the boiler

room. Therefore, we assume the flux distribution along a heat pipe follows

the distribution line which is estimated along the lines 1 and 4. These results

will be used in section 10.4 in the form of a parabolic heat flux profile of the

evaporator tubes, in order to analyze the effects of different heating profiles in

the boiler.
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Figure 4.5.: Line series of surface heat flux along line 1 to line 6 at the SKV3 furnace

(100% load).

4.2. Pipe conditions

Modern Benson boilers have a working pressure which exceeds the critical steam

pressure. Therefore the pipe wall thickness is of such size that the heat capacity

is essential for the dynamic flow response. The temperature distribution through

a pipe wall in a uniform radial pipeline (heat pipe) is developed for a dynamic

point of view.

An evaporator tube is a passive device that is constructed in such a way that it acts

as though it has extremely high thermal conductivity, to ensure an optimal heat

transfer in a furnace.Some considerations follow about the time constants in the

heat pipes exposed to dynamic loads, so that qualitative terms can be evaluated

on the dynamic effects, for the study of creep and fatigue in boiler tubes and

evaporator tubes.
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4.2.1. Heat conduction

Heat conduction may occur under static and dynamic conditions. The steady

state conduction has a constant temperature difference, driving the conduction

so that after an equilibration time, the spatial distribution of temperatures (tem-

perature field) in the conducting object does not change any further. In steady

state conduction, the amount of heat entering a section is equal to the amount of

heat coming out. In steady state conduction, the law of direct current electrical

conduction can be applied to ’heat currents’. In such cases, it is possible to take

’thermal resistances’ as the analogy to electrical resistances. Temperature plays

the role of voltage, and heat transferred is the analogy of electrical current.

The non-steady-state situations are those in which the temperature drop or in-

crease occurs more drastically, such as when a thermal boundary condition (inlet

condition to panel wall in furnace) is rapidly changed from low to high temperat-

ure (pressure). Here the temperature field within the object changes as a function

of time, and the interest lies in analysing this spatial change of temperature within

the object over time. This mode of heat conduction can be referred to as transient

conduction. An interesting aspect in this context is the fatigue of steel, due to

thermal fluctuations in the material. Analysis of these systems is more complex

and (except for simple shapes) calls for the application of approximation theories,

and/or numerical analysis by computer.

The following assumptions are made:

• No internal heat generation

• Symmetric geometry with isotropic material properties (kw and cp are

assumed constant and the internal rifles are ignored)

4.2.2. Pipe model theory

The law of Heat Conduction, also known as Fourier’s law [25], states that the time

rate of heat transfer through a material is proportional to the negative gradient in

the temperature and to the area at right angles, to that gradient, through which

the heat is flowing. We can state this law in two equivalent forms: the integral

form, in which we look at the amount of energy flowing into or out of a body as a

whole, and the differential form, in which we look at the flows or fluxes of energy

locally.

Consider a cylinder as in figure (4.6), whose inner and outer surfaces are exposed

to fluids at different temperature. For dynamic conduction, with no heat genera-

tion, the appropriate form of the heat equation is given with the differential form

1

r
∂
∂ r

(
kwr

∂T
∂ r

)
+

∂
∂ z

(
kw

∂T
∂ z

)
= ρcp

∂T
∂ t

(4.1)
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4. Heat flux and wall temperature distribution

Figure 4.6.: Cross section of pipe wall

where r ∈ [r0, ..,r1], z ∈ [0, .., lz] and t ∈ [0, ..,∞[. Equation (4.1) has to be

supplied with four boundary conditions belonging to the outer and inner diameter

respectively, and the pipe inlet and outlet cross-sections, respectively (z=0 and

z=lz). The boundary conditions could be:

1. Neumann boundary condition, where a heat flux q(z,t) (radiation) is forced

at the out-side of the pipe wall.

2. Robinson boundary condition, where the heat transfer h(T −T0) is mod-

elled at the pipe inner wall.

3. Dirichlet boundary condition, where the surface temperature T0 and/or T1

is specified.

The solution domain is illustrated in figure (4.7) and consists of a normalized

Cartesian grid. The axial direction is represented by the z
′
axis, and the radial axis

is given by r
′
. The discretization of the model is discretised in nx and nr computa-

tional cells with a grid spacing of Δx = 1
nx

and Δr = 1
nr

, respectively. The physical

tube length is named lz and the physical pipe wall thickness is lr = r1 − r0. In the

normalized coordinate system, the pipe length is L=1 and the normalized wall

thickness is r
′
1− r

′
0 = 1. The governing equation (4.1) is put in a non-dimensional

form, by defining the following dimensionless quantities:

z∗ =
z
lz
, r∗ =

r− r0

lr
, t∗ =

t
t0
, k∗w =

k
k0
, T ∗ =

T −T0

ΔT
(4.2)

where

ΔT = T1 −T0, t0 =
lr2

α
, and α =

k0

ρw ·Cpw
(4.3)
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Figure 4.7.: Solution domain of the wall by use of a rectangular cartesian grid.

The thermal diffusivity is represented by α . L is the length/height of the pipeline

and t0 is a characteristic time constant due to the wall properties. The thermal

conductivity is normalized according to a basic thermal conductivity referring to

the internal surface conditions of the pipe. Inserting the dimensionless quantities

into equation (4.1) leads to equation (4.4), where β=lr/lz. The subscript w refers

to the conductivity in the pipe wall.

1

r∗
∂
∂ r

(
k∗wr∗

∂T ∗

∂ r∗

)
+β 2 ∂

∂ z∗

(
k∗w

∂T ∗

∂ z∗

)
=

∂T ∗

∂ t∗
(4.4)

4.2.3. Numerical solution of the Poisson equation

There are several numerical methods for solving the mathematical problem of

(4.4). It seems obvious to use a finite volume approach to solve equation (4.1).

The Finite volume principle is easy to implement for this simple geometry, and

the method is numerically stable with, e.g, a second-order accuracy.

We want to bring (4.1) to a discrete differential form given as (J.1) in Appendix J,

which can be solved fully implicit by the sparse technique described in Appendix

J. The discretization is performed on a flexible grid in the radial direction for

nr control volumes (CV). The five discrete coefficients given in equation (J.1)

(named an, as, ap, ae and aw) are available for the two-dimensional (2D) equation

given by equation (4.4). The coefficient is determined by the revaluation of the

discretised terms of equation (4.1) and subsequent isolation of the coefficients of

the primary dependent variable (this case T) for the five CV volumes, marked by

45



4. Heat flux and wall temperature distribution

red in figure (4.7), which are involved in the discretization of the equation. The

coefficients are given by:

an =

⎧⎨⎩
2·Δz

rn−rp

(
1+

rn−rp
4rp

)
for i = 1

Δz
rn−rp

(
1+

rn−rp
2rp

)
for nr ≥ i > 1

as =

⎧⎨⎩
2·Δz

rp−rs

(
1+

rp−rs
4rp

)
for i = nr

Δz
rp−rs

(
1+

rp−rs
2rp

)
for nr > i ≥ 1

ae = β
Δr
Δz

(4.5)

aw = ae

a0 =
Δr ·Δz

Δt
ap =−(aw +ae +as +an)−a0

and

bp = T n−1 ·a0

where an, as, ae, aw and ap are referring to time step n, and the right side of

the discrete equation (4.6), represented by the coefficient bp, is referring to the

previous time step n-1.

anΦn +asΦs +apΦp +aeΦe +awΦw = bp (4.6)

Equation (4.6) is solved by the implicit solver, described in Appendix (J). The

independent variable r is discretised as:

rn = ri+1

rp = ri for i = 0,nr +1 (4.7)

rs = ri−1

and

Δr =

⎧⎪⎨⎪⎩
rn−rs

2 for nr > i > 1

rn − rp for i = 1

rp − rs for i = nr

(4.8)
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For an equidistant radial grid (Δr = (r1 − r0)/nr), the expressions of an and as
can be simplified to:

an =
Δz
Δr

(
1+

Δz
2rp

)
(4.9)

and

as =
Δz
Δr

(
1− Δz

2rp

)
(4.10)

Note that the CVs are of half width at the boundaries, according to equation (4.5)

and figure (4.7).

4.2.4. Thermal boundary conditions

The boundary conditions at the outer edge will typically be a Neumann condition

in the form of a radiation flux condition. For model verification a Dirichlet

boundary condition has been used, in the form of a temperature fixation. This

would also make an impact at the pipe inner wall, where water / steam will dictate

a temperature condition. Along the tube ends (z = 0 and z = 1), we have two

Neumann conditions, with a typical zero gradient of the temperature field. Below

is a brief describtion how the boundary conditions for the four peripheral surfaces

according to equation (4.1) are implemented.

North boundary:
The Neumann condition is implemented as a sequential operation where we

first adjust Ap 1): Ap=Ap+An, next the right side of 4.1 will be 2): bp =
bp −An ∗Qn ∗Δr and finally 3): An=0. The Dirichlet temperature condition along

the northern boundary is given as 1): Ap=Ap-An, 2): bp = bp−2 ·Tn and 3): An=0.

South boundary:
The Dirichlet temperature condition along the southern boundary is given as 1):

Ap=Ap-As, 2): bp = bp −2 ·Ts and 3): As=0.

East boundary:
The Neumann flux boundary condition is implemented as 1): Ap=Ap+Ae, 2):

bp = bp −An ·Qe ·Δr ·Te, where Qe=0 (symmetry condition) and 3): Ae=0.

West boundary:
The West boundary condition is similar to the East condition 1): Ap=Ap+Aw, 2):

bp = bp−An ·Qw ·Δr ·Tw, where Qw=0 (symmetry condition) and 3): Aw=0.
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4. Heat flux and wall temperature distribution

4.2.5. Stretching the FV grid

In order to model the very thin heat-conducting layer (fouling) at the tube inner

side, for example caused by magnetite deposits, we can benefit from using a

stretch of the grid, and not an equidistant grid, so that we can limit the number

of calculation cells. The radial grid can be stretched so that the grid solution is

intensified where one assumes the largest gradients in the solution field or if one

wants to model anisotropic materials which could include a thin oxide layer on

the pipe inner side with lower thermal conductivity. Therefore we introduce a

stretch function for the refinement of the grid, close to the boundaries, to resolve

a thin fouling layer. The stretch function uses a standard equidistant and nor-

malized coordinate system as input and returns a normalized stretched grid. The

Figure 4.8.: Illustration of a stretch function.

stretching functions below fulfill the following conditions: y(0)=0, y(1)=1 and

the function must be monotonically increasing with ∂y
∂ r > 0. The function is able

to stretch the grid along the north and south boundary, depending on the number

of stretch functions used. We use a second-order stretch function, which ensures

a C1 continuity in the gradient field of T, as described in Appendix (G). The

numerical solution of the normalized Poisson equation (4.4) is based on a finite

volume approach and is verified against an analytic solution, which is established
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by the use of the following four boundary conditions: two Dirichlet boundaries,

T (r0) = T0 = 0andT (r1) = T1 = 1 and two Neumann boundaries at the pipe

ends, ∂T
∂x |z=0 =0 and ∂T

∂x |z=1 = 0. The solution is compared with an analytical

one-dimensional solution, see equation (4.14), and illustrated in figure (4.9).

Additionally the simulation is performed with stretching of the grid along the

north boundary in figure (4.10) and the south boundary in figure (4.11). Note that

Figure 4.9.: Comparison of the numerical solution of equation (4.4) with (4.14).

the level of detail by stretching of the south boundary, is poor in areas with large

gradients. This is experienced as a discontinuity in the calculated temperature

distribution; see figure (4.11) along the north boundary. The thermal conductivity,

k, is often treated as a constant, though this is not always true. While the thermal

conductivity of a material generally varies with temperature, the variation can

be small over a significant range of temperatures for some common materials.

Fouling layers may consist of magnetite, oxide or iron particle deposition, having

a thermal conductivity less than one decay of what we see in steel.

In anisotropic materials, the thermal conductivity typically varies with orient-

ation; in this case, k is represented by a second-order tensor. In non-uniform

materials, k varies with spatial location. Additionally the formation of a dense

layer of magnetite has a markedly restrictive impact on the heat transfer rate;
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4. Heat flux and wall temperature distribution

Figure 4.10.: Comparison of the numerical solution of equation (4.4) with (4.14) with a

stretched North grid. n is the number of time steps.

therefore, with this stretching of the differential grid, we can define a layer which

exactly match the thickness of both the topotactic and the epitaxy layer of the

porous structures of magnetite, which have heat conductivity of 2.3 [W/mK] and

0.7 [W/mK], respectively. This phenomenon is described in the next section (4.3).

For many simple applications, Fourier’s law is used in its one-dimensional form.

In the r-direction:

qz =−kwA
∂T
∂ r

=−kw2πrL
∂T
∂ r

(4.11)

The analytical solution is able to visualize the steady state radial temperature

profile, based on the above boundary conditions. Additionally the rate of energy,
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Figure 4.11.: Comparison of the numerical solution of equation (4.4) with (4.14) with a

stretched South grid. n is the number of time steps.

which is conducted across any cylindrical surface in the solid, can be expressed

as a function of the radius. For the one-dimensional heat conduction problem we

can express the heat conduction as:

T (r) =C1 ln(r)+C2. (4.12)

To obtain the coefficients, C1 and C2, we introduce the following Dirichlet bound-

ary conditions, where r is the pipe radius with suffix (i=inner) and (o=outer):

T (ri) = Ti ∧T (ro) = To (4.13)

and Ti and To refer to the specific radial position on the pipe wall (z). Solving for

C1 and C2 and substituting back into the general solution, we obtain

T (r)z =
Ti −To

ln( ri
ro
)

ln(
r
ro
)+To. (4.14)
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4. Heat flux and wall temperature distribution

By eliminating both the axial gradients in equation (4.4) and the dynamic terms,

we can express an analytical solution for the problem, which is illustrated in the

figures (4.9), (4.10) and (4.11) as the steady state solution marked by +.

From this result it is evident, for conduction in hollow cylinders like pipes, that

the heat transfer rate is of the form

qr =
2πLkw(Ti −To)

ln( ri
ro
)

[w]. (4.15)

Note that the temperature distribution associated with radial conduction through

a cylinder is logarithmic and not linear, as it is for a plane wall under the same

thermal conditions. The temperature distribution in the pipe wall may change

radically because of fouling on the outward and the inner pipe wall, due to

changing values of thermal conductivity in the respective zones of fouling. Let us

assume that we have a simple one-dimensional pipe model, with only axial heat

transfer terms, and no spatial resolution of the radial dimension. In that case the

wall temperature distribution represent an average temperature. In some cases,

for example, if we need to determine the heat transfer through the pipe wall to

the flowing fluid, it is useful to know the surface temperatures of the pipe inner

wall. Let the average temperature for a slice element of the pipe be T̄z and let

T (r)z represent the radial temperature distribution by equation (4.14); hence the

averaged wall temperature Tw can be estimated by:

Tw =
1

Ac

∫ ro

ri

2πr ·T (r)dr (4.16)

=
2π
Ac

[
a0

[
x2 ln(x)/2− x2/4

]ro

ri
−a0 ln(ro)

[
x2/2

]ro

ri

]
+To ·

[
x2/2

]r1

r0

= a1 ·Ti +(1−a1) ·To

where a1 is given by

a1 =
r2

i

r2
i − r2

o
− 1

2ln(ri/ro)
(4.17)

The inner wall temperature can be determined by use of equation (4.15), where S

is the heated perimeter, and we find

Ti = T̄z +(1+a)

[
qzS ln( ri

ro
)

2πkw

]
(4.18)
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Thermal resistance (conduction) for n layers of isotropic material is defined from

[25] as:

Rcond =
i=n

∑
i=0

Ri =
To −Ti

qz
=

L
kwA

(4.19)

The overall heat transfer coefficient U is defined as:

qz =UzAΔTz (4.20)

Where Uz and A as well as ΔT can refer to specific layers (i) in the radial pipe

material

Ai = 2πriL. (4.21)

For a composite wall in radial pipes, with n layers, the following equation (4.22)

expresses an overall thermal resistance.

UoAo =UiAi = (Σn
i=1Ri)

−1 (4.22)

and

q =Ui Ai ΔT, ΔT = Ti −To (4.23)

If we have a pipe wall consisting of three layers, meaning we have four surface

temperatures, which are formulated in equations (4.24) and (4.25), then the

different layers are referring to internal fouling given by layer A, the pipe material

by layer B and the external fouling by layer C. The overall heat transfer coefficient

Figure 4.12.: Temperature distribution for a composite cylindrical wall, from [25].

is given as:

q =
T∞,i −T∞,o

Rtot
=UiAi(T∞,i −T∞,o) (4.24)
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4. Heat flux and wall temperature distribution

where T∞,i and T∞,o are the temperatures outside the internal and the external

thermal boundary, and r1=ri and r4=ro.

Ui =
1

1
hi
+ r1

kA
ln( r2

r1
)+ r1

kB
ln( r3

r2
)+ r1

kC
ln( r4

r3
)+ r1

r4ho

(4.25)

4.2.6. Time constant of the pipe wall

In the time domain, the usual choice to explore the time response is through the

step response to a step input, or the impulse response to a Heaviside step function

input. In the frequency domain (for example, looking at the Fourier transform of

the step response, or using an input that is a simple sinusoidal function of time)

the time constant also determines the bandwidth of a first-order time-invariant

system, that is, the frequency at which the output signal power drops to half the

value it has at low frequencies.

The dynamic response of the pipe wall is illustrated in figure (4.13) for a model

with, e.g, 10 radial layers, where the time series of equidistant radial locations is

named (r1 to r10) with r1 closest to the inner diameter; the radial layers show the

dynamic response in temperature, caused by a Heaviside step response function

of unity applied on the outer tube surface. The corresponding time constants

for the discrete radial locations are listed in table (4.2), where r=1 refers to

the near inner layer and r=10 is the near outer layer, where T∞ expresses the

Table 4.2.: Time constants for radial positions in the pipe wall, pipe data from equation

(C.16).

Radial location (%) T∞[−] Tτ [−] τ[s]

r = 1 (9) 0.10350 0.06542 8.47876

r = 2 (19) 0.21482 0.13579 8.24383

r = 3 (29) 0.32248 0.20385 7.82915

r = 4 (39) 0.42678 0.26978 7.22038

r = 5 (49) 0.52781 0.33364 6.39058

r = 6 (59) 0.62587 0.39563 5.31215

r = 7 (69) 0.72111 0.45583 3.96971

r = 8 (79) 0.81367 0.51434 2.42451

r = 9 (89) 0.90371 0.57125 0.91064

r = 10 (99) 0.99137 0.62667 0.00435

steady state temperature and Tτ the temperature according to the decay condition

(1− e−1), and τ is the time constant for the individual wall layer. Note that
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Figure 4.13.: Time series of the thermal response due to a pure Heaviside temperature

jump applied to the outer tube surface.

Tτ = (1− e−1) ·T∞. The dimensionless time conversion constant is t0=7.065 [s],

given by (4.2) and tmax=2.826 ·10−3. Note that the time series (r=10) closest to

the outer wall appears as a first-order function, and the following time series have

a higher order, indicated by the zero slope in the beginning of the simulation,

which recalls a time delay of the heat front from the outer layers. From table

(4.2) we can see that the time constant for the material near the outer and heated

boundary is approximately three decades smaller than the bulk material at the

inner side. This means that the temperature fluctuations are more violent in the

current tube outer surface, than what is experienced on its inner surface. This is

a very important message for dynamic simulations of heat pipes in panel walls,

meaning that fatigue can be initiated in the pipe layer that occurs closest to the

fluctuating boundary condition; it can typically be a temperature front in the

furnace or a shock wave in the evaporator tubes. In the evaporator, there is a

tendency for precipitation of porous magnetite at the inner side of the evaporator

tube, particularly in the areas which are under direct influence of the high heat flux

rate from the burner zones . This precipitation originates from iron compounds in

the feed water, which are dissolved in the feed water system of the power plant.
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The very largest particles of iron, can partially be removed by filters, even the

smallest particles usually cannot be efficiently removed. This magnetite acts as

an insulating layer, despite its modest thickness of a few hundred micron meters.

This means that the material temperature in the evaporator tube wall now rises

considerably and becomes more susceptible to fatigue fracture, which can start

as small micro cracks in the infinitesimal material elements, positioned imme-

diately below the magnetite layer. From there, the cracks can under favourable

conditions, grow out into the surrounding material and ultimately cause a tube

failure. Magnetite layer can be removed by an acid treatment of the evaporator

tubes. The first acid treatment at SKV3 was carried out in 2011 after 13 years of

operation.

4.3. Tube lifetime evaluation

The lifetime of heated tubes (evaporators and super-heaters) is limited, as the

tubes degrade on a continuous basis due to the fireside corrosion, creep, fatigue

and steam side oxidation. Evaporator stability is strongly related to temper-

ature conditions in the tube material and must therefore be linked to the life

time concept. The following contributions to lifetime degradation of heat pipes

are described more thoroughly in [26] and [27]. Appendix D provides a more

detailed description of the lift-time evaluation of DONG Energy plants. All

degradation processes are highly temperature-dependent and is most dominant in

super-heaters, as the temperature is greatest here, but one should not exclude the

degradation process in evaporators, as it may appear in thick-walled components.

In the context of the dynamic operation of power plants, the life-cycle concept of

evaporator tubes and superheaters is essential. The fluctuations, for example, in a

fluid flow can affect nucleation on the inner side of the evaporator tube and thus

affect the lifetime negatively.

DONG Energy is experiencing the greatest problems with degradation in junction

boxes or in the fins in-between each evaporator tube in the panel walls, which

may be prone to fracture, caused by the cyclic loads. Steam side oxidation is

responsible for a gradually increasing temperature over time, due to the growth

of an oxide layer, with very low heat conductivity. This can be reduced by

acidification of the tubes.

4.3.1. Corrosion

Fireside corrosion of a heat pipe exposed to combustion gas is caused by oxida-

tion, molten salt corrosion or direct attack of corrosive gasses in the flue gas. For

ordinary coal combustion, corrosion is usually caused by oxidation and molten
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sulphate. When the temperature of the sulphate mix reaches the melting point,

the corrosion rate increases significantly; however, if the metal wall temperature

is kept above the dew point, the corrosion will decrease to a level where corrosion

is solely oxidation, although oxidation at this high temperature level still is con-

siderable. The calculation of the corrosion, however, uses a constant erosions rate,

which of course influences the accuracy of the calculations.

4.3.2. Creep

Creep is also a material degradation process, highly dependent on temperature and

stress, where the material destabilizes and the strength decreases with increased

time, resulting in permanent plastic deformation. Creep data are available for all

normal steels up to 105 hours service time or more, at temperatures relevant to

boiler applications. The 105 hours creep rupture strength reduced with a safety

factor, forms the basis in the algorithms used for designing, e.g, super-heater

tubes. On the microscopic level, creep itself is known as so-called creep cavities

along grain boundaries, illustrated in figure (4.14).

Figure 4.14.: Creep Cavities along grain boundaries, Left: Starting cavitation and Right:

Coherent cavities - micro cracks. From internal DONG Energy report.

4.3.3. Oxidation

Steam oxidation turns the surface layer of the steel into oxides. The oxygen

needed for oxidation and oxide growth is supplied from the oxygen contained in

the steam and dissociation of the steam, thus resulting in the formation of oxygen

ions diffusing through the oxide film inside the heat pipe to the steel. At the

surface of the steel, metallic iron oxidizes forming iron ions (Fe2+, Fe3+). Part of

these iron ions react with the oxygen ions in the situ (Fe3O4) and the remaining

Fe2+ diffuses out through the oxide film. In the course of this process, Fe2+

is partly converted into Fe3+ and iron oxides are formed in a reaction with the
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inwardly diffusion oxygen ions. Figure (4.15) illustrates an example from AVV1,

wherein a pipe cross-section is examined under the microscope and in which we

clearly can see both an oxide layer (Topotactic layer) and iron deposits in the form

of porous structures (Epitaxy layer). The iron is dissolved in the water phase,

and as the fluid enters the two-phase zone along the tube, the iron is deposited

as magnetite on the walls. The formation of a dense layer of magnetite has a

Figure 4.15.: Microscopic analysis of surface structures in an AVV1 evaporator tubes,

internal analysis from [28]. The numbers in brackets refer to the thickness

of the oxide layer. The light grey colour is the pipe wall.

markedly restrictive impact on the diffusion which impedes further oxidation,

and therefore the oxidation rate often approaches a parabolic growth law. If the

alloy contains either chromium or silicon, Cr will form either a spinel layer with

iron or a pure Cr-oxide film, or for silicon a purely silicon oxide film on the metal

surface, due to [26]. The homogeneous pure oxide films constitute very effective

barriers against further oxidation, thus resulting in a lower oxidation constant or

oxide growth law, which is cubic rather than parabolic. Small fluctuations in the

content of Cr and Si may cause large changes to the oxidation constant and will

often explain the relatively large scatter attached to the determination of oxide

constants; see [29]. Pure Cr-oxides are formed in austenitic steels when the Cr-

content exceeds approximately 22 %, but they are also formed in 18 % Cr steels

with small grain size. Such films are particularly efficient in preventing further

corrosion; the growth of the oxide film will follow the growth law of a higher

order rather than that of a parabolic one; see [30]. The thermal conductivity of the

oxide layer divided into a topotactic and an epitaxy layer of magnetite, with heat

conductivity of 2.3 [W/mK] and 0.7 [W/mK], respectively, and which on average

is given by λoxide= 1.1 [W/mK] and thus constitutes only a small percentage of the

metal thermal conductivity λmetal=15.0-20.0 [W/mK] @ 400 [oC]. The magnetite

thickness after 105 hours is typically 100-150 [μm].
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4.3.4. Summary

Lifetime issues in critical components is forever in focus, and new methods can

help to highlight new developments, which may affect the lifetime. A better

insight into the operating conditions of the power plant as well as a better under-

standing of designing future components with the right materials and the right

dimensions, will improve the operation flexibility of a plant. In the evaporator

panel walls, the lifetime is typically limited by external corrosion and oxide form-

ation immediately for the two-phase region. Instability problems associated with

rapid start-up from cold conditions can cause both heavy pressure and temperat-

ure oscillations, which can affect the inner layer of the pipe wall and thus initiate

the first germs of crack formation. This is closely linked to an understanding

of the thermal-hydraulic flow conditions occurring in the heat pipes as well as

a detailed description of the temperature gradients that occur in pipe material,

initiated by the heat flux arising from the burning of fuel in the furnace. The fins

welded to the evaporator tubes to form a gas-tight construction are also prone

to breakage, initiated as a result of large temperature differences between the

individual heat pipes, which can be related to a mal-distribution problem, likely

related to dynamic conditions. This phenomenon will be studied in the next

chapter.
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This chapter is an attemptat presenting the physical mechanisms of the most

common flow instabilities. Among these phenomena, the ones with the possibility

of producing oscillations are chosen and then analysed. Two-phase flows are

prone to various types of instabilities. These can be divided into two general

classes: static and dynamic instability.

5.1. Introduction

The phenomenon of thermally induced two-phase flow instability is of great

interest in the design and operation of steam generators, boiling water reactors

and re-boilers. Oscillations of flow rate and system pressure are undesirable,

as they can cause mechanical vibrations and system control problems, and in

extreme circumstances, can disturb the heat transfer characteristics so that the

heat transfer surface may burn-out. In a recirculating plant, where burn-out must

be avoided, flow oscillations could lead to transient burn-out. Under certain

circumstances, large flow oscillations can lead to tube failures due to increases

in wall temperatures. Another cause of failure would be due to thermal fatigue,

resulting from continual cycling of the wall temperature; the thermal stresses

set up in the panel wall of a USC boiler, can cause mechanical breakdown,

leading to more serious accidents, such as release of hot steam into the boiler

building risking considerable human damage and injury as well as large economic

losses on the boiler and generation of electricity and district heating. Flow

stability is of particular importance in water-cooled and steam generators. The

safe operating regime of a two-phase heat exchanger can be determined by the

instability threshold values of such system parameters as flow rate, pressure,

wall temperatures, and exit mixture quality. The designer’s job is to predict

the threshold of flow instability so that one can design around it, in order to

avoid the unwanted instabilities. This chapter provides a brief description of

the most common steady state two-phase flow instabilities, with the attempt to

discern which among these reveal characteristics agreeing with the problem in

the power plant boiler. Therefore, it is important to define which of the following

kinds of instabilities could actually generate oscillations in the evaporator. A

’steady flow’ is one in which the system parameters are functions of the space

variables only. A flow is said to be ’stable’ when its new operating conditions

tend toward the initial conditions asymptotically, when momentarily perturbed.

Practically, steady two-phase flow operating conditions undergo fluctuations due

to perturbations introduced through the boundary of the system (like changes
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in inlet pressure, inlet enthalpy, mass flow or power input) or due to turbulence,

nucleation or flow pattern transition, which are inevitable characteristics of two-

phase flow. These fluctuations represent a small-scale disturbance. In certain

domains of flow, however, the fluctuations can trigger large-scale disturbances,

which are periodic in nature. Perturbations may grow and a new operating steady

state takes over. There have been several extensive reviews of instabilities in

two-phase flow systems, notably by [31], [32], [33], [34], [35], [36], [37] and

[38]. There are many types of two-phase flow instabilities as shown in table (5.1),

and the research activities have been so extensive that a complete account of them

becomes infeasible. Another study [39] presents the research on two-phase flow

in universities and colleges in Japan.

Type Mechanism Characteristics

Ledinegg instability

Internal pressure

characteristics steeper

than external

characteristics in a

negative slope region

Flow undergoes sudden,

large amplitude

excursion to a new

stable operating

condition

Boiling crisis

Ineffective removal of

heat from heated

surface

Wall temperature

excursion and flow

oscillation

Flow pattern transition

instability

Bubbly flow has less

void but higher

pressure-drop than

annular flow

Cyclic flow pattern

transition and flow rate

variations

Bumping Geysering

Chugging

Periodic adjustment of

metastable condition,

usually due to lack of

nucleation sites

Periodic process of

super-heat and violent

evaporation with

possible expulsion and

refilling

Table 5.1.: Classification of boiling two-phase steady state flow stabilities [31].

5.2. Two-phase momentum model

This section outlines the basic theory for pressure loss in heated pipes. The

theory is mainly applied to smoothed pipes without internal rifles, but IRBTs are

also briefly described in terms of both the friction and heat transfer. The current

models that have been implemented, are only valid for water-steam flows. In
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cases involving other systems, the modelling approach should be extended. The

two-phase flow of a vapour-liquid mixture in a channel with heat supply, causes

a variable density flow in a one-dimensional flow concept. If the pressure drop

along the channel is relatively small compared with the absolute pressure, the

flow is practically incompressible. This means that the density of each phase is

practically constant. The change in bulk flow density is thus due to the phase

change caused by boiling along the heated pipe. During the process of phase

change, i.e., void increases, the phase and velocity distribution are changed and so

is the momentum of the flow. Hence the pressure drop of a vertical two-phase flow

consists of three components, frictional loss, momentum change and elevation

pressure drop, arising from the effect of the gravitational force field. Based on the

homogeneous momentum balance equation (8.86) for a heat pipe, we can derive

empirical pressure loss relations with reference to the momentum change, gravity

and friction. For convenience we choose to write the homogeneous momentum

equation, from [40]:

∂
∂ t

(GA)+
∂
∂ z

(
G2A
ρ ′

)
=−A

∂ p̄
∂ z

−FwA− ρ̄gAcos(θ). (5.1)

If we assume a steady state condition and define the mass flux G and the cross-

section area A as constant values in space, hence the steady state momentum

balance for a heat pipe can be expressed as

∂ p̄
∂ z

=−G2 ∂
∂ z

(
1

ρ ′

)
−Fw − ρ̄gcos(θ)

=

(
∂ p̄
∂ z

)
a
+

(
∂ p̄
∂ z

)
f
+

(
∂ p̄
∂ z

)
g

(5.2)

The steady state total pressure drop in two-phase flows is a sum of three contribu-

tions: an acceleration pressure drop, ΔpA, a pressure drop due to friction, Δp f and

a hydrostatic pressure drop due to elevation change, ΔpG:

Δpt f = ΔpA +Δp f +ΔpG. (5.3)

The individual contributions to the total pressure loss are briefly described in

Appendix E.

5.3. Modelling framework

The focus area of the model framework is to establish a realistic model setup

that ful-fill the measurement campaigns listed in table (3.2). The model is

calibrated at part load (sample 4), because it operates in the two-phase flow
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regime at that load. The model is verified in the other samples (1-3). The

evaporator geometry of SKV3 is taken from supplier drawings, and the associated

measurement campaigns are taken from the plant control system, where up to

6000 measurement points per second are recorded. The selected data, with a

high accuracy, is used to determine the boundary conditions for the simulation

scenarios.

5.4. Flow stability in panel walls

This chapter presents a study of flow mal-distribution in two parallel heated pipes,

which is a model of a small part of the panel walls in a steam power plant boiler.

The study is based on measurement campaigns conducted on Skærkækværket

Unit 3; see table (3.1). The purpose of this study is to generate an increased

basic understanding of the involved physical phenomena, and knowledge of the

maldistribution issues in evaporator tubes, exposed at very high heat flux loads.

The study is performed with and without sub-cooled inlet fluid.

Two-phase heat exchangers pose unique challenges as they are prone to various

flow boiling instabilities; see [31], such as the Ledinegg flow excursion, parallel-

channel flow mal-distribution, pressure-drop and density-wave flow oscillations.

The Ledinegg instability arises when the flow boiling system operates in the

two-phase negative-slope region of the demand pressure curve, where the demand

pressure drop decreases with increasing mass flow rate; see [41] and [42]. Slight

changes in the supply pressure drop will trigger a sudden flow excursion to either

a sub-cooled or a superheated operating condition. Pressure-drop oscillations

could occur when there exists large upstream compressibility of the flow boiling

system, pressure-drop oscillations [43], [31]. This mal-distribution instability

could cause large uncontrolled wall temperature differences. Different flow con-

ditions were experimentally demonstrated and found to be heavily dependent

on the prior state of the channels. Even for conventional-scale two-phase heat

exchangers, flow mal-distribution also has dramatic negative consequences on

thermal and mechanical performance, according to [44] and [45]. Attributed to

local flow instabilities and mal-distribution, the critical heat flux condition could

be prematurely initiated before the advantage of phase change is realized [46].

Local channel dry-out would severely compromise heat transfer performance and

could lead to severe safety problems.

To investigate the mal-distribution of cooling water in the panel wall, we de-

velop a numerical model, which consists of two parallel pipes. The model is

based on a steady state lump model, described in section (5.2), where the heat

transfer and pressure loss models are based on conventional theory for steam
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power engineering, which are outlined in Appendix (E). The solution algorithm

for solving the flow distribution in two parallel pipes is strongly un-linear and

is solved by use of a conjugated gradient method with a constrained line search

algorithm; see [20] and [22].

5.5. Mal-distribution - literature review

Here we focus on steam power engineering in the Benson boilers running part

load, below Benson minimum. The usual geometries (panel walls as heat pipes)

use a parallel channel configuration, in order to accommodate a large heat-transfer

area in a limited space. This allows the building of large capacity equipment

within a reasonable size, but it also leads to problems related to flow maldistribu-

tion. In many scenarios the flow distribution deviates from the design conditions,

which is usually a homogeneous flow setup. The possible causes include poor

header design or off-specification operating conditions, and channel blockage or

size reduction due to differential thermal expansion or fouling. A comprehensive

review on causes of mal-distribution can be found in [45].

Single-phase maldistribution has been widely studied, both in terms of a header

design perspective [47], [48] and its effect on thermal performance [49] and [50].

A reduction in heat duty (defined as the total heat transferred) is found in all

cases as a consequence of mal-distribution. For two-phase applications, research

has been focused on the flow distribution in manifolds, both experimentally [51]

and by numerical modelling [52] and [53]. The thermal performance analysis

was limited to the effect of mal-distribution on the single-phase streams, such

as in condensers and evaporators; see [54], [55], [56], [57] and [58]. As in the

single-phase case, a deterioration of performance is predicted in most situations,

but there is some experimental evidence of an increase in thermal performance

on air-heated evaporators like [56] and [57]. Another interesting study is the mal-

distribution in fin and tube evaporators [59], where the focus is on the evaporator

efficiency and COP of a refrigeration circuit.

5.5.1. Model theory

In general, lots of geometries can be considered for steam power boilers, which

can include two or more streams (Shah and Sekulic, 2003). In particular, this

work studies a two-stream heat pipe panel wall model, sketched in figure (5.1).

The scope of this work is limited to practical situations that fit the following

simplifying assumptions:

• No internal rifled boiler tubes are analysed.

• A steady-state analysis is performed.
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Figure 5.1.: Sketch of parallel heat pipe flow model (SKV3 boiler tubes).

• All working fluids are based on IAPWS97.

• Axial conduction in-between the heat pipes and to the surroundings is

negligibl small.

• Mixing is not considered. This means that the parallel channels do not

exchange mass and momentum.

• An elemental geometry can be identified where hot and cold streams ex-

change energy, and interaction with other channels is negligible.

The general modelling for the evolution of the streams is based on one-dimensional

mass, momentum and energy balances for each channel, named, channel 1 and

2 as illustrated in figure (5.1). However, with the above considerations, the

mass-balance equation gives a trivial result that is a constant flow rate in each

channel. Then, the problem is governed by equations (5.1) via (5.2) for each

channel, which represents the momentum balance for both tube-side fluids. The

model is based on a steady state calculation of two parallel pipes, where the

flow distribution is unknown and is a function of the supplied heat distribution.

The load cases are listed in table (5.2). We define a heat distribution factor
as

dq ≡ q̇1

q̇2
(5.4)

where q̇1 and q̇2 denote the heat absorbed in pipe 1 and pipe 2, respectively. The

heat flux is assumed constant along the axial direction of the pipe. The total

pressure drop caused by gravity, friction and acceleration will force a hydraulic

balance, given by the uniform pressure drop over the two pipes is described in
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detail in Appendix (E). Hence we can formulate a set of equations leading to the

non-linear equation below.

Solve:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m = m1 +m2, Continuity

0 = ΔP(m1, q̇1)−ΔP(m2, q̇2), Momentum

q̇ = q̇1 + q̇2, Energy

(5.5)

where q̇1=α q̇, q̇2=(1−α)q̇ and α is a linear distribution factor of energy, hence

dq =
α

1−α . The dimensionless mass flow is defined according to a reference mass

flow for a reference simulation (design case) with dq ≡ 1; see figures (5.8) and

(5.9). Hence the dimensional flow distribution factor is defined as the relationship

between ṁ1 and ṁ2.

dm ≡ ṁ1

ṁ2
(5.6)

and the corresponding dimensionless pressure loss factor (dp) is defined relative

to the actual pressure loss (ΔP) versus the design pressure loss ΔPdesign(dp =
1):

dp−total ≡ ΔPtotal

ΔPdesign
(5.7)

dp−viscos ≡ ΔPviscos

ΔPdesign
(5.8)

The problem, given by equation (5.5) is solved by a conjugated gradient method,

where realistic start guesses are needed for the model as well as a realistic

definition interval for each parameter. The solver is a Newton-based solver

using a Jacobian matrix with a constrained line search algorithm; see [20] and

[22].

5.5.2. Simulation scenarios

The flow distribution in two parallel identical evaporator tubes depends on sev-

eral factors. We will now examine primarily two factors, firstly, how the inlet

pressure effects the sensitivity of the flow distribution (mal-distribution) in two

heat pipes when the heat distribution factor varies (5.4) and secondly, how the

degree of sub-cooling of the inlet fluid affects the mal-distribution by varying

dq.
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Mal-distribution - saturated inlet condition

This analysis of flow mal-distribution is based on two different flow rates listed

in tables (5.2) to (5.5), with saturated water at the inlet boundary. Measurements

of enthalpy are used directly as the upstream boundary condition for pressure

levels above the critical pressure. The tube geometry corresponds to what we

have on the SKV3 boiler. This saturated inlet condition is particularly critical in

connection with the flow distribution through the junction boxes to the evaporator

tubes in a power plant, because saturated fluid is difficult to distribute to the

panel walls, while the fluid can easily change mode from containing a bit of

steam to being slightly sub-cooled. This affects the specific volume of the fluid

so that the pressure loss in the evaporator string may cause non-uniform flow

rates through the evaporator strings. The mal-distribution analysis below does

not include modelling of the assembly boxes, but is only based on the assumption

of two similar parallel evaporator tubes with a perfect junction box. The two-

phase modelling approach will be based on Friedel, because Jirous deviates from

the measurements in table (3.2) for low pressure; see tables (5.2) to (5.5) and

Appendix E for further modelling details. As we can see from tables (5.2)

Simulation nr. Pin hin Pout hout q̇ ΔPf ΔPg ΔPa ΔP
[bar] [kJ/kg] [bar] [kJ/kg] [MW] [bar] [bar] [bar] [bar]

1 50.00 1154.64 32.10 2803.00 824.18 16.673 0.457 0.770 17.900

2 100.00 1408.10 91.50 2740.77 666.33 7.603 0.658 0.235 8.496

3 150.00 1610.20 144.33 2626.40 508.10 4.703 0.847 0.117 5.666

4 200.00 1827.21 195.96 2435.60 304.19 2.943 1.044 0.052 4.039

Table 5.2.: Design cases for various pressure levels at m=1.0 kg/s (Friedel).

Simulation nr. Pin hin Pout hout q̇ ΔPf ΔPg ΔPa ΔP
[bar] [kJ/kg] [bar] [kJ/kg] [MW] [bar] [bar] [bar] [bar]

1 50.00 1154.64 22.23 2800.28 822.83 26.229 0.417 1.117 27.763

2 100.00 1408.10 90.66 2741.85 666.87 8.458 0.647 0.238 9.343

3 150.00 1610.20 144.54 2625.84 507.82 4.498 0.845 0.117 5.459

4 200.00 1827.21 196.25 2434.02 303.41 2.664 1.035 0.052 3.751

Table 5.3.: Design cases for various pressure levels at m=1.0 kg/s (Jirous).

Simulation nr. Pin hin Pout hout q̇ ΔPf ΔPg ΔPa ΔP
[bar] [kJ/kg] [bar] [kJ/kg] [MW] [bar] [bar] [bar] [bar]

1 50.00 1154.64 43.77 2798.74 411.03 5.648 0.440 0.139 6.228

2 100.00 1408.10 96.99 2730.92 330.71 2.290 0.659 0.054 3.004

3 150.00 1610.20 147.87 2616.70 251.63 1.247 0.855 0.028 2.130

4 200.00 1827.21 198.20 2423.03 148.96 0.743 1.048 0.012 1.803

Table 5.4.: Design cases for various pressure levels at m=0.5 kg/s (Friedel).
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Simulation nr. Pin hin Pout hout q̇ ΔPf ΔPg ΔPa ΔP
[bar] [kJ/kg] [bar] [kJ/kg] [MW] [bar] [bar] [bar] [bar]

1 50.00 1154.64 44.92 2798.00 410.84 4.417 0.533 0.135 5.085

2 100.00 1408.10 97.00 2730.90 330.70 2.226 0.716 0.054 2.997

3 150.00 1610.20 147.69 2617.20 251.75 1.393 0.890 0.028 2.310

4 200.00 1827.21 198.05 2423.89 149.17 0.864 1.072 0.012 1.948

Table 5.5.: Design cases for various pressure levels at m=0.5 kg/s (Jirous).

and (5.3) for a mass flow of 1.0 [kg/s] and (5.4) and (5.5) for a mass flow of 0.5

[kg/s] we have a significant difference in the friction pressure loss, and Jirous

will overestimate for lower pressure (50 [bar]). Figures (5.2) to (5.5) illustrate the

mal-distribution curves for scenarios 1-4, which are based on data from table (3.2).

In the figures we have scaled the flow distribution factor (dm) and the pressure

distribution factor (dp−total) for total pressure, given by equation (5.7) on the left

ordinate axis and the viscous pressure distribution factor (dp−viscous) to the right;

see equation (5.8). In general we can see that dm increases for decreasing dq. This

tendency is more clear for higher saturation pressure (operational pressure), which

increases the risk of asymmetric flow in the evaporator tubes. For operational

pressure above the critical point (220,64 [bar]) we see a monotone increased curve

of total pressure loss for decreasing dq, while we observe the opposite tendency

for an operational pressure below the critical pressure with a monotone decreasing

total pressure loss for decreasing dq. If we focus on the relative viscous pressure

loss alone, we can see a general dependency of the operating pressure, where the

viscous pressure loss is decreasing for decreasing dq.

Mal-distribution - sub-cooled inlet conditions

This scenario includes the state of the inlet conditions for the upstream boundary

changed in equation (5.5), so that various levels of sub-cooling are achieved, for

example, 20% of sub-cooling is defined as an inlet enthalpy that consists of the

saturated water subtracted by 20% of the latent heat, given at the same saturation

pressure. Otherwise we have unchanged conditions for flow and heat absorption,

due to tables (5.2) to (5.5). The results of the simulations are illustrated in figures

(5.6) to (5.13). One of the most interesting observations is that a high degree of

sub-cooling results in the largest difference in the outlet enthalpy from pipe 1 and

2; see figure (5.10) to (5.13). Notice that the outlet enthalpy is constrained to a

maximum of 3900 [kJ/kg], due to the formulation of IAPWS97, which gives the

basis for the thermodynamic properties in our simulations. On the other hand we

can see, that for fixed exit enthalpy on the pipe 1 or 2, we generally can accept

a larger obliquity in the heat flux for decreasing sub-cooling. One example is

that a fluid without sub cooling (saturated water) can handle a dq=0.5, while a

fluid with 25 % of sub cooling with the same outlet enthalpy, only can handle a
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Figure 5.2.: Sample 1: Flow and pressure distribution.

Figure 5.3.: Sample 2: Flow and pressure distribution.

dq=0.68; see figure (5.12). In other words, a higher degree of sub-cooling leads

to a greater temperature difference in the tubes, for a given dq. This tendency is

reduced for higher operating pressure. If we take a look at modern once-through

Benson boilers, like SKV3, we observe a much lower obliquity in the heat flux,

which is verified by CFD simulations; see figure (4.5). The simulations give
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Figure 5.4.: Sample 3: Flow and pressure distribution.

Figure 5.5.: Sample 4: Flow and pressure distribution.

the largest heat flux gradients in the bottom of the furnace: ∂ q̇
∂ z ≈ 20 [kW/m3].

On the other hand we have in mind the thermal diffusivity and low thermal

conductivity in the pipe material, leading to very large temperature gradients, due

to the discussions in section (8.5). But the heat flux gradients initiated by the
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combustion processes, will not be able to induce a relative heat distribution factor

less than approximately 0.85, based on the largest gradients in the bottom of the

boiler as illustrated in figure (4.5). A panel wall geometry based on 38 [mm]

pipes with 20 [mm] fins and 28 heat pipes (15 degree inclination) connected to

one junction box gives:

dq ≈ 200[kW/m2]−20[kW/m3] · sin(15o) ·6.0[m]

200[kW/m2]

≈ 0.85[−]. (5.9)

It is interesting to see how the relative pressure loss varies as a function of dq for

different operational pressure levels; see figures (5.6) and (5.7). For an opera-

tional pressure of 150 [bar], we see a change in circumstances, where the pressure

drop has a minimum. This is caused by a combination of the applied boundary

conditions (q, m1 and m2) as well as the working pressure. An operating pressure

of 200 [bar] or more, causes a change in the relationship between the ratio of

the relative pressure drop and dq, which now gives a monotonically increasing

relationship. Conversely, we see a monotonic decreasing relationship between

the relative pressure drop and dq at the operating pressure of only 50 and 100

[bar]; see figure (5.7). The relative mass flow on the ordinate axis in figure (5.8)

and (5.9) is defined as the difference between the design mass flow and the actual

flow and the figures illustrate how the mass flow varies according to dq. We

can immediately see that the greatest impact on the flow distribution is at low

operation pressures, while at 200 [bar], we hardly see any significant difference

compared to the design condition. This means that a high operational pressure

has a stabilizing effect on the flow distribution according to figures (5.8) and (5.9).

Appendix (H) shows how the mass flow affects the flow friction pressure loss for

the different operating pressure, and it is obvious that the frictional pressure loss is

highly dependent on the mass flow through the tubes. This is illustrated in figures

(H.1) to (H.12). The following conditions are generally observed for decreasing

dq: we see an increasing relative friction pressure in pipe 1 for decreasing mass

flow (m). For increased operating pressure, we record higher relative friction loss

due to an increase in specific volume. It is also seen that the relative mass flow

out of the pipe 1 decreases for increasing m, while the relative enthalpy of pipe 1

increases for increasing m.
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Figure 5.6.: Mal-distribution in panel wall - relative pressure loss with varying sub-

cooling.

Figure 5.7.: Mal-distribution in panel wall - relative pressure loss with varying sub-

cooling.

Figure 5.8.: Mal-distribution in panel wall - relative mass flow with varying sub-cooling.
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Figure 5.9.: Mal-distribution in panel wall - relative mass flow with varying sub-cooling.

Legend similar to figure (5.8).

Figure 5.10.: Mal-distribution in panel wall - relative enthalpy outlet from pipe 1 with

varying sub-cooling.

The general results of this work are that the pressure loss increases over the

two parallel tubes for increasing sub-cooling with a pressure higher than 150

[bar]; otherwise we see a decrease in pressure loss. There is a larger flow mal-

distribution for larger sub-cooling of the inlet fluid, and the heat pipe that receives

most heat, has the lowest mass flow. This is supported by the fact that the pipe

wall achieves a critical high temperature faster for using less sub-cooling. This

trend decreases with increasing operating pressure.

5.5.3. Discussion

One of the main conclusions of this study in mal-distribution analyses, is that the

distribution problem primarily is affected by the operating pressure in the pipe.
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Figure 5.11.: Mal-distribution in panel wall - relative enthalpy outlet from pipe 1 with

varying sub-cooling.

Figure 5.12.: Mal-distribution in panel wall - relative enthalpy outlet from pipe 2 with

varying sub-cooling.

The lower the operating pressure is, the greater the difference between the mass

flow in the two parallel pipes. In addition, the inlet mass flux to the system is

also a parameter, which affects the bias of the flow distribution. The larger the

inlet flow to the two pipes, the greater is the distribution of flow in both tubes.

The pressure drop, which is the driving factor in the distribution problem, ensures

that there will always be the same total pressure drop over the two pipe elements.

Friction pressure loss is an essential factor in this game, but the geodetic height

also plays a role in that context, so that it will reduce the influence of the friction

pressure drop, especially in situations where the geodetic height difference is

mainly composed of liquid and not vapour. An early superheat of the fluid in

the heat pipe, eliminates the influence of the geodetic pressure difference, which

leads to a higher mass flow through the actual pipe element.
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Figure 5.13.: Mal-distribution in panel wall - relative enthalpy outlet from pipe 2 with

varying sub-cooling.

At the Danish Avedøreværket Unit 2 (AVV2) there were attempts to lower the

evaporator pressure, from the original initial pressure of 90 [bar] (design load

pressure) to 56 [bar], which is equivalent to 20% boiler load. The main challenge

was to avoid hot steam to the turbines as well as a hot flue gas screen, due to

the low mass flow rate through the boiler. The pressure drop through the boiler

is high, because of the higher specific volume of the steam, at a relatively low

evaporator pressure. Other challenges such as a high feed water temperature may

worsen the distribution problem for the individual heat tubes in the panel wall, a

smaller sub-cooling improves the maldistribution challenge of the low evaporator

pressure, as illustrated in figure (5.8).

5.5.4. Summary

In general we see significant differences in the downstream conditions of the

fluid for the selected scenarios. In certain critical situations, we can have high

superheated steam in one piece of the pipe, while there is two-phase flow in the

second pipe, with a low steam quality. This may have important implications

for the lifetime of the heat pipe, as the material temperature follows the fluid

temperature. Fortunately, the panel walls are constructed in a way that there

may be heat transfer between the pipe sections, but this heat transfer is primarily

based on conduction, with high temperature gradients to follow. Conduction

between the pipe sections is not included in this analysis, but time constants

and thermal diffusivity has been analysed in section (3), and indicates that the

conduction is restricted by the relative low heat transfer coefficient for alloys at

high temperature, which results in a high temperature gradient in the material and

in that way allows high temperature in the material caused by mal-distribution. A

higher degree of sub-cooling of the inlet flow, causes a greater enthalpy difference

in the outlet of the tubes, which can only increase the load on the boiler tubes.
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Low load operation of a Benson boiler, which continues to produce superheated

steam, is not at risk of poor mal-distribution; here it is more likely a matter of

ensuring a good heat transfer in stratified flow, due to the low mass flux, where

the vapour phase causes a poor cooling of the pipe wall.

5.6. Ledinegg stability

Two-phase flow systems can induce a number of instability and oscillation phe-

nomena. For a fixed set of boundaries, there are often multiple solutions for a

steady state operation of a boiling two-phase flow system, some of which are

unstable. Small perturbations can cause a system that has multiple solutions for

a given boundary condition to move from one set of operation conditions to an

entirely different set or oscillate back and forth among two or more unstable

operation conditions. The two-phase flow stability is of great concern for steam

boiler reactors, both on power plants as well as on smaller boiler and heat ex-

changers, and this phenomenon has been studied extensively and summarized in

[40]. There are several other static instability modes, e.g, flow maldistribution

instabilities, which can occur in systems where multiple parallel heated pipes are

connected at both ends to common inlet and outlet plenums, and a pressure loss

- mass flow view (ΔP, ṁ) includes a negative-sloped portion. Other examples

include flow regime transitions, chugging and geysering.

Practical examples of static flow instabilities have been reported by eg., Margetts,

[60], such as flow instability failures in several feed water economizers during

some years of operation. Boiler feed water is typically preheated in a large num-

ber of parallel channels, by recovering heat from an ammonia plant (primary flow

gases). Calculations suggested that the severely overheated tube had the highest

heat load and was operating at the minimum in the pressure-drop - flow-rate

curve, which was essentially flat and set by the remaining parallel unheated tubes

in the bank. The problem was solved by eliminating one-third of the unheated

tubes to increase the driving pressure drop of the heated tubes. In another case,

Margetts [60], points out the failures observed in an economizer tube after some

years of operation with considerably lower gas temperatures. It was speculated

that the channel had experienced some flow excursion, and ultimately failed due

to accelerated corrosion in the dry region. The solution to this problem was to

install throttling restrictions at the inlet to each tube.

In this section a simple homogeneous steady state two-phase flow model is

developed for the purpose of capturing flow oscillations caused by flow excursion

also, referred to as Ledinegg instabilities [61], with water/steam as flowing media.

The static instabilities represent discontinuities with respect to the steady-state

operation of a system, and these can be analysed based on the system’s steady
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5. Steady state flow stability

Figure 5.14.: Steam quality as function of pipe length.

state conservation equations. The model here is based on a prediction of the

friction pressure loss in heat pipes. If the pipe is horizontally orientated, the

gravitational pressure drop is ignored; otherwise we include the gravitational

pressure drop for vertical heat pipes. Let us consider the system shown in figure

(5.14), where sub-cooled liquid is pumped from a reservoir A and flows through

the heated channel before entering reservoir B. Let us focus on a single heat

pipe element with a total length of L, with a gravitational pressure loss, where

the distribution of vapour along the heated pipe in the boiling zone is linearly

distributed, caused by a constant heat flux q̇. We consider a heated channel alone

and assume that the inlet conditions are constant in time. The total pressure drop

for the channel can be calculated by integrating the steady state one-dimensional

mixture momentum conservation equation, by using an appropriated correlation

for the slip ration and assuming thermodynamic equilibrium between the liquid

and the vapour.

The pipe element for this stability analysis is divided into three zones, a sub-

cooled zone from 0 to l1, where the flow is single-phase. The second zone is

established from l1 to l1 + l2, where we have a two-phase boiling zone, and after

this point the fluid is superheated in zone 3. Let us assume that l1 and l2 are fixed

heating zones, and let the effect q̇ [W/m] be the effect per length supplied to the

tube, then the effect delivered in zone 1 is: Q̇1 = q̇l1 and Q̇2 = q̇l2, where q̇ is

constant along the pipe length L. If we assume stationary conditions, with a fluid
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flow given by ṁ and inlet enthalpy of hin, hence we have two energy balances for

the pipe element:

Q̇1 = ṁ(hl −hin) (5.10)

Q̇2 = ṁ(hg −hl)

where hl is the saturation enthalpy for liquid (x=0) and hg is the saturation

enthalpy for steam (x=1), where x is the steam quality. Note that x is the steam

quality defined in equation (8.77). The latent heat is given by hlg = hg −hl . We

have complete boiling, if the pipe length L > l1+l2, which can be reformulated

into a critical mass flow (mc) for which complete boiling occurs due to the

specified heat flux. Hence

ṁc ≥ q̇L
hg −hl

(5.11)

which will exactly ensure saturated steam downstream the heat pipe. The corres-

ponding pressure loss consists of contributions from the friction and gravity, and

can simply be estimated by the expression below.

ΔP = ΔPf +ΔPg (5.12)

=
f
2
·ρu2 + ρ̄gL

=
f

2A2
c
· ṁ2

ρ
+ ρ̄gL

≈ f
2A2

c
· ṁ2

ρ̄
+ ρ̄gL (5.13)

where ū is the mean fluid velocity,ρ̄ is the mean density and ν̄ = 1/ρ̄ is the

mean specific volume. The contribution of the acceleration pressure drop is

not included in this analysis and is not believed to cause significant changes in

the outcome. We can now calculate the friction pressure drop and gravitational

pressure drop for three cases:

• Complete boiling

• Partial boiling

• No boiling

5.6.1. Complete boiling

For the case of complete boiling, we can calculate the mean specific volume

for the pipe length L > l1+l2, based on the density variation illustrated in
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5. Steady state flow stability

Figure 5.15.: Density and specific volume as a function of steam quality.

figure (5.15), where we assume a linear expression of ν(ε) due to equation

(5.14):

ν(ε) =
ε
l2

νg +
1− ε

l2
νl ε ∈ [0, l2] (5.14)

Hence

ν̄ =
1

L

(∫ l1

0
νldε +

∫ l2

0

(
ε
l2

νg +
l2 − ε

l2
νl

)
dε +

∫ L

l1+l2
νldε

)
(5.15)

=
l1
L

1

ρl
+

l2
2L

(
1

ρg
+

1

ρl

)
+

L− l1 − l2
L

1

ρg

by setting
l1
L
=

hl −hin

hg −hin

m
mc

= a1z (5.16)

l2
L
=

hg −hl

hg −hin

m
mc

= a2z (5.17)

and with z=m/mc and a3 = ρl/ρg we find:

ρl

ρ̄
= (1− z)a3 +a1z+

a2

2
(a3 +1)z (5.18)
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In order to determine the contribution from the gravitational pressure drop, we

also provide the mean density which is by

ρ̄ =
1

L

∫ l1

0
ρldε +

1

L

∫ l2

0
ρ(ε)dε +

1

L

∫ L

l1+l2
ρgdε (5.19)

= a1zρl +(1− z)ρg +
1

L

∫ l2

0
ρ(ε)dε

where

ρ(ε) =
l2

(νg −νl)ε + l2νl
ε ∈ [0, l2].

Hence we find the expression for the mean density for the complete boiling

case

ρ̄ = a1zρl +(1− z)ρg +
l1
L

∫ l2

0

dε
(νg −νl)ε + l2νl

(5.20)

= a1zρl +(1− z)ρg +
a2zρl

a3 −1
ln(

ρl

ρg
)

= ρl

(
a1z+

1− z
a3

+a2z
ln(a3)

a3 −1

)

5.6.2. Partial boiling

In this situation, we have a mixture of liquid and steam (gas) at the outlet of the

heat pipe, given by αm, which can be formulated as L=l1+l2 > l1. This may be

explained by the fact that the flow velocity has just been increased so much that

there is now no longer completely boiling and hence saturated steam downstream

of the heat pipe. Now we have:

ν̄ =
1

L

(∫ l1

0
νldε +

∫ l2

0

(
νl +αmε

νg −νl

l2

)
dε
)

(5.21)

=
l1
L

1

ρl
+

l2
2L

(
1

ρl

(
2+αm

ρl −ρg

ρg

))
where αm can be reformulated as

(hg −hl)αmṁ = q̇l2 (5.22)

= q̇(L− l1)

= mc(hg −hin)− ṁ(hl −hin)
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Hence we find

αm =
1

z
hg −hin

hg −hl
− hl −hin

hg −hl
=

1

1−a1

(
1

z
−a1

)
(5.23)

and
l2
L
= z

hg −hl

hg −hin
αm = 1− z

hl −hin

hg −hin
(5.24)

Inserting (5.24) in (5.22) we find

ρl

ρ̄
= za1 +

1

2
(1−a1z)

(
2+

hg −hin − z(hl −hin)

z(hg −hl)

ρl −ρg

ρg

)
(5.25)

Completely analogously to the calculation of the specific volume for complete

boiling, we find here for the mean density

ρ̄ =
1

L

∫ l1

0
ρldε +

1

L

∫ l2

0
ρ(ε)dε (5.26)

= ρl
l2
L
+

1

L

∫ l2

0

l2dε
αm(νg −νl)ε + l2νl

= ρla1z+
αmρl

a3 −1
ln(αm

1−a3

a3
+1)

= ρl

(
a1z+

αm

a3 −1
ln(αm

1−a3

a3
+1)

)

5.6.3. No boiling

In this situation such a high volume of fluid is sent through the heat pipe, that

there is no boiling in the pipe section; hence we get

ρ̄l

ρ
=

ρl

ρl
= 1. (5.27)

Now the different cases can be summarized in the following expression for the

friction pressure loss

ΔPf =
f m2

c

2A2
cρl

⎧⎪⎪⎨⎪⎪⎩
a3z2 + z3

(
a1 +

a2
2 (a3 +1)

)
for 0 ≤ z < 1

z2
(

a1z+ 1
2 (1−a1z)

(
2+ 1−a1z

a2z (a3 −1)
))

for 1 ≤ z < 1
a1

z2 for z ≥ 1
a1

(5.28)
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and for the gravitational pressure drop

ΔPg = ρlgL

⎧⎪⎨⎪⎩
a1z+ 1−z

a3
+a2z ln(a3)

a3−1 for 0 ≤ z < 1

a1z+ αm
a3−1 ln(αm

1−a3
a3

+1) for 1 ≤ z < 1
a1

1 for z ≥ 1
a1

(5.29)

A simulation scenario is setup for both the friction pressure drop and gravitational

pressure drop and a combination thereof, based on the data in table (5.6), and the

Sample nr. psat hl hg hin q̇ ρl ρg

Case [bar] [kJ/kg] [kJ/kg] [kJ/kg] [kW/m] [kg/m3] [kg/m3]
1 1.00 417.504 2674.95 191.8 3724.8 958.632 0.596344

2 5.00 640.085 2748.11 429.3 3478.2 915.290 2.66805

3 10.00 762.515 2777.11 561.1 3324.1 887.129 5.14504

4 25.00 961.907 2801.93 777.9 3036.0 835.119 12.508

5 50.00 1154.64 2794.21 990.7 2705.3 777.369 25.3512

6 100.00 1408.06 2725.49 1276.3 2173.8 688.424 55.4631

7 200.00 1827.21 2412.35 1768.7 965.5 490.188 170.497

Table 5.6.: Raw data for stability plot. (Mass flow @ 1.5 [kg/s])

simulation results are performed for the seven cases as illustrated in figures (5.16)

to (5.18), where the inlet enthalpy hin is sub-cooled equivalent to 10 percent of

the latent heat. The geometric data for the pressure loss calculations are based

on data from SKV3, with f=0.03 [-] and ṁ=1.5 [kg/s]. When the total pressure

drop for such a heat pipe is plotted as a function of the specific mass flux, often

an S-shaped curve is obtained. The curve is sometimes referred to as the demand

curve, because the pressure drop ΔPf is needed for the flow to be established.

Since the thermal load is constant in time and space, by reducing the mass flow

rate (z), the equilibrium quality at the outlet increases. With very high mass

flow rates, the fluid remains in a sub-cooled liquid state, and ΔPf decreases with

decreasing z. Deviation from the single-phase liquid ΔPf curve starts at the onset
of nucleate boiling (ONB) point. With the initiation of boiling, further reduction

in z leads to an increase in flow quality at the exit and growth in the length of the

heat pipe where boiling is under-way. The local minimum on demand curve is

referred to as the onset of flow instability (OFI). Beyond the OFI point, further

reduction in z can lead to an increase in ΔPf , for low-pressure systems. The trend

of the demand curve is changed for very low z values, where the flow quality

is large everywhere in the heated channel, and ΔPf monotonically decreases as

z is reduced. Under certain conditions, it is possible to induce a horizontal
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5. Steady state flow stability

Figure 5.16.: Friction pressure loss for water in heat pipe (sub-cooling = 10 % of latent

heat).

Figure 5.17.: Gravitational pressure loss for water in heat pipe (sub-cooling = 10 % of

latent heat).

or negative slope of the curves illustrated in figure (5.16). These facts can be
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Figure 5.18.: Total pressure loss for water in heat pipe (sub-cooling = 10 % of latent

heat).

analysed by differentiating (5.28) with respect to z = m/mc and setting it equal

to zero. From this we find:

∂ΔPf

∂ z
=

f m2
c

2A2
cρl

⎧⎪⎪⎨⎪⎪⎩
2a3z+3z2

(
a1 +

a2
2 (a3 +1)

)
for 0 ≤ z < 1

a3−1
2a2

([
3a2

1

]
z2 +4

[
1−a1a3
a3−1

]
z+1

)
for 1 ≤ z < 1

a1

2z for z ≥ 1
a1

It is obvious that there is no local maximum or minimum of 0 ≤ z < 1, while in

the range of 1 ≤ z < 1/a1 there is a solution for

zs =
−b±√

b2 −4ac
2a

(5.30)

where

a = 3a1 (5.31)

b = 2
1−a1a3

a3 −1

c = 1 (5.32)
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The solution of (5.30) is strongly dependent on the saturation pressure, expressed

indirectly through a3, which states the ration between saturated liquid and satur-

ated steam. Note that a1, a2 and a3 are always positive; hence it is interesting to

look at the second derivative, which is negative in the range of: 1 ≤ z < 1/a1 for

a1+a2 > a1a2, which is similar to a1 < 1/a2. The condition for having two local

extrema is: b2 −4ac > 0, which is similar to

a3 > a3c = 1+
a2

a1
(4+2

√
3) = 1+

hg −hl

hl −hin
(4+2

√
3). (5.33)

A sub-cooling of the inlet water of 10 % of the latent heat gives a1=1/11 and

a2=10/11, which results in a3c=75.64 matching a saturation pressure of 22.25

[bar], consistent with the observations in figure (5.16), where we have no local

extrema for a saturation pressure above the 25 [bar] legend in figure (5.16).

Another interesting observation is, that if there is no sub-cool region present,

i.e, hin=hl , this implies that with a1 = 0 and a2 = 1, which will give a strictly

increasing pressure loss without any extrema. The solution to the inequality (5.33)

shows that the density ration (a3) fulfils the conditions for pressure oscillations in

a heat pipe, for a value above a certain threshold size (a3c). On the other hand, if

we increase the ration of sub-cooling from the present 10 % to a higher value, we

will reduce the ratio a2/a1, which affects the threshold value of a3c downward

and the saturation pressure in an upward direction. The corresponding derivative

for the gravitational pressure drop is given by

∂ΔPg

∂ z
= ρlgL

⎧⎪⎪⎨⎪⎪⎩
a1 − 1

a3
+ a2 ln(a3)

a3−1 for 0 ≤ z < 1

a1 − 1
(1−a1)(a3−1)z2

(
ln( 1−a3

a3
αm +1)− z

αm+a3

)
for 1 ≤ z < 1

a1

0 for z ≥ 1
a1

Here we can see that the slope of ΔPg is zero for z=1/a1 and the graph (5.17)

is monotonically increasing in the whole definition interval of 0 ≤ z < 1
a1

. By

summing the gravitational pressure drop and the friction pressure loss, we get an

expression for the entire pressure loss in a vertical heat pipe, which is illustrated

in figure (5.18), and can see that the local extrema for the low-pressure curves

have been moved to a more favourable position for the vertical setup, compared

to the pure horizontal setup.

∂ΔP
∂ z

=
f m2

c

2A2
cρl

∂ΔPf

∂ z
+ρlgL

∂ΔPg

∂ z
= 0 (5.34)

The local extrema for the entire pressure loss can be determined by differentiating

the sum of the two pressure loss equations (5.28) and (5.29). This leads to
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equation (5.34), solved numerically, by use of EES, which is illustrated in figure

(5.19), for the entire interval of definition: 1 < z ≤ 1/a1. On the left ordinate

axis we list z=m/mc and on the corresponding right side ordinate, we have the

saturation pressure as a function of a3. We can also see that the solution converges

to a dual solution for a3=1068, which corresponds to a saturation pressure of

1.55 [bar], under the given boundary conditions (pipe geometry, friction factor

and elevation height). This double solution expresses a threshold value for

the Ledinegg stability. There is no S-shaped curve above that threshold value

according to the legends in figure (5.18), where the 5 [bar ] pressure legend curve,

expresses a monotonic increasing function for increasing z.

Figure 5.19.: Local minimum and maximum curves for varying density in a vertical heat

pipe (sub-cooling = 10 % of latent heat).

5.6.4. Discussion

The simulation results are performed for pure water/steam properties and are

based on IAPWS 97. The simulation results are very clear; for high values of the

density ration a3 > a3c pressure oscillations can occur in horizontal heat pipes.

For water steam we can recommend a pressure level above 22.25 [bar] to avoid

this Ledinegg stability phenomenon. A higher proportion of sub-cooling of the

inlet flow will increase the likelihood of oscillations in horizontal pipe flows.

A vertical heat pipe is more stable than a horizontal boiler with respect to the

Ledinegg instability. The results are illustrated in figure (5.18), clarifing situation

where the saturation pressure corresponding to the "1 bar" legend represents an

S-shaped curve with both a local maximum and a local minimum in the range
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of 1 < z < 1/a1, while at the "5 bar" legend, we only observe a monotonically

increasing curve. For the corresponding horizontal plot, see (5.17) where we

observe an S-shaped curve for the "1 bar", "5 bar" and "10 bar" legend.

The S-shaped pipe characteristic curve indicates that for a range of z, multiple

solutions are possible. Steady state operation requires that the supply and demand

values are to be the same, implying that only A, B and C in figure (5.16) are

solutions. Points A and C are stable, because a perturbation in z at these points

causes an imbalance between the demand values of figure (5.16) and the supply

by a pump, that tends to bring the system back to its original steady state. Point B

is unstable, because when the system operates at B, with a small perturbation in z,

the system moves all the way to a stable and steady condition A, whereas a small

negative perturbation in z leads all the way to the steady state condition C. By this

simple analysis it can be shown that the system is stable if

∂ΔPp

∂ z
<

∂ΔPd

∂ z
(5.35)

where ΔPp and ΔPd represent the pump supply and the pipe demand difference

values, respectively. Modifications to the system that make the slope of the

demand curve more negative will destabilize the system, and modifications that

lead to an opposite result stabilize. It can also be shown that increasing the

pipe pressure drop is destabilizes, whereas increasing the pipe inlet pressure is

stabilizing. These phenomena are often seen on the large Benson boilers, where

the inlet manifold consists of small individual devices, for balancing the flow

distribution to the panel walls in to the boiler. Sub-cooling implies the risk of

Ledinegg flow instability. With no sub-cooling, we notice strictly monotone

increasing pressure loss without any extrema.

5.6.5. Summary

The power plant of SKV3 has a technical minimum pressure of 80 bar, which

means that there is no risk of Ledinegg instability in a large industrial power plant

evaporator, shaped as parallel heat pipes. We have also seen that a vertical heat

pipe results in a strong suppression of the Ledinegg instability phenomenon, so

that only small low-pressure evaporators (pre-heaters, low-pressure marine boil-

ers, etc.) may have a risk of instability caused by the Ledinegg phenomenon. The

degree of sub-cooling is also a decisive factor in the formation of a density jump

in this analysis and is a potentiating factor for the formation of Ledinegg instabil-

ity, because no sub cool-region implies that with a1 = 0 and a2 = 1, which gives a

strictly increasing pressure loss curve without any extrema.
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We begin this next section by first detailing the equation of state for the most

common water steam equations. These relatively simple mathematical expres-

sions will be used in later chapters in the modelling of two-layer flow models,

because here we divide the solution domain into two separate phases, one liquid

and a gas phase, so it makes sense to use simple expressions for EOS. Later we

will look at some ways both to reduce the computational work for calculating

the EOS and to ensure continuity between the various state areas in the EOS.

Detailed CFD methods are extremely computationally intensive and requires

calling the EOS for each computational cell for each time step. In physics and

thermodynamics, an equation of state (EOS) is a relation between state variables.

More specifically, an equation of state is a thermodynamic equation describing

the state of matter under a given set of physical conditions. It is a constitutive

equation which provides a mathematical relationship between two or more state

functions associated with the matter, such as, its temperature, pressure, volume,

or internal energy. Equations of state are useful in describing the properties of

fluids, mixtures of fluids and solids, and are necessary in connection with the

implementation of computational fluid flow algorithms. Therefore, for EOS, there

are both requirements for high computational accuracy (without discontinuities)

and demands for low execution time.

6.1. Equation of states for water and steam

Instead of using external libraries, such as IAPWS 97, we cannot explicitly

compute time derivatives, when differentiating property functions during use of

the chain rule of differentiation. A simple solution to this problem is to provide

derivative functions for each external function that is differentiated. In the

following sections, all partial derivatives required to compute the time derivatives

of density are derived for ρ(p,h).

∂ρ
∂ t

=

(
∂ρ
∂ p

)
h

d p
dt

+

(
∂ρ
∂h

)
p

dh
dt

(6.1)

In order to compute the two partial derivatives in (6.1), a case differentiation

between a one-phase and a two-phase state is required and will be outlined in

the following sub-sections. The resulting partial derivatives of specific volume
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can be transformed into partial derivatives of density using the following simple

relation
∂v
∂ρ

=− 1

ρ2
(6.2)

The difficulty with modelling a two-phase homogeneous approach is to specify

an equation of state (EOS) that covers all possible fluid stages: a pure liquid, a

two-phase mixture and a pure gas. Different EOS are used in pure phases and

in the mixture. In the present work, we propose a stiffened liquid and gas EOS

for the pure liquid and gas phases and a mixture formulation for the two-phase

EOS.

Compressibility

Compressibility is a measure of the relative volume change of a fluid or solid as

a response to a pressure (or mean stress) change. The compressibility depends

strongly on whether the process is adiabatic or isothermal. Accordingly iso-

thermal compressibility is defined as follows, taken from [18]:

βT =− 1

V

(
∂V
∂P

)
T

(6.3)

where V is volume, p is pressure and the subscript T indicates that the partial

differential is to be taken at constant temperature. Adiabatic compressibility is

defined:

βS =− 1

V

(
∂V
∂P

)
S

(6.4)

where S is entropy. The term "compressibility" is also used in thermodynam-

ics to describe the deviance in the thermodynamic properties of a real gas

from those expected from an ideal gas. The compressibility factor is defined

as

Z =
pV ∗

RT
(6.5)

where P is the pressure of the gas, T is its temperature in Kelvin, and V ∗ is

its molar volume. In the case of an ideal gas, the compressibility factor Z is

equal to unity, and the familiar ideal gas law is recovered. The deviation from

ideal gas behaviour tends to become particularly significant (or, equivalently, the

compressibility factor stays far from unity) near the critical point, or in the case

of high pressure or low temperature. In these cases, a generalized compressibility

chart or an alternative equation of state better suited to the problem must be

utilized to produce accurate results.
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6.1.1. Water

When considering water under very high pressures (typical applications are

underwater nuclear explosions, and sonic shocks) the stiffened equation of state

[62] and eg. [63] is often used:

p = ρ(γ0 −1)e− γ p0 (6.6)

where e=CvT is the internal energy per unit mass, γ0 is an empirically determined

constant and p0 is another constant reference pressure, determined empirically.

For an operating pressure of approximately 100 [bar], we can conclude that the

stiffened EOS is normally inadequate for our analysis and serves only to apply

to very high pressures. The associated speed of sound (in water) c, defined as

c2 =
(

∂P
∂ρ

)
S
, is given by:

c2 = γ0(p+ p0)/ρ = (γ −1)CpT, (6.7)

where T is measured in Kelvin and Cp in [J/kgoC]. This equation mispredicts the

pressure estimation close to the saturation lines, but few simple alternatives are

available for severely nonisentropic processes.

Density and change in temperature

Compressibility is related to the density of a fluid or substance, and in many

practical situations can be approximated with a simple linear relation, z = 1+β (t-

t0). If we wish to describe the compressibility of the water at an operating pressure

of 90 [bar], we make the following simple assumptions. When temperature is

changed, the density of a fluid can be expressed by a linear interpolation expanded

from a typical initial point as

ρ(t)p =
ρ0

1+β (t − t0)
(6.8)

where ρ(t)p is the final density [kg/m3] for fixed pressure p, ρ0 is the initial dens-

ity [kg/m3], β is the volumetric temperature expansion coefficient [m3/m3 oC], t is

the final temperature and t0 is the initial temperature, both measured in [oC]. Typ-

ical examples of the volumetric temperature coefficient β are:

• Water : β=3.07485·10−3 [m3/m3 oC] for p ≈ 90 [bar].

• Ethyl alcohol : β=0.0011 [m3/m3 oC] at atmospheric pressure [25].

Note that the volumetric temperature coefficients vary strongly with temperat-

ure.
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Density and change in pressure

When the pressure is changed, the density of a fluid can be expressed by a linear

compressibility coefficient, z = 1 -
(p1−p0)

E , which leads to the linear expression

below:

ρ(p)t =
ρ0

1− (p−p0)
E

(6.9)

where E is bulk modulus fluid elasticity given in [N/m2], ρ(p)t is the final density

[kg/m3] for fixed temperature t, ρ0 is the initial density [kg/m3], p1 is the final

pressure and p0 is the initial pressure, both measured in [N/m2]. The Bulk

Modulus Fluid Elasticity for some common fluids are:

• Water : E=2.7077 ·108 [N/m2] for p ≈ 90 [bar].

• Ethyl alcohol : E=1.06 ·109 [N/m2] at atmospheric pressure [25].

• Oil : E=1.5·109 (N/m2) at atmospheric pressure [25].

Density of a fluid changing both temperature and pressure

The density of a fluid when changing both temperature and pressure can be

expressed by combining (6.8) and (6.9):

ρ(p, t) =
ρ0

(1+β (t − t0))(1− p−p0
E )

(6.10)

6.1.2. Steam

In [62] there are explicit equations of state analysed and validated for steam, the

Beattie-Bridgeman and Van der Waals state equations. In figure (6.1) a T-S plot is

illustrated, which is divided into seven regions, of which regions CT1-CT3 is of

our interest for analysing boiler stability in part load (90 [bar]). The region CT3

is based on the Van der Waals II state equation, which is found to provide good

results close to the saturation line for medium pressure levels (90 [bar]). The

Van der Waals state equation is based on a modification of the ideal gas law and

approximates the behaviour of real fluids, taking into account the non-zero size

of molecules and the attraction between them. It is given by

p =
RT

ν −b
− a

ν2
(6.11)

where P is the absolute pressure measured in [kPa], ν = ρ−1 is the specific

volume in [m3/kg] and R = 461.522 [J/kgK]. The calibration coefficients are

given in table (6.1). The Van der Waals equation provides good results, save for

the region close to the saturation curve. A closer look at the T-S chart for steam

will reveal that, in this region, the curvature of pressure and density changes
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rapidly and is therefore difficult to model. The Bettie-Bridgemann equation

consisting of fourth-order terms of density, turn out to be inferior when compared

with the Van der Waals equation for the close to saturation region; see [62]. The

theory behind the Beattie-Brigemann equation is further described in [64]. The

Beattie-Bridgemann equation may be written in the form

p = RT ρ +

(
RT B−A− Rc

T 2

)
ρ2 +

(
Aa−RT Bb− RBc

T 2

)
ρ3 +

RBbc
T 2

ρ4

(6.12)

The equation is seen to be quite accurate and in general, provides an accuracy

which is better than that of Van der Waals; see [62]. For densities up to 80 % of

the critical density ρc = 322 [kg/m3], equation (6.12) provides an error less than 1

%, for the three properties (ρ ,P and T), according to [62]. The coefficients are

listed in table (6.1).

Table 6.1.: Constants for Bettie-Bridgemann and Van der Waals equations.

Coefficients. Van der Waals I Van der Waals II Bettie-Bridgemann I Bettie-Bridgemann II

A − − 0.915824 1.848857

B − − 0.001652 0.002725

a 6.624162 2.926529 0.005345 0.000792

b 0.016728 0.004059 0.005130 0.000273

c − − 8.52348E5 4.215885E4

6.1.3. Two-Phase region

This following sectionis develops the empirical relationships that approximately

describe the essential thermodynamic properties used in the numerical solution

of the thermal-hydraulic equations related to two-phase flow. On the basis of

the stiffened gas EOS for each pure phase (liquid and gas), an expression for

the pressure and temperature can be deduced from the thermal and mechanical

equilibrium assumption. The equations for the partial derivatives for the two-

phase state can be derived using a homogeneous model to describe the fluid

flow

v = vl +
h−hl

hg −hl
(vg − vl) (6.13)

where the coefficient to (vg − vl) at the right side of equation (6.13 ) describes

the steam quality xe of the two-phase flow

xe =
h−hl

hg −hl
(6.14)
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Figure 6.1.: T-S plot divided into regions of state equations [62].

Hence we can determine the following differentiation(
∂v
∂h

)
p
=

vg − vl

hg −hl
(6.15)

and the belonging partial derivative of specific volume with respect to pressure

for constant enthalpy can be written from [23] as:(
∂v
∂ p

)
h
=

vl

d p
+

x
d p

(vg − vl)+ xe

(
vg

d p
− vl

d p

)
(6.16)

where

∂x
∂ p

=
− dhl

d p (hg −hl)− (h−hl)
(

dhg
d p − dhl

d p

)
(hg −hl)2

(6.17)

with

dhl

d p
= vl(1−βlT )+Cp,l

dT
d p

(6.18)

dhg

d p
= vg(1−βgT )+Cp,g

dT
d p

(6.19)
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Hence the derivatives of the density at the phase boundaries can be expressed

as

dvl

d p
= βlvl

dT
d p

−κlvl (6.20)

dvg

d p
= βgvg

dT
d p

−κgvg (6.21)

and the derivative of the temperature in (6.18) to (6.21) can be derived from

the classical Clausius Clapeyron relation; see [23]. Note that β is the isobaric

coefficient of expansion, κ is the isothermal compressibility and cp is the specific

heat capacity at constant pressure, which can be derived by Bridgemanns ther-

modynamic equations, see [40], and can be determined from medium properties

as:

β =− 1

ρ

(
∂ρ
∂T

)
p
,κ =

1

ρ

(
∂ρ
∂ p

)
T

and cp =

(
∂e
∂T

)
p
+ p

(
∂v
∂T

)
p

(6.22)

where e is the internal energy. Further partial derivatives are listed in Appendix

K.
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In engineering practice, where real (specific) time performance, monitoring and

optimisation of power plants are performed in real time (according to actual

measurements of time), it is often necessary to obtain very accurate but simple

relationships between water and steam properties with a minimum of computa-

tional time. Also detailed CFD methods are extremely computationally intensive

and require calling the EOS for each computational cell for each time step. It is

therefore important to map a way that is reasonably scalable and can deliver a

good result with a limited inaccuracy. This section contains a number of com-

pact numerical interpolation schemes for fast calculation of the thermodynamic

properties developed, based on the IAPWS-97 (International Association for the

Properties of Water and Steam); see [65]. These methods are based on linear,

bilinear and second-order interpolation elements. We intend to resolve the sat-

uration line by using triangular elements in the vicinity of the saturation line.

This ensures the improvement of the resolution of the saturation line. Different

interpolation schemes have been tested in order to identify (the optimum form/the

most favourable form) with consideration of the desired accuracy and table lookup

speed. The accuracy and computing speed of the interpolation schemes have been

compared to those widely used in the IAPWS-97 standard, which is the reference

application in this work. The fastest averaged lookup speed was found to be 1/33

of the reference calculation, referring to the pure bilinear scheme. The accuracy

varies, depending on the area of interest, order of the element and the resolution

of the interpolation grid. The computing time is dependent on the region of the

area, but the greatest accuracy is achieved in the superheated region, where we

have the smoothest function values, making it possible to use a simple and fast

look-up function. The following work has been published in [15] and is included

in Appendix O.

7.1. Introduction

Brereton [66] is motivated by Callandar’s enthalpy function for dry steam. It is

based on the observation that over a given pressure range, density at constant

enthalpy is a nearly linear function of pressure within the tolerance of the skeleton

steam tables. This is illustrated by the red curve in figure (7.1). Simple algebraic

equations can thus provide dry-steam density within 0.05 % accuracy over a range

of 50 to 200 [bar] and from saturation temperature to 690 [oC]. Reference [67]

describes the necessity of fast water/steam calculations for dynamic simulations
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7. Interpolation in the steam table

of boiler tubes. Here, Siemens uses look-up tables, where a large set of interpola-

tion values of state variables has been stored for each necessary property function

together with its first order partial derivative. Thus for an arbitrary argument

input, the corresponding property function can be determined rapidly with the

help of the next surrounding interpolation value. In most cases the interpolation

Figure 7.1.: Density as a function of Pressure and Enthalpy, [68].

is processed linearly, which is the easiest alternative. Several other authors have

written about methods for improving the calculation speed of determining the

thermodynamic properties of water and steam, including [69], where a package

for the computation of water and steam properties has been developed. This pack-

age combines several aims: fast calculation, a good level of accuracy, consistency

and high accuracy of the saturated liquid and gas states, generally resulting in

a compromise where the advantage of sophisticated cubic interpolation and the

optimum node/grid selection are partly reduced by the computational effort re-

quired to meet the severe restrictions of smooth derivatives and high accuracy at

the saturation line. The package does not lead to a high speed general purpose

package, but to a highly sophisticated package with many special features. In [70]

there is a reconstruction of the property fluids for refrigerants in the REFPROP

database [71]. This method is related to the method we describe below. We

introduce an effort to decrease the computation time significantly by developing

an advanced interpolation scheme for the steam properties without compromising

the accuracy of the overall results. The presented method is based on the IAPWS

97 formulation and thus retains the accuracy of the recent formulation of steam

properties. The method is based on the Finite Element Method [72]. We investig-

ate which types of interpolation elements (linear, bilinear and iso-parametric) are

best suited for the steam property calculations.
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7.1.1. Motivation for the interpolation approach

One of the main advantages of using an interpolation scheme of the IAPWS-97,

is fast calculation of the properties with high accuracy for the complete definition

area. Using a low-order interpolation element allows for an unambiguous reverse

calculation of the dependent parameter as a function of the two independent para-

meters. By using higher-order interpolation elements, both the interpolation and

reverse calculations are based on iteration, extending the lookup time, however,

increasing the accuracy. In the design and operation of fossil-fired power plants,

accurate on-line (real-time) thermo hydraulic simulations are necessary. The

advantage of using an interpolation scheme for calculating the thermodynamic

properties, rather than a direct computation of IAPWS-97, is the possibility of

providing very short calculation times without significant loss of accuracy. If

the higher accuracy of the water and steam tables (IAPWS-97) is a requirement,

e.g., in optimization problems, one may use interpolated correlations in the initial

iterations and correct these to high accuracy by the accurate expressions in the

last iterations. Another advantage of using interpolation is that it is possible to

avoid discontinuities in the water and steam properties. These are illustrated

by figure (7.1), in which it is obvious that the slope of the density as a func-

tion of pressure and enthalpy, or vice versa, is discontinuous at the saturation

line. It is important to avoid numerically induced spikes or shocks in dynamic

simulations of thermo-hydraulic flow systems. This may be done by avoiding

discontinuities in-between regions in the IAPWS-97 formulation. We can solve

this problem by the interpolation in the water/steam properties. It may be noted

that discontinuities will not be observed physically in a finite volume as a phase

change will not take place in the full volume at the same instant. For this reason

a smothering of the discontinuity is not necessarily only a numerical detail of the

method. Additionally the stability of a numerical method including derivatives,

e.g., a Newton method, can be improved and may converge more easily, with

fever iterations. The Jacobian matrix consists of smooth derivatives. Typically

a solver for a steam power cycle will include derivatives of the thermodynamic

properties.

7.1.2. Steam table regions

An algorithm has been developed to interpolate (approximate) one (or more)

properties of water and steam as a function of two others. In this case we focus

on the density as a function of the enthalpy and pressure of water and steam

in the operation range of 0.1 to 4000 [kJ/kg] and 0.1 to 800 [bar], respectively.

Next we outline the theory of the interpolation scheme, supplied with the basic

algorithm, discretised nodes and corresponding elements for each region. The

interpolation grid is divided into five regions, as shown in figure (7.2). Regions

R1, R4 and R5 consist only of uniform squared elements with four nodes, placed

99



7. Interpolation in the steam table

in a rectangular Cartesian grid. Regions R2 and R3 consist of both squared and

triangular elements. The five regions are defined based on the need to determine

the density of a fluid, which is a challenging task, especially for water / steam

at low pressure levels. We can easily change the number and location of the

regions in order to accommodate other thermodynamic properties. The triangular

elements are used in areas, where we need to resolve the saturation line. These

triangular elements are linear or iso-parametric elements, with one side covering

the saturation line. This ensures an accurate resolution of the saturation line,

which cannot be handled by a rectangular bi-linear element, without increasing the

number of elements. With the assumption that the interpolation table is dedicated

Figure 7.2.: Five Regions in the Pressure and Enthalpy diagram of water/steam, from

www.x-eng.com.

to the interpolation of a water and steam model like IAPWS-97, we define two

independent parameters p (pressure) and h (enthalpy) measured in [bar] and

[kJ/kg], respectively, and covering five regions, with x=h and y=p. The definition

area for each of the five regions is given in table (7.1), where the threshold values

are given by: hcrit=2084.26 [kJ/kg], pcrit=220.19 [Bar], hx0=191.81 [kJ/kg] and

hx1=2803.28 [kJ/kg], due to figure (7.2). A simple and fast algorithm for finding

the correct region is shown in figure (7.3).

7.1.3. Creation of mesh

The creation of a compact grid has been implemented as a generic algorithm,

and is specifically adapted to regions R2 and R3 in the two-phase region, by
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Table 7.1.: Definition areas of each Region in the general interpolation scheme.

Region xmin[kJ/kg] xmax[kJ/kg] ymin[Bar] ymax[Bar]

1 0.10 191.81 0.1 220.19

2 191.81 2084.26 0.1 220.19

3 2084.26 2803.28 0.1 220.19

4 2803.28 4000.00 0.1 220.19

5 0.10 4000.00 220.19 800.00

Figure 7.3.: Flow chart diagram for finding a region.

establishing a series of pressure lines or isobars (Np). These are fundamental for

the construction of the elements. The specific place where a rectangular element

crosses a saturation line, is where a linear triangular element is established in

order to preserve the function value along the saturation line. Figure (7.5) illus-

trates how the element structure is established between two pressure levels. A

book-keeping system generally savies a pointer to the very first element in each

row, except for the pure Cartesian bilinear grid, where we use a simple integer

truncation to find the nearest grid points around the calculated point P(x,y); see

equation (7.9) below.
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7. Interpolation in the steam table

In regions R2 and R3, where the two-phase region of the fluid is described, we

Figure 7.4.: Grids for bilinear (A), linear (B) interpolation and second-order (C) inter-

polation.

consider the saturation curve. Hence the element resolution in the x-direction is

no longer equidistant in the vicinity of the saturation line, because the size of

the element depends on the slope of the saturation curve (
∂ρ
∂h ), which leads to

the above-mentioned book-keeping system. The very first element in each row

is saved, for later speeding up the table lookup procedure, which is illustrated

in figure (7.5). An algorithm is developed to obtain a fast and flexible way to

establish a mesh and to search it. It works in the following way for 3, 4 and 6

node-element systems, but is similar for higher-order elements.

Algorithm:

1) Choose the pressure levels (not necessarily equidistant).

2) Calculate the definition area in h: hmin and hmax.

3) Establish a loop from j = 1 to Np.

4) Calculate the saturation lines hmax
sat and hmin

sat for p( j), p( j+1) and

possibly p( j+2).
5) Start a main loop holding the pressure level given by p( j) and

p( j+1) and p( j+2).
6) Store pointer to the very first element in the main loop.

7) Initialise the two very first local nodes (n1 and n4) at hmin.

8) Start an inside loop with h=h+Δh.

9) Evaluate which element is restricting the size of h and update it on the

basis of h and the type of element (3, 4 or 6 node); see figure (7.5).

10) Update local nodes n2 and n3.

11) Evaluate if h > hmax. If true, update the new node n1 and n4 and

jump to 4) else set n1 = n2 and n4 = n3 and continue.

The above algorithm is generic for all regions, except for the evaluation step

9), which is unique for the three types of regions: the two-phase regions R2,
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Figure 7.5.: Elements in region 2 or 3 with local nodes (two-phase region with satura-

tion line).

R3, the single-phase, sub-critical regions R1, R4 and the super-critical region

R5. For region R2 we have to take into consideration that the very first element

is a triangular element, because the marching loop is going from low to high

pressure. In R3 we have the opposite situation, with a triangular element at the

very last element. Both R2 and R3 are a triangular element and placed at both

sides of the saturation line, to ensure optimal resolution of the saturation line.

The look-up system is based on look-up arrays for each element row at fixed

pressure, which stores the very first element each row. Regions R1, R4 and R5

are based on a solely equidistant grid structure, based on bilinear interpolation

of four-node square elements. This look-up system is determined to be fast and

simple.

7.1.4. Order of Interpolation scheme

Conceptually, the simplest element form of a two-dimensional kind is a rectangle,

with sides parallel to the x and y axes in a Cartesian coordinate system. Let us

assume that the function value z(x,y) is expressed in a polynomial form in x
and y. To ensure inter-element continuity of z along the top and bottom sides,

the variation must be linear. In general, we seek element expansions which

possess the highest order of a complete polynomial for a minimum of degrees

of freedom. In this context it is useful to recall the Pascal triangle [72] from

which the number of terms occurring in a polynomial in two variables, x, y, can

be readily determined. We use Pascal’s triangle which is a triangular array of
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the binomial coefficients in a triangle, and determines the coefficients arising in

binomial expansions.

(x+ y)n =
n

∑
k=0

(
n
k

)
xn−kyk (7.1)

= a0xn +a1xn−1y+a2xn−2y2 + ...+an−1xyn−1 +anyn, (7.2)

for any non-negative integer n and any integer k between 0 and n. Notice the

coefficients are the numbers in row n of Pascal’s triangle. In general, when a

binomial like x + y is raised to a positive integer power n, the coefficients ai
in this expansion are precisely the numbers on row n of Pascal’s triangle. A

first-order bilinear shape function can then be expressed as:

z(x,y) = a0 +a1x+a2y+a3xy (7.3)

matching four nodes in a square bilinear element. The interpolated function

should not use the term of x2 or y2, but x · y, which is the bilinear form of x and y.

The corresponding second-order shape function is given as:

z(x,y) = a0 +a1x+a2y+a3xy+a4x2 +a5y2 (7.4)

which is associated with a six-node triangular element.

7.1.5. Lookup table

In a Cartesian equidistant grid system, with the grid spacing of Δx and Δy, it is

very fast to calculate the neighbouring grid points in an element. Typically we

use a simple expression to find the nearest grid points, involved in the bilinear

interpolation, given by (7.8) to (7.9):

(x1,y1) = (Δx · i1,Δy · j1) (7.5)

(x2,y2) = (Δx · (i1 +1) ,Δy · j1) (7.6)

(x3,y3) = (Δx · (i1 +1) ,Δy · ( j1 +1)) (7.7)

(x4,y4) = (Δx · i1,Δy · ( j1 +1)) (7.8)

where the indices i1, j1 are given as

(i1, j1) =
(∣∣∣∣x− xmin

Δx

∣∣∣∣ , ∣∣∣∣y− ymin

Δy

∣∣∣∣) (7.9)

For a non- equidistant grid, we use a look-up vector to find the very first

and the last element in a row of elements, defined by the pressure level. A
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marching loop tests whether the spot point is in an element limited by two

nodes.

7.2. Interpolation elements

This section outlines three types of interpolation elements, which can be used

in combination with each other, and the theory follows in subsequent sec-

tions.

7.2.1. Linear interpolation elements

In the context of a triangle, we introduce the so-called barycentric coordinates,

which are also known as area coordinates, because the coordinates of a point

P with respect to triangle ABC are proportional to the (signed) areas of PBC,

PCA and PAB; see figure (7.6). Barycentric coordinates are extremely useful in

Figure 7.6.: Triangular elements T (3 and 6 nodes) for region 2 or 3 (in the vicinity of

the saturation line).

engineering applications involving triangular subdomains. These make analytic

integrals often easier to evaluate, and Gaussian quadrature tables are often presen-

ted in terms of area coordinates. First let us consider a triangle T defined by three

vertices(nodes) r1 , r2 and r3. Any point r located on this triangle may then be

written as a weighted sum of these three vertices, i.e.,

r = ξ1 · r1 +ξ2 · r2 +ξ3 · r3 (7.10)

ξ1 +ξ2 +ξ3 = 1 (7.11)

where

r1 = (x1,y1,z1), r2 = (x2,y2,z2) and r3 = (x3,y3,z3) (7.12)
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Inserting ξ3 = 1−ξ1 −ξ2 in (7.10) gives a plane, stretched by two vectors r12

and r13 and the corresponding normal vector is defined by: n=r12 × r13. This

plane can be expressed by the matrix T:

T =

(
x13 x23

y13 y23

)

and the corresponding area of the triangular element is

A =
1

2
det(T) (7.13)

where xi j=xi − x j and yi j=yi − y j.

Hence the barycentric coordinates can be formulated as

T ·ξ = r− r3 (7.14)

which gives

ξ = T−1 · (r− r3)

=
1

det(T)

(
y23 −x23

−y13 x13

)
· (r− r3)

=
1

(x13 · y23 − x23 · y13)

(
y23 −x23

−y13 x13

)
· (r− r3) (7.15)

or

ξ1 =
y23 · (x− x3)− x23 · (y− y3)

(x13 · y23 − x23 · y13)

ξ2 =
y13 · (x− x3)+ x13 · (y− y3)

(x13 · y23 − x23 · y13)

ξ3 = 1−ξ1 −ξ2 (7.16)

Since barycentric coordinates are a linear transformation of Cartesian coordinates,

it turns out that they vary linearly along the edges and over the area of the triangle.

If a point lies in the interior of the triangle T, all of the Barycentric coordinates lie

in the open interval (0,1), which can be summarized in the following statements:

a point r lies inside the triangle T if and only if 0 ≤ ξi ≤ 1 ∀ i ∈ [1,2,3], then

the point r lies in the triangle or on its edge. Now, we interpolate the value
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of z given by (x,y) in T as: n = r12 × r13 and n · (r− r1) = 0 which is similar

to

n1 · (x− x1)+n2 · (y− y1)+n3 · (z− z3) = 0 (7.17)

where n is the normal vector to the triangle ABC:

n =

⎛⎝ n1

n2

n3

⎞⎠
=

⎛⎝ y21 · z31 − z21 · y31

z21 · x31 − x21 · z31

x21 · y31 − y21 · x31

⎞⎠ (7.18)

Hence

z(x,y) = z1 − 1

n3
· [(x− x1) ·n1 +(y− y1) ·n2] (7.19)

y(x,z) = y1 − 1

n2
· [(x− x1) ·n1 +(z− z1) ·n3] (7.20)

x(y,z) = x1 − 1

n1
· [(y− y1) ·n2 +(z− z1) ·n3] (7.21)

If one of the barycentric coordinates is zero, this means that r lies on a line

segment defining T, and r is placed in the opposite direction of the barycentric co-

ordinate, ie. if ξ1 equals null, then r lies on the segment BC or on the line given by

the vector: r23 = r3−r2. Correspondingly, if one of the barycentric coordinates is

less than 0, this means that r is not inside the triangle T, but is positioned outside

T in the opposite direction to the ξi < 0. This technique is useful if we want to

traverse from one element to the neighbouring element.

7.2.2. Bilinear interpolation elements

The key idea behind the bilinear interpolation is to perform linear interpolation

first in one direction, and then again in the other direction. It is an extension of

the linear interpolation for interpolating functions of two variables (e.g., x and

y) on a regular grid [72]. Although each step is linear in the sampled values and

in the position, the interpolation as a whole is not linear but rather quadratic in

the sample location. Nevertheless, one can make an inverse calculation of the

dependent parameter z by use of bilinear interpolation, so the function z(x,y)
can be expressed explicitly as y(x,z) or x(y,z). Having a Cartesian rectangular

coordinate system in which the four equidistant vertices(nodes), are given by:
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r1 = (x1,y1), r2 = (x2,y2), r3 = (x3,y3), and r4 = (x4,y4), where z is known for

all nodes, then the interpolation formula simplifies to

z(x,y) = [1− x,x]
(

z1 z4

z2 z3

)
·
[

1− y
y

]
(7.22)

z(x,y) =
z1

ΔxΔy
· (x2 − x) · (y2 − y)+

z2

ΔxΔy
· (x− x1) · (y2 − y) (7.23)

+
z4

ΔxΔy
· (x2 − x) · (y− y2)+

z3

ΔxΔy
· (x− x1) · (y− y2) (7.24)

= a1 +a2 · x+a3 · y+a4 · x · y (7.25)

where

a1 =
1

ΔxΔy
· [x2y2z1 − x1y2z2 − x2y1z4 + x1y2z3]

a2 =
1

ΔxΔy
· [−y2z1 + y2z2 + y1z4 − y1z3]

a3 =
1

ΔxΔy
· [−x2z1 + x1z2 + x2z4 − x1z3]

a4 =
1

ΔxΔy
· [z1 − z2 − z4 + z3]

and Δx=x2 − x1 and Δy=y4 − y1. Alternatively we can calculate x(y,z) and y(x,z)

implicitly as:

x(y,z) =
−1

a2 +a4 · y · [z−a1 +a3 · y]
(7.26)

and

y(x,z) =
−1

a3 +a4 · x · [z−a1 +a2 · x]
(7.27)

Iso-parametric triangles

If the triangle has variable metric, as in the curved-sided six-node triangle geo-

metries shown in Figure (7.6), the foregoing formulas need adjustment because
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Interpolation elements

the element of area Ω becomes a function of position. It can be shown that the

differential area element is given by

dΩ = Jdξ1dξ2dξ3

=
1

2
det

⎡⎢⎢⎢⎣
1 1 1

∑n
i=1 xi

∂Ni
∂ξ1

∑n
i=1 xi

∂Ni
∂ξ2

∑n
i=1 xi

∂Ni
∂ξ3

∑n
i=1 yi

∂Ni
∂ξ1

∑n
i=1 yi

∂Ni
∂ξ2

∑n
i=1 yi

∂Ni
∂ξ3

⎤⎥⎥⎥⎦ (7.28)

where ξi, i ∈[1,2,3] are normalized coordinates and the shape function Ni is

given by equation (7.30). Above, J is the Jacobian determinant. The following

theory is based on the considerations described in reference [72]. Consider

the more general case of an iso-parametric element with n nodes and shape

functions Ni. The element geometry is defined by the corner coordinates xi,yi,

with i ∈ [1...6]. Corners are numbered 1, 2, 3 in counter-clockwise direction.

Side nodes are numbered 4, 5, 6, opposite to corners 3, 1, 2, respectively as

illustrated in figure (7.6). The triangular normalised coordinates are as above

denoted by ξ1, ξ2 and ξ3, which satisfy ξ1+ξ2+ξ3 = 1. The quadratic displacement

field ux(ξ1,ξ2,ξ3),uy(ξ1,ξ2,ξ3) is defined by the 12-node displacements uxi ,uyi ,

i ∈[1...6], as per the iso-parametric quadratic interpolation formula in [72], page

165. That formula is repeated here for convenience:

⎡⎢⎢⎢⎢⎣
1

x
y
ux
uy

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
1 1 1 1 1 1

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

ux1 ux2 ux3 ux4 ux5 ux6

uy1 uy2 uy3 uy4 uy5 uy6

⎤⎥⎥⎥⎥⎦N (7.29)

where the shape function N and the belonging gradients in ξi are given as:

N =

⎡⎢⎢⎢⎢⎢⎢⎣
ξ1(2ξ1 −1)
ξ2(2ξ2 −1)
ξ3(2ξ3 −1)

4ξ1ξ2

4ξ2ξ3

4ξ3ξ1

⎤⎥⎥⎥⎥⎥⎥⎦ (7.30)
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∂Ni

∂ξ1
=

⎡⎢⎢⎢⎢⎢⎢⎣
4ξ1 −1

0

0

4ξ2

0

4ξ3

⎤⎥⎥⎥⎥⎥⎥⎦ ,
∂Ni

∂ξ2
=

⎡⎢⎢⎢⎢⎢⎢⎣
0

4ξ2 −1

0

4ξ1

4ξ3

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
∂Ni

∂ξ3
=

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

4ξ3 −1

0

4ξ2

4ξ1

⎤⎥⎥⎥⎥⎥⎥⎦ (7.31)

If the metric is simply defined by the three corners, as in figure (7.6), the geometry

shape functions are linear as in equation (7.16): N1 = ξ1, N2 = ξ2 and N3 = ξ3.

Then the foregoing determinant reduces to that of equation (7.13), and J = 1
2 A

everywhere. But for general (curved) geometries J = J(ξ1,ξ2,ξ3), and the triangle

area A cannot be factored out of the integration rules according to [72]. Instead we

use the above gradients in a simple iteration procedure to estimate the barycentric

coordinates for a specific point P(x,y). The bulk of the shape function logic is

concerned with the computation of the partial derivatives of the shape functions

(7.31) with respect to x and y at any point in the element. For this purpose, we

consider a generic scalar function w(ξ1,ξ2,ξ3) that is quadratically interpolated

over the triangle by

w = w1N1 +w2N2 +w3N3 +w4N4 +w5N5 +w6N6 (7.32)

where w may stand for 1, x , y, ux or uy , which are interpolated in the iso-

parametric representation in (7.29), or other element-varying quantities, such as

fluid density, temperature, etc. Determining partial derivatives of w in (7.32) with

respect to x and y and applying the chain rule twice yields

∂w
∂x

=
n

∑
i=1

wi
∂Ni

∂x
=

n

∑
i=1

wi

(
∂Ni

∂ξ1

∂ξ1

∂x
+

∂Ni

∂ξ2

∂ξ2

∂x
+

∂Ni

∂ξ3

∂ξ3

∂x

)
∂w
∂y

=
n

∑
i=1

wi
∂Ni

∂y
=

n

∑
i=1

wi

(
∂Ni

∂ξ1

∂ξ1

∂y
+

∂Ni

∂ξ2

∂ξ2

∂y
+

∂Ni

∂ξ3

∂ξ3

∂y

)
(7.33)

where all sums are understood to run over i = 1,...6. In matrix form:

⎡⎣ ∂w
∂x
∂w
∂y

⎤⎦=

⎡⎣ ∂ξ1
∂x

∂ξ2
∂x

∂ξ3
∂x

∂ξ1
∂y

∂ξ2
∂y

∂ξ3
∂y

⎤⎦ ·

⎡⎢⎢⎢⎣
∑wi

∂Ni
∂ξ1

∑wi
∂Ni
∂ξ2

∑wi
∂Ni
∂ξ3

⎤⎥⎥⎥⎦ (7.34)
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Transposing both sides of (7.34) while exchanging sides yields

[
∑wi

∂Ni
∂ξ1

∑wi
∂Ni
∂ξ2

∑wi
∂Ni
∂ξ3

]
·

⎡⎢⎢⎢⎣
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦=
[

∂w
∂x

∂w
∂y

]
(7.35)

Now make w ≡ (1,x,y)T and stack the results row-wise:⎡⎢⎢⎢⎣
∑ ∂Ni

∂ξ1
∑ ∂Ni

∂ξ2
∑ ∂Ni

∂ξ3

∑xi
∂Ni
∂ξ1

∑xi
∂Ni
∂ξ2

∑xi
∂Ni
∂ξ3

∑yi
∂Ni
∂ξ1

∑yi
∂Ni
∂ξ2

∑yi
∂Ni
∂ξ3

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
∂1
∂x

∂1
∂y

∂x
∂x

∂x
∂y

∂y
∂x

∂y
∂y

⎤⎥⎥⎥⎦ (7.36)

It is obvious that ∂x
∂x = ∂y

∂y = 1 and ∂1
∂x = ∂1

∂y = ∂x
∂y = ∂y

∂x = 0 because x and y are

independent coordinates. It is shown in [72] that, if ∑Ni = 1, the entries of the

first row of the coefficient matrix are equal to a constant of unity, because the first

equation in (7.37) is homogeneous. These entries can be scaled to unity because

the first row of the right-hand side is null. Consequently we arrive at a system of

linear equations of order 3, with two right-hand sides:

J ·P =

⎡⎢⎢⎢⎣
1 1 1

Jx1 Jx2 Jx3

Jy1 Jy2 Jy3

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
0 0

1 0

0 1

⎤⎥⎥⎥⎦ (7.37)

where J is called the Jacobian matrix and its determinant is scaled by one-half of

the Jacobian: A = 1
2 det(J), as used in the expression of the area of an element in

(7.13). Additionally the sub-Jacobians in (7.37) are given by

Jx1 = ∑xi
∂Ni

∂ξ1
, Jx2 = ∑xi

∂Ni

∂ξ2
, Jx3 = ∑xi

∂Ni

∂ξ3

Jy1 = ∑yi
∂Ni

∂ξ1
, Jy2 = ∑yi

∂Ni

∂ξ2
, Jy3 = ∑yi

∂Ni

∂ξ3
(7.38)
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Solving system (7.37) gives⎡⎢⎢⎢⎣
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦=
1

2A

⎡⎢⎢⎢⎣
Jy23 Jx32

Jy31 Jx13

Jy12 Jx21

⎤⎥⎥⎥⎦= P (7.39)

with Jx ji=Jx j-Jxi, Jy ji=Jy j-Jyi and A= 1
2 (Jx21Jy31-Jy12Jx13) = 0. Substituting this

into (7.33), the partial derivatives of the shape functions are⎡⎣ ∂Ni
∂x
∂Ni
∂y

⎤⎦= PT
[

∂Ni
∂ξ1

∂Ni
∂ξ2

∂Ni
∂ξ3

]T
(7.40)

where P is the 3x2 matrix of triangular coordinates defined in (7.39). To determine

the barycentric coordinates for an iso-parametric element with n = 6 nodes, we

have two residual functions for a given point P(x,y), which can be incorporated

into an external iterative loop, combined with an iterative backtrack loop of

ξi:

Rx =
6

∑
i=1

Nixi − x, and Ry =
6

∑
i=1

Niyi − y. (7.41)

The iterative backtracking loop of ξi can be determined by the knowledge of the

contributions of
∂ξi
∂x and

∂ξi
∂y ;

ξ n+1
i = ξ n

i +
∂ξi

∂x
Rx +

∂ξi

∂y
Ry

= ξ n
i +

Jy23Rx + Jx32Ry

det(J)
, i ∈ [1,2] (7.42)

hence we have

Δξ1 =
Jy23Rx + Jx32Ry

det(J)
and Δξ2 =

Jy31Rx + Jx13Ry

det(J)
(7.43)

7.2.3. Stretching of grid

By introducing a stretching of the pressure grid, we can ensure improvements

in data representation, especially in areas where there are large gradients in the

density. Therefore, we defined a simple stretching function, based on the theory

outlined in Appendix G, which contributes to a moderate stretch of the pressure
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grid in the vicinity of the saturation line, until the desired data representation is

obtained. Figure (7.7) illustrates how the stretching works. Here the stretching

of the network has greatest impact at both ends at x = 0 and x = 1. A simple

Figure 7.7.: Monotone increasing stretch function allowing dense grid at boundaries.

monotone increasing stretch function is given by (7.44):

y = sin2(
πx
2
), (x,y) ∈ [0, ...1] (7.44)

and the reverse function is trivia,l given by

x =
2

π
sin−1(

√
y), (x,y) ∈ [0, ...1] (7.45)

7.3. Timing the application

The timing of the simulations is very important because it provides the basis for

evaluation of the interpolation elements in terms of time-consumption versus

effectiveness. One of the performance indicators is the application timing; others

can be related to the outcome of the application in terms of numerical results.

The program timings are executed when other users are not active. The timing

results can be affected by one or more CPU-intensive processes also running
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7. Interpolation in the steam table

while doing the timings, and the application has to be executed under the same

conditions each time in order to provide the most accurate results, especially when

comparing execution times of a previous version of the same program. If possible,

the same system (processor model, amount of memory, version of the operating

system, and so on) has to be used each time. For programs running less than a

few seconds, it is important to run several timings to ensure safeguard against

results. Overhead functions like loading libraries might influence short timings

considerably. If the program displays a lot of text, redirection of the output from

the program should be considered, which changes the times reported because

of reduced screen I/O. Timings that show a large amount of system time may

indicate a lot of time spent doing I/O, which might be worth investigating. For

programs that run for less than a few seconds, it is important to run several timings

to ensure that the results are not misleading. Overhead functions like loading

shared libraries might influence short timings considerably. The elapsed, real, or

’wall clock’ time, will be greater than the total charged actual CPU time. Charged

actual CPU time, is shown for both the system and the user execution. The total

actual CPU time is the sum of the actual user CPU time and the actual system

CPU time. The computer used is a Lenovo portable PC (T520) with Intel(R) Core

(TM) i5-2520M CPU @2.5 GHz 2 Core(s) with four logical processors, installed

memory (RAM) is 8 GB - 64-bit operation system, Windows 7 Enterprise and

service pack 1 Build 7601. Both the test application and the IAPWS-97 water

steam table are implemented in C++ / FORTRAN 90, under Visual studio 2008,

Professional Edition. The applications are compiled with an optimiser in order to

achieve maximum speed.

7.4. Simulation results

Here follow comparisons of three different setups of interpolations. The first

setup is based on a case using two main regions, R6 which covers regions R1 to

R4, and R5 using a pure bilinear four node element. The second case is based on

five regions using bilinear elements, supplied with a linear triangular element in

the vicinity of the saturation line. Finally, there is a setup is using the five regions

by applying an iso-parametric triangular element (six-node). The simulations

are identified by a number (Ns). Meshes based on different element sizes in

the five regions have been created for the individual simulations. The number

of elements in each case are listed in table: table (7.3) for the two-region case,

table (7.4) for the five-region case with bilinear elements and table (7.5) for

the five-region case with triangular elements. The total number of nodes and

elements are listed in the last column. We have a linear relationship between

the total amount of nodes/elements versus the number of isobars used, Np, be-

cause the step length in enthalpy, h, is approximately fixed and independent of Np.
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The results in terms of accuracy and simulation times for the three cases are

presented in tables (I.1), (I.2) and (I.3). For comparison, reference simulations

have been performed by running the pure IAPWS-97 water/steam application for

pressure p ∈ (1,10, 50, 100, 220, 300 and 700) [bar]. Corresponding time records

are carried out by executing 8 million calculations, varying enthalpy linearly

from 0.1 [kJ/kg] up to 4000 [kJ/kg]. The IAPWS 97 is implemented in the same

environment as the comparable interpolation scheme. Time-consumption is listed

in table (7.2). The averaged simulation time is 1.2248 [μs]. The interpolations are

performed by stretching isobars in the bottom and top of each region, according

to equation (7.44). We notice that it is relatively more time-consuming (5-6

p[Bar] 1 10 50 100 220 300 700

tre f [μs] 0.8775 0.8229 0.7391 0.6923 0.3843 0.7937 0.8054

Table 7.2.: Time-consumption of executing IAPWS-97.

times) to perform the interpolation for an isobar passing in the vicinity of the

critical pressure (pcrit ). Grid structure for the three interpolation setups is plotted

in the table (7.3-7.4), where both the number of nodes and elements are plotted

as a function of the number of isobaric lines (Np) in each region. We can see a

proportionality between Np and the number of elements for the bilinear elements

and an approximate proportionality for the triangular node in R2 and R3. For

Np Items R6 R5 ∑5
i=1 Ri

10
Elements: 3600 3600 7200

Nodes: 4010 3609 7619

25
Elements: 9600 9600 18200

Nodes: 10025 9624 19649

50
Elements: 19600 19600 39600

Nodes: 20050 19649 39699

100
Elements: 39600 39600 79600

Nodes: 40100 39699 79799

200
Elements: 79600 79600 159200

Nodes: 80200 79799 159999

Table 7.3.: Number of nodes and elements in region (R6=∑4
i=1 Ri) and R5 for four-node

elements.

each simulation setup we perform a traversal with constant pressure and varying

enthalpy from 0.5 [kJ/kg] to 3999.5 [kJ/kg] with a step of 0.5 [kJ/kg]). The isobar

lines are: (1, 10, 50, 100, 220, 300 and 700 [bar]). The maximum, minimum
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Np Items R1 R2 R3 R4 R5 ∑5
i=1 Ri

10
Elements: 180 1537 435 1278 3600 7030

Nodes: 206 2280 525 1420 4009 8440

25
Elements: 600 219 210 2880 9600 19219

Nodes: 650 4417 1194 3408 10024 21785

50
Elements: 2450 9217 2448 6958 19600 40673

Nodes: 2512 12907 2557 7100 20049 45125

100
Elements: 9900 18817 9898 14058 39600 92273

Nodes: 10100 26173 10122 14200 40099 100694

200
Elements: 39800 39957 39798 39800 79600 238955

Nodes: 40040 55416 40235 40000 80199 255890

Table 7.4.: Number of nodes and elements in region 1-5) for three and four-node bilin-

ear elements.

Np Items R1 R2 R3 R4 R5 ∑5
i=1 Ri

10
Elements: 360 3074 1142 2160 7200 13936

Nodes: 920 8437 3068 5520 18418 36363

25
Elements: 1800 8834 3358 6730 9600 13362

Nodes: 3074 23956 8913 14520 19200 14131

50
Elements: 4900 18434 7048 11760 39200 81342

Nodes: 12300 49824 18647 29520 98498 208789

100
Elements: 19800 37634 19892 23760 79200 180286

Nodes: 49799 101540 52557 59520 198598 462014

200
Elements: 79600 79914 79794 79600 159200 478108

Nodes: 199201 215443 210667 199199 398798 1223308

Table 7.5.: Number of nodes and elements in region 1-5) for six-node elements.
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and mean relative error, given by (7.46) are illustrated, as well as the standard

deviation, which is a good indicator of how often significant differences in the

interpolation occur compared to reference data. Finally, we notice the simulation

time for a traversal of h, corresponding to the time records, carried out for the

IAPWS-97 reference calculations (tRe f ), which is executed for 8 million steps,

varying linearly from 0.1 [kJ/kg] up to 4000 [kJ/kg], in order to evaluate the

impact of using different types of elements.

ε =
ΦInt p −Φre f

Φre f
·100%

(7.46)

7.4.1. Bilinear four-node element

The first simulation setup includes a series of calculations based on the four-node

bilinear element with varying mesh fineness, for different pressure levels (isobars).

The calculations are listed in Table I.1. Figures (7.9) and (7.10) illustrate results

for density interpolations based on sustained p and varying enthalpy from 0.5

[kJ/kg] up to 3999.5 [kJ/kg] with a step length of 0.5 [kJ/kg], for different Np. In

addition, the accuracy of each interpolation is illustrated in figure (7.8). In general

the maximum error is located in the vicinity of the saturation line for saturated

water and is very high, even for Np=200. Herethere are very large negative steep

gradients
∂ρ
∂h << 0, especially for low pressure (p < 10 [bar]), which are very

difficult to resolve in a bilinear scheme. By using a bi-linear interpolation scheme,

one avoids phenomena such as over and under-shooting the interpolated value;

this is only true for higher-order polynomial elements. In general we see a stable

and fast interpolation scheme, with a standard deviation below 1E-3 for p > 50

[Bar] for all Np, but we should be aware that if the steep gradients should dissolve,

we need many more elements without affecting the lookup time, only the timing

of the initial mesh creation. The averaged interpolation time for one point is

0.115 [μs] which is 10.65 times faster than IAPSW-97, and for the isobars in the

vicinity of the critical pressure, we find an even higher performance, up to 33.4

times faster.

7.4.2. Bilinear four-node combined with triangular three-node

elements

The next simulation setup is similar to the first, except for the use of triangular

linear elements in the vicinity of the saturation line. The purpose of using

triangular elements is to achieve a better resolution of the saturation curve, even if

the triangular element is linear. The calculations are listed in Table I.2. In figures

(7.12) and (7.13) the results for density interpolations are illustrated, based on

sustained p and varying enthalpy from 0.5 [kJ/kg] up to 3999.5 [kJ/kg] with a
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Figure 7.8.: Relative errors and standard deviation for different resolution of the pure

bi-linear grid (Ns).

step length of 0.5 [kJ/kg], for different Np. In addition, the accuracy of each

interpolation is illustrated in figure (7.11). In general the maximum error also here

is located in the vicinity of the saturation line for saturated water and is very high,

even for Np=200. We can see a minor improvement in the standard deviation of ρ ,

for p below the critical pressure, compared to the case without triangular elements.

Again the density trough for low pressure is still very difficult to resolve by linear

triangular elements. By using the linear interpolation scheme, we again avoid the

over and under-shoot of the interpolated value. In general we see a stable and

fast interpolation scheme, with a standard deviation below 1E-3 for all p > 100

[bar] and Np > 25. The averaged interpolation time for one point is 0.1899 [μs]

for the two-phase region and 0.1180 [μs] for the superheated region (R5) which

is 7.3 and 6.7 times faster, respectively, than the reference IAPWS-97. We have

an increased time-consumption since we use a lookup table, containing the start

and end elements of each row of elements, involving a possible risk in running

through a large table before the correct item is found for interpolation. In the

pure bilinear interpolation, we can use the form described in equation (7.9).
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Figure 7.9.: Density as a function of Enthalpy for fixed pressure of 1.0 [Bar]. Np varies

from 10, 100 and 200.

7.4.3. Triangular six-node elements

The last simulation setup uses iso-parametric triangular elements for all regions.

Here we operate with five regions as in the previous setup. The purpose of

using triangular iso-parametric elements is to achieve a better resolution of the

saturation curve as well as increasing the accuracy all over the domain, even if the

triangular element is only of second-order. The calculations are listed in table I.3.

Figures (7.15) and (7.16) illustrate the results for density interpolation based on

constant pressure and varying enthalpy from 0.5 [kJ/kg] up to 3999.5 [kJ/kg] with

a step length of 0.5 [kJ/kg] for different Np. Additionally, the accuracy of each

interpolation is illustrated in figure (7.14). In general the maximum error is still

considerable, up to 400 %, and also here is located in the vicinity of the saturation

line for saturated water, even for Np=200. However, it is significantly lower than

observed in the previously shown results. We find a significant improvement in

the standard deviation for pressures below the critical pressure, compared to the

case without triangular elements. Again the density trough for low pressure is

still very difficult to resolve, even by an iso-parametric triangular element. A
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Figure 7.10.: Density as a function of Enthalpy for isobars varies from 1.0 to 700 [Bar].

Np=200.

second-order element is not necessarily monotonically increasing or decreasing,

indicating we have a risk, that the interpolation can be influenced by a numerical

over-shoot or under-shoot. We see this clearly for Np = 10 and, more surprisingly,

also for Np = 200. In the latter event we observe a sharp jump in function values

inside the element nodes, for example, ρ1 = 989, ρ2 = 0.32, ρ3 = 903, ρ4 =

1.30, ρ5 = 10.9 and ρ6 = 974. The interpolated value is ρInt p = 0.18, while the

IAPWS-97 gives 8.19. All ρ values are measured in [kg/m3]. Here we experience

a huge relative error as a result of the inability of the second-order elements to

dissolve the very large gradients, that we experience at the density trough for

low pressure. The averaged interpolation time for the entire domain is 5.6925

[ms] which is 4.6 times slower than the original IAPSW-97 implementation.

The increased time-consumption is first of all due to the need to calculate the

barycentric coordinates according to the algorithms (7.41) to (7.43) for each

point P(x,y). Secondly, it is due to the lookup table we use, which contains start

and end elements of each row of elements, due to a non-equidistantly mesh in

enthalpy, h.
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Figure 7.11.: Relative errors and standard deviation for different resolution of the Bi-

linear grid with triangular elements in the vicinity of the saturation line

(Ns).

Figure 7.12.: Density as a function of Enthalpy for a fixed pressure of 1.0 [Bar]. Np
varies from 10, 100 and 200.
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7. Interpolation in the steam table

Figure 7.13.: Density as a function of Enthalpy for isobars varying from 1.0 to 700

[Bar]. Np=200.

122



Simulation results

Figure 7.14.: Relative errors and standard deviation for different resolution of the

second-order iso-parametric elements.

Figure 7.15.: Iso-parametric elements: Density as function of Enthalpy for fixed pres-

sure of 1.0 [bar]. Np varies from 10, 100 and 200.
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Figure 7.16.: Iso-parametric elements: Density as a function of Enthalpy for isobars

varying from 1.0 to 700 [bar]. Np=200.
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7.5. Discussion

The benefits in using the iso-parametric elements are minimal in this case, since

they are time-consuming and not able to resolve the density trough at low pres-

sures. Yet for some reasons we recommend using such elements in the scope of

smoothing the thermodynamic properties, calculated in individual regions in the

IAPWS-97 Industrial Standard. We observed also the possibility of inaccurate

interpolation along the saturation curve for water at low pressure levels. One

example was Np=200, p = 1 [bar] and h = 578.75 [kJ/kg]. In this iso-parametric

element there are large differences in the function values of the nodes, ranging

from 989.83 [kg/m3] down to 0.32 [kg/m3] by an exponential decrease in dens-

ity, meaning a second-order element is not sufficient to dissolve the functional

sequence of the element. If we use regions R2 and R3 with a higher minimum

pressure (pmin), the iso-parametric element gives very high accuracy and repro-

duces the results with a maximum relative error below 0.5 % (Ns=87) and a

standard deviation less than 10−3 for Np > 50. A general comment is also that

it is not recommended to use a network based on only Np = 10 isobaric lines;

this causes an excessive interpolation inaccuracy. Conversely, we see that a

network with NP = 200 or more, provides relatively large networks, especially

the iso-parametric element. The initial network generation takes several minutes

to establish for Np = 200 and greatest 1223308 nodes and 478108 iso-parametric

elements, according to table (7.5). We have chosen to interpolate the density,

because this thermodynamic property contains very sharp gradients, especially for

low pressure, which in this way uncovers an absolute worst case with respect to

interpolation. Other state properties would yield significantly better results, such

as heat capacity, entropy and temperature. When modelling a dynamic two-phase

flow process, one can ask questions about what happens to the density along the

saturation line. Under normal circumstances, it is a well-known numerical trick to

smooth the crossing from the sub-cooled liquid to the two-phase mixture, thereby

blurring the steep gradient. If one then uses an interpolation scheme with a suit-

ably large number of pressure lines, one is assured of a high degree of accuracy in

the interpolated state variables, which does not only have to contain one value. In

practice all necessary thermodynamic properties can be saved in each node in the

interpolation table. A simple way to enhance the iso-parametric interpolation, is

by modifying the surface function which is included in the interpolation element.

If we introduce a contribution, which replaces the quadratic part with a reciprocal

part of the variable, we get a better resolution of the density trough, as we see in

the vicinity of the saturation curve for water. However this solution will give less

desirable results for other quantities that behave square with respect to variations

in pressure or enthalpy. The challenge with this method is that the interpolation
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table is bulky. An example of Np = 200 isobar lines and with 17 items stored in

each node, provides a binary file of approximately 50 MB.

7.6. Summary

The high-lights in this section presents the result of investigations of three differ-

ent methods of using interpolation schemes, based on the finite element methodo-

logy to represent thermodynamic state variables of water/steam as an alternative

to using the complete formulation defined by IAPWS-97. The results show there

is significantly reduced computation time, but also that there are challenges to

using the suggested approach. One is that we find low accuracy of the results in

parts of the calculation range, and two is that even higher time-consumption may

occur selection of the elements.

We recommend bilinear schemes for interpolating the water/steam table of

IAPWS-97. For pure bilinear interpolation we recommend at least Np=200

or higher, since no look up table is required in this case. Modern computers do

not restrict the amount of data storage significantly, so in practice we do not have

to take memory into consideration. The improvements in introducing the trian-

gular elements are too insignificant to justify the more intensive implementation

of such scheme; however, the results are more accurate and we can reduce some

memory demands. However, in the two-phase region, we need a look up table,

which can be time-consuming for large grid arrangements. The iso-parametric

triangular elements cannot be recommended for the entire domain and especially,

if the argument is to save CPU costs. Alternatively the iso-parametric elements

can with advantage be used when calculating the first-order derivative of the

thermodynamic properties; thereby we ensure continuity in the first-order deriv-

ative. If the iso-parametric elements should be used near the density trough, a

more dedicated shape function should be implemented. In such case, we can

reduce the number of elements drastically and the computer costs, too. However,

the barycentric coordinates will be costly to compute. It will be a challenge

to find approval to use the iso-parametric elements. Hitherto when we decided

to use the interpolation technique, we had to define the definition area of the

problem of interest and thereby the size and number of regions in the interpolation

model.
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systems

This chapter has developed various models to describe the thermal-hydraulic

conditions in a two-phase flow. The models vary widely in complexity and have

both strengths and weaknesses. The most complex models allow a more detailed

description of flow regimes, depending on the distribution of different sub-layers

in the model as well as the orientation of the heat pipe (horizontal or vertical). A

homogeneous model provides a more simplified description of the flow regimes,

but achieves a faster execution time. We start by looking at a two-layer model,

which forms the basis for description of the physics of the evaporation process.

With this background a homogeneous model is derived, which subsequently

is used to analyse load scenario studies in connection with the case study of

SKV3. This chapter concludes with brief a four-layer model, which is detailed in

Appendix (M).

8.1. Non-thermal equilibrium situations

A two-phase flow model for predominantly one-dimensional flow can be adapted

to different flow regime patterns (vertical as well as horizontal stratification) and

to pipes with or without rifling. The model uses a non-equilibrium approach and

consists of two continuity equations, two momentum equations and two energy

equations. This section starts with a brief review of various boiling and flashing

mechanisms in two-phase flow, clearly revealing that thermal equilibrium is only

a limiting case: when the processes take place at very slow rates or if there

is extremely fine subdivision of the phases, so that there is an extremely large

interfacial area where the heat exchanges can take place. It is only under such

load conditions, that one can model two-phase flow systems assuming thermal

equilibrium. For simplicity the derivation will follow from a symmetric stratified

flow pattern in the figures; however, this does not limit the generality to other

flow patterns.

Some degree of thermal non-equilibrium arises in practically all situation and

specially in dynamic situations; thermal non-equilibrium must always be present

so that heat and mass transfer can take place. Thermodynamic equilibrium does

exist between a liquid and its vapour separated by a flat interface, e.g., water and

steam in a closed vessel. In the classical case of stationary vapour / bubble in a

large amount of liquid, the vapour and liquid temperatures are equal. However,
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due to the effect of surface tension, see equation (E.66), even in this equilibrium

situation, the system temperature must be slightly above the saturation temperat-

ure corresponding to the pressure of the liquid. It is only in the case of the flat

interface, that both phases can be exactly at saturation.

In the equally classical case of nucleate boiling (NB) there must be a certain

superheat of the liquid near the wall for the bubble to nucleate and grow. In

the case of strong temperature gradients near the wall, one can have sub-cooled

nucleate boiling (SNB) where bubbles nucleate, grow and even detach from the

wall and survive for a while in the bulk of sub-cooled liquid.

In annular flow (forced convection) there is a temperature gradient in the liquid

film on the wall, since the liquid layer immediately adjacent to the wall is at the

wall temperature, while the interface is near saturation. This temperature gradient

drives a heat flux to the interface where evaporation takes place. In a dispersed

flow film boiling regime, a two-stage heat transfer phenomenon exists, from the

wall to the vapour and from the vapour to the liquid droplets, where temperature

gradients are the driving mechanisms for these heat exchange processes. The

vapour gets superheated from the hot wall, while there is still water in the form

of droplets in the flow channel, [73].

In the case of a rotating flow field, the rotation gravity will separate the heavy

liquid droplets from the lighter steam, which results in a more homogeneous film

layer at the wall. In this liquid film layer, the temperature gradient drives a heat

flux to the interface where evaporation takes place. Turbulence will cause entrain-

ment of new liquid droplets, which will interact mechanically and thermally with

the steam in the pipe core.

Thermal non-equilibrium is present in flashing load situations, i.e., when changes

in a pipe system (evaporator) results in super heating of the liquid and thereby

produce vapour. An example of the absence of thermal equilibrium is a rapid

de-pressurization of a liquid system. In this case the pressure may drop well

below the saturation pressure that corresponds to the temperature of the liquid.

The causes of this pressure under-shoot is clear; it takes time for bubbles to nuc-

leate and grow by drawing heat from the surrounding fluid, consequently there

is a departure from equilibrium, i.e., the liquid tends to remain at the original

temperature, whereas the vapour that is being generated is close to saturation.

Similarly, a sub-cooled discharge through a break or an orifice may expose fluid

particles to a rapid change in pressure. If the outside pressure is below the sat-

uration pressure corresponding to the temperature of the liquid, then the fluid

flashes in a process similar to that of a rapid de-pressurization and there may be

similar departure from equilibrium. Flashing is of importance for critical flows
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that affect the safety of various processes in steam power engineering (steam

power boilers).

8.2. Two-layer model

A general two-layer model is developed for predominantly one-dimensional

flows in a vertical pipe element with internal rifles. In bubbly flows or liquid

suspensions, the number of interfaces between the phases is too large to track, and

it is widely accepted that average flow characteristics are sufficient to describe the

relevant macroscopic dynamics. Averaging the equations, for example across the

channel in Figure (8.1), yields models in which at every point in space, all fluid

components co-exist with certain volume fractions. Such multi-phase models

are inherently non-conservative due to momentum and energy exchange terms

between the phases. They require closure relations which are not available from

first physical principles, and even when motivated by physical considerations

they yield controversial results. Pressure differences may develop between the

phases, but they are not sustainable and tend to equilibrate. Yet assuming a single

(equilibrium) pressure leads to ill-posedness due to loss of time-hyperbolicity

of the governing equations; see [73] and [74]. This ill-posedness is not only an

intriguing outcome, but also a major obstacle in the design of numerical methods.

Hyperbolicity is also lost in two-pressure models if one of the phases is assumed

incompressible. Now the one-dimensional flow is assumed compressible and a

time-averaging of the velocity fluctuations is considered similar to the known

averaging of turbulent fluctuations from single-phase fluid dynamics [40]. The

model we outline here follows the principles outlined in [75]. It applies both to

multi-fluid flows and to multi-phase flows. The model is hyperbolic. It tends to

the Euler equations in each pure fluid zone. When summing mass, momentum,

and energy equations of the two phases, we get back the Euler equations for

the mixture. Our system of partial differential equations cannot be written in

conservative form. This drawback usually leads to theoretical and practical

difficulties in defining the weak solutions of the problem and in computing them.

The model resolves stratified flow transport of fluid between the layers, caused by

condensation or evaporation. The stratification can be vertically or horizontally

orientated and enhanced by a swirl initiated by the IRBT or by the acceleration

due to gravity. The rate of the interfacial mass transport processes caused by

evaporation is named Γ, defined here as the rate of phase change per unit mixture

volume and is positive for evaporation. The formulation includes separate sets

of mass conservation, momentum and energy equations for each phase, which

are represented by the belonging volume fractions of the total fluid; see figure

(8.1).
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8.2.1. Conservation laws

In a two-fluid model, the field equations are expressed in six conservation equa-

tions consisting of mass, momentum and energy equations for each phase. For

notational convenience, we assume a gas phase and a liquid phase, and denote

the respective flow variables by the subscript ()k, k∈ {l,g}. Since these field

equations are obtained from an appropriate averaging of local instantaneous

balance equations, the phasic interaction term appears in each of the averaged

balance equations. These terms represent the mass, momentum and energy trans-

fer through the interface between the two phases. These terms determine the

Figure 8.1.: Illustration of the two control volumes in the two-phase fluid. The fluid is

flowing in a cylindrical channel with uniform radius R.

rate of phase changes and the degree of mechanical and thermal non-equilibrium

between the phases; thus they are essential closure relations for the model system.

A pipe channel is considered as a uniform channel with constant cross-section

area (A) and no internal heat production. The model resolves stratified flow

transport of fluid between the layers, caused by condensation or evaporation. The
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field equations take the form as formulated in [40], [76] and [74], where we here

describe the source/sink terms in more detail:

Conservation of mass

∂ (εgρgA)
∂ t

+
∂ (εgρgugA)

∂ z
= ΓgA (8.1)

∂ (εlρlA)
∂ t

+
∂ (εlρlulA)

∂ z
= ΓlA (8.2)

Here are the independent variables t and z represents the time in [s] and z is the

spatial coordinate referring to the flow direction of the fluid given in [m]. The rate

of the interfacial mass transport processes caused by evaporation is named Γk,

defined here as the rate of phase change per unit mixture volume and is positive

for evaporation (Γg > 0), for the k’th (k ∈ {g, l}) phase. In the equations, εk
stands for the phase volume fraction, and ρk and uk are the density and velocity

for the k’th (k ∈ {g, l}) phase, respectively. For an isotherm model, the rate of

phase change (Γk) would be zero. The volume fraction of total liquid can be

described as the sum of a continuous liquid phase (εl) and a continuous gas phase

(εg):

εl + εg = 1 (8.3)

and the rate of phase change can be expressed by

Γl +Γg = 0. (8.4)

The interface zone related to a cylindrical core layer (with the perimeter named

Figure 8.2.: Pipe cross-section.

131



8. Dynamic modelling of thermo- hydraulic systems

Si) separates the flow into two phases, named Gas (g) and Liquid (l). The

interface zone is assumed radial and symmetric along the pipe centre axis

(k), given by (8.18), where the perimeter for a vertical stratification is defined

as:

Si = 2πri (8.5)

where

ri = R
√

εg (8.6)

For a horizontal stratification, we have the following relations:

εl =

⎧⎪⎪⎨⎪⎪⎩
Sl

πdi
− Si

πdi
+ 2Sihi

πd2
i

for hi ≤ di/2

1− Sg
πdi

+ 2Sihi
πd2

i
− Si

πdi
for hi > di/2

(8.7)

where di is the pipe inner diameter, hi the height of the liquid column, Sl and Sg
are the perimeter of the liquid and gas phases respectively; see figure (8.2). For

hi=di/2 we find: Si=di, Sl=Sg=di/2, which leads to: εl=0.5.

Conservation of momentum

The formulations of the momentum equations are derived on the basis of Newton’s

2nd law to each layer control volume. The momentum transfer terms have to

balance the forces acting on the fluid layers. The momentum balance is set

up for each field (gas and liquid phase). The interfacial velocity is given as

ui and is acting parallel to the pipe main axis. The interfacial force along the

interface I is represented by Fi per unit mixture volume. Interfacial drag and

friction both contributes to this force. The forces are orientated positively in

the direction of the pipe z-axis. The wall friction force is represented by Fw,k
for the fluids belonging to the wall measured per unit mixture volume. The

parameter Fvm is the virtual mass force and occurs only when one of the phases

accelerates with respect to the other phase. The virtual force is one of the key

factors to make the Jacobian matrix in the non-homogeneous governing equations

hyperbolic. Fvm results from the fact that the motion of the discontinuous phase

results in the acceleration of the continuous phase as well. Fg,k is the forces

holding the gravitational forces due to gravity, and for practical reasons, we have
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Figure 8.3.: Momentum transfer terms for the two fields on a slice of a pipe-element.

Figure 8.4.: Forces acting on the two fields on a slice of a pipe-element.

collected both the gravitational and the virtual force, under a single force named

Fc,k=Fg,k+Fvm.

∂ (εgρgug)

∂ t
+

∂
(
εgρgu2

g + εgPg
)

∂ z
= Pi

∂εg

∂ z
+Γgui +Fd,g +Fc,g +Fs,g (8.8)

∂ (εlρlul)

∂ t
+

∂
(
εlρlu2

l + εlPl
)

∂ z
= Pi

∂εl

∂ z
+Γlui +Fd,l +Fc,l +Fs,l (8.9)133
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where the drag force for each layer can be handled as a velocity relaxation process

detailed as:

Fd,g = Fw,g +Fi (8.10)

= Fw,g +λ (ul −ug)

Fd,l = Fw,l −Fi (8.11)

= Fw,l −λ (ul −ug)

where λ is related to the interfacial shear, described by equation (8.36). On the

right-hand side (RHS) of the momentum equations (8.8) and (8.9) we have as the

very first term, the interfacial pressure force acting along the interface layer; the

second term denotes the momentum contribution, caused by the phase change in

the fluid; next we have a drag force covering both the wall shear stresses per unit

volume for the k’th fluid, represented as Fw,k and the rate of momentum gained by

interfacial drag along the interface (I) per unit volume, given by Fi. The second

last term Fc,k consists of two contributions, the gravitational force acting on the

fluid: Fg,k and the virtual mass term (Fvm) denoting the momentum contribution,

due to the acceleration of one phase, with respect to the other phase. The very

last term is the momentum gained by the shear stresses (viscos forces) in the

two-layer momentum equations given by Fs,k, under the assumption that the fluid

is Newtonian. The contribution from the shear stress could be Fs,k=
∂τ f ,k

∂ z , where

τ f ,k represents the shear stress generated in a gradient field of the fluid velocity.

In principle, we excluded the contribution from the shear stresses in the two-layer

momentum equations due to the assumption of a non-linear relation between

the shear stress and the shear rate (non-Newtonian). This shear stress may in

some situations be modelled as a second-order diffusion term (artificial diffusion),

in the form of a mixing length theory, which can be added to the momentum

equation for more dissipation, when it is required due to the singularity in the first

derivative of the fluid density, near the saturation line. The pressure is given by

Pk and the interfacial pressure is given by: Pi = εgPg + εlPl . A simple and widely

used choice for the interfacial velocity is ui=(ug+ul)/2 given by [76], but a mass

based and more accurate estimate is given by [74] as:

ui =
∑k εkρkuk

∑k εkρk
(8.12)

The first term on the left-hand side (LHS) of the momentum equations (8.8) and

(8.9) is the dynamic rate of creation of momentum; the second term is responsible

for the axial convection of momentum.
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Conservation of energy

To derive the energy conservation equations for the flow fields, one should apply

the first law of thermodynamics to the liquid and gas layer control volumes. A

control volume composed of an infinitesimal segment of the flow channel is depic-

ted in figure (8.5), where Tl and Tg are the bulk liquid and the gas temperature; Ti
is the temperature at the interface layer, surrounding the cylindrical core of the gas

phase (vertical stratification), with the perimeter Si measured as the inside circle

with radius ri; see figure (8.2). The mass transfer caused by phase changes is rep-

resented along the interface by Γg and Γl , as illustrated in figure (8.5), and Γg and

Γl are positive for evaporation and condensation, respectively. It is assumed that

no heat generation occurs within the control volume and that heat diffusion is neg-

ligible in the convection dominated flow of forced evaporation (or condensation).

Other parameters are as follows: q
′′
il and q

′′
ig are the heat fluxes between liquid

and gas phases at the interphase I, measured in watts per meter squared. The

heat fluxes are controlled by the temperature difference in-between the two layers.

The total enthalpy of flow region k is defined as the sum of the intrinsic en-

thalpy, the potential energy, the axial kinetic energy (axial velocity) and the

rotation energy caused by the swirl (generated by the internal rifles in the boiler

tube). The last one is more or less negligible compared to the intrinsic enthalpy.

In the derivation the total specific energy etk and the specific convected energy ek,

we define in the terms below:

etk = h̃k +
u2

k
2
−gzcos(θ)+ rckack (8.13)

and

ek = hk +
u2

k
2
−gzcos(θ)+ rckack (8.14)

where h̃k is the specific internal energy and hk is the specific enthalpy, related by

(8.15).

h̃k = hk − pk/ρk (8.15)

The inclusion of gzcos(θ) in the definition of etk and ek is generality. Often we

deal with the difference of total energy along the interface eti − ei, whereby the

gzcos(θ) term cancels out in mixture models. The area based centre radius rck,

is given by equations (8.30) and (8.31) for the gas and liquid layers, respectively.

The heat flow across the wall is defined as positive for Tw > Tl or Tw > Tg.

Additionally, the heat transfer across the interface is defined as positive according

to the illustration in figure (8.5) and is positive as long as the driving temperature

across the interface is going from high to low temperature. The mass transfer
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Figure 8.5.: Energy transfer and heat flow on a slice of a pipe-element.

across the interface due to evaporation or condensation is represented by Γk.

The work terms are illustrated in figure (8.6), where in particular the pressure

forces from the neighbour layer should be highlighted. The interfacial drag

(friction force) as well as the virtual mass force along the interface, performs work

along the interface cross-section. The outflow of energy is defined as positive.

Figure 8.6.: Work terms on a slice of a pipe-element.
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Reference [75] provides an expression for the energy balance in differential form.

The two-phase energy conservation equations are expressed in Watt per volume

as:

∂ (εgρgEg)

∂ t
+

∂ (εgρgEgug)

∂ z
= Piui

∂εg

∂ z
+ΓgEi +Fd,gui +Fc,gui +Qw,g +Qi (8.16)

∂ (εlρlEl)

∂ t
+

∂ (εlρlElul)

∂ z
=−Piui

∂εg

∂ z
+ΓlEi +Fd,lui +Fc,lui +Qw,l −Qi

(8.17)

The total energy is given as: Ek=ek+1/2u2
k and the internal energy ek for the k’th

fluid is given by (8.13) and (8.15). The dynamic transport term is described by

the first part on the LHS in (8.16) and (8.17), and it expresses the rate of increase

in the total energy per measured unit of volume. The second term is the axial

transport of the total energy. The formulation includes various interfacial terms,

such as, mass transfer Γg, drag force Fd and convective heat exchange Qi, which

are usually given by empirical constitutive relations, depending on the process

under study: evaporation, condensation, combustion, etc. On the RHS in (8.16)

and (8.17) the first term expresses the work done by the pressure forces at the

interface, and the second term is the energy transport due to mass transfer caused

by evaporation, condensation or combustion. The third term accounts for the

work done by the drag forces at the wall. The fourth term represents both the

work done by both the gravity and the work done by the virtual mass force along

the interface due to the acceleration of one phase with respect to the other phase.

The fifth term represents the rate of heat flux across the wall and is defined as

positive for Tw > Tl or Tw > Tg. The sixth and last term is the heat flow across

the interface and is positive for Tl > Tg due to simple conduction in-between the

two layers.

8.2.2. Screw path in rifled pipe

A Cartesian coordinate system is defined by the three unit vectors:

i = (1,0,0), j = (0,1,0), k = (0,0,1) (8.18)

where i and j are two vectors placed in the cross-section plane of the pipe, and k
is the cross product of i and j and is parallel to the axial flow direction of the pipe.

The form of the IRBT can be described as a regular circular pipe with an inside

hydraulic radius R and additional material inside. The inside material forms a

number of fins or ribs (Nf ) along the pipe wall; see figure (2.4). The fins follow a
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circular helix with the angle γ to the unfold left screw plane, illustrated in figure

(8.7), where the first coordinate axis represents the axial direction of the pipe

(z), which is parallel to the unit vector k, and the second coordinate axis is the

periphery of the pipe, measured in radians. Note that lp is the projected period

length of the screw path, orientated in the k direction. Hence,

Figure 8.7.: Unfold left screw boiler tube. Linear relationship between perimeter (S) and

lp.

tan(γ) =
2πR
lp

(8.19)

A point �P positioned along the helix can be expressed by the hydraulic radius

R and the angle of rotation ϕ; see equation (8.20). The angle of rotation ϕ can

be expressed by equation (8.21), where ω is the frequency of rotation and γ
is determined by the rifle geometry. In the special case where γ = 0 (situation

without rifles), there is no coupling between the perimeter S and the helix position
�P.

�P(ϕ) = R

⎛⎝ cos(ϕ)
sin(ϕ)

ϕ
tan(γ)

⎞⎠ (8.20)

where

ϕ = ωt (8.21)
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Hence, the corresponding velocity is given by differentiation of equation (8.20)

with respect to time:

�U =
∂�P
∂ t

= Rω

⎛⎝ −sin(ωt)
cos(ωt)

1
tan(γ)

⎞⎠ (8.22)

and the absolute velocity is given as

up =
∣∣∣�U∣∣∣= Rω

√
1

tan2(γ)
+1

=
Rω

sin(γ)
(8.23)

Assume a particle moving with a speed (uc) along the centreline of the pipe,

representing the mean fluid velocity, without any slip condition along the wall

boundary (uniform velocity distribution). Hence, uc must be equal to the k
velocity component of �U , which gives

uc =
Rω

tan(γ)
(8.24)

In IRBTs the flow field is affected by a swirl, which leads to a higher wall

friction. The changes in the wall friction in relation to a pipe without rifles,

can approximately be expressed by the relationship between absolute velocities

of up and uc defined by Π and named: Slip Correction Factor, due to internal

rifles.

Π =
up

uc
=

1

cos(γ)
, valid for π/2 > γ > 0 (8.25)

Boiler pipes without rifles (γ = 0) gives Π = 1, which means that the slip velocity

is unchanged. Equation (8.25) does not take into account the effect of dissipation

of the swirl, caused by a too high fin angle (γ). The ultimate situation is where

γ is close to π/2 (perpendicular to the axial direction k) so that the pipe cross-

sectional area will be reduced relatively to the fin height versus pipe radius and

even the friction coefficient will increase vigorously. When the flow is rotating,

caused by the internal rifles, the interfacial pressure jump can be estimated on the

basis of the pressure reduction caused by the rotating flow. The slip velocity is

adjusted according to the increased wall shear stress initiated by the screw path
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along the internal rifles in the channel. The radial velocity in a rotating flow can

be expressed by:
∂P
∂ r

=
ρV 2

r

r
(8.26)

where Vr is the radial velocity, indirectly given by equation (8.24) and is assumed

to be proportional to ω; see figure (8.8). The radial distance is measured from

the centre axis of the pipe (k). The distribution of Vr may be estimated. Two

boundary conditions may exist: Vr(0) = 0 and Vr(R) = Rω , which is inside the

boundary layer indicated in figure (8.8). Hence we require a flow distribution

given by:

Figure 8.8.: Radial velocity as function of the pipe radius.

Vr(r) = ωr, r ∈ [0,R[ (8.27)

By integrating equation (8.27) above the two layers and substituting ri with

equation (8.6) we obtain the relationships below:

ΔP = Pg −Pl =
∫ R

0

ρV 2
r

r
dr =

∫ ri

0

ρgV 2
r

r
dr+

∫ R

ri

ρlV 2
r

r
dr

= ω2(
1

2
ρgr2

i +
1

2
ρlR2 − 1

2
ρlr2

i ) =
1

2
ω2(r2

i (ρg −ρl)+R2ρl) (8.28)

The swirl generates a centrifugal acceleration given as: ack =
1
2 ω2rckΘ where

k ∈ {g, l}. The coefficient Θ is a function of the fin geometry in the IRBT as well

as the helix angel γ , stated in equation (8.19). A qualified guess of Θ is estimated

to 0.75, which is equivalent to the statement that only 75 % of the theoretically
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possible rotational kinetic energy is converted to rotational forces in the form of a

resultant acceleration. The rotation speed is correlated to ω . The area based centre

radius, rck, is calculated in analogy to the momentum of inertia for mechanical

objects surrounded by two cylinders (ri and r j) where

rck =

√
r2

i + r2
j

2
(8.29)

For the two phases, rck is expressed by equations (8.30) and (8.31).

rcg =

√
r2

i +02

2
= R

√
εg/2 (8.30)

rcl =

√
R2 + r2

i
2

= R

√
1+ εg

2
= R

√
1− εl/2 (8.31)

8.2.3. Constitutive relations

The wall friction force acting on the fluid element is Fw,k, and is the force acting

on the fluid in contact with the wall by the length scale aw, i.e., Fw,l for the liquid

layer and Fw,g for the gas phase. Note that the forces are weighted by 1/aw, which

denotes the length scale of the heated wall surface area per unit volume (aw= Sw
A ).

In a similar manner, ai has the physical meaning of the interfacial area per unit

volume (ai=
Si
A ). The wall friction force is given by (8.32):

Fw,k =
τw,k

aw
(8.32)

where τw,k is the wall shear stress, and subscript k denotes the phase in con-

tact with the wall (k=l or g). The wall shear stress is typically expressed

as:

τwk =
1

2
fwkρk |uk|uk, k = l ∨g (8.33)

where the fwk denotes the wall friction factor, which can be determined by, i.e.,

the Colebrook and White formulation:

fw :

⎧⎪⎪⎨⎪⎪⎩
1√
fw

=−2log10

(
k

3.7 di
+ 2.51

Re
√

fw

)
for Re > 4000

fw = 64
Re for Re ≤ 2000

(8.34)
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where k is the pipe inner roughness thickness, measured in meters and the

Reynolds number, Re, is given by (A.14). In the two-phase region the friction

factor is adjusted according to a two-phase multiplier, formulated by [77]. In that

case fw is based on fluid properties for saturated liquid. The shear stress between

the wall and the phase k is described by τwk, where the subscript k denotes the

phase in contact with the wall, i.e., ug for the gas and ul for the liquid. The

term Fi represents the interface force per unit mixture volume and is positive

for ug > ul . The parameter Fvm is the virtual mass force and occurs only when

one of the phases accelerates with respect to the other phase. The motion of the

discontinuous phase results in the acceleration of the continuous phase as well. A

simple and widely used expression for one-dimensional separated flow is given

by [78] and is:

Fvm =−Cvm ·
(

∂ug

∂ t
+ug

∂ug

∂ z
− ∂ul

∂ t
−ul

∂ul

∂ z

)
(8.35)

where Cvm = C · εg · εl · ρ̄ and C≈1. In terms of magnitude Fvm is significant

only if the gas phase is dispersed. The exact form of the virtual mass force term

is only known from theory for some simple and idealized conditions; see [79].

Similarly the interfacial shear stress in-between the phases can be formulated

as:

τi =
1

2
fiρi

∣∣ug −ul
∣∣(ug −ul) (8.36)

where ρi = ρg ·εg+ρl ·εl expresses the density of the mixing fluid at the interface

(I). Correspondingly the friction factor ( fi = fg ·εg+ fl ·εl) is given as an averaged

value of the respective friction factors of pure liquid and gas. Terms related to the

interfacial drag force Fi are responsible for a velocity relaxation process, which

is expressed in equation (8.41). The interfacial drag force may be written in the

same form as the pressure relaxation term: a relaxation coefficient multiplied

by the velocity difference, Fi = λ (ul −ug), where λ is a positive parameter or

function with a finite value.

8.2.4. Jump conditions

The interfacial heat flux and the mass exchange rate Γg across the interface section

covered by the perimeter Si are linked through the following jump condition at

the interface, where any contribution from kinetic energies was ignored (ek ≈
hk):

Γg · (hig −hil) = ai

(
q
′′
ig −q

′′
il

)
(8.37)

where hig and hil are the saturated enthalpies of the liquid and steam layers at

the interface cross-section line. The thermal jump appears when the fluid is
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entering the two-phase region in the water/steam table, see [80]. The following

assumptions are made: the thermal-hydraulic conditions along the interface are

saturated fluids; hence we have a simple relationship between mass transfer and

latent heat of evaporation hlg at the interface formulated by:

Γg ·hlg = ai ·
(

q
′′
ig −q

′′
il

)
(8.38)

If we consider a control volume enclosing the interface and having an infinitesimal

thickness, equation (8.38) constitutes an energy balance of this control volume.

In the presence of superheated steam and sub-cooled liquid, there will be no heat

transfer initiated by convective transport of evaporated fluid by Γg. Instead there

will be an intense heat transfer created by the temperature gradient in-between

the two layers. Here q
′′
ig and q

′′
il will be responsible for the heat transfer from the

sub-cooled liquid to the interface, where a fraction of the heat flux penetrates the

liquid and is used to heat up the gas. The remaining fraction produces saturated

steam at the interface.

8.3. Two-layer model setup

With the above model setup we have ten unknowns and only six conservation

equations for mass, momentum and total energy, given by (8.1) to (8.17). Fur-

thermore we need two equations of state (EOS) - one for each phase, detailed

in Chapter 6, and the equation for the sum of the volume fractions is given by

equation (8.4). To close the system of equations, we need one more equation.

Here we have two options. The first opportunity is to model the pressure dif-

ference between the two phases, by means of empirical models for the surface

tension, described in section (8.3.5) and further detailed in [73], or by a model of

the pressure difference in-between the two phases in relation to the pressure drop

between the two phases initiated as a result of IRBT. An alternative way is to

formulate an additional transport equation for void fraction, which is done in [75],

[74] and [63]. The void fraction is convected by a speed equaling the interfacial

speed of the fluid, and the source term is described by a relaxation process, giving

the possibility of handling singularities by shock phenomena (Riemann surface).

8.3.1. Two-layer model with relaxation

We start our model description with focus on the six conservation equations,

given by equations (8.1), (8.2), (8.8), (8.9), (8.16) and (8.17), supplemented by

a transport equation for void fraction, as proposed by [75], [74] and [63] . The

seventh transport equation is formulated as transport of εg with a convective
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velocity given by the interface rate ui and a relaxation term as a production term.

The transport equation for the void fraction (εg) is given by:

∂εg

∂ t
+ui

∂εg

∂ z
=−μ(Pl −Pg). (8.39)

Here μ is a pressure relaxation parameter, with μ → ∞ to instantaneous relaxation.

The resulting system can be summarized in a compact vector notation in the form

of a system of balance laws (SBL), given by:

∂Φ(z, t)
∂ t

+
∂ f (Φ(z, t))

∂ z
= S(

∂Φ
∂ z

,Φ(z, t)), Φ ∈ Rn,n = 7, t ≥ 0∧ z ∈ Ω.

(8.40)

where the system may be written in a conservative form

∂Φ(z, t)
∂ t

+
∂ f (Φ(z, t))

∂ z
= Sex +Sr +Sc, Φ ∈ Rn,n = 7, t ≥ 0∧ z ∈ Ω (8.41)

Here the source terms are dependent on ∂Φ
∂ z and Φ(z, t). The SBL can also be

written in a non-conservative form

∂Φ(z, t)
∂ t

+J
∂Φ(z, t)

∂ z
= Sr +Sc, Φ ∈ Rn,n = 7, t ≥ 0∧ z ∈ Ω∧ z ∈ Ω (8.42)

where Sex in equation (8.40) denotes the exchange terms between the phases, Sr
the source terms describing relaxation of velocity and pressure, and Sc denotes

the gravitational and virtual forces. In our work, we neglect the virtual mass force,

or else it could be included in Sex. The vector function f denotes the conservative

flux terms, while J( ∂Φ
∂ z ,Φ(z, t)) includes the Jacobian terms, ∂ f

∂Φ , like (8.46).

The independent variable Φ and the corresponding flux vector are now given

as:

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

εg
εgρg

εgρgug
εgρgEg

εlρl
εlρlul
εlρlEl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, f (Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uiεg
εgρgug

εgρgu2
g + εg pg

εgug(ρgEg + pg)
εlρlul

εlρlu2
l + εl pl

εlul(ρlEl + pl)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The source vector can be divided into three parts describing relaxation, the gravita-

tional effects and the non-conservative exchange terms, given by:

Sex(Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εg
∂ui
∂ z

0

pi
∂εg
∂ z

piui
∂εg
∂ z

0

pi
∂εl
∂ z

piui
∂εl
∂ z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Sr(Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ(pl − pg)
0

Fd,g
uiFd,g

0

Fd,l
uiFd,l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Sc(Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

Γg
Γgui +Fc,g +Fs,g

ΓgEg +uiFc,g +Qi
Γl

Γlui +Fc,l +Fs,l
ΓlEg +uiFc,l −Qi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Ek represents the total energy: Ek=ek+1/2u2

k . Note that equation (8.39) is

rewritten due to the chain rule for differentiation.

8.3.2. Void fraction

The main problem in solving equation (8.41) is that the sound velocity is very

high in pure liquid regions, typically in the range of 950-1550 [m/s]; hence, the

corresponding eigenvalues belonging to (8.41) become large. Consequently, the

corresponding matrix J in (8.42) must be chosen with large diagonal elements,

which in turn introduce a strong dissipative structure. This leads to a strong

’smearing out’ effect of the volume fraction contact discontinuities and, by that,

the scheme becomes unsuitable for simulations of typical two-phase mass trans-

port processes. The contact discontinuities will be discussed in detail in section

8.3.4. Hence gradients of εg become difficult to compute accurately if εg ∈ [0,

1], and errors that are introduced may destabilize the computation. Therefore we

introduce a transformation of εg in order to stabilize the computation based on

[81] and define the variable

β ≡ ln(
εg

εl
), or εg =

eβ

1+ eβ . (8.43)
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Hence the corresponding partial derivative of β with respect to εg is

∂εg

∂β
= εg · εl . (8.44)

Now εg is guaranteed to be in the range of εg ∈ ]0, 1[ and is not subject to negative

values even if there are oscillations in β . The Hamilton-Jacobi equation for β
is the same as the equation for εg, namely, βt +H(βx) = 0 with the Hamiltonian

H(Φ) =uiΦ.

8.3.3. Stability analysis of the two-layer model

The last thing to do when developing a model of two-phase flow is to analyse the

model for stability. The two-fluid approach contains non-conservative terms (i.e.

Pi
∂ε
∂ z ), which do not necessarily remain hyperbolic in all situations, meaning that

the initial value problem may be ’ill-posed’ for a large class of initial conditions.

In this work, the system is composed of seven partial differential equations: one

transport equation for the volume fraction, two for the mass of each fluid, two

for the momentum of each fluid and two for the energy of each fluid. Several

definitions of the interfacial velocity and of the interfacial pressure have been pro-

posed in different references mentioned above [75], [74] and [63]. Here we adopt

an original approach, based on the analysis of the one-dimensional Riemann

problem and on the definition of discontinuous solutions in order to deal with

non-conservative products and to ensure the maximum principle for the volume

fraction, as presented in [75] . We restrict ourselves to the one-dimensional frame-

work. The following mathematical analysis is done without any source terms (Γk,

Fd and Qi). Rewriting the equations due to the primitive variables (dependent

variables), given by W = (εg, ρg, ug, Pg, ρl , ul , Pl)
T , where

∂W
∂ t

+Jw
∂W
∂ z

= 0 (8.45)

the corresponding Jacobian matrix Jw is given by [75] as:

Jw =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ui 0 0 0 0 0 0
ρg
εg
(ui −ug) ug ρg 0 0 0 0
Pg−Pi
εgρg

0 ug
1

ρg
0 0 0

ρgc2
gi

εg
(ui −ug) 0 ρgc2

g ug 0 0 0
ρl
εl
(ui −ul) 0 0 0 ul ρl 0
Pl−Pi
εlρl

0 0 0 0 ul
1
ρl

ρl c2
li

εl
(ui −ul) 0 0 0 0 ρlc2

l ul

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.46)
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where

c2
k =

Pk
ρ2

k
− ∂ek

∂ρk
|Pk

∂ek
∂Pk

|ρk

(8.47)

and

c2
ki =

Pi
ρ2

k
− ∂ek

∂ρk
|Pk

∂ek
∂Pk

|ρk

(8.48)

represents the sound of speed of phase k and the sound of speed of the interface,

respectively. The eigenvalues of Jw are precisely the solutions λi, i ∈ (1,..,m)

to the equation: det(Jw-Λ· I) = 0, where Λ is a diagonal matrix holding λi.

According to [75] the eigenvalues are given as

λ̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ui
ug

ug + cg
ug − cg

ul
ul + cl
ul − cl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Thanks to this result, the eigenvalues are all real values meaning the hyperbolic

SBL, given by (8.40), is stable for t ≥ 0∧ z ∈ Ω. The approximation of the

convective terms and source terms is cast into a two-step solution algorithm,

using a splitting method as described in [63], [74] and [75]. The convective

part is computed using Finite Volume schemes (Finite difference in 1D) adapted

to the non-conservative frame. One method, based on the fifth-order WENO

scheme, is tested and used here. Concerning the relaxation terms (drag force

and pressure relaxation), we propose an approximation in agreement with the

properties satisfied by smooth solutions. Several numerical tests are performed

to compare the robustness and the accuracy of both the splitting method (when

computing shock tube test cases) and the moving contact discontinuity problem.

8.3.4. Relaxation terms

Here we deduce a proposal for solving the seven coupled partial differential

equations (8.41), assuming that the six fluid transport equations have a hyperbolic

nature, as prescribed in section 8.3.3. The solver algorithm is based on a very

little dissipative solver (fifth-order WENO) coupled with a split-step algorithm,

based on a pressure and velocity relaxation principle, which draws the transport
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interface seen in the two-phase flow. The method is used in particular in [63],

[74] and [75]. Except under certain specialized conditions of homogeneous flow,

interacting two-phase media typically involve non-equilibrium processes. Dif-

ferences in velocity, pressure and temperature promote transfer of momentum,

energy and mass between the phases. With each process is associated a rate,

which determines the length of time scale for equilibration of the process. If the

rate is rapid the process is in equilibrium over much of the flow, except perhaps in

certain thin regions, the relaxation zones. Equilibrium with respect to even one of

the processes renders the mathematical model simpler, because the corresponding

relaxation zone can then be treated as a surface of discontinuity, across which the

equilibrating quantity jumps. This relaxation principle is well described in the

literature; see [63], [74] and [75].

Across thin zones it reduces to at most a lower-order set of ordinary differen-

tial equations which must be integrated, i.e., the structure resolved, in order to

relate the state behind to the state ahead. Unlike a conservative system, the

jump conditions are now very much a function of the internal physics of the

discontinuity. They cannot be determined a priori, and therefore impose a greater

burden on the designer of computational schemes, if one wishes to capture the

thin structures without resolving them. The EOS should be integrated into this

process. Source terms act only locally in equation (8.40), and can therefore not

increase the characteristic speeds of information, determined by the eigenvalues

of the governing system; this should hold also in the stiff limit ε -> 0 according

to equation (9.70). In the present section, we outline the procedure for handling

the relaxation processes we are interested in. For two-phase flows, a general

relaxation model was proposed by Baer and Nunziato [82]. Several authors ([63],

[83], [84], [85] and [86]) have used relaxation systems to construct numerical

schemes for various two-phase flow models, based on ideas originally suggested

by Jin and Xin [87]. The compressible two-pressure, two-velocity flow model is

time-hyperbolic at all flow regimes according to [63], but allows for the phases

to be out of thermodynamic equilibrium. Restoring equilibrium between the

phases via relaxation processes further introduces interphase exchange terms, for

example, exchange terms due to velocity non-equilibrium (frictional drag) or due

to pressure non-equilibrium. In addition, the formulation of a transport equation

for the void fraction is included. Here the transport of the front (Riemann prob-

lem) is based on the advection of the corresponding interface layer (ui). When

the velocity and pressure related source/sink terms (Sr) involve finite rate law,

meaning the values of μ and λ are not infinite, the integration can be performed

by an appropriated time integrator. The distinction appears when the so called

relaxation terms for u and p are infinite, which happens over a Riemann front.

The relaxation terms, expressed by μ and λ , are particularly important since they

allow solution of the boundaries at the interfaces in-between two layers. This
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step is of paramount importance for the solution of (8.41).

We use a method based on [63] where a decomposition of the system (8.41)

is done in two parts and allows us to apply advanced numerical techniques

(WENO) as described in the next section and which are successfully applied to

single-phase flows (or compressible Euler equations). The time integration may

be performed by a split-step algorithm. Let us briefly outline the main steps of the

method. Being given the state variables at time tn,εn
k ,ρ

n
k ,u

n
k and En

k , we proceed

as follows.

1. (Hydro-dynamical step) First we perform the time integration of the thermo-

hydraulic systems using the usual approximate Riemann solver and then

we include the source terms, Sex and Sc, in equation (8.41).

2. Here the time integration accounts for the relaxation effects, given by Sr,

in order to restore the equality of the pressures between the two phases.

In principle we are solving the ODE given by equations (8.51) with the two

source terms, Sex and Sc, and (8.59) with the source term Sr.

Let Φn
j denote the numerical approximation to the cell average of the vector of un-

knowns Φ(x, tn) in control volume j at time step n. With Φn
j as an initial value, the

solution at the next time step, Φn+1
j , can be found as follows:

1. Find Φ∗
j as the solution of the hyperbolic part of (8.41) at tn+1 with the

source terms, Sex and Sc.

2. Find Φn+1
j as the solution of the relaxation system (8.51) at tn+1 with Φ∗

j
as the initial value.

For step 1, a so-called WENO scheme will be employed, and it is detailed in

section 9.5. For step 2, a numerical solver for ordinary differential equations

will be used for finite-rate relaxation. For infinite/instantaneous relaxation, it

is more efficient to employ the procedure detailed in the next two subsections.

Specific values for the pressure-relaxation parameter, μ , are most often unknown.

However, the assumption of equal phasic pressures is widespread, and can be

accounted for by setting μ to a large value. It is then more efficient to solve the

problem directly than to solve the system (8.42) of partial differential equations.

After the hyperbolic step, the volume fraction is modified so as to render the

two phasic pressures equal, keeping εkρk and εkρkuk constant. Munkejord, [88]

solved a second-degree equation for the volume fraction. In this study, however,

it was found to be a more robust approach to solve a second-order equation for

the pressure instead.
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Pressure relaxation

A wave propagation in a two-phase fluid is in a non-equilibrium pressure state

(pg = pl), and a pressure relaxation process will develop so that the pressure

will tend toward equilibrium, (pg = pl). Locally, after wave propagation, the

pressure relaxation process undergoes a volume variation, given by (8.49), where

the energy interphase exchange term εi is included to act as an interfacial source

term, or pressure-relaxation term in the current jargon:

∂εg

∂ t
= μ(pl − pg) (8.49)

where μ is a positive pressure-relaxation parameter, named the dynamic compac-

tion viscosity [Pa−1s−1]. This volume variation induces energy variations due to

the interfacial pressure work, given by [63]:

∂εgρgEg

∂ t
= μ pi(pl − pg)

∂εlρlEl

∂ t
=−μ pi(pl − pg) (8.50)

The relaxation terms may become large. Therefore, the equation system (8.41) is

split in two, and solved using a fractional-step technique. The hyperbolic part

of the system is (8.41) with λ ≡ 0 and μ → ∞. The remainder is the relaxation

part:

∂
∂ t

(εg) =−εi,
∂
∂ t

(εgρg) = 0,

and (8.51)

∂
∂ t

(αlρl) = 0,
∂
∂ t

(εgEg) = piεi.

The equation is derived by looking at the continuity and energy equation in (8.51).

Thus we obtain
∂
∂ t

(
εgρgu2

g
)
= 0 (8.52)

and hence
∂
∂ t

(εgρgeg) =−pi
∂
∂ t

(εg) (8.53)

which can be integrated to give an expression for the equilibrium pressure p,

where pi ≈ (p+ p∗i )/2. In a similar way we can formulate an expression for

the liquid phase. Having two expressions like (8.53) and the assumption of an

infinitely fast pressure relaxation (μ=∞) implies that the final pressure is common
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to both phases: p=pg=pl ; hence we find a positive solution for p by solving

equation (8.54) by an iterative procedure:

εgρgeg(ρg, p)+ εlρlel(ρl , p) = εo
g ρo

g eo
g + εo

l ρo
l eo

l (8.54)

where the internal energy is a function of density and pressure. If we assume a

simple EOS, such as the stiffness equation given by equation (6.6), we can get the

relaxation pressure analytically by inserting the expression for ρkek in equation

(8.53). Hence we get the two equations below, which by eliminating the pressure

p and using εg=1− εl

εg
p+ γg p∞,g

γg −1
= εo

g ρo
g eo

g − p̄i(εg − εo
g ) (8.55)

εl
p+ γl p∞,l

γl −1
= εo

l ρo
l eo

l + p̄i(εg − εo
g ) (8.56)

yields a quadratic equation in εg and the solution that satisfies εg ∈ [0,1] is

the one which gives us the relaxation pressure. The solution to εg is given

as:

εg =
−a1 +

√
a2

1 −4a0a2

2a0
, (8.57)

where

a0 = (γg − γl)p̄i + γgPg,∞ − γlPl,∞

a1 =−p̄iεo
g (γg − γl)− p̄i(γg −1)− (γg −1)εo

g ρo
g eo

g

− (γl −1)εo
l ρo

l eo
l + γlPl,∞ − γgPg,∞

a2 = (γg −1)(εo
g ρo

g eo
g + p̄iεo

g )

The coefficient a0 will always be positive for γg > γl , a1 < 0 for γg > 1 and γl > 1

and finally a2 > 0 for γg > 1.

Velocity relaxation

In this subsection, the momentum-source term τi is included to act as an interfacial

drag term, or velocity-relaxation term in the current jargon:

τi = λ (ul −ug) (8.58)
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where λ is a velocity-relaxation parameter. The instantaneous velocity-relaxation

procedure can also be applied after the hyperbolic step, or after the instantaneous

pressure-relaxation step, if applicable.

∂
∂ t

(εg) = 0,
∂
∂ t

(εgρg) = 0,
∂
∂ t

(εgρgug) = τi,

and (8.59)

∂
∂ t

(εgEg) = uiτi,
∂
∂ t

(εlρl) = 0,
∂
∂ t

(εlρlul) =−τi,
∂
∂ t

(εlEl) =−uiτi.

It is immediately clear from equation (8.59) that εkρk=Const, k ∈ {g,l}. Combin-

ing the mass and momentum equations of equation (8.59) for each layer yields

the two ODEs

∂ug

∂ t
=

τi

εgρg
, (8.60)

∂ul

∂ t
=− τi

εlρl

Subtracting the two differential equations in (8.60) from each other and integrating

then yields the result

ui −ug = (u∗l −u∗g)exp(−λ
[

1

εgρg
− 1

εlρl

]
t) (8.61)

where the superscript * represents the solution after the thermo-hydraulic time

step. It is clear that when λ tends to infinity for a finite time increment t, ug tends

to ul for λ being positive. Adding the two contributions in equation (8.60) results

in

εgρg
∂ug

∂ t
)+ εlρl

∂ul

∂ t
= 0. (8.62)

which can be integrated to

εgρg(ug −ug,0)+ εlρl(ul −ul,0) = 0 (8.63)

If the velocity relaxation is infinitely fast, the common velocity can be expressed

by the relaxed (mixture) velocity

u = ug = ul =
εgρgu∗g + εlρlu∗l

εgρg + εlρl
(8.64)
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where the superscript * denotes the initial value supplied to the velocity-relaxation

procedure. This is the mass-weighted velocity or the interface velocity ui.

Evaluation of relaxation schemes

The evaluation of the two-phase schemes is rather complex. We have selected

one problem, that shows the challenge in modelling void waves, using a very

minimally dissipative fifth-order WENO scheme for solving the PDEs. The initial

data are listed below:

ug = ul = 1.0, pg = pl = 1.0, (8.65)

γg = 1.4, γl = 1.2,

(ρg)L = 2.0, (ρg)R = 1.0,

(ρl)L = 1.0, (ρl)R = 2.0,

(εg)L = 0.1, (εg)R = 0.9.

The data corresponds to a void wave which is also a contact surface in each phase.

The wave separates the two phases that are in mechanical equilibrium. The model

uses an EOS based on a simple stiffness equation, given by (6.6). The results are

illustrated in figure (8.9), which confirms that the mechanical equilibrium between

the phases is preserved for a moment, with pressures and velocities remaining

uniform. By adding diffusion (0.01 [m2/s]) to the momentum equations, we

Figure 8.9.: Solutions of propagation of a void wave, with (left) and without (right)

diffusion, after 2 [s] of simulation.

introduce a more smooth solution, which after many time steps preserves the

uniform pressure and velocity profiles.
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Summary

In this chapter we have formulated fundamental two-phase flow models, based on

a two-layer model that can be used for both horizontally and vertically oriented

evaporator tubes. The initial model consists of two separate fluid layers, which

describe the gas or the liquid phase in a two-phase flow. The models are based on a

traditional transport equation, where the source terms ensure the communication

between the two phases. Related studies show how the two-layer model can

be solved with respect to shock phenomena, and we outline a velocity and

pressure relaxation model. We performe a simple test case to illustrate the

relaxations principle, and we see for higher-order schemes, which are very little

dissipative, that minor fluctuations appear around the front, after a few thousand

time steps. By applying artificial diffusion, we achieve a uniform profile of

pressure and speed. It is recommended to use a more diffusive scheme, when the

seven-equation model has to be solved, or at least add artificial diffusion to the

very little dissipative WENO scheme. The literature outlines several different

eigenvalue analyses [89], [90] and [91] of two-layer fluid flow problems, and one

is particularly worth mentioning, because the analysis can be transformed into a

set of dependent variables, similar to the dependent variables in equation (8.42).

This allows us to estimate both the stability conditions and the transport rates

linked to the model setup.

8.3.5. Surface tension

This section shows the formulation of a two-layer flow model, where the pres-

sure difference between the two phases is related to the surface tension of the

fluid. We perform an eigenvalue analysis in this context, showing a relationship

between the two sets of primitive variables, which provides a coupling between

the formulation released in section (8.42) and the system in (8.69), and hereby

demonstrates that the system of equations in (8.42) has a hyperbolic nature. In

situations without rotating currents and with a moderate inclination of the evap-

orator tube, we will see a horizontal stratification of the flow pattern where the

surface tension between the two phases has an impact on the pressure distribution

between the two phases. It is well known that the mathematical property of the

governing equations is improved by introducing physical terms in the governing

equations. Reference [89], for example, adds the surface tension equation to the

governing equations, and Travis [90] took account of the viscous stresses in the

momentum equations. The analysis revealed that to ensure real eigenvalues of

the governing transport equations, the interfacial pressure had to be lower than

the bulk pressure by an amount proportional to the square of the relative velocity.

According to [75] there are two problems in particular for which the two-phase

flow models are ill-conditioned:
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• Relaxation phenomena behind a shock and pressure wave in two-phase

mixtures.

• Interface conditions between pure fluids or mixtures.

Saurel [75] proposes separate ways to solve these problems. The first model

describes the pressure between the two phases as:

1) pg − pl = 0 if the fluids are perfect, leading to ill-posedness.

due to loss of hyperbolicity

2) pg +
2σ
R

− pl = 0 if the surface tension effects are considered.

3) pg + p̃(εg)− pl = 0 if the mixture is composed of powder or gas

A fourth option could be to utilize the knowledge of an internal

rotating flow:

4) pg − pl = ωR(
√εg

ρg
+

1−√εg

ρl
),according to IRBT, equation(8.28).

(8.66)

In this approach outlined by [92] , we consider both phases as compressible, where

the pressures pk are given by the appropriate equation of states, pk = pk(ek,ρk),
and as proposed by Chung [73] and co-workers, the interfacial pressure jump

terms are introduced based on the surface tension in the two-fluid momentum

equations, where the system of equations manifests real eigenvalues in all the

bubbly, slug, and annular flow regimes, when the interfacial pressure jump terms

are expressed as a product of effective bulk moduli and the gradient of interfacial

area density. I refer to Chung [73] for further details, but will for the sake

of clarity mention the definition of surface thickness of a bubble, known as

β

β ≡ 2σ
Ri

1

Lg +Ll
=

δ
2Ri

(8.67)

where Ri, Rg and Rl are defined in figure (8.10) and equation (8.68). The phasic

bulk moduli are given as: Lg = ρgC2
g and Ll = ρlC2

l . We now assume a finite

interfacial thickness δ between the two radii Rg and Rl .

pg − pl =
2δ

Rg +δ/2

(σ
δ

)
=

2δ
Rl −δ/2

(σ
δ

)
(8.68)

The surface tension σ is introduced in equation (E.65), and R is the averaged

bubble radius. By introducing the definition Xk ≡ ( ∂ρk
∂ pk

)uk , Yk ≡ ( ∂ρk
∂uk

)pk we
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Figure 8.10.: Hypothetical sphere with an infinitesimal thickness δ .

get the identity
∂ pg
∂x =

∂ pl
∂x which is derived from equation (8.68) for the equilib-

rium state of the bubble. Hence we can write the governing equations from

[73]:

A
∂U
∂ t

+B
∂U
∂ z

= C. (8.69)

We define a set of independent variables given by U=[εg, pg,ug,ul ,Eg,El ]
T and

the left-hand side is simplified by C=[φc,g,φc,l ,φm,g,φm,l ,φe,g,φe,l ]
T , where the

subscripts c, m and e stand for continuity, momentum and energy respectively.

The belonging matrices are given as:

A =

⎛⎜⎜⎜⎜⎜⎜⎝
ρg εgXg 0 0 εgYg 0

−ρl εlXl 0 0 0 εlYl
0 0 εgρg 0 0 0

0 0 0 εlρl 0 0

pg 0 0 0 εgρg 0

−pl 0 0 0 0 εlρl

⎞⎟⎟⎟⎟⎟⎟⎠ (8.70)

and

B =

⎛⎜⎜⎜⎜⎜⎜⎝
ρgug εgugXg εgρg 0 εgYgug 0

−ρlul εlulXl 0 εlρl 0 εlulYl
βLg εg εgρgug 0 0 0

−βLl εl 0 εlρlul 0 0

pgug 0 εg pg 0 εgρgug 0

−plul 0 0 εl pl 0 εlρlul

⎞⎟⎟⎟⎟⎟⎟⎠ (8.71)
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Equation (8.69) can be transformed into

∂U
∂ t

+G
∂U
∂ z

= E (8.72)

where G=A−1 ·B and E=A−1 ·C, and hence the governing equations can be

written as:
∂V
∂ t

+H
∂V
∂ z

= M (8.73)

where the conservation vector V is given as:

V = [εgρg,εlρl ,εgρgug,εlρlul ,εgρgEg,εlρlEl ]
T (8.74)

which can be identified as a subset of what we see in equation (8.42). Thus we

have a unique coupling between two transformations of transport equations for

two-layer fluid models. The belonging matrices are given as: H=J · G ·J−1, M=J
· E and J= ∂V

∂U . The eigenvalues of matrix G in equation (8.72) are determined by

a sixth-order polynomial equation obtained by

Det(G− λ̄ I) = 0. (8.75)

Here is assumed that the relative surface thickness β is constant equal to 1.0

which leads to a sixth-order polynomial equation, having different analytical

solutions depending on the pressure jump terms, expressed as a product of the

effective bulk moduli Li, Lo and the gradient of the interfacial area density Xk and

Yk; these correspond to different types of flow regimes. For further informations

about the assumptions, see [73]. The eigenvalues can be calculated for bubbly

flow:

λ̄Bubbly =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ug
ul

ug +Cg
ug −Cg

ul +Cl

√
ρgC2

g

εlC2
g ρg+εgC2

l ρl

ul −Cl

√
ρgC2

g

εlC2
g ρg+εgC2

l ρl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Slug flow:

λ̄Slug =

⎛⎜⎜⎜⎜⎜⎜⎝
ug
ul

ug +Cg
ug −Cg
ul +Cl
ul −Cl

⎞⎟⎟⎟⎟⎟⎟⎠
Annular flow:

λ̄Annular =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ug
ul

ug +Cg
ug −Cg

ul +Cl

√
εlρgC2

g

εlC2
g ρg+εgC2

l ρl

ul −Cl

√
εlρgC2

g

εlC2
g ρg+εgC2

l ρl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The first two eigenvalues (λ1,2)=(ug,ul) represent the convective velocity of

the gas and liquid phases, respectively. Eigenvalue (λ3,5) represents approx-

imately the sonic speeds in the gas and the liquid phase. For bubbly and slug

flows, the sonic speed can be obtained by the void fraction weighting, due to

[73]:

Ct =
λ3λ5

εlλ3 + εgλ5
(8.76)

The speed of sound is illustrated in figure (8.11). A calculation of the sound of

speed, based on IAPWS-97, gives for saturated liquid and vapour at 95 [bar]:

Cg(x=0)=475 [m/s] and Cl(x=1)=868 [m/s], rendering the following relationship

for the local velocity of sound in bubbly and slug flows, as illustrated in figure

(8.11). For the Annular flow regime, the individual phasic sonic speeds have to

be used. In [73] the computed total and phasic sonic speeds are compared with

the experimental data produced by Henry et al. [93]. For the bubbly flow, the

total sonic speed agrees reasonably well with the experimental data in the void

fraction range 0 < εg < 0.2. The increasing deviation in the range of εg > 0.2 is

probably caused by transition of the flow regimes. Additionally they conclude

that the sonic speed of the water-air slug flow is in good agreement between

the computed and experimental data in the entire void fraction range 0 < εg <

1. The sonic speed of the gas phase of the annular flow agrees well with the

experimental data, [93]. For the liquid phase, unfortunately, experimental data

do not exist. The computed result shows that sonic speed of the liquid phase is

subject to a rapid initial decrease, for a very low void fraction range, due to the
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Figure 8.11.: Eigenvalues representing Bubbly and Annular flow regimes for wa-

ter/steam @ 95 [bar].

effect of increasing elasticity at the interface. For further studies, we refer to [73]

and [94].

8.3.6. Summary

In this section we developed a two-layer thermal-hydraulic flow model, which

is able to predict the dynamic phenomena in evaporator tubes with stratified

flow. The model requires a set of constitutive relations to close the system

of equations, since it is sensitive to the flow regime and geometry (horizontal

versus vertical). The model includes a relaxation approach to ensure surface

discontinuity, across which the equilibrating quantity of velocity and pressure

jumps. The model is assumed to be fully hyperbolic, with real eigenvalues,

associated to the Jacobian matrix obtained by formulating the complete system

of equations in a non-conservative form, where the interfacial pressure jump can

be described by the surface tension model, for traditional smoothed tubes. For

IRBTs we can in a similar way estimate the interfacial jump due to the centrifugal

acceleration generated by the swirl. This will ensure real eigenvalues of the

system. Additionally the analysis provides an estimate of the local speed of

sound through the entire two-phase domain in a two-phase flow, simplified by an

assumption of the pressure between the two phases.
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8.4. Homogeneous model

Although the assumptions of thermodynamic equilibrium are often made in

two-phase flow models, the phases rarely find themselves at thermal equilibrium.

Moreover, the phases very often have different local as well as averaged velocities,

which can be categorised as a departure from hydraulic equilibrium where ul = ug.

Thus, the absence of hydraulic and thermal equilibrium is the rule rather than the

exception in mult- phase flows. In this section we will develop a homogeneous

dynamic flow model, based on the two-layer flow model derived in section

(8.2). The homogeneous model is based on the assumption of both hydraulic

and thermal equilibrium, and the consequences and aspects will be discussed in

that context. The homogeneous model setup and the corresponding simulations

results of a power plant evaporator are published in [17] and included in Appendix

P.

8.4.1. Notations

The assumption of thermal equilibrium is very useful in the treatment of the

governing equations for two-phase flow. For the case of boiling water and steam

we assume that both phases are at the saturation temperature T s(p) corresponding

to the local pressure p. Based on that assumption it is easy to calculate a local

equilibrium quality xe, which is a very useful, but not necessarily a real quantity,

compared to the true flow quality based on the ration of the gas to total flow

rates:

x =
ṁg

ṁg + ṁl

=
ρgugεgA

ρgugεgA+ρlulεlA
(8.77)

The local equilibrium quality, xe, can be calculated by (8.78) under the assump-

tion that the saturation enthalpies correspond to the local pressure, hl=hs
l (p) and

hg=hs
g(p), then we can calculate the local equilibrium quality, xe, from:

xe =
h−hs

l
hs

g −hs
l

(8.78)

The volume fraction of total liquid can be described as the sum of a continuous

liquid phase (εl) and a continuous gas phase (εg):

εl + εg = 1. (8.79)
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For a pure two-layer fluid, the mixture density ρ̄ and the mass flux G are defined

as:

ρ̄ = ρg · εg +ρl · εl (8.80)

and

G =
ṁg + ṁl

A
= G(1− x)+Gx

= ρlulεl +ρgugεg

(8.81)

The slip ratio (S=
ug
ul

) between the two phases can be expressed by the void

fractions and thereby lead to the following expression for the void fraction as a

function of S:

εg =

[
1+

ρg

ρ f

1− x
x

S
]−1

(8.82)

In homogeneous two-phase flow, there is no slip between the phases (S=1), which

leads to the zero moment of density [40]:

ρ̄ =

[
x

ρs
g
+

1− x
ρs

l

]−1

(8.83)

8.4.2. Conservation of mass

The mass conservation equations are derived for a slice of a pipe element as

illustrated in (8.1). The mass conservation equations for the total liquid and gas

volume fractions are obtained by summing (8.1) and (8.2):

∂
∂ t

(εlρlA)+
∂
∂ t

(εgρgA)+
∂
∂ z

(εlρlulA)+
∂
∂ z

(εgρgugA) = 0. (8.84)

(8.84) can be recast as:

∂
∂ t

(ρ̄A)+
∂
∂ z

(GA) = 0 (8.85)

where the mixture density ρ̄=ρ(p̄, h̄) for a homogenius fluid. The interfacial

mass transfer model assumes that total mass transfer is partitioned along the

vapour/liquid interface (i). For a homogeneous model, the rate of phase change

(Γk) in (8.1) and (8.2) would be summarized to zero.
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8.4.3. Momentum equations

The mixture momentum equation can be obtained by adding (8.8) and (8.9). As

expected, all the interfacial force terms cancel out, leaving:

∂
∂ t

(GA)+
∂
∂ z

(
G2A
ρ ′

)
=−A

∂ p̄
∂ z

−AFw −AFs − ρ̄gAcosθ (8.86)

where ρ̄ is given by (8.80) and p̄ = plεl + pgεg and ρ ′
is named the momentum

density [40] and is defined as

ρ
′
=

(
(1− x)2

ρlεl
+

x2

ρgεg

)−1

(8.87)

For a homogeneous flow, one assumes u=ug=ul , which leads to ρ̄ = ρ ′
. Hence

we have:

∂
∂ t

(GA)+
∂
∂ z

(
G2A

ρ̄

)
=−A

∂ p̄
∂ z

−Swτw −AFs − ρ̄gAcosθ (8.88)

where τw is given by (2.1) and Fs via τ f is a calibration term, due to axial shear

stresses, modelled by the Van Driest mixing length theory, for example, which

here is assumed proportional to a diffusion term.

τ f =− ∂
∂ z

(
¯ρu′v′

)
≈−l 2ρ̄

∂ 2u
∂ z2

(8.89)

The corresponding wall shear stress is dependent on whether inside ribs are

used or not. For smooth pipes, the dimensionless coefficient, fw, can be based

on the Darcy friction factor, which can be found from a Moody diagram or

more precisely from the Colebrook equation; see (E.18). For IRBTs the friction

coefficients are multiplied by equation (2.2). In the two-phase region, the friction

factor is adjusted according to a two-phase multiplier, formulated by Jirous, [77].

In that case fw is based on fluid properties for saturated liquid. For the Jirous

formulation, the two-phase multiplier is calculated by (E.42) and for Friedel we

use (E.37). For vertical stratification we use equation (E.38). The size of the eddy

viscosity is evaluated in section 8.6.
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8.4.4. Energy equations

The mixture energy equation is obtained by adding (8.16) and (8.17), where

conservation of energy across the interface requires that all the interfacial terms

cancel out; hence

∂
∂ t

(εlρletlA+ εgρgetgA)+
∂
∂ z

(εlρletlulA+ εgρgetgugA)

− q̇rSw +
∂
∂ z

(ulεl plA+ugεg pgA)

+ plA
∂εl

∂ t
− pgA

∂εg

∂ t
= 0.

(8.90)

By using (8.13) and neglecting the last two terms due to gravity and rotational

energy, we have

A
∂
∂ t

(
ρ̄ h̄+

1

2ρ ′ G
2 − p̄

)
+

∂
∂ z

(
GhA+

1

2ρ ′′2 G3A

)
= Swq̇r −GAgcos(θ)

(8.91)

where ρ̄ is an in-situ mixture density; ρ̄ = ρlεl + ρgεg, ρ ′
is given by (8.87),

P̄ = Plεl +Pgεg, and ρ ′′
is named the second-order momentum density [40] and

is defined as

ρ
′′
=

[
(1− x)3

(ρlεl)2
+

x3

(ρgεg)2

]−1

(8.92)

Notice that both h and h̄ appear in (8.91), where h is the mixed-cup enthalpy,

referring to a frozen flow field picture and results from equation (8.93), and h̄
is the situ mixture enthalpy, due to [40]. The former can be developed from the

thermodynamic equilibrium quality as shown by

ρ̄ h̄ = ρlhlεl +ρghgεg

ṁh̄ = ṁlhl + ṁghg.
(8.93)

When assuming thermodynamic equilibrium, one has ρ̄ = ρ ′′
= ρ ′

= ρ(p̄,h), which

leads to

A
∂
∂ t

(
ρ̄h+

1

2ρ̄
G2 − p̄

)
+

∂
∂ z

(
Gh̄A+

1

2ρ̄2
G3A

)
= Swq̇r −GAgcos(θ).

(8.94)
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8.4.5. Model setup

The homogeneous model consists of three conservation equations given by (8.85),

(8.86) and (8.91), which can be reformulated in the three non-dependent variables

ρ(density), ṁ(mass flow) and E(internal energy), where the dependant variables

z ∈ [0 ,..., lz] and t ∈ [0 ,..., ∞[. For ṁ = ρ̄uA we find:

Continuity equation:
∂
∂ t

(ρ̄A)+
∂
∂ z

(ṁ) = 0 (8.95)

Momentum equation:

1

A
∂
∂ t

(ṁ)+
1

A
∂
∂ z

(ṁu) =−∂ p̄
∂ z

− ρ̄gcos(θ)−Fw (8.96)

where Fw = Sw
A τw, and τw is given by (2.1).

Energy equation:

∂
∂ t

(
ρ̄Ah̄+

1

2
ρ̄Au2 − pA

)
+

∂
∂ z

(
ṁh̄+ ṁ

1

2
u2

)
= q̇rSw − ṁgcos(θ). (8.97)

Then equation (8.97) can be reformulated by using the definition of the total

specific convected energy: ē = h̄+1/2u2+gzcos(θ), and by using the continuity

equation to eliminate the gravitational terms on the left side, we find:

∂
∂ t

(A(ρ̄ ē− p̄))+
∂
∂ z

(ṁē) = q̇rSw − ṁgcos(θ) (8.98)

where q̇r represents the heat flux per unit surface area through the inner wall.

Note that the swirl energy is neglected in the formulation of ē. The internal

energy E is given as: E=(ρ̄ ē− p̄) ·A, which is measured in [J/m].

Hence we can summarize the system of balance laws (SBL) into a conservative

and compact vector notation, given by:

∂Φ(z, t)
∂ t

+
∂ f(Φ(z, t))

∂ z
=gs(Φ(z, t))+gd

(
∂Φ
∂ z

,Φ(z, t)
)
, (8.99)

Φ ∈ Rm,m = 3, t ≥ 0∧ z ∈ Ω
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where the dependent variable Φ and the flux vector f are given as

Φ =

⎛⎝ ρ̄A
ṁ
ē

⎞⎠ , f(Φ) =

⎛⎜⎝ ṁ
ṁ2

ρ̄A + p̄A
(ē+ p̄A)ṁ

ρ̄A

⎞⎟⎠
and the source and diffusion vector are given as:

gs(Φ) =

⎛⎝ 0

p̄ ∂A
∂ z − ρ̄gAcosθ −√π

A fw
ṁ|ṁ|
ρ̄A

Swq̇e − ṁgcos(θ)

⎞⎠ and gd(Φ) =

⎛⎜⎝ 0
l2Sw
ρ̄A3

∂ ṁ2

∂ z2

0

⎞⎟⎠
The independent variable t represents the time in [s], and z is the spatial coordinate

referring to the flow direction of the fluid given in [m]. The dependent variables

are ρ̄ , ṁ and e, meaning the fluid density, mass flow and total energy of the

conserved fluid, respectively. The pressure can be determined iteratively by water

steam tables: p = p(e, ρ̄). A is the tube cross-section area, measured in [m2].

The source term gs consists of both source/sink terms related to gravity- and wall

friction forces. The diffusion term gd includes a contribution from the mixing

length eddy viscosity (l2=0.01 [m2/s]), working as a damping term in the vicinity

of the saturation line of water. A recommended size of attenuation area is found

to be x ∈ [−0.02,0.02]. The internal energy e is given as: e = (ρĒ− p) ·A, which

is measured in [J/m]. Here the fluid temperature Tf is a function of ρ̄ and h. The

constitutive relations due to the thermodynamic properties are based on IAPWS

97, and are interpolated in a bilinear scheme, described in [15] for minimising

the computational work. Note that the gravity is reduced according to the heat

pipe inclination (sin(11.4o)) on the SKV3 boiler.

8.4.6. Auxiliary relations

The Water / Steam library IAPWS 97 by [80] is used as a general equation of

state, to derive the speed of sound and the thermodynamic properties of water

and steam. In some relations we need a relationship for pressure as a function of

density and enthalpy: p=p(ρ ,h̄). This can be done by a simple Newton Rapson

solver, where we iterate on p by given h and ρ . To improve the computational

speed it is recommended to use a bilinear interpolation; see [15], where we create

a look-up table within approximately 160000 nodes, which ensures an accuracy

below 4% as an absolute maximum, due to a smoothing of the interpolated

properties in the vicinity of the saturation line. It is only in the vicinity of the

saturation line of water, where we experience an significant error; otherwise the

averaged relative error is 0.3%.
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8.4.7. Boundary conditions

It is convenient to use physically measurable boundary conditions to force the

model. Therefore, the following properties are used as boundary conditions:

velocity (u), pressure (p) and enthalpy (h). This allows us to rewrite the bound-

ary conditions given by (9.81) and (9.82) to those properties, which are de-

scribed by Φ; see (9.71). The Dirichlet boundary conditions are given by (8.100),

and the corresponding Neumann boundary conditions are obtained by apply-

ing the chain rule for differentiation of complex functions, and are given by

(8.101).

Dirichlet BC :

⎧⎪⎨⎪⎩
ρA.
ρAu.

ρA(h+ u2

2 +gzcos(θ))− pA.

(8.100)

where θ is the angle of the pipe inclination with respect to the horizontal.

Neumann BC :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A ∂ρ

∂ z +ρ ∂A
∂ z .

uA ∂ρ
∂ z +ρu ∂A

∂ z +ρA ∂u
∂ z .

∂ (ρA)
∂ z

[
h+ u2

2 +gzcos(θ)
]
+ρA

[
∂h
∂ z +u ∂u

∂ z +gcos(θ)
]

−A ∂ p
∂ z − p ∂A

∂ z .
(8.101)

8.4.8. Stability analysis

The system of balance laws (SBL) given by (8.99) with gs=gd=0 are reformulated

into a non-conservation form, with flux Jacobians:

M̄t +J(M̄) · M̄x = 0, (8.102)

where M̄ = P−1 ·Φ, and P is the eigenvector corresponding to the eigenvalues.

The matrix J(Φ) is diagonalizable, which means it can be decomposed into: J=P
·Γ ·P−1, where

P = [r1,r2,r3]
T =

⎛⎝ 1 1 1

u−a u u+a
H −ua 1/2u2 H +ua

⎞⎠
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and

Γ =

⎛⎝ γ1 0 0

0 γ2 0

0 0 γ3

⎞⎠
Here r1 = [1,u− a,H − ua]T , r2 = [1,u, 1

2 u2]T , r3 = [1,u+ a,H + ua]T are the

right eigenvectors of the matrix J corresponding to the eigenvalues γ1 = u−
a, γ2 = u and γ3 = u+ a. The total enthalpy H is given by: H = E+p

ρ . The

eigenvalues are always real values meaning that the SBL are hyperbolic and

stable.

8.5. Dynamic pipe wall model

The heat transfer processes from a combustion process (radiation and convection)

to the water and steam curcuit in a power plant, use the pipe wall as the transfer

median, to transport the energy from the furnace to the cooling media, in this

case water / steam flowing in the panel wall.

8.5.1. 1D - pipe wall model

The solution of problems involving heat conduction in solids can, in principle,

be reduced to the solution of a single differential equation, the heat conduction

equation. As an alternative, we could use equation (4.4) to describe the spatial

temperature resolution of the pipe material. The single-layer equation can be

derived by making a thermal energy balance on a differential volume element in

the solid. A volume element for the case of conduction only in the z-direction

is illustrated in figure (8.12). The balance equation for the volume element

is:

(rate of accumulation of energy) = (rate of energy in)

− (rate of energy out) (8.103)

+ (net rate of energy generation)

The generation term is set to zero, but could be an electric current or the decay of a

radioactive material. The rate at which thermal energy enters the volume element

across the face at z is given by the product of the heat flux and the uniform

cross-sectional area, q̇z|zAc, where Ac = π(d2
o − d2

i )/4. Similarly, the rate at

which thermal energy leaves the element across the face at z + Δz is q̇z|z+ΔzAc.

For a homogeneous heat source/sink of strength q̇r per unit area, the net rate of

generation is q̇r S Δz, where S is the pipe perimeter of impact. Finally, the rate

of accumulation is given by the time derivative of the thermal energy content
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Figure 8.12.: Energy transfer and heat flow terms on a slice of a pipe wall element.

of the volume element, which is Cpwρw(T −Tre f )Ac, where Tre f is an arbitrary

reference temperature. Thus, the balance equation becomes:

Δz ρw CpwAc
∂Tw

∂ t
= (q̇z|z − q̇z|z+Δz)Ac

+ q̇rSΔz− q̇ediπΔz (8.104)

where Cpw and ρw are the heat capacity and the density of the pipe wall, given

by equation (8.107). By dividing (8.104) by Δz and letting Δz → 0, we get a

first-order PDE describing the energy balance in the pipe element as a function

of t and z.

ρw CpwAc
∂Tw

∂ t
=−Ac

∂ q̇
∂ z

+ q̇rS− q̇ediπ (8.105)

The heat flux q̇ per unit area can be expressed via the Fourier formula: q̇ =
−kw

∂Tw
∂ z , where kw is the thermal conductivity measured in [w/mK]. For isotropic

materials, we use the thermal diffusivity given by equation (4.2): α = kw
ρwCpw

in

[m2/s], which in a sense is a measure of thermal inertia and expresses how fast

heat diffuses through a piece of solid. For a typical panel wall, the thermal dif-
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fusivity is approximately 1.98 ·10−6 [m2/s] at 200◦C; see [95]. Hence the energy

balance for the isotropic pipe wall can be described by:

∂Tw

∂ t
= α

∂ 2Tw

∂ z2
+

q̇r

ρw Cpw

S
Ac

− q̇e

ρw Cpw

diπ
Ac

, (8.106)

z ∈ [0, lz]∧ t ≥ 0

where q̇r is the radiation from the furnace and q̇e is the convective heat transfer

between the flowing fluid in the pipe and the pipe wall inner surface, q̇e=h(Tw −
Tf ). The convective heat transfer coefficient is named h, and the driving temper-

ature difference is given by the temperature difference between the wall mean

temperature (Tw), outlined in equation (4.16), and the mixture fluid temperature

(Tf ). For isotropic materials, we have expressions of Cpw, kw and ρw as a function

of temperature in Kelvin from [95] and [96]:

Cpw = 6.683+0.04906 ·T +80.74 · ln(T ) [J/kgK]

kw = 9.705+0.00176 ·T −1.60 ·10−6 ·T 2 [w/mK] (8.107)

ρw = 7850 [kg/m3] at 20◦C for 13CrMo44

The wall density is assumed constant in temperature T. A simple, fast and robust

model of the heat transfer in film boiling is given by [97]. The heat transfer

coefficient h f b is given by equation (E.61). The single-phase laminar heat transfer

coefficient is calculated from equation (E.63). The total heat transfer coefficient is

given by (8.108), and consists of two contributions: one from the convective heat

transfer boundary layer associated to the flowing fluid inside the heat pipe and

one that relates to conduction through the pipe wall material:

h =
1

1
hc
+ ri

kw
· ln(rw/ri)

(8.108)

where hc expresses the heat transfer coefficient due to the thermal boundary on

the inner side of the pipe wall and rw is defined by Tw = T (rw)z. hc is smoothed in-

between hs and h f b depending of the dryness (x) of the fluid.

hc =

⎧⎪⎨⎪⎩
hs for x > 1∨ x < 0

h f b for 0 ≥ x ≤ 1

(8.109)

Additionally, hc is adjusted on the basis of a smoothing between laminar and

turbulent single-phase flow as well as for two-phase flow. The smoothing function
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is described in Appendix G and is of second-order due to table (G.1) for n=2. The

associated slopes are determined numerically. Since we use the calculated average

wall tube temperature as the driver in the calculation of the total heat transport to

the fluid, we must know rw. Due to the knowledge of radial conduction in the

pipe, we use a simple analytical wall temperature profile for estimating the inner

wall temperature, expressed by the averaged wall temperature (Tw), based on the

heat transfer through the isotropic pipe wall to the flowing fluid given by equation

(4.16). Let T (r)z represent the radial temperature distribution in the pipe wall by

equation (4.14), which can be rewritten as

T (r)z = a0 ln(
r
ro
)+To (8.110)

where a0 = Ti−To
ln(

ri
ro )

and r is the pipe radius with suffix (i=inner) and (o=outer).

Hence, for small values of the thermal diffusivity, the averaged wall temperature

can reasonably be estimated by equation (4.16). Hence the entire heat transfer

can be estimated for the temperature range in-between the wall mean temperature

(Tw) and the fluid mixture temperature (Tf ), which is assumed homogeneous

and well mixed with a temperature boundary layer represented by hc. The one

dimensional pipe wall model only consists of the axial heat transfer term, and

has no spatial resolution in the radial dimension.

The inner wall temperature (Ti) can be determined by use of the equation for pure

conduction through the pipe:

q̇rS =
2πkw

ln(ro/ri)
(To −Ti) =

2πkw

ln(rw/ri)
(Tw −Ti) [w/m]. (8.111)

Hence we find Ti by insertion (4.14) in (8.111):

Ti = Tw −
qrS ln( ro

ri
)(1−a1)

2πkw
(8.112)

where a1 is given by equation (4.17). Hence rw in (8.108) can be determined

from (4.14) and (8.112) and we find

h =
1

1
hc
+ ri(a1−1)

kw
· ln(ri/ro)

=
1

1
hc
+ ri

kw
· ln(rw/ri)

(8.113)

Note that the heat flux is positive for Ti > Tf . Using the model parameters for the
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panel wall of SKV3 (from table (10.2)), we find a1=0.423 and the temperature

fall above the pipe wall is: To-Ti=27.9 [oC], which gives a temperature gradient in

the pipe wall of dT/dr= 3930 [oC/m] for a heat flux of q̇e=100 [kW/m2]. The heat

conduction in the material is the most significant barrier for an effective cooling

of the tube wall.

8.5.2. Summary

There are two types of models for the description of the temperature distribution

in the tube material, which is the component that will transmit the heat from the

combustion chamber to the water / steam circuit of a power plant. Therefore,

it is essential that the material is properly illuminated with respect to both the

temperature distribution throughout the material as well as an estimate of the

temperature gradients, caused by the fluctuating external boundary conditions.

The two-dimensional tube model predicts the time constants for a specific material

used on the SKV3 power plant outlined in section 4.2 . We can see that the time

constant of an infinitesimal material element, which is subjected to a temperature

fluctuation, is many decades less than for a similar infinitesimal material element,

that is furthest from the fluctuating boundary condition. This material can react

more quickly to the temperature boundary condition; therefore the phenomenon

of fatigue may be a potential risk, as the infinitesimal material element can initiate

small fatigue cracks that can propagate to the rest of the unaffected material. This

phenomenon may be enhanced in certain circumstances, for example, if there

occurs fouling on the inside of the tube, so that the tube temperature offset rises,

due to the poor thermal conductivity of the fouling layer. Hence a fluctuating

two-phase flow (slugs of superheated steam or temperature slugs of sub-cooled

water) may initiate local temperature fluctuations at a higher temperature level, as

in the surrounding pipe material and thereby potentially initiate a fatigue fracture.

This phenomenon is more likely in a superheater, where the temperature level is

significantly higher; this also implies to the selection of which dedicated type of

material can sustain the very high pressures and high temperature levels, up to

600 [oC]. The one-dimensional tube model is intended to form a link in the axial

direction of the tube, so that the temperature variations are able to diffuse in the

axial direction of the pipe, due to the thermal diffusivity. This achieves a more

accurate description of the material temperature, which indirectly determines

how much energy is transformed from the boiler room to the flowing medium in

the pipe.

8.6. Turbulent stresses due to two-phase flow in general

In connection with the solution of the homogeneous two phase flow model,

problems arise when trying to calculate the flow, moving from a stage of sub-

cooled liquid to a stage of two-phase flow in a heat pipe. In this process, the
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density has a trough with a very steep gradient, at the entrance to the two-phase

region. There is a discontinuity in the first derivative of the density, at the entrance

to the two-phase region, which affects the flow equations significantly and causes

the generation of a pressure correction, due to momentum conservation. There

are two options to dampen this oscillation: firstly, the introduction of a moderate

smoothing of phase boundaries in EOS, so that there is C1 continuity in density

over the entire definition area. A second option is locally to inject turbulence or a

kind of artificial diffusion to the momentum equation, in order to dampen pressure

oscillations, without providing production and/or dissipation of kinetic energy

to the flow, as is known from other turbulence models. The advantage of this

is, that we can control the flow oscillations and address them locally, to manage

the pressure fluctuations, generated due to the phase shift. This strong negative

gradient in density increases with decreasing pressure. Here we formulate some

general ideas about using a mixing length theory in the modelling of turbulent

two-phase flow, in order to scale the magnitude of the eddy diffusion viscosity.

Furthermore, we setup a model for the contribution of eddy viscosity derived

from the principles of internal rifled boiler tubes (IRBT).

8.6.1. Shear distribution in various flow patterns

The difficulties of using a one-dimensional homogeneous flow model in describ-

ing a two-phase flow, where only the axial dimension is stated, are that the effect

of various phase and velocity distributions cannot be separated, and that no effect

of local bubble slip velocity can be considered. In an attempt to improve the

general description of two-phase flows, basic analytical and experimental stud-

ies have been conducted during the last decades, for phase, velocity and shear

distribution for various flow patterns; see Kinney et al. [98], Gill et al. [99]

and [100], where measurements show that the logarithmic law for an isotherm

two-phase flow follows the mixing length theory with a mixing length scale less

than observed for a single-phase fluid. In the one-dimensional equation of motion,

it is not possible to model radial components, but we take a look at the formulated

two-dimensional theory from [101]. The procedure is fully analogous to what we

know from the "Reynolds Averaging", which refers to the process of averaging

the velocity components. This variable can be decomposed into a fluctuating part,

and an average part in the following way:

ū ≡ 1

Δt

∫
Δt

u(t)dt,

u′ ≡ u(t)− ū (8.114)

where Δt is a long enough time to average out the fluctuations in the velocity u.

This simplification to the full Navier-Stokes equations is related to the well known
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"Reynolds stresses" due to the effect of turbulence on the mean flow and related

to the "eddy viscosity". These terms are generally much larger than the normal

viscous friction terms. Here we additionally have a contribution from the effect

of various phases. In this work the mixing length theory serves as a calibration

tool, which acts locally in the global solution domain, without any assumptions of

the radial distribution of the flow properties. The mixing length theory assumes

cells of fluid of varying sizes constantly moving in random directions relative to

the mean flow. At the surface of a body, molecules transfer momentum to the

surface as they collide, resulting in a tangential, shear force. When molecules

hit the surface of a body, they bounce around among the surface molecules and

finally leave with a tangential velocity which is, on average, that of the surface

itself. Thus, the average tangential velocity near the surface of a body is zero

with respect to the body. This is the so-called no-slip condition. This layer of

slow-moving fluid near the body surface is called the boundary layer, and the

viscosity of the fluid causes a distribution of tangential velocity above the surface.

As the tangential momentum of the fluid molecules is transferred to the surface, a

shear stress is produced.

On the basis of the classical Van Driest modification of Prandtl’s single-phase

mixing length theory, we have an expression for the homogeneous mixing length

theory, where

νt = l 2

∣∣∣∣∂u
∂ z

∣∣∣∣ (8.115)

The mixing length is not obvious. It is usually established through measurements

of turbulent shear stresses and velocity gradient. To complete this model, Prandtl

assumed l=κz, where κ=0.41 is the Von Karman constant, noting that very near

the wall only small eddies were possible, with larger eddies being possible with

increasing distance from the wall. Many things may be questioned in this model:

first of all, the two-phase flow does not behave like a Newtonian fluid under

isothermal conditions, but there is no experiments pointing to the opposite at

very high pressure at non-isotherm conditions, such as present in Benson boilers.

Additionally turbulent motion is not small compared to the transverse scales of

the flows, so u
′ = l ∂u

∂ r and is in fact related to the velocity at finite distances,

making the entire idea of having universal partial differential equations suspect.

Therefore, we use a simple scalar quantity as a calibration parameter, related to

the eddy viscosity νt , which in turn can be related to the diffusion term in our

transport model. Therefore, we scale the strength of the eddy diffusivity on the

basis of a Boussinesq consideration, which is done by [102] and will be outlined

in the next section.
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Figure 8.13.: Geometry of a circular heat pipe.

8.6.2. Large eddy phenomena in thermo-convective rotating flows

A rotary flow may, in addition to separating a flow comprised of heavy and light

fluid particles, also cause a mixing of the fluid as a result of intensive vortex

formation. This section is based on work involving buoyancy effects caused by

natural convection, described by a vorticity-streamfunction formulation of the

Boussinesq equations. This gives an opportunity to create a coupling between

the radial velocity components in a flow and the production of eddy viscosity.

Turbulence in thermal-hydraulic flows is formulated by [102], wherein a vor-

ticity formulation is applied to the Boussinesq approximation. This implies a

description of the order of the vorticity-induced eddy viscosity in the Boussinesq

approximation, which leads us to an estimate of the order of eddy viscosity in a

homogeneous one-dimensional flow model. Consider a vertical cylinder (heat

pipe) of radius ri and length L, as shown in figure (8.13). Thus, due to buoyancy

effects, the fluid motion is originally categorised as natural convection, where

the motion is related to viscous forces. If the heat pipe is provided with internal

rifles, so that the flow is brought into a rotation, the flow can be characterized as

a forced convection phenomenon, where the Reynolds number is high-turbulent.

Such rotational flow in this context can be advantageously formulated for small

fluid velocities as a Boussinesq approximation. Consider a fluid with a coefficient

of thermal expansion α and density ρ such that

ρ(T ) = ρ0 (1−α(T −T0)) , (8.116)
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where T is the fluid temperature and ρ0 is the density when T=T0. Hence the

governing flow equations for the velocity vector V and temperature T can be

written as

∂V
∂ t

+ω ×V = ∇ ·
(

1

2
|V|2 +g · z+ p

)
−αg(T −T0)+ν∇2V, (8.117)

∂T
∂ t

+∇ · (T V) = k∇2T, (8.118)

∇ ·V = 0. (8.119)

The pressure term in (8.117) can be eliminated by introducing a streamfunction

ψ to satisfy the continuity equation and applying the curl operator on the pressure

term. This results in the vorticity-streamfunction formulation of the Boussinesq

equations,which in a non-dimensionalized and symmetric form, for t0 = ri
2/ν ,

V0 = ν/R and ΔT0 = T1 −T0, see (A.18) are written as:

∂w
∂ t

+
∂uw
∂ z

= Gr
∂T
∂ r

+
∂
∂ t

(
1

r
∂ rw
∂ r

)
+

∂ 2w
∂ z2

, (8.120)

∂T
∂ t

+
∂uT
∂ r

+
∂wT
∂ z

+
uT
r

=
1

Pr

(
1

r
∂
∂ r

(
r

∂T
∂ r

)
+

∂ 2T
∂ z2

)
, (8.121)

∂
∂ r

(
1

r
∂ψ
∂ r

)
+

∂
∂ r

(
1

r
∂ψ
∂ z

)
= w, (8.122)

u =
1

r
∂ψ
∂ z

, (8.123)

w =−1

r
∂ψ
∂ r

, (8.124)

where the polar coordinates (r,z) are defined as shown in figure (8.13); (u,w)

denote the velocity components in the (r,z) directions, respectively, Gr is the

Grasshof number and Pr the Prandtel number as a result of the non-dimensionalizing

procedure. Gr and Pr are defined in (A.8) and (A.11), respectively.

The Rayleigh number is defined in (A.13) as the product of the Grashof number

and the Prandtl number; hence the Rayleigh number itself may also be viewed

as the ratio of buoyancy and viscosity forces times the ratio of momentum and

thermal diffusivities and can be deduced from the relation:

Ra = Gr ·Pr ·λ 3, (8.125)
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where λ=L/ri is the aspect ratio, where z ∈ [0,λ ] and r ∈ [0,1]. At high Rayleigh

numbers the flow becomes turbulent, which means it becomes dominated by

eddy-structures of varying size. The calculations may be carried out by utilizing

Large Eddy Simulations (LES), which is a technique where only the large-scale

motions are computed, whereas the smallest turbulent eddies are modelled by

a Sub-Grid scale model. This is accomplished by applying a spatial filter on

the governing equations and decomposing the variables in a filtered part and a

fluctuating part: f= f̄ + f
′
, where f̄ denotes the filtered part and f

′
the fluctuating

part. Applying the filters on the vorticity-streamfunction formulation of the

Boussinesq equations (8.124), we obtain from [102]:

∂ w̄
∂ t

+
∂ ūw̄
∂ z

+
∂ w̄w̄
∂ z

= Gr
∂ T̄
∂ r

+
∂
∂ t

(
1

r
∂ rw̄
∂ r

)
+

∂ 2w̄
∂ z2

+Ω, (8.126)

∂ T̄
∂ t

+
∂ ūT̄
∂ r

+
∂ w̄T̄
∂ z

+
ūT̄
r

=
1

Pr

(
1

r
∂
∂ r

(
r

∂ T̄
∂ r

)
+

∂ 2T̄
∂ z2

)
+Θ, (8.127)

∂
∂ r

(
1

r
∂ψ̄
∂ r

)
+

∂
∂ r

(
1

r
∂ψ̄
∂ z

)
= w̄, (8.128)

ū =
1

r
∂ψ̄
∂ z

, (8.129)

w̄ =−1

r
∂ψ̄
∂ r

, (8.130)

where

Ω =
∂
∂ r

(uw− ūw̄)+
∂
∂ z

(uw− ūw̄) , (8.131)

Θ =
∂
∂ r

(
uT − ūT̄

)
+

∂
∂ z

(
wT − w̄T̄

)
+

uT − ūT̄
r

.

(8.132)

Except for the terms Ω and Θ, which have to be modelled, we see that the filtered

equations take the exactly same form as the original ones. From [102] we use the

same eddy-viscosity hypothesis to determine an estimate of the eddy-viscosity

formulated as a function of w̄

νt = (CΔ)3

√(
∂ w̄
∂ r

)2

+

(
∂ w̄
∂ z

)2

(8.133)

where C=0.2 and Δ=
√

ΔrΔz is the filter width. For a one-dimensional approach,

the spatial resolution in the radial direction is limited to a cell width equal to

the pipe inner diameter di. If we assume that the radial velocity profile can be
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expressed by (8.27), which is illustrated in figure (8.8), we can substitute the

radial velocity component in (8.133), which leads to the expression below for the

eddy viscosity in a homogeneous two-phase flow in IRBT.

νt = (C
√

diΔz)3ω (8.134)

where ω is the angle of rotation, forced by the internal rifles, which is given by

equation (8.24) and can be expressed as: ω=tan(γ) · uc/ri. The magnitude of

the eddy viscosity can be set in perspective, by looking at a practical example

of an evaporator tube with a length of 193.5 [m] and an inner diameter of 25.4

[mm], resolved in 400 elements and with sub-cooled water at 95 [bar], flowing

with a mean centre inlet velocity (uc) of 1 [m/s]; hence the magnitude of the eddy

viscosity is approximately given by:

νt =
(CΔzdi)

3 tan(γ)uc

8ν
≈ 0.01[m2/s]. (8.135)

Note that tan(γ) = 1 means the angle of fin is 45 o. The kinematic viscosity of

sub-cooled water at 95 [bar] is: ν=1.2· 10−7 [m2/s].

8.6.3. Summary

This section has shown the turbulence models in relation to two-phase flows and

currents in rotation, under the influence of a heat flux. The model assigns the

order of the turbulence level in a turbulent (rotating) flow of sub-cooled fluid,

affected by a heat flux. Phase changes affect the flow to such an extent, that

we must turn to more detailed models to get a more qualified knowledge about

the level of turbulence under different flow regimes, but we have chosen to use

this averaged estimate as the best practice in the vicinity of the saturation region

of liquid and use it only locally in the solution domain as a filter to dampen

unwanted oscillations as a result of a discontinuity in the first-order derivative of

the averaged fluid density. This leads to a diffusion term that can be active for xe
∈ [−x0,x0], where x0 is an infinitesimal amount of steam quality in the vicinity

of saturated liquid, based on the enthalpy basis.

8.7. Four-field model

In order to model a two-phase flow, based on a flow regime consideration, we

have established a model inspired by Bonizzi and Banerjee [103]. Originally

they describe the two-phase flow on the basis of an isothermal process, i.e., using

only continuity and momentum conservations, and in addition, using a series

of constitutive relations for describing the transport between the four layers,

which appear in the model. By adding four energy transport equations to the
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8. Dynamic modelling of thermo- hydraulic systems

model, we have a golden opportunity to study how the flow regimes are built

and destroyed, under the influence of a heat flux in a boiler. The models are

not implemented in the WENO solver, developed in section (9.5) and included

in the thesis, because it can form the conceptual framework and inspiration for

further work on the two-phase currents in power plant boilers. The model de-

scription is found in Appendix (M). The four-field model is based on the premise

Figure 8.14.: Illustration of the four different control volumes in the two-phase fluid.

The fluid is flowing in a cylindrical channel with uniform radius R.

that in terms of predominantly one-dimensional flows, much of the important

behaviour can be captured by considering continuous and dispersed liquid and

gas phases (water/steam) i.e., four fields. For example, slug flow may be thought

of as a continuous gas phase, containing a few droplets, each with the liquid

phase intermittently interspersed and containing entrained gas bubbles. Bubbly

flow, following this line of thought, would then consist of a continuous liquid

phase containing gas bubbles with a negligible continuous gas layer (containing

droplets). Furthermore, an annular flow would consist of a continuous gas phase
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containing liquid droplets and a continuous liquid phase including gas bubbles.

Obviously, within this one-dimensional context, the distinction between stratified

flows and annular flows would be difficult to capture as a consequence of the

one-dimensional formula. The four-field model is dedicated for both horizontal

stratified as well as vertical boiler tubes with internal rifles (IRBT).

It is therefore essential to note that there are many two-phase flow problems

that require a multi-dimensional formula for their elucidation, e.g., the influence

of varying fin geometry on the heat transfer and pressure loss in the IRBT. Having

said this, there is a wide range of applications of interest that could yield to

useful resolutions by implementing a one-dimensional approach, particularly for

relatively slow transients in flow.

This approach implicitly propagates interfacial area, but the area is divided

into a continuous component and a dispersed component, associated with the

bubbles and droplets in the liquid and the gas phase, respectively. The rates of

the transport processes that occur at the continuous and dispersed components

are different, and the approach captures this naturally. The formula includes

separate sets of conservation, momentum and energy equations for each field,

and the fields are represented by the belonging volume fractions of the total

fluid; see figure (8.14). For non-isotherm flow, 12 conservation equations are

required for the four fields: four continuity equations, four momentum equations

and four energy equations. Additionally, three relations for the radial pressure

distribution are needed to close the numerical problem, if we should continue the

approach of ensuring full parabolicity, by specifying the driving pressure differ-

ence in-between the different layers, instead of looking at the relaxation processes

in-between the four layers, as seen in the two-layer approach.

8.8. Summary

This chapter has developed three models, with primary focus on the homogen-

eous and two-layer model. The models are tuned so that each of them is aligned

relative to the number of degrees of freedom (DOFs) and number of transport

equations and additional constitutive relations. Stability tests in the form of an

eigenvalue analysis are also carried out, showing that the transport equations

are hyperbolic and are suitable for solution by using the properly selected time

integrator. The two-layer model offers a high degree of complexity in the se-

lection of constitutive relations, and the two most prominent models involve an

imperial model of the pressure difference between the two flowing media or the

introduction of a transport equation for void fraction. A third option is to solve

the system of equations using a Roe method [88], where the Jacobian contains
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8. Dynamic modelling of thermo- hydraulic systems

elements including the virtual mass force, which also ensures that the Jacobian

has real eigenvalues and hyperbolic nature, or else a flux-based WENO approach

is recommended, like [63].

Finally, we have formulated a four-field model that can serve as the basis for

further work. The challenge here is to find appropriate constitutive relations,

especially for heat transfer between the individual phases in the model. One must

expect a high degree of complexity in connection with the solution of the system,

since one must ensure that also here the system of equations is of hyperbolic

nature, i.e., real eigenvalues. One must also make some assumptions for the

pressure and velocity relaxation between the four layers, in the case of a Riemann

problem.
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9. Solving hyperbolic transport equation

The starting point for this chapter is the challenge of developing a robust nu-

merical solver, to handle the very strong thermal-hydraulic transients, that can

occur in a power plant evaporator. Many numerical challenges are brought

into play. Choices of solution strategy including type of grid (staggered/non-

staggered/nested), solution method (explicit/implicit), time integration method,

initial conditions, and boundary conditions are just a few of the many chal-

lenges that, the developer is confronted with in the construction of a numer-

ical solver. Therefore it is valuable to explain the entire process and clarify

the most necessary components to be included in the implementation of a dy-

namic solver. An additional challenge is to find a numerical scheme, that can

handle steep gradients without numerical diffusion and over-shooting and under-

shooting in the solution domain. In this section, we are concerned with solving

numerically one-dimensional hyperbolic system of balance laws (SBL), given

by:
∂Φ(z, t)

∂ t
+

∂ f (Φ(z, t))
∂ z

= s(
∂Φ
∂ z

,Φ(z, t)), t ≥ 0∧ z ∈ Ω. (9.1)

The homogeneous system associated with equation (8.99) and the two layer

model given by equation (8.41) are both hyperbolic systems of balance laws
(SBL). Both the SBL and SCL (systems of closure laws) systems are subject to

the initial condition:

Φ(z,0) = Φ0(z) (9.2)

and the following boundary conditions given by:

Dirichlet boundaries:

Φ(z = 0, t) = ΦA(t), (9.3)

Φ(z = lz, t) = ΦB(t)

and Neumann boundaries:

∂Φ(z = 0, t)
∂ z

=
∂ΦA(t)

∂ z
, (9.4)

∂Φ(z = lz, t)
∂ z

=
∂ΦB(t)

∂ z

The above boundary conditions can be given by a combination of each type of

boundaries, and are only specified if there are ingoing flow conditions at the
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boundaries. Here Φ is the unknown m-dimensional vector function, f(Φ) the

flux vector and s(Φ) a continuous source vector function on the right-hand side

(RHS); with z as the single spatial coordinate and t the temporal coordinate,

Ω is partitioned in nz non-overlapping cells: Ω= ∪nz
i=1Ii ∈ [0, lz], where lz is a

physically length scale in the spatial direction. From the original equations as

given in equation (9.1), the equations are written in a non-conservative form

as:
∂Φ(z, t)

∂ t
+J

∂Φ(z, t)
∂ z

= S
(

∂Φ
∂ z

,Φ(z, t)
)
, t ≥ 0 ∧ z ∈ Ω (9.5)

where J is called the flux Jacobian, which is a diagnosable matrix equal to:

J = P ·Λ ·P−1 =

⎛⎜⎜⎜⎝
∂ f1(z,t)

∂Φ1

∂ f1(z,t)
∂Φ2

... ∂ f1(z,t)
∂Φm

∂ f2(z,t)
∂Φ1

∂ f2(z,t)
∂Φ2

... ∂ f2(z,t)
∂Φm

... ... ... ...
∂ fm(z,t)

∂Φ1

∂ fm(z,t)
∂Φ2

... ∂ fm(z,t)
∂Φm

⎞⎟⎟⎟⎠
and

P = [r1,r2, ...,rm] . (9.7)

Here r1, r2,..., rm are the eigenvectors of the flux Jacobian J corresponding to the

eigenvalues λ1, λ1, ..., λm given by Λ:

Λ =

⎛⎜⎜⎝
λ1 0 ... 0

0 λ2 ... 0

... ... ... ...
0 0 ... λm

⎞⎟⎟⎠
The eigenvalues of J are precisely the solutions λi, i∈(1,...,m) to the equa-

tion:

det(J−Λ · I) = 0. (9.8)

If the matrix has real entries, the coefficients of the characteristic polynomial are

all real. However, the roots are not necessarily real. If the eigenvalues are all

real, the equation system is hyperbolic and its solutions are stable against small

disturbances.

In general, the real part of the eigenvalues can have both a positive and a negative

sign, and a simple one-sided differencing scheme will be appropriate only if the

real parts of all eigenvalues have the same sign. The general system will, however,

have some eigenvalues with a positive real part, and one side will be upwind for
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them, while the others have a negative sign on the real part and consequently the

upwind side will be opposite for them. A typical way to resolve this problem

is to split such a system into one with a positive real part of the eigenvalues

and one with a negative real part, and to treat them separately. These are the

flux vector splitting methods, also called the Boltzmann approach, discussed in

[104]. Another reasonable method could be to use a numerical scheme, which

is independent of the sign of the convective flux as well as the sign of the

system eigenvalues. Schemes, whose support does not depend on the sign of the

characteristic speeds, are called centred schemes. One of the simplest and most

approximate methods considered is the Lax-Friedrichs flux, which originally was

developed in the context of finite-difference methods and later applied to the

finite-volume context. Here the flux is estimated as:

fLF(Φ+,Φ−) =
1

2
( f (Φ+)+ f (Φ−))− λmax

2
(Φ+−Φ−), (9.9)

where the signal speed λmax=Δx/Δt. This means the speed of a wave is assumed

to be such that it reaches the cell boundaries exactly within a time step Δt. For

uniform grids, each wave of the global problem therefore has the same speed. This

is of course a truth with modifications; thus Rusanov developed a monotone flux

[105], where the signal speed is replaced by λmax = max((|v|+ c)+,(|v|+ c)−),
where c is the local speed of sound. This leads to a slightly improved accuracy of

the method. Another important contributor for the estimation of fluxes is the so-

called HLLE Monotone Flux method, which was developed by Harten, Lax and

van Leer [106]. The monotone flux simplifies the approximate Riemann problem

even further. It neglects the contact surfaces, as described in section (8.3.4),

and consequently assumes that between a shock wave and the corresponding

expansion wave, only a single homogeneous state is present. For hyperbolic

systems of two equations this is correct, but for the Euler equations addressed

herein this is a rough approximation. Even if the resolution of contact surfaces is

poor, this monotone flux is still a robust and efficient one, whose accuracy is, on

the global level, often sufficient. An advantage of this flux is, that it can be applied

easily to different thermodynamic property models. The scheme is implemented

as an a-priori estimation for the fastest signal speeds, and its monotone flux is

defined as:

fHLLE(Φ+,Φ−) =
c+r f (Φl)− c−r f (Φr)

c+r − c−l
+

c+r c−l
c+r − c−l

(Φr −Φl), (9.10)

Here, the signal speeds are c+r =max(0,ur + cr, ū+ c̄) and c−l =min(0,ul − cl , ū− c̄),
respectively. In these equations, the Roe average velocity ū and the Roe average
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speed of sound c̄ have been used; see [88].

After introducing some monotone numerical fluxes, methods to obtain higher-

order approximations of the solution to (9.1) will be considered.

Godunov’s theorem [107] provides the theoretical foundation to the statement,

that linear second-order schemes are more accurate in smooth regions of a prob-

lem solution to (9.1) than first-order schemes. There are near strong gradients

and shocks; however, these methods produce spurious oscillations, and mono-

tone methods do not exhibit such spurious oscillations. In the case of linear

schemes, their limited first-order accuracy is disadvantageous however. One

option to eliminate or reduce spurious oscillations for higher-order methods is

to introduce artificial viscosity. This can be tuned such that it is large enough to

suppress oscillations in the neighbourhood of discontinuities and then it is small

elsewhere to maintain accuracy; see (8.6). A disadvantage of this approach is that

the quantity of artificial viscosity is problem-dependent and therefore requires

fine-tuning by the user. This approach is not followed here, but is discussed later

where the case studies of evaporator simulations are described. Instead a less

empirical approach to introduce viscosity is adopted, in order to circumvent the

limitations formulated by Godunov’s theorem; schemes with variable coefficients,

i.e., nonlinear schemes, are considered. Such schemes can adapt themselves to

the local nature of the solution. Harten [108] defined High-Resolution Methods

as numerical methods with the following properties:

• The solution is free of spurious oscillations.

• Second or higher-order of accuracy in smooth parts of the solution.

• The resolution of discontinuities in the solution is high, depending on the

size of the stencil.

A class of methods fulfilling these properties is that of Total Variation Diminishing

methods, described by [108]. See this reference for a definition of the total

variation. For brevity, only the case of a smooth function Φ(t), for which the total

variation is

TV (Φ) =
∫ ∞

∞

∣∣∣∣∂Φ(z)
∂ z

∣∣∣∣dz (9.11)

and the case of a mesh function Φn = {Φn
i } are mentioned. For the latter, the total

variation is defined as

TV (Φn) =
∞

∑
i=−∞

∣∣Φn
i+1 −Φn

i
∣∣ (9.12)

Fundamental properties of the exact solution of the conservation law (9.1) such

as no creation of new local extrema lead to the conclusion that the total variation
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TV(Φ(t)) is a decreasing function of time; see [106]. Consequently, Total Vari-

ation Diminishing methods mimic a property of the exact solution. For a general

scalar conservation law, Harten [109] provided a theorem on a sufficient condi-

tion for a particular class of nonlinear schemes with two coefficients to be Total

Variation Diminishing (TVD). These conditions are essentially four inequalities

on these two coefficients. As the coefficients may in general be data-dependent,

Harten’s theorem provides a tool for the construction of nonlinear schemes that

circumvent Godunov’s theorem stated above. Harten [109] also presented a class

of explicit second-order accurate finite difference schemes for the computation of

weak solutions of hyperbolic conservation laws; these were obtained by applying

a non-oscillatory first-order accurate scheme to an appropriately modified flux

function. The so-derived second-order accurate schemes achieve second-order

resolution while preserving the robustness of the original non-oscillatory first

order accurate scheme. Hence the classic TVD approach can be formulated as an

adaptive switch between the characteristics of a monotone first-order numerical

flux f LO and those of a higher-order constant coefficient flux f HI which is to

make the following assumption by [110].

f TV D = f LO +ϕ( f HI − f LO) (9.13)

Here, ϕ is a flux limiter function that implements the adaptive algorithm, which

will be described later in section 9.3.

9.1. Numerical grid

With the exception of the Finite Element Method, there are usually two kinds

of grid arrangements used to solve fluid flow problems: staggered grids and

non-staggered grids. For the non-staggered grids, flux variables and scalar

variables (such as fluid properties) are stored in the same locations, while for

the staggered grids, flux components and scalar variables are stored at different

locations, with shifted half control volume in each coordinate direction. Staggered

grids are popular because of their ability to prevent checker board pressure in

the flow solution, caused by odd-even decoupling between the pressure and

velocity. However, the implementation of the staggered grid method is tedious,

since the multi-dimensional momentum equations are discretized at different

control volumes shifted in different directions from the main control volume. The

programming difficulties increase when one deals with curvilinear or unstructured

grids. As a result, nearly all codes written on curvilinear or unstructured grids

use non-staggered grid arrangements for the solution of fluid flow problems. On

the other hand non-staggered grids are prone to produce a false pressure field,

a checker-board pressure, if special precautions are not taken. For this reason,

in the early 1980 and earlier, non-staggered was rarely used for incompressible
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flow. However, in nearly three decades the non-staggered grid (or collocated grid)

has been used more widely, after the introduction of a momentum interpolation

method to eliminate the checker board pressure problem. For hyperbolic systems

of partial differential equations, the non-staggered grid is commonly used and

does not introduce the above checker board pressure problem. A staggered / non-

staggered grid is depicted in figure (9.1). The disadvantage of using staggered

grids is that different variables are stored at different places, and this makes it

more difficult to handle different control volumes for different variables and to

keep track of the metrics. The developed non-staggered grid is suitable for the

Figure 9.1.: Staggered grid in one dimension.

modelling of transport of mass, momentum and energy.

9.2. Second-order schemes

In the following the Godunov method for solving hyperbolic SCL will be outlined.

The basic scheme of Godunov uses piecewise constant approximations for each

cell, and results in a first-order upwind discretisation of the above problem with

cell centres indexed as j. A semi-discrete scheme can be defined for the following

SCL as follows,

∂Φ(z, t)
∂ t

+
1

Δz

[
f (Φ(z j+1, t))− f (Φ(z j, t))

]
= 0, t ≥ 0, z ∈ Ω (9.14)

where the continuous source vector function s(Φ) initially is set to zero. This

basic scheme is not able to handle shocks or sharp discontinuities as they tend

to become smeared. An example of this effect is shown in figure (9.2), which

illustrates a 1D advective equation with a step wave propagating to the right.

The simulation is carried out with a mesh of 100 cells and uses a second order

(Crank-Nicolson) method for the time integration. A monotone numerical flux is

defined using a function f:

fi+1/2 = f ∗(Φ−
i+1/2

,Φ+
i+1/2

). (9.15)

Here, Φ−
i+1/2

is in general an approximation of the vector of conserved vari-

ables at xi+1/2 in the left limit, and Φ+
i+1/2

in the right limit. If f satisfies
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Figure 9.2.: Comparison of different TVD schemes + CD + UD- schemes.

the following conditions then (x) is a monotone flux according to reference

[111]:

• f ∗(a, b) is Lipschitz continuous in both arguments (strong form of uniform

continuity for functions).

• f ∗(a, b) is a non-decreasing function in (a) and a non-increasing function

in (b).

• f ∗(a, b) is consistent with the physical flux f, i.e., f ∗ (a, a) = f ∗(a).

Each monotone flux can be used without reconstruction with the approximation

Φ−
i+1/2

≈ Φi and Φ+
i+1/2

≈ Φi+1. The results are first-order schemes. Altern-

atively, any more sophisticated approach may be used to reconstruct Φ±
i+1/2

.

Monotone fluxes are classified as either upwind methods or central methods.

Upwind methods are discretized equations on a mesh according to the direction

of propagation of the convective information on that mesh. Central methods do

not make a distinction based on the direction of the propagation of the convective
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information. Within the upwind methods, both Godunov-type methods and flux

vector splitting methods are presented based on [104]. To provide higher resol-

ution of discontinuities, Godunov’s scheme can be extended to use piecewise

linear approximations of each cell, resulting in a central difference scheme that is

second-order accurate in space. The piecewise linear approximations are obtained

from

Φ(z, t) = Φ(z j, t)+
z− z j

z j+1 − z j

(
Φ(z j+1, t)−Φ(z j, t)

)
, z ∈ [z j,z j+1]. (9.16)

Thus, evaluating fluxes at the cell edges, we get the following semi-discrete

scheme

∂Φ(z, t)
∂ t

+
1

Δz

[
f (Φ(z j+1/2, t))− f (Φ(z j−1/2, t))

]
= 0, t ≥ 0, z ∈ Ω (9.17)

where f (Φ(z j+1/2, t)) and f (Φ(z j−1/2, t) are the piecewise approximate values

of cell edge variables, i.e.,

Φ(z j+1/2, t) =
1

2

(
Φ(z j, t)+Φ(z j+1, t)

)
(9.18)

Φ(z j−1/2, t) =
1

2

(
Φ(z j−1, t)+Φ(z j, t)

)
(9.19)

Although the above second-order scheme provides greater accuracy for smooth

solutions, it is not a total variation diminishing (TVD) scheme and introduces

spurious oscillations into the solution where discontinuities or shocks are present.

An example of this effect is shown in figure (9.3), which illustrates a 1D advective

equation , with a step wave propagating to the right. This loss of accuracy is to be

expected due to Godunov’s theorem, which says that linear numerical schemes

for solving partial differential equations (PDEs), having the property of not

generating new extrema (monotone scheme), can be at most first-order accurate.

The simulation was carried out with a mesh of 100 cells and used a second-order

(Crank-Nicolson) method of time integration. TVD-based numerical schemes

extend the idea of using a linear piecewise approximation to each cell by using

slope limited left and right extrapolated states. This results in the following high

resolution, TVD discretisation scheme,

∂Φ(z j, t)
∂ t

+
1

Δz

[
f (Φ∗

z j+1/2
)− f (Φ∗

z j−1/2
)
]
= 0, t ≥ 0, z ∈ Ω. (9.20)

The numerical fluxes f (Φ∗
z j±1/2

) correspond to a nonlinear combination of first

and second-order approximations to the continuous flux function. The symbols
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Figure 9.3.: Simulation with a high cell Peclet number initiating wiggles in the CD

simulation. n is the timestep number.

Φ∗
z j±1/2

represent scheme-dependent functions (of the limited extrapolated cell

edge variables), and are written shortly as Φ∗
j±1/2, i.e.,

Φ∗
j±1/2 = Φ∗(Φ−

j±1/2
,Φ+

j±1/2
) (9.21)

where

Φ−
j+1/2

= Φ j +
1

2
ϕ(ri)(Φ j+1 −Φ j), (9.22)

Φ+
j+1/2

= Φ j+1 − 1

2
ϕ(ri+1)(Φ j+2 −Φ j+1),

and

Φ−
j−1/2

= Φ j−1 +
1

2
ϕ(ri−1)(Φ j −Φ j−1), (9.23)

Φ+
j−1/2

= Φ j − 1

2
ϕ(ri)(Φ j+1 −Φ j),
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where r is the argument to the limiter function ϕ(r) and represents the ration of

the successive gradients on the solution mesh, i.e.,

r j =
Φ j −Φ j−1

Φ j+1 −Φ j
(9.24)

The Limiter function limits the slope of the piecewise approximations to en-

sure the solution is TVD, thereby avoiding the spurious oscillations that would

otherwise occur around discontinuities or shocks.

9.3. Flux limiter

Flux limiters are used in high resolution schemes; these are numerical schemes

used to solve problems in science and engineering, particularly fluid dynamics,

described by partial differential equations (PDEs). They are used in high resolu-

tion schemes to avoid the spurious oscillations (wiggles) that would otherwise

occur with high-order spatial discretisation schemes due to shocks, discontinuities

or sharp changes in the solution domain. The use of flux limiters, together with

an appropriate high resolution scheme, makes the solutions be total variation

diminishing (TVD). Flux limiters are also referred to as slope limiters, because

both have the same mathematical form, and both have the effect of limiting the

solution gradient near shocks or discontinuities. In general, the term flux limiter

is used when the limiter acts on system fluxes, and slope limiter is used when

the limiter acts on system states. The main idea behind the construction of flux

limiter schemes is to limit the spatial derivatives to realistic values; for scientific

and engineering problems this usually means physically realisable values. They

are used in high resolution schemes for solving problems described by PDEs

and only come into operation when sharp wave fronts are present. For smoothly

changing waves, the flux limiters do not operate and the spatial derivatives can

be represented by higher-order approximations without introducing non-real

oscillations. The limiter function is constrained to be greater than or equal to

zero, i.e., r ≥ 0. Therefore, when the limiter is equal to zero (sharp gradient,

opposite slopes or zero gradient), the flux is represented by a low resolution

scheme. Similarly, when the limiter is equal to 1 (smooth solution), it is represen-

ted by a high resolution scheme. The various limiters have differing switching

characteristics and are selected according to the particular problem and solution

scheme; see equation (9.13). No particular limiter has been found to work well

for all problems, and a particular choice is usually made on a trial and error

basis. Thus, the accuracy of a TVD discretization degrades to first-order at local

extrema, but tends to second-order over smooth parts of the domain. The al-

gorithm is straight-forward to implement. Once a suitable scheme for f ∗j+1/2 has

been chosen, such as the Kurganov and Tadmor scheme [112], the solution can
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proceed using standard numerical integration techniques as presented by Gottlieb

in [113]. Different flux limiter functions ϕ(r) are listed in the following table

(9.1), taken from [114]. It is easy to see that the upwind differencing (UD) scheme

Table 9.1.: Some of the most popular limiter functions, source: [114].

Name Limit function Source

Van Leer
r+|r|
1+r Van Leer (1974)

Van Albadar r+r2

1+r2 Van Albada et al. (1982)

Min-Mod Φ(r) =

{
min(r,1) if r > 0

0 if r ≤ 0
Roe (1985)

SUPERBEE max(0,min(2r,1),min(r,2)) Roe (1985)

Sweby max(0,min(β r,1),min(r,β )) Sweby (1988)

QUICK max(0,min(2r,(3+ r)/4,2) Leonard (1988)

UMIST max(0,min(2r,(1+3r)/4,(3+ r)/4,2) Lien and Leschziner (1993)

(Φ j+1/2 = Φ j) for f j+1/2 > 0 leads to a Limiter Function ϕ(r)=0 and the central
differencing (CD) scheme (Φ j+1/2 = (Φ j +Φ j+1)/2) leads to ϕ(r)=1. All the

above limiters indicated as being symmetric, exhibit the following symmetry

property,
ϕ(r)

r
= ϕ(

1

r
). (9.25)

This is a desirable property as it ensures that the limiting actions for forward and

backward gradients operate in the same way. According to [114], the admissible

limiter regions for second-order TVD schemes are illustrated in figure (9.4).

Unless indicated to the contrary, the above limiter functions are second-order

TVD. This means that they are designed such that they pass through a certain

region of the solution, known as the TVD region, in order to guarantee stabil-

ity of the scheme. Second-order, TVD limiters satisfy at least the following

criteria:

ϕ(1) = 1, (9.26)

r ≤ϕ(r)≤ 2r, for 0 ≤ r ≤ 1,

1 ≤ϕ(r)≤ r, for 1 ≤ r ≤ 2,

1 ≤ϕ(r)≤ 2, for r > 2,
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9. Solving hyperbolic transport equation

Figure 9.4.: Admissible limiter region for second-order TVD schemes.

Figure (9.2) shows a comparison between the Limiter functions shown in table

(9.1). Simulations give different slopes of the pure convective front, initiated by

a Heaviside step function on the upstream boundary. For comparison, the UD

and CD schemes are shown in the same figure (9.2). The CD scheme gives minor

overshoots as is evident in the same figure. It can be seen that TVD solutions show

far less false diffusion than the UD scheme and are almost as close to the exact

solution as the QUICK scheme. Moreover, they do not show any non-physical

overshoots and undershoots. The four TVD solutions are quite close to each other,

which is also a recurring feature in more broadly based performance comparisons

in the literature, [110], [115] and [108]. In figure (9.5) we can see how sensitive

the moving front is on the choice of limiter function. Again the simulations

are without diffusion. The CD-scheme initiates oscillations, with an intensive

over-shoot, or exceeds its steady-state value, while the other Limiter functions,

classified as TVD, only affect the shape of the front, without introducing over

and under-shoots of the front.
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Higher-order schemes

Figure 9.5.: Comparison of different TVD schemes for nz=5.

9.4. Higher-order schemes

Significant efforts are made to remove the numerical oscillations created by

higher-order numerical schemes of hyperbolic conservation laws near discontinu-

ities, e.g., [116]. A successful numerical method should resolve discontinuities

with correct positions, sharp non-oscillatory profiles and retain high order accur-

acy in smooth parts. A prominent class of such methods is weighted essentially

non-oscillatory (WENO) schemes; see, e.g., [117] and [118]. The WENO scheme

is suitable for solving convection dominated partial differential equations, contain-

ing potential discontinuities in the solution; see [119]. Examples of such problems

are the Euler or Navier-Stokes equations in computational fluid dynamics. WENO

is an extension of the essentially non-oscillatory (ENO) scheme, introduced by

[120]. The essential idea in the WENO methodology is to make a linear combin-

ation of lower-order reconstructions to obtain a higher-order approximation. The

combination coefficients, also called linear weights or ideal weights, are obtained

from the local geometry of the mesh and the order of accuracy. When the grid is

uniform or smoothly varying, the linear weights remain positive. This section

contains a brief introduction to some of the fundamental concepts and an over-

view of the primary challenges in solving hyperbolic partial differential equations.

193



9. Solving hyperbolic transport equation

The definition of hyperbolicity only concerns equation (9.5) above; it means

that the Jacobian matrix J has real eigenvalues and a set of associated eigen-

vectors forming a basis of ℜm, where m is the dimension of vector Φ. Consider

the uniform non-staggered spatial grid, depicted in figure (9.6), where the cell

I j=
[
z j−1/2,z j+1/2

]
has a cell width Δz, and let Δt be the time step. We denote the

Figure 9.6.: Boundary conditions in pipe model.

spatial grid points by z j=jΔz, tn=nΔt and Φn
j = Φ(z j, tn). Since the solution of

(9.1) with the belonging initial conditions, given by (9.2) and the two types of

boundary conditions, given by (9.3) and (9.4), can develop discontinuities even

for smooth initial data, the quantities that will be used on the discrete level, are

cell averages. The numerical approximation of the cell averages in the cell I j is

denoted by Φ̄n
j :

Φ̄n
j =

1

Δz

∫
I j

Φ(z, tn)dz. (9.27)

The starting point for the construction of Godunov-type schemes for conservation

laws is the equivalent integral formulation of the system (9.1) with s(Φ(z,t))

initially assigned zero. Assuming that the cell averages at time tn , Φ̄n
j are

known, our goal is to compute the cell averages at the next time step tn+1

as:

Φ̄(z, t +Δt) = Φ̄(z, t)− 1

Δz
[
∫ t+Δt

r=t
f (Φ(z+

Δz
2
,τ))dτ

−
∫ t+Δt

r=t
f (Φ(z− Δz

2
,τ))dτ] (9.28)

9.5. Polynomial reconstruction

In this sub-section, we review Godunov-type central schemes in one spatial

dimension. We recall the construction of the non-staggered central scheme for
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conservation laws. We denote the sliding averages of Φ(z,t) over the interval

(z-Δz/2, z+Δz/2). At time level t = tn we consider (9.28) with the piecewise

polynomial initial condition, given by (9.29),

Φ̃(z, tn) = pn
j(z), z j−1/2 < z < z j+1/2, for j ∈ [1,nz]. (9.29)

First, from Φ̄n
j we reconstruct the point values of the function Φ̄(z, tn) via a

suitable nonlinear piecewise polynomial interpolation p j(z, t) taking into account

conservation, accuracy and non-oscillatory requirements, for each cell I j. At

each cell interface z j+1/2 the reconstruction produces two different values of the

function Φ(z), namely, the left and the right extrapolated value at a certain time

tn:

ΦL
j+1/2 = p j(z j+1/2), ΦR

j+1/2 = p j+1(z j+1/2), (9.30)

obtained from the cell averages Φ̄n
j ≡ Φ̄(z j, tn), computed at the previous time

step. This piecewise polynomial reconstruction should be conservative, accurate

to order r, and non-oscillatory. Then the piecewise polynomial Φ̃(z, tn) is evolved

exactly according to (9.28), and the solution at time t=tn+1 is obtained in terms

of its sliding averages, Φ̄(z, tn+1).

The governing equations introduced in equation (9.1) were derived from the

integral relations based on the assumption of smoothness of the variables, which

is not fulfilled for the applications considered in this section. In order to include

weak solutions of (9.1), an integral form of the equations is used. Therefore, the

equation is integrated over the interval I j to obtain

dΦ̄(z j, t)
dt

= s(Φ̄(z j, t))− 1

Δz

(
f (Φ̄(z j+1/2, t))− f (Φ̄(z j−1/2, t))

)
(9.31)

where f (Φ̄(z j+1/2, t)) is the numerical flux at z j+1/2 and time t. This numerical

flux function at the cell boundaries is defined as a monotone function of left and

right extrapolated values as described in equation (9.30).

f (Φ̄(z j+1/2, t)) = f (ΦL
j+1/2,Φ

R
j+1/2) (9.32)

In the next sub-sections, we will present the WENO reconstructions as mentioned

in [116], which supply the required piecewise polynomial pn
j(z). Fifth-order

WENO reconstruction of the point values uses a five-point stencil, S5 which is

sub-divided into three sub-stencils, {S1;S2;S3} as shown in figure (9.7). Initially

we select an optimal polynomial of degree r=4, denoted Φ̃opt , on the central stencil

S5 = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}. Hence the optimal polynomial can be expressed
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9. Solving hyperbolic transport equation

Figure 9.7.: Discrete stencils for the Central WENO procedure.

as:

Φ̃opt ≡
5

∑
j=1

a j−1(z− zi)
j−1 (9.33)

Additionally we have from [116] an uniquely defined relation for Φ̃opt :

Φ̄i+k =
1

Δz

∫
Ii+k

Φ̃(z)optdz, k ∈ {−2,−1,0,1,2} . (9.34)

Thus, we are able to establish a linear system for the undetermined coefficients,

{ai}. This system can be re-written for a uniform Cartesian grid as:

U = C×A (9.35)

with the following notations: U ≡ [
Φ̄i−2,Φ̄i−1,Φ̄i,Φ̄i+1,Φ̄i+2,

]t
,A ≡ [a j]

t
j∈0,...,4

and C is given by (9.36) according to [116]:

C ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1, j =
(−1) j

jΔz

[
( 3Δz

2 ) j − ( 5Δz
2 ) j

]
,

c2, j =
(−1) j

jΔz

[
(Δz

2 ) j − ( 3Δz
2 ) j

]
,

c3, j =
Δz j−1

j(2) j

[
1+(−1) j+1

]
for j ∈ {1...5} ,

c4, j =
(−1) j

jΔz

[
( 3Δz

2 ) j − (Δz
2 ) j

]
,

c5, j =
(−1) j

jΔz

[
( 5Δz

2 ) j − ( 3Δz
2 ) j

]
.

(9.36)
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For solving the Riemann’s problem, arising at each interface, we only need the

approximations to the values of Φ(z) at the cell boundaries. These values are

calculated according to the relation:

Φ+
i+1/2

=
(tD×C−1

)×U ≡
5

∑
j=1

ã j−1Φ̄i+ j−3 (9.37)

with the following definition: D ≡ [
(Δz

2 ) j−1
]

j=1,...,5
. The constants ã j depend on

the cell sizes, Δz, but not on the function Φ itself. For the calculations of Φ−
i+1/2

, the constants ã j are simply calculated by modifying the form of the vector:

D ≡ [
(−1) j+1(Δz

2 ) j−1
]

j=1,...,5
. When the grid is uniform, the expressions for the

polynomial coefficients, ã j, do not depend on the points of discretization. In such

a case, these expressions can be explicitly formulated to determine fully Φ̃opt(z)
and, later, the smoothness indicators, by solving equation (9.35) with respect to

A:

AS5
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 =
1067
960 Φ̄i − 29

480

(
Φ̄i+1 + Φ̄i−1

)
+ 3

640

(
Φ̄i+2 + Φ̄i−2

)
,

a1 =
1

48Δz

[
34

(
Φ̄i+1 − Φ̄i−1

)
+5

(
Φ̄i−2 − Φ̄i+2

)]
,

a2 =
−1

16Δz2

[
Φ̄i−2 +22Φ̄i + Φ̄i+2 −12

(
Φ̄i+1 + Φ̄i−1

)]
,

a3 =
−1

12Δz3

[
2
(
Φ̄i+1 − Φ̄i−1

)
+
(
Φ̄i−2 − Φ̄i+2

)]
,

a4 =
1

24Δz4

[
Φ̄i−2 +6Φ̄i + Φ̄i+2 −4

(
Φ̄i+1 + Φ̄i−1

)]
.

(9.38)

Finally, the calculated point-values at the cell boundary z = zi+1/2 are such

that

Φi+1/2 ≡ Φ̃opt(zi+1/2) = Φ(zi+1/2)+O(Δz5). (9.39)

To derive an essentially non-oscillatory reconstruction, we need to define three

supplementary polynomials (Φ̃1, Φ̃2, Φ̃3), approximating Φ(z) with a lower accur-

acy on Ii. Thus, we define the polynomial of second-order accuracy, Φ̃1(z), on the

reduced stencil S1: (Ii−2, Ii−1, Ii), Φ̃2(z) is defined on the stencil S2: (Ii−1, Ii, Ii+1),

whereas Φ̃3(z) is defined on the stencil S3: (Ii, Ii+1, Ii+2); see figure (9.7). Now,

we have to invert a 3 × 3 linear system similar to (9.35) for the unknown coef-

ficients {a j}, j ∈ {0, ...,2}, j ∈ {1, ...,3} and j ∈ {2, ...,4}, defining Φ̃1,Φ̃2,Φ̃3,
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respectively. Once again, the constants determining the interpolation are pre-

computed and stored before solving the PDEs. When the grid is uniform, the

values of the coefficients for Φ̃1,Φ̃2 and Φ̃3 can be explicitly formulated.

For Φ̃1 defined on S1, we have:

AS1
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 =
23
24 Φ̄i +

1
12

(
Φ̄i−1 − Φ̄i−2

)
,

a1 =
1

2Δz

(
3Φ̄i −4Φ̄i−1 + Φ̄i−2

)
,

a2 =
1

2Δz2

(
Φ̄i −2Φ̄i−1 + Φ̄i−2

)
.

(9.40)

For Φ̃2 defined on S2, we have:

AS2
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 =
13
12 Φ̄i − 1

24

(
Φ̄i−1 + Φ̄i+1

)
,

a1 =
1

2Δz

(
Φ̄i+1 − Φ̄i−1

)
,

a2 =
1

2Δz2

(
Φ̄i+1 −2Φ̄i + Φ̄i−1

)
.

(9.41)

The last Φ̃3 is defined on S3, which gives:

AS3
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 =
23
24 Φ̄i +

1
12

(
Φ̄i+1 − 1

2 Φ̄i+2

)
,

a1 =
−1
2Δz

(
3Φ̄i −4Φ̄i+1 + Φ̄i+2

)
,

a2 =
1

2Δz2

(
Φ̄i −2Φ̄i+1 + Φ̄i+2

)
.

(9.42)

The coefficient a0 in (9.42) is not identical with what is stated in [116].

9.6. WENO Reconstruction

If the discrete stencil defining Φ̃opt(z) contains a discontinuity or large gradi-

ents, spurious oscillations can appear in the numerical solution. To avoid

such a problem, we construct a WENO procedure that smoothly adapts the

stencil in the neighbourhood of a singularity. Defining the non-oscillatory re-
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construction on cell Ii by Φ̃i(z), we want the following properties to be veri-

fied:

Φ̃i(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ̃1(z) if the solution is not smooth and the stencil S1

is in the smooth regions,

Φ̃2(z) if the solution is not smooth and the stencil S2

is in the smooth regions,

Φ̃3(z) if the solution is not smooth and the stencil S3

is in the smooth regions,

Φ̃opt(z) if the stencil S5 is in the smooth regions.

(9.43)

To implement a specific solution technique, we extended the principle of the cent-

ral WENO interpolation defined in [121]. First, we construct an ENO interpolant

as a convex combination of polynomials, based on different discrete stencils.

Specifically, we define in the discrete cell Ii:

Φ̃i(z)≡ ∑
j

w j × Φ̃ j(z), ∑
j

w j = 1 for w j ≥ 0, j ∈ {1, ..,4}, (9.44)

and Φ̃1, Φ̃2 and Φ̃3 are the previously defined polynomials. Φ̃4 is the second-

order polynomial, defined on the central stencil S5 and is calculated so that the

convex combination in (9.44), will be fifth-order accurate in smooth regions.

Therefore, it must verify:

Φ̃opt(z) =∑
j

Cj×Φ̃ j(z) ∀z∈ Ii, ∑
j

Cj = 1 for Cj ≥ 0, j ∈ {1, ..,4}. (9.45)

The constants Cj represent ideal weights for (9.44) and we make the choice as in

[116]:

C1 =C3 = 1/8,C2 = 1/4 and C4 = 1/2. (9.46)

Then the central polynomial, Φ̃4(z), can be calculated from (9.45):

Φ̃4(z) =
1

C4

[
Φ̃opt(z)−C1Φ̃1(z)−C2Φ̃2(z)−C3Φ̃3(z)

] ∀z ∈ Ii. (9.47)
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which after inserting, (9.38), (9.40), (9.41), (9.42) in (9.47), gives:

AS5
:

⎧⎪⎨⎪⎩
Φ̄+

j+1/2
=− 1

60 Φ̄i−2 − 7
120 Φ̄i−1 +

73
120 Φ̄i +

21
40 Φ̄i+1 +

−7
120 Φ̄i+2 ,

Φ̄−
j−1/2

=− 7
120 Φ̄i−2 +

21
40 Φ̄i−1 +

73
120 Φ̄i − 7

120 Φ̄i+1 − 1
60 Φ̄i+2 .

(9.48)

Note that, although the stencil defining Φ̃4(z) is the five-point stencil S5, this poly-

nomial is only a second-order approximation of Φ(z). Note that the role of Φ̃4(z)
is only to recover high-order accuracy in smooth regions. The fifth-order WENO

reconstruction is then being defined in the discrete cell I j by:

Φ j+1/2 = p j(x j+1/2) =
4

∑
k=1

wk · Φ̃+(k)

j+1/2
, (9.49)

Φ j−1/2 = p j(x j−1/2) =
4

∑
k=1

wk · Φ̃−(k)

j−1/2
,

4

∑
k=1

wk = 1, (9.50)

where the reconstruction polynomials now can be determined at the face values

of I j, which for j+1/2 we find:

Φ̃+(1)

j+1/2
=

1

6

[
2Φ̄ j−2 −7Φ̄ j−1 +11Φ̄ j

]
(9.51)

Φ̃+(2)

j+1/2
=

1

6

[−Φ̄ j−1 +5Φ̄ j +2Φ̄ j+1

]
Φ̃+(3)

j+1/2
=

1

6

[
2Φ̄ j +5Φ̄ j+1 − Φ̄ j+2

]
Φ̃+(4)

j+1/2
=

1

120

[−2Φ̄ j−2 −7Φ̄ j−1 +73Φ̄ j +63Φ̄ j+1 −7Φ̄ j+2

]
and for j-1/2 we find:

Φ̃−(1)

j−1/2
=

1

6

[−Φ̄ j−2 +5Φ̄ j−1 +2Φ̄ j
]

(9.52)

Φ̃−(2)

j−1/2
=

1

6

[
2Φ̄ j−1 +5Φ̄ j − Φ̄ j+1

]
Φ̃−(3)

j−1/2
=

1

6

[
11Φ̄ j −7Φ̄ j+1 +2Φ̄ j+2

]
Φ̃−(4)

j−1/2
=

1

120

[−7Φ̄ j−2 +63Φ̄ j−1 +73Φ̄ j −7Φ̄ j+1 −2Φ̄ j+2

]
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To complete the reconstruction of Φ̃(i)(z), we only need to compute the non-

oscillatory weights, w j. To define these weights, we follow the reasoning of [122].

To achieve the optimal interpolation, (9.45), in smooth regions, the weights w j
must smoothly converge to the ideal weights Cj as Δz approaches zero. In an

opposite way, in regions with discontinuity, the weights should effectively remove

the contribution of stencils, containing the discontinuity, according to properties

in (9.43). To this end, combining (9.44) and (9.45) gives:

Φ̃(i)(z) = Φ̃opt(z)+ ∑
j∈{1,..,4}

(w j −Cj)× Φ̃ j(z) ∀z ∈ Ii. (9.53)

Since Φ̃ j=Φ j(z)+O(Δz3), j ∈ {1,2,3,4}, wherever the solution is smooth and

(9.53) can be re-written as

Φ̃(i)(z) = Φ̃opt(z)+ ∑
j∈{1,..,4}

(w j −Cj)× (Φ j(z)+O(Δz3)) ∀z ∈ Ii. (9.54)

Therefore, the second term of (9.54) must be at least a O(Δz5) quantity for Φ(z)
to be approximated at fifth-order by Φ̃i(z) in regions of smoothness. Then the

necessary and sufficient conditions are:⎧⎪⎨⎪⎩
(
∑ j∈{1,..,4} w j −1

)×Φ(z) = O(Δz5),

∑ j∈{1,..,4}(w j −Cj) = O(Δz2).

(9.55)

It is sufficient to require⎧⎪⎨⎪⎩
∑ j∈{1,..,4} w j −1 ≤ O(Δz5),

(w j −Cj)≤ O(Δz2),w j ≥ 0 ∀ j ∈ {1,2,3,4}.
(9.56)

Up to this point, the development of the fifth-order WENO scheme has been

general. To determine fully the central WENO (CWENO) scheme, we need now

to specify the non-oscillatory weights.

9.7. Non-oscillatory weights

For the one-dimensional context, the WENO procedure has been defined on

a five-point uniform stencil and designed to be fifth-order accurate in regions

of smoothness. To this end, we define a finite-volume discretisation in which

we consider the cell averages of the variable as the discrete unknowns. The

reconstruction of point-values is then ensured by unique fifth-order polynomials.
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Below we adapt this procedure for the non-linear weights to maintain the theoret-

ical convergence properties of the optimum reconstruction, whatever problem is

considered.

First of all, we calculate the general indicators of smoothness, defined in [121]:

ISi
j =

1

Φ2
max

2

∑
k=0

Δz2k−1 ×
∫

Ii

(
dkΦ̃ j

dzk

)2

dz, j ∈ {1,2,3,4}, (9.57)

where Φmax is calculated over the whole calculation domain Ω: Φmax=max|Φ|z∈Ω
and k describes the number of equations. These indicators describe the smooth-

ness of the solution over the cell Ii, according to the particular stencil, selected

to define Φ̃ j(z) on that cell. In regions of smoothness, ISi
j << 1, whereas ISi

j =

O(Δz) in cells with strong gradients or discontinuities. Specifically, (9.57) can be

explicated for Φ̃1, Φ̃2 and Φ̃3 on a non-uniform mesh:

ISi
j = a2

1Δz2 +
13

3
a2

2Δz4 +O(Δz6), j ∈ {1,2,3}. (9.58)

The general form of ISi
4 is given by [116]:

ISi
4 = a2

1Δz2 +

[
13

3
a2

2 +
1

2
a1a3

]
Δz4 +O(Δz6). (9.59)

For each quadratic polynomial Φ̃ j(z), j ∈ {1,2,3}, the polynomial coefficients

{ap} are being calculated by numerically inverting (9.35). The coefficients for

Φ̃4(z) have then been deduced from formula (9.47). When the mesh is uniform,

the coefficients {ap} have explicitly been given by formulae (9.38), (9.40), (9.41)

and (9.42). The polynomial coefficients for Φ̃ j(z) have then been determined.

To calculate the weights, we review another technique to improve the classical

smoothness indicators to obtain weights that satisfy the sufficient conditions for

optimal order of accuracy. It is well known from [116] that the original WENO

is fifth-order accurate for smooth parts of the solution domain except near sharp

fronts and shocks. This idea is taken from [123] and uses the whole five-point

stencil S5 to define a new smoothness indicator of higher-order than the classical

smoothness indicator ISi. For estimating the weights wk, k ∈ {1,2,3,4}, we

proceed as follows: Define

IS∗k =
ISk + ε

ISk + ε + τ5
(9.60)
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where ISk, k ∈ {1,2,3} are given by (9.58), IS4 given by (9.59) and τ5=|IS1 − IS3|
due to [124] and [123]. The constant ε is a small number. In some articles ε ≈
from 1 ·10−2 to 1 ·10−6; see [121]. Here we use much smaller values of ε for

the schemes in order to force this parameter to play only its original role of

disallowing vanishing denominators at the weight definitions. The weights wk
are defined as:

wk =
α∗

k

∑4
l=1 α∗

l
, α∗

k =
Ck

IS∗k
, k ∈ {1,2,3,4} (9.61)

where Ck is given by (9.46). To determine the order of approximation of the

new weights w∗
k with respect to the ideal weights, we firstly study the smooth

case and take ε=0. From (9.58) to (9.59) and the properties of τ5 we ob-

tain (
1+

τ5

ISk

)
= 1+O(Δz3), k ∈ {1,2,3,4}, (9.62)

therefore

wk =Ck +O(Δz3), k ∈ {1,2,3,4}. (9.63)

Thus the weights in equation (9.63) satisfy the sufficient condition, providing the

fifth-order accuracy to the CWENO at smooth regions. Another advantage is that

this implementation according to our experience, reduces the computational CPU

cost with more than 20 %, compared to the more time-consuming implementation

given by [116].

9.8. Flux Splitting

In this section we review the derivation of the central-upwind flux presented in

[125]. We consider the one-dimensional system (9.1) of m strictly hyperbolic

conservation laws. We start with a piecewise polynomial reconstruction p j(z)
with possible discontinuities at the interface points z j+1/2. These discontinuities

propagate with the right- and the left-sided local speeds, which can be estimated

by

c+j+1/2
= max

{
λN

(
∂ f (Φ−

j+1/2
)

∂Φ

)
,λN

(
∂ f (Φ+

j+1/2
)

∂Φ

)
,0

}
, (9.64)

c−j+1/2
= min

{
λ1

(
∂ f (Φ−

j+1/2
)

∂Φ

)
,λ1

(
∂ f (Φ+

j+1/2
)

∂Φ

)
,0

}
,

with λ1 < ... λN being the eigenvalues of the Jacobian given by J=
∂ f (Φ(z,t))

∂Φ . Here,

Φ+
j+1/2

=p j+1(z j+1/2), and Φ−
j+1/2

=p j(z j+1/2) are the corresponding right and
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left values of the piecewise polynomial interpolant {p j(z)} at the cell interface

z=z j+1/2, due to equation (9.33). An exact evolution of the reconstruction is

followed by an intermediate piecewise polynomial reconstructions and finally

projected back onto the original cells, providing the cell average at the next time

step Φn+1
j . Further details can be found in [125]. The semi-discrete central-

upwind scheme presented in [125] can be written as:

dΦ j(t)
dt

=− 1

Δz

[
Fj+1/2 −Fj−1/2

]
= L j(Φ). (9.65)

where the numerical flux is given by the HLLE monotone flux method (9.10):

Fj+1/2 =
c+j+1/2

f (Φ−
j+1/2

)− c−j+1/2
f (Φ+

j+1/2
)

c+j+1/2
− c−j+1/2

+
c+j+1/2

c−j+1/2

c+j+1/2
− c−j+1/2

[
Φ+

j+1/2
−Φ−

j+1/2

]
. (9.66)

Notice that the accuracy of this scheme is being determined by the accuracy
of the reconstruction and the ODE solver (time integration). In this section the
numerical solutions of (9.65) have advanced in time by means of the third-order
TVD Runge-Kutta method, described by [126] (see next section). When the grid
is uniform, the computations are simplified by using (9.38), (9.40), (9.41) and
(9.42) for the polynomial coefficients. Then, the calculation of Φ̃+

i+1/2
,Φ̃−

i+1/2

produces the following simplified result:

Φ̃+
i+1/2

=

(
− 7

120
w4 − 1

6
w1

)
Φ̄i−2 +

(
1

3
w2 +

5

6
w1 +

21

40
w4

)
Φ̄i−1

+

(
5

6
w2 +

1

3
w1 +

11

6
w3 +

73

120
w4

)
Φ̄i +

(
−1

6
w2 − 7

6
w3 − 7

120
w4

)
Φ̄i+1

+

(
1

3
w3 − 1

60
w4

)
Φ̄i+2

(9.67)

Φ̃−
i+1/2

=

(
− 1

60
w4 +

1

3
w1

)
Φ̄i−2 +

(
−1

6
w2 − 7

6
w1 − 7

120
w4

)
Φ̄i−1

+

(
5

6
w2 +

1

3
w3 +

11

6
w1 +

73

120
w4

)
Φ̄i +

(
1

3
w2 − 5

6
w3 +

21

40
w4

)
Φ̄i+1

+

(
−1

6
w3 − 7

120
w4

)
Φ̄i+2

The weights w j, j∈ {1,2,3,4} are given by (9.61).
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9.9. Source Term

Let us consider the general SCL given by (9.1) and restrict our analysis to the

source term of the form: s(Φ, t) as a continuous source vector function = zero.

By integrating system (9.1) over a finite space-time control volume Ii,Δt, one

obtains a finite volume formulation for the system of balance laws, which usually

takes the form

Φ(z, t)n+1
j =Φ(z, t)n

j −
Δt
Δz

(
f j+1/2 − f j−1/2

)
+Δt ·s(z, t) j, t ≥ 0, z∈Ω, (9.68)

The integration of (9.1) in space and time gives rise to a temporal integral of

the flux across the element boundaries f j+1/2 and to a space-time integral s j of

the source term inside I j. In practice, one must replace the integrals of the flux

and the source in (9.68) by some suitable approximations, meaning we need to

choose a concrete numerical scheme. For SCL, only a numerical flux must be

chosen. In this case, the classical properties required are consistency, stability

and accuracy. For SBL also a numerical source must be chosen. Here, not only

the three classical properties are required, but some additional properties are

needed for the global numerical scheme: it should be well-balanced, i.e., able to

preserve steady states numerically. It should also be robust on coarse grids, if the

source term is stiff. A coarse grid is a grid whose size does not take into account

the source term, i.e., the characteristic space and time steps are based on the

associated homogeneous SCL only. Finally, the scheme should be asymptotically

consistent or in other words asymptotic-preserving, if the source term is stiff.

This means according to [127] that the scheme should give the correct asymptotic

behaviour even if the source term is insufficiently resolved. We now restrict our

analysis to source terms of the form s(Φ,z). Compared with SCL, the presence

of a source term generally has consequences on the behaviour of SBL solutions.

First of all, SBL may have non-trivial steady solutions, with Φ̃(z) given in the

following system:

∂ f (Φ̃(z, t))
∂ z

= s(Φ̃(z, t)), t ≥ 0, z ∈ Ω. (9.69)

Additionally, SBL may tend towards reduced systems as we will explain now. At

least two processes are involved in SBL: a conservative process associated to the

homogeneous part of (9.1) (with s=0) a characteristic speed u f , and a dissipat-

ive/productive process, associated to the source term s, with a characteristic speed
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ug. If the time derivative is scaled according to the speed u f , the dimensionless

form of a SBL system reads as:

∂Φ(z, t)
∂ t

+
∂ f (Φ(z, t))

∂ z
=

1

ε
s(Φ(z, t)), t ≥ 0, z ∈ Ω, (9.70)

where all the variables in (9.70) are dimensionless and where ε ≡ u f
ug

is the

ratio between characteristic speeds. A very small ratio ε << 1 means that the

dissipative/productive process is too fast, compared to a conservative process,

needing to be fully observed. Such a source term is called a stiff source term. In

mathematics, a stiff equation is a differential equation where certain numerical

methods for solving the equation are numerically unstable, unless the step size

is extremely small. It has proven difficult to formulate a precise definition of

stiffness; however, the main idea is to include some terms of rapid variation into

the equation, leading to rapid variation in the solution. The presence of a stiff

source term may lead the original system towards an asymptotic reduced system,

see [128], which might turn out to have a different mathematical nature than the

original one.

9.10. Convection-Diffusion equations

By introducing a diffusion part we change the nature of the mathematical problem

to a time-parabolic problem. The reason for including this part is, for example, in

a homogeneous thermo-hydraulic evaporator model, we get a sharp change in fluid

density, in the moment a fluid enters the two-phase region; this discontinuity in the

derivative of the density initiates violent pressure waves in the solution, which can

be attenuated by local artificial diffusion in the region, where this phenomenon

occurs. Let us again consider the general SBL, given by, e.g., equation (9.1),

where the source term s is replaced by a dissipative flux:

∂Φ(z, t)
∂ t

+
∂ f (Φ(z, t))

∂ z
=

∂
∂ z

(
g(Φ(z, t),

∂Φ
∂ z

)

)
, t ≥ 0, z ∈ Ω. (9.71)

The gradient of g is formulated on the compressed form: g(Φ, ∂Φ
∂ z )z as a nonlinear

function = zero. This term can degenerate (9.71) to a strongly parabolic equation,

admitting non-smooth solutions. To solve it numerically is a highly challenging

problem. Our fifth-order semi-discrete scheme, (9.65)-(9.66), can be applied

to (9.1) in a straightforward manner, since we can treat the hyperbolic and
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the parabolic part simultaneously. This results in the following conservative

scheme:

dΦ j(t)
dt

=− 1

Δz

[
Fj+1/2 −Fj−1/2

]
+G j(Φ, t). (9.72)

Here Fj+1/2 is our numerical convection flux, given by equation (9.66) and G j is

a high-order approximation to the diffusion flux term. Similar to the case of the

second-order semi-discrete scheme of [129], operator splitting is not necessary

for the diffusion term. By using a fourth-order central differencing scheme,

outlined by [130], we can apply our fifth-order semi-discrete scheme, given by

(9.65) and (9.66), to the parabolic equation (9.1), where g is a function of φ
and its derivative in space. The diffusion term can be expressed by a high-order

approximation:

G j(t) =
1

12Δz

[−G(Φ j+2,(Φz) j+2)+8 ·G(Φ j+1,(Φz) j+1)
]

− 1

12Δz

[
8 ·G(Φ j−1,(Φz) j−1)+G(Φ j−2,(Φz) j−2)

]
(9.73)

where

(Φz) j+2 =
1

12Δz

[
25Φ j+2 −48Φ j+1 +36Φ j −16Φ j−1 +3Φ j−2

]
(9.74)

(Φz) j+1 =
1

12Δz

[
3Φ j+2 +10Φ j+1 −18Φ j +6Φ j−1 −Φ j−2

]
(9.75)

(Φz) j−1 =
1

12Δz

[
Φ j+2 −6Φ j+1 +18Φ j −10Φ j−1 −3Φ j−2

]
and (9.76)

(Φz) j−2 =
1

12Δz

[−3Φ j+2 +16Φ j+1 −36Φ j +48Φ j−1 −25Φ j−2

]
(9.77)

and Φ j are the point-values of the reconstructed polynomials (9.34).

9.11. Boundary conditions for non-staggered grid

This black box solver is as a starting point hyperbolic, but we apply quite gener-

ally upstream and downstream boundary conditions in this setup, depending on

the nature of the system of equations. If we select a globally dominant diffusion

part (parabolic system), we need two boundary conditions; while in hyperbolic
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systems, we typically only need one boundary condition for a scalar equation.

Now consider a hyperbolic system, like (9.1) on a bounded interval a≤x≤b.

This is called the Initial Boundary Value Problem, or IBVP for short, since it is

time-dependent, for which we need both initial data and boundary data. For a

system of m equations we need a total of m boundary conditions. Typically some

conditions must be prescribed at the left boundary (z=A) and sometimes at the

right boundary (z=B). The number of conditions, required at the two boundaries,

depends on the number of eigenvalues of the Jacobian J that are positive and

negative, respectively, and whether the information enters or exits the boundaries.

So far, we have only described methods for updating cell averages Φ̄ j assuming

that we have neighbouring cell values Φ̄n
j−1 and Φ̄n

j+1 and perhaps values further

away as needed in order to compute the cell fluxes Fn
j+1/2

and Fn
j−1/2

. In practice

we must always compute on some finite set of grid cells, covering a bounded

domain. In the first and last cells we will not have the required neighbouring

information. Instead we must have some set of physical boundary conditions

that must be used in updating these cell values. By extending the computational

domain to include a few additional cells on either end of the solution domain,

called ghost cells, the values of the ghost cells are somehow set at the beginning

of each time step, depending on the boundary condition. Figure (9.8) illustrates

a grid with three ghost cells at each boundary. These values provide the neigh-

bouring cell values needed in updating the cells near the physical domain. The

updating formula is then exactly the same in all cells, and there is no need to

develop a specific flux limiter method in order to work with the boundary instead

of the initial data. Suppose the mathematical problem is on the physical domain

Figure 9.8.: The computational grid [a,b] is extended to a set of ghost points for specify-

ing boundary conditions.

[a,b], which is sub-divided into cells I1,I2,...,Inz with z1/2=a and znz+1/2=b, so

that Δz= (b-a)/nz. If we use a method where Fn
j−1/2

depends only on Φn
j−1 and

Φn
j , then we need only one ghost point on either end. The ghost cell I0=[a-Δz,a]

allows us to calculate the flux Φn
1/2

at the left boundary A, while the ghost cell
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Inz+1=[b,b+Δz] is used to calculate the flux Φn
nz+1/2

at the right boundary B. With

a flux limiter method or a fifth-order WENO approach of the type described

above, we will generally need two ghost cells at each boundary, since a jump

in Φn
0-Φn

−1 will be needed in limiting the flux correction in Fn
1/2

. For a method

with an even higher-order of accuracy, additional ghost points would be needed.

Consider again the WENO scheme, where the maximal fifth-order polynomial

reconstruction requires a five-point stencil S5, involving the nodes of I j−2, I j−1,

I j, I j+1 and I j+2, for each computational cell in the space of j=1 to nz. In the

following we focus on the non-staggered grid for developing a method to predict

the values of Φ on the boundaries, whether we are talking about Dirichlet or

Neumann boundaries. If we look at the very first computational cell along the

Figure 9.9.: Boundary conditions at the West boundary (up-stream). The ghost points

are marked with a red dot.

West boundary, we need to be able to predict the values of Φ, for the five-point

stencil, beginning with the I j−2,I j−1 and I j node, which is outside the solution

domain (for j=0) (three ghost points); see figure (9.6). The idea behind the ghost

point approach is to express the value of the solution at control points outside

the computational domain in terms of the values inside the domain plus the

specified boundary condition. This allows the boundary condition to be imposed

by a simple modification of the internal coefficients, using the coefficients of the

fictitious external point. This can result in a weak imposition of the boundary

condition, where the boundary flux might not exactly agree with the boundary

condition. The three ghost points are here successively calculated by a third-order

Taylor expansion around the boundary A, involving I−2, I−1 and I0, and can

be used to predict the connection between the I j cell, marked by red in figure

(9.6), and the boundary condition, given by ΦA, where Δz is the size of the CVs

(uniform grid spacing). A straightforward procedure for deriving general finite

difference approximations is obtained by means of the following Taylor series

expansion (polynomial interpolation) procedure:

1. Choose a point z0 and a set of r points on the grid in the vicinity of z0 which
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will be used to approximate the function and it’s derivatives f (m)
0 , m = 0,

1,..., r-1. We call this collection of grid points the finite difference stencil.

The point z0 may be one of the stencil points, but this is not required.

2. Write the r-term Taylor series expansion of f(z), about the point z=z0, and

evaluate the result at each point on the stencil to get a system of r equations.

3. Invert this system of equations to find the coefficients of the corresponding

r-point finite difference schemes for the function f0 ≡ f (0)0 itself, plus its

first r-1 derivatives f (m)
o , m = 1, 2,..., r-1.

Recall now that the Taylor series expansion of the function f(z) about the point

z=z0 is given by

f (z) =
∞

∑
m=0

(z− z0)
m

m!
f (m)
0 . (9.78)

By establishing a Taylor expansion around the boundary A (or B), we can express

a relationship between the ghost points outside the solution domain and the grid

points inside the domain:

Φ0 = ΦA − 1

2
ΔzΦ(1)

A +
1

8
Δz2Φ(2)

A + ...

Φ−1 = ΦA − 3

2
ΔzΦ(1)

A +
9

8
Δz2Φ(2)

A + ... (9.79)

Φ−2 = ΦA − 5

2
ΔzΦ(1)

A +
25

8
Δz2Φ(2)

A + ...

Hence the boundaries are:

Dirichlet BC at A:

Φ−2 = 32ΦA −50Φ1 +25Φ2 −6Φ3

Φ−1 =
64

5
ΦA −18Φ1 +8Φ2 − 9

5
Φ3 (9.80)

Φ0 =
16

5
ΦA −3Φ1 +Φ2 − 1

5
Φ3
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Neumann at A:

Φ−2 =
1

23

[
−240Δz

∂Φ
∂ z

‖A −250Φ1 +375Φ2 −102Φ3

]
Φ−1 =

1

23

[
96Δz

∂Φ
∂ z

‖A −54Φ1 +104Φ2 −27Φ3

]
(9.81)

Φ0 =− 1

23

[
24Δz

∂Φ
∂ z

‖A −21Φ1 −3Φ2 +Φ3

]
Similar we find for the downstream boundary B:

Dirichlet BD at B:

Φnz+3 = 32ΦB −50Φnz +25Φnz−1 −6Φnz−2

Φnz+2 =
64

5
ΦB −18Φnz +8Φnz−1 − 9

5
Φnz−2 (9.82)

Φnz+1 =
16

5
ΦB −3Φnz +Φnz−1 − 1

5
Φnz−2

Neumann BC at B:

Φnz+3 =
1

23

[
−240Δz

∂Φ
∂ z

‖B −250Φnz +375Φnz−1 −102Φnz−2

]
Φnz+2 =

1

23

[
96Δz

∂Φ
∂ z

‖B −54Φnz +104Φnz−1 −27Φnz−2

]
(9.83)

Φnz+1 =− 1

23

[
24Δz

∂Φ
∂ z

‖B −21Φnz −3Φnz−1 +Φnz−2

]

9.12. Time discretization

Strong Stability Preserving (SSP) time discretization methods were developed

to address the need for nonlinear stability properties in the time discretization,

as well as the spatial discretization, of hyperbolic PDEs. The research in the

field of SSP methods centres around the search for high order SSP methods

where the CFL time step restriction leads to a large as possible time step. These

methods include the case where there are more stages than required for the order,

in order to maximize the CFL coefficient. This section presents the numerical

setup which constitutes the framework for a dynamic model of an evaporator,

which is a cumbersome calculation process, as the equation of state (EOS) is

based on an industry standard (IAPWS-97) for the sake of precise expression.

With a formulation given in a conservative form (flux-based), we must iterate the

pressure as a function of density and enthalpy, which is very time-consuming.
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In principle we should use a time integrator of the same order as the WENO

reconstruction, such as an SSP RK(5,5) solver, see [113], but experience shows

that these higher-order integrators are much more time-consuming than e.g., a

third-order TVD time integrator used in both [116] and [131]. The semi-discrete

(9.65) is a system of time-dependent ODEs, which can be solved by any stable

ODE solver, retaining the spatial accuracy of the scheme. Here we use the

TVD Runge-Kutta method presented by [126] which can be categorized as an

(SSP-RK(3,3)):
dΦ
dt

= L(Φ), (9.84)

where L(Φ) is an approximation to the derivative -
∂ f (Φ)

∂ z + s( ∂Φ
∂ z ,Φ,z, t) in the

differential equation given by (9.1). The optimal third-order TVD Runge-Kutta

method (SSP-RK(3,3)) is given by

Φ(1)
j = Φn

j +ΔtL(Φn
j),

Φ(2)
j =

3

4
Φn

j +
1

4
Φ(1)

j +
1

4
ΔtL(Φ(1)

j ), (9.85)

Φn+1
j =

1

3
Φn

j +
2

3
Φ(2)

j +
2

3
ΔtL(Φ(2)

j ), for j ∈ [1,nz].

As an alternative, we could use a (SSP-RK(5,4)), which is a fourth-order method
consisting of five stages and is given by

Φ(1)
j = Φn

j +0.391752226571890ΔtL(Φn
j),

Φ(2)
j = 0.444370493651235Φn

j +0.555629506348765Φ(1)
j

+0.368410593050371ΔtL(Φ(1)
j ),

Φ(3)
j = 0.620101851488403Φn

j +0.379898148511597Φ(2)
j

+0.251891774271694ΔtL(Φ(2)
j ), (9.86)

Φ(4)
j = 0.178079954393132Φn

j +0.821920045606868Φ(3)
j

+0.544974750228521ΔtL(Φ(3)
j ),

Φn+1
j = 0.517231671970585Φ(2)

j +0.096059710526147Φ(3)
j

+0.063692468666290ΔtL(Φ(3)
j )+0.386708617503269Φ(4)

j

+0.226007483236906ΔtL(Φ(4)
j ), for j ∈ [1,nz].

In [126], one can see that even a very nice second-order TVD spatial discretization

may give an oscillatory result, depending on whether the time discretization is by
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a non-TVD, but, linearly stable, Runge-Kutta method. Thus it would always be

safer to use TVD Runge-Kutta methods for hyperbolic problems. The stability

condition for the above schemes is

CFL = max

(
un

j
Δt
Δz

)
≤ 1, (9.87)

where CFL stands for the Courant-Friedrichs-Lewy condition and un
j is the

maximum propagation speed in cell I j at time level n.

9.13. Implementation

The implementation of the WENO approach is illustrated in figure (9.10), where

the time integration loop is shown. Step 1 is the model, with the model specific-

ations and allocation of array structures, and Step 2 is initialization of the time

integration loop. Step 3 is evaluation of the time step due to the CFL number

specified. Step 4 is coverage of the entire Runge Kutta time integration, which

is divided into three parts, due to the third-order TVD integrator. The upstream

and downstream boundaries are updated in the Boundary module. They can be

constant or varying in time. In general there are three possibilities of specifying

boundary conditions: Dirichlet, Neumann or non-condition. In the method of

Indicators we calculate the four indicators ISi, i∈[1..4]. The Reconstruction
module deals with the weight functions as well as calculates the corresponding

reconstructed polynomials. In the module named Fluxes, the flux vector is estim-

ated including both contributions from the source/sink term and diffusion term.

In Step 5 the calculation info is estimated and stored in files. The time loop runs

until the time t exceeds the end of the simulation time tend .
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9. Solving hyperbolic transport equation

Figure 9.10.: Flow diagram for the WENO time integration loop based on a SSP-

RK(3,3).

9.14. Numerical validation of hyperbolic solvers

In this section we compare numerical results of both a scalar and a system

of hyperbolic equations and compare the results with analytical results, from

the literature as well as other published results, in order to test whether the

method is implemented correctly. The scalar models will focus on solving the

inviscid Burger equation, which is a standard test example in the literature for
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solving hyperbolic equations. Finally the well-known Sod problem is solved by

a system of Euler equations and is evaluated according to numerical results in

literature.

9.14.1. Consistency

A consistency test is made by solving (9.88) numerically and compare the solu-

tion with an analytical solution given by (9.89) for varying grid spacing.

∂Φ
∂ t

+
∂ f (Φ)

∂ z
=

∂
∂ z

(
Γ

∂Φ
∂ z

)
, t ≥ 0 ∧ z ∈ Ω (9.88)

where Ω ∈ [0, 1]. The governing equation (9.88) is forced by an Initial Boundary
Value Problem given by two Dirichlet boundary conditions: ΦA = 1 for z=0 and

ΦB = 0 for z=1 and an initial field of Φ(z,t=0)=0. The number of computational

cells varies from:nz = 10 to 320. The convective velocity is constant u=1.0 [m/s]

(f(Φ) = u ·Φ); the length lz=1 [m] and the density ρ = 1 [kg/m3] are constant.

The diffusion coefficient is Γ=0.2 [kg/m · s] in g(Φ) = ∂
∂ z

(
Γ · ∂Φ

∂ z

)
.

The steady state simulation results are compared with a corresponding analytical

solution, given by:

Φ−ΦA

ΦB −ΦA
=

exp(ρ ·u · x/Γ)−1

exp(ρ ·u · lz/Γ)−1
, t ≥ 0 ∧ z ∈ Ω. (9.89)

The numerical solution to (9.88) is illustrated in figure (9.11), where different

solution profiles are shown over time, and the steady state solution is the basis

of the consistency test by recalculation of the numerical model for varying

grid spacing. The results are shown in figure (9.12) and are compared with

simpler numerical schemes such as Van Leer and a Central Difference scheme.

Numerical tests show, with no surprise, varying accuracy, depending on the

numerical solution strategy used. The classical Van Leer TVD scheme and

a Central Difference scheme (CD) provide a familiar second and first-order

accuracy, respectively, while the central WENO scheme, with a reduced fourth-

order diffusion term, gives a close to fourth-order accuracy (WENO4) for the

steady state solution. In [116] and [123] the central WENO scheme without a

diffusion term has a fifth-order accuracy.
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9. Solving hyperbolic transport equation

Figure 9.11.: Numerical and analytical solutions to (9.88).

Figure 9.12.: Consistency.

9.14.2. Burgers equation

In this example we simulate the pre- and post-shock solution to the inviscid

Burgers equation given by
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∂Φ
∂ t

+
∂
∂ z

(
1

2
Φ2

)
= 0, t ≥ 0 ∧ z ∈ Ω (9.90)

and the corresponding initial condition is given by Φ(x,0)=sin(πx/lz). Ω is

partitioned in nz non-overlapping cells: Ω= ∪nz
i=1Ii ∈ [0, lz], where lz is a physical

length scale in the spatial direction. The simulation results are based on the

fifth-order central WENO formulation, and the outcome is illustrated in (9.13)

and is similar to what is observed in [118] and [129].

Figure 9.13.: Burgers equation with N=200 and lz=1.

The results indicate that the solution is perfectly symmetric and a planar disturb-

ance propagates outward at the characteristic speed for the artificial medium, as

expected. We can see a shock formation centred at z=0.5.

9.14.3. Euler equation

We extend the fifth-order WENO scheme to obtain the solution of Euler’s equa-

tions of gas dynamics:

∂Φ
∂ t

+
∂ f (Φ)

∂ z
= 0, t ≥ 0 ∧ z ∈ Ω (9.91)
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where

Φ =

⎛⎝ ρ
ρ ·u

E

⎞⎠
and the flux vector is given as:

F(Φ) =

⎛⎝ ρ ·u
ρ ·u2 + p
u · (E + p)

⎞⎠
Here ρ , u, p and E are the fluid density, velocity, pressure and total energy of

the conserved fluid, respectively. The ideal gas law (polytrophic gas) is used

as the equation of state, to derive the speed of sound c, given as: c=
√

γ p
ρ . The

ration of the specific heats is: γ = cp
cv
= 1.4 and the pressure p=(γ−1)(E− 1

2 ρu2).

The linearized Euler equations are obtained by linearization of the Euler equations

in non-conservation form, as in (9.5), with flux Jacobians:

∂M
∂ t

+J · ∂M
∂ z

= 0, t ≥ 0 ∧ z ∈ Ω. (9.92)

An eigenvalue analysis, as given in section (8.4.8), leads to the following ei-

genvectors: r1 = [1,u− c,H − uc]T , r2 = [1,u, 1
2 u2]T , r3 = [1,u+ c,H + uc]T

corresponding to the eigenvalues γ1 = u− c, γ2 = u and γ3 = u+ c. We solve the

Sod problem up to t=0.01 [s] for a spatial length of lz=20 [m], with the following

initial conditions:

Φ(x,0) =

{
(1,0,2.5 ·105)T 0 ≤ x < lz

2

(0.125,0,0.25 ·105)T lz
2 ≤ x ≤ lz.

(9.93)

The simulation results are based on CFL=0.90, and the density, pressure and velo-

city distributions are illustrated in (9.14), (9.15) and (9.16), respectively.
The figure (9.14) represents five regions (R1, R2, R3, R4 and R5) in the spatial

space of z ∈ [0,1], which have different densities. Region R1 ∈ [0,0.3[, R2 ∈
[0.3,0.5[, R3 ∈ [0.5,0.63[, R4 ∈ [0.63,0.78[ and R5 ∈ [0.78,1]. Two regions

R1 and R5 are in constant state equaling the initial state, and both fluids are

initially in rest. R2 represents a rarefaction wave moving to the left. Although

the density and pressure are continuous in this region, some of the derivatives

of the fluid quantities may not be continuous. The front in-between region R3

and R4 represents the so-called contact discontinuity, where the pressure and
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Figure 9.14.: Sod problem with N=500 - Density [kg/m3] distribution at t=0.01 [s].

Figure 9.15.: Sod problem with N=500 - Pressure [Pa] distribution at t=0.01 [s].

the specific energy are not a continuous function. The front in-between regions

R4 and R5 represents the location of the shock wave moving to the right with
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9. Solving hyperbolic transport equation

Figure 9.16.: Sod problem with N=500 - Velocity [m/s] distribution at t=0.01 [s].

the sound of speed. Assuming the same gas in the two chambers, the ration

of the specific heats are identical: γ = γ1 = γ5; hence, the two local speeds of

sound can be determined and inserted in formula (9.94), taken from [132], page

225, the shock strength to p4/p5 = 3.031, which fits with the results in figure

(9.15).

p1

p5
=

p4

p5

[
1− (γ −1)(a5/a1)(p4/p5 −1)√

2γ
√

2γ +(γ +1)(p4/p5)

]−2γ
γ−1

(9.94)

Across a shock all of the quantities (ρ , m, e and p) will in general be dis-

continuous. The simulation results show oscillation free properties. The corners

at the endpoints of the rarefaction are almost perfectly sharp, and the constant

states of R1 and R5 are well defined matching the initial state. In general the

distribution of the density, pressure and velocity fit very well with similar cases

in the literature; see [129]. The timing results are improved with up to 20% by

use of the modified weight functions given by [131] compared to the traditional

squared weight factors from [116].
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9.15. Conclusions

We have developed a robust numerical tool that is highly flexible in terms of

configuration, so that the application can handle source / sink terms, diffusion

terms and initial fields as line data. In addition two types of boundary conditions

can be specified, one Neumann and Dirichlet condition on both upstream and

downstream boundaries. The convective term of the solver has the WENO of

fifth-order accuracy, which is shown by several authors; see e.g. [123] and [116].

The diffusion term is only dissolved to fourth-order accuracy, and with respect to

the time integrator, we here have several options; but for our purposes, we find the

third-order TVD Runge Kutta integrator to be appropriate. The Central WENO

schemes are designed for problems with piecewise smooth solutions containing

discontinuities. The Central WENO scheme has been quite successful in the

above applications, especially for solving the Burgers equation containing both

shocks and complicated smooth solution structures. The conclusion is that both

the scalar and the vector-based versions of the solver are non-oscillatory in the

sense of satisfying the total-variation diminishing property in the one-dimensional

space.
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10. Dynamic flow stability

In this chapter the dynamic analysis will be based on a method for solving the

thermo-hydraulic transport equations based on a shock capturing scheme, taking

into consideration density-waves as well as pressure-drop oscillations, not only

during start-up of power plant boilers, but also during operational situations

involving abrupt events, such as high-pressure preheater shut-down or a different

firing setup, or various heat flux profiles in the furnace.

An in depth review of historical approaches to both static and dynamic flow

stability in two-phase systems is described by [31]. Some pioneering work has

been carried out in two-phase flow dynamics using the tools of non-linear dy-

namical systems. Archard et al. [133] performed Hopf bifurcation analysis on

non-linear density-wave oscillations in boiling channels, which is a local bifurca-

tion analysis of a dynamical system, where a fixed point loses stability, as a pair

of complex conjugate eigenvalues of a linearisation around the fixed point crosses

the imaginary axis of the complex plane. Rizwanuddin and Doming ([134], [135])

conduct non-linear numerical simulations of density-wave oscillations. Ozawa

et al. [136] have used the so-called Lyapunov stability theory to determine the

stability of a parallel-channel system against pressure-drop type oscillations. The

method is based on the assumptions regarding the modifications necessary in non-

linear systems to the linear theory of stability, based on linearizing near a point of

equilibrium. Zhang et al. [137] developed an explicit criterion for density-wave

instability by using the same Lyapunov theory. Padki et al. [138] analysed the

pressure-drop type and Ledinegg instabilities by the Hopf bifurcation method.

10.1. Introduction

In general, modelling two-phase phenomena starts with a formulation of the con-

servation equations. The homogeneous thermo-hydraulic model (9.1) is solved

by the set of four conservation equations, written for the conservation of mass,

momentum and energy for the fluid, given by equation (8.99), and one energy

conservation equation for the wall (8.106). Boundary and initial conditions are

then defined for a particular problem under consideration. At each step of the

formulation and solution, various physical assumptions and approximations need

be made, which have to be justified by the measurement campaigns described in

section (5.3).
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10. Dynamic flow stability

A two-phase flow is said to be subject to a dynamic instability, when there

is sufficient interaction and delayed feedback between the inertia of flow and

compressibility of the two-phase mixture. The dynamic instabilities can be

characterized as in table (10.1). We will mainly focus on density-wave and

pressure-drop oscillations and force the thermo-hydraulic model with boundary

conditions that will ful-fill this setup. Thermal oscillations will affect the life

of the evaporator tubes. In this section we set up and solve a homogeneous

Type Mechanism Characteristics

Acoustic oscillations
Resonance of pressure

waves

High frequencies

(10-100 Hz) related to

time required for

pressure wave

propagation in System

Density-wave

oscillations

Delay and feedback

effects in relationship

between flow rate,

density, and

pressure-drop

Frequencies related to

transit time as a

continuity wave

Pressure-drop

oscillations

Dynamic interaction

between channel and

compressible volume

Very low frequency

periodic process

Thermal oscillations

Interaction of variable

heat transfer coefficient

with flow dynamics

High magnitude

temperature oscillations

in the solid due to

transitions between

different boiling

regimes

Boiling water reactor

instability

Interaction of void

reactivity coupling with

flow dynamics and heat

transfer

Strong only for small

fuel time constant and

under low pressure

Parallel channel

instability

Interaction among

parallel channels

Various modes of flow

redistribution or U-tube

manometer oscillations

Table 10.1.: Classification of boiling two-phase dynamic flow stabilities [31].

thermal-hydraulic model for an evaporator tube, given by Ω ∈ [0, lz], where lz is

the tube length. The flow model is calibrated against measured data from the full-
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scale (400 [MWel]) evaporator at Skærbækværket Unit 3 (SKV3) in Fredericia

(Denmark), given by sample 4 in table (3.1).

10.2. Model setup

The developed homogeneous model, described in Chapter (8) is solved using the

numerical tools described in Chapter (9), i.e., a fifth-order WENO scheme, with

corresponding diffusion and source term. The method is outlined in section (9.5)

and consists of 400 computational points with a CFL number of 0.8. A third-order

TVD time integrator is used, for reasons of ensuring a high numerical stability

as well as minimizing the time-consumption in the calculations. The numerical

scheme is tested for consistency and stability with respect to both a scalar model

and a system of hyperbolic equations and both have been successfully compared

to analytical results, from the literature as well as other published results. This

work is outlined in section 9.5 and published in [15]. Three Dirichlet boundary

conditions are applied for the hydraulic case and two Neumann boundaries are

applied for the thermal pipe wall model, given as zero gradients in the wall

temperature at each pipe end (no heat loss).

The intention is to model an evaporator, that can induce pressure and dens-

ity oscillations initiated by the compressibility, arising as a result of a phase

shift in the lower part of the evaporator. Therefore, we apply a constant down-

stream Dirichlet pressure boundary condition that corresponds to a stiff system

downstream the evaporator tube, meaning without any pressure absorption effects

from compressibility in the downstream turbine system. A good analogy for this

is a geyser, with a constant surface pressure and an intense heat absorption in

the bottom region, whereby an oscillating pressure wave is initiated due to the

compressibility and density reduction of the fluid, caused by intense heat from

the underground. Additionally we force the model with both a constant enthalpy

and mass flux located on the upstream boundary, supplied by a heat flux profile

along the entire heat pipe.

The model is gently started (soft start) in two steps: at t=0 [s] the pure hydraulic

model is gently started over 4 seconds, without heat flux. After ten seconds

of simulation, the heat flux is built-up during four seconds to 100 [kW/m2], in

accordance with the operating observations obtained at SKV3. This is done to

avoid heavy shock waves moving forward and back in the entire solution domain.

The computational results are stored as line series for an equidistant time step

and as time series at two stations, located at zA= lz
8 and zB= 7lz

8 , named stations A

and B, respectively, where lz is the total tube length.
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The dynamic start-up process for a constant linear heat flux profile can be seen in

figures (10.1) and (10.2),

Figure 10.1.: Soft start response of SKV3 evaporator model @ station A.

where the density is given in [kg/m3], pressure in [bar], temperature in [oC],
enthalpy in [kJ/kg] and mixture velocity in [m/s]. Note that the temperature

curves for the fluid and the pipe wall both refer to the same temperature scale

corresponding to the red fluid temperature scale on the right-hand side of the

graph. This fact is applied in the whole chapter. If the soft start period is reduced

to only one second, heavy-pressure oscillations occur; see figure (10.3). The

soft start model is based on a third-order theory outlined in Appendix (G) and

in [139], which gives a C2 continuous sequence, which means zero gradients of

the first derivative at both ends of the soft start period. Now we can summarize

the system of balance laws (SBL) for the evaporator model into a compact vector

notation, given by (8.99) and (8.106):

∂Φ(z, t)
∂ t

+
∂ f(Φ(z, t))

∂ z
=gs(Φ(z, t))+gd

(
∂Φ
∂ z

,Φ(z, t)
)
, (10.1)

Φ ∈ Rm,m = 4, t ≥ 0∧ z ∈ Ω
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Figure 10.2.: Soft start response of SKV3 evaporator model @ station B.

where the dependent variable Φ and the flux vector f are given as

Φ =

⎛⎜⎜⎝
ρ̄A
ṁ
ē

Tw

⎞⎟⎟⎠ , f(Φ) =

⎛⎜⎜⎜⎝
ṁ

ṁ2

ρ̄A + p̄A
(ē+ p̄A)ṁ

ρ̄A
0

⎞⎟⎟⎟⎠
and the source and diffusion vector are given as:

gs(Φ) =

⎛⎜⎜⎜⎝
0

p̄ ∂A
∂ z − ρ̄gAcosθ −√π

A fw
ṁ|ṁ|
ρ̄A

Swq̇e − ṁgcos(θ)
q̇r

ρw Cpw
Sw
A − q̇e

ρw Cpw

diπ
A

⎞⎟⎟⎟⎠ and gd(Φ) =

⎛⎜⎜⎜⎝
0

l2Sw
ρ̄A3

∂ ṁ2

∂ z2

0

α ∂ 2Tw
∂ z2

⎞⎟⎟⎟⎠
Here the fluid temperature Tf is a function of ρ̄ and h. The constitutive relations

due to the thermodynamic properties are based on IAPWS 97, and are interpolated

in a bilinear scheme, described in Chapter 7, for improving the computational

speed of the model; see [14]. Other constitutive relations for the pipe wall

properties are given by (8.107). The model data are listed below in table (10.2).

Note that the gravity is reduced according to the heat pipe inclination (sin(11.4o)).
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For isotropic materials, we have expressions of Cpw, kw and ρw as a function of

temperature in Kelvin from [95] and [96]. For isotropic materials, we use the

thermal diffusivity given by equation: α = kw
ρwCpw

in [m2/s], which in a sense

is a measure of thermal inertia and expresses how fast heat diffuses through a

piece of solid. For a typical panel wall, the thermal diffusivity is approximately

1.98 ·10−6 [m2/s] at 200◦C.

Figure 10.3.: Time series for short dynamic soft start start-up process @ station A.
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Table 10.2.: Geometrical and numerical specifications for SKV3 heat pipe.

Parameter Value Unit Parameter Value Unit

Gravity (g) - projected 1.9399 [m/s2] Spatial start position 0.000 [m]

Spatial end position (L) 193.499 [m] Inner diameter of pipe (di) 23.8 [mm]

Outer diameter of pipe (do) 38.0 [mm] Heat conductivity in wall (kw) 20.278 [w/mK]

Wall density (ρw) 7850.0 [kg/m3] Specific heat capacity of pipe wall (Cpw) 527.21 [J/kg/K]

Heat flux (q̇e) 100.0 [kW/m2] Wall roughness (λ ) 1.0E-6 [m]

Initial Enthalpy - left side 1187.6988 [kJ/kg] Initial Enthalpy - right side 1187.6988 [kJ/kg]

Initial Pressure - left side 92.3762 [Bar] Initial Pressure - right side 92.3762 [Bar]

Initial Velocity - left side 0.0 [m/s] Initial Velocity - right side 0.0 [m/s]

Pressure BC (Dirichlet - right side) 92.3762 [Bar] Enthalpy BC (Dirichlet - left side) 1187.6988 [kJ/kg]

Velocity BC (Dirichlet - left side) 1.1711 [m/s] Simulation time 400.0 [s]

Output frequency 0.1 [s] CFL number 0.80 [-]

Number of computational grids (Np) 400 [-] Slip Correction Factor 1.0 [-]

10.3. Model calibration

The hydraulic model is calibrated in relation to the static operating data, which

are available from SKV3; see table (3.2). As a starting point, we focus on a

model that works in part load, i.e., where we simulate the entire two-phase

process in the evaporator, including sub-cooling and superheating. We aimed

as a basis for the calibration simulation a heat flux value of approximately 83.8

[kW/m2], according to the average flux received by the evaporator in sample

4. The only calibration parameter we are dealing with, is the wall friction,

which is determined by a hydraulically smooth industrial boiler tube (The surface

roughness is negligible.) The tube length is estimated to be a total of 193.5

m. including various bends and junction boxes. We calculate the upstream

pressure in the steady state condition to approximately 97.5 [bar]±0.2 [bar],

which approximately corresponds to the measured upstream pressure in sample 4,

96.87 [bar], - a deviation of approximately 0.5 [bar] for hydraulic smooth pipes.

Note that the calculated pressure drop is very sensitive to the specified velocity

boundary condition. There appears, however, minor pressure oscillations on the

upstream boundary, initiated by a phase shift in the vicinity of the transition

area to the two-phase region. The artificial diffusion is estimated in section (8.6)

to 0.01 [m2/s] and is active for xe ∈ [-0.01,0.01]. Basically, the downstream

condition should also reflect the measured static outlet enthalpy of 2764.38

[kJ/kg] and a corresponding steady state mass flow, even before the requirement

of static energy balance is ful-filled. Here we are only slightly below the average

measured static values, corresponding to an enthalpy of 2701 [kJ/kg] and a mass

flux of 0.3807 [kg/s] at the very first computational cell versus 0.3816 [kg/s]

at the very last computational cell. Based on the above considerations, we can
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conclude that the model meet our observations in table (3.2) (sample 4), although

the model is not at completely steady state. We can see from figure (10.5) that,

Figure 10.4.: Line series of heat pipe calibration, t=200[s].

e.g., the pressure signal contains oscillations, and the corresponding frequency

components are difficult to identify. The signal can be analysed using FFT to find

the frequency components of a signal in the time domain. We use the Matlab FFT

package for analysing the power spectral density of the pressure signal. From

figure (10.5) we see the entire time series of the pressure located in station B.

In figure (10.6) is a close-up of the pressure time series measured from 150 [s]

to 155 [s] of simulation, wherein the offset is adjusted, as the integral of the

whole time series is zero. This period represents a typical pressure response and

therefore contains one more dominant frequency, thus it is possible to identify a

higher-order spectrum. A FFT spectral density analysis is carried out on a subset

of the time series in station B. The result is shown in figure (10.7). We can see that

the pressure fluctuations primarily consists of a class of waves with frequencies of

f
′ ≈0.25·n [Hz] and with decreasing intensity, where n is a positive integer. This

very low frequency periodic process according to table (10.1) can be classified as

pressure-drop oscillations due to the dynamic interaction between channel and

compressible specific volume in the fluid. The maximum wave-length is given

by the length of the tube, lz=193.5 [m] and the corresponding phase velocity

u f =λ · f
′ ·n =lz· 0.25·n = 48.4·n [m/s]. From figure (10.4) we can see that the

pressure waves are initiated only 10% upstream the tube which corresponds to a

standing wave with a phase velocity of 484·n [m/s]. It is interesting to see that the

phase velocity can be identified within the orders of magnitude of the estimated
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speed of sound in a two-phase flow (250 m/s to 868 m/s @ 95 bar), based on the

eigenvalue analysis of the two-layer fluid model in equation (8.41). The speed of

sound is illustrated in figure (8.11).

Figure 10.5.: Time series of heat tube calibration, station B.

Figure 10.6.: Time sequence used for the FFT analyses at station B.
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Figure 10.7.: FFT analysis based on time series in figure (10.6).

10.4. Heat Flux profiles

Here follow calculations for investigating how different heat flux profiles affect

the dynamics of an evaporator during a start-up period. CFD studies in Chapter

(4) show that the heat flux distribution has an approximately parabolic profile at

full load - and in part load, we expect an even larger parabolic distribution of heat

flux. Therefore, it is interesting to examine how the flux distribution in a boiler

effects the start-up process in a power plant evaporator. Operational experience

from SKV3 indicates major start-up problems, which is attempted to be reduced

by firing with the top burner floor. We will investigate this in the following, where

we examine the dynamic response from the evaporator by four different heat

flux profiles. We use a moderate flux distribution coefficient, corresponding to a

maximum redistribution of the heat flux of 10% (Δq = 0.1), meaning that the heat

flux profile along the tube is altered a maximum of 10 %.

10.4.1. Constant heat flux profile

A constant heat flux profile indicates a constant heat flux on the panel wall, which

results in a corresponding effective cooling of the pipe wall and can be used as a

reference calculation for the study of different flux profiles. This scenario is of

academic interest and reveals a more gentle impact of the evaporator. A constant

heat flux profile in the evaporator string is illustrated in figure (10.8).
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Figure 10.8.: Constant heat flux to boiler.

Figure 10.9.: Initial conditions and the solution of SKV3 evaporator model after 50, 75

and 100 seconds.
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Figure 10.10.: Constant heat flux to boiler, after 200 [s].

Figure 10.11.: Time series of constant heat flux on SKV3 evaporator model at location

A.

The numerical model is configured according to table (10.2), and the heat flux is

specified to 100 [kW/m2]. Figure (10.9) illustrates the output results for each 25

seconds of simulation, referring to the solution of both the homogeneous flow

equations as well as the wall tube model. A close to static solution is obtained

after approximately 400 seconds, and is depicted in figure (10.13), although a
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Figure 10.12.: Time series of constant heat flux of SKV3 evaporator model at location

B.

static solution is a truth with modifications. Small perturbations in pressure and

density are constantly induced, because the model is successively fed with the

pressure oscillations created from the transition zone of the sub-cooled to the

two-phase fluid, where the very large density gradients occur. These oscillations

are controlled by artificial diffusion due to the local turbulence model in the

area of transition from single to two-phase flow as well as a smoothing of the

EOS. The results show how the state of the fluid gradually moves from the inlet

condition, in the form of sub-cooled water, to the two-phase zone, in which the

boiling is starting, and finally reaches the super-heating zone, where the dry

steam is superheated to about 385 oC. The pressure drop is fixed downstream in

the form of a Dirichlet boundary condition, corresponding to measured pressure

levels from (SKV3). The pressure distribution along the evaporator reflects

different pressure loss models, the pressure gradient of single and two-phase

regions, respectively. The two-phase region makes use of the two-phase multiplier

outlined in (E.42), which multiplies the pressure gradient with up to 16 times

relative to the pressure gradient for saturated water. The inlet velocity is specified

as an upstream Dirichlet boundary condition, and is soft started by use of the

before-mentioned smooth function, having a soft start period of four seconds.

This ensures a smooth hydraulic flow condition of the cold evaporator. After

wards, the heating is built up smoothly, applied by the same smoothing technique,

so that undesirable thermal shock phenomena are avoided. The super-heated

steam leaves the downstream boundary at a steady state flow condition with a
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speed of approximately 24 [m/s]. Pressure oscillations occur as a result of large

upstream fluid compressibility in the flow boiling system; see ([43], [31]). These

pressure oscillations appear in the form of pressure fluctuations, arising from

the singularity we experience in the gradient field of the fluid density, when

saturation is approached and can be generated in the form of a standing wave

in front of the boiling zone of the fluid. This phenomenon is also present in

horizontal evaporators. The dryness line in figure (10.13) expresses the mass

based percentage of the steam flowing in the evaporator tube; not surprisingly,

this process is linearly varying and corresponds to a constant heat flux along

the tube. By reducing the number of computational cells to, e.g., 50 elements,

Figure 10.13.: Solutions of SKV3 evaporator model after (L) 210 [s] and (R) 400 [s].

without adjusting the artificial diffusion, one would observe a more intensive

standing wave at the entrance of the two-phase region, due to intensive heating

of the differential cell in the vicinity of the boiling zone, where we have an

intensive negative slope in the density as a function of the enthalpy; hence the

density change becomes so violent that a pressure wave is established to ensure

momentum balance.

10.4.2. Linear heat flux profile with bottom firing

Operating experience from the SKV3 says that there are inconveniences in the

evaporator during start-up when firing low, i.e., when the lower burner roofs are

in action during start-up. This enables us to model, by assuming a stylistic heat

flux profile, and implement a dynamic thermal hydraulic calculation based on

the homogeneous flow model. The profile is illustrated in figure (10.14), with

Δq = 0.1. Physically this can lead to massive slug formations (pressure and

density). We have eyewitness reports from operational staff at SKV3 about how

the high-pressure steam line from the evaporator during start-up has moved up to
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Figure 10.14.: Bottom firing in boiler - linear heat flux to boiler with Δ q=0.1.

Figure 10.15.: Bottom firing in SKV3 boiler, after 200 [s].

1/2 meter and in this context has destroyed the insulation around the HP-pipe line

and also damaged the associated thermocouples. It is violent forces that are at

play, when provoked slugs in the form of density waves or pressure surges act

in the steam pipes. Figure (10.15) shows a dryness profile, which differs from

the corresponding simulation with a constant heat flux profile. The difference

reflects that the bottom firing case has not yet reached a steady-state condition,

and thus is slower to settle into a stable plateau. This emphasizes that the two

time series, as illustrated in figures (10.16 and 10.17), after 110 [s] from the

start of simulation, show considerable density fluctuations in station A and both
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Figure 10.16.: Time series of bottom firing in SKV3 evaporator model at station A.

Figure 10.17.: Time series of bottom firing in SKV3 evaporator model at station B.

a strong temperature and a velocity fluctuation in station B. The temperature

fluctuations in station B are damped towards the end of the simulation and

become stable around 330 [oC]. Note that both the tube wall temperature and

the fluid temperature refer to the same temperature scale on the right axis of

figures (10.16 and 10.17). Especially temperature fluctuations may be critical

with respect to the fatigue of pipe material in general, especially when we draw
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attention to the material structures on the inner surface of the tube, which are

extremely sensitive to temperature fluctuations, due to the short time constant

shown in table (4.2).This is compensated to some extent by the thermal diffusion,

which smooths the temperature distribution in the pipe wall, here illustrated as an

averaged wall temperature. This phenomenon may be an early-stage cracking,

particularly in the super-heaters, in which the steam temperature is considerably

higher.

10.4.3. Linear heat flux profile with top firing

Operating experience from the SKV3 in particular indicates a greater stability in

the evaporator, when the firing is intensified in the top of the boiler. We attempt

to model this using a linear heating profile, with the highest heat flux at the top of

the boiler. The profile is illustrated in figure (10.18) and the boiler specifications

are similar to the previous setup, except for the reverse heat flux slope with Δ
q=0.1. Figure (10.19) shows an instant picture of the thermodynamic properties

Figure 10.18.: Top firing in boiler with linear heat flux to boiler.

of the fluid in the pipe after 200 [s] of real time from the start of the boiler.

It is noteworthy that the steam quality is progressing nearly linearly through

the evaporator, but has not yet reached a steady state condition. The outlet

temperature of the steam is slightly higher than the scenario with low firing.

Similarly, we can see a significant difference in both the pressure and the velocity

profile compared to the situation with low combustion in the boiler room. The

inlet pressure is here approximately 1.5 bar lower, and the steam outlet velocity

is only 21 [m/s] compared to 23 [m/s] for the scenario with low firing. Also in

this scenario one can see violent fluid temperature fluctuations downstream at

station B.
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Figure 10.19.: Top firing in SKV3 boiler, after 200 [s].

Figure 10.20.: Time series of top firing in SKV3 evaporator model at station A.

10.4.4. Parabolic heat flux profile with (parabolic firing)

In accordance with the CFD studies carried out in Chapter (4), we can correlate

the flux distribution according to a parabolic profile, so that the flux intensity is

greatest around the centre point of the burner zone, which for SKV3 consists of

the four burner floors. It should be noted that the maximum value of the flux

intensity, is somewhat above the centre point of the burner system. A parabolic
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Figure 10.21.: Time series of top firing in SKV3 evaporator model at station B.

heat flux profile in an evaporator string is illustrated in figure (10.22) as a relative

flux distribution profile and can be idealised as a second-order symmetrical profile,

Figure 10.22.: Normal firing in boiler with weak parabolic heat flux to boiler.

given by

q∗(x) = a · (x+ x0)(x− x0)+b, b = 1−Δq. (10.2)

A simple requirement for the distribution function is that the integral of the

distribution function over the entire interval of definition must be of unity, so

that we do not add more energy than expected for the evaporator tube. We
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Figure 10.23.: Parabolic firing in SKV3 boiler, after 200 [s].

Figure 10.24.: Time series of parabolic firing in SKV3 evaporator model at station A.

can thus ensure that the distribution function has the desired functionality by

requiring: ∫ x0

−x0

q∗(x)dx = 2x0 ·1 (10.3)

=
∫ x0

−x0

(a · (x+ x0)(x− x0)+b)dx

=−4a
3

x3
0 +2bx0
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Figure 10.25.: Time series of parabolic firing in SKV3 evaporator model at station B.

Hence the coefficient can be estimated to

a =−Δq
x2

0

(10.4)

and for x0=1, the equation (10.2) can be formulated as

q∗(x) =
3Δq

2
· (1− x∗2)+1−Δq, x∗ ∈ [−1,+1] (10.5)

wherein x∗ is a dimensionless position in the evaporator. We can see that the

maximum flux occurs at x∗ = 0, corresponding to q∗ = 1 + Δq /2. Similarly, the

minimum flux attached to the top and the bottom of the evaporator for x∗=±x0,

respectively. Here we find q∗(±x0) = 1-Δq. We can again observe an almost

linear relationship between steam quality and pipe length, corresponding to a

distinct stable heat absorption. The outlet temperature of the evaporator is the

lowest of all scenarios, and the inlet pressure corresponds to the scenario with

constant heat flux. This reflects that the models are not in dynamic equilibrium,

since all scenarios receive the same effect.

10.5. Comparison of the flux profiles

The start-up process with different heat flux profiles causes different dynamic

pressure responses. As shown in the figure (10.26) for station A, one observes

different pressure build-ups, where we clearly can see that the low combustion
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causes a faster and steeper pressure build-up than the other profiles, so that the

top firing causes the smallest pressure build-up. Immediately thereafter, the

response of the more or less homogeneous pressure build-up, is replaced by a

more oscillating process, where the moving average gradually decreases over

time. All four scenarios have an oscillating response; however, there is a trend to

bottom firing have a more moderate exit amplitude. In station B we almost see

identical pressure structures, but with varying timing. The bottom firing scenario

flattens out soon and settles at a stable level, while the top firing scenario flattens

out later and also attempts a second pressure build-up, but quickly falls back to

the final level of the downstream pressure. When we look at the time series of

enthalpy in station A, there is no significant difference observable among the four

scenarios. Downstream station B, a time delay occurs of the enthalpy front, and

not surprisingly, we see the fastest enthalpy front for low firing, while high firing

has the slowest front; see (10.27). After 80 [s] of simulation we see a gradually

Figure 10.26.: Comparison of the firing profiles on the SKV3 evaporator with respect to

fluid pressure.

more oscillating density-wave in station A, see figure (10.28), which dominates

the rest of the simulation period. In station B we see a significantly higher density

for the bottom firing scenario, but with a lower degree of oscillation compared to

the other scenarios. Here we find surprisingly the greatest density oscillations

in the top firing scenario. The fluid temperature is illustrated in figure (10.30).

In station A there is a steeper increase in fluid temperature for the low firing
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Figure 10.27.: Comparison of the firing profiles on the SKV3 evaporator with respect to

fluid enthalpy.

scenario, which ends on the same level as for the other scenarios, due to the

entrance to the two-phase region (almost identical saturation pressure). In station

B, we conversely see the largest temperature gradient before the two-phase region

for top firing, and again, the temperature ends at the same level, as entering the

two-phase region. In the superheated region, we again see drastic temperature

fluctuations, surprisingly most notably for the high-fired scenarios. The observed

momentary temperature fluctuations are above 20 degrees, for the top-firing

scenario. The associated material temperature is dampened much, compared to

the fluid temperature, and here we see the highest material temperature in the

bottom firing scenario, with a difference of approximately 10 [oC] compared to

the top firing scenario. The material temperatures are illustrated in figure (10.29).

At station A, we can see a significantly higher material temperature (+3 [oC]) for

the bottom-firing scenario, compared to the other scenarios.
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Figure 10.28.: Comparison of the firing profiles on the SKV3 evaporator with respect to

fluid density.

Figure 10.29.: Comparison of the firing profiles on the SKV3 evaporator with respect to

wall temperature.
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Figure 10.30.: Comparison of the firing profiles on the SKV3 evaporator with respect to

fluid temperature.

10.6. Preheater failure

A high-pressure preheater improves the electrical efficiency of a power plant, by

re-using a part of the steam from the HP turbine outlet, so that the feed water

temperature is raised towards the economiser (ECO). With a preheater failure,

we will experience an immediately decreasing feed water temperature toward the

ECO and evaporator. We use again the homogeneous dynamic evaporator model

to analyse what happens when a HP-preheater shuts down over four seconds.

Time series from the simulation is illustrated in figures (10.31 and 10.32). The

green vertical line indicates the time of shut-down of the preheater. By smoothly

changing the feed water temperature on the SKV3 model on the upstream Dirich-

let boundary from 1187 [kJ/kg] to 750 [kJ/kg] during 4 [s], the temperature jumps

from 270.7 [oC] to 220 [oC]. The model responds promptly, and by observing

the time series located upstream and downstream to the evaporator (stations A

and B), we can see a response as a function of time. Not surprisingly, we see a

response in the upstream station, which is very similar to the upstream boundary

condition, whereas in the downstream station B, we experience a peak in the

steam temperature, despite, that we are feeding the system with lower temperature.

This is due to the compressibility in the evaporator, so that the fluid now takes up

less space in the upstream section. The residence time of the downstream fluid

becomes longer, for a short while, which finaly results in a higher superheating
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of the fluid. After a certain period, this superheated fluid is advected out of the

downstream boundary and we now see a reduced superheating. In general,

Figure 10.31.: Preheater failure after 400 [s]. Left and right figures represent the time

series at station A.

temperature (enthalpy) deviations from a set point in the separator are regulated

by a fast control loop that adjusts both the firing and the feed water flow rate. This

enthalpy control cannot compensate for what happens in each evaporator tube;

the enthalpy control can only reduce the deviations from a set point that occurs

in the separator, by using a feed forward control loop. The large temperature

decrease at the evaporator inlet, which occurs after a high-pressure preheater trip,

cannot be out-balanced by the control. This is hazardous to the evaporator in the

long term.

248



Internal rifled boiler tubes

Figure 10.32.: Preheater failure after 400 [s]. Left and right figures represent the time

series at station B.

10.7. Internal rifled boiler tubes

One parameter that determines the heat transfer rate on the inside of the pipe is

the fluid velocity near the inner pipe wall (shear velocity). If the friction velocity

can be increased without increasing the net mass flux through the boiler, the heat

transfer rate can be increased. With that technology in mind, it is possible to

build a more compact boiler. Internal rifled boiler tubes (IRBT) are an attempt

to speed up the fluid velocity at the tube wall and achieve the vertical tubes of a

boiler construction. The mass flux through the IRBT is usually in the range of

1000 [kg/m2s] at base load and is less than the half of the mass flux in traditional

Benson boiler panel walls, with a moderate pipe inclination.

In addition to the increase in heat transfer, the IRBTs are characterised by an

excellent performance concerning two phase-flow. The swirl is very effective

for separation of liquid from gas. The centrifugal force will increase the rate

of light fluid to the centre of the pipe and force the heavy fluid components to

249



10. Dynamic flow stability

near the wall. This will improve the cooling of the pipe, and thereby increase

the heat transfer and decrease the wall temperature of the pipe. Additionally

the IRBTs have the following advantages: the rifles will enlarge the surface of

convective heat transfer moderately, thereby increasing the turbulent intensity in

the boundary layer and increasing the relative velocity between the wall and the

core fluid by rotational flow.

The advantages of the IRBT have a price. The pressure loss is higher than

in traditional boiler tubes, but this can be used in a constructive way. When

super-critical boilers operate at part load, stability problems can occur. The

problem is usually solved by inserting individual pressure losses at each pipe

inlet section. Thus the increased pressure loss in the IRBT can be utilized to

replace the traditional built-in pressure loss devices, and thereby not increase the

pumping power.

10.7.1. Modified boiler geometry

Retrofitting the SKV3 boiler to a system equipped by Siemens type RR5 internal

rifled boiler tubes (IRBT), will normally lead to a complete redesign of both

the furnace- and the evaporator system. But in this fictive case we use the same

heat transfer area, despite the fact, that the IRBTs considerably improve the heat

transfer in the boiling zone. In this new setup, the length of the boiler tubes is

reduced from 193.5 [m] to 38.25 [m] according to the height of the evaporator

section of the furnace, and the number of parallel tubes is increased from the

original 4 x 56 to 4 x 270 parallel tubes. We have consciously chosen to use a very

low mass flux (corresponding to approximately 10% load), also named "micro

load", specifically to analyse the effects of the wall temperature distribution. It

should be emphasized that this simulation scenario is a fictional setup and is

rather a calculation example of what can happen in evaporator tubes, if near-zero

flow momentarily occurs.

The vertical IRBT leads to a decrease in the mass flux, which is illustrated in

(10.33) for instant pictures of 50, 100, 150 and 200 [s] of simulation. The wall

temperature varies in time and reaches a peak, while the flow locally approaches

zero, caused by local pressure oscillations initiated by the compressibility at the

entrance of the two-phase region. The poor cooling caused by near-zero flow

can have disastrous consequences for the pipe material and may ultimately lead

to a meltdown of the evaporator tube. In practice, this is avoided by increasing

the circulation through the evaporator. The pressure drop through the evaporator

tube is unrealistically low and ultimately trips the firing, due to the very low

mass flux (105 [kg/m2s]). Normally, the mass flux of IRBT is approximately

1000-1200 [kg/m2s] at base load and typically limited to 250 [kg/m2s] at the

Benson minimum load for vertical tubes; see [4] p. 518. In figures (10.34) and

(10.35) are listed the time series of the thermo-hydraulic data at two stations
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Figure 10.33.: Solution of Modified SKV3 vertical evaporator model with SLMF after

(LT):50, (RT):100, (LB):150 and (RB):200 [s] (Micro load).

located at A and B, A(z= 1
8 lz) and B(z= 7

8 lz). The thermo-hydraulic conditions at

station A are situated in the sub-cooled region, while station B conditions are in

the super-heated region. Both stations are affected by the compressibility effect,

initiated at the entrance to the boiling zone. Pressure waves approach upstream

and downstream due to the eigenvalues of the hyperbolic governing equations

(λ1=c, λ2=u+c and λ3=u-c) where λi, i=1,3 are the eigenvalues, and c is the local

speed of sound for the two-phase mixture and u is the convective velocity of the

fluid. In the downstream station B, we can also see minor slugs of enthalpy for

t=90 [s], which also refer to the compressibility phenomena. Another setup is

made for 100% load (super-critical), where the mass flux is set to 1000 [kg/m2s]

and the heat flux is changed to a linear profile of 500 [kW/m2], so that full

superheating is achieved downstream the evaporator. The exit pressure of the

evaporator is at baseload approximately 280 [bar]. The other geometric data are

unchanged and thus equal to the first simulation with IRBT; see table (10.2). The

result of a calculation is represented after 200 [s] as a line series in figure (10.36)

and the corresponding time series at station B is illustrated in figure (10.36).
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Figure 10.34.: Modified SKV3 vertical evaporator model with IRBT at station A.

Initially there is a relatively large geodetic pressure drop, which gradually fades

out as the fluid starts to boil, and the density of the fluid becomes smaller. As

evaporation occurs, it increases the fluid velocity to approximately 8 [m/s] at the

exit boundary. There is a conversion of a geodetic pressure to a friction pressure

drop. Despite the corrected pressure loss calculations with the RR5 rifle tube,

we see a relatively moderate pressure drop, but junction boxes will increase the

pressure drop, while ensuring a minor imbalance in the outlet temperature of the

vertical evaporator. Another noteworthy relation is the increased temperature

difference between the fluid and the tube, which leads to an increased risk of

cracking in the boiler fins.

A similar calculation of pressure loss for an evaporator tube without internal

rifling gives an absolute pressure drop of 1.5581 [bar], while there is a pressure

drop of 1.6470 [bar] for IRBT. This provides an increased pressure drop of

only 8890 [Pa], which can be attached to the friction pressure loss alone, as the

geodetic pressure drop is identical in the two situations, as departure conditions

are basically the same (hout=2862.08 [kJ/kg] and uout=8.17 [m/s]) and thus the
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Figure 10.35.: Modified SKV3 vertical evaporator model with IRBT at station B.

geodetic pressure drop. This corresponds to the Slip Correction Factor (Π), given

by (8.25), due two internal rifles:

ΔP = ΔPIRBT −ΔPSmooth (10.6)

= 8890[Pa]

=
N

∑
i=1

fwρi
ucΠ |ucΠ|

2
−

N

∑
i=1

fwρi
uc |uc|

2

= (Π2 −1)ΔPSmooth = (Π2 −1)1.5581 ·105[Pa]

Hence Π= 1
cos(γ) according to equation (8.25) and γ=13.4o, which is far from the

typical angle for IRBT, where the rib angle to cross-section is between 47o to

60o according to Griem [7]. We can thus conclude that the pressure loss in IRBT

cannot be estimated by a simple adjustment of the hydraulic pressure loss due

to the Slip Correction Factor (Π), but is subject to more complex accounting

rules, as found in [10], [11] and [13]. This is evidence of the complexity of the

flow processes, both for single-phase flow but especially for two-phase flows.
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Figure 10.36.: Vertical IRBT at base load. Line profile after 200 [s].

Figure 10.37.: Vertical IRBT at base load. Time series at station B.

10.8. Low-pressure evaporators

During the last decade, Danish utilities (Vattenfall AB and DONG Energy A/S)

have invested much effort in the optimisation of thermal power plants in order to

outbalance the fluctuations imposed by wind and sun. One could argue that we

could phase out the existing thermal plants and switch to open pass gas turbines
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to solve the problem, but this is a rather expensive solution because we have a

fleet of quite new super-critical power plants that still have a significant life time.

Simultaneously, the power stations are committed to supply district heating to a

large customer base. This means that there is a strong link between the production

of district heating and electricity, which can result in a significant overproduction

of electricity, when the weather is cold and windy. This can be accomplished

by, for example, reducing the outlet pressure of the SKV3 evaporator, while

bypassing the VHP turbine, so that the pressure of the evaporator is aligned with

the HP turbine. Bypassing the VHP tubine at low load corresponds to an evapor-

ator pressure decrease from approximately 90 [bar] to 46 [bar] at the evaporator

outlet. This leads to less power output without compromising the district heating

production, but the unit efficiency deteriorates, without affecting the Cv value,

given by equation (3.1), which is a static expression for pricing the district heating.

In this section, we examine how a power plant evaporator (SKV3) with smooth

pipes behaves, when the boiler outlet pressure is reduced considerably below the

normal circulation pressure for Benson boilers. Four simulations with different

firing profiles are performed, so that the sensitivity to uneven heating can be

assessed. Note that the applied input enthalpy (boundary condition) is unchanged

relative to the previous calculations. This results in minimal sub-cooling, though

sub-cooling still exists. In practice this can lead to mal-distribution problems, as

discussed in section (5.5).

10.8.1. Heat flux profiles

Here we carry out calculations with the aim of investigating how different heat

flux profiles affect the dynamics of a low-pressure configuration of the SKV3

evaporator during a dynamic start-up period of 200 [s]. There are four different

profiles to be examined: a constant heat flux on the panel wall as illustrated by fig-

ure (10.10), a linear profile representing situations with bottom firing of the boiler

as illustrated in figure (10.14), a parabolic heat flux profile in the evaporator string

as illustrated in figure (10.22) and finally a linear profile representing situations

with top firing of the boiler as illustrated in figure (10.19).

Constant heat flux profile

A constant heat flux profile is used as a reference calculation for the study of

different flux profiles. This scenario is also of academic interest and involves

a more gentle impact of the evaporator. The outcome of the linear heat flux

simulation shows a very stable evaporator, illustrated in figure (10.38), with a

very high pressure drop (15.7 [bar]) and an outlet steam velocity of 48 [m/s],

which is very high. The steam quality profile is perfectly linear along the pipe,

indicating a constant and stable heat uptake. The corresponding time series at
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Figure 10.38.: Constant heat flux to boiler, after 200 [s].

Figure 10.39.: Time series of constant heat flux at the SKV3 evaporator model at station

A.

station A and B are illustrated in figures (10.39) and (10.40). There occur violent

pressure oscillations in connection with the start-up of the model, and the model

is first stabilized after approximately 140 [s]. The pressure oscillations achieve a

size of up to 5.5 [bar] and thus may be critical in the supply of steam for each

evaporator tube (mal-distribution). These oscillations occur in combination with

enthalpy fluctuations and affect the flow velocity, which momentarily may rise

10 [m/s] within a period of less than one second. We can thus conclude that the

start-up period in a low-pressure evaporator is a violent dynamical phenomenon

for the first approximately 140 [s] of simulation.
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Figure 10.40.: Time series of constant heat flux at the SKV3 evaporator model at station

B.

Linear heat flux profile with bottom firing

Experience from earlier simulations has shown that bottom firing leads to higher

dynamic instability in the evaporator, and is no exception in this situation with

reduced evaporator pressure. After 200 [s] we see a steady state picture of the

axial profile of the thermo-hydraulic properties; see figure (10.41). As shown

in figure (10.43), the system reaches a steady state condition after more than

160 [s] from the start, whereas the scenario with linear heat flux uses 140 [s]

to reach steady state. At the upstream station we see the same tendencies, but

with less oscillations; see figure (10.42). The dynamic transients are also more

violent here, where the fluid velocity fluctuates dramatically (up to 15 [m/s] in

less than one second). The pressure fluctuates violently, too, but falls quickly

into a plateau after only 100 [s] after start-up. The fluid velocity and enthalpy

oscillations are dampened gradually, until a steady state situation is reached after

160 [s] from the start. This indicates that at a lower evaporator pressure, there

is a greater compressibility in the evaporator, with a steeper negative gradient in

the density, while entering the two-phase region. Operating experience from the

SKV3 reveals that there are evaporator instabilities during start-up when firing

low, i.e., when the lower burner rows are in action during start-up. This tendency

is strengthened when the evaporator pressure is reduced.

Linear heat flux profile with top firing

Operating experience from the SKV3 in particular indicates a greater stability in

the evaporator, when the firing is intensified in the top of the boiler. We attempt

to model this using a linear heating profile, with the highest heat flux at the top of

the furnace, as shown in figure (10.19). The lower operation pressure leads to a
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Figure 10.41.: Bottom heating in the SKV3 boiler after 200 [s].

Figure 10.42.: Time series of bottom heating in the SKV3 evaporator model at station

A.

high degree of stability after 200 [s].

Figure (10.44) shows how the thermodynamic properties of the fluid change

along the pipe, for the top firing scenario. It is worth noting that the enthalpy

increases linearly with the length of the tube, with no enthalpy slugs at all, which

indicates a high level of stability in the production of the superheated steam.
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Figure 10.43.: Time series of bottom heating in the SKV3 evaporator model at station B.

Figure 10.44.: Top heating in the SKV3 boiler after 200 [s].

Similarly, we can see a significant difference in both the pressure and the velocity

profile compared to the situation with low combustion in the furnace. The pressure

is here approximately 0.5 [bar] lower and the steam outlet velocity is here similar,

47 [m/s] against 48 [m/s] in the first scenario. The time series in stations A and

B (figures 10.48 and 10.49) show an unstable start-up process of the evaporator,

with stable conditions after 140 [s] from the start. This means that top firing
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Figure 10.45.: Time series of top heating in the SKV3 evaporator model at station A.

Figure 10.46.: Time series of top heating in the SKV3 evaporator model at station B.

appears more stable compared to bottom heating, which coincides with the results

we found for the evaporation process at 90 bar pressure.

Parabolic heat flux profile with parabolic firing

In accordance with the CFD studies carried out in Chapter (4), we can correlate

the flux distribution according to a parabolic profile so that the flux intensity
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is greatest around the centre point of the burner zone, consisting of the four

burner floors for SKV3. It should be noted that the maximum value of the flux

intensity, is somewhat above the centre point of the burner system. We see

Figure 10.47.: Parabolic heating in SKV3 boiler after 200 [s].

Figure 10.48.: Time series of parabolic heating in SKV3 evaporator model at location

A.

a couple of pressure/enthalpy slugs in figure (10.49 ) and after approximately

261



10. Dynamic flow stability

Figure 10.49.: Time series of parabolic heating in SKV3 evaporator model at location B.

117 [s] simulation, the pressure rises rapidly. The fluid is here in a saturated

condition in which the saturation temperature increases only slightly as function

of the pressure rise. Subsequently, the pressure drops back to the original level,

and the temperature follows back down to the original level as well, until the

enthalpy suddenly rises rapidly above the level from before. Here we experience

a kind of flashing, where the fluid is changing state from saturated steam to

superheated steam, with significant temperature increases to follow (+15 [oC]). In

this context, the fluid velocity increases violently, locally up to 20 [m / s] within

seconds. These slugs die gradually as time passes, and the flow stabilizes in a

static situation after about 200 [s] of simulation.

10.8.2. Comparison of the flux profiles

In general, we can see that reduced sub-cooling provides a more smooth solution

over time, without the strong pressure oscillations initiated from the two-phase

transition point. This is despite that the density jump is even more pronounced at

lower pressure. But the degree of sub-cooling and thus the lower compressibility

of water than steam is enough to change this. The start-up process with different

heat flux profiles causes different pressure distribution. In figure (10.50) for

station A, one can observe a different pressure build-up, in terms of both time and

place. The greatest pressure wave build-up in the evaporator occurs in the bottom

firing scenario, and this occurs earlier compared to the other runs. The lowest

pressure build-up occurs ultimately at top firing and arrives later. At station B,

there is no significant difference in the pressure observations. At station B, we
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can also see that the enthalpy fluctuations occur earlier and more frequently at

the bottom firing than the other scenarios; see (10.51). There are very significant

Figure 10.50.: Comparison of the firing profiles on the SKV3 evaporator with respect to

fluid pressure.

Figure 10.51.: Comparison of the firing profiles on the SKV3 evaporator with respect to

fluid enthalpy.

differences in density for the bottom firing at station A. Here there is a lower
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density level created, significantly, earlier in the simulation, supplied with a

clear pulsation, but without exceeding the density level of the other three flux

configurations. The same trend is reflected in the fluid temperature, which is

illustrated in figure (10.54). Here we also assume a higher value for the bottom

firing, supplied with early pulsations to follow. This phenomenon can affect the

delicate metal structures of the tubing, which are susceptible to fatigue fractures.

The material temperature is illustrated in figure (10.53), here shown as an average

Figure 10.52.: Comparison of the firing profiles on the SKV3 evaporator with respect to

fluid density.

temperature of the tube wall. At station A, we can see a significantly higher

material temperature (+3 [oC]) for the bottom-firing scenario, compared to the

other scenarios. At station B, this is not applicable before we pass the two-phase

region and move into the superheat region.

10.8.3. Comparison of high versus low-pressure evaporator

The evaporator at AVV2 is almost identical to that of SKV3. DONG Energy -

Thermal Power has carried out experiments with reduced evaporator pressure at

AVV2, where outlet pressure was reduced from 90 [bar] to 56 [bar] and minimum

flow was 86 [kg/s]. This did not cause any major drama, even though the boiler

manufacturer has assigned a minimum pressure of 90 [bar]. When we compare

the two simulations carried out at 90 [bar] and 56 [bar], respectively, we notice

that the high-pressure case has higher sub-cooling of the fluid (inlet enthalpy

common for both cases). The homogeneous model considers the sub-cooled

liquid as almost incompressible, which leads to rapid pressure oscillations in
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Figure 10.53.: Comparison of the firing profiles on the SKV3 evaporator with respect to

wall temperature.

Figure 10.54.: Comparison of the firing profiles on SKV3 evaporator with respect to

fluid temperature at stations A and B.

the sub-cooled sector of the evaporator, and when the fluid is transferred to the

two-phase region, the density dramatically decreases with pressure oscillations to

follow. In the case of low-pressure evaporation, we have a moderate sub-cooling

of the fluid, but conversely an even more withdrawn reduction of density, when
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passing the two-phase region. This initiates violent pressure oscillations, which

die out after approximately 100 [s]; see figure (10.56). It is worth noting that

shortly after the start of firing, a peak occurs in the mass flux. The peak is

highest for high-pressure evaporation with approximately 4250 [kg/m2s] after

approximately 72 [s], while the low-pressure evaporation peaks earlier after only

25 [s] with a maximum mass flux of 2900 [kg/m2s]; see figure (10.57). One

can observe more violent pressure and enthalpy fluctuations for low-pressure

evaporation; see figures (10.55) and (10.56). Pressure oscillations are more

common downstream of the evaporator; while at upstream station A, more quiet

pressure conditions appear, which apparently do not affect the mal-distribution to

the panel walls.

Figure 10.55.: Comparison of enthalpy at different evaporation pressure at station A and

B.
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Figure 10.56.: Comparison of pressure level at different evaporation pressure at station

A and B.

Figure 10.57.: Comparison of mass flux at different evaporation pressure at station A

and B.
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10.9. Summary

In this chapter, we use the fifth-order WENO solver to simulate the dynamic

response of evaporator tubes corresponding to SKV3. Initially we describe the

calibration process for the evaporator model, based on measurements from a

steady state load case from SKV3 (sample 4) in section (3.4). The application

is usable for various purposes, and initially we analyse four different heat flux

distributions on the evaporator tube. We can observe several interesting dynamic

phenomena that can be related to the classifications of dynamic stability outlined

in table (10.1). Focusing on density-wave oscillations, we can see that bottom fir-

ing clearly reinforces the occurrence of density-waves, especially in the upstream

section of the pipe (station A), where we can notice significant oscillations. There

is a coupling between the density and the fluid velocity through the continuity

equation. At certain periods, the fluid velocity is very low (read near-zero flow)

and this can cause a significant temperature rise in the inner layer of the tube

material. This again can increase the thermal load on the pipe wall, but we

cannot trace any radial wall temperature increase in the simulation, because of

the small time constants and because we are calculating an averaged tube wall

temperature. The inner heat transfer will be weakened considerably when the

flow rate approaches zero.

Another phenomenon which can be observed, is that the fluid temperature down-

stream is generally higher for the bottom firing scenario and there are temperature

fluctuations of moderate strength. Furthermore, the development of a pressure

front occurs quickly in the bottom firing scenario, which gradually weakens,

when the flow approaches a static state condition. During the transient period

before steady state conditions are achieved, pressure oscillations occur, which

also make up a category of the dynamic phenomena listed in table (10.1). The

remarkable thing is that the top firing scenario leads to surprising violent thermal

fluctuations in fluid temperature, something that cannot be measured under op-

eration of a plant. Conversely, we see that the top firing gives a more stable

evaporator, in the sense that the evaporator has a lower degree of fluctuations

in pressure and fluid velocity in the sub-cooled region, leading to a more safe

operation of the evaporator during start-up. The applied load gradients are large,

compared to the maximum allowable gradients on SKV3; see figure (3.2). Further

more, the restrictions compared to reduced lifetime of thick-walled components,

like junction boxes or valves, are not taken into account in this analysis.

In addition, we take a look at the SKV3 evaporator hypothetically equipped

with internal rifles (IRBT) and analyse how it would behave at very low flux. The

conclusion is that very low flow rates lead to poor convective heat transfer in the
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sub-cooled region, while the two-phase region gives a more stable cooling of the

tube wall.

An adjacent scenario occurs with IRBT at base load (100% load), where the

mass flux is significantly higher (1000 [kg/m2s]) and here we see how an initial

hydrostatic pressure of dense fluid is converted to a stable pressure loss of moving

super heated fluid, after which the pressure loss stabilizes at 1.65 [bar]; see figure

(10.36). The pressure is above the critical pressure, leading to a continuous de-

scription of the density throughout the entire simulation process which also leads

to a smooth pressure build-up through the evaporator. It should be emphasized

that the SKV3 boiler with IRBT is a hypothetical example; usually the number of

parallel tubes in the evaporator is adjusted to match the recommended mass flux

at 100% load and the pressure drop reflects the price of how far down one wants

to place Benson minimum load.

Lastly we touch upon a situation which is related to the major challenges that

the introduction of renewable energy imposes in the form of sun and wind. With

the close bond between district heating and electricity production, characterized

by a so-called back-pressure plant, it is tempting to convert a traditional power

plant with the ability to bypass the VHP and HP turbines and thus reduce both the

electricity production and the evaporator pressure. We see from the calculations

that we obviously have a moderate pressure drop in the evaporator, starting from

a stable operation wherein the geodetic pressure drop is dominant, until we reach

a steady state condition with a lower friction dominated pressure loss. It is inter-

esting to note the presence of temperature slugs in the homogeneous evaporator

model and that the model is able to establish the sometimes sharp gradients in the

solution. This demonstrates that there really exist violent slugs at low operating

pressures, but the oscillations die out after a relatively short time (160 [s]); see,

e.g., figure (10.44).

We have now developed a tool that can be used in further studies of the evaporator

stability, and we must of course ensure compliance with the evaporator design

rules, especially rules related to the flow distribution to panel walls via junction

boxes. Here significant sub-cooling is usually used in order to ensure a satisfactory

distribution of a single-phase fluid to the evaporator wall.
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The purpose of this thesis is to clarify the challenges that the thermal power plant

industry in Denmark are facing, with an energy market dominated by renewable

energy. These issues are related to the load dynamics of the steam generator

in a power plant boiler. This knowledge is rooted in mathematical methods

for identification of operational flexibility in power plant evaporators. In this

thesis numerical models are developed to study static as well as dynamic stability,

in relation to load gradients in steam power plant evaporators, but also longer-

term issues, such as material creep and fatigue of tubes, fins and thick-walled

components are described. The study gives an increased understanding of the

main phenomena that lead to static stability, i.e., Ledinegg instability and flow

mal-distribution initiated by non-uniform heat uptake in panel walls. A robust

numerical tool based on the WENO approach is developed in this project. The tool

is designed for dynamic problems with piecewise smooth solutions containing

discontinuities. The Central WENO scheme has been quite successful in the

investigation of start-up phenomena and load gradients containing complicated

non-smooth solution structures in power plant boilers. The thesis gives several

examples of sensitivity analyses on different heat flux distributions, both in

normal part load (25-35 % load), but also in extreme low-pressure operation (12

% load). This discussion is primarily based on the five main Chapters, namely,

5, 7, 8, 9 and 10, with brief comments on each section and a more thorough

assessment linked to the thesis.

11.1. Steady state flow stability

In the measurement campaigns carried out for Skærbækværket Unit 3 (SKV3),

we can observe large temperature differences in the pipe wall on sample 3 in

section 3.4, which reflects an operating situation where the plant is in a transition

from recirculation mode to once-through mode. Here temperature differences are

recorded of up to approximately ± 35o in adjacent tubes in the panel walls, which

indicate the presence of superheated steam in some of the tubes and sub-cooled

liquid in others. This is a dynamic phenomenon and cannot be characterized as a

Ledinegg phenomenon, but could be a flow distribution problem which is initiated

by a changing operation condition, where the recirculation operation ceases with

increased load. In our calculation of mal-distribution of two parallel tubes we see,

in certain critical situations, highly superheated steam in one piece of the heat

tube, while there is two-phase flow with low steam quality in the second tube.

This may have important implications for the lifetime of the heat tubes, as the
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material temperature mainly follows the fluid temperature. Fortunately, the panel

walls are constructed in such a way, that there may be heat transfer between the

pipe sections (fins), but this heat transfer is primarily based on conduction, with

high temperature gradients to follow. Conduction between the pipe sections is not

included in the modelling work, but time constants and thermal diffusivity have

been analysed in section (4.2). This indicates that the conduction is restricted by

a relatively low heat transfer coefficient for alloys at high temperatures, which

may result in a high temperature gradient in the tube material and in that way

cause high temperature in the material. At low load operation of Benson boilers,

where we still have full super-heating of the outlet steam, the risk of burnout

caused by mal-distribution is minimal. Here we shall be more concerned about

the poor cooling of the panel wall, caused by stratified flow in the boiler tubes,

where the vapour phase causes a poor cooling of the pipe wall. It is highly

essential to ensure a certain degree of sub-cooling at the inlet to the junction

boxes of the evaporator, so that a single-phase fluid is distributed to the respective

evaporator tubes. This can be characterized as external conditions relative to

both the Ledinegg and mal-distribution analyses in contrast to the findings in

the analysis of mal-distribution where we found that less sub-cooling gives less

mal-distribution; these trends weaken for increased operating pressure.

For water/steam flow in a tube, we can see that the time constant of the internal

wall subjected to an interior temperature fluctuation is many decades smaller than

that of the exterior pipe wall. This inner tube wall material can react more quickly

to varying temperature conditions; therefore, phenomena such as fatigue may be a

potential risk, as the material element can initiate small cracks that can propagate

to the rest of the material. This phenomenon is strongly dependent on the type of

material and may be more pronounced under certain circumstances, for example,

if substantial fouling occurs on the inner side of the heat tube (oxide layers or Fe+

deposits), so that the temperature rises due to the poor thermal conductivity of

the fouling layer. Hence a fluctuating two-phase flow (i.e., slugs of superheated

steam or sub-cooled water) may initiate temperature fluctuations at a higher offset

in the surrounding pipe material, and thereby initiate small micro fractures in

the fins connecting the heat tubes in a panel wall. Especially tensile stresses

caused by the abrupt cooling are critical to the steel. This phenomenon is much

more common in super-heater tubes, where the temperature level is significantly

higher. This also implies the selection of a dedicated type of material that can

sustain the high pressure and temperature levels, up to 325 [bar] and 600 [oC],

respectively.
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11.2. Equation of state

The equation of state (EOS) for water / steam is an important part of a thermo-

hydraulic calculation process and is probably one of the biggest time-consumers

in CFD simulations. Numerous articles have been published on the subject,

and many EOS are simple with limited accuracy, e.g., the Van der Waals state

equation; see equation (6.11). The advantage of using an interpolation scheme

for calculating the thermodynamic properties, rather than a direct computation

of, e.g., IAPWS-97, is the possibility to provide very short calculation times

without significant loss of accuracy. It is highly desirable, in connection with the

implementation of EOS, to maintain continuity of the thermodynamic properties

throughout the operating range, which is one of the basic features we look into.

Hence it is possible to avoid discontinuities in the water and steam properties

in-between five different sub-areas in, e.g., IAPWS-97. It is obvious that the

slope of the density as a function of pressure and enthalpy, or vice versa, is

discontinuous at the saturation line, and this introduces pressure waves in the

solution of the momentum equations. Therefore, it is important to describe these

phase transitions as continuous functions, to verify the strength of the pressure

oscillations that the discontinuity in density gradient causes. We have chosen

a moderate smoothing, based on a second-order theory outlined in Appendix

(G), to eliminate the problem with discontinuity of the derivative in density

around the saturation lines. For testing different interpolation schemes, we do not

use smoothing at all, which results in significant deviations between actual and

interpolated values in the vicinity of the saturation lines. If we need to focus on

reduction of simulation time, the choice of interpolation model falls on a simple

bilinear interpolation scheme with a minimum of 160,000 nodes, which covers

the domain; h∈[0,3900] [kJ/kg] and p∈[0.1, 800] [bar]. This table occupies only

a small amount of space in the memory of a computer. The computational cost is

decreased by a maximum factor of 33, but approximately a factor of 11 in average.

The suggested improvement of the interpolation table using linear triangular

elements instead of bilinear elements along the saturation curves is not found

to give the desired increase in accuracy, in relation to the significant increase in

computational costs. The benefits of using the iso-parametric triangular elements

are too insignificant to justify the more intensive implementation of such scheme,

but the results are a bit more accurate, and we can reduce memory demands, by

reducing the number of elements. However, in the two-phase region, we need a

look up table which can be time-consuming for large grid arrangements. Hence

the iso-parametric triangular elements cannot be recommended for the two-phase

domain, especially since the argument is to reduce computational costs and since

a second-order iso-parametric element may cause over-shoots and under-shoots in

the interpolated solution. If the iso-parametric elements are used near the density
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trough, a more dedicated shape function should be implemented. In such case,

we can reduce the number of elements drastically and the computational costs,

too. However, the barycentric coordinates will be costly to compute. It will be a

challenge to find motivation to use the iso-parametric elements. Another factor

that one should be aware of, is to restrict the definition area of the interpolation

table, as there are very significant time-savings obtainable here, both in terms of

grid generation, but also for table lookup.

11.3. Dynamic modelling of thermo-hydraulic systems

Interaction between fluid mechanical conditions in the boiler tube and the stress

conditions that occur in the corresponding wall, is critical for the control of a

power plant boiler. There are many factors that can affect the stress conditions

in the tube wall, and therefore one must take into account early in the design

phase of mathematical modelling, what kind of parameters the model should be

able to respond to, like heat flux profiles on the outer side of the tube as well

as, e.g., pressure and temperature slugs inside or at the upstream or downstream

boundaries. Of course there are a number of limitations that for practical reasons

we have to deal with, for example, the level of detail in the fluid mechanical flow

equations, which are only dissolved in one dimension. The use of a full two-layer

(or four-field) two-phase flow model, causes a more than doubling of computa-

tion time, which already is very long, because the pressure is calculated by an

iterative process, as a function of the enthalpy and density, for each time step and

computational cell. This iterative process is significantly improved, by the intro-

duction of bilinear interpolation of the EOS. A one-dimensional tube wall model

is intended to form a link in the axial direction of the tube, so that the temperature

variations are able to diffuse, due to the thermal diffusivity of the material in

the axial direction. This achieves a more accurate description of the material

temperature, which indirectly determines how much energy is transformed from

the boiler room to the flowing medium in the pipe. The radial temperature dis-

tribution for the 1D model is based on a logarithmic profile for isotropic materials.

Based on the two-layer thermo-hydraulic model, a homogeneous evaporator

model is derived, which presumes both thermodynamic and hydraulic equilib-

rium, implying that the fluid is described by a common enthalpy and transport

speed. In this context, the one-dimensional pipe wall model is used to ensure the

transport of energy from the furnace to the water / steam circuit. The homogen-

eous thermo-hydraulic model provides us with some numerical challenges, in

the sense that there occurs a singularity in the first derivative of the fluid density,

around the saturation lines in the EOS. This means that there are strong pressure

waves induced to compensate for sudden sharp negative gradients. Two activities
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have been applied to control this pressure oscillation. The first approach concerns

a local smoothing of the density around saturation curves, which is implemented

in the EOS. The next approach is to impose artificial diffusion, whose strength is

estimated from a Boussinesq equation, outlined in section (8.6), modelled as heat

transfer in a rotating fluid in a pipe. In that way the thermo hydraulic flow can be

controlled, and we are able to calibrate the model in relation to measured data

from SKV3. Unfortunately, we have only limited measurements at inlet and outlet

of the evaporator, which only allow us to calibrate the wall friction coefficients,

but do not allow us to calibrate the artificial diffusion, either in strength or extent.

Finally, we have developed a theoretical platform for analysing the transport

equations of a full four-field thermo-hydraulic model, in order to estimate the

flow regimes and thus allocate the correct constitutive pressure and heat transition

models, for describing the dissipative parts of the governing transport equations.

The challenge here will be to control the interfacial source / sink terms, which link

the different layers together. The model considers the continuous and dispersed

liquid and gas phases (water/steam) as four fields, meaning two continuous gas

and liquid phases, and a continuous liquid phase containing gas bubbles, and

finally a continuous gas layer containing fluid droplets. It will be an obvious area

for research to obtain a complete understanding of the mechanisms which exist

in this four-field model and charting a flow regime map, which can be compared

with experiments from the literature. This requires a numerical solution of 12

coupled partial differential equations, which can be solved, for example, by means

of a WENO scheme. The homogeneous model take typically five hours for a

simulation of a single period of 200 [s]. Here an iteration tolerance of 1.0·10−12

is used.

11.4. Solving hyperbolic transport equations

A thorough analysis and classification of the mathematical problem we are

looking into, is decisive for the mathematical / numerical method that we apply

for solving the governing equations. In general, the two-phase flow transport

equations can be classified as time hyperbolic problems, by an eigenvalue analysis.

The introduction to this work begins with a general presentation of second-order

methods for solving hyperbolic PDEs and the TVD concept is presented. From

here we take a look at the latest higher-order methods for solving hyperbolic PDEs

and we draw up a comprehensive toolbox of methods for solving a wide range of

PDEs, where we include both a diffusion term and a source/sink term, basically

for meeting the requirements from the governing equations of two-phase flow.

In that extent the governing equations are classified as a temporal and local time

parabolic problem, though the diffusion term only works in a very limited area of
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our total solution area, so the principles of hyperbolic models remain in focus

globally. The Central WENO schemes are designed for problems with piecewise

smooth solutions containing discontinuities and have been quite successful in

solving some common test cases, as the Burgers equation containing both shocks

and complicated smooth solution structures, and solving the Sod test of Euler’s

equations.

11.5. Dynamic flow stability

In this thesis we would like to demonstrate the ability to simulate the dynamic

conditions in a homogeneous two-phase flow in a power plant evaporator and thus

complement the recent years, research efforts at DONG Energy - Thermal Power,

in areas such as material creep and fatigue (FEM calculations), furnace load

(CFD calculations) and more intelligent furnace control in the feed water, fuel

and combustion control systems, restricted by an intelligent distributed control

system (DCS). On that basis we can contribute with new knowledge about the

flow stability and dynamic effects in power plants, caused by both internal and

external physical conditions, resulting in improved power plant flexibility. We

have implemented and tested the fifth-order WENO solver and used it to simulate

the dynamic response of evaporator tubes corresponding to SKV3, on the basis

of a calibrated model, based on measurements from SKV3 (sample 4) in section

3.4.

The developed dynamic model is applicable for very different thermo-hydraulic

problems, and we analyse initially four different heat flux distributions on the

evaporator tube during the start-up phase, where we observe different dynamic

pressure responses. The results that are presented in section (10.4) are not as

clear as expected, but we can observe that start-up of the boiler, from zero flow to

full combustion in part load [100 kW/m2], can lead to slightly different dynamic

response from the boiler, when changing firing profile at constant heat uptake. We

see a higher degree of density fluctuations upstream the boiler, when low firing is

applied, while top firing causes more heat-related fluctuations downstream the

evaporator (temperature and enthalpy). The applied load gradients are larger than

those we see in the real world; see figure (3.2). Also the restrictions with respect

to reduced lifetime of thick-walled components, like junction boxes or valves, are

not taken into account in this analysis.

We attempt to simulate a high pressure pre-heater failure on SKV3. This causes

an immediate decreasing feed water temperature of approximately 50 [oC] toward

the ECO and evaporator. Not surprisingly, the simulations show a response in the

upstream section of the evaporator, which is similar to the upstream boundary
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condition; whereas in the downstream section of the tube, we experience a short

term increase in the steam temperature (seen up to maximum 22 oC, in figure

(10.32)), despite, that we are feeding the system with less energy. This increase

in the evaporator outlet temperature occurs, because the evaporator tubes are

now filled with water instead of steam, i.e., the tubes must be ’refilled’ before

the downstream steam is pushed out, now at a higher temperature due to the

residence time of the downstream fluid becoming longer.

In addition, we look at the SKV3 evaporator hypothetically equipped with vertical

internal rifles (IRBT) and analyse how they behave at very low flux (micro load)

conditions. We have found that very low mass flow rates lead to bad convective

heat transfer in the transition zone between the sub-cooled liquid and the two-

phase region, due to near-zero wall flow; while in the two-phase region, we notice

a more stable cooling of the tube wall. An additional computation is carried out at

base load (100% load) for the IRBT, with supercritical operation pressure. Here

the mass flux is adjusted to the design requirement of approximately 1000-1200

[kg/m2s] of fluid through the tube. The simulation results show how an initial

hydrostatic pressure of dense fluid is converted to a stable pressure loss of moving

super-heated fluid, after which the pressure stabilizes at a plateau of 1.65 [bar];

see figure (10.36). We do not see any apparent stability problems due to density

gradients, since we are operating with super-critical steam data. Normally this

operating situation is the design requirements for maximum steam production at

base load of a Benson boiler. To ensure high operational flexibility of the Benson

boiler, the minimum load should be taken into consideration. At minimum load a

mass flux flow rate of approximately 200 [kg/m2s] is normally recommended for

IRBT. It is thus this minimum flow that limits how far down in part load the plant

must operate, before it turns into circulation mode. The price of a high flexibility

is hence the pressure drop at base load operation.

Last, we touch upon a situation related to the major challenges that the traditional

thermal power plants are facing, in connection with the introduction of renewable

energy (sun and wind). With the close bond between district heating and electri-

city production, which is characterized by a so-called back-pressure plant, it is

tempting to reduce the live steam pressure and bypass the high-pressure turbines

and thus reduce both electricity production and the evaporator pressure. We see

from the calculations that we obviously have a significant pressure drop in the

evaporator. The low-pressure evaporator simulation, with an exit pressure of 46

[bar] compared to a normal pressure of 90 [bar], shows a stable response, which

after 180 [s] is in a steady state condition; see figures (10.47) to (10.49). The

pressure loss is approximately 18 [bar]. It is interesting to see that the homogen-

eous model takes into account the load gradients of pressure and enthalpy, which
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can initiate the mentioned thermal slugs. It is also interesting to note the presence

of thermo slugs in the homogeneous evaporator model. The model is able to

resolve the sometimes steep gradients in the tubes, which demonstrates that vi-

olent slugs really exist at low operating pressures - even in a homogeneous model.

We have in this project developed a numerical tool that can be used in fur-

ther studies of evaporator stability. We must of course ensure compliance with

the many design rules used in the design of evaporators, especially rules related

to flow distribution in panel walls via junction boxes. Here usually significant

sub-cooling (20 oC) is required, in order to ensure a satisfactory distribution of

a single-phase fluid to the evaporator wall. For low-pressure operation we can

clearly conclude that the bottom firing scenario gives thermal-hydraulic condi-

tions expressing a high degree of instability, compared to the three other scenarios.

This despite we only have redistributed approximately 10% of the heat. This

start-up phenomenon can in popular terms be compared to a geyser, where we

have a compressible fluid in the bottom of the boiler tube and a nearly incom-

pressible (cold) fluid to the top. This is of great concern for boiler manufacturers

and requires focus on the size of the water/steam separator.
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This conclusion summarizes the main findings from Chapter 5, 7, 8, 9 and 10.

These chapters represent the five main subjects of the investigation, together with

the last chapter of analysis and discussion contained in this thesis.

12.1. Steady state flow stability

One of the main conclusions of this mal-distribution analysis study outlined in

Chapter (5), is that the flow distribution problem is primarily affected by the

operating pressure in the heat tube. The lower the operating pressure, the greater

the difference between the mass flow in two parallel heat tubes, for a certain

deviation in heat uptake. In addition, the inlet mass flux to the heat tube system

is also a parameter, which affects the bias of the mal-distribution. The larger the

inlet flow to the two pipes, the greater is the mal-distribution in the heat tubes.

This can be correlated to the pressure drop, which is the driving factor in the

distribution problem, since there must always be the same total pressure drop

over the two heat tube elements. Friction pressure loss is an essential factor

in this process. But the geodetic height also plays a role in that context, as it

will reduce the influence of the friction pressure drop, especially in situations

where the geodetic height mainly consists of liquid and not vapour. An early

superheat of the fluid in the heat tube, significantly reduces the influence of the

geodetic pressure difference, due to the higher specific volume (lower density).

This again leads to a higher mass flow through the actual heat tube element. A

higher degree of sub cooling of the inlet flow, causes a larger enthalpy difference

at the outlet of the heat tubes, which in turn increases the load on the boiler

tubes. Accordingly, we see that the pressure loss increases over the two parallel

tubes for increasing sub-cooling at pressure levels near the critical pressure. At

pressure levels below 150 [bar] the opposite phenomenon occurs. Increasing

sub-cooling of the inlet fluid results in a larger flow mal-distribution, and the heat

tube that receives highest heat input, has the lowest mass flow, meaning we have

a pipe system with negative flow characteristics. We can reversely conclude that

the pipe wall is more prone to a high critical temperature, when using higher

sub-cooling at evaporator inlet. This trend decreases with increasing operating

pressure. The degree of sub-cooling is also a decisive factor in the formation

of density jumps in the Ledinegg instability analysis. It is a potentiating factor

for the formation of Ledinegg instability, because no sub-cool region gives a

strictly increasing pressure loss curve without any extrema. The simulations of

SKV3, which have a minimum pressure of 90 [bar], show no risk of Ledinegg
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instability. We have also seen that vertically arranged evaporator tubes result in a

strong suppression of the Ledinegg instability phenomenon. In fact only small

low-pressure evaporators (pre-heaters, low-pressure marine boilers, etc.) may

have a risk of instability caused by the Ledinegg phenomenon (boiler operating

less than 22.25 [bar]).

12.2. Equation of state

A bilinear interpolation scheme has been developed in Chapter (7), characterized

by a very fast look up record and fairly good precision, except in the region near

the saturation line, in which there is discontinuity in the first derivative of the

density with respect to the enthalpy. This uncertainty has no practical negative

impact, since this discontinuity is blurred by the use of a smoothing function. In

that way the interpolation tool provides a continuous and differentiable solution

over the entire solution domain. The bilinear element is compared to both a linear

triangular element, and an iso-parametric element. Both are not of advantage in

this context, since the iso-parametric element has a long computation time, due to

its higher order, and the triangle element in combination with the bilinear scheme

leads to a more complicated look up function, and is therefore more expensive to

calculate.

12.3. Dynamic modelling of thermo-hydraulic systems

In this thesis we developed the theoretical basis for a two-layer thermo-hydraulic

flow model and its constitutive relations, referring to both traditional plain heated

pipes as well as IRBT, which depend on flow regime and geometry (horizontally

versus vertically orientated tubes). The model is described in Chapter (8) and

includes a relaxation approach to support water/vapor surface discontinuity, across

which the equilibrating quantity of velocity and pressure jumps. The model is

assumed to be fully hyperbolic, with real eigenvalues, associated to the Jacobian

obtained by formulating the entire system of equations in a non-conservative form.

There are two types of models for the description of the temperature distribution

in the tube material, which is responsible for the transmission of heat from the

furnace to the water / steam circuit of a power plant. These tube wall models are

related to the lifetime concept as described in section (4.3).

12.4. Solving hyperbolic transport equations

We have developed a robust numerical PDE solver that is highly flexible in terms

of configuration. The theory is outlined in Chapter (9). The application can

handle source / sink terms, diffusion terms and initial fields as line data. Two

types of boundary conditions can be specified, one Neumann and Dirichlet condi-

tion on both upstream and downstream boundaries. The convective part of the
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solver (fluxes) is based on a fifth-order hyperbolic WENO solver, supplied with a

diffusion model of fourth-order accuracy. The diffusion model can be allocated

to specific sites in the solution domain, in order to smoothen, e.g., pressure waves

induced by a jump in density. Additionally it is possible to specify source/sink

terms to the transport model. As time integrator, we can choose from a wide

range of options, but depending on the complexity of the task and requirements

of stability, we have chosen a third-order TVD time integrator, although a fourth-

order SSP-RK is available. A third-order time integrator is significantly faster

than the improved fourth-order five-stage SSP-RK algorithm. The conclusion

is that both the scalar and the vector-based version of the WENO solver are

non-oscillatory in the sense of satisfying the total-variation diminishing property

in the one-dimensional space.

The higher-order WENO scheme is used to verify a test sample of propaga-

tion of void waves, in the context of a two-layer fluid model. A void wave

separates two-phases that are in mechanical equilibrium. The simulation results

confirm that the mechanical equilibrium between the phases is preserved, with

pressure and velocity remaining uniform (Riemann problem). It turns out that

the higher-order WENO scheme is only slightly dissipative in that, after a few

thousand time steps, the solution begins to form small disturbances on both sides

of the contact discontinuity, which can be attenuated away completely by intro-

ducing a moderate diffusion. The test example has been solved in the literature

without diffusion, but with the use of a second-order Roe scheme that is more

dissipative, devised by Phil Roe. The solution to this problem is to implement an

iterative solution, where we use the EOS to estimate both pressure and velocity

relaxations terms.

12.5. Dynamic flow stability

In Chapter (10) is modelled an evaporator string of SKV3, as a homogeneous

1D thermo-hydraulic model, solved by use of a WENO solver. We use bilinear

interpolated values for the water / steam data, based on IAPWS-97. Thus, we

can demonstrate that this application is able to handle complicated flow phenom-

ena, which during a start-up, will initiate pressure waves that might affect the

mal-distribution in the panel walls, and consequently affect the hydrodynamic

stability of an evaporator. We have already seen through measurements, how the

temperature distribution in panel walls can have high disparity, initiated by dy-

namic flow conditions, when the plant goes from circulation operation to Benson

operation.

In this thesis we demonstrate the ability to simulate the dynamic conditions
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in a power plant evaporator, based on a homogeneous two-phase flow model.

This work thus complements the recent years, research efforts at DONG Energy

- Thermal Power A/S, in areas such as material creep and fatigue (FEM calcu-

lations), furnace load (CFD calculations) and more intelligent furnace control

of feed water, fuel and combustion control systems, restricted by an intelligent

distributed control system (DCS). Thus this thesis contributes with new know-

ledge on stability and dynamic effects in power plant evaporators, caused by

both internal and external physical conditions, such as sliding operation pressure,

preheater trip, extreme low operational pressure and IRBT. We have implemented

and tested the fifth-order WENO solver and used it to simulate the dynamic

response of evaporator tubes in SKV3, on the basis of a calibrated model, based

on measurements from SKV3 (sample 4 in section 3.4). The results can be

summarized as:

• Low firing, i.e., firing with the lowest burner rows, in the furnace leads to

more frequent density-waves upstream the evaporator at pressure below 95

[bar]. This can increase the flow mal-distribution.

• High firing leads to more frequent thermal oscillations downstream the

boiler pipe at pressures below 95 [bar].

• Low firing at low operational pressure (46 [bar]) leads to strong and unam-

biguous flow stability, both density and pressure waves as well as thermal

oscillations.

• We can with the homogeneous model identify simple flashing phenomena,

enthalpy and pressure slugs, as a result of the non-oscillatory and total-

variation diminishing approach.

• A preheater failure affects the evaporator downstream with a short tem-

perature peak to follow. It causes thermal stresses in the evaporator tube.

Furthermore, we see large enthalpy transients at the separator. They can

however be reduced by a fast feed water pump control.

• IRBT may in principle be designed for operation at the Benson minimum,

so that the desired operation flexibility is achieved. The consequence is

unfortunately a high pressure drop at base load.

The homogeneous two-phase flow model is widely applicable, and it is easy to

implement other liquid media than water, simply by updating the EOS look up

table. This means that we can easily calculate an evaporator in a heat pump

system. We have developed a homogeneous thermo-hydraulic model and solved

it by use of a WENO solver, where we use interpolated values for the water /

steam data based on IAPWS-97. Thus, we can demonstrate that this application
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is able to handle complicated flow phenomena, which during an upstart will

initiate pressure waves that might affect the mal-distribution in the panel walls,

and consequently affect the stability of an evaporator. We have already through

measurements seen examples of how the temperature distribution in panel walls

can show great disparity, which is initiated by dynamic flow conditions, when

running a plant from circulation to Benson operation.

The use of vertical internal rifled boiler tubes leads to a low mass flow boiler

design, because the spiral ribs force the heavy fluid phase (water) to the tube

wall, thus maintaining the water film up to a higher steam quality. The ribbed

tubes postpone the dryout so it occurs at higher steam qualities. One of the major

benefits for a vertical tube furnace design is the positive flow response charac-

teristic for a low mass flux system. The tube flow response requires the water

mass flow rate to increase with higher heat input to maintain system pressure

loss. These characteristics of a once-through boiler furnace design are highly

desirable. An advantage of the low mass flux system is also a reduction in

pressure loss through the furnace, so the feed pump power is reduced and the

cycle efficiency correspondingly increased. The boiler ramp rate is not improved

significantly compared to smooth tubes. One of the biggest advantages of IRBT

is the ability to operate far down in the load as a once-through boiler (typically

20 % load). There are obvious structural benefits of using SLMF technology,

because the boiler is lighter and more compact with fewer welds and as such will

require fewer construction hours to build. The relative pressure drop through an

IRBT is significantly higher than for traditional design, but when the evaporator

tubes hang vertically, the total pressure drop is typically lower than what we see

in traditional Benson boilers. One of the major disadvantages is that the flow

distribution through the vertical boiler tubes is very sensitive to the heat flux

distribution in the boiler. This can result in varying heat flux through the panel

walls, which can result in local instability in the flow field and lead to zero flow

conditions and result in DNB or in the worst case a melting tube wall. To prevent

this phenomenon, the boiler manufacturers have sometimes built in structural

changes in the evaporator system, such that a mixing of the fluid from a certain

part of the vertical evaporator is established before the fluid again is fed into the

next section of vertical evaporator tubes. This is done to reduce the temperature

disparity in the evaporator, thereby ensuring a more uniform flow through the

evaporator. These enthalpy mixing boxes are expensive, and lead to an increase

in pressure loss.
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12.6. Recommendations for further work

Ther main recommendations for further work: Experimental validation, Model im-

provement, Range of simulation cases and Model setup improvement.

12.6.1. Experimental validation

The results presented in this thesis are based on both steady state and dynamic

numerical studies of a power plant evaporator, and therefore the most obvious

issue for further work lies in a validation of the experimental data. One possibility

is to use experimental data from, e.g., Siemens large high-pressure test facility

in Erlangen, see [3] and [9], to verify the dynamic model at different load

conditions. However, material from the Siemens test rig is confidential and can

not be published.

12.6.2. Model improvement

Another important numerical aspect is to implement the two-layer or the four-

field models into the WENO scheme and reproduce some of the numerical results

presented in this thesis. Unfortunately, many constitutive relations require a closer

examination, especially in the four-field model, which requires empirical relations

for heat transfer between the many interface layers. A multi-layer model allows

us to investigate the impact of interfacial relations compared to the homogeneous

model developed in this thesis and allows us to estimate flow regime maps. With

respect to the internal rifled boiler tubes, it is of interest to build a two-layer

model where the pressure differential, in order to ensure hyperbolic governing

equations, can be described on the basis of the rotating flow, which causes just a

pressure difference between the two-phases. This can replace the surface tension

model in the two-layer model. Similar actions are carried out for the four-field

model.

12.6.3. Range of simulation cases

Furthermore, it would be interesting to extend the range of simulation cases to

include dynamic load changes from the Benson minimum load to, e.g.,100 % load,

and build up a dynamic two-string model for investigations of mal-distribution.

This would allow us to see the effects from pulsed heat flux from the burners.

Another interesting scenario would be to examine the start-up conditions at an

elevated operating pressure, which then is reduced slowly to the desired operating

point, so that the risk of instability is reduced.
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12.6.4. Model setup improvement

Another issue for further work would be to investigate the evaporator as part of a

larger system, consisting of super-heater and turbine system. If the evaporator is

part of a complex system, the downstream boundary conditions of the evaporator

are not constant in time anymore. The different dynamic responses could thus be

studied.
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A. Dimensionless numbers

In this appendix, we deal with an initial definition of the various dimensionless

numbers related to thermo-hydraulic two phase flow problems, used in this

work.

A.1. Dimensional analysis

In mathematics and science, dimensional analysis is a tool to understand the prop-

erties of physical quantities independent of the units used to measure them, which

makes sense when we deal with complex subjects such as two phase flow. Every

physical quantity is some combination of mass, length, time, electric charge, and

temperature, (denoted M, L, T, Q, and K, respectively). For example, speed,

which may be measured in meters per second (m/s) and has the dimension LT−1.

Dimensional analysis is routinely used to check the plausibility of derived equa-

tions and computations. It is also used to form reasonable hypotheses about

complex physical situations that can be tested by experiment or by more de-

veloped theories of the phenomena, and to categorize types of physical quantities

and units based on their relations to or dependence on other units, or their dimen-

sions if any. All physical dimensions in this work are measured in SI system or a

smaller variety of it.

The basic principle of dimensional analysis was known to the 19th-century

French mathematician Joseph Fourier, who made important contributions based

on the idea that physical laws like Newton’s second law: F = m·a, should be

independent of the units employed to measure the physical variables. This led

to the conclusion that meaningful laws must be homogeneous equations in their

various units of measurement, a result which was eventually formalized in the

Buckingham π theorem. This theorem describes how every physically meaning-

ful equation involving n variables can be equivalently rewritten as an equation of n

- m dimensionless parameters, where m is the number of fundamental dimensions

used. Furthermore, and most importantly, it provides a method for computing

these dimensionless parameters from the given variables. The boiling mechanism

in two-phase flow is so complicated, that a pure analytical expression for the heat

transfer, derived from basic relations, has not yet been obtained. It is therefore

convenient to employ dimensional analysis, which will give the qualitative de-

scriptions various boiling mechanisms and facilitate the empirical correlation of

boiling heat transfer data. The most commonly used non dimensional groups in
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A. Dimensionless numbers

boiling heat transfer and two phase flow are summarized in the below paragraphs,

taken from [140], [40] and from Wikipedia, the free encyclopaedia (Aug., 2010).

A.2. Constants in fluid mechanics and thermodynamics

The dimensionless constants that arise in the results obtained, come from a more

detailed analysis of the underlying physics, and often arises from integrating

some differential equation. Dimensional analysis itself has little to say about

these constants, but it is useful to know that they very often have a magnitude

of order unity. This observation can allow one to sometimes make ’back of the

envelope’ calculations about the phenomenon of interest, and therefore be able

to more efficiently design experiments to measure it, or to judge whether it is

important, etc. In fluid mechanics and thermodynamics, the dimension of any

physical quantity can be expressed in terms of the fundamental dimensions (or

base dimensions) M (mass in kilo), L (length in meter), T (time in seconds) and

K (temperature in kelvin) - these form a 4-dimensional vector space. This is not

the only possible choice, but it is the one most commonly used. For example,

one might choose force, length and mass as the base dimensions, with associated

dimensions F, L, M; this corresponds to a different basis, and one may convert

between these representations by a change of basis. The choice of the base set of

dimensions is, thus, partly a convention, resulting in increased utility and famili-

arity. It is, however, important to note that the choice of the set of dimensions

cannot be chosen arbitrarily - it is not just a convention - because the dimensions

must form a basis: they must span the space, and be linearly independent.

Brinkman Number

The Brinkman number (Br) is a dimensionless number related to heat conduction

from a wall to a flowing viscous fluid, commonly used in polymer processing.

There are several definitions; one is

Br =
μu2

k(Tw −Tb)
(A.1)

where μ is the fluid’s dynamic viscosity, u is the fluid’s velocity, k is the thermal

conductivity of the fluid, Tb is the bulk fluid temperature and Tw is the wall

temperature.
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Boiling number

The Boiling number (Bo) is defined as the ration of vapour velocity away from the

heating surface to flow parallel to the surface. The vapour velocity is evaluated on

the basis of heat transfer q
′′
w by latent heat transport hs

lgρgug:

Bo =
q
′′
w

hs
lgρgug

(A.2)

Buoyancy modulus

The Buoyancy Modulus (Bu) is defined as the ration of the difference in bubble

density to liquid density.

Bu =
ρl −ρg

ρl
(A.3)

Eckert number

The Eckert number (Ec) is a dimensionless number used in fluid dynamics. It

expresses the relationship between a flow’s kinetic energy and enthalpy, and is

used to characterize dissipation. It is defined as

Ec =
u2

cpΔt
(A.4)

where u is a characteristic velocity of the flow. cp is the constant-pressure

specific heat of the flow. Δt is a characteristic temperature difference of the

flow.

Euler number

The Euler number (Eu) is a dimensionless number used in fluid flow calculations.

It expresses the relationship between a local pressure drop Δp e.g. over a restric-

tion and the kinetic energy per volume, and is used to characterize losses in the

flow, where a perfect frictionless flow corresponds to an Euler number of 1. The

Euler Number can be written in the form:

Eu =
Δp
ρu2

(A.5)

where ρ is the density of the two phase mixture or of a single component of the

mixture. The term Δp is the friction pressure drop of flow or the pressure differ-

ence across the boundary of a bubble and u is the fluid velocity.
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A. Dimensionless numbers

Eötvös number

In fluid dynamics the Eötvös number (Eo) is a dimensionless number. Together

with the Morton number it can be used to characterize the shape of bubbles or

drops moving in a surrounding fluid. Eötvös number may be regarded as propor-

tional to buoyancy force divided by surface tension force.

Eo =
ΔρgL2

σ
(A.6)

where Δρ is the difference in density of the two phases, g the gravitational

acceleration, L ia a characteristic length and σ is the surface tension belonging to

the bubble surface.

Froude number

The Froude number is a dimensionless number defined as the ratio of a character-

istic velocity to a gravitational wave velocity. It may equivalently be defined as

the ratio of a body’s inertia to gravitational forces. In fluid mechanics, the Froude

number is used to determine the resistance of an object moving through water,

and permits the comparison of objects of different sizes. The Froude number is

defined as:

Fr =
u
c

(A.7)

where u is a characteristic velocity , and c is a characteristic surface water wave

propagation velocity (c=
√

g ·d), where g is the acceleration due to gravity and

d is the characteristic depth of the liquid column. The Froude number is thus

analogous to the Mach number.

Grashof number

The Grashof number (Gr) is a dimensionless number in fluid dynamics and

heat transfer which approximates the ratio of the buoyancy to viscous force

acting on a fluid. It frequently arises in the study of situations involving natural

convection.

Gr =
gβ (Ts −T∞)L3

ν2
(A.8)

where g is the acceleration due to Earth’s gravity, β is the volumetric thermal

expansion coefficient (equal to approximately 1/T, for ideal fluids, where T is abso-

lute temperature), Ts is the surface temperature of the surrounding object, T∞ is the

bulk temperature, L is the length and ν kinematic viscosity.
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Jakob number

The Jakob Number (Ja) is defined as the ration of the sensible heat carried by a two

phase fluid to the latent heat of a bubble with the same volume:

Ja =
cpρl(Tw −Tb)

hs
f gρg

(A.9)

which expresses the relative effectiveness of the liquid-vapour exchange in the

two phase fluid. Tw and Tb is the temperature of the wall and bubble respect-

ively. cp and ρl expresses the specific heat capacity and the density of the

bubble respectively, hs
f g is the latent heat and ρg is the density of the gas phase

(bubble).

Nusselt number

Heat transfer at a surface boundary within a fluid, can be correlated to the Nusselt

number, which expresses the ratio of convective to conductive heat transfer across

(normal to) the boundary. The conductive component is measured under the

same conditions as the heat convection but with a (hypothetically) stagnant (or

motionless) fluid. A Nusselt number close to unity, namely convection and

conduction of similar magnitude, is characteristic of ’slug flow’ or laminar flow.

A larger Nusselt number corresponds to more active convection, with turbulent

flow typically in the 100-1000 range. The Nusselt Number for bubbles (Nub)

is defined as the ration of the boiling heat transfer rate to the conduction heat

transfer through the liquid film:

Nub =
δ lq

′′

kl(Tw −Tb)
(A.10)

The symbol δ l is the thickness of the liquid film, which can be the same order of

magnitude as a bubble diameter, or it may be chosen as some other dimensions,

depending on the physical model visualized. The term kl is the thermal heat

conduction of the liquid and Tw and Tb is the temperature of the wall and bubble

respectively.

Prandtl number

The Prandtl number of the liquid (Prl) is a dimensionless number approximating

the ratio of momentum diffusivity (kinematic viscosity) and thermal diffusiv-

ity.

Prl =
ν
α

=
cpμ

k
(A.11)
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Note that whereas the Reynolds number and Grashof number are subscripted

with a length scale variable, Prandtl number contains no such length scale in

its definition and is dependent only on the fluid and the fluid state. As such,

Prandtl number is often found in property tables alongside other properties such

as viscosity and thermal conductivity.

Richardson number

The Richardson number (Ri) is the dimensionless number that expresses the ratio

of potential to kinetic energy:

Ri =
g ·L
u2

(A.12)

where g is the acceleration due to gravity, L a representative vertical length

scale, and u is a representative velocity. If the Richardson number is much less

than unity, buoyancy is unimportant in the flow. If it is much greater than unity,

buoyancy is dominant (in the sense that there is insufficient kinetic energy to

homogenize the fluids). If the Richardson number is of order unity, then the flow

is likely to be buoyancy-driven: the energy of the flow derives from the potential

energy in the system originally.

Rayleigh number

The Rayleigh number for a fluid is a dimensionless number associated with

buoyancy driven flow (also known as free convection or natural convection).

When the Rayleigh number is below the critical value for that fluid, heat transfer

is primarily in the form of conduction; when it exceeds the critical value, heat

transfer is primarily in the form of convection. The Rayleigh number is defined

as the product of the Grashof (Gr) number, which describes the relationship

between buoyancy and viscosity within a fluid, and the Prandtl number (Pr), which

describes the relationship between momentum diffusivity and thermal diffusivity.

Hence the Rayleigh number itself may also be viewed as the ratio of buoyancy

and viscosity forces times the ratio of momentum and thermal diffusivities. For

free convection near a vertical wall, this number is

Rax = GrxPr =
gβ
να

(Ts −T∞)x3 (A.13)

where x is a characteristic length (in this case, the distance from the leading

edge), Rax is the Rayleigh number at position x, Grx is the Grashof number at

position x, Pr is the Prandtl number, g is the acceleration due to gravity, Ts is the

surface temperature (temperature of the wall), T∞ is the quiescent temperature

(fluid temperature far from the surface of the object), ν is the kinematic viscosity,

α is thermal diffusivity and β is the thermal expansion coefficient.
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In the above, the fluid properties Pr, ν , α and β are evaluated at the film temper-

ature, which is defined as Tf = (Ts +T∞)/2. For most engineering purposes, the

Rayleigh number is large, somewhere around 106 to 108.

Reynolds number

In fluid mechanics, the Reynolds number (Re) is a dimensionless number that

gives a measure of the ratio of inertial forces to viscous forces and consequently

quantifies the relative importance of these two types of forces for given flow

conditions. Reynolds numbers frequently arise when performing dimensional

analysis of fluid dynamic problems, and are also used to characterize different

flow regimes, such as laminar or turbulent flow: laminar flow occurs at low

Reynolds numbers (Re < 2300), where viscous forces are dominant, and is

characterized by smooth, constant fluid motion, while turbulent flow occurs

at high Reynolds numbers and is dominated by inertial forces, which tend to

produce chaotic eddies, vortices and other flow instabilities. In two phase flow

the Reynolds number can be related to the bubble formation, (Reb), which is a

dimensionless number defined by the ration of the bubble inertial force to the

liquid viscous force. This number indicates the intensity of the liquid agitation

induced by bubble motion.

Rel =
ρgubdb

μl
(A.14)

where ρg is the density of the bubble, ub is the speed of the bubble and db the

diameter of the bubble. Finally we have μl as the dynamic viscosity of the

surrounding liquid.

Sherwood number

The Sherwood number, (Sh) (also called the mass transfer Nusselt number) is a di-

mensionless number used in mass-transfer operation. It represents the ratio of con-

vective to diffusive mass transport, and is defined as follows

Sh =
u ·L
α

(A.15)

where L is a characteristic length, α is mass diffusivity (m2/s) and u is the mass

transfer coefficient (m/s). It can also be further defined as a function of the

Reynolds and Schmidt numbers. This is a very concrete way of demonstrating the

analogies between different forms of transport phenomena.
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A. Dimensionless numbers

Stanton number

The Stanton number, (St), is a dimensionless number that measures the ratio

of heat transferred into a fluid to the thermal capacity of fluid. It is used to

characterize heat transfer in forced convection flows.

St =
h

cpρu
(A.16)

where h is the convection heat transfer coefficient, ρ is the density of the fluid,

cp is the specific heat of the fluid and u is the velocity of the fluid. It can

also be represented in terms of the fluid’s Nusselt, Reynolds, and Prandtl num-

bers:

St =
Nu

Re ·Pr
(A.17)

where Nu is the Nusselt number, Re is the Reynolds number and Pr is the

Prandtl number. The Stanton number arises in the consideration of the geometric

similarity of the momentum boundary layer and the thermal boundary layer,

where it can be used to express a relationship between the shear force at the

wall (due to viscous drag) and the total heat transfer at the wall (due to thermal

diffusivity).

A.3. Dimensionless quantities

The governing equations for two-phase pipe flow with external heat flux, can be

transformed into a dimensionless coordinate system by introducing a number

dimensionless quantities. One of the advantages in using dimensionless quantities

is, that it is easier to evaluate the stability conditions in the corresponding numer-

ical solver. Another very important argument for working with dimensionless

quantities is that it is easier to judge whether some coefficients in the governing

equations are important or not and which parameter is important to change for

evaluation of the sensitivity of the numerical model, according to the Buckingham

π theorem. Finally it is useful to know the magnitude of some dimensionless

numbers, which normally is visibly in the governing equations and thereby gives

an idea of what kind of physical problem we are doing with and therefore be

8



Dimensionless quantities

able to more efficiently design simulation campaigns to fit real experiments. The

below quantities are used in this work:

ρ∗ =
ρ
ρ0

, h∗ =
h
u2

0

, p∗ =
p

ρ0 ·u2
0

T ∗ =
T
T0

, t∗wall =
t
t0
, where t0 =

l2

α
(based on thermal diffusivity)

α =
k

ρcp
, t∗f luid =

t
t0
, where t0 =

d2
i

ν
(based on kinematic viscosity)

z∗ =
z
l
, u∗ =

u
u0

, G∗ =
G
G0

G0 = ρ0 ·u0, A∗ =
A
A0

(A.18)

Subscript 0 indicates a reference point, which may be an upstream boundary con-

dition or a steady state condition to the mathematical problem.
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B. Operating range of the thermal power plant

SKV3

In this appendix are listed static cycle calculations of the thermal power plant

SKV3. The calculations are based on the consolidated simulation tool Turabs 2,

developed by DONG Energy - Thermal Power A/S. The simulations have the aim

of identifying a complete operating range in terms of both heat production and

net electricity production. The calculation results in a so-called PQ diagram, see

figure (3.1). In table B.1 are listed abbreviations for the most relevant calculation

data to the specific loading points. There are a total estimated 145 load points in

two tables, see table B.2 and B.3.

Table B.1.: Abbreviations used in connection with the PQ load calculations.

Item Explanation Unit

Qdh District heat production [Kj/s]

Pnet Nett electricity production [Kw]

Node Turabs calculation node [-]

Quality Quality of calculation, 0: Interpolation used, 1: Converged simulation [-]

Cv
Pcond−Pactual

Qdh
[-]

Qboil Gross fired boiler output [Kj/s]

Qexp Heat consumption in gasexspander [Kj/s]

Qbrut Gross electricity production [Kw]

Pef Internal consumption [Kw]

m High pressure steam flow [Kg/s]

mqw Cooling water flow [Kg/s]

Pkon Condenser pressure [Bar]

tHP Outlet temperature HT boiler [◦C]

tRH1 Outlet temperature RH1 boiler [◦C]

QRH1 Injection flow in RH1 [kg/S]

QRH2 Outlet temperature RH2 boiler [◦C]

QRH2 Injection flow in RH2 [kg/s]

ηked Boiler efficiency [-]

Mode=1 Normal operating all preheaters (PH) active [-]

Mode=2 HPPH=50 LPPH=100, HPPH=High Pressure PreHeater [%]

Mode=3 HPPH=0 LPPH=100, LPPH=Low Pressure PreHeater [%]

Mode=4 HPPH=0 LPPH=50 [%]

Mode=5 HPPH=0 LPPH=0 [%]

Mode=6 HPPH=100 LPPH=50 [%]

Mode=7 HPPH=50 LPPH=50 [%]

Mode=8 HPPH=100 LPPH=0 [%]

Mode=9 HPPH=50 LPPH=0 [%]

mPH9 Steam flow to HPPH9 [kg/s]

mPH10 Steam flow to HPPH10 [kg/s]
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B. Operating range of the thermal power plant SKV3

N Qdh Pnet Node Quality Cv Qboil Qexp Pbrut Pe f mqw m f w Pkon tHP tRH1 mRH1 tRH2 mRH2 ηked Mode mFV 9 mFV 10

1 0 431085 1 1 0.0409 953221 5200 456630 29016 269.6 13339 0.0228 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

2 0 410190 2 1 0.0901 890691 5200 432057 25467 269.6 13087 0.0214 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

3 0 391688 3 1 0.1269 836875 4861 410932 22610 269.6 12806 0.0202 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.7 27.7

4 0 343426 4 1 0.1322 732622 3931 358383 17631 233.1 12216 0.0185 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.0 22.7

5 0 294263 5 1 0.1380 628369 3000 305682 13369 197.2 11479 0.0170 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.0

6 0 244008 6 1 0.1445 524115 2319 252401 9836 160.8 10611 0.0156 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

7 0 192123 7 1 0.1928 419862 1638 198263 7046 127.5 9657 0.0143 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

8 0 160269 8 1 0.2529 356730 1225 165422 5717 107.5 9016 0.0136 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

9 0 126053 9 1 0.2954 293597 813 130508 4667 89.6 8390 0.0129 532.85 521.80 0 506.89 0 0.9491 1 4.6 6.2

10 0 93357 10 1 0.4073 230465 400 97400 3887 70.5 7666 0.0122 507.21 484.76 0 478.62 0 0.9453 1 3.4 4.5

11 0 63122 11 1 0.5391 167332 0 67043 3394 48.9 6768 0.0113 514.64 498.14 0 483.29 0 0.9335 1 2.2 2.8

12 71573 428158 12 1 0.0409 953221 5200 447716 23077 269.5 12860 0.0204 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

13 143146 418827 13 1 0.0856 953221 5200 438189 22931 269.4 12149 0.0182 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

14 214719 409268 14 1 0.1016 953221 5200 428413 22764 269.3 11214 0.0163 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

15 286292 400127 15 1 0.1081 953221 5200 419051 22589 269.2 10038 0.0146 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

16 316764 393911 16 1 0.1174 953221 5200 412734 22520 269.2 9487 0.0140 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

17 347237 387593 17 1 0.1253 953221 5200 406321 22456 269.2 8910 0.0134 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

18 377709 381146 18 1 0.1322 953221 5200 399782 22395 269.2 8288 0.0128 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

19 408181 374651 19 1 0.1383 953221 5200 393201 22340 269.2 7632 0.0122 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

20 438654 368059 20 1 0.1437 953221 5200 386561 22322 269.2 7038 0.0115 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

21 469126 361424 21 1 0.1485 953221 5200 379869 22295 269.2 6698 0.0108 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

22 499599 355467 22 1 0.1514 953221 5200 373872 22282 269.2 6524 0.0099 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

23 530071 351243 23 1 0.1506 953221 5200 369630 22282 269.2 6528 0.0090 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

24 530077 351267 24 1 0.1506 953221 5200 369629 22257 269.2 6243 0.0091 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

25 530083 351290 25 1 0.1505 953221 5200 369628 22233 269.2 5957 0.0091 582.00 580.00 7.37 580.00 4.04 0.9570 3 0 0

26 62845 404526 26 1 0.0901 890691 5200 424046 23160 269.5 12560 0.0194 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

27 125690 396282 27 1 0.1107 890691 5200 415603 23003 269.5 11857 0.0176 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

28 188534 387872 28 1 0.1184 890691 5200 406982 22834 269.4 10981 0.0160 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

29 251379 379769 29 1 0.1210 890691 5200 398668 22663 269.3 9921 0.0145 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

30 281650 373632 30 1 0.1298 890691 5200 392425 22586 269.3 9366 0.0139 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

31 311921 367372 31 1 0.1373 890691 5200 386062 22513 269.3 8781 0.0133 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

32 342193 361008 32 1 0.1437 890691 5200 379601 22444 269.3 8158 0.0127 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

33 372464 354608 33 1 0.1492 890691 5200 373109 22382 269.3 7502 0.0121 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

34 402735 348212 34 1 0.1539 890691 5200 366649 22346 269.3 6812 0.0115 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

35 433006 342085 35 1 0.1573 890691 5200 360434 22285 269.3 6090 0.0108 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

36 463277 336380 36 1 0.1593 890691 5200 354674 22253 269.3 5719 0.0099 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

37 493548 332378 37 1 0.1577 890691 5200 350631 22229 269.3 5444 0.0090 582.00 580.00 6.11 580.00 3.21 0.9565 2 8.5 14.4

38 55184 384687 38 1 0.1269 836875 4861 403752 22467 269.5 12264 0.0186 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

39 110367 377399 39 1 0.1295 836875 4861 396271 22308 269.5 11588 0.0171 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

40 165551 369985 40 1 0.1311 836875 4861 388657 22144 269.5 10780 0.0157 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

41 220734 362795 41 1 0.1309 836875 4861 381269 21979 269.4 9829 0.0144 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

42 250790 356738 42 1 0.1394 836875 4861 375101 21895 269.4 9272 0.0138 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

43 280846 350543 43 1 0.1465 836875 4861 368798 21815 269.4 8684 0.0132 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

44 310902 344270 44 1 0.1525 836875 4861 362423 21740 269.4 8062 0.0126 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

45 340958 337960 45 1 0.1576 836875 4861 356016 21671 269.4 7406 0.0120 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

46 371014 331661 46 1 0.1618 836875 4861 349646 21626 269.4 6719 0.0114 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

47 401070 325668 47 1 0.1646 836875 4861 343560 21559 269.4 6000 0.0107 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

48 431126 320424 48 1 0.1653 836875 4861 338237 21501 269.4 5250 0.0099 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

49 461182 316552 49 1 0.1629 836875 4861 334360 21511 269.4 5957 0.0088 582.00 580.00 5.02 580.00 2.50 0.9560 1 14.8 27.7

50 470702 306808 50 1 0.1803 836875 4861 321361 18306 233.9 4956 0.0089 582.00 580.00 5.02 580.00 2.50 0.9560 3 0 0

51 56409 335967 51 1 0.1322 732622 3931 350734 17473 233.0 11516 0.0170 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.0 22.7

52 112817 328300 52 1 0.1341 732622 3931 342870 17309 233.0 10679 0.0156 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.0 22.7

53 169226 320684 53 1 0.1344 732622 3931 335061 17147 233.0 9699 0.0143 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

54 198723 314767 54 1 0.1442 732622 3931 329041 17067 233.0 9141 0.0137 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

55 228220 308742 55 1 0.1520 732622 3931 322917 16991 233.0 8557 0.0131 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

56 257717 302647 56 1 0.1582 732622 3931 316728 16921 233.0 7943 0.0125 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

57 287213 296513 57 1 0.1633 732622 3931 310506 16857 233.0 7298 0.0119 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

58 316710 290391 58 1 0.1675 732622 3931 304321 16815 233.0 6622 0.0113 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

59 346207 284582 59 1 0.1700 732622 3931 298428 16752 233.0 5917 0.0106 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

60 375704 279576 60 1 0.1699 732622 3931 293351 16699 233.0 5181 0.0098 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

61 405201 276037 61 1 0.1663 732622 3931 289815 16714 233.0 5957 0.0087 582.00 580.00 2.92 580.00 1.12 0.9554 1 13.1 22.7

62 409923 271415 62 1 0.1757 732622 3931 284062 15603 217.8 4419 0.0089 582.00 580.00 2.92 580.00 1.12 0.9554 2 6.8 10.6

63 470698 306789 63 1 0.1804 836875 4861 321362 18326 233.9 5457 0.0089 582.00 580.00 5.02 580.00 2.50 0.9560 3 0 0

64 470695 306771 64 1 0.1804 836875 4861 321364 18346 233.9 5957 0.0089 582.00 580.00 5.02 580.00 2.50 0.9560 3 0 0

65 58128 286239 65 1 0.1380 628369 3000 297465 13205 197.1 10615 0.0155 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.0

66 116257 278113 66 1 0.1389 628369 3000 289149 13044 197.1 9603 0.0142 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.1

67 145266 272345 67 1 0.1509 628369 3000 283286 12969 197.1 9052 0.0136 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.1

68 174275 266460 68 1 0.1595 628369 3000 277310 12897 197.1 8469 0.0130 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.1

69 203285 260525 69 1 0.1660 628369 3000 271290 12831 197.1 7866 0.0124 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.1

70 232294 254545 70 1 0.1710 628369 3000 265230 12771 197.1 7232 0.0118 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.1

71 261303 248569 71 1 0.1749 628369 3000 259197 12732 197.1 6569 0.0112 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.1

72 290313 242920 72 1 0.1769 628369 3000 253471 12673 197.1 5878 0.0106 582.00 580.00 1.15 580.00 0.20 0.9549 1 11.1 18.1

Table B.2.: Simulations for PQ diagram - part 1.
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N Qdh Pnet Node Quality Cv Qboil Qexp Pbrut Pe f mqw m f w Pkon tHP tRH1 mRH1 tRH2 mRH2 ηked Mode mFV 9 mFV 10

73 319322 238037 73 1 0.1761 628369 3000 248523 12623 197.1 5159 0.0098 582.00 580.00 1.15 580.00 0.2 0.9549 1 11.1 18.1

74 348331 234590 74 1 0.1713 628369 3000 245086 12642 197.1 5957 0.0087 582.00 580.00 1.15 580.00 0.2 0.9549 1 11.1 18.1

75 352581 230484 75 1 0.1809 628369 3000 240167 11844 184.7 4414 0.0088 582.00 580.00 1.15 580.00 0.2 0.9549 2 5.7 8.4

76 356700 226578 76 1 0.1898 628369 3000 235512 11107 173.1 4414 0.0088 582.00 580.00 1.15 580.00 0.2 0.9549 3 0 0

77 356699 226550 77 1 0.1898 628369 3000 235513 11137 173.1 5186 0.0088 582.00 580.00 1.15 580.00 0.2 0.9549 3 0 0

78 356698 226521 78 1 0.1899 628369 3000 235515 11167 173.1 5957 0.0087 582.00 580.00 1.15 580.00 0.2 0.9549 3 0 0

79 61289 235150 79 1 0.1445 524115 2319 243353 9673 160.7 9555 0.0142 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

80 90203 229443 80 1 0.1615 524115 2319 237557 9601 160.7 9007 0.0136 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

81 119116 223620 81 1 0.1712 524115 2319 231649 9532 160.7 8428 0.013 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

82 148030 217731 82 1 0.1775 524115 2319 225681 9469 160.7 7824 0.0124 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

83 176944 211802 83 1 0.1820 524115 2319 219679 9411 160.7 7197 0.0118 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

84 205858 205867 84 1 0.1853 524115 2319 213692 9375 160.7 6541 0.0112 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

85 234772 200241 85 1 0.1864 524115 2319 207997 9320 160.7 5857 0.0105 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

86 263686 195386 86 1 0.1844 524115 2319 203083 9272 160.7 5146 0.0098 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

87 292600 191945 87 1 0.1779 524115 2319 199654 9294 160.7 5957 0.0087 582.00 580.00 0.63 580.00 0 0.9542 1 9.0 13.7

88 296213 188513 88 1 0.1873 524115 2319 195648 8728 151.1 4410 0.0088 582.00 580.00 0.63 580.00 0 0.9542 2 4.5 6.3

89 299608 185317 89 1 0.1959 524115 2319 191940 8225 142.2 4410 0.0088 582.00 580.00 0.63 580.00 0 0.9542 3 0 0

90 299607 185289 90 1 0.1960 524115 2319 191942 8255 142.2 5184 0.0088 582.00 580.00 0.63 580.00 0 0.9542 3 0 0

91 299606 185260 91 1 0.1961 524115 2319 191943 8285 142.2 5957 0.0087 582.00 580.00 0.63 580.00 0 0.9542 3 0 0

92 29645 186407 92 1 0.1928 419862 1638 192461 6974 127.5 9103 0.0137 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

93 59290 180556 93 1 0.1951 419862 1638 186528 6905 127.5 8516 0.0131 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

94 88935 174615 94 1 0.1969 419862 1638 180510 6841 127.5 7896 0.0125 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

95 118580 168631 95 1 0.1981 419862 1638 174456 6784 127.5 7255 0.0119 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

96 148225 162627 96 1 0.1990 419862 1638 168406 6749 127.5 6586 0.0113 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

97 177870 156908 97 1 0.1980 419862 1638 162620 6693 127.5 5888 0.0106 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

98 207515 151967 98 1 0.1935 419862 1638 157622 6647 127.5 5162 0.0098 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

99 237160 148495 99 1 0.1840 419862 1638 154167 6669 127.5 5957 0.0087 582.00 572.43 0.10 554.89 0 0.9526 1 7.0 10.0

100 240083 145752 100 1 0.1931 419862 1638 151033 6285 120.3 4408 0.0088 582.00 572.43 0.10 554.89 0 0.9526 2 3.5 4.6

101 242770 143227 101 1 0.2014 419862 1638 148180 5962 113.7 4408 0.0088 582.00 572.43 0.10 554.89 0 0.9526 3 0 0

102 242769 143198 102 1 0.2015 419862 1638 148181 5992 113.7 5183 0.0087 582.00 572.43 0.10 554.89 0 0.9526 3 0 0

103 242768 143169 103 1 0.2017 419862 1638 148182 6022 113.7 5957 0.0087 582.00 572.43 0.10 554.89 0 0.9526 3 0 0

104 29645 152772 104 1 0.2529 356730 1225 157844 5651 107.5 8431 0.013 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

105 58334 147063 105 1 0.2264 356730 1225 152066 5592 107.5 7832 0.0124 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

106 87501 141200 106 1 0.2179 356730 1225 146137 5537 107.5 7198 0.0118 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

107 127606 133167 107 1 0.2124 356730 1225 138037 5483 107.5 6288 0.011 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

108 145836 129729 108 1 0.2094 356730 1225 134562 5452 107.5 5857 0.0105 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

109 175003 124885 109 1 0.2022 356730 1225 129666 5408 107.5 5145 0.0097 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

110 204170 121474 110 1 0.1900 356730 1225 126275 5432 107.5 5957 0.0087 582.00 556.58 0 539.07 0 0.9515 1 5.7 7.9

111 206611 119242 111 1 0.1986 356730 1225 123707 5100 101.7 4408 0.0088 582.00 556.58 0 539.07 0 0.9515 2 2.8 3.7

112 208831 117197 112 1 0.2063 356730 1225 121387 4828 96.5 4408 0.0088 582.00 556.58 0 539.07 0 0.9515 3 0 0

113 208830 117168 113 1 0.2064 356730 1225 121389 4859 96.5 5183 0.0087 582.00 556.58 0 539.07 0 0.9515 3 0 0

114 208828 117139 114 1 0.2065 356730 1225 121390 4889 96.5 5957 0.0087 582.00 556.58 0 539.07 0 0.9515 3 0 0

115 34658 115816 115 1 0.2954 293597 813 120188 4599 89.7 7674 0.0123 532.85 521.80 0 506.89 0 0.9491 1 4.6 6.2

116 57764 111233 116 1 0.2566 293597 813 115556 4557 89.7 7167 0.0118 532.85 521.80 0 506.89 0 0.9491 1 4.6 6.2

117 86646 105491 117 1 0.2373 293597 813 109775 4526 89.7 6519 0.0112 532.85 521.80 0 506.89 0 0.9491 1 4.6 6.2

118 115528 100039 118 1 0.2252 293597 813 104266 4476 89.7 5842 0.0105 532.85 521.80 0 506.89 0 0.9491 1 4.6 6.2

119 144410 95295 119 1 0.2130 293597 813 99474 4434 89.7 5139 0.0097 532.85 521.80 0 506.89 0 0.9491 1 4.6 6.2

120 173292 91971 120 1 0.1967 293597 813 96173 4460 89.7 5957 0.0087 532.85 521.80 0 506.89 0 0.9491 1 4.6 6.2

121 175194 90376 121 1 0.2036 293597 813 94208 4092 85.1 4410 0.0088 532.85 521.80 0 506.89 0 0.9491 2 2.2 2.9

122 176957 88896 122 1 0.2100 293597 813 92419 3785 80.9 4410 0.0088 532.85 521.80 0 506.89 0 0.9491 3 0 0

123 176956 88867 123 1 0.2101 293597 813 92420 3815 80.9 5184 0.0087 532.85 521.80 0 506.89 0 0.9491 3 0 0

124 176955 88838 124 1 0.2103 293597 813 92421 3845 80.9 5957 0.0087 532.85 521.80 0 506.89 0 0.9491 3 0 0

125 23392 83829 125 1 0.4073 230465 400 87822 3848 70.6 7180 0.0119 507.21 484.76 0 478.62 0 0.9453 1 3.4 4.4

126 46784 79273 126 1 0.3010 230465 400 83242 3828 70.6 6658 0.0113 507.21 484.76 0 478.62 0 0.9453 1 3.4 4.4

127 70176 74787 127 1 0.2646 230465 400 78710 3787 70.6 6124 0.0108 507.21 484.76 0 478.62 0 0.9453 1 3.4 4.4

128 93568 70700 128 1 0.2421 230465 400 74583 3751 70.6 5570 0.0102 507.21 484.76 0 478.62 0 0.9453 1 3.4 4.4

129 116961 67090 129 1 0.2246 230465 400 70939 3720 70.6 4999 0.0095 507.21 484.76 0 478.62 0 0.9453 1 3.4 4.4

130 140353 64578 130 1 0.2050 230465 400 68459 3754 70.6 5957 0.0087 507.21 484.76 0 478.62 0 0.9453 1 3.4 4.4

131 141832 63623 131 1 0.2096 230465 400 66996 3247 67.2 4412 0.0088 507.21 484.76 0 478.62 0 0.9453 2 1.6 2.1

132 143156 62764 132 1 0.2137 230465 400 65689 2800 64.2 4412 0.0088 507.21 484.76 0 478.62 0 0.9453 3 0 0

133 143155 62735 133 1 0.2139 230465 400 65690 2830 64.2 5185 0.0087 507.21 484.76 0 478.62 0 0.9453 3 0 0

134 143154 62706 134 1 0.2141 230465 400 65691 2860 64.2 5957 0.0087 507.21 484.76 0 478.62 0 0.9453 3 0 0

135 17222 53837 135 1 0.5391 167332 0 57724 3367 49.0 6425 0.0112 514.64 498.14 0 483.29 0 0.9335 1 2.1 2.7

136 34443 50626 136 1 0.3628 167332 0 54482 3339 49.0 6042 0.0108 514.64 498.14 0 483.29 0 0.9335 1 2.1 2.7

137 51665 47446 137 1 0.3034 167332 0 51276 3314 49.0 5649 0.0103 514.64 498.14 0 483.29 0 0.9335 1 2.1 2.7

138 68887 44473 138 1 0.2707 167332 0 48278 3291 49.0 5247 0.0099 514.64 498.14 0 483.29 0 0.9335 1 2.1 2.7

139 86108 41898 139 1 0.2465 167332 0 45682 3272 49.0 4835 0.0094 514.64 498.14 0 483.29 0 0.9335 1 2.1 2.7

140 103330 40120 140 1 0.2226 167332 0 43946 3315 49.0 5957 0.0087 514.64 498.14 0 483.29 0 0.9335 1 2.1 2.7

141 104298 39837 141 1 0.2232 167332 0 43006 2658 46.9 4415 0.0088 514.64 498.14 0 483.29 0 0.9335 2 1.0 1.3

142 105170 39589 142 1 0.2238 167332 0 42161 2061 45.0 4414 0.0088 514.64 498.14 0 483.29 0 0.9335 3 0 0

143 105169 39561 143 1 0.2240 167332 0 42162 2091 45.0 5186 0.0087 514.64 498.14 0 483.29 0 0.9335 3 0 0

144 105168 39532 144 1 0.2243 167332 0 42163 2121 45.0 5957 0.0087 514.64 498.14 0 483.29 0 0.9335 3 0 0

Table B.3.: Simulations for PQ diagram - part 2.
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C. Fin cross sectional area in rifled pipe

In this appendix is outlined the net cross section area of an IRBT. The cross

section of a fin is illustrated in figure (C.1). The number of fins are defined as

Nf , were a single fin cross sectional area can defined by the below equations,

referring to figure (C.1) (illustration A-C).

By inserting Rtot and h f in the Pythagoras relation of figure (C.1) (illustration B),

we have:

l2
4 = (Rtot −h f )

2 +1/4b2
f (C.1)

From figure (C.1) (illustration B) we can see that the maximum internal radius

(Rtot ) can be expressed by l1 and l4

Rtot = l1 + l4 (C.2)

Additionally, we have the following relationship for determine l5, see figure (C.1)

B.

l2
4 = l2

5 +

(
l2
2

)2

(C.3)

From figure (C.1) (illustration C), the length l2 can be expressed by the law of

sines:
sin(β )

l2
=

sin(π
2 +α1)

l3
=

cos(α1 +β )
l1

(C.4)

With cos(α1) = l5/l4 and sin(α1) = l2/(2 · l4) we find:

sin(β )
l2

=
cos(α1)cos(β )− sin(α1)sin(β )

l1
=

l1 · l2 · l5
2 · l4 (C.5)

The rifle cross sectional area (Ac) can now be calculated as:

Ac = 2
( α

2π
R2

totπ − (A1 +A2 +A3)
)

= αR2
tot −2(A1 +A2 +A3) (C.6)
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C. Fin cross sectional area in rifled pipe

Figure C.1.: Sketch of the fin area in a rifled boiler tube.

where A1 to A3 are illustrated in figure (C.1):

A1 =
l2 · l5

4
(C.7)

A2 =
b f · (Rtot −h f )

4
(C.8)

A3 =
l1l3 sin(β )

2

=
l1 · l2 · l5

2 · l4 (C.9)
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The rifles are reducing the cross sectional area of the pipe with the below factor

ζ

ζ =
R2

totπ −Nf Ac

R2
totπ

= 1− Nf αR2
tot −2Nf (A1 +A2 +A3)

R2
totπ

= 1−Nf
α
π
+2Nf

A1 +A2 +A3

R2
totπ

(C.10)

and the hydraulic diameter R is:

R = Rtot
√

ζ (C.11)

The angel α is determined by adding two angles (α1 and α2), which is given by

equation (C.12) and (C.13).

l4 cos(α1) = l5 (C.12)

l4 cos(α2) = Rtot −h f (C.13)

From C.1 we have:

α = 2α1 +α2 (C.14)

For a typical rifled boiler tube (RR5), we have the below data:

Nf = 6

Rtot = 14mm

h f = 1mm

b f = 4mm

β = 10o = 0.174533

lp = 100mm (C.15)

(C.16)

which gives a cross section reduction factor of ζ =0.8546 (by use of EES) and a

corresponding hydraulic pipe diameter of R=12.94 mm.
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D. Estimation of lifetime

A simple approach for calculation consumed lifetime in a heat tube is based on

a stepwise calculation of the stresses in the material, which exceeds the rupture

stress at the averaged service temperature of the material. The calculation is using

time steps of typically 100-1000 hours and material stress is calculated according

to equation (D.1), where ri=rit=0
-c·t is the distance from the centre to tube inner

surface, given in [m], ro=rot=0
+x is the distance from the centre to tube surface,

given in [m], where x is the material loss due to oxidation [m] and where rit=0

and rot=0
are the distances from the centre of the pipe to inner surface and outer

surface respectively at time = 0, both given in [m]. The operational pressure p is

given in [N/mm2]:

σmaterial = p
ri + ro

2(ro − ri)
(D.1)

where the rupture time is given by equation (D.2). Here is A a constant and n is

the Norton exponent

trupture = A ·σ−n [hours] (D.2)

The secondary creep rate ε ′ is given as

ε ′ = Bσn (D.3)

where B=C/A and

ε ′ · trupture =C (D.4)

The temperature dependant Norton constant n is derived from equation (D.5) and

(D.6) as the slope of the Wler curve.

n =
ln(105)− ln(104)

ln(σrupture(105))− ln(σrupture(104))
(D.5)

A = 105 ·σn
rupture(105)

(D.6)

where σrupture(104) and σrupture(105) are the rupture stress at 104 and 105 [h]

respectively, given in [N/mm2]. After each time step (Δti), the accumulated con-

sumed lifttime fraction (LTF) defined by equation (D.7) is calculated.

LT F = ∑
i

Δti
trupturei

(D.7)
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D. Estimation of lifetime

and the corresponding life time tli f e is defined as: tli f e = ∑i Δti for LTF = 1. With

time the temperature in the heat pipe will increase due to steam oxide formation,

as the oxide film constitutes a significant resistance against heat transfer, which

can be estimated by the detailed wall model, given by equation (4.4) or by the

simple overall heat transfer coefficient (4.25). This process is self-supporting as

higher material temperature lead to higher oxidation rate.

Apart from its impact on corrosion and creep, steam side oxidation may in

itself constitute a problem. Thick magnetite films may exfoliate causing blocking

of the heat pipes and valves resulting in reduced flow and elevated pressure drop.

Furthermore, magnetite particles may cause erosion of the turbines. Typical data

for a life cycle analysis is given in table (D.1), taken from [26]. We are referring

Table D.1.: Reference data for super heaters, taken from [26].

Reference data Unit PF-USC PFBC-USC

Inside diameter, (2ri0) mm 22 22

Thickness, (ro0
− ri0) mm 8 8

Material 347H FG 347H FG

Pressure, (p) bar 295 295

Corrosion rate, (c) mm/105 2 2

Steam temperature, (Tsteam)
oC 590 590

heat transfer coeff. - steam side (αi) kW/m2 ·K 5 5

Heat conductivity, metal (λmetal) W/m ·K 24.9 24.9

Oxide conductivity (λoxide) W/m ·K 1.0 1.0

Heat flux, outer surface (q̇) kW/m2 20−30 80−100

to [26] for a detailed description of steam oxidation constants and thermal con-

ductivity of the oxide film as function of temperature. There has been carried out

a lifetime assessment, see [28], for two samples taken at Avedøreværket unit 1

(AVV1), at two different locations inside the boiler. The first sample 1 is taken at

elevation 27.6 [m] and sample 3 is taken at elevation 21.6 [m]. Both samples are

made on the west wall, approx. 3.5 [m] from the back wall. The operating time

was 148000 hours, with inlet conditions: Tsteam = 347 [oC] and p = 292 [bar] and

outlet conditions: Tsteam = 406 oC] and p = 283 [bar]. Vapour quantity was 215

[kg/s] and heat flux at sample 1 was estimated to q1 = is 108 [kW/m2] and q2

= was 292 [kW/m2]. The lifetime simulations, based on the outlined theory in

this chapter, is illustrated in figure (D.1). Assessing the lifetime of the sample 1

and 3 shows, that the lifetime is determined by the sample 3. An acidification
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of the evaporator is expected to be carried out after180000 hours of operation

(4.5 years) with 7000 hours of operation / year. By acidification is the oxide layer

Figure D.1.: Input for lifetime calculations are oxidation, corrosion rate, creep data and

operating data. Data from DONG Energy - confidential internal report,

[28].

and iron deposits removed and the metal temperature is lowered to the starting

point.
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E. Pressure drop and heat transfer for internal

two phase flows in pipes

In this appendix is derived the classical formula that reflects pressure drop and

heat transfer for internal two phase flows in pipes.

E.1. Pressure loss in two phase flows in pipes

In the following, is the empirical relationships derived, which is used to calcu-

late both the friction-, gravity- and acceleration pressure drop in the two phase

flow.

E.1.1. Acceleration pressure loss

The acceleration pressure loss can be expressed as(
∂ p̄
∂ z

)
a
=−G2 ∂

∂ z

(
1

ρ ′

)
(E.1)

Note that ρ ′
is the momentum density defined by (E.4). Hence the momentum

change or acceleration pressure drop ΔPa is

ΔPa =
∫ L

0

(
∂ p̄
∂ z

)
a

dz

=
ṁ2

A2

∫ L

0

∂
∂ z

(
1

ρ ′

)
=

ṁ2

A2

(
1

ρ ′
out

− 1

ρ ′
in

)
(E.2)

The acceleration drop between two cross sections, 1 and 2, of a pipe is calculated

from the change in mean density of the mixture:

ΔpA =

(
ṁ
A

)
·
(

1

ρ̄2
− 1

ρ̄1

)
(E.3)

where the mixture density is evaluated using the momentum density, [5]:

ρ
′
=

(
x2

ρgε
+

(1− x)2

ρl(1− ε)

)−1

(E.4)
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E. Pressure drop and heat transfer for internal two phase flows in pipes

E.1.2. Gravitational pressure loss

The gravitational pressure drop can be estimated, if we know the distribution of

the density along the pipe length axis

ΔPg =
∫ L

0

(
∂ p̄
∂ z

)
g

dz

= gcosθρ̄m

= gcosθ
N

∑
i=1

ρ̄i

N
(E.5)

It assumes an expression for the mean density, that in a simple manner can be

calculated as a mean value of the in- and outlet density, or the heat pipe element

can be modelled is N sub-elements, so that we can take into account a non-

uniform flux distribution. The change in hydrostatic pressure due to elevation

change can also be calculated from:

ΔpG = (ρl · (1− ε)+ρg · ε)) ·g ·Δh (E.6)

In [5], the volume fraction of vapour in the mixture is calculated from Rouh-

ani:

ε =

(
C0

ε̄
+

ρg ·ug j

x · ( ṁA )
)−1

(E.7)

Where

C0 = 1+0.2 · (1− x) ·
(
(g ·D)0.25 ·ρ0.25

l( ṁ
A

) )
(E.8)

ug j = 1.18 · [g ·σ · (ρl −ρg)]0.25 · (1− x)√ρl
(E.9)

ε̄ =
ρl · x

ρl · x+(ρg · (1− x))
(E.10)

In the model of [77] the volume fraction of vapour, ε , is calculated as:

ε =
x

ρg
ρl σ + x

(
1− ρg

ρlσ

) (E.11)
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Pressure loss in two phase flows in pipes

Where the slip parameter, σ , is evaluated from:

σ = 10
0.031636+

(
0.07773+0.51306·log

ρl
ρg

)
·log

ρl
ρg for 5 bara < p < 10 bara (E.12)

If the pressure p exceeds 190 [bar] we make an adjustment

if p > 190 : σ = σ − (σ −1.0) · (p−190.0)/31.2 (E.13)

where p is given in [bar].

E.1.3. Friction pressure loss

The friction pressure loss can in a similar manner be estimated as

ΔPf =−Fw

=− fD
G2

2diρ̄m
(E.14)

The heat pipe models pressure drop for a fluid flowing through a one-dimensional

pipe of circular cross section. The theory is well established and may be

found in ref. [5]. The frictional pressure loss is calculated by the general

formula

ΔPf =
1

2
ρv2

(
f (Re,ε)

L
di

+∑
k

ηk

)
(E.15)

where ρ is density (mkg), v is mean velocity (ms), L is length of the pipe (m),
di is the inner diameter of the pipe (m), f is the Darcy-Weisbach loss factor (-)

and ηk is the is the discrete loss factor of change no. k of the pipe structure like a

bend or change of cross sectional area. Discrete loss factors may be found in ref.

[5], DIN-norm, or equivalent. For non-circular pipes is the hydraulic diameter,

dh, defined as 4 times the ratio of the cross sectional area to the wetted periphery

(S):

dh = 4
A
S

(E.16)

The basic assumptions of a homogeneous model are: 1) equal linear velocities

of vapour and fluid, 2) thermodynamic equilibrium between the two phases, and

3) a suitably defined single-phase friction- and heat transfer factor is applicable

to the two-phase flow. The homogeneous mixture model performs reasonable

well, when the two phase flow pattern represents a well-mixed configuration like

dispersed bubbly flow, but for flow patterns like slug flow and stratified flow, with

flow regime transitions, empirical correlations remain the most widely applied

method to estimate the friction pressure loss in a two phase flow. Most empirical
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E. Pressure drop and heat transfer for internal two phase flows in pipes

correlations use the concept of two-phase multipliers and are applied to all flow

regimes. The concept is described many places in the literature, including [40].

In general it is based on the relationship(
∂P
∂ z

)
f
=

4

di
fwρ̄u2 (E.17)

The term fw is the dimensionless coefficient based on the Darcy friction factor. It

can be found from a Moody diagram or more precisely by solving the Colebrook

equation:

fw :

⎧⎪⎪⎨⎪⎪⎩
1√
fw

=−2log10

(
k

3.7 di
+ 2.51

Re
√

fw

)
for Re > 4000

fw = 64
Re for Re ≤ 2000

(E.18)

where k is the pipe inner roughness thickness, measured in meter and the Reynolds

number, Re is given by: Re=Gdi/μ and G=ρ̄ · u. In the two-phase region the

friction factor is adjusted according to a two-phase multiplier, formulated by [77].

A more simple expression for turbulent flow is the Blasius’ correlation for the

Fanning friction factor

f = 0.079 ·Re−1/4 (E.19)

Now we formulate the homogeneous two-phase friction pressure loss as(
∂P
∂ z

)
f
=

4

di
fT P ρ̄T P u2 (E.20)

where

fT P = 0.079 ·Re−1/4
T P (E.21)

with

ReT P =
Gdi

μT P
(E.22)

and

ρT P =

(
x

ρg
+

1− x
ρl

)−1

(E.23)
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Pressure loss in two phase flows in pipes

Hence an appropriate estimate for μT P is a simple correlation for the dynamic

viscosity of a homogeneous gas-liquid two phase mixture

μT P =

(
x

μg
+

1− x
μl

)−1

(E.24)

Inserting equation (E.21) and (E.23) in equation (E.20) we get a method to

provide the friction pressure drop calculation(
−∂P

∂ z

)
f
= Φ2 ·
(
−∂P

∂ z

)
f ,L

(E.25)

The right hand side pressure gradient is single-phase flow based and correspond

to a mixture of pure liquid. The parameter Φ2 is the two phase multiplier. When

we let the multiplier refer to pure liquid phase flow, we find(
−∂P

∂ z

)
f ,L

=−0.079 ·
(

Gdi

μL

)−1/4
4

di

G2

ρL
(E.26)

Hence Φ2 is given as

Φ2 =

[
1+ x

μL −μG

μG

]−1/4

·
[

1+ x
ρL −ρG

ρG

]
(E.27)

Several empirical estimations of the loss factor f are available (see [40], [97],

[141] and [142]. For dynamic studies, the Churchill-equation is favoured due

to its explicit form and the smooth transition from laminar to turbulent flow

regimes. This comes at a cost but possesses potential savings by fine tuning the

implementation. The calculation is shown below.

f = 8

[(
8

Re

)12

+
1

(B+C)1.5

] 1
12

(E.28)

C =

(
37350

Re

)16

(E.29)

B =

(
2.457ln

(
1

A

))16

(E.30)

A =

(
7

Re

)0.9

+
0.27k

di
(E.31)

(E.32)
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E. Pressure drop and heat transfer for internal two phase flows in pipes

where

k is the absolute roughness (m)

Re is is the Reynold’s number (−)

The Churchill equation is illustrated in figure (E.1). A transition zone can be

advantageously implemented such that a monotonic decreasing function of C1

is established, in order to prevent undesired pressure fluctuations in the model,

The transition zone can be modelled as listed in table (G.1) with n=2. The loss

Figure E.1.: Churchill friction factor as function of Re.

factor f is formulated using the kinetic energy flow rate and thus the average axial

velocity v. The mass flow rate to the pipe section relates to velocity by the simple

relation

m = ρAv = ρ
(π

4
d2

h

)
v (E.33)

where dh is the hydraulic diameter. Thus equation (E.15) may be rewritten

as

Δp f =
8

π
m

ρd4
h

(
f (Re,ε)

L
dh

+∑
k

ηk

)
(E.34)

For gas-liquid two phase flows, the frictional pressure drop is evaluated based

on the method proposed by Martinelli, where the frictional pressure drop for the

mixture is a product of the frictional pressure drop for one phase, Δp f , and a

two-phase multiplier, φ :

Δp2p = Δp f ,i ·φ 2
i (E.35)

28



Pressure loss in two phase flows in pipes

Where i indicates that the single phase pressure drop is evaluated on the liquid

phase or the gas phase. In case there are minor losses from fittings, valves, bends

etc., the total frictional pressure drop becomes:

Δp2p =

(
Δp f ,i +1.5 ·η · 1

2

ṁ2

A2 ·ρi

)
·φ 2

i (E.36)

Where η is the minor loss coefficient for single phase flow, and ṁ2 is the total

mass flux squared. The model by Friedel (as referred in [143]), which appears

to be the most accurate method available at this time, calculates the two phase

multiplier for Δp f ,i being liquid (i=l). For horizontal flow configuration we

have:

φ 2 = A+3.24 · x0.78(1− x)0.224 ·
(

ρ f
ρg

)0.91
(E.37)

·
(

μg
μ f

)0.19(
1− μg

μ f

)0.7 ·Fr−0.045
hom ·We−0.035

l

and for vertical, downward flow, Friedel’s correlation gives

φ 2 = A+48.6 · x0.8(1− x)0.29 ·
(

ρ f
ρg

)0.90
(E.38)

·
(

μg
μ f

)0.73(
1− μg

μ f

)7.4 ·Fr0.03
hom ·We−0.12

l

where A=(1− x)2 + x2 · fg
fl
· ρl

ρg . This model is only valid for
μl
μg

> 1000. The

friction factor for gas (g) or liquid (l) only are:

f j = 0.079 ·Re−0.25
j , j ∈ [g, l] (E.39)

The Froude and Weber numbers are found from:

F̄r =

( ṁ
A

)2
g · ρ̄2D

(E.40)

and

Wei =
D · ( ṁA )2

σ · ρ̄ (E.41)
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E. Pressure drop and heat transfer for internal two phase flows in pipes

The model is general for both IAPWS, IFC67 and IF97. The only minor difference

is the critical temperature for the two steam tables. The model that is based on

Jirous, [77] calculates the two phase multiplier as:

φ 2 = 1+B · x ·
(

ρl

ρ f
−1

)
(E.42)

Where the coefficient B is:

B = 1.58−0.47
p
pc

−0.11 ·
(

p
pc

)2

(E.43)

Note that the critical pressure (pc) is 221.2 [bar] for water/steam. If x > 0.9 is

carried out an adjustment of B:

if x > 0.9 : B = B− (B−1) · (10 · x−9) (E.44)

The void fraction α is given as

α = x/(σ/ρlg + x · (1.0−σ/)ρlg) (E.45)

where ρlg = ρl/ρg and the surface tension is given by equation (E.66). The

correlation of (E.42) is compared to the well-known and more computation

intensive model of Friedel and is illustrated in figure (E.2).

Figure E.2.: Comparison of two-phase-multipliers of Jirous and Friedel.
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Heat transfer with phase change inside tubes

E.2. Heat transfer with phase change inside tubes

The vaporization inside tubes involves a number of different flow regimes, see

figure (E.4), each of which requires a different evaluation of the heat transfer

coefficient plus a local temperature difference, which in turn requires correspond-

ing pressure drop calculations. Below is listed the various equations used for the

design of vertical in tube vaporizers. Although horizontal in-tube vaporization

is also used, the heat transfer equations and methods are the same, but the flow

pattern now includes a stratified two-layer region. The major difference between

horizontal and vertical in-tube vaporization is the definition of and the flow

criteria used to define the limits of each regime. The appropriate heat transfer

equation is then used for each regime.

E.2.1. Single phase liquid region.

In a circulating vaporizer the temperature of the liquid entering the tube is below

the local boiling point due to the effect of the hydrostatic head on the saturation

temperature. This temperature difference is called Approach point and is the

difference between saturation temperature and feed water temperature entering

the evaporator. This liquid zone extends to the point where the temperature

has increased and the local pressure decreased, such that the local saturation

point has been reached. Actually some further superheat is required to initi-

ate nucleation. The liquid zone heat transfer coefficients are calculated from

[144]:

Nuc =
hcdi

kl

= 0.17

(
diG
μl

)0.33(μl

kl

)0.43( Prl

Prw

)0.25(d3
i ρ2

l gβΔT
μ2

l

)0.1

(E.46)

for L/di > 50 and diG
μ < 2000. For turbulent flow and diG

μ > 10,000 use from

[25]:

Nuc = 0.023Rel
0.8Prl

1/3 (E.47)

where Rel and Prl are given in A.14 and A.11 respectively and spline inter-

polate, with boundaries given by equation (G.20), between these two equa-

tions on a Re number basis for 2000 < Re < 10,000 and their corresponding

slopes.

E.2.2. Boiling region.

The boiling region can be further subdivided into a sub cooled boiling, saturated

boiling, and two-phase boiling regions with predictive equations for each [141]
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E. Pressure drop and heat transfer for internal two phase flows in pipes

and [142]. Another approach taken by Chen [145] is to combine the saturated

and two-phase regions into one, with an equation combining the convective and

nucleate boiling mechanisms

hb = Shnb +hcb (E.48)

where hb is the boiling coefficient, hnb is the nucleate boiling coefficient and hcb
is the convective coefficient, all measured in [W/m2]. The coefficient S is named

the Chen suppression factor after [145].

The convective coefficient is a function of the Martinelli two-phase flow para-

meter, Xtt , and the Chen correlation using this factor is

hcb

hc
= f (Xtt)

= Fch (E.49)

where

Fch = 2.35

[
1

Xtt
+0.213

]0.73

(E.50)

and

Xtt =
1− x

x

(
ρv

ρl

)0.57( μl

μv

)0.11

(E.51)

here x is the weight fraction of vapour measured in [kg/kg], ρ j, μ j, where

(j∈[l,v]) is the density and dynamic viscosity for liquid and vapour respectively

and hc is the liquid phase heat transfer coefficient based on the amount of liquid

present by equation (E.64). The nucleate boiling coefficient, hnb, is determined

as

hnb = hnblFm (E.52)

where Fm is a correction applied for mixtures and hnbl is the coefficient determined

from the Nucleate Pool boiling model, given by

hnb = A∗q0.7F(Pr) (E.53)
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Note that A∗ is a constant evaluated at a reference reduced pressure of Pr = 0.0294

and F(Pr) is a function of reduced pressure. The Chen suppression factor, S, is

determined as follows:

S =
1

0.1+2.53 ·10−6Re1.17
(E.54)

where the two phase Reynolds number Ret p is given as

Ret p = RelF1.17
ch and Rel =

diG
μl

(E.55)

Hence equation (E.48) can be solved for hb. The sub cooled boiling coefficient

can be obtained by again using equation (E.48) but with S = (ΔTb/ΔT0) where ΔTb
is the temperature difference between the tube wall and the saturation temperature

of the liquid at the given local pressure and ΔT0 is the difference between the tube

wall and sub cooled bulk temperature. Instead of the convective coefficient, hnbl ,

the liquid coefficient (eqn. E.63 or E.64) is used. The nucleate coefficient, hnbl ,

is obtained from the transformed equation (E.53) as

hnbl = 5.43 ·10−8P2.3
c ΔT 2.33F(P)3.33 (E.56)

and equation (E.57) changed to (E.52) where Fm is given by a mixture correction

factor, used to modify the calculated coefficient of the volatile component hnbl ,

determined from equation (E.57) so that the mixture coefficient is given by the

product of hnbl and Fm where

Fm = exp(−0.015BR) (E.57)

where BR is the boiling range, dew point-bubble point, with a lower limit of

0.1oC.

E.2.3. Mist flow.

In mist flow the small amount of remaining liquid is entrained as droplets and

the tube wall is essentially dry. The heat transfer coefficient drops rapidly and

approaches that of heat transfer to gas. In this regime sensible heat is transferred

to the gas which in turn transfers some of the heat to the droplets until they are

completely evaporated after which only sensible heat transfer to gas occurs. The

main problem is the determination of the vapour temperature, hence, temperature

difference. Two extreme conditions are: (1) no heat is transferred to the droplets

hence the vapour temperature rises rapidly; and (2) heat is rapidly transferred to

the droplets until they disappear and during this evaporation phase, the vapour

is at saturation temperature. Condition (1) is approached at low pressures and
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E. Pressure drop and heat transfer for internal two phase flows in pipes

velocities and condition (2) at high pressure and velocities. The actual case is

somewhere between (1) and (2). Some attempts to develop empirical and theory

based equations are reported in [142] but the range of data seem too limited. We

would recommend to use an equation like (E.64) based on gas properties and

then make an engineering judgement guess of the fraction of the sensible heat

transferred to the gas that is used up as latent heat for the evaporation of drops.

The resulting effect on vapour temperature could be used to calculate an LMTD

for the mist region and with the calculated gas coefficient used to determine the

heat flux. The mist region can be determined from a Fair map [146] or from the

simple equation derived from this map

Gmm = 21.07Xtt (E.58)

where Gmm is measured in SI units and expresses the maximum mass velocity

before mist flow begins.

E.2.4. Film boiling.

This type of boiling should be avoided, if possible, due to control problems, pos-

sible fouling, and lack of data on pressure drop calculations. But if the temperature

difference is high enough over the entire tube length, then the heat transfer coeffi-

cient can be calculated by the correlation given by [147]:

Nu = 0.106Re0.64Pr0.4(ρb/ρv)
0.5 (E.59)

where the bulk average density on a no slip basis is

ρb =
ρl

x( ρl
ρv
−1)+1

(E.60)

Properties in equation (E.59) are based on the liquid. However, the main problem

is to determine the mass velocity, G. In film boiling inside a tube, we have a core

of liquid surrounded by an annular layer of gas, which is of very low viscosity.

No data in the open literature exist for this case and, thus, determining the

circulation rate is a real problem. An alternative estimate of the film coefficient

could be made, based on pool boiling correlations. A simple, fast and robust

model of the heat transfer is given by [97]. The heat transfer coefficient α is

given by

α = c1q̇0.673 [W/m2K] (E.61)
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where the coefficient c1 is given as

c1 =
0.06136[

1− ( Ts
378.64 )

0.0025
]0.73

(E.62)

where Ts is the saturation temperature and is measured in [oC]. The single phase

laminar heat transfer coefficients is calculated from

Nus =
hsdi

k f

= 4.36 (E.63)

and is valid for L/di > 50 and diG
μ < 2000. For turbulent single phase flow and

diG
μ > 10,000 we use the Dittus-Boelter equation:

Nus =
hsdi

k f

= 0.023
(
Re f
)0.8 (Pr f

)1/3
(E.64)

where Re f and Pr f are given in A.14 and A.11 respectively.

E.3. Two-phase flow regimes in rod bundles

One of the major challenges in modelling two phase flows is to determine the

structure of the flow, i.e. the geometry of the interfaces is not determined a priori,

but is rather a part of the solution of the flow fields. In single-phase flow of

fluid in a conduit, we know the geometry (shape of the conduit) and are left to

determine the velocity distribution, pressure drop, etc. - either experientially or

theoretically. In contrast, when there are two fluids flowing simultaneously in a

conduit, one cannot tell a priori how the phases are going to distribute themselves,

e.g., are the bubbles going to be distributed uniformly throughout the liquid, or

are they going to coalesce and form slugs? Actually, the distribution of phases is

part of the solution of the flow fields. Naturally, the radial distribution of the gas

phase in a pipe determines other design parameters such as heat transfer, pressure

drop, etc., and without knowing this distribution, one cannot calculate the others.

Furthermore, the phases normally do not have the same velocity, since it is likely

that the gas (steam) may flow at a higher axial velocity than the liquid. Therefore,

it is obvious to consider the flow patterns or flow regimes.
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E. Pressure drop and heat transfer for internal two phase flows in pipes

Figure E.3.: Flow regimes experiment in vertical pipes. From [148]

E.3.1. Flow patterns

In the following we describe the nature of two-phase flows in vertical pipes and

discuss the various regimes. To better describe the flow patterns and the flow

regime map, consider the following simple conceptual experiment. A transparent

tube, orientated vertically, has a mixing chamber at the bottom and is connected,

through valves and flow meters to supply of liquid (e.g. water) and gas (e.g.

air), see figure (E.3). The two supply valves are opened somewhat and the flow

pattern in the tube is observed. The setting of the valves is changed and another

flow pattern may now be observed. Some of the common flow patterns are now

described in the following.

Bubble flow

The gas is dispersed as discrete bubbles in the continuous liquid. The bubbles

may have different shapes and sizes, but they are smaller than the pipe diameter.

The bubbles flow regime can be subdivided into two sub-regimes - bubble flow

in vertical positioned tubes at low liquid flow rates and dispersed bubble flow

at high liquid flow rates. Liquids behave as if they are separated from their

surroundings by an elastic skin that always under tension and has the tendency to

contact. Intermolecular forces are the cause of this tendency. For the molecules

inside the liquid bulk, forces from all directions cancel each other out and the

molecules remain at near equilibrium. The interface between immiscible fluids

can be modelled as an infinitely thin membrane that resists stretching and has a

tendency to contact. Surface tension σ characterizes the interface’s resistance

to stretching. The surface tension is related to the Helmholtz and Gibbs free
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Figure E.4.: Major flow regimes in heated vertical pipes for increased heat uptake (QG).

From [7]

energies, see [40], and when all the forces are balanced, the resulting equation is

known as the Young - Laplace equation:

ΔP = σ
(

1

Rx
+

1

Ry

)
(E.65)

where

σ = 0.0238(1− T
Tcr

)1.25

[
1−0.639

(
1− T

Tcr

)]
. (E.66)

here T is the temperature measured in Kelvin and σ is in [N/m] and Tcr is the

critical temperature, also given in Kelvin. Rx and Ry are radii of curvature in

each of the axes that are parallel to the surface and for a squared surface we have

R=Rx=Ry. Finally ΔP is the pressure difference beneath and above the interphase

given in equation (E.65) and is measured in [Pa].

Slug flow

When the steam quality increases, the bubbles coalesce and form larger bubbles,

of a size similar to the pipe diameter. These are called Taylor bubbles and have

a characteristic spherical cap nose and are somewhat abruptly terminated. The

elongated gas bubbles are separated by liquid slugs, which may have smaller

bubbles in it. The Taylor bubbles are separated from the wall by a film of

liquid, which may flow downward, even though the net flow of the liquid is
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E. Pressure drop and heat transfer for internal two phase flows in pipes

upward. The size of the slug units, Taylor bubbles and liquid slugs may vary

considerably.

Churn flow

When the velocity of the flow is increased (i.e., both valves are further opened),

the slugs break down into a seemingly unstable regime. Liquid may be following

up and down in an oscillatory fashion. This is a flow regime in between the

slug flow and the annular flow, where liquid is displaced to the tube wall. In

small diameter tubes the churn flow regime may not develop and the transition

slug-annular may be a smooth one.

Annular flow

The bulk of the liquid flows on the wall, as a film and the gas is the continuous

phase at the centre of the tube. Normally, there is some liquid entrained in the

continuous gas in the form of small droplets, and there may be some gas in the

liquid film in form of bubbles. In the liquid-gas interface (if gas velocity is high

enough) there may be large amplitude waves, which break up. The break of the

waves is the continuous source of the droplets in the gas core.

Wispy annular flow

When the liquid flow rate is increased, there is a considerable amount of liquid

in the gas core due to entrainment. These liquid droplets then coalesce to form

large lumps or wisps of liquid. This regime occurs at high mass velocities,

and where the dimensionless superficial velocities are U∗
G > 1 and U∗

L > 2,5 to

3,0.

U∗
g =Usgρ1/2

g (gD(ρl −ρg))
−1/2 (E.67)

and

U∗
l =Uslρ

1/2
l (gD(ρl −ρg))

−1/2 (E.68)

where ρ is the density g the acceleration due to gravity and D the pipe inner

diameter. The subscripts l, g and s are referring to liquid, gas and superficial

velocity respectively.

E.3.2. Flow pattern maps

The first person to recognise the importance of flow pattern as a starting point for

the calculation of pressure drop, void fraction, heat and mass transfer was Barker,

[149]. He published the earliest flow pattern map for horizontal flow. There were

many attempts to generalize the flow pattern maps, but this is obviously very

difficult to achieve, since there is a long list of relevant physical variables: the

superficial velocities, the densities, viscosities, surface tension, pipe geometry

(diameter, rifles, roughness, inclination), acceleration due to gravity and rotation
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Figure E.5.: The effect of surface wettability on air-water flow regimes. Symbols repres-

ent data of Triplett et al. (1999a), and flow regime names are from Barajas

and Panton (1993).

of the flow field. With these, one can have eight dimensionless groups. Some of

the variables may be of less importance, but the number of dimensionless groups

is still quite large.

Some maps are now being discussed and a simplified model is then shown, which

attempts to generalize the maps and to predict the transitions from one regime to

another. Yet, it should be emphasized that the flow regime maps are not general

and should be extrapolated cautiously, since, for example, there is experimental

evidence of substantial effect of pipe diameter, pressure, etc.

A popular map for horizontal flow is shown in figure (E.5). This map is based on

air and water data in a relative small pipe and has the superficial velocities (JG,

JL) as coordinates.

The boundaries in the flow regime map vary considerably for various researchers.

Considerable efforts were spent to solve the problem, and many sets of coordin-

ates have been proposed, e.g. momentum flux for the respectively phases, in

addition to the more conventional coordinates Usg vs Usl (here Us is the total

superficial velocity and U is the true velocity of each phase). Flow boiling is

considerably more complicated than pool boiling (boiling processes without an

imposed forced flow, where fluid flow is caused by natural convection phenomena

only), owing to the coupling between hydrodynamics and boiling heat transfer

processes. A sequence of two-phase and boiling heat transfer regimes takes

place along the heated channels during flow boiling, as a result of the increasing

quality. The two-phase flow regimes in a boiling channel are therefore ’devel-
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E. Pressure drop and heat transfer for internal two phase flows in pipes

oping’ everywhere and are morphologically different than their namesakes in

adiabatic two-phase flows. In this context the preferred configuration for boiling

channels is vertical up flow, where the buoyancy helps the mixture flow, and the

slip velocity between the two phases that is caused by their density difference

actually improves the heat transfer. In figure (E.6) the flow is illustrated in detail

and heat transfer regimes in a uniformly heated vertical channel with upward

flow that is subject to moderate heat flux, when the fluid at the inlet is sub cooled

liquid. The wall and fluid temperatures are also schematically displayed in the

figure. Near the inlet where the liquid sub cooling is too high to permit bubble

nucleation, the flow regime is single-phase liquid, and the heat transfer regime

is forced convection. Following the initiation of boiling, the sequence of flow

regimes includes bubbly, slug, and annular, followed by dispersed droplet flow,

and eventually a single-phase pure vapour flow field. Nucleate boiling is predom-

inant in the bubbly and slug two-phase flow regimes and is followed by forced

convective evaporation where the flow regime is predominantly annular. This is

an extremely efficient heat transfer regime in which the heated wall is covered by

a thin liquid film, which can be increased, if the flow pattern has a nature of axial

rotation, as seen in rifled boiler tubes. The liquid film is cooled by evaporation at

Figure E.6.: Two-phase flow and boiling regimes in a vertical pipe with a moderate wall

heat flux. [148]
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Figure E.7.: Evaporation in a vertical pipe with increased heat flux from left (A) to right

(U).

its surface, making it unable to sustain a sufficiently large superheat for bubble

nucleation. Droplet entrainment can occur when vapour flow rate is sufficiently

high, leading to dispersed-droplet flow. Further downstream, the liquid film may

eventually completely evaporate and lead to dry out. Substained macroscopic

contact between the heated surface and liquid does not occur downstream from

the dry out point, although sporadic deposition of droplets onto the surface may

take place. Further downstream, the entrained droplets will eventually completely

evaporate, and a pure vapour single-phase flow field develops. The heat transfer

coefficient in the liquid-deficient region is much lower than in the nucleate boiling

or forced convection evaporation regimes. As a result, the occurrence of dry out

is accompanied with a large temperature rise for the heated surface. The dry out

phenomenon is thus similar to the critical heat flux for pool boiling.

Having a liquid at constant velocity entering a tube, where the heat transfer

in the tube is successive increased. The heat input is illustrated in steps A-U, as

illustrated in figure (E.6). The total increment in heat flux is equal to the required

heat, to ensure a saturation temperature at the end of the tube. As illustrated in

figure (E.7), the flow pattern develops from single phase flow to through bubble

flow, slug flow, churn flow and annular flow. The first generation of vapour takes
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place by nucleation at the wall and the locus of the onset of nucleation is shown

with red dash-dot line. If the heat flux is low (step B), then nucleation may be

delayed beyond the point at which the thermodynamic quality x is zero. At high

heat fluxes, nucleation occurs before the steam quality reach zero (x=0), which

is named sub cooled boiling. As the flow velocity (and hence convective heat

transfer) increases, nucleation may be suppressed and complete suppression is

illustrated by the yellow dash-dot line. In the annular flow regime, liquid is

lost from the film by evaporation and entrainment. When the liquid film flow

rate at the end of the channel is reduced to zero (step L), the wall becomes dry

(’dry out’) or ’burnout’). At further increase of heat flux, the dry out points is

propagated upstream, as shown by the green dash-dot line. For constant heat flux,

the post-dry out region is hot and eventual the tube may melt, as illustrated by

the black dash-dot line.
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SKV3

This appendix contains four sets of measurement data (sample 1-4) performed

at the power plant SKV3 dated October 2011. Measurement data is recorded

in the control system of the power plant and processed further into a InSql®
database where data can be treated. Measurement data covers typical operating

situations where the boiler is running in both Benson mode or circulation mode.

It should be noted that the measurements of the panel wall temperatures is of

low solution, while they are measured so that the control system only receives

measurements when the temperature/pressure variation is greater than 1 [oC] /

0.25 [bar].

F.1. Sample 1

Figure F.1.: Pressure and temperature after boiler top section - sample 1.

43



F. Measurements performed at the power plant SKV3

Figure F.2.: Pressure and temperature after ECO - sample 1.

Figure F.3.: Wall temperature in boiler tubes on front wall - sample 1.
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Sample 1

Figure F.4.: Wall temperature in boiler tubes on right side wall - sample 1.

Figure F.5.: Wall temperature in boiler tubes on back wall - sample 1.
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Figure F.6.: Wall temperature in boiler tubes on left side wall - sample 1.

46



Sample 2

F.2. Sample 2

Figure F.7.: Pressure and temperature after boiler top section - sample 2.

Figure F.8.: Pressure and temperature after ECO - sample 2.
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Figure F.9.: Wall temperature in boiler tubes on front wall - sample 2.

Figure F.10.: Wall temperature in boiler tubes on right side wall - sample 2.
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Sample 2

Figure F.11.: Wall temperature in boiler tubes on back wall - sample 2.

Figure F.12.: Wall temperature in boiler tubes on left side wall - sample 2.
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F.3. Sample 3

Figure F.13.: Pressure and temperature after boiler top section - sample 3.

Figure F.14.: Pressure and temperature after ECO - sample 3.
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Sample 3

Figure F.15.: Wall temperature in boiler tubes on front wall - sample 3.

Figure F.16.: Wall temperature in boiler tubes on right side wall - sample 3.
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Figure F.17.: Wall temperature in boiler tubes on back wall - sample 3.

Figure F.18.: Wall temperature in boiler tubes on left side wall - sample 3.
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Sample 4

F.4. Sample 4

Figure F.19.: Pressure and temperature after boiler top section - sample 4.

Figure F.20.: Pressure and temperature after ECO - sample 4.
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Figure F.21.: Wall temperature in boiler tubes on front wall - sample 4.

Figure F.22.: Wall temperature in boiler tubes on right side wall - sample 4.
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Sample 4

Figure F.23.: Wall temperature in boiler tubes on back wall - sample 4.

Figure F.24.: Wall temperature in boiler tubes on left side wall - sample 4.
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G. Transition functions

Transition functions are required in many component models to switch smoothly

and continuously between different functions. A good example are heat transfer

and pressure drop correlations that are usually only valid within certain regions.

The continuous transition between those regions is a typical problem in numerical

simulations.

G.1. Smooth transition functions

Transition functions are provided to allow for a smooth transition between dif-

ferent functions with a variable number of smooth derivatives. These functions

T(x) can be used in the following way to switch between the two functions g0(x)
and g1(x), wherein T(x) is a normalized function and is provided with boundary

conditions at x=x0 and x=x1, corresponding to the slope at each end of the range

of definition.

G(x) = g0(x) ·T (x)+g1(x) · (1−T (x)), x ∈ ℜ (G.1)

where

T (x)≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for x < x0,

t(x) for x0 ≤ x ≤ x1,

0 for x > x1.

(G.2)

In order that T(x) is smooth, the following restrictions apply for t(x)

dt(x)
dx

|x=x0
= 0 and

dt(x)
dx

|x=x1
= 0 (G.3)

The simplest way to find a suitable function is according to [139] to look at the

fundamental trigonometric function

dt(ϕ)
dϕ

= acos(ϕ) (G.4)
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where a is a scaling factor and ϕ the phase defined by

ϕ =

(
x− x0

Δx
−1/2

)
π, where Δx = x1 − x0 (G.5)

fulfils these restrictions. This yields the following function for t(ϕ).

t(ϕ) = asin(ϕ)+b (G.6)

The two parameters a and b can be computed from equation (G.3). From equation

(G.4) follows that the first derivative of the transition function T(x) defined

as

dT (x)
dx

≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for x < x0,

dt(x)
dx for x0 ≤ x ≤ x1,

0 for x > x1.

(G.7)

is not smooth at x = x0 and x = x1 . This discontinuity can have negative

effects on the solution process because the WENO solver has to handle func-

tions with discontinuous first derivatives. Equation (G.4) can be generalized

to
dt(ϕ)

dϕ
= acosn (ϕ) (G.8)

where n is a positive integer yielding the following function for t(ϕ)

t(ϕ) = a
(

cosn−1 (ϕ)sin(ϕ)
n

+
n−1

n

∫
cosn−2 (ϕ)dϕ

)
+b (G.9)

The two parameters a and b can again be computed from equation (G.3). The

resulting function t(ϕ) is (n− 1)th order continuous. In table (G.1) is shown

the functions (t(ϕ)), its derivatives and values for a and b for n = 1, 2, 3, 4. In

figure (G.1) is shown the function T(x) and its derivative dT(x)/dx respectively

for n = 1, 2, 3, 4. For many heat transfer and pressure drop correlations, the

functions g0 and g1 does not cover the same definitions area. Let us assume

that g0 ∈ ]-∞,x0] and g1 ∈ [ x1,+∞]. If we want to apply (G.2) directly for

smoothing of g0 and g1, we can exploit the knowledge of the slope(s0 and s1)

of g0 and g1 respectively, at x0 and x1 and thus extrapolate g0 and g1, so that

a common definition area is achieved. The following two functions satisfy the

conditions for linear extrapolation: g
′
0(x) = g0(x0)+ s0 · (x− x0) and g

′
1(x) =
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Spline functions

Figure G.1.: Function values and derivatives of smooth transition function for

n=(1,2,3,4).

Table G.1.: Function t(ϕ) used in smooth functions T(x) for n=(1,2,3,4).

n t(ϕ)) dt(ϕ))
dϕ a b

1 asin(ϕ)+b a cos(ϕ) -1/2 1/2

2 a
2 (cos(ϕ)sin(ϕ)+ϕ)+b a

(
1− sin2 (ϕ)

)
-2/π 1/2

3 a
3

(
cos2 (ϕ)sin(ϕ)+2sin(ϕ)

)
+b a

3

(
cos2 (ϕ)(2− cos2 (ϕ))+2cos(ϕ)

)
-3/4 1/2

4 a
8

(
2cos3 (ϕ)sin(ϕ)+3cos(ϕ)sin(ϕ)+3ϕ

)
+b a

8

(
2cos2 (ϕ)(4cos2 (ϕ)−3)+3(2cos2 (ϕ)−1)+3

)
-8/3π 1/2

g1(x1)− s1(x1 − x0)+ s1 · (x− x0). Next, equation (G.2) can be used with g
′
0(x)

or g
′
1(x). Hence G(x) can be formulated as

G(x)≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g0(x) for x < x0,

g
′
0(x) · t(x)+g

′
1(x) · (1− t(x)) for x0 ≤ x ≤ x1,

g1(x) for x > x1.

(G.10)

G.2. Spline functions

A special class of functions is especially suitable as transition functions and

here the choice falls on spline functions. A spline curve is a mathematical

representation for which it is easy to build an interface that will allow a user

to design and control the shape of complex curves and surfaces. The general

approach is that the user enters a sequence of points, and a curve is constructed

whose shape closely follows this sequence. The points are called control points.
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G. Transition functions

A curve that actually passes through each control point is called an interpolating

curve. The degree of a polynomial corresponds with the highest coefficient that is

non-zero. The degree three polynomial - known as a cubic polynomial - is the one

that is most typically chosen for constructing smooth curves in computer graphics.

It is used because it is the lowest degree polynomial that can support an inflection,

known from the beam theory of solid mechanics - so we can make interesting

curves, and it is very well behaved numerically - that means that the curves will

usually be smooth like a lower order polynomial (second order) and not jumpy like

a noise signal. Spline functions can be advantageously composed in piecewise

polynomial curves, so that the functional relationship can be parameterised to

avoid unwanted oscillations and non-smooth shapes - polynomials with degree

higher than three tend to be very sensitive to the positions of the control points

and thus do not always make smooth shapes. Let us have n pieces of third order

polynomials ti(x) ∈ ℜ for x ∈ [x0, x1].

ti(x) = ai +bi · x+ ci · x2 +di · x3, for x ∈ [x0,x1] ∧ i ∈ [1, ..n] (G.11)

Let each pair of control points represent one segment of the curve. Each curve

segment is a cubic polynomial with its own coefficients. Between each control

point pair is a function, which is numbered identically to the index of its leftmost

point. In general, ti(x) in (G.11) is the function representing the curve between

control points i and i+1. Because each curve segment is represented by a cubic

polynomial function, we have to solve for four coefficients for each segment. We

require that each curve segment pass through its control points. This enforces C0

continuity - that is where the curves meet each other:

ti(xi) = yi and ti(xi+1) = yi+1 (G.12)

Additionally we require that the curve segments have the same slope where they

join together. Thus:
dti(xi+1)

dxi+1
=

dti+1(xi+1)

dxi+1
(G.13)

This enforces C1 continuity - that is that slopes match where the curves join.

Finally we require that the curve segments have the same curvature where they

join together. That means:

d2ti(xi+1)

dx2
i+1

=
d2ti+1(xi+1)

dx2
i+1

(G.14)

This enforces C2 continuity - that curvatures match at the join. Note that at the

left end of the curve we are missing the C1 and C2 equations since there is no
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Parameterization of splines

segment on the left. So, we are missing two equations needed to solve the entire

system. We can get these by having the user supply the slopes at the two ends.

Let us call these slopes s0 and s1

G.3. Parameterization of splines

The control points can define as piecewise polynomial curves, using cubic func-

tions to define curve segments between control points and enforcing various levels

of continuity where segments join. In particular, we employed C0 continuity,

meaning that the two segments match values at the join, C1 continuity, meaning

that they match slopes at the join and C2 continuity, meaning that they match

curvatures at the join.

We were able to determine coefficients for the curve segments via a set of linear

equations A·x = b => x = A−1b, where x is the vector of all coefficients, b is

the vector of constants on the right-hand side of the linear equations, and A is a

matrix encoding the C0, C1 and C2 conditions. This approach can be modified to

specify each curve segment in parametric form. In the parametric form on the

right, we have defined parameters εi that vary between 0 and 1 as we step along

the x axis between control points. We could write equations

εi =
x− xi

xi+1 − xi
with

dεi

dx
=

1

xi+1 − xi
, i ∈ [1, ..n] (G.15)

relating the εi to the original x coordinate. The derivatives indicate how quickly

εi varies as we move in the x direction.
Now we specify each curve segment by a parametric cubic curve

fi(ε) = ai +bi · εi + ci · ε2
i +di · ε3

i , εi ∈ [0,1] ∧ i ∈ [1, ..n] (G.16)

Notice, that in this form the ai coefficients are simply the y coordinates of the ith

control points, and do not have to be solved for.
For C1 continuity we differentiate once with respect to x using the chain rule:

d fi

dx
=

d fi

dεi
· dεi

dx
=

1

xi+1 − xi
· d fi

dεi
, i ∈ [1, ..n] (G.17)

and for C2 continuity we differentiate twice:

d2 fi

d2x
=

d2 fi

dε2
i
· d2εi

dx2
=

1

(xi+1 − xi)2
· d2 fi

dε2
i
, i ∈ [1, ..n] (G.18)

If we normalise the yi values, we have to introduce at transition parameter
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G. Transition functions

(γ), to adjust the forcing slopes (s0 and s1) at the left and right boundary,

hence

γ =
ymax − ymin

xn − x1
(G.19)

where ymax= max(yi) and ymin= min(yi) for i ∈ [1,..n].

G.4. Single spline

For some purposes, where to smooth two adjacent two functions like g0 and

g1 in (G.1), it may be sufficient to use a single spline function. The boundary

Figure G.2.: A single spline model as transition function.

conditions for at normalised spline function f (ε) and its derivative f
′
(ε) can be

given as:

f0(0) = y0

f0(1) = y1

f
′
0(0) = s0

f
′
0(1) = s1 (G.20)

where the function and its derivative are given as

f0(ε) = a0 +b0 · ε + c0 · ε2 +d0 · ε3

f
′
0(ε) = b0 +2c0 · ε +3d0 · ε2 (G.21)
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Two spline system

which leads to the following linear system of equations

A ·x = b (G.22)

where x=(a0,b0,c0,d0), b=(y0,y1,s0,s1) and

A =

⎛⎜⎜⎝
1 0 0 0

0 1 1 1

0 1 0 0

0 1 2 3

⎞⎟⎟⎠
Hence x=A−1· b which gives

a0 = y0

b0 = s0

c0 = 3(y1 − y0)− s0 −2s1 (G.23)

d0 = 2(y0 − y1)+ s0 + s1

Note that the two slope coefficients s0 and s1 must be corrected for the trans-

formation that occurs from the physical system to the normed system. Therefore,

s0 and s1 are multiplied by a correction factor γ obtained by the coordinate

transformation (x ⇒ ε and y ⇒ f), see (G.19).

G.5. Two spline system

A two spline system has the advantage of getting one more parameter to ad-

just the same curves, and thus may have more control over the process path.

It is typically the intention of getting a smoothly as possible curve, so it is of-

ten worthwhile to develop two or more contiguous spline functions. For two

spline functions, we get 8 boundary conditions, 4 C0 conditions, 3 C1 conditions

and one C2 condition, which can be formulated in a system like (G.22) where

x=(a0,b0,c0,d0,a1,b1,c1,d1), b=(y0,y1,y1,y2,s0,0,s2,0) and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0

0 1 2 3 0 −1 0 0

0 0 0 0 0 1 2 3

0 0 2 6 0 0 −2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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G. Transition functions

and the solution is

a0 = y0

b0 = s0

c0 = (−3y2 +12y1 −9y0 + s2 −7s0)/4

d0 = (−3y2 +8y1 −5y0 + s2 −3s0)/4

a1 = y1

b1 = (−3y2 +3y0 + s2 + s0)/4

c1 = (−3y2 +6y1 −3y0 + s2 − s0)/2 (G.24)

d1 = (−5y2 +8y1 −3y0 +3s2 − s0)/4

Figure G.3.: A double spline system as transition function.

G.6. Comments

In this section we have worked through two methods for building Smooth Trans-

ition Functions. The higher order smooth function based on trigonometric func-

tions have many advantages as a third order single spline function. The spline

function of third degree has in principle three zeros, so that the function can

generate non smooth shapes, while the trigonometric smooth function is fully

controllable and no surprises around the curve course. In general the Spline

functions are based on an interpolating spline curve through a set of control

points by using continuity C0, slope C1 and curvature C2 constraints, where

spline segments join. This is the method for computing natural cubic splines.
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and the solution is

a0 = y0

b0 = s0

c0 = (−3y2 +12y1 −9y0 + s2 −7s0)/4

d0 = (−3y2 +8y1 −5y0 + s2 −3s0)/4

a1 = y1

b1 = (−3y2 +3y0 + s2 + s0)/4

c1 = (−3y2 +6y1 −3y0 + s2 − s0)/2 (G.24)

d1 = (−5y2 +8y1 −3y0 +3s2 − s0)/4

Figure G.3.: A double spline system as transition function.

G.6. Comments

In this section we have worked through two methods for building Smooth Trans-

ition Functions. The higher order smooth function based on trigonometric func-

tions have many advantages as a third order single spline function. The spline

function of third degree has in principle three zeros, so that the function can

generate non smooth shapes, while the trigonometric smooth function is fully

controllable and no surprises around the curve course. In general the Spline

functions are based on an interpolating spline curve through a set of control

points by using continuity C0, slope C1 and curvature C2 constraints, where

spline segments join. This is the method for computing natural cubic splines.

64



G. Transition functions

Figure G.5.: A second order trigonometric smooth function for smoothing the density

through in the IAPWS-97 water steam table.
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H. Maldistribution - curves

In this appendix is given selected curves of maldistribution, in two parallel evap-

orator tubes, where the power consumption of the tubes is regulated, assuming

the total power consumption is constant. The relationship between the relative

friction loss, the relative mass flow and relative outlet enthalpy through pipes 1

and 2 as a function of q2/q1 are shown.
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H. Maldistribution - curves

Figure H.1.: Mal distribution in panel wall.

Figure H.2.: Mal distribution in panel wall.
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Figure H.3.: Mal distribution in panel wall.

Figure H.4.: Mal distribution in panel wall.
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H. Maldistribution - curves

Figure H.5.: Mal distribution in panel wall.

Figure H.6.: Mal distribution in panel wall.
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Figure H.7.: Mal distribution in panel wall.

Figure H.8.: Mal distribution in panel wall.
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H. Maldistribution - curves

Figure H.9.: Mal distribution in panel wall.

Figure H.10.: Mal distribution in panel wall.
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Figure H.11.: Mal distribution in panel wall.

Figure H.12.: Mal distribution in panel wall.
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I. EOS - interpolation functions

In the following are three different setup of interpolations are compared.

1. Bilinear (4 node) elements in Region R5+R6

2. Bilinear (4 node) and triangular 3 node elements in Region R1 to R5

3. Triangular (6 node) iso-parametric elements in Region R1 to R5

The first setup is based on a case using two main regions, R6 which covers regions

R1 to R4, and R5 using a pure bilinear 4 node element. The second case is based

on five regions using bilinear elements, supplied with a linear triangular element

in the vicinity of the saturation line. Finally, a setup is using the five regions

by applying an iso parametric triangular element (6-node). The simulation are

identified by a number (Ns). Meshes based on different element sizes in the five

regions has been created for the individual simulations. The number of elements

in each case are listed in tables; table (7.3) for the two region case, table (7.4) for

the five-region case with bilinear elements and table (7.5) for the five-region case

with triangular elements. The total number of nodes and elements are listed in

the last column.

The corresponding figures are shown in the section on interpolation of thermody-

namic state variables (7.4).
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I. EOS - interpolation functions

Ns Np P [Bar] εmax εmin εave Sdev. TInt p[s]
1 10 1.00 0.6351E+03 0.3376E-04 0.4783E+02 0.1583E+01 0.1151E-06

2 10 10.00 0.2895E+03 0.5720E-04 0.9510E+01 0.3491E+00 0.1131E-06

3 10 50.00 0.2256E+02 0.8737E-04 0.1655E+01 0.4422E-01 0.1151E-06

4 10 100.0 0.2407E+02 0.8904E-05 0.7763E+00 0.2707E-01 0.1131E-06

5 10 220.0 0.3816E+00 0.1576E-08 0.1746E-01 0.6711E-03 0.1092E-06

6 10 300.0 0.3209E+00 0.1645E-03 0.6664E-01 0.1020E-02 0.1151E-06

7 10 700.0 0.9952E-01 0.1053E-04 0.3224E-01 0.3303E-03 0.1248E-06

8 25 1.00 0.7266E+02 0.4100E-05 0.9250E+00 0.4758E-01 0.1131E-06

9 25 10.00 0.1323E+03 0.2687E-04 0.2508E+01 0.1187E+00 0.1170E-06

10 25 50.00 0.2564E+02 0.4693E-04 0.5859E+00 0.2534E-01 0.1151E-06

11 25 100.0 0.9988E+01 0.1128E-05 0.1585E+00 0.7662E-02 0.1112E-06

12 25 220.0 0.1718E+00 0.7997E-06 0.3228E-02 0.1597E-03 0.1112E-06

13 25 300.0 0.5539E-01 0.7047E-04 0.9994E-02 0.1657E-03 0.1151E-06

14 25 700.0 0.2084E-01 0.5856E-04 0.4340E-02 0.4311E-04 0.1229E-06

15 50 1.00 0.7483E+02 0.8894E-05 0.2463E+00 0.2760E-01 0.1151E-06

16 50 10.00 0.4188E+02 0.1385E-04 0.8970E+00 0.4789E-01 0.1229E-06

17 50 50.00 0.1470E+02 0.2756E-04 0.1701E+00 0.9523E-02 0.1151E-06

18 50 100.0 0.1867E+01 0.7543E-05 0.1074E-01 0.7158E-03 0.1151E-06

19 50 220.0 0.1342E+00 0.4406E-05 0.2435E-02 0.1075E-03 0.1112E-06

20 50 300.0 0.1143E-01 0.4493E-07 0.1819E-02 0.3120E-04 0.1131E-06

21 50 700.0 0.1217E-01 0.3837E-04 0.8836E-03 0.8227E-05 0.1229E-06

22 100 1.00 0.1103E+03 0.5499E-05 0.5884E+00 0.4895E-01 0.1131E-06

23 100 10.00 0.3987E+02 0.1439E-05 0.3366E+00 0.2455E-01 0.1131E-06

24 100 50.00 0.5258E+01 0.2025E-04 0.3783E-01 0.2469E-02 0.1131E-06

25 100 100.0 0.2874E+01 0.2130E-04 0.1742E-01 0.1238E-02 0.1151E-06

26 100 220.0 0.7624E-01 0.5978E-05 0.1571E-02 0.4768E-04 0.1092E-06

27 100 300.0 0.1277E-01 0.6995E-06 0.6773E-03 0.7363E-05 0.1151E-06

28 100 700.0 0.9522E-02 0.3878E-07 0.3482E-03 0.4274E-05 0.1229E-06

29 200 1.00 0.1061E+03 0.1308E-05 0.5185E+00 0.5169E-01 0.1131E-06

30 200 10.00 0.1087E+02 0.2226E-06 0.4156E-01 0.3840E-02 0.1131E-06

31 200 50.00 0.4391E+01 0.1870E-04 0.1889E-01 0.1645E-02 0.1151E-06

32 200 100.0 0.1741E+01 0.1870E-04 0.8115E-02 0.6253E-03 0.1151E-06

33 200 220.0 0.3406E-01 0.1087E-04 0.1210E-02 0.2069E-04 0.1092E-06

34 200 300.0 0.1344E-01 0.1807E-06 0.7784E-03 0.9472E-05 0.1131E-06

35 200 700.0 0.9653E-02 0.2079E-08 0.3163E-03 0.4008E-05 0.1229E-06

Table I.1.: Bilinear (4 node) elements in Region 1-5.
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Ns Np P [Bar] εmax εmin εave Sdev. tInt p[s]
36 10 1.00 0.1108E+03 0.7203E-05 0.1528E+02 0.3030E+00 0.1697E-06

37 10 10.00 0.7830E+02 0.2155E-04 0.6050E+01 0.1628E+00 0.1911E-06

38 10 50.00 0.3098E+02 0.3814E-04 0.9873E+00 0.2957E-01 0.1911E-06

39 10 100.0 0.1380E+02 0.1471E-04 0.7126E+00 0.2266E-01 0.1950E-06

40 10 220.0 0.1223E+01 0.2751E-06 0.6425E-01 0.2617E-02 0.1911E-06

41 10 300.0 0.3209E+00 0.1645E-03 0.6664E-01 0.1020E-02 0.1170E-06

42 10 700.0 0.9952E-01 0.1053E-04 0.3224E-01 0.3303E-03 0.1248E-06

43 25 1.00 0.8374E+02 0.5837E-05 0.7093E+00 0.5331E-01 0.1833E-06

44 25 10.00 0.6184E+02 0.2576E-05 0.1808E+01 0.7462E-01 0.1950E-06

45 25 50.00 0.1274E+02 0.1436E-04 0.4132E+00 0.1546E-01 0.1970E-06

46 25 100.0 0.3421E+01 0.2007E-05 0.1188E+00 0.4021E-02 0.1970E-06

47 25 220.0 0.5405E+00 0.2021E-06 0.1208E-01 0.7002E-03 0.1911E-06

48 25 300.0 0.5539E-01 0.7047E-04 0.9994E-02 0.1657E-03 0.1131E-06

49 25 700.0 0.2084E-01 0.5856E-04 0.4340E-02 0.4311E-04 0.1229E-06

50 50 1.00 0.7441E+02 0.4792E-07 0.2413E+00 0.3659E-01 0.1872E-06

51 50 10.00 0.4427E+02 0.2106E-06 0.5920E+00 0.3219E-01 0.1950E-06

52 50 50.00 0.4947E+01 0.5287E-05 0.1223E+00 0.5118E-02 0.2009E-06

53 50 100.0 0.1293E+01 0.1128E-05 0.1289E-01 0.9235E-03 0.1970E-06

54 50 220.0 0.1242E+00 0.4903E-06 0.2514E-02 0.1151E-03 0.1950E-06

55 50 300.0 0.1143E-01 0.4493E-07 0.1819E-02 0.3120E-04 0.1131E-06

56 50 700.0 0.1217E-01 0.3837E-04 0.8836E-03 0.8227E-05 0.1209E-06

57 100 1.00 0.8298E+02 0.4148E-06 0.9186E+00 0.8431E-01 0.2009E-06

58 100 10.00 0.2744E+02 0.5275E-06 0.2746E+00 0.1979E-01 0.2009E-06

59 100 50.00 0.1749E+01 0.1681E-05 0.2971E-01 0.1389E-02 0.2028E-06

60 100 100.0 0.3090E+00 0.3664E-06 0.1104E-01 0.3529E-03 0.2009E-06

61 100 220.0 0.6737E-01 0.2499E-08 0.1140E-02 0.3535E-04 0.1989E-06

62 100 300.0 0.1277E-01 0.6995E-06 0.6773E-03 0.7363E-05 0.1248E-06

63 100 700.0 0.9522E-02 0.3878E-07 0.3482E-03 0.4274E-05 0.1229E-06

64 200 1.00 0.6971E+02 0.2952E-07 0.4372E+00 0.4871E-01 0.2126E-06

65 200 10.00 0.1344E+02 0.3666E-07 0.5522E-01 0.6762E-02 0.2126E-06

66 200 50.00 0.6311E+00 0.1516E-06 0.1062E-01 0.5174E-03 0.2145E-06

67 200 100.0 0.2396E+00 0.2916E-06 0.4855E-02 0.1752E-03 0.2223E-06

68 200 220.0 0.2018E-01 0.2898E-07 0.5730E-03 0.1242E-04 0.2067E-06

69 200 300.0 0.1344E-01 0.1807E-06 0.7784E-03 0.9472E-05 0.1112E-06

70 200 700.0 0.9653E-02 0.2079E-08 0.3163E-03 0.4008E-05 0.1209E-06

Table I.2.: Bilinear (4 node) and triangular 3 node elements in Region 1-5.
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I. EOS - interpolation functions

Ns Np P [Bar] εmax εmin εave Sdev. tInt p[s]
71 10 1.00 0.4535E+04 -0.3484E+04 0.4612E+01 0.1773E+01 0.6845E-06

72 10 10.00 0.1548E+05 -0.3744E+05 0.6399E+01 0.6159E+01 0.5441E-06

73 10 50.00 0.1143E+02 0.2879E-07 0.2604E+00 0.1192E-01 0.7001E-06

74 10 100.0 0.1577E+01 0.2500E-09 0.4809E-01 0.2240E-02 0.3140E-06

75 10 220.0 0.1025E+01 0.3350E-08 0.3733E-01 0.1622E-02 0.9731E-06

76 10 300.0 0.2304E-01 0.1941E-06 0.4529E-02 0.6152E-04 0.4680E-06

77 10 700.0 0.1279E-01 0.4543E-07 0.5105E-03 0.6212E-05 0.5714E-06

78 25 1.00 0.7595E+02 0.1906E-05 0.4723E+00 0.3729E-01 0.1047E-05

79 25 10.00 0.1084E+03 0.6143E-08 0.9703E+00 0.7251E-01 0.5324E-06

80 25 50.00 0.1818E+01 0.3127E-09 0.1509E-01 0.1155E-02 0.6299E-06

81 25 100.0 0.2437E+00 0.3767E-10 0.2359E-02 0.1408E-03 0.4758E-06

82 25 220.0 0.3036E+00 0.2234E-06 0.6521E-02 0.3904E-03 0.5967E-06

83 25 300.0 0.7384E-02 0.1246E-07 0.3433E-03 0.4770E-05 0.6123E-06

84 25 700.0 0.1445E-01 0.2579E-08 0.4471E-04 0.3611E-05 0.5324E-06

85 50 1.00 0.5103E+02 0.3262E-07 0.9474E-01 0.1782E-01 0.8561E-06

86 50 10.00 0.1793E+02 0.2462E-09 0.1104E+00 0.1207E-01 0.6396E-06

87 50 50.00 0.4897E+00 0.4591E-08 0.1244E-02 0.1454E-03 0.5129E-06

88 50 100.0 0.5582E-01 0.8189E-11 0.2944E-03 0.3598E-04 0.4056E-06

89 50 220.0 0.3367E-01 0.2235E-07 0.3164E-03 0.1833E-04 0.5948E-06

90 50 300.0 0.6497E-02 0.2778E-08 0.5253E-04 0.2121E-05 0.6260E-06

91 50 700.0 0.1018E-01 0.2690E-09 0.2037E-04 0.2387E-05 0.4934E-06

92 100 1.00 0.6215E+03 -0.2754E+05 -0.4041E+01 0.3452E+01 0.4641E-06

93 100 10.00 0.6139E+01 0.4261E-09 0.1901E-01 0.3045E-02 0.5285E-06

94 100 50.00 0.8725E-01 0.8258E-10 0.3707E-03 0.3629E-04 0.4641E-06

95 100 100.0 0.1914E-01 0.3540E-11 0.6441E-04 0.5530E-05 0.5343E-06

96 100 220.0 0.1407E-01 0.2915E-08 0.9136E-04 0.6483E-05 0.6435E-06

97 100 300.0 0.6470E-02 0.2671E-09 0.1700E-04 0.2004E-05 0.5148E-06

98 100 700.0 0.1602E-01 0.3055E-10 0.1918E-04 0.4443E-05 0.5519E-06

99 200 1.00 0.1454E+04 -0.2294E+04 -0.5369E+00 0.4136E+00 0.4875E-06

100 200 10.00 0.2147E+01 0.2983E-09 0.5196E-02 0.9699E-03 0.4368E-06

101 200 50.00 0.1651E-01 0.5182E-10 0.8987E-04 0.7941E-05 0.6026E-06

102 200 100.0 0.2168E+00 0.1081E-11 0.1098E-03 0.4410E-04 0.5460E-06

103 200 220.0 0.6795E-02 0.8910E-09 0.2177E-04 0.1922E-05 0.5109E-06

104 200 300.0 0.6526E-02 0.1827E-09 0.1221E-04 0.1980E-05 0.3335E-06

105 200 700.0 0.8118E-02 0.1356E-09 0.1112E-04 0.2161E-05 0.4953E-06

Table I.3.: Triangular (6 node) iso-parametric elements in Region 1-5.
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Solution of linear equation systems

The solution of implicit partial differential equations involve a robust solver

that can handle many degrees of freedom stored in a sparse system of data

structure. In addition to this, the equation solver must handle systems of equations

with low condition numbers. The partial differential equations (PDE) can be

discretized using finite volume (FV) methods, which leads to a discretization

process is a system of algebraic equations, with a linear or non-linear nature

according to the type of the PDE, from which they are derived. In the non-

linear case, the discretized equations must be solved by an iterative technique,

that involves guessing a solution, linearising the equations about that solution,

and improving the solution. This process is repeated until a converged result is

obtained. For a 2D problem the algebraic equation, for one CV or grid node, is

given by J.1 and the matrix version of the complete numerical problem is given

by J.2.

anΦn +asΦs +apΦp +aeΦe +awΦw = bp (J.1)

The so-called conjugated gradient (CG) methods provide a quite general means

for solving the n x n linear system

A ·Φ = b, A ∈ Rnxn, Φ,b ∈ Rn (J.2)

The simplest CG algorithms solves J.2 only in the case that A is symmetric and

positive definite. It is based on the idea of minimizing the function

f (Φ) =
1

2
Φ ·A ·Φ−b ·Φ (J.3)

This function is minimized when its gradient

∇ f = A ·Φ−b (J.4)

is zero, which is equivalent to J.2. The matrices derived from partial differential

equations are always sparse. Consider the matrix problem represented by J.2

which might result from a FD or FV approximation of a mathematical problem.

After n iterations we have an approximate solution Φn which does not satisfy these

equations exactly. Instead, there is a non-zero residual δ n:

A ·Φn = b−δ n (J.5)
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By subtracting this equation from J.2, we obtain a relation between the iteration

error defined by:

εn = Φ−Φn (J.6)

where Φ is the converged solution, and the residual:

A · εn = δ n (J.7)

The purpose of the iteration procedure is to drive the residual to zero, which lead

to ε also becomes zero. To see how this can be done, consider an iterative scheme

for a linear system:

M ·Φn+1 = N ·Φn +L (J.8)

An obvious property that must be demanded of an iterative method is that the

converged results satisfy J.2. Since, at convergence, Φn+1 = Φn = Φ, we must

have:

A = M−N & L = b (J.9)

or more generally

P A = M−N & L = P b (J.10)

where P is a non-singular pre-conditioning matrix. Non-linear solvers can be

grouped into two broad categories: Newton-like methods and global methods.

The former converge very quickly if an accurate estimate of the solution is

available, but may fail catastrophically if the initial guess is far from the exact

solution. The CG method provide a quite general means for solving the n x

n linear system like J.2. The attractiveness of these methods for large sparse

systems is, that they reference A only through its multiplication of a vector, or the

multiplication of its transpose and a vector. These operations can be very efficient

for properly stored sparse matrix. The most general and ’ordinary’ conjugate

gradient algorithm solves J.2, where A is not necessarily positive definite or

symmetric. The simplest form of preconditioning is the scaling of the matrix

A, by rows or by columns, in order to obtain a unit diagonal matrix. For some

problems this transformation alone is enough to render a slow iteration to a fast

one. The CG method is an effective method for symmetric positive definite

systems. It is the oldest and best known non-stationary method, but is not suitable

for non-symmetric systems as the residuals cannot be made orthogonal employing

short recurrences. The bi-conjugate gradient method (Bi-CG) approaches this

difficulty differently by replacing the orthogonal sequence of residuals by two

mutually orthogonal sequence, one for A and the other for A−T . This is a

great advantage as it involves only three term recurrences enabling the work

per iteration step and the storage requirements to remain under control even

when many iteration steps are needed. Generally the Bi-CG method requires
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four sequences of vectors, rk, r̄k, pk and p̄k. Hence the following recurrence is

performed:

αk =
r̄k · rk

p̄k ·A ·pk
(J.11)

rk+1 = rk −αkA ·pk (J.12)

r̄k+1 = r̄k −αkAT · p̄k (J.13)

βk =
r̄k+1 · rk+1

r̄k · rk
(J.14)

pk+1 = rk +βkpk (J.15)

p̄k+1 = r̄k +βkp̄k (J.16)

This sequence of vectors satisfies the bi-orthogonally condition:

r̄i ·r j = ri · r̄ j = 0, j < i (J.17)

and the biconjugacy condition:

p̄i ·A ·p j = pi ·A · p̄ j = 0, j < i (J.18)

and there is also a mutual orthogonally,

r̄i ·p j = ri · p̄ j = 0, j < i (J.19)

To use the algorithm to solve J.2, make an qualified initial guess Φ1 for the

solution and choose r1=δl in J.5 and choose r̄1 = r1. Then get an improved

estimate from:

Φk+1 = Φk +αk ·pk (J.20)

while carrying out the recurrence of J.11 to J.16. J.20 guarantees that rk+1 from

the recurrence is in fact the residual b−A ·Φk+1 corresponding to Φk+1. Since

rm+1=0 then Φm+1 is the solution to J.2. The ordinary CG algorithm is the

special case of the Bi-CG algorithm when A is symmetric, and we choose r̄1=r1.

Then r̄k=rk and p̄k=pk for all k; we can omit computing them and halve the

work of the algorithm. This CG version has the interpretation of minimizing

J.3. If A is positive definite as well as symmetric, the algorithm is in theory

stable and cannot break down. The stop criteria can be based on J.6, where

|εn|= ∣∣Φn −Φn−1
∣∣< ∣∣εstop

∣∣.
Sparce technique

The physical problems, which are treated in this work, leads to numerical prob-

lems, with very sparsely populated matrices, which results in the use of a compact

matrix technique. This technique is implemented in the CFD solver to improve
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the computational speed and minimize the memory storage. The method operates

with a pointer technique, where each coefficient in the main matrix like J.2 are

stored row by row in an Array, dictated by a local pointer on row level. Each

row has also a pointer to describe the end position of each row. All pointers are

stored in a pointer array named Pointer. J.1 illustrates how the equation system

is organized in a square matrix of nz x nz elements (zero elements are not shown).

The red cells in in J.1 are referring to the pointer storage scheme in J.2. Note

Figure J.1.: Sparse matrix, structure of the matrix for a five-point computational mo-

lecule.

that the first nz elements contains the pointer of ai
e coefficient, for i=1 to nz. The

following pointers contain the row position counting from 1 to nz for each row

in the matrix system. The organization of the equation system coefficients are

Figure J.2.: Structure of the Pointer and Array for sparse storage of matrix.

described by the following pseudo code: n=Neq
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for i=1 to Neq

if(as(i) != Null & i-nz > 0) then ! Store as coefficient

n=n+1; Array(n) = as(i); Pointer(n) = i-nz

endif

if(aw(i) != Null & i-1 > 0) then ! Store aw coefficient

n=n+1; Array(n) = aw(i); Pointer(n) = i-1

endif

if(ap(i) != Null) then ! Store ap coefficient

n=n+1; Array(n) = ap(i); Pointer(n) = i

endif

if(ae(i) != Null & i+1 <= Neq) then ! Store ae coefficient

n=n+1; Array(n) = ae(i); Pointer(n) = i+1

endif

if(an(i) != Null & i+nz <= Neq) then ! Store an coefficient

n=n+1; Array(n) = an(i); Pointer(n) = i+nz

endif

Array(i) = 1.0D0

Pointer(i) = n

EndDo

where Neq is the number of CV’s in the model and an, as, ae, aw and ap are

similar to the coefficients in J.1.

Time differentiation

The applied time differentiation scheme is fully implicit backward. This means

the solution at step n is a function of the derivatives at step n and the solution

at step n-1. Since the derivatives at step n are unknown, this results in a large

system of linearised equations to be solved.
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K. Further partial derivatives

In this appendix is listed the most important partial derivatives due to an EOS for

the one- and two-phase region of a fluid. For the temperature we can derive the

below equations for one-phase(
∂T
∂h

)
p
=

1

cp
(K.1)(

∂T
∂ p

)
h
=

βT v− v
cp

(K.2)

and for two-phase region we have(
∂T
∂h

)
p
= 0 (K.3)(

∂T
∂ p

)
h
=

dT
d p

(K.4)

For the enthalpy we can list the analogue derivatives. For one-phase:(
∂ s
∂h

)
p
=

1

T
(K.5)(

∂ s
∂ p

)
h
=− v

T
(K.6)

and for two-phase region we have(
∂ s
∂h

)
p
=

sg − sl

hg −hl
(K.7)(

∂ s
∂ p

)
h
=

dsl

d p
+

x
d p

(sg − sl)+ x
(

dsg

d p
− dsl

d p

)
(K.8)

where
dsl

d p
=

cp,l

T
dT
d p

−βlvl and
dsg

d p
=

cp,g

T
dT
d p

−βgvg (K.9)
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L. Fluent flow and combustion model

L.1. Fluent Flow model

For the simulation of the combustion processes in a furnace, FLUENT® 13.0 is

used as the CFD solver. The general mass conservation equation is

∂
∂xi

(ρUi) = 0, (L.1)

where ρ is the density of the fluid, Ui are the Cartesian velocity component

(i = 1, 2 and 3), xi are the coordinate axes, and the repeated indices imply

summation over 1-3. The Reynolds averaged momentum equations are defined

as

ρ
(

∂Ui

∂ t
+Uj

∂Ui

∂x j

)
=− ∂ p

∂xi
+

∂
∂x j

(
μ

∂Ui

∂x j

)
+

∂Ri j

∂x j
(L.2)

where p is the pressure, μ is the dynamic viscosity. The Reynolds Stresses are

defined as

Ri j = μt

(
∂Ui

∂x j
+

∂Uj

∂xi

)
− 2

3
ρkδi j (L.3)

Here μt is the eddy viscosity, k is the turbulent kinetic energy, δi j is the Kronecker

symbol. The turbulence model used in this investigation is the realizable variant

of the k-ε model (where ε is energy dissipation rate). The eddy viscosity is

defined as

μt =Cμ ρ
k2

ε
(L.4)

where Cμ is computed from:

Cμ =
1

A0 +As
ku∗
ε

(L.5)

where

u∗ ≡
√

Si jSi j + Ω̃i jΩ̃i j (L.6)

and

Ω̃i j = Ωi j −2εi jkωk (L.7)

Ωi j = Ωi j −2εi jkωk (L.8)
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L. Fluent flow and combustion model

Note that Ωi j is the mean rate of rotation tensor viewed in a moving reference

frame with the angular velocity ωk. The model constants A0 and As are given by:

A0=4.04, AS=
√

6cos(φ) and φ=1/3cos−1(
√

6W ) and

W =
Si jS jkSki

S̃3
, S̃ =
√

Si jSi j (L.9)

and Si j is given below in relation to the transport equations of k and ε . The

turbulence kinetic energy k and its rate of dissipation ε are obtained from the

following transport equations:

ρ
∂k
∂ t

+ρUj
∂k
∂x j

=
∂

∂x j

((
μ +

μt

σk

)
∂k
∂x j

)
+μtS2 −ρε (L.10)

ρ
∂ε
∂ t

+ρUj
∂ε
∂x j

=
∂

∂x j

((
μ +

μt

σε

)
∂ε
∂x j

)
+

ε
k

(
Cε1μtS2 −ρCε2ε

)
where S=

√
2Si jSi j and Si j=

1
2 ( ∂Ui

∂x j
+

∂Uj
∂xi

), and closure coefficients, Cε1 = 1.44, Cε2

= 1.92, σk = 1.0, σε = 1.3.

In the present study, second-order upwind scheme has been applied for all numer-

ical simulations. A second order upwind scheme was used to avoid numerical

oscillations and instability associated with central differencing for convective

terms in the transport equation and to increase the accuracy of solutions. The

coupling between the velocity field and pressure field is strong for incompressible

flows. The SIMPLE algorithm was employed to relate velocity and pressure

corrections to enforce mass conservation and to obtain the pressure field, see

([150]).

L.2. Combustion reaction model

The combustion reaction is modelled by solving an additional set of trans-

port equations for the species involved in the reaction. The transport equa-

tion for each mass fraction of species i (Yi) is of the form, where Di,m is the

laminar diffusion coefficient of species i and Sct is the turbulent Schmidt num-

ber:

∂
∂ t

(ρYi)+∇ · (ρUjYi) = ∇ ·
((

ρDi,m +
μt

Sct

)
∇ ·Yi

)
+Ri +Si (L.11)

Transient+Convection = Diffusion + Source/Sink terms

The first term is zero as the model is steady state and the next two is due to
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Gas phase reaction setup

convective flow and diffusion respectively. The source term can be divided into

two parts; the rate of production of species i (Ri) from chemical reaction and

the rate of creation of species i (Si) stemming from e.g. a dispersed phase like

de-volatilization or char burnout from coal or straw.

L.3. Gas phase reaction setup

The combustion reaction is modelled as a two-step-global reaction mechanism as

shown below:

I: CH4 +
3

2
O2 −→CO+2H2O (L.12)

II: CO+
1

2
O2 −→CO2

which is a modified implementation following [151]. The gas phase reaction

rates are modelled using the finite-rate/eddy dissipation (FR/ED) model setup in

FLUENT 13.0. Using this method, it is possible to account for conditions where

a given reaction is either kinetically or mixing limited. In turbulent combustion

flames the reactions are often mixing controlled and the kinetic reaction rate acts

as a "thermal switch" ensuring that reaction does not inadvertently take place

before the reactants enter the hot near-burner region (flame region). The kinetic

reaction rates for the two reactions are expressed as:

r f
i = k f

i (T ) [CH4]
0.7 [O2]

0.8 (L.13)

r f
ii = k f

ii(T ) [CO] [O2]
0.25

where the rate coefficients follow Arrhenius type expressions:

k f
i = AiT βi exp(

−Ea,i

RU T
) (L.14)

The Arrhenius parameters are shown in table L.1: In the mixing controlled region,

Reaction rate constant A β Ea

Units [kmol/m3s] for β=0:[kmol/s] [−] [J/kmol]

(i) k f
i 5.012 ·1011 0.0 2 ·108

(ii) k f
ii 2.239 ·1012 0.0 1.7 ·108

Table L.1.: Arrhenius rate parameters.

the eddy dissipation model (EDM) relates the reaction rate to the dissipation rate

of the turbulent eddies containing reactants or products. The governing parameter
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L. Fluent flow and combustion model

in the rate expressions (shown below) is the large-eddy mixing scale (k/ε), where

k and ε are the turbulent kinetic energy and turbulent dissipation rate respectively,

given by equation (L.10). The first expression is the reaction rate as a function of

the eddies containing reactants (r) and the following is a function of the product

(p) containing eddies. A and B are empirical constants. In this case A = 2 and B

= 0.5.

rED
r = Aρ

ε
k

min
R

(
YR

ν ′
R,iMw,R

) (L.15)

rED
p = Aρ

ε
k

B

(
(

∑P YP

∑N
j ν ′′

j,rMw, j
)

)
(L.16)

The FR/ED model will always assume the governing reaction rate to be the

smallest of either the kinetic (Arrhenius) expression or one of the two mixing

rates for the given reaction. The radiation model applied is the DO radiation

model (Chui & Raithby, 1990), (Raithby & Chui, 1993) implemented in the Fluent

® CFD code. Likewise, turbulence closure has been modelled using the realizable

variant of the k-ε two-equation turbulence model (Shih, Liou, Shabbir, Yang, &

Zhu, 1995) as implemented in the Fluent ® CFD code.
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M. Four field model

In this appendix are derived a four-layer flow model, also called four field model.

For simplicity the one-dimensional flow is assumed incompressible and a time-

averaging of the velocity fluctuations are considered similar to the known aver-

aging turbulent fluctuations from single-phase fluid dynamics. The pipe channel

is considered a uniform channel with constant cross sectional area (A) and no

internal heat production. For vertical flow, a non-isotherm stratification of the

flow fields is caused by the a swirl initiated by the IRBT.

Figure M.1.: Illustration of the four different control volumes in the two-phase fluid.

The fluid is flowing in a cylindrical channel with uniform radius R.
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M.1. Conservation of mass

The volume fraction of total liquid can be described as the sum of a continuous

phase (εl) and a dispersed liquid phase as droplets (εd):

εL = εl + εd (M.1)

Correspondingly the volume fraction of total gas or steam can be describes

as the sum of a continuous phase (εg) and a dispersed gas phase as bubbles

(εb):

εG = εg + εb (M.2)

Hence, the sum of εL and εG must be unity.

εL + εG = 1 (M.3)

An interface zone (with the perimeter named Si) is separating the flow into two

phases named layer 1 and layer 2. The densities can be formulated as:

ρ1 =
εlρl + εbρb

εl + εb
, ε1 = εl + εb (M.4)

and

ρ2 =
εgρg + εdρl

εg + εd
, ε2 = εg + εd (M.5)

The corresponding centre of mass velocity of the two mixture layers are

u1 =
cbρgub +(1− cb)ρlul

ρ1
(M.6)

for field 1, and

u2 =
cdρlud +(1− cd)ρgug

ρ2
(M.7)

for field 2. In equation (M.6) and (M.7) cb and cd denote the ration of the dis-

persed field volume fraction to the mixture volume fraction of the layer:

cb =
εb

εb + εl
, cd =

εd

εd + εg
, (M.8)

A corresponding expression can be written for the pressure P1 and P2 as well as

for the enthalpy. Pressure correlations:

P1 =
cbρgPb +(1− cb)ρlPl

ρ1
(M.9)
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P2 =
cdρlPd +(1− cd)ρgPg

ρ2
(M.10)

and the enthalpy correlations:

h1 =
cbρghb +(1− cb)ρlhl

ρ1
(M.11)

h2 =
cdρlhd +(1− cd)ρghg

ρ2
(M.12)

The mass flux Gk is defined for both layers (k=1,2)

G1 = ρ1u1

= G1(1− ẋ1)+G1ẋ1

= ρl(1− cb)ul +ρgcbub (M.13)

Where ẋ1 is the flow quality given by (M.19). Hence the liquid and bubble

velocities are given as:

ul = G1
1− ẋ1

ρl(1− cb)
(M.14)

ub = G1
ẋ1

ρgcb
(M.15)

In analogy withe layer 1, we find for layer 2:

G2 = ρ2u2

= G2(1− ẋ2)+G2ẋ2

= ρg(1− cd)ug +ρlcdud (M.16)

and the gas and droplet velocities are given as:

ug = G2
1− ẋ2

ρg(1− cd)
(M.17)

ud = G2
ẋ2

ρlcd
(M.18)
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M. Four field model

The flow quality ẋ is purely hydrodynamic and must not be compared with the

thermodynamic equilibrium quality x. The flow quality for the two layers are

given by M.19 and M.20

ẋ1 =
ρgubcbA

ρgubcbA+ρlul [1− cb]A

=
ṁb

ṁb + ṁl
(M.19)

ẋ2 =
ρludcdA

ρludcdA+ρgug[1− cd ]A

=
ṁd

ṁd + ṁg
(M.20)

The mass conservation equations are derived for a slice of a pipe element as

illustrated in (M.2). Let us define Φ and φ as the rates of bubble entrainment and

disengagement rates, and droplet entrainment and deposition rates respectively,

measured as per unit mixture volume. Additionally, we have Γ representing the

rate of phase changes with positive sign for evaporation. The mass transport due

to phase changes is represented along two interface layers, i.e. Γ1 describing

the rate of phase changes of liquid continuous to gas dispersed (bubbles) in

region 1 and Γ2, describing the phase change of liquid dispersed (droplets) to gas

continuous. Both phase change terms are measured per unit volume per second.

The mass flow terms are depicted in M.1 and M.2 for a slice of the flow channel,

where z and t are the spatial and time coordinates. The mass flow at z+δz is

described by a Taylor series expansion around z. Phase conservation equations,

including bubble entrainment, disengagement rates as well as droplet entrainment

and deposition rates, can now be derived by applying the mass continuity principle

to the four fields (liquid continuous, liquid dispersed, gas continuous and gas

dispersed) as occupied portions of a control volume and taking the limit of δz →
0.

∂
∂ t

(εlρl)+
∂
∂ z

(εlρlul) =−Φe +Φd −Γ1 (M.21)

∂
∂ t

(εbρg)+
∂
∂ z

(εbρgub) = φe −φde +Γ1 (M.22)

∂
∂ t

(εgρg)+
∂
∂ z

(εgρgug) =−φe +φde +Γ2 (M.23)

∂
∂ t

(εdρl)+
∂
∂ z

(εdρlud) = Φe −Φd −Γ2 (M.24)
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Momentum equations

Figure M.2.: Mass transfer terms for the four layers on a slice of a pipe-element.

The mass conversation equations for the total liquid and gas volume fractions

are obtained by summing the equations (M.21) and (M.24), (M.23) and (M.22),

respectively:
∂
∂ t

(εLρl)+
∂
∂ z

(ε1G1)−Γ1 −Γ2 = 0 (M.25)

∂
∂ t

(εGρg)+
∂
∂ z

(ε2G2)+Γ1 +Γ2 = 0 (M.26)

For an isotherm model, the rate of phase change Γ would be zero.

M.2. Momentum equations

The formulation of the momentum equations are derived on the basis of Newton’s

second law to each layer control volume. This formulation is a minor modification

of the momentum equation developed by [103]. The momentum transfer terms

are illustrated in (M.3) and the forces acting on the layers are illustrated in (M.4)

on a slice of a pipe-element. The momentum balance is set up for each field

(l, b, d and g). The interfacial velocities are given as ui1 and ui2. τdrag,k denotes

the drag forces in between the dispersed bubbles in the liquid continuous layer

and droplets in the gas continuous layer respectively. τi represents the interfacial

drag along the interface I with the perimeter Si. The forces are defined per unit

area. The principals of conservation of momentum expresses that at any instant

of change of momentum of a volume moving with the fluid is equal to the sum of

surface forces and volume forces acting on the volume. The momentum transport

out of the control volume is illustrated on (M.3) and is located at z+δ z. At the

same location we have the corresponding pressure force acting on the downstream

boundary of the control volume illustrated in M.4. Those contributions in the

momentum balance are described in analogy to the mass continuity equations as
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M. Four field model

Figure M.3.: Momentum transfer terms for the four fields on a slice of a pipe-element.

Figure M.4.: Forces acting on the four fields on a slice of a pipe-element.
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Momentum equations

Taylor expansions around z. The mathematical formula of the above principle

can be written for the four momentum equations presenting the four fields by

letting δz → 0:

∂
∂ t

(εlulρl)+
∂
∂ z

(
εlρlu2

l
)
=− ∂

∂ z
(Plεl)

− τwk
Sw

A
+ τdrag,1

S1

A
−ρlgεl −Γ1ui1 −Φeul +Φdud

(M.27)

∂
∂ t

(εgugρg)+
∂
∂ z

(
εgρgu2

g
)
=− ∂

∂ z
(Plεg)

− τdrag,2
S2

A
−ρggεg

−Γ2ui2 −Φdeug +Φeub

(M.28)

∂
∂ t

(εdudρl)+
∂
∂ z

(
εdρlu2

d
)
=− ∂

∂ z
(Pdεd)

− τi
Si

A
+ τdrag,2

S2

A
−ρlgεd −Γ2ui2 +Φeul −Φdud

(M.29)

∂
∂ t

(εbubρg)+
∂
∂ z

(
εbρgu2

b
)
=− ∂

∂ z
(Pbεb)

+ τi
Si

A
− τdrag,1

S1

A
−ρggεb +Γ1ui1 −Φdeub +Φeug

(M.30)

The source/sink terms described by (M.29) and (M.30) expresses the non-condensing

momentum transport of mass from the specific fields, whereas the phase change

rates con tributes with momentum exchange (Γ1 and Γ2), caused by the surround-

ing evaporation or condensation. The τdrag is representing the interfacial drag

acting on the dispersed field. The flow pattern is assumed rotating along the main

axis of the pipe, as a consequence of the internal rifles in the pipe channel. This

causes an acceleration due to the centrifugal force of the fluid particles for the

dispersed droplets and bubbles respectively, and is represented by a radial pres-

sure gradient, which is outlined in the section of Rotating flow. The momentum

equations can be expressed by a mixture of the continuous liquid layer and the

97



M. Four field model

dispersed bubble layer by adding (M.27) and (M.30) where the conservation of

momentum across the interfacial terms cancels out.

∂
∂ t

(εlulρl)+
∂
∂ t

(εbubρg)+
∂
∂ z

(
εlρlu2

l
)
+

∂
∂ z

(
εbρgu2

b
)

=− ∂
∂ z

(Plεl)− ∂
∂ z

(Pbεb)

− τwk
Sw

A
+ τi

Si

A
−ρlgεl −ρggεb

−Φeul −Φdeub +Φdud +Φeug

(M.31)

The drag forces τdrag,1
S1
A as well as the evaporation terms Γ1ui1 are eliminated.

Additionally, we find by adding (M.28) and (M.29) the momentum equation for

layer 2:

∂
∂ t

(εgugρg)+
∂
∂ t

(εdudρl)+
∂
∂ z

(
εgρgu2

g
)
+

∂
∂ z

(
εdρlu2

d
)

=− ∂
∂ z

(Plεg)− ∂
∂ z

(Pdεd)

− τi
Si

A
−ρggεg −ρlgεd

−Φdeug +Φeub +Φeul −Φdud

(M.32)

Again, we see that the drag force τdrag,2
S2
A as well as the evaporation terms Γ2ui2

are eliminated. With help of (M.4) and (M.5) the momentum equations for the

fields (layers) 1 and 2 can be written as (M.33) and (M.34), where the subscripts

are listed in (??).

∂
∂ t

(ε1G1)+
∂
∂ z

(
ε1ρ́1G2

1

)
=− ∂

∂ z
(Plεl)− ∂

∂ z
(Pbεb)

− τwk
Sw

A
+ τi

Si

A
−ρlgεl −ρggεb

−Φeul −Φdeub +Φdud +Φeug

(M.33)
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and

∂
∂ t

(ε2G2)+
∂
∂ z

(
ε2ρ́2G2

2

)
=− ∂

∂ z
(Plεg)− ∂

∂ z
(Pdεd)

− τi
Si

A
−ρggεg −ρlgεd

−Φdeug +Φeub +Φeul −Φdud

(M.34)

where ρ́1 and ρ́2 is the 1. order momentum density defined as (M.35) and (M.36),

respectively. The flow quality is given by (M.19) and (M.20). In M.33 and M.34

the LHS terms expresses the dynamic rate of increase of momentum per volume

plus the rate of momentum gain by convection per unit volume. On the RHS

we have the pressure force per volume, the interfacial drag along the interface

I measured per area, the gravitational force on the element per volume, the rate

of momentum gain by viscous transfer per unit volume and the entrainment and

disengagement rates for the dispersed fields added as production and dissipa-

tion of momentum, i.e. droplet entrainment/deposition for the dispersed liquid

field and gas entrainment rate and disengagement. The momentum contribution

caused by the phase changes in the fluid is not included in these two momentum

equations.

ρ́1 =
(1− ẋ1)

2

ρl(1− cb)
+

ẋ1
2

ρgcb
(M.35)

ρ́2 =
(1− ẋ2)

2

ρg(1− cd)
+

ẋ2
2

ρlcd
(M.36)

The axial flow is expressed by u, the volume fraction by ε , P is the interfacial

pressure at each layer, g is acceleration due to gravity and τ is the shear stress,

ρ is the density, A the cross sectional area, S1, S2 and Si denotes the perimeter

wetted by interface 1, interface 2 and the interfacial I perimeter, respectively,

given by (M.37) to (M.39). The pipe inclination with respect to the horizontal

line is given by θ . For vertical pipes θ=π/2.

S1 = 2πrb = 2πR
√

1− εl (M.37)

Si = 2πrd = 2πR
√

εg + εd (M.38)

S2 = 2πrg = 2πR
√

εg (M.39)
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M. Four field model

The layer thickness of 1 and 2 is expressed by (M.40) and (M.41):

δ1 = rd = R
√

εg + εd (M.40)

and

δ2 = R− rd = R(1−√εg + εd) (M.41)

The wall shear stress is typically expressed as:

τwk =
1

2
fwkρk |uk|ukΠ2, k = l ∨g (M.42)

where the fwk denotes the wall friction factor, which can be determined by i.e. the

Colebrook and White formula. The shear stress between the wall and the phase k

is described by τwk, where the case (k=1) denotes the wall shear stress calculated

at layer 1 (Single phase liquid to annular flow) and the case (k=2) denotes the

case where layer 2 is the outer layer and layer 1 is non-existing (drop flow to

superheated steam). The interface velocity is given by ui and can be estimated as

ui=(u1 +u2)/2 [76]. The shear stress is adjusted according to the effect of swirl,

by multiplying uk with Π equation (8.25) to account for the increased wall slip

velocity caused by the swirl. In this formula, the fin geometry does not contribute

to any correction of the pipe cross section area, because we make the assumption

that the fins have an infinitesimal thickness. The fins are periodic with a length of

lp in the axial direction (k) of the pipe. For γ = π/2 the fins are perpendicular to

the cross section and hence parallel to the main axis of the pipe (no swirl effect).

The subscript k denotes the phase in contact with the wall, i.e. ug if it is the gas

and ul if it is the liquid. Similarly, the interfacial shear stress in between the

phases can be formulated as:

τi =
1

2
fiρi
∣∣ug −ul

∣∣(ug −ul) (M.43)

The source/sink terms described in the momentum equations, φe, φde, Φe and Φd
denote bubble entrainment and disengagement rates, and droplet entrainment and

deposition rates respectively. The velocities of the dispersed fields (ud - droplet

velocity, and ub - bubble velocity) are determined from the momentum equations

written for the dispersed phase equations (M.29) and (M.30).

M.3. Energy equations

The total enthalpy of flow region k is defined as the sum of the intrinsic enthalpy,

the potential energy, the axial kinetic energy (axial velocity) and the rotation

energy caused by the swirl (generated by the internal rifles in the boiler tube). In
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Energy equations

the derivation the total specific energy et and the total specific convected energy

e will be used:

etk = ũk +
u2

k
2
−gzsin(θ)+ rckack (M.44)

and

ek = hk +
u2

k
2
−gzsin(θ)+ rckack (M.45)

where ũk is the specific internal energy and hk is the specific enthalpy, related by

(M.46). The inclusion of gzsin(θ) in the definition of eti and ei is general. Often

we deal with the difference of total energy along the interface eti − ei, whereby

the gzsin(θ) term cancels out.

ũk = hk − pk/ρk (M.46)

The swirl generates an centrifugal acceleration given as:

ack =
1

2
ω2rckΘ (M.47)

where index k=l, g, b and d, is referring to liquid continuous, gas continuous,

bubbles and droplets. The influence coefficient Θ is depending on the fin geometry

in the IRBT as well as the helix angel γ , stated in equation (8.19). A qualified

guess, Θ is assigned to 0.5. The rotation speed is given by ω . The area-based

centre radius rck, is calculated in analogy to the momentum of inertia for mechan-

ical objects surrounded by two cylinders (ri and r j) where

rck =

√
r2

i + r2
j

2
(M.48)

The area-based center radius rck is expressed by equation M.49 to M.52.

rcg =

√
r2

g +02

2

= R
√

εg/2 (M.49)
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M. Four field model

Figure M.5.: Energy transfer and heat flow terms on a slice of a pipe-element.

rcd =

√
r2

g + r2
d

2

= R
√

εg + εd/2 (M.50)

rcb =

√
r2

d + r2
b

2

= R
√

εg + εd + εb/2

= R
√

1− εb/2− εl (M.51)

rcl =

√
r2

b + r2
l

2

= R
√

1− εl/2 (M.52)

The energy transfer includes the contribution from the basic transport processes

of the entrainment and disengagement rates for the dispersed fields added as

production and dissipation of energy (i.e. droplet entrainment/deposition for the

dispersed liquid field and gas entrainment rate and disengagement in the energy

balance equations). The mass transfer caused by phase changes is represented

along the two interfaces 1 and 2 represented by Γ1 and Γ2, see figure (M.5). The

heat flow across the wall is defined positive for Tw > Tl . Additionally, the heat

transfer along the three interfaces is defined positive according to the illustration

in figure (M.5) and is positive, as long as the driving temperature across the
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Energy equations

Figure M.6.: work terms on a slice of a pipe-element.

interface is going from high to low temperature. The work terms are illustrated in

figure (M.6) and are represented by pressure forces from the surrounding layers.

The pressure force per area also contributes with work on the surrounding layers

and the interfacial drag along the interfaces performs a work as well. The friction

forces allocated to the interface cross sections are also performing a work as

well. The coupling between the rotation speed and the axial speed of the fluid is

described in (8.25).

To derive the energy conservation equations for the flow fields, one should apply

the first law of thermodynamics to the control volumes of the four layers and

derive the terms referring to the axial direction at z+δ z by a Taylor expansion

around z. By taking the limit of δz → 0, we got the energy conservation equation

for the continuous liquid layer (l), given by equation (M.53).

∂
∂ t

(ρletlεlA)+
∂
∂ z

(ρluletlεlA)

=−q
′′
wlSw +Γ1Aetl +q

′′
1lS1 − ∂

∂ z
(ulεlAPl)

+ΦeetlA−ΦdetdA− Γ1APlεl

ρl

−Pl
∂εl

∂ t
+Pb

∂εb

∂ t
−F1S1u1

(M.53)
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M. Four field model

By substituting etl in equation (M.53) by equation (M.46) and eliminating the

cross sectional area under the assumption that the cross sectional area is constant

in time and space, we have:

∂
∂ t

(ρlelεl)+
∂
∂ z

(ρlulelεl)

=−q
′′
wlSw

A
−Γ1(

Pl

ρl
(l + εl)− el)

+
q
′′
1lS1

A
+Φeetl −Φdetd

+Pb
∂εb

∂ t
+ εl

∂Pl

∂ t
−F1

S1

A
u1

(M.54)

Additionally, we get for the dispersed bubble layer (b):

∂
∂ t

(ρgebεb)+
∂
∂ z

(ρgubebεb)

= Γ1(
Pb

ρg
(1+ εb)− eb)

− q
′′
1bS1

A
−φeetg +φdeetb

+Pl
∂εl

∂ t
+Pd

∂εd

∂ t

+ εb
∂Pb

∂ t
+F1

S1

A
u1 −Fi

Si

A
ui

(M.55)

By using the same mathematical manipulations as in equation (M.53), the energy

equations for the dispersed droplet layer (d) and the continuous gas layer (g) are

given as:

∂
∂ t

(ρledεd)+
∂
∂ z

(ρludedεd)

=
q
′′
2dS2

A
−Γ2(

Pd

ρl
(1+ εd)− ed)

− q
′′
i Si

A
−Φeetl +Φdetd

+Pb
∂εb

∂ t
+Pg

∂εg

∂ t

+ εd
∂Pd

∂ t
+Fi

Si

A
ui +F2

S2

A
u2

(M.56)
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Energy equations

Figure M.7.: Illustration of heat exchange rates in the four field regions

∂
∂ t

(ρgegεg)+
∂
∂ z

(ρgugegεg)

=−q
′′
wgSw

A
−Γ2(

Pg

ρg
(1+ εg)− eg)

− q
′′
2gS2

A
−Φdeetb +Φeetg

+Pd
∂εd

∂ t

+ εg
∂Pg

∂ t
+F2

S2

A
u2

(M.57)

Note that it is only in the liquid and gas layers that can allow heat transfer

through the wall. The dispersed layers receive energy transfer through the in-

terfacial boundaries, which never will be coincident with the wall boundary.

The energy equations can be transformed into a mass flux formulation, by in-

troducing a second order density moment equation ρ̈k. By adding (M.53) and

(M.55), we get an equation describing the layer 1, where the Γ1S1etl is elimin-

ated:

∂
∂ t

(εlρl(el −Pl/ρl))+
∂
∂ t

(εbρg(eb −Pb/ρg)) =
∂
∂ z

(εlρletlul)

+
∂
∂ z

(εbρgetbub)−
q
′′
1lS1

A
+

q
′′
1bS1

A

+
q
′′
wSw

A
− q

′′
i Si

A
−Φeetl +Φdetl +φeetg +φdeetb

−Pl
∂εl

∂ t
+Pl

∂εl

∂ t
−Pb

∂εb

∂ t

(M.58)
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Additionally, we got an expression for the layer 2, which is a result of adding

equation (M.56) and equation (M.57). Here source term: Γ2S2etd is elimin-

ated.

∂
∂ t

(εdρl(ed −Pd/ρl))+
∂
∂ t

(εgρg(eg −Pg/ρg))

+
∂
∂ z

(εdρletdud)+
∂
∂ z

(εgρgetgug) =

− q
′′
2dS2

A
+

q
′′
2gS2

A

+
q
′′
i Si

A
+ΦeetlS1 −ΦdetdSi −φeetgSi +φdeetbSi

−Pd
∂εd

∂ t
+Pb

∂εb

∂ t
+Pg

∂εg

∂ t

(M.59)

By rearranging the expressions by using equation (M.44), (M.45) and (M.19) and

(M.20), we get the energy equations for layer 1 and layer 2:

∂
∂ t

(ε1ρ1e1)+
∂
∂ z

(ε1G1(ẋ1hb +(1− ẋ1)hl)) =

− q
′′
1lS1

A
+

q
′′
1bS1

A

+
q
′′
wSw

A
− q

′′
i Si

A
−ΦeetlS1 +ΦdetlSi +φeetgS2 +φdeetbSi

+
∂
∂ t

(ε1 p1)−Pb
∂εb

∂ t

(M.60)
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and

∂
∂ t

(ε2ρ2e2)− ∂
∂ t

(ε1P2)+
∂
∂ z

(ε2G2(ẋ2hd +(1− ẋ2)hg)) =

− q
′′
2dS2

A
+

q
′′
2gS2

A

+
q
′′
i Si

A
+ΦeetlS1 −ΦdetdSi −φeetgSi +φdeetbSi

−Pd
∂εd

∂ t
+Pb

∂εb

∂ t
+Pg

∂εg

∂ t

(M.61)

Note that e1 and e2 is determined by equation (M.62) and (M.62), which express

the mass flux weighted average of the bulk energy’s at the respective layers. This

underlines that it is not weighted by the steady state amount of mass in a fixed

control volume.

e1 = ẋ1etb +(1− ẋ1)etl (M.62)

e2 = ẋ2etd +(1− ẋ2)etg (M.63)

M.4. Rotating flow

In the Four Field model we have four pressure levels along the radial direction in

the channel flow. The pressure levels are strongly coupled to the swirl generated

by the internal rifles. Outside the slip boundary of the near wall region, the

velocity is already adjusted according to the increased path through the helix.

The radial velocity in a rotating flow can be expressed by equation (8.26), where

Vr is the radial velocity and is assume to be proportional to ω . r is the distance

from a fluid particle to the centre axis of the tube (k). The distribution of Vr
may be estimated, see (8.8). Two boundary conditions may exist: Vr(0) = 0 and

Vr(R) = Rω , hence the flow distribution is given by:

Vr(r) = ωr (M.64)
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By integrating equation (8.26) above the four layers, we get the below relation-

ships:

ΔPlb = Pl −Pb

=
∫ R

ri

1

ρ
∂Vr

∂ r
dr

=
∫ rb

ri

ω
ρg

dr+
∫ R

rb

ω
ρl

dr

= ω(
rb − ri

ρg
+

R− rb

ρl
)

= ωR(
√

1− εl −√εg + εd

ρg
+

1−√
εl

ρl
) (M.65)

ΔPbd = Pb −Pd

=
∫ rb

rg

1

ρ
∂Vr

∂ r
dr

=
∫ rd

rg

ω
ρl

dr+
∫ rb

rd

ω
ρg

dr

= ω(
rd − rg

ρl
+

rb − rd

ρg
)

= ωR(
√εg + εd −√εg

ρl
+

√
1− εl −√εg + εd

ρg
) (M.66)

ΔPdg = Pd −Pg

=
∫ rd

0

1

ρ
∂Vr

∂ r
dr

=
∫ rg

0

ω
ρg

dr+
∫ rd

rg

ω
ρl

dr

= ω(
rg

ρg
+

rd − rg

ρl
)

= ωR(
√εg

ρg
+

√εg + εd −√εg

ρl
) (M.67)
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M.5. Jump conditions

Evaporation and the belonging mass and energy transport is related to the interface

lines 1 and 2, see figure (M.7). The interfacial heat flux and the mass exchange

rate Γ1 across the interface section covered by the perimeter S1 are linked through

the following jump condition at the interface:

Γ1(h1G −h1L)+
S1

A
(q

′′
1l −q

′′
1b) = 0 (M.68)

where h1G and h1L are the enthalpies of the phases at the interface cross sectional

line, usually assumed to be at saturation. The thermal jump appears when the fluid

is entering the two-phase region in the water/steam table [80]. The following

assumptions are made: The thermal hydraulic conditions along the interface

are saturated fluids and any contribution from kinetic energies were ignored,

hence we have a simple relationship between mass transfer and latent heat of

evaporation hLG at the interface formulated by M.69.

Γ1hLG +
S1

A
(q

′′
1l −q

′′
1b) = 0 (M.69)

If we consider a control volume enclosing the interface and having an infinitesimal

thickness, equation (M.69) constitutes an energy balance of this control volume.

In the presence of superheated steam and sub cooled liquid, there will be heat

transfer from the steam to the interface, where a fraction of the heat flux penetrates

into the liquid and is used to heat up the sub cooled liquid. The remaining fraction

produces saturated steam at the interface. Additionally we have for the interface

section 2:

Γ2hLG +
S2

A
(q

′′
2d −q

′′
2g) = 0 (M.70)

M.6. Summary

This four layer model has been developed with a view to obtain a better under-

standing of the internal processes, occurring within a two-phase flow, impacted

by a high heat flux. The flow typically starts as a sub-cooled fluid, with only

one active layer, as time passes and the fluid is approaching the saturation tem-

perature, the formation of bubbles is starting, which now is transported to the

dispersed gas layer. As heating progresses, the formed profile of moisture in

the form of bubbles, forms a third layer (dispersed droplets), which contains

droplets of liquid, which is established as a result of simple entrainment from the

liquid layer, or as a result of local condensation, due to local pressure changes.

Finally, the fourth layer is created as a pure gas layer, where the fluid may be

superheated. Based on these mechanisms, the model could be used to describe
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various flow regimes. In reference [103] is already shown positive results formed

the basis of isothermal simulations, where the upstream boundary has specified

different configurations with air and water at different speeds. The flow field has

formed themselves in four layers downstream. There is not much about how the

8-coupled hyperbolic partial differential equations are solved numerical. This

work is intended as a starting point for further research in this area and can benefit

greatly, complemented by experimental work to verify the many constitutive

expression in the model complex.
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Abstract

In this article a detailed description of the theory and the implementation of
a general dynamic Partial Differential Equation (PDE) solver is given. The
implementation includes both source and sink terms as well as diffusion terms,
which can act locally in the solution space as a function of the physical or chem-
ical process. The numerical method is based on a fifth order Central WENO
scheme, with simplified first order weight functions and a fourth order central
diffusion term. It is the intention to describe a general hybrid solver with all
the components necessary for building a complete numerical solver, including
different types of boundary conditions. A number of tests cases for both scalar
and vector problems are solved and shows good agreement with the expected
results. Moreover, solution of coupled partial differential equations, including
source- and diffusion terms, is illustrated by modelling a full scale evaporator
model of Skærbækværket unit 3 (SKV3) in Fredericia, Denmark. The evapo-
rator is described as a homogeneous flow model with subcooled water on the
upstream boundary and superheated steam on the downstream boundary.

Keywords: Central WENO, Black box solver, Evaporator modelling, WENO,
Weighted interpolation, Smoothness indicator, Source/Sink, Diffusion,
Hyperbolic balance laws, Euler equation, Burgers equation.

1. Motivation

The starting point for this article is the challenge of developing a robust nu-
merical solver, to handle the very strong thermal-hydraulic transients, that can
occur in a power plant evaporator. In this context, a one-dimensional pipe wall
model is used to ensure the transport of energy from the furnace to the water /
steam circuit. The homogeneous thermo hydraulic flow model provides us with
some numerical challenges, in the sense that there occurs a singularity in the
first derivative of the fluid density, around the saturation lines in the equation
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of state (EOS), see figure (1). This means that strong pressure waves is induced
to compensate for sudden sharp negative gradients. Two techniques have been
applied to control this pressure oscillation. The first approach concerns a local
smoothing of the density around saturation curves, which is implemented in the
EOS. The next approach is to impose artificial diffusion, whose strength is esti-
mated from a Boussinesq equation, modelled as heat transfer in a rotating fluid
in a pipe, see [1]. Many numerical challenges are brought into play. Choices of

Figure 1: Variations in density and specific volume of water as a function of the steam dryness.

solution strategy including choice of grid (staggered/non-staggered/nested), so-
lution method (explicit/implicit), time integration method, initial- and bound-
ary conditions are just a few of the many challenges, the developer is confronted
with, in the construction of a numerical solver. Therefore it is important to
explain the entire process and clarify the most necessary components to be in-
cluded in the implementation of a dynamic numerical solver. An additional
challenge is to determine a numerical scheme, that can handle steep gradients
without numerical diffusion and over-and under-shooting in the solution do-
main. Significant efforts are done to remove the numerical oscillations created
by higher order numerical schemes of hyperbolic conservation laws near discon-
tinuities, e.g. [2]. A successful numerical method should resolve discontinuities
with correct positions, sharp non-oscillatory profiles and retain high order accu-
racy in smooth parts. A prominent class of such methods is weighted essentially
non-oscillatory (WENO) schemes, see e.g. [3] and [4]. The WENO scheme is
suitable for solving convection dominated partial differential equations, contain-
ing potential discontinuities in the solution, [5]. Examples of such problems are
the Euler or Navier-Stokes equations in computational fluid dynamics. WENO
is an extension of the essentially non-oscillatory (ENO) scheme, which was in-
troduced by [6]. The essential idea in the WENO methodology is to make a
linear combination of lower order reconstructions to obtain a higher-order ap-
proximation. The combination coefficients, also called linear weights or ideal
weights, are obtained from the local geometry of the mesh and the order of
accuracy.
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1.1. Aims

In this paper we formulate a numerical solution method for solving the
partial differential equations for modelling a full scale evaporator model of
Skærbækværket unit 3 . The approach is based on a homogeneous evapo-
rator model, as described in [7] and [8], which can summarize by the system
of balance laws (SBL) as given in (1), where the time dependent variabel Φ
and the corresponding flux vector are given below respectively. The dependent
variables are ρ̄, ṁ, e and Tw meaning the fluid density, mass flow, total energy
of the conserved fluid and wall mean temperature, respectively. The pressure
can be determined iteratively by water steam tables: p = p(e, ρ̄), A is the tube
cross section area, measured in [m2]. The wall friction coefficients fw and the
convective heat transfer coefficient h is outlined in [7] and [8]. The source term
gs consists of both source/sink terms related to gravity- and wall friction forces.
The diffusion term gd include contributions from the thermal diffusion in the
pipe wall, as well as the mixing length eddy viscosity (l2=0.01 [m2/s]), working
as a damping term in the vicinity of the saturation line of water, controled by

the steam quality based on an enthalpt approach (x= h−h(x=0)
h(x=1)−h(x=0) ) in a certain

interval eg. (x ∈ [−0.01, 0.01]). The independent variables t represents the time
in [s] and z is the spatial coordinate referring to the flow direction of the fluid
given in [m].

∂Φ(z, t)

∂t
+

∂f(Φ(z, t))

∂z
= gs(Φ(z, t)) + gd

(
∂Φ

∂z
,Φ(z, t)

)
, (1)

Φ ∈ Rm,m = 4, t ≥ 0 ∧ z ∈ Ω

where the dependent variable Φ and the flux vector f are given as

Φ =

⎛⎜⎜⎝
ρA
ṁ
e
Tw

⎞⎟⎟⎠ , f(Φ) =

⎛⎜⎜⎜⎝
ṁ

m2

ρ̄A + pA
(e+pA)ṁ

ρA

0

⎞⎟⎟⎟⎠
and the source and diffusion vector are given as:

gs(Φ) =

⎛⎜⎜⎜⎝
0

p∂A
∂z − ρgA cos θ −√ π

Afw
ṁ|ṁ|
ρA

Sw q̇e − ṁg cos (θ)
q̇r

ρw Cpw

Sw

A − q̇e
ρw Cpw

diπ
A

⎞⎟⎟⎟⎠ and gd(Φ) =

⎛⎜⎜⎜⎝
0

l2Sw

ρ̄A3
∂2ṁ
∂z2

0

α∂2Tw

∂z2

⎞⎟⎟⎟⎠
Other parameters are listed in tabel (1). The numerical scheme is challenging
and the convective terms are based on the a WENO scheme using a uniform grid,
in which we use a central WENO scheme, formulated by [2]. The scheme uses a
reconstruction combined with the smoothness indicators introduced by [9] and
[10]. We formulate a model of an evaporator which is based on a central-upwind
flux discretization. This is simple, generally applicable and efficient formulation
[2]. This formulation results in a discretization method developed of order five.
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We formulate the diffusion term by a fourth order central difference from [11].
The reconstruction in [2] is a result of a convex centred combination of quadratic
polynomials, combined with a third order TVD Runge-Kutta procedure for
the time integration. The method includes so called smoothness indicators to
avoid vanishing denominators in the weight definitions, i.e., they are parameters
designed to keep the weights bounded [3]. In order to reduce the influence of the
smoothness indicators on the convergence, we use a simple smoothness indicator
introduced by [9] and [10]. Capdeville [2] has shown that the scheme is fifth order
accurate in both smooth parts and non-smooth parts of the solution. The theory

Table 1: Geometrical and numerical specifications.
Parameter Description Parameter Description Parameter Description

t Temporal coordinate [s] Φ Unknown solution vector f Flux vector function

x Spatial coordinate [m] g Source vector λ Eigenvalue vector

lz Length of solution domain [m] Ω Solution domain J Jacobian vector

Γ Diagonal matrix (diffusion coefficient) L Left eigenvector R Right eigenvector

IS Smoothness indicators F Flux function τ5 Central smoothness function

pj Polynomial reconstruction wj Weight function Ij Cell element j

A (a), B (b) West, East boundary c Speed of sound [m/s] CFL Courant-Friedrichs-Lewy number

TVD Total Variation Diminishing ρ Fluid density [kg/m3] u Convective fluid velocity [m/s]

WENO Weighted Essentially Non-Oscillatory p Fluid pressure [Pa] E Total energy of fluid

ρ mean fluid density [kg/m3] A Tube cross section area [m2] ṁ Mass flux [kg/s]

e Internal energy [J/m] p Fluid pressure [Pa] Tw Tube mean wall temp. [oC]

Tf Fluid temp. [oC] g Gravity [m/s2] Cpw Specific heat capacity [J/kgK]

q̇r heat flux - furnace [w/m2] q̇e heat flux - to fluid [w/m2] ρw Density of wall [kg/m3]

kw Thermal conductivity of wall [w/m] fw Wall friction coefficient [-] h Convective heattransfer coeff. [w/m2K]

and development of the model are introduced briefly and are supplemented by
an overview of the implementation strategy, where detailed explanations intends
to promote understanding of the actual implementation. The resulting scheme
improves the convergence order at critical points in smooth parts of the solution
as well as it decrease the numerical diffusion near discontinuities.

We test the solver on three well-known numerical experiments for both one
dimensional problems and multi variable problems given by a homogeneous
thermo-hydraulic evaporator model. The results demonstrate, that the pro-
posed scheme is superior to solve non-linear hyperbolic transport equations.
The WENO solver code is implemented in c++ under MicroSoft Visual Studio
2008.

1.2. Overview

The paper is organized as follows. In Section 2 we focus on the numeri-
cal approach. Initially, we define the general system of balance laws and the
corresponding initial conditions, as well as boundary conditions in relation to
a uniform grid. In section 2.2 is given a description of the polynomial recon-
structions in the WENO approach and the corresponding non oscillatory weight
functions are described in section 2.3. A subsection on flux splitting is included
in section 2.4 and the final estimates of the dependent parameter Φ at the el-
ement border (ΦL and ΦR) is outlined. Finally the source and diffusion terms
are described in section 2.5 and 2.6 respectively. The boundary conditions for
Non-staggered grid are discussed in section 2.7 and a last section 2.8 mentioning
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the time integration principiels, concluding in a brief description of the TVD
Runge Kutta integrator. In Section 3 a brief and straightforward way of imple-
menting the method is described. Subsection 4 includes a numerical validation
of two numerical problems. Next, a test of consistency is performed. Finally
an example of solving a homogeneous thermo-hydraulic evaporator model is
demonstrated. The paper is ended by concluding remarks.

2. Methods

Consider a hyperbolic system of balance laws (SBL), formulated using a
compact vector notation, given by the conservative law of (1).

The domain Ω is partitioned in nz non-overlapping cells: Ω= ∪nz
i=1Ii ∈ [0, lz],

where lz is a physically length scale in the spatial direction. This system covers
the general transport and diffusion equations used in many physical models, e.g.
thermo hydraulic evaporator models.

Consider the corresponding hyperbolic system of balance equations (SBL)
given in non-conservative form

∂Φ(z, t)

∂t
+ J

∂Φ(z, t)

∂z
= gs(Φ(z, t)) + gd

(
∂Φ

∂z
,Φ(z, t)

)
, t ≥ 0 ∧ z ∈ Ω (2)

were J is the Jacobian matrix, given by: J=∂f(Φ(z,t))
∂Φ , and all the eigenvalues

λ(k) of J are real numbers. Let L and R be the left and right eigenvector
matrices of J, then J = R · Γ · L, R = L−1 and Γ is the diagonal matrix
containing λ(k).

The development of a general numerical scheme for solving PDE ’s may serve
as a universal finite-difference method for solving non-linear convection-diffusion
equations, in the sense that they are not tied to the specific eigenstructure of a
problem, and hence can be implemented in a straightforward manner as black-
box solvers for general conservation laws and related equations governing the
spontaneous evolution of large gradient phenomena.

2.1. Central Schemes

The definition of hyperbolicity only concerns (2) above; it means that the
Jacobian matrix J has real eigenvalues and a set of associated eigenvectors
forming a basis of �m, where m is the dimension of vector Φ. The following
approach to construct a numerical flux based ENO and WENO reconstructions
is simple to implement. The resulting schemes work resonably well for many
applications, in particular if the order of the reconstruction is not high. If
the order of the reconstruction is high or a demanding test problem shall be
solved, a higher order system is recommend worthy. Consider an uniform non-
staggered spatial grid, where the cell Ij=

[
zj−1/2, zj+1/2

]
has a cell width Δz,

and let Δt be the time step. We denote the spatial grid points by zj=jΔz,
tn=nΔt and Φn

j = Φ(zj , t
n). Since the solution of (1), with initial conditions

and the two types of boundary conditions given by (Neumann and Dirichlet
boundary conditions) can develop discontinuities even for smooth initial data,
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the quantities that will be used on the discrete level are cell averages. The
numerical approximation of the cell averages in the cell Ij is denoted by Φ̄n

j :

Φ̄n
j =

1

Δz

∫
Ij

Φ(z, tn)dz (3)

Integration of (2) with respect to z over the volume element Ij at time t we
obtain a semi-discrete finite volume scheme formulated as a system of ordi-
nary differential equations (ODEs). The semi-discrete central-upwind scheme
presented in [12] can be written as:

dΦj(t)

dt
= − 1

Δz

[
Fj+1/2 − Fj−1/2

]
= Lj(Φ). (4)

where the numerical flux at time z=zj+1/2 is given by

Fj+1/2 = F (Φj+1/2). (5)

where we use one of the simplest shock-capturing schemes, the HLL (Harten,
Lax and Van Leer) approximate Riemann solver [13]. The steps to follow in the
implementation of the numerical scheme (4) can be describes as follows:

1. The first step in the derivation of the approximate solution is to generate
a picewise global polynomial reconstruction from the cell averages as

Φ(z, tn) = Pn
j (z), z ∈ Ij (6)

where Φ(z, tn) is polynomial of a suitable degree. In general the recon-
struction should be conservative formally r-th order accurate and non-
oscillatory. Based on the reconstruction left and right limit ΦL

j+1/2, Φ
R
j+1/2

at location zj+1/2, a monotone first order flux is used to establish an es-
sentially non-oscillating higher-order numerical flux. The left extrapolated
value is given as:

ΦL
j+1/2 = Pj(zj+1/2) (7)

and the right value as:

ΦR
j+1/2 = Pj+1(zj+1/2) (8)

In this article we use the WENO reconstruction, where the numerical flux
at time t is given as

2.

Fj+1/2 = F (Φj+1/2) = F (ΦL
j+1/2,Φ

R
j+1/2). (9)

and we use the central-upwind flux, introduced in [12], where the flux is
based on information on the local speed of information. In section 2.4 we
review the derivation of this flux.
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3. The source term gs(Φ(z, t)) is added in the expectation that the system
of closure law (SCL) for a thermo hydraulic fluid flow includes source
terms of a given strength. By integrating system (1) over a finite space-
time control volume Ij ,Δt one obtains a finite volume formulation for the
system of balance laws, which is outlined in section 2.5.

4. By introducing a diffusion term of (1), we have the ability to change the
nature of the differential equation. From pure hyperbolic or partially
parabolic system controled by a diffusion term for smoothing a subset
of the solution domain. In section 2.6 we review the derivation of this
diffusion term.

5. The semi-discrete scheme (2) is solved by a stable (TVD) solver, which
retain the spatial accuracy of the scheme. Nonetheless we have choosen to
integrate (2) by a third order TVD time integrator instead of a fifth order
Strong Stability Preserving (SSP) time discretization method, because the
present numerical setup constitute the framework for a dynamic model of
an evaporator, which is a cumbersome calculation process, as the equation
of state (EOS) is based on an industry standard (IAPWS-97) for the sake
of precise expression.

2.2. Polynomial Reconstruction

A fifth order WENO reconstruction of the point values uses a five-points
stencil, S5 which is subdivided into three sub-stencils, {S1;S2;S3} as shown in
figure (2). To ensure a fifth order accuracy, we chose an optimal polynomial of
degree r=4, denoted Φ̃opt, on the central stencil S5 = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}.
Capdeville [2] introduced this technique and improved the fifth order accuracy
also to occur in non smooth solutions. An optimal polynomial covering S5 off

Figure 2: Discrete stencils for the Central WENO procedure.

degree 4 can be expressed as:

Φ̃opt ≡
5∑

j=1

aj−1(z − zi)
j−1 (10)
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where the coefficients aj can be determinde by solving a 5× 5 linear system of Φj

on a uniform grid (S5). The coefficients are outlined in [2] and the corresponding
reconstruction is for convenience given here:

Φj+1/2 = Pj(xj+1/2)

=

4∑
k=1

wk · Φ̃+(k)

j+1/2,

Φj−1/2 = Pj(xj−1/2) (11)

=
4∑

k=1

wk · Φ̃−(k)

j−1/2,
4∑

k=1

wk = 1,

where the reconstruction polynomials now can be determined at the face values
of Ij , which for j+1/2 is:

Φ̃+(1)

j+1/2 =
1

6

[
2Φ̄j−2 − 7Φ̄j−1 + 11Φ̄j

]
(12)

Φ̃+(2)

j+1/2 =
1

6

[−Φ̄j−1 + 5Φ̄j + 2Φ̄j+1

]
Φ̃+(3)

j+1/2 =
1

6

[
2Φ̄j + 5Φ̄j+1 − Φ̄j+2

]
Φ̃+(4)

j+1/2 =
1

120

[−2Φ̄j−2 − 7Φ̄j−1 + 73Φ̄j + 63Φ̄j+1 − 7Φ̄j+2

]
and for j-1/2 we find:

Φ̃−(1)

j−1/2 =
1

6

[−Φ̄j−2 + 5Φ̄j−1 + 2Φ̄j

]
(13)

Φ̃−(2)

j−1/2 =
1

6

[
2Φ̄j−1 + 5Φ̄j − Φ̄j+1

]
Φ̃−(3)

j−1/2 =
1

6

[
11Φ̄j − 7Φ̄j+1 + 2Φ̄j+2

]
Φ̃−(4)

j−1/2 =
1

120

[−7Φ̄j−2 + 63Φ̄j−1 + 73Φ̄j − 7Φ̄j+1 − 2Φ̄j+2

]
To derive an essentially non-oscillatory reconstruction, we need to define

three supplementary polynomials (Φ̃1, Φ̃2, Φ̃3), approximating Φ(z) with a lower
accuracy on Ij . Thus, is define a polynomial of second-order accuracy, Φ̃1(z),

on the reduced stencil S1: (Ij−2, Ij−1, Ij), Φ̃2(z) is defined on the stencil S2:

(Ij−1, Ij , Ij+1), whereas Φ̃3(z) is defined on the stencil S3: (Ij , Ij+1, Ij+2), see
figure (2). Now, we have to invert a 3 × 3 linear system similar to the aforemen-
tioned 5 × 5 linear system, for the unknown coefficients {ak}, k ∈ {0, 1, 2}, k ∈
{1, 2, 3} and k ∈ {2, 3, 4}, defining Φ̃1, Φ̃2, Φ̃3 respectively. The coefficients are
outlined in [2].

To implement a specific solution technique, we extend the principle of the
central WENO interpolation defined in [14]. First is constructed an ENO in-
terpolant as a convex combination of polynomials, based on different discrete
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stencils. For the discrete cell Ij :

Φ̃j(z) ≡
∑
k

wk × Φ̃k(z),
∑
k

wk = 1 for wk ≥ 0 fork ∈ {1, .., 4}, (14)

and Φ̃1, Φ̃2 and Φ̃3 are the previously defined polynomials. Φ̃4 is the second-
order polynomial, defined on the central stencil S5 which is calculated so that the
convex combination in (14) is fifth-order accurate in smooth regions. Therefore
we have from [2]:

Φ̃opt(z) =
∑
k

Ck× Φ̃k(z) ∀z ∈ Ij ,
∑
k

Ck = 1 for Ck ≥ 0 for k ∈ {1, .., 4},
(15)

The constants Ck represent ideal weights for (14) and we make the choice as in
[2]:

C1 = C3 = 1/8, C2 = 1/4 and C4 = 1/2. (16)

Then the central polynomial, Φ̃4(z), can be calculated from (15):

Φ̃4(z) =
1

C4

[
Φ̃opt(z)− C1Φ̃1(z)− C2Φ̃2(z)− C3Φ̃3(z)

]
∀z ∈ Ij . (17)

Note that, although the stencil defining Φ̃4(z) is the five-points stencil S5, this
polynomial is only a second-order approximation to Φ(z) and ensure that we
achieve a high-order of accuracy in smooth regions.

2.3. Non-oscillatory weights

To calculate the weights, we review another technique to improve the clas-
sical smoothness indicators to obtain weights, that satisfy the sufficient con-
ditions for optimal order of accuracity. It is well known from [2], that the
original WENO is fifth order accurate for smooth parts of the solution domain
except near sharp fronts and shocks. This idea is taken from [10] and uses the
hole five point stencil S5 to define a new smoothness indicator of higher order
than the classical smoothness indicator ISi. For estimating the weights wk, k
∈ {1, 2, 3, 4}, we find from [9] and [10]:

IS∗
k =

ISk + ε

ISk + ε+ τ5
(18)

where ISk, k ∈ {1, 2, 3} are given by (21), IS4 given by (22). A modica-
tion to the WENO scheme was proposed in [9] using the whole 5-point stencil
S5 to estimate a new smoothness indicator of higher-order than the classical
smoothness indicators ISk. The higher-order information denoted τ5 is defined
as τ5=|IS1 − IS3|. The constant ε is a small number. In some articles ε ≈
from 1 · 10−2 to 1 · 10−6, see [14]. Here we use much smaller values of ε for
the schemes in order to force this parameter to play only its original role of
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disallowing vanishing denominators at the weight definitions. The weights wk

are defined as:

wk =
α∗
k∑4

l=1 α
∗
l

, α∗
k =

Ck

IS∗
k

, k ∈ {1, 2, 3, 4} (19)

where Ck are given by (16). When the grid is uniform or smoothly varying, the
linear weights remain positive. For the one-dimensional context, the WENO
procedure has been defined on a five-point uniform stencil and designed to be
fifth-order accurate in regions of smoothness. To this end, we define a finite-
difference discretisation (1D) in which we consider the cell averages of the vari-
able as the discrete unknowns. The general indicators of smoothness, defined
in [14]:

ISi
j =

1

Φ2
max

2∑
k=0

Δz2k−1 ×
∫
Ii

(
dkΦ̃j

dzk

)2
dz, j ∈ {1, 2, 3, 4}. (20)

where Φmax is calculated over the whole calculation domain Ω: Φmax=max|Φ|z∈Ω

and k describes the number of equations. These indicators describe the smooth-
ness of the solution over the cell Ij , according to the particular stencil, selected

to define Φ̃k(z) on that cell. In regions of smoothness, ISj
k << 1, whereas ISj

k

= O(Δz) in cells with strong gradients or discontinuities. Specifically, (20) can
be explicated for Φ̃1, Φ̃2 and Φ̃3 on a non-uniform mesh:

ISj
k = a21Δz2 +

13

3
a22Δz4 +O(Δz6), k ∈ {1, 2, 3}. (21)

The general form of ISj
4 is given by [2]:

ISj
4 = a21Δz2 +

[
13

3
a22 +

1

2
a1a3

]
Δz4 +O(Δz6). (22)

2.4. Flux Splitting

In this section we review the derivation of the central-upwind flux presented
in [12]. We consider the one dimensional system (1) of m strictly hyperbolic
conservation laws. We start with a piecewise polynomial reconstruction Pj(z)
with possible discontinuities at the interface points zj+1/2. These discontinuities
propagate with right- and left-sided local speeds, which can be estimated by

cLj+1/2 = max

{
λN

(
∂f(ΦR

j+1/2)

∂Φ

)
, λN

(
∂f(ΦL

j+1/2)

∂Φ

)
, 0

}
, (23)

cRj+1/2 = min

{
λ1

(
∂f(ΦR

j+1/2)

∂Φ

)
, λ1

(
∂f(ΦL

j+1/2)

∂Φ

)
, 0

}
.

with λ1 < ... λN being the eigenvalues of the Jacobian given by J=∂f(Φ(z,t))
∂Φ

given in (2). Here, ΦL
j+1/2=Pj+1(zj+1/2), and ΦR

j+1/2=Pj(zj+1/2) are the corre-

sponding right and left values of the piecewise polynomial interpolant {Pj(z)}
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at the cell interface z=zj+1/2. An exact evolution of the reconstruction is fol-
lowed by an intermediate piecewise polynomial reconstructions which is finally
projected back onto the original cells, providing the cell average at the next time
step Φn+1

j . Further details can be found in equation (41). The semi-discrete
central-upwind scheme presented in [12] has the numerical flux is given by

Fj+1/2 =
cLj+1/2f(Φ

R
j+1/2)− cRj+1/2f(Φ

L
j+1/2)

cLj+1/2 − cRj+1/2

+
cLj+1/2c

R
j+1/2

cLj+1/2 − cRj+1/2

[
ΦL

j+1/2 − ΦR
j+1/2

]
. (24)

Notice that the accuracy of this scheme is being determined by the accuracy
of the reconstruction and the ODE solver. In this chapter the numerical solu-
tions of (4) have advanced in time by means the third order TVD Runge-Kutta
method, described by [15] (see section 2.8). By inserting the weights (wk) in
equation (11), the calculation of Φ̃L

i+1/2,Φ̃
R
i+1/2 produces the key message of this

analytical investigation:

Φ̃L
i+1/2 =

(
− 7

120
w4 − 1

6
w1

)
Φ̄i−2 +

(
1

3
w2 +

5

6
w1 +

21

40
w4

)
Φ̄i−1 (25)

+

(
5

6
w2 +

1

3
w1 +

11

6
w3 +

73

120
w4

)
Φ̄i +

(
−1

6
w2 − 7

6
w3 − 7

120
w4

)
Φ̄i+1

+

(
1

3
w3 − 1

60
w4

)
Φ̄i+2

Φ̃R
i+1/2 =

(
− 1

60
w4 +

1

3
w1

)
Φ̄i−2 +

(
−1

6
w2 − 7

6
w1 − 7

120
w4

)
Φ̄i−1

+

(
5

6
w2 +

1

3
w3 +

11

6
w1 +

73

120
w4

)
Φ̄i +

(
1

3
w2 − 5

6
w3 +

21

40
w4

)
Φ̄i+1

+

(
−1

6
w3 − 7

120
w4

)
Φ̄i+2

(26)

The weights wk, k∈ {1, 2, 3, 4} are given by (19).

2.5. Source Term

A source term has been added in the expectation that the system of closure
law (SCL) for a thermo hydraulic fluid flow includes source terms of a given
strength. Let us consider the general SCL given by (1) and restrict our analysis
to the source term of the form: gs(Φ(z, t)) as a continuous source vector function
�= zero. By integrating system (1) over a finite space-time control volume Ij ,Δt
one obtains a finite volume formulation for the system of balance laws, which
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usually takes the form

Φ(z, t)n+1
j = Φ(z, t)nj − Δt

Δz

(
fj+1/2 − fj−1/2

)
+Δtgs(Φ(z, t))j , t ≥ 0, z ∈ Ω

(27)
The integration of (1) in space and time gives rise to a temporal integral of the
flux across the element boundaries fj+1/2 and to a space-time integral gs of the
source term inside Ij . In practice, one must replace the integrals of the flux
and the source in (27) by some suitable approximations, meaning we need to
choose a concrete numerical scheme. For SCL, only a numerical flux must be
chosen. In this case, the classical properties required are consistency, stability
and accuracy. For SBL also a numerical source must be chosen. Here, not only
the three classical properties are required, but some additional properties are
needed for the global numerical scheme: It should be well-balanced, i.e. able to
preserve steady states numerically. It should also be robust on coarse grids, if the
source term is stiff. A coarse grid is a grid, whose size does not take into account
the source term, i.e. the characteristic space and time steps are based on the
associated homogeneous SCL only. Finally, the scheme should be asymptotically
consistent or in other words asymptotic preserving, if the source term is stiff.
This means that the scheme should give the correct asymptotic behaviour even
if the source term is under resolved. We now restrict our analysis to source
terms of the form gs(Φ, z). Compared with SCL, the presence of a source term
generally has consequences on the behaviour of SBL solutions. First of all, SBL
may have non-trivial steady solutions, with Φ̃(z) given in the following system:

∂f(Φ̃(z, t))

∂z
= gs(Φ̃(z, t)), t ≥ 0, z ∈ Ω (28)

Additionally, SBL may tend towards reduced systems as we will explain now.
At least two processes are involved in SBL: a conservative process associated
to the convective part of (1) (with gs=0) a characteristic speed uf , and a
dissipative/productive process, associated to the source term gs, with a charac-
teristic speed ug. If the time derivative is scaled according to the speed uf , the
dimensionless form (*) of a SBL system reads as:

∂Φ∗(z, t)
∂t

+
∂f∗(Φ(z, t))

∂z
=

1

ε
g∗s (Φ(z, t)), t ≥ 0, z ∈ Ω (29)

where all the variables in (29) are dimensionless and where ε ≡ uf

ug
is the ra-

tio between characteristic speeds. A very small ratio ε << 1 means that the
dissipative/productive process is too fast, compared to a conservative process,
needing to be fully observed. Such a source term is called stiff source term. In
mathematics, a stiff equation is a differential equation where certain numerical
methods for solving the equation are numerically unstable, unless the step size
is extremely small. It has proven difficult to formulate a precise definition of
stiffness, however, the main idea is to include some terms of rapid variation into
the equation, leading to rapid variation in the solution. The presence of a stiff
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source term may lead the original system towards an asymptotic reduced sys-
tem, see [16], which might turn out to be of different mathematical nature than
the original one. This situation occurs for instance in the case of an isentropic
Euler system with large friction: the asymptotic limit of the original hyperbolic
system is a porous media equation, which typical is parabolic of nature.

2.6. Convection-Diffusion equations

By introducing a diffusion part we change the nature of the mathematical
problem to a time-parabolic problem. The reason for including this part is
that we in a thermo hydraulic evaporator model, gets a sharp change in fluid
density, in the moment when a fluid acts as a two-phase fluid. This discontinuity
in the derivative of the density, initiate violent pressure waves in the solution,
which can be attenuated with local artificial diffusion in the region where this
phenomenon occurs. Let us again consider the general SBL, given by equation
(1), where the source term gd is representing by a dissipative flux:

gd(Φ(z, t),
∂Φ

∂z
) =

∂

∂z

(
Γ(Φ(z, t),

∂Φ

∂z
)

)
, t ≥ 0, z ∈ Ωd, (30)

where Ωd is a subset of Ω and can be given by some physical / chemical
requirements of the fluid, where we want to add diffusion to the solution. The
gradient of Γ is formulated on the compressed form: Γ(Φ, ∂Φ

∂z )z as a nonlinear
function �= zero. This term can degenerate (30) to a strongly parabolic equa-
tion, admitting non smooth solutions. Our fifth-order semi-discrete scheme,
(4)-(24), can be applied to (1) in a straightforward manner, since we can treat
the hyperbolic and the parabolic parts of (30) simultaneously. This results in
the following conservative scheme:

dΦj(t)

dt
= − 1

Δz

[
Fj+1/2 − Fj−1/2

]
+Gj(Φ, t). (31)

Here Fj+1/2 is our numerical convection flux, given by equation (24) and

Gj is a high-order approximation to the diffusion flux Γ(Φ, ∂Φ
∂z )z. Similar to

the case of the second-order semi-discrete scheme of [17], operator splitting is
not necessary for the diffusion term. By using a forth order central differencing
scheme, outlined by [11], we can apply our fifth-order semi-discrete scheme,
given by (4) and (24), to the parabolic equation (1), where Γ(Φ, ∂Φ

∂z )z is a
function of φ and its derivative in space (diffusion). The diffusion term can be
expressed by a high-order approximation from [11]:

Gj(t) =
1

12Δz
[−G(Φj+2, (Φz)j+2) + 8 ·G(Φj+1, (Φz)j+1)] (32)

− 1

12Δz
[8 ·G(Φj−1, (Φz)j−1) +G(Φj−2, (Φz)j−2)]

where
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(Φz)j+2 =
1

12Δz
[25Φj+2 − 48Φj+1 + 36Φj − 16Φj−1 + 3Φj−2]

(Φz)j+1 =
1

12Δz
[3Φj+2 + 10Φj+1 − 18Φj + 6Φj−1 − Φj−2] (33)

(Φz)j−1 =
1

12Δz
[Φj+2 − 6Φj+1 + 18Φj − 10Φj−1 − 3Φj−2] and

(Φz)j−2 =
1

12Δz
[−3Φj+2 + 16Φj+1 − 36Φj + 48Φj−1 − 25Φj−2]

and Φj are the point-values of the reconstructed polynomials.

2.7. Boundary conditions for Non-staggered grid

This hybrid solver, is as a starting point hyperbolic, but we apply quite
generally up-and downstream boundary conditions in this setup, depending on
the nature of the system of equations. If we select a globally dominant diffusion
part (parabolic system), we need two boundary conditions for each dependent
variable in the system, while in hyperbolic systems the boundary condition are
related to the number of eigenvalues of the problem.

The hyperbolic system in eq. (1) is defined on a bounded interval a≤z≤b and
forms an Initial Boundary Value Problem, for which we need initial conditions
and boundary data values. For a system of m equations we need a total of m
boundary conditions. Typically some conditions must be prescribed at the left
boundary (z=A) and some times at the right boundary (z=B). The amount of
conditions, required at the boundary’s, depends on the number of eigenvalues
of the Jacobian J that are positive and negative, respectively and whether the
information is marching in or out of the boundaries.

So far, we have only described methods for updating cell averages Φ̄j assum-
ing that we have neighbouring cell values Φ̄n

j−1 and Φ̄n
j+1 and perhaps values

further away as needed in order to compute the cell fluxes Fn
j+1/2 and Fn

j−1/2.
In practice we must always compute on some finite set of grid cells, covering
a bounded domain. In the first and last cells we will not have the required
neighbouring information. Instead we must have some set of physical boundary
conditions, that must be used in updating these cell values. The computational
domain is extended to include a few additional ghost cells on either end of the
solution domain. In figure (3) illustrates a grid with three ghost cells at each
boundary. These values provide the neighbouring-cell values needed in updat-
ing the cells near the physical domain. The updating formula is then exactly
the same in all cells, and there is no need to develop a specifically flux limiter
method in order to work with boundary instead of initial data. Suppose the
mathematical problem is on the physical domain [a,b], which is subdivided into
cells I1,I2,...,Inz with z1/2=a and znz+1/2=b, so that Δz= (b-a)/nz. If we use
a method where Fn

j−1/2 depends only on Φn
j−1 and Φn

j , then we need only one
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Figure 3: Boundary conditions at the West boundary (up-stream). Example with three Ghost
points are marked with red dots.

ghost point on either end. The ghost cell I0=[a-Δz,a] allows us to calculate the
flux Φn

1/2 at the left boundary A, while the ghost cell Inz+1=[b,b+Δz] is used to
calculate the flux Φn

nz+1/2 at the right boundary B. With a flux limiter method
or a fifth order WENO approach of the type developed above, we will generally
need two ghost cells at each boundary, since a jump in Φn

0 -Φ
n
−1 will be needed in

limiting the flux correction in Fn
1/2. For a method with an even higher order of

accuracy, additional ghost points would be needed. Consider again the WENO
scheme, where the maximal fifth order polynomial reconstruction requires a five
point stencil S5, involving the nodes of Ij−2, Ij−1, Ij , Ij+1 and Ij+2, for each
computational cell in the space of j=1 to nz. Far away form the boundaries the
problem is trivial, as illustrated in figur (4). In the following we are focusing on
the non-staggered grid for developing a method to predict the values of Φ on the
boundaries, whether we are talking about Dirichlet or Neumann boundaries.

Figure 4: Boundary conditions in pipe model.

If we look at the very first computational cell along the West boundary, we
need to be able to predict the values of Φ, for the five point stencil, beginning
with the Ij−2,Ij−1 and Ij node, which is outside the solution domain (for j=0)
(three Ghost points), see figure (3). The idea behind the ghost point approach is
to express the value of the solution at control points outside the computational
domain in terms of the values inside the domain plus the specified boundary
condition. This allows the boundary condition to be imposed by a simple modi-
fication of the internal coefficients, using the coefficients of the fictitious external
point. This can result in a weak imposition of the boundary condition, where
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the boundary flux might not exactly agree with the boundary condition. The
three Ghost points are here successive calculated by a third order Taylor ex-
pansion around the boundary A, involving I−2, I−1 and I0, and can be used to
predict the connection between the Ij cell, marked by red in figure (3), and the
boundary condition, given by ΦA, where Δz is the size of the CV’s (uniform
grid spacing), see the below figure (3).

Recall now that the Taylor series expansion of the function f(z) about the
point z=z0 is given by

f(z) =
∞∑

m=0

(z − z0)
m

m!
f
(m)
0 (34)

By establishing a Taylor expansion around the boundary A (or B), we can
express a relationship between the ghost points outside the solution domain
and grid points inside the domain:

Φ0 = ΦA − 1

2
ΔzΦ

(1)
A +

1

8
Δz2Φ

(2)
A − 1

48
Δz3Φ

(3)
A + ...

Φ1 = ΦA +
1

2
ΔzΦ

(1)
A +

1

8
Δz2Φ

(2)
A +

1

48
Δz3Φ

(3)
A + ... (35)

Φ2 = ΦA +
3

2
ΔzΦ

(1)
A +

9

8
Δz2Φ

(2)
A +

9

16
Δz3Φ

(3)
A + ...

Φ3 = ΦA +
5

2
ΔzΦ

(1)
A +

25

8
Δz2Φ

(2)
A +

125

48
Δz3Φ

(3)
A + ...

(36)

The above system can be solved for fixed ΦA and Φ
(1)
A coresponding to a

Dirichlet- and an Neumann boundary conditions. Follow the above procedure,
the boundaries can be expressed in terms of Φ0, Φ−1 and Φ−2:
Dirichlet BC at A:

Φ−2 = 32ΦA − 50Φ1 + 25Φ2 − 6Φ3 (37)

Φ−1 =
64

5
ΦA − 18Φ1 + 8Φ2 − 9

5
Φ3

Φ0 =
16

5
ΦA − 3Φ1 +Φ2 − 1

5
Φ3

Neumann at A:

Φ−2 =
1

23

[
−240Δz

∂Φ

∂z
‖A − 250Φ1 + 375Φ2 − 102Φ3

]
(38)

Φ−1 =
1

23

[
96Δz

∂Φ

∂z
‖A − 54Φ1 + 104Φ2 − 27Φ3

]
Φ0 = − 1

23

[
24Δz

∂Φ

∂z
‖A − 21Φ1 − 3Φ2 +Φ3

]
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Similar we find for the downstream boundary B:
Dirichlet BD at B:

Φnz+3 = 32ΦB − 50Φnz + 25Φnz−1 − 6Φnz−2 (39)

Φnz+2 =
64

5
ΦB − 18Φnz + 8Φnz−1 − 9

5
Φnz−2

Φnz+1 =
16

5
ΦB − 3Φnz

+Φnz−1 − 1

5
Φnz−2

Neumann BC at B:

Φnz+3 =
1

23

[
−240Δz

∂Φ

∂z
‖B − 250Φnz + 375Φnz−1 − 102Φnz−2

]
(40)

Φnz+2 =
1

23

[
96Δz

∂Φ

∂z
‖B − 54Φnz

+ 104Φnz−1 − 27Φnz−2

]
Φnz+1 = − 1

23

[
24Δz

∂Φ

∂z
‖B − 21Φnz − 3Φnz−1 +Φnz−2

]
The idea behind the ghost point approach is to express the value of the solution
at a control point outside of the computational domain in terms of the values
inside the domain plus the specified boundary condition.

2.8. Time discretization

Strong Stability Preserving (SSP) time discretization methods were devel-
oped to address the need for nonlinear stability properties in the time discretiza-
tion, as well as the spatial discretization, of hyperbolic PDE’s. The research in
the field of SSP methods centres around the search for high order SSP methods
where the CFL timestep restriction leads to an as large as possible timestep.
These methods include the case where there are more stages than required for
the order, in order to maximize the CFL coefficient. Although the additional
stages increase the computational cost, this is usually more than offset by the
larger stepsize that may be taken. In this article is to present the numerical
setup which constitute the framework for a dynamic model of an evaporator,
which is a cumbersome calculation process, as the equation of state (EOS) is
based on an industry standard (IAPWS-97) for the sake of precise expression.
With a formulation given on a conservative form (flux-based), we must iter-
ate on the pressure as a function of density and enthalpy, which is very time
consuming. In principle we should use a time integrator of the same order as
WENO reconstruction, such as an SSP RK(5,5) solver, see [18], but experience
shows that these higher order integrators are much more time consuming as e.g.
a third-order TVD time integrator used in both [2] and [19]. The semi-discrete
(4) is a system of time dependent ODE’s, which can be solved by any stable
ODE solver, retaining the spatial accuracy of the scheme. Here we use the
TVD Runge-Kutta method presented by [15] which can be categorized as an
(SSP-RK(3,3):

dΦ

dt
= L(Φ), (41)
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where L(Φ) is an approximation to the derivative -∂f(Φ)
∂z +gs(Φ, z, t)+gd(

∂Φ
∂z ,Φ)

in the differential (1). The optimal third order TVD Runge-Kutta method (SSP-
RK(3,3)) is given by

Φ
(1)
j = Φn

j +ΔtL(Φn
j ), (42)

Φ
(2)
j =

3

4
Φn

j +
1

4
Φ

(1)
j +

1

4
ΔtL(Φ

(1)
j ),

Φn+1
j =

1

3
Φn

j +
2

3
Φ

(2)
j +

2

3
ΔtL(Φ

(2)
j ), for j ∈ [1, nz].

as an alternative, we could have used a (SSP-RK(5,4)), which is a fourth order
method consisting of 5 stages and is given by [15]. Furthermore in [15], it has
been shown that even a very nice second order TVD spatial discretization may
give an oscillatory result, depending whether the time discretization is by a non-
TVD, however, linearly stable Runge-Kutta method. Thus it would always be
safer to use TVD Runge-Kutta methods for hyperbolic problems. The stability
condition for the above schemes is

CFL = max

(
un
j

Δt

Δz

)
≤ 1, (43)

where CFL stands for the Courant-Friedrichs-Lewy condition and un
j is the

maximum propagation speed in cell Ij at time level n.

3. Implementation

The implementation of the WENO approach is implemented in five stage
process ending with the time integration loop. In Step 1 is the model, reading
the model specifications and allocating array structures, Step 2 is initializing the
time integration loop. In Step 3 the time step is being evaluated due to the CFL
number specified. Step four is covering the entire Runge Kutta time integration,
which is divided into three parts, due to the third order TVD integrator. In
the Boundary module the up- and down stream boundaries are being updated.
They can be constant or varying in time. In general there are three possibilities
of specifying boundary conditions; Dirichlet, Neumann or non condition. In the
method of Indicators we are calculating the four indicators ISi, i∈[1..4]. The
Reconstruction module is dealing with the weight functions as well as calculating
the corresponding reconstructed polynomials. In the module named; Fluxes is
estimated the Flux vector including both contributions from the source/sink
term and diffusion term as well. In the last step 5 is calculation info is being
estimated and stored in files. The time loop is running until the time t is
exceeding the end of simulation time tend.

4. Numerical validation of hyperbolic solvers

In this section we compare numerical results of both a scalar and a system
of hyperbolic equations and compare the results with analytical results from the
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literature as well as other published results. The scalar models will focus on
solving the inviscid Burger equation, which is a standard test example in the
literature for solving hyperbolic equations. Finally the well-known Sod problem
is solved by system of Euler equations and is evaluated according to numerical
results in literature and the shock strength is compared to a theoretical value.

4.1. Consistency

A consistency test is made by solving (44) numerically and compare the so-
lution to an analytical solution given by (45) for varying grid spacing.

∂(ρΦ)

∂t
+

∂f(ρΦ)

∂z
=

∂

∂z

(
Γ
∂(ρΦ)

∂z

)
, t ≥ 0 ∧ z ∈ Ω (44)

The governing equation (44) is forced by an Initial Boundary Value Problem
given by two Dirichlet boundary conditions; ΦA = 1 for z=0 and ΦB = 0 for
z=1 and an initial field of Φ(z,t=0)=0. The number of computational cells is
varying form:nz=10 to 320. The convective velocity is constant u=1.0 [m/s]
(f(Φ) = u · Φ), the length lz=1 [m] and the density is constant; ρ = 1 [kg/m3].

The diffusion coefficient Γ=0.2 [m2s−1] in gd(Φ) =
∂
∂z

(
Γ · ∂(ρΦ)

∂z

)
.

The steady state simulation results are compared with a corresponding an-
alytical solution, given by:

Φ− ΦA

ΦB − ΦA
=

exp (ρ · u · z/Γ)− 1

exp (ρ · u · lz/Γ)− 1
, t ≥ 0 ∧ z ∈ Ω (45)

The numerical solution to (44) is illustrated in figur (5), where different solution
profiles are shown during time and the steady state solution is the basis of the
consistancy test by recalculation the numerical model for varying grid spacing.
The results are shown in figur (6) and are compared with more simpler numerical
schemes as Van Leer and a Central Difference scheme.

Numerical tests show, with no surprise, varying accuracy, dependence on
the numerical solution strategy used. The classical Van Leer TVD scheme and
a Central Difference scheme (CD) provides a familiar second and first order
accuracy respectively, while the central WENO scheme, with a reduced fourth-
order diffusions term, give a close to fourth-order accuracy (WENO4) for the
steady state solution. The central WENO without diffusion term has a fifth-
order accuracy, with reference to [2] and [10].

4.2. Burgers equation

In this example we simulate the pre- and post chock solution to the inviscid
Burgers equation given by
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Figure 5: Numerical and analytical solutions to (44).

Figure 6: Consistancy.

∂Φ

∂t
+

∂

∂z

(
1

2
Φ2

)
= 0, t ≥ 0 ∧ z ∈ Ω (46)

and the corresponding initial condition is given by u(z,0)=sin (πz/lz). Ω is par-
titioned in nz non-overlapping cells: Ω= ∪nz

i=1Ii ∈ [0, lz], where lz is a physically

20



length scale in the spatial direction. The simulation results are based on the
fifth order central WENO formulation and the outcome is illustrated in figure
(7) and is similar to what is observed in [4] and [17].

Figure 7: Burgers equation with N=200 and lz=1.

The results indicates that the solution is perfect symmetric and a planar
disturbance is propagating outward at the characteristic speed for the artificial
medium, as expected. We can see a shock formation centered at z=0.5.

4.3. Euler equation

We extend the fifth order WENO scheme to envolve the solution of Euler’s
equations of gas dynamics:

∂Φ

∂t
+

∂f(Φ)

∂z
= 0, t ≥ 0 ∧ z ∈ Ω (47)

where

Φ =

⎛⎝ ρ
ρ · u
E

⎞⎠
and the flux vector is given as:

F (Φ) =

⎛⎝ ρ · u
ρ · u2 + p
u · (E + p)

⎞⎠
Here ρ, u, p and E are respectively the fluid density, velocity, pressure and total
energy of the conserved fluid. The ideal gas law (polytropic gas) is used as the

equation of state, to derive the speed of sound c, given as: c=
√

γp
ρ . The ration

of the specific heats is: γ =
cp
cv

= 1.4 and the pressure p=(γ − 1)(E − 1
2ρu

2).
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The linearised Euler equations are obtained by linearisation of the Euler
equations in non-conservation form, as in (2), with flux Jacobians:

∂M

∂t
+A · ∂M

∂z
= 0, t ≥ 0 ∧ z ∈ Ω (48)

where M̄ = P−1 · Φ and P is the eigenvector corresponding to the eigenvalues.
The matrix A(Φ) is diagonalizable, which means it can be decomposed into:
A=P · Γ · P−1, where

P = [r1, r2, r3]
T =

⎛⎝ 1 1 1
u− c u u+ c
H − uc 1/2u2 H + uc

⎞⎠
and

Γ =

⎛⎝ γ1 0 0
0 γ2 0
0 0 γ3

⎞⎠
Here r1 = [1, u− c,H − uc]T , r2 = [1, u, 1

2u
2]T , r3 = [1, u+ c,H + uc]T are the

right eigenvectors of the matrixA corresponding with the eigenvalues γ1 = u−c,
γ2 = u and γ3 = u+ c. We solve the Sod problem up to t=0.01 [s] for a spatial
length of lz=20 [m], with the following initial conditions:

Φ(z, 0) =

{
(1, 0, 2.5 · 105)T 0 ≤ z < lz

2

(0.125, 0, 0.25 · 105)T lz
2 ≤ z ≤ lz.

(49)

The simulation results are based on CFL=0.90 and the distribution of the den-
sity, pressure and velocity are illustrated in the following figures (8), (9) and
(10) respectively.

The figure (8) represents five regions (R1, R2, R3, R4 and R5) in the nor-
malized spatial space of z∗ ∈ [0,1], which have different density’s. Region R1 ∈
[0,0.3[, R2 ∈ [0.3,0.5[, R3 ∈ [0.5,0.63[, R4 ∈ [0.63,0.78[ and R5 ∈ [0.78,1[]. Two
regions R1 and R5 are in constant state equals the initial state and both flu-
ids are initially in rest. R2 is representing a rarefaction wave moving to the
left. Although the density and pressure is continuous in this region, some of the
derivatives of the fluid quantities may not be continuous. The front in-between
Region R3 and R4 represents the so-called contact discontinuity, where the pres-
sure and the specific energy are not a continuous function. The front in-between
Region R4 and R5 represents the location of the shock wave moving to the right
with the sound of speed. Assuming the same gas in the two chambers, the ration
of the specific heats are identical: γ = γ1 = γ5, hence the two local speeds of
sound can be determined and inserted in formula (50), which is taken from [20],
p 225, and gives the shock strength to p4/p5 = 3.031, which fits with the results
in figure (9).

p1
p5

=
p4
p5

[
1− (γ − 1)(a5/a1)(p4/p5 − 1)√

2γ
√
2γ + (γ + 1)(p4/p5)

]−2γ
γ−1

(50)
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Figure 8: Sod problem with N=400 - Density [kg/m3] distribution at t=0.01 [s].

Figure 9: Sod problem with N=400 - Pressure [Pa] distribution at t=0.01 [s].

Across a shock all of the quantities (ρ, m, e and p) will in general be discon-
tinuous. The simulation results shows oscillation free properties. The corners
at the endpoints of the rarefaction are almost perfectly sharp and the constant
states of R1 and R5 are well defined matching the initial state. In general the
distribution of the density, pressure and velocity fit very well with similar cases
in the literature, see [17]. The timing results are improved with up to 20% by
use of the modified weight functions given by [19] compared to the traditional
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Figure 10: Sod problem with N=400 - Velocity [m/s] distribution at t=0.01 [s].

squared weight factors from [2].

4.4. Homogeneous evaporator model

The homogeneous evaporator model is briefly described in the introduction
to this paper and is given by (1), with the time dependent variabel Φ and
the corresponding flux, source and diffusion terms given on vector form. The
internal energy e is given as: e = (ρĒ−p) ·A, which is measured in [J/m]. kw is
the thermal conductivity measured in [w/mK]. The radiation from the furnace
is given by q̇r and q̇e is the convective heat transfer between the flowing fluid
in the pipe and the pipe wall inner surface, q̇e=h(Tw − Tf ) and Sw = awA is
the perimeter of the heated domain and aw has the physical meaning of the
wall area per unit volume. The convective heat transfer coefficient is named h
and the driving temperature difference is given by the temperature difference
between the wall mean temperature (Tw) and the mixture fluid temperature
(Tf ). Here the fluid temperature Tf is a function of ρ̄ and h. The constitutive
relations due to the thermodynamic properties are based on IAPWS 97, and are
interpolated in a bilinear scheme, described in [21]. Other constitutive relations
for the pipe wall properties are given by [7] and [8]. The model data are listed
below in table (1). Note that the gravity is reduced according to the heat pipe
inclination (sin (11.4o)). For isotropic materials, we have expressions of Cpw, kw
and ρw as function of temperature in Kelvin from [22] and [23]:

Cpw = 6.683 + 0.04906 · T + 80.74 · ln (T ) [J/kgK]

kw = 9.705 + 0.00176 · T − 1.60 · 10−6 · T 2 [W/mK] (51)

ρw = 7850 [kg/m3] at 20◦C for 13CrMo44

For isotropic materials, we use the thermal diffusivity given by equation: α =
kw

ρwCpw
in [m2/s], which in a sense is a measure of thermal inertia and expresses
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how fast heat diffuse through a piece of solid. For a typical panel wall, the
thermal diffusivity is approximately 1.98 · 10−6 [m2/s] at 200◦C.

The model consists of 400 computational points with a CFL number of 0.8.
A third order TVD time integrator is used, for reasons of ensure a high numer-
ical stability as well as minimizing the time consumption in the calculations.
Three Dirichlet boundary conditions are applied for the hydraulic case and two
Neumann boundaries are applied for the thermal pipe wall model, given as zero
gradients in the wall temperature at each pipe end (No heat loss). The intention
is to model an evaporator, which can induce pressure and density oscillations ini-
tiated by the compressibility, which arise as a result of a phase shift in the lower
part of the evaporator. Therefore, we apply a constant downstream Dirichlet
pressure boundary condition, that corresponds to a stiff system downstream
the evaporator tube, meaning without any pressure absorption effects in the
downstream turbine system due to compressibility. A good analogy for this is a
geyser, with a constant surface pressure and an intense heat absorption in the
bottom region, whereby an oscillating pressure wave is initiated due to the com-
pressibility and density reduction of the fluid, caused by intense heat from the
underground. Additionally we force the model with both a constant enthalpy
and mass flux located on the upstream boundary, supplied by a heat flux profile
along the entire heat pipe. The model is soft started in two steps, at t=0 [s]
is the pure hydraulic model soft started during 4 seconds, without heat flux.
After 10 seconds of simulation, the heat flux is build-up during four seconds
to q̇r=100 [kW/m2], in accordance with the operating observations obtained
at the site of SKV3. This is done to avoid heavy shock waves moving forward
and back in the entire solution domain. The computational results are stored
as line series for an equidistant time step and as time series at two stations,
located at zA=

lz
8 and zB=

7lz
8 , named station A and B respectively. Note that

Figure 11: Bottom heating in SKV3 boiler, after 200 [s].
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Figure 12: Time series of bottom heating in SKV3 evaporator model at location A.

Figure 13: Time series of bottom heating in SKV3 evaporator model at location B.

the temperature curves for the fluid and the pipe wall both refer to the same
temperature scale corresponding to the red fluid temperature scale on the right
side of the following figures (11), (12) and (13). The soft start model is based
on a third order theory outlined in [24], which gives a C2 continuous sequence,
which means zero gradients of the first derivative at both ends of the soft start
period. This simulation has shown that there is a dynamic instability in the
evaporator during start up. After 200 [s] we see a steady state picture of the
axial profile of the thermo hydraulic properties, see figure (11). As shown in
figure (13), the system falls in a steady state condition after more than 160 [s]
from start. At the upstream station we see the same tendencies, but with less
oscillations, see figure (12). The dynamic transients in station B are significant,
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while the fluid velocity fluctuates dramatically (up to 15 [m/s] in less than one
second). The pressure fluctuates violently too, but falls quickly into a plateau
after only 100 [s] from the start. The fluid velocity and enthalpy oscillations
are damped gradually, until a steady state situation is reached after160 [s] from
start. It is interesting to note the presence of thermo slugs in the homogeneous
evaporator model and that its able to establish the sometimes sharp gradients
in the solution, which demonstrates that there really exist violent slugs at low
operating pressures in steam power plant evaporators. We have now developed
a tool that can be used in further studies of the evaporator stability. For further
details, see [7] and [8].

4.5. Conclusions

We have developed a robust numerical tool, that is highly flexible in terms
of configuration, so that the application can handle source / sink terms, dif-
fusion terms and initial fields as line data and finally two types of boundary
conditions can be specified, one Neumann and Dirichlet condition on both up
- and down stream boundaries. The WENO solver has a 5. order of accuracy,
which is shown by several authors, see e.g. [10] and [2]. The diffusion term
can only be dissolved in a fourth order accuracy and with respect to the time
integrator, we here have several options, but for our purposes, we find a the
third order TVD Runge Kutta integrator for appropriate, which leads to a final
order of 4, for the entire steady state system. The Central WENO schemes
are designed for problems with piecewise smooth solutions containing discon-
tinuities. The Central WENO scheme have been quite successful in the above
applications, especially for solving the test examples containing shocks as well as
the homogenious evaporator model, which contains complicated smooth solution
structures. The conclusion is that both the scalar and system based versions are
non-oscillatory in the sense of satisfying the total-variation diminishing property
in the one-dimensional space.
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Abstract

In engineering practice, where performance monitoring and optimisation of
power plants in real time, it is often necessary to obtain very accurate but
simple relationships between water and steam properties with a minimum of
computational time. In this article a number of compact numerical interpola-
tion schemes for fast calculation of the thermodynamic properties have been
developed. The schemes are based on the IAPWS-97 (International Association
for the Properties of Water and Steam). The method is based on dividing the
complete range of properties into unique regions, which in turn are constructed
by interpolation element. We compare the use of linear, bilinear or second or-
der interpolation elements. The thermodynamic properties of water and steam
show significant discontinuitues at the saturation curves between liquid and two-
phase conditions and two-phase and vapor conditions. We resolve this property
by using triangular elements in the vicinity of the saturation line. This improves
the resolution of the saturation line to far better accuracy.

The different interpolation schemes have been tested in order to identify
the optimum form with background in the desired accuracy and table lookup
speed. The accuracy and computing speed of the interpolation schemes have
been compared to those widely used in IAPWS-97 standard, which is the refer-
ence application in this work. The fastest, averaged lookup speed was found to
be 1/33 of the reference calculation, referring to the pure bilinear scheme. The
accuracy is varying, dependant of the area of interest, order of the element and
the resolution of the interpolation grid, but it is determined to be sufficient for
the application of the methods in accurate dynamic modeling of steam plants.
The computing time is dependent of the region. It is found that the highest
accuracy is achieved in the superheated region, where we have the smoothest
function values, which make it possible to use a simple and fast look up function.
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1. Introduction

Figure 1: Density as function of Pressure and Enthalpy, [1]

Brereton [2] is motivated by Callandar’s enthalpy function for dry steam.
It is based on the observation that over a given pressure range density at con-
stant enthalpy is a nearly linear function of pressure within the tolerance of the
skeleton steam tables. This is illustrated by the red curve in figure 1. Simple
algebraic equations can thus provide dry-steam density within 0.05 % accuracy
over a range of 50 to 200 bar and from saturation temperature to 690 oC. Ref-
erence [3] describes the necessity of fast water/steam calculations for dynamic
simulations of boiler tubes. Here, Siemens uses look-up tables, where a large
set of interpolation values of state variables has been stored for each necessary
property function together with its first order partial derivative. Thus for an ar-
bitrary argument input the corresponding property function can be determined
rapidly by the help of the next surrounding interpolation value.

In most cases the interpolation is processed linearly, which is the easiest al-
ternative. Several other authors have written about methods for improving the
calculation speed of determining the thermodynamic properties of water and
steam, including [4], where a package for the computation of water and steam
properties has been developed. This package combines several aims: fast calcu-
lation, a good level of accuracy, consistency and high accuracy of the saturated
liquid and gas states. The general results is a compromise where the advan-
tage of sophisticated cubic interpolation and the optimum node/grid selection
is partly reduced by the computational effort required to meet the severe re-
strictions of smooth derivatives and high accuracy at the saturation line. The
package does not lead to a high-speed, general-purpose package, but to a highly
sophisticated package with many special features. In [5] a reconstruction of
the fluids properties of refrigerants in the REFPROP database [6] is presented.
This method is closely related to the method we describe below. We intro-
duce an effort on decreasing the computation time significantly by developing
an advanced interpolation scheme for the steam properties without compromis-
ing the accuracy of the overall results. The presented method is based on the
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IAPWS 97 formulation and thus retains the accuracy of the recent formulation
of steam properties. The method is based on the Finite Element Method[? ].
We further investigate which type of interpolation elements (linear, bilinear and
isoparametric) are best suited for the steam property calculations.

1.1. Motivation for the Interpolation Approach

One of the main advantages of using an interpolation scheme on the IAPWS-
97, is fast calculations of the properties with high accuracy for the complete
definition range. By using a low order interpolation element, it allows for an
unambiguous reverse calculation of the dependent property as a function of any
two independent properties. By using higher order interpolation elements, both
the interpolation and reverse calculations are based on iteration, extending the
lookup time, but also increasing the accuracy.

Additionally the stability of a numerical method including derivatives, e.g.,
a Newton method, can be improved and may converge easier, with fewer iter-
ations, if the Jacobian matrix consists of smooth derivatives, based on inter-
polation. These derivatives typically occurs in mathematical models of power
plants, where there are major requirements for both speed of calculation and
numerical stability, which both are accommodated by use of an interpolation
scheme.

1.2. Outline

This paper is organized as follows. In Section 2 we are focusing on the
definition area of the interpolated domain. Firstly, in section 2.1.1, we define
the general regions and the corresponding interpolation mesh in relation to a
uniform Cartesian coordinate system. Secondly, in section 2.2, the principles
of the three different types of interpolation elements are outlined. Section 3
is dealing with the timing of an application in general, pointing out the most
important considerations to be made. In section 3.2 a numerical validation of
the linear interpolation schemes is given. Finally, in section 3.2.1 to 3.2.3 tests of
accuracy are performed for three test cases. Our recommendations are outlined
on the basis of the discussion of the test cases, and final concluding remarks are
included in section 5.

2. Methods

2.1. Interpolation in Steam table

An algorithm has been developed approximate one (or more) properties of
water and steam as function of two given properties by interpolation. In this
case we focus on the density as function of the enthalpy and pressure of water
and steam in the operation range of 0.1 to 4000 [kJ/kg] and 0.1 to 800 [bar],
respectively. Below the theory of the interpolation scheme is outlined, supplied
with the basic algorithm, discretised nodes and corresponding elements for each
region.
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Figure 2: Five Regions in the Pressure and Enthalpy diagram of water/steam.

2.1.1. Steam Table Regions

The interpolation grid is divided into 5 regions, as shown in figure (2). Re-
gions R1, R4 and R5 covers ranges consist only of uniform squared elements
with four nodes placed in a rectangular Cartesian grid. Regions R2 and R3

instead consist of both squared and triangular elements to be able to construct
the saturation curve more accurately. The five regions are defined due to the
need to determine the density of a fluid, which is a challenging task, especially
for water / steam at low pressure levels where the it exhibits significant discon-
tinuity at the saturation curve. We can easily change the number and location
of the regions in order to accommodate other thermodynamic properties. The
triangular elements are used in areas, where we need to resolve the saturation
curve. These triangular elements are linear or iso-parametric elements, with
one side covering the saturation curve, which is assumed to be linear or curved
along the border of each element, depending on the order of shape function.
This ensures an accurate resolution of the saturation curve, which cannot be
handled by a rectangular bi-linear element, without increasing the number of
elements substantially.

With the assumption that the interpolation table is dedicated to the in-
terpolation of a water and steam model like IAPWS-97, we define two in-
dependent parameters p (pressure) and h (enthalpy) measured in [bar] and
[kJ/kg], respectively and cover five regions. The definition area for each of
the five regions is given in table (1), where the threshold values are given
by: hcrit=2084.26 [kJ/kg], pcrit=220.19 [bar], hsat,liq(pmin)=191.81 [kJ/kg] and
hsat,vap(pmin)=2803.28 [kJ/kg], due to figure (2). Enthalpy, h, and pressure, p
are the coordinates of the abscissa and ordinate axes. They are thus denoted x
and y, respectively, in the general implementation described below. The depen-
dent variable ρ is denoted by z.

The algorithm for finding the correct region is shown in figure (3)
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Table 1: Definition areas of each region in the general interpolation scheme.

Region hmin[kJ/kg] hmax[kJ/kg] pmin[bar] pmax[bar]

1 0.10 191.81 0.1 220.19

2 191.81 2084.26 0.1 220.19

3 2084.26 2803.28 0.1 220.19

4 2803.28 4000.00 0.1 220.19

5 0.10 4000.00 220.19 800.00

Figure 3: Flow chart diagram for finding region.

2.1.2. Creation of mesh

The creation of a compact grid has been implemented as a generic algorithm,
and is specifically adapted to regions R2 and R3 in the two-phase region, by es-
tablishing a series of pressure lines or isobars (Np). These are fundamental for
the construction of the elements. The specific place, where a rectangular ele-
ment crosses a saturation line, a linear triangular element is established in order
to preserve the function value along the saturation line. Figure (5) illustrates
how the element structure is established between two pressure levels. A book
keeping system is generally saving a pointer to the very first element in each
row, except for the pure Cartesian bilinear grid, where we use a simple integer
truncation to find the nearest grid points around the calculated point P (x, y),
see equation (9) below.
In regions R2 and R3, where the two-phase region of the fluid is described, we
consider the saturation curve. Hence the element resolution in the x-direction
is no longer equidistant in the vicinity of the saturation line, because the size of
the element depends on the slope of the saturation curve ( ∂ρ∂h ), which leads to
the above-mentioned book keeping system. The very first element in each row
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Figure 4: Grids for bilinear (A), linear (B) interpolation and second order (C) interpolation.

is saved, for later speeding up the table lookup procedure, which is illustrated
in figure (5). An algorithm is developed to obtain a fast and flexible way to
establish a mesh and to search into it. It works in the following way for 3, 4
and 6 node-element systems, but is similar for a higher order elements.

Algorithm:
1) Choose the pressure levels (Not necessarily equidistant).
2) Calculate the definition area in h: hmin and hmax.
3) Establish a loop from j = 1 to Np.
4) Calculate the saturation lines hmax

sat and hmin
sat for p(j), p(j + 1) and

possibly p(j + 2).
5) Start a main loop holding the pressure level given by p(j) and p(j + 1)

and p(j + 2).
6) Store pointer to the very first element in the main loop.
7) Initialise the two very first local nodes (n1 and n4) at hmin.
8) Start an inside loop with h=h+Δh.
9) Evaluate which element is restricting the size of h and update it on

the basis of h and the type of element (3, 4 or 6 node), see figure (5).
10) Update local nodes n2 and n3.
11) Evaluate if h > hmax. If true, update the new node n1 and n4 and

jump to 4) else set n1 = n2 and n4 = n3 and continue.

Figure 5: Elements in Region 2 or 3 with local nodes (two phase region with saturation line).

The above algorithm is generic for all regions, except for the evaluation
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step 9), which is unique for the three types of regions: Two-phase regions R2,
R3,single-phase, subcritical regions R1, R4 and the supercritical region R5. For
Region R2 we have to take into consideration that the very first element is
a triangular element, because the marching loop is going from low- to high
pressure. In R3 we have the opposite situation, with a triangular element at
the very last element. Both R2 and R3 are a triangular element and placed at
both sides of the saturation line, to ensure optimal resolution of the saturation
line. The look up system is based on look up arrays for each element row at
fixed pressure, which stores the very first element of each row. Regions R1,
R4 and R5 are based on a solely equidistant grid structure, based on bilinear
interpolation of four-node square elements. This look up system is determined
to bee fast and simple.

2.1.3. Order of Interpolation scheme

Conceptually, the simplest element form of two-dimensional kind is a rect-
angle, with sides parallel to the x and y axes in a Cartesian coordinate system.
Let us assume that the function value z(x, y) is expressed in a polynomial form
in x and y. To ensure inter-element continuity of z along the top and bottom
sides, the variation must be linear. In general, we seek element expansions which
possess the highest order of a complete polynomial for a minimum of degrees
of freedom. In this context it is useful to recall the Pascal triangle [7] from
which the number of terms occurring in a polynomial in two variables x, y can
be readily determined. We use Pascal’s triangle which is a triangular array of
the binomial coefficients in a triangle, and determines the coefficients arising in
binomial expansions.

(x+ y)n =

n∑
k=0

(
n
k

)
xn−kyk (1)

= a0x
n + a1x

n−1y + a2x
n−2y2 + ...+ an−1xy

n−1 + any
n, (2)

for any non-negative integer n and any integer k between 0 and n.
The coefficients are the numbers in row n of Pascal’s triangle. In general,

when a binomial like x+y is raised to a positive integer power n, the coefficients
ai in the expansion are precisely the numbers on row n of Pascal’s triangle.

A first order bilinear shape function can then be expressed as:

z(x, y) = a0 + a1x+ a2y + a3xy (3)

matching four nodes in a square bilinear element. The interpolated function
should not use the term of x2 or y2, but x · y, which is the bilinear form of x
and y. The corresponding second order shape function is given as:

z(x, y) = a0 + a1x+ a2y + a3xy + a4x
2 + a5y

2 (4)

which is associated with a six node triangular element.
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2.1.4. Lookup table

In a Cartesian equidistant grid system, with the grid spacing of Δx and Δy,
it is very fast to calculate the neighbour grid points in an element. Typically we
use a simple expression to find the nearest grid points involved in the bilinear
interpolation, given by equations (5 to 9):

(x1, y1) = (Δx · i1,Δy · j1) (5)

(x2, y2) = (Δx · (i1 + 1) ,Δy · j1) (6)

(x3, y3) = (Δx · (i1 + 1) ,Δy · (j1 + 1)) (7)

(x4, y4) = (Δx · i1,Δy · (j1 + 1)) (8)

where the indices i1,j1 are given as

(i1, j1) =

(∣∣∣∣x− xmin

Δx

∣∣∣∣ , ∣∣∣∣y − ymin

Δy

∣∣∣∣) (9)

For a non-equidistant grid, we use a look up vector to find the first and last
element in a row of elements defined by a pressure level. A marching loop is
testing whether the calculated point is in a the given element limited by two
nodes.

2.2. Interpolation elements

In this section three types of interpolation elements are outlined, which can
be used in combination with each other. The theory is outlined in the following
subsections.

2.2.1. Linear interpolation elements

In the context of a triangle, we introduce the so-called barycentric coordi-
nates [7], which are also known as area coordinates, because the coordinates of
a point P with respect to triangle ABC are proportional to the areas of PBC,
PCA and PAB, which are always positive as long as P is inside the element, see
figure (6).

Figure 6: Triangular elements T with 3 and 6 nodes used in Regions 2 or 3 in the vicinity of
the saturation line.

Barycentric coordinates are extremely useful in engineering applications in-
volving triangular subdomains. These make analytic integrals often easier to
evaluate, and Gaussian quadrature tables are often presented in terms of area
coordinates.
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First let us consider a triangle T defined by three vertices (nodes) r1 , r2
and r3. Any point r located on this triangle may then be written as a weighted
sum of these three vertices, i.e.

r = ξ1 · r1 + ξ2 · r2 + ξ3 · r3 (10)

ξ1 + ξ2 + ξ3 = 1 (11)

where

r1 = (x1, y1, z1), r2 = (x2, y2, z2) and r3 = (x3, y3, z3) (12)

Inserting ξ3 = 1− ξ1 − ξ2 in (10) gives a plane, defined by two vectors r12 and
r13 and the corresponding normal vector is defined by: n=r12× r13. This plane
can be expressed by the matrix T:

T =

(
x13 x23

y13 y23

)

and the corresponding area of the triangular element is

A =
1

2
det(T) (13)

where xij=xi − xj and yij=yi − yj .

Hence the barycentric coordinates can be formulated as

T · ξ = r− r3 (14)

which gives

ξ = T−1 · (r− r3)

=
1

det(T)

(
y23 −x23

−y13 x13

)
· (r− r3)

=
1

(x13 · y23 − x23 · y13)
(

y23 −x23

−y13 x13

)
· (r− r3) (15)

or

ξ1 =
y23 · (x− x3)− x23 · (y − y3)

(x13 · y23 − x23 · y13)
ξ2 =

y13 · (x− x3) + x13 · (y − y3)

(x13 · y23 − x23 · y13)
ξ3 = 1− ξ1 − ξ2 (16)
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Since barycentric coordinates are a linear transformation of Cartesian coor-
dinates, it turns out that they vary linearly along the edges and over the area of
the triangle. If a point lies in the interior of the triangle T, all of the Barycen-
tric coordinates lie in the open interval (0,1). This can be summarized by the
following statements:

A point r lies inside the triangle T if and only if 0 ≤ ξi ≤ 1 ∀ i ∈ [1,2,3].
Now, we interpolate the value of z given by (x, y) in T as: n = r12 × r13 and
n · (r− r1) = 0 which is similar to

n1 · (x− x1) + n2 · (y − y1) + n3 · (z − z3) = 0 (17)

where n is the normal vector to the triangle ABC:

n =

⎛⎝ n1

n2

n3

⎞⎠
=

⎛⎝ y21 · z31 − z21 · y31
z21 · x31 − x21 · z31
x21 · y31 − y21 · x31

⎞⎠ (18)

Hence

z(x, y) = z1 − 1

n3
· [(x− x1) · n1 + (y − y1) · n2] (19)

y(x, z) = y1 − 1

n2
· [(x− x1) · n1 + (z − z1) · n3] (20)

x(y, z) = x1 − 1

n1
· [(y − y1) · n2 + (z − z1) · n3] (21)

If one of the barycentric coordinates is zero, this means that r lies on a line
segment, defining T, and r is placed in the opposite direction of the barycentric
coordinate, i.e., if ξ1 equals zero, then r lies on the segment BC or on the line
given by the vector: r23 = r3 − r2. Correspondingly, if one of the barycentric
coordinates is less than zero, r is not inside the triangle T, but positioned
outside T in the opposite direction of ξi. This technique is useful when we want
to traverse from one element to the neighbouring element.

2.2.2. Bilinear interpolation elements

The key idea behind the bilinear interpolation is to perform linear inter-
polation first in one direction, and then again in the other direction. It is an
extension of the linear interpolation for interpolating functions of two variables
(e.g., x and y) on a regular grid [7]. Although each step is linear in the sam-
pled values and in the position, the interpolation as a whole is not linear but
rather quadratic in the sample location. Nevertheless, one can make an inverse
calculation of the dependent parameter z by use of bilinear interpolation, so the
function z(x, y) can be expressed explicitly as y(x, z) or x(y, z).

Having a Cartesian rectangular coordinate system in which the four equidis-
tant vertices (nodes), are given by: r1 = (x1, y1), r2 = (x2, y2), r3 = (x3, y3),
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and r4 = (x4, y4), where z is known for all nodes, then the interpolation formula
simplifies to

z(x, y) = [1− x, x]

(
z1 z4
z2 z3

)
·
[

1− y
y

]
(22)

z(x, y) =
z1

ΔxΔy
· (x2 − x) · (y2 − y) +

z2
ΔxΔy

· (x− x1) · (y2 − y) (23)

+
z4

ΔxΔy
· (x2 − x) · (y − y2) +

z3
ΔxΔy

· (x− x1) · (y − y2) (24)

= a1 + a2 · x+ a3 · y + a4 · x · y (25)

where

a1 =
1

ΔxΔy
· [x2y2z1 − x1y2z2 − x2y1z4 + x1y2z3]

a2 =
1

ΔxΔy
· [−y2z1 + y2z2 + y1z4 − y1z3]

a3 =
1

ΔxΔy
· [−x2z1 + x1z2 + x2z4 − x1z3]

a4 =
1

ΔxΔy
· [z1 − z2 − z4 + z3]

and Δx=x2 − x1 and Δy=y4 − y1. Alternatively, we can express x(y, z) and
y(x, z) explicitly as:

x(y, z) =
−1

a2 + a4 · y · [z − a1 + a3 · y]
(26)

and

y(x, z) =
−1

a3 + a4 · x · [z − a1 + a2 · x]
(27)

2.2.3. Iso-Parametric Triangles

If the triangle has variable metric, as in the curved sided 6-node triangle
geometries shown in Figure (6), the foregoing formulas need adjustment because
the element of area Ω becomes a function of position. It can be shown that the
differential area element is given by

dΩ = Jdξ1dξ2dξ3

=
1

2
det

⎡⎢⎢⎢⎣
1 1 1∑n

i=1 xi
∂Ni

∂ξ1

∑n
i=1 xi

∂Ni

∂ξ2

∑n
i=1 xi

∂Ni

∂ξ3∑n
i=1 yi

∂Ni

∂ξ1

∑n
i=1 yi

∂Ni

∂ξ2

∑n
i=1 yi

∂Ni

∂ξ3

⎤⎥⎥⎥⎦ (28)

11



where ξi, i ∈[1,2,3] are normalized coordinates and the shape function Ni is
given by equation (30). Above, J is the Jacobian determinant. The following
theory is based on the considerations described in reference [7].

Consider the more general case of an iso-parametric element with n nodes
and shape functions Ni. The element geometry is defined by the corner coordi-
nates xi, yi, with i ∈ [1...6]. Corners are numbered 1, 2, 3 in counter-clockwise
sense. Side nodes are numbered 4, 5, 6, opposite to corners 3, 1, 2, respectively
as illustrated in figure (6). The triangular normalised coordinates are as above
denoted by ξ1, ξ2 and ξ3, which satisfy ξ1+ξ2+ξ3 = 1. The quadratic displace-
ment field ux(ξ1, ξ2, ξ3), uy(ξ1, ξ2, ξ3) is defined by the 12 node displacements
uxi , uyi , i ∈[1...6], as per the iso-parametric quadratic interpolation formula in
[7], page 165. That formula is repeated here for convenience:

⎡⎢⎢⎢⎢⎣
1
x
y
ux

uy

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1 1 1 1 1 1
x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6
ux1 ux2 ux3 ux4 ux5 ux6

uy1 uy2 uy3 uy4 uy5 uy6

⎤⎥⎥⎥⎥⎦N (29)

where the shape function N and the belonging gradients in ξi are given as

N =

⎡⎢⎢⎢⎢⎢⎢⎣
ξ1(2ξ1 − 1)
ξ2(2ξ2 − 1)
ξ3(2ξ3 − 1)

4ξ1ξ2
4ξ2ξ3
4ξ3ξ1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
∂Ni

∂ξ1
=

⎡⎢⎢⎢⎢⎢⎢⎣
4ξ1 − 1

0
0
4ξ2
0
4ξ3

⎤⎥⎥⎥⎥⎥⎥⎦ ,

∂Ni

∂ξ2
=

⎡⎢⎢⎢⎢⎢⎢⎣
0

4ξ2 − 1
0
4ξ1
4ξ3
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
∂Ni

∂ξ3
=

⎡⎢⎢⎢⎢⎢⎢⎣
0
0

4ξ3 − 1
0
4ξ2
4ξ1

⎤⎥⎥⎥⎥⎥⎥⎦ (30)

If the metric is simply defined by the 3 corners, as in figure (6), the geometry
shape functions are linear as in equation (16): N1 = ξ1, N2 = ξ2 and N3 =
ξ3. Then the foregoing determinant reduces to that of equation (13), and J =
1
2A everywhere. But for general (curved) geometries J = J(ξ1, ξ2, ξ3), and the
triangle area A cannot be factored out of the integration rules according to [7].
Instead we use the above gradients in a simple iteration procedure to estimate
the barycentric coordinates for a specific point P (x, y). The bulk of the shape
function logic is concerned with the computation of the partial derivatives of the
shape functions (30) with respect to x and y at any point in the element. For
this purpose consider a generic scalar function w(ξ1, ξ2, ξ3) that is quadratically
interpolated over the triangle by

w = w1N1 + w2N2 + w3N3 + w4N4 + w5N5 + w6N6 (31)
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w may stand for 1, x , y, ux or uy , which are interpolated in the iso-parametric
representation in (29), or other element-varying quantities such as fluid density,
temperature, etc. Determining partial derivatives of w in (31) with respect to
x and y and applying the chain rule twice yields

∂w

∂x
=

n∑
i=1

wi
∂Ni

∂x
=

n∑
i=1

wi

(
∂Ni

∂ξ1

∂ξ1
∂x

+
∂Ni

∂ξ2

∂ξ2
∂x

+
∂Ni

∂ξ3

∂ξ3
∂x

)
∂w

∂y
=

n∑
i=1

wi
∂Ni

∂y
=

n∑
i=1

wi

(
∂Ni

∂ξ1

∂ξ1
∂y

+
∂Ni

∂ξ2

∂ξ2
∂y

+
∂Ni

∂ξ3

∂ξ3
∂y

)
(32)

where all sums are understood to run over i = 1,...6. In matrix form:

⎡⎣ ∂w
∂x

∂w
∂y

⎤⎦ =
⎡⎣ ∂ξ1

∂x
∂ξ2
∂x

∂ξ3
∂x

∂ξ1
∂y

∂ξ2
∂y

∂ξ3
∂y

⎤⎦ ·
⎡⎢⎢⎢⎣
∑

wi
∂Ni

∂ξ1∑
wi

∂Ni

∂ξ2∑
wi

∂Ni

∂ξ3

⎤⎥⎥⎥⎦ (33)

Transposing both sides of (33) while exchanging sides yields

[ ∑
wi

∂Ni

∂ξ1

∑
wi

∂Ni

∂ξ2

∑
wi

∂Ni

∂ξ3

]
·

⎡⎢⎢⎢⎣
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦ = [ ∂w
∂x

∂w
∂y

]
(34)

Now make w ≡ (1, x, y)T and stack the results row-wise:⎡⎢⎢⎢⎣
∑ ∂Ni

∂ξ1

∑ ∂Ni

∂ξ2

∑ ∂Ni

∂ξ3∑
xi

∂Ni

∂ξ1

∑
xi

∂Ni

∂ξ2

∑
xi

∂Ni

∂ξ3∑
yi

∂Ni

∂ξ1

∑
yi

∂Ni

∂ξ2

∑
yi

∂Ni

∂ξ3

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

∂1
∂x

∂1
∂y

∂x
∂x

∂x
∂y

∂y
∂x

∂y
∂y

⎤⎥⎥⎥⎦ (35)

It is obvious that ∂x
∂x = ∂y

∂y = 1 and ∂1
∂x = ∂1

∂y = ∂x
∂y = ∂y

∂x = 0 because x and y

are independent coordinates. It is shown in [7] that, if
∑

Ni = 1, the entries of
the first row of the coefficient matrix are equal to a constant of unity, because
the first equation in (36) is homogeneous. These entries can be scaled to unity
because the first row of the right-hand side is null. Consequently we arrive at a
system of linear equations of order 3, with two right-hand sides:

J ·P =

⎡⎢⎢⎢⎣
1 1 1

Jx1 Jx2 Jx3

Jy1 Jy2 Jy3

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0 0

1 0

0 1

⎤⎥⎥⎥⎦ (36)

where J is called the Jacobian matrix and its determinant is scaled by one half of
the Jacobian: A = 1

2 det(J), as used in the expression of the area of an element

13



in (13). Additionally the sub Jacobians in (36) is given by

Jx1 =
∑

xi
∂Ni

∂ξ1
, Jx2 =

∑
xi

∂Ni

∂ξ2
, Jx3 =

∑
xi

∂Ni

∂ξ3

Jy1 =
∑

yi
∂Ni

∂ξ1
, Jy2 =

∑
yi
∂Ni

∂ξ2
, Jy3 =

∑
yi
∂Ni

∂ξ3
(37)

Solving system (36) gives⎡⎢⎢⎢⎣
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

∂ξ3
∂x

∂ξ3
∂y

⎤⎥⎥⎥⎦ = 1

2A

⎡⎢⎢⎢⎣
Jy23 Jx32

Jy31 Jx13

Jy12 Jx21

⎤⎥⎥⎥⎦ = P (38)

with Jxji=Jxj-Jxi, Jyji=Jyj-Jyi and A= 1
2 (Jx21Jy31-Jy12Jx13) �= 0. Substituting

this into (32), the partial derivatives of the shape functions are⎡⎣ ∂Ni

∂x

∂Ni

∂y

⎤⎦ = PT
[

∂Ni

∂ξ1
∂Ni

∂ξ2
∂Ni

∂ξ3

]T
(39)

where P is the 3x2 matrix of triangular coordinates defined in (38)
To determine the barycentric coordinates for an iso-parametric element with

n = 6 nodes, we have two residual functions for a given point P (x, y), which
can be incorporated into an external iterative loop, combined with an iterative
backtrack loop of ξi:

Rx =

6∑
i=1

Nixi − x

Ry =

6∑
i=1

Niyi − y (40)

The iterative backtracking loop of ξi can be determined by the knowledge of the
contributions of ∂ξi

∂x and ∂ξi
∂y ;

ξn+1
i = ξni +

∂ξi
∂x

Rx +
∂ξi
∂y

Ry

= ξni +
Jy23Rx + Jx32Ry

det(J)
, i ∈ [1, 2] (41)

hence we have

Δξ1 =
Jy23Rx + Jx32Ry

det(J)

Δξ2 =
Jy31Rx + Jx13Ry

det(J)
(42)
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2.2.4. Stretching of grid

By introducing a stretching of the pressure grid, we can ensure improvements
in the data representation, especially in areas where there are large gradients in
the density. Therefore, we define a simple stretching function, which contributes
to a moderate stretch of the pressure grid in the vicinity of the saturation line.
Thus, the desired data representation is obtained. Figure (7) illustrates how
the stretching works. Here the stretching of the network has greatest impact at
both ends at x = 0 and x = 1.

Figure 7: Monotonically increasing stretch function allowing dense grid at boundaries.

A simple monotonically increasing stretch function is given by (43):

y = sin2(
πx

2
), (x, y) ∈ [0, ...1] (43)

and the reverse function is trivially given by

x =
2

π
sin−1(

√
y), (x, y) ∈ [0, ...1] (44)

3. Results

3.1. Timing the application

The timing of the simulations is very important because it provides the basis
for evaluation of the interpolation elements in terms of time consumption versus
effectiveness. One of the performance indicators is the application timing, others
can be related to the outcome of the application in terms of numerical results.

Some considerations are important when comparing CPU time: The pro-
gram timings have to be executed when other users are not active. The timing
results can be affected by one or more CPU-intensive processes also running
while doing the timings and the application has to be executed under the same
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conditions each time in order to provide the most accurate results, especially
when comparing execution times of a previous version of the same program. If
possible, the same system (processor model, amount of memory, version of the
operating system, and so on) has to be used each time. For programs running
less than a few seconds, it is important to run several timings to avoid mis-
leading results. Overhead functions like loading libraries might influence short
timings considerably. If the program displays a lot of text, redirecting of the
output from the program should be considered and will change the times re-
ported because of reduced screen I / O. Timings that show a large amount of
system time may indicate a lot of time spent doing I / O, which might be worth
investigating. For programs that run for less than a few seconds, several timings
shoud be done to ensure that the results are not misleading. The elapsed, real,
or ”wall clock” time will be greater than the total charged actual CPU time.
The total actual CPU time is the sum of the actual user CPU time and actual
system CPU time. The computer used is a Lenovo portable PC (T520) with
Intel(R) Core (TM) i5-2520M CPU @2.5 GHz 2 Core(s) with 4 logical proces-
sors, installed memory (RAM) is 8 GB - 64-bit operation system with Windows
7 Enterprise with service pack 1 Build 7601. Both the test application and the
IAPWS-97 water steam table is implemented in C ++ / FORTRAN 90, under
Visual studio 2008 - Professional Edition. The applications are compiled with
optimiser in order to achieve maximum speed.

3.2. Simulation results

In the following three different setup of interpolations are compared. The
first setup is based on a case using two main regions, R6 which covers regions
R1 to R4, and R5 using a pure bilinear 4 node element. The second case is
based on five regions using bilinear elements, supplied with a linear triangular
element in the vicinity of the saturation line. Finally, a setup is using the five
regions by applying an iso parametric triangular element (6-node).

The simulation are identified by a number (Ns). Meshes based on different
element sizes in the five regions has been created for the individual simulations.
The number of elements in each case are listed in tables; tabel (3) for the two
region case, table (4) for the five-region case with bilinear elements and table (5)
for the five-region case with triangular elements. The total number of nodes and
elements are listed in the last column. We have a linear relationship between the
total amount of nodes/elements versus the number of isobars used, Np, because
the step length in enthalpy, h, is approximately fixed and independent of Np.

For comparison, reference simulations have been performed by running the
pure IAPWS-97 water-steam application for pressure p ∈ (1,10, 50, 100, 220,
300 and 700 [bar]). Corresponding time records are carried out by executing
8 million calculations, varying enthalpy linearly from 0.1 [kJ/kg] up to 4000
[kJ/kg]. The IAPWS 97 is implemented in the same environment as the com-
parable interpolation scheme. Time consumption is listed in table (2). The
averaged simulation time is 1.2248E-6 [s]. The interpolations are performed by
stretching isobars in the bottom and top of each region, according to equation
(43).
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p[bar] 1 10 50 100 220 300 700

tref [ms] 0.8775 0.8229 0.7391 0.6923 0.3843 0.7937 0.8054

Table 2: Time consumption of executing IAPWS-97

We notice that it is relatively more time consuming (5-6 times) to perform
the interpolation for an isobar passing in the vicinity of the critical pressure
(pcrit).

Np Items R6 R5

∑5
i=1 Ri

10
Elements: 3600 3600 7200
Nodes: 4010 3609 7619

25
Elements: 9600 9600 18200
Nodes: 10025 9624 19649

50
Elements: 19600 19600 39600
Nodes: 20050 19649 39699

100
Elements: 39600 39600 79600
Nodes: 40100 39699 79799

200
Elements: 79600 79600 159200
Nodes: 80200 79799 159999

Table 3: Number of nodes and elements in Region (R6 covering R1 to R4) and R5 for 4 node
elements.

For each simulation setup we perform a traversal with constant pressure and
varying enthalpy from 0.5 [kJ/kg] to 3999.5 [kJ/kg] with a step of 0.5 [kJ/kg]).
The isobar lines are: (1, 10, 50, 100, 220, 300 and 700 [bar]). Both the maximum,
minimum and mean relative error, given by (45) is illustrated, as well as the
standard devation, which is a good indicator for how often significant differences
in the interpolation occur compared to reference data. Finally, we notice the
simulation time for a traversal of h, corresponding to the time records, carried
out for the IAPWS-97 reference calculations (tRef ), which is executed for 8
million steps, varying linearly from 0.1 [kJ/kg] up to 4000 [kJ/kg], in order to

Np Items R1 R2 R3 R4 R5

∑5
i=1 Ri

10
Elements: 180 1537 435 1278 3600 7030
Nodes: 206 2280 525 1420 4009 8440

25
Elements: 600 219 210 2880 9600 19219
Nodes: 650 4417 1194 3408 10024 21785

50
Elements: 2450 9217 2448 6958 19600 40673
Nodes: 2512 12907 2557 7100 20049 45125

100
Elements: 9900 18817 9898 14058 39600 92273
Nodes: 10100 26173 10122 14200 40099 100694

200
Elements: 39800 39957 39798 39800 79600 238955
Nodes: 40040 55416 40235 40000 80199 255890

Table 4: Number of nodes and elements in Regions 1-5 for 3+4 node elements.
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Np Items R1 R2 R3 R4 R5

∑5
i=1 Ri

10
Elements: 360 3074 1142 2160 7200 13936
Nodes: 920 8437 3068 5520 18418 36363

25
Elements: 1800 8834 3358 6730 9600 13362
Nodes: 3074 23956 8913 14520 19200 14131

50
Elements: 4900 18434 7048 11760 39200 81342
Nodes: 12300 49824 18647 29520 98498 208789

100
Elements: 19800 37634 19892 23760 79200 180286
Nodes: 49799 101540 52557 59520 198598 462014

200
Elements: 79600 79914 79794 79600 159200 478108
Nodes: 199201 215443 210667 199199 398798 1223308

Table 5: Number of nodes and elements in Region 1-5) for 6 node elements.

evaluate the impact of using different types of elements.

ε =
ΦIntp − Φref

Φref
· 100%

(45)

3.2.1. Bilinear 4 node element

The first simulation setup includes a series of calculations based on the 4 node
bilinear element with varying mesh fineness for different pressure levels (isobars).
In figure (9) and (10) we illustrate results for density interpolation based on
constant pressure and varying enthalpy from 0.5 [kJ/kg] up to 3999.5 [kJ/kg]
with a step length of 0.5 [kJ/kg], for different Np. Additionally, the accuracy
of each interpolation is illustrated on figure (8). In general the maximum error
is located in the vicinity of the saturation curve for saturated water and is
very high, even for Np=200. Here the density has very large negative gradients
∂ρ
∂h << 0, specially for low pressures (p < 10 [bar]), which is very difficult to
resolve in a bilinear scheme. By using a bilinear interpolation scheme, one avoids
phenomena such as over and under shoot of the interpolated values, this is only
true for higher order polynomial elements. In general we see a stable and fast
interpolation scheme, with a standard deviation below 10−3 for p > 50 [bar]
for all Np, but if we need to resolve the steep gradients, many more elements
would be needed. This would not affect the lookup time, only the initial mesh
creation. The averaged interpolation time for one point is 0.115 [μ s] which
is 10.65 times faster than IAPWS-97 and for the isobars in the vicinity of the
critical pressure, we find an even higher performance, up to 33.4 times faster.

3.2.2. Bilinear 4 node combined with triangular 3 node elements

The second simulation setup is similar to the first, except that triangular
linear elements are used in the vicinity of the saturation curve. The purpose
of using triangular elements is to achieve a better resolution of the saturation
curve, in spite of the fact that the triangular element is linear. In figure (12)
and (13) the results for density interpolation are illustrated, based on constant
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Figure 8: Bilinear interpolation: Relative errors and standard deviation for different resolution
of the pure bi-linear grid (Ns).

Figure 9: Bilinear interpolation: Density as function of Enthalpy for fixed pressure of 1.0
[bar]. Np is varying from 10, 100 and 200.

pressure and varying enthalpy from 0.5 [kJ/kg] up to 3999.5 [kJ/kg] with a step
length of 0.5 [kJ/kg], for different values of Np. Additionally, the accuracy of
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Figure 10: Bilinear interpolation: Density as function of Enthalpy for isobars varying from
1.0 to 700 [bar]. Np=200.

each interpolation is illustrated in figure (11). In general the maximum error
is also here located in the vicinity of the saturation line for saturated water
and is very high, even for Np=200. We observe a minor improvement in the
standard deviation for pressures below the critical pressure compared to the
case without triangular elements. The density is again found to be very difficult
to resolve, even by linear triangular elements. By using a linear interpolation
scheme, we avoid the over and under shoot of the interpolated value. This is
only possible in higher order polynomial elements. In general we see a stable and
fast interpolation scheme, with a standard deviation below 10−3 for all p > 100
[bar] and Np > 25. The averaged interpolation time for one point is 0.1899
[μs] for the two-phase region and 0.1180 [μs] for the superheated region (R5).
This is 7.3 and 6.7 times faster, respectively, than the reference IAPWS-97. We
have an increased time consumption since we use a lookup table, containing the
start and end elements of each row of elements. This implementation involves a
possible risk in running through a large table before the correct item is found for
interpolation. In the pure bilinear interpolation, we can use the form described
in equation (9).

3.2.3. Triangular 6 node elements

The last simulation setup uses iso-parametric triangular elements for all
regions. Here we operate with five regions as in the previous setup. The purpose
of using triangular iso-parametric elements is to achieve a better resolution of the
saturation curve as well as increasing the accuracy all over the domain, in spite
of the fact that the triangular element is only of second order. Figure (15) and
(16) illustrate the results for density interpolation based on constant pressure
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Figure 11: Relative errors and standard deviation for different resolution of the Bilinear grid
with triangular elements in the vicinity of the saturation line.

Figure 12: Bilinear and triangular elements: Density as function of Enthalpy for fixed pressure
of 1.0 [bar]. Np is varying from 10, 100 and 200.

and varying enthalpy from 0.5 [kJ/kg] up to 3999.5 [kJ/kg] with a step length
of 0.5 [kJ/kg] for different Np. Additionally, the accuracy of each interpolation
is illustrated in figure (14). In general the maximum error is still considerable,
up to 400 %, and is also here located in the vicinity of the saturation line
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Figure 13: Bilinear and triangular elements: Density as function of Enthalpy for isobars
varying from 1.0 to 700 [bar]. Np=200.

for saturated water, even for Np=200. However, it is significantly lower than
observed in the priviously shown results. We find a significant improvement in
the standard deviation for pressures below the critical pressure, compared to
the case without triangular elements. Again the density trough for low pressure
is still very difficult to resolve - even by an iso parametric triangular element. A
second-order element is not necessarily monotonically increasing or decreasing,
indicating we have a risk, that the interpolation can be influenced by a numerical
over- or under-shoot. We see this clearly for Np = 10 and, more surprisingly,
also for Np = 200. In the latter event we observe a sharp jump in function
values inside the element nodes, for example, is ρ1 = 989, ρ2 = 0.32, ρ3 = 903,
ρ4 = 1.30, ρ5 = 10.9 and ρ6 = 974. The interpolated value is ρIntp = 0.18,
while the IAPWS-97 gives 8.19. All ρ values are measured in [kg/m3]. Here
we experience a huge relative error as a result of the inability of the second-
order elements to dissolve the very large gradients, that we experience at the
density trough for low pressure. The averaged interpolation time for the entire
domain is 5.6925 [ms] which is 4.6 times slower than the original IAPSW-97
implementation. The increased time consumption is first of all due to the need
to calculate the barycentric coordinates according to algorithm (40) to (42) for
each point P (x, y). Secondly, it is due to the lookup table we use, which contains
start and end elements of each row of elements, due to a non-equidistantly mesh
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in enthalpy, h.

Figure 14: Relative errors and standard deviation for different resolution of the second order
iso-parametric elements.

Figure 15: Iso-parametric elements: Density as function of Enthalpy for fixed pressure of 1.0
[bar]. Np is varying from 10, 100 and 200.

4. Discussion

The benefits in using the iso-parametric elements are minimal in this case,
since they are time consuming and not able to resolve the density trough at low
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Figure 16: Iso-parametric elements: Density as function of Enthalpy for isobars varying from
1.0 to 700 [bar]. Np=200.

pressures. We have chosen to interpolate the density, because this thermody-
namic property contains very sharp gradients, especially for low pressure, which
in this way uncovers an absolute worst case with respect to interpolation. Other
state properties would yield significantly better results, such as heat capacity,
entropy and temperature. For these reasons we recommend to use this element
type in the scope of smoothing the thermodynamic properties, calculated in
individual regions in the IAPWS-97 Industrial Standard. We observed also the
possibility of inaccurate interpolation along the saturation curve for water at
low pressure levels. One example was Np = 200, p = 1 [bar] and h = 578.75
[kJ/kg]. In this iso parametric element there are large differences in the function
values of the nodes, ranging from 989.83 [kg/m3] down to 0.32 [kg/m3] by an
exponential decrease in density, meaning a second-order element is not suffcient
to resolve the functional sequence of the element. If we use regions R2 and R3

with a higher minimum pressure (pmin), the iso parametric element gives very
high accuracy and reproduces the results with a maximum relative error below
0.5

When modeling a dynamic two-phase flow process, it is not evident what
happens in practice to the density when passing the saturation line. The spatial
location of the saturated liquid will not be well-defined but will vary over time
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and space. Under normal circumstances, it is thus a well-known numerical trick
to smoothe the crossing from the subcooled liquid to the two-phase mixture.
This blurs the steep gradient, which will be an inherent outcome of using the
interpolation scheme. If one uses an interpolation scheme with a suitably large
number of pressure lines, a high degree of accuracy is assured in the interpolated
state variable, because it will in reality vary over the extent of a control volume.
In practice all necessary thermodynamic properties can be saved in each node in
the interpolation table. A simple way to enhance the iso-parametric interpola-
tion, is by modifying the surface function which is included in the interpolation
element. If we introduce a contribution, which replaces the quadratic relation
with a reciprocal relation to the variable, we get a better resolution of the den-
sity trough, as we see in the vicinity of saturation curve for water. However,
this solution will give less accurate results for other quantities, which are better
represented by the second-order relation with respect to variations in pressure
or enthalpy. The challenge with the method is that the interpolation table is
bulky. An example of Np = 200 isobar lines with 17 state variables stored in
each node generates a binary file of approximately 50 MB.

The method is based on the pre-defined range of the problem of interest and
thereby the size and number of regions in the interpolation model. The used
definition is not optimized and should be seen as one reasonable representation.
The regions may be optimized to reach higher accuracy or lower computational
time.

5. Conclusion

The paper presents the results of investigating three different methods of
using interpolation based on a finite volume methodology to represent thermo-
dynamic states of water / steam instead of the complete formulation defined by
IAPWS-97. The results show that significantly reduced computation time may
be observed, but also that there are challenges by using the suggested approach.
One is that we find low accuracy of the results in parts of the calculation range,
but also that even higher time consumption may be found by inappropriate
selection of the elements. We recommend bilinear schemes for interpolating the
water steam table of IAPWS-97. For pure bilinear interpolation we recommend
at least Np = 200 or higher, since no look up table is required in this case.
Modern computers do not restrict the amount of data storage significantly, so
in practice we do not have to take memory into consideration. The improve-
ments in introducing the triangular elements are too insignificant to justify the
more intensive implementation of such scheme, however, the results are more
accurate and we can reduce some memory demands. However, in the two-phase
region, we need a look up table, which can be time consuming for large grid
arrangements. The iso parametric triangular elements cannot be recommended
for the entire domain and especially, if the argument is to save CPU costs.
Alternatively the iso parametric elements can with advantage be used when
calculating first-order derivative of the thermodynamic properties. Thereby we
ensure continuity in the first order derivative. If the iso parametric elements
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should be used near the density trough, a more dedicated shape function should
be implemented. In such case, we can reduce the number of elements drasti-
cally and the computational costs as well. However, the barycentric coordinates
will be costly to compute. It will be a challenge to find reasons to use the
iso-parametric elements.
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Abstract

We develop a numerical model for the transient operation of a steam power
plant boiler. The model is based on one-dimensional, compressible flow and a
homogeneous two-phase model which is based on a two-layer thermo-hydraulic
formulation for predominantly one-dimensional flows in a vertical, heated pipe
element. The homogeneous model is based on the assumption of both hydraulic-
and thermal equilibrium between the two fluid phases. The consequences and
aspects are discussed in that context. The flow model consists of three hyper-
bolic fluid conservation equations, i.e., mass, momentum and energy balances.
The pipe wall is modelled as a one-dimensional heat balance equation in the
radial direction. The models can be reformulated in the four independent de-
grees of freedom pressure, p, enthalpy, h, velocity, u, and wall temperature,
Tw. The constitutive relations for the thermodynamic properties are limited
to water/steam and are given by the IAPWS 97 standard. Wall friction and
heat transfer coefficients are formulated by commonly used methods. The two-
layer model has been discussed and used for building a homogenious model for
analysing the thermo hydraulic conditions in two phase flow.

The numerical method for solving the homogeneous fluid equations is pre-
sented. It is based on a fifth-order Central WENO (Weighted Essentially Non-
Oscillatory) scheme with simplified weights functions. The model is able to
describe the entire evaporation process from sub cooled water to super heated
steam at the outlet. There is constructed a model of the evaporates string of
Skærbæk Power Station Unit 3, which is modeled as a dynamic jump in in the
feed water temperature, caused by a high pressure feed water heater cutout.
This is becoming a natural instrument for achieving rapid load gradients in up-
per direction. Calculation results reveal strong temperature fluctuations in the
evaporator, which can initiate fatigue.
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WENO, Hyperbolic balance laws.

Operating flexibility is therefore of great importance for the business eco-
nomics of the plants and also a prerequisite for a stable electrical system. No
matter how strong focus is put on this operational flexibility, power plants, how-
ever, will always be subject to technical limitations - e.g. boiler dynamics, coal
mill dynamics, flame stability and material constraints. The ability of the power
plants to stabilize the electrical system can be increased substantially, if we get
a better understanding of processes that occur in the evaporation process in the
boiler. The evaporator transfers the heat from the flame in the furnace to the
evaporating water/steam in the water wall. The state change from liquid water
to superheated steam in a once-through process involves large variation in flow
and thermodyanmic conditions. Numerous work on evaporators with special
focus on the dynamic control features of the power plant boilers is available in
the literature. However, less literature is available on dynamic modelling of the
evaporation process in the power plant boiler and the consequent load limits.
In 1985 Harald Griem, [1] covered the subject and both KEMA [2] and Siemens
have performed considerable experimental work that is considered company se-
crets. Other authors who have dealt with the experimental topic with special
focus on internally rifled boiler tubes are [3], [4], [5] and [6]. They have devel-
oped consistent algebraic function terms for frictional pressure drop and heat
transfer in internally rifled boiler tubes. J. Pan [7] presents a thermo-hydraulic
analysis of an ultra supercritical boiler at full load, but does not cover part load
conditions.

The present work covers modeling the complete evaporation process at all
loads from initial heating to full steam production. The model has been devel-
oped with focus on numerical accuracy and stability. The result of this analysis
has been an implementation of a WENO solver that handles the system of par-
tial differential-algebraic equation robustly. The WENO solver code is imple-
mented in c++ under MicroSoft Visual Studio 2008, and the solver is validated
in [8]. The water/steam table is based on a fast bilinear interpolation scheme
which uses the lookup table for improved calculation speed. It is based on the
IAPWS97 steam property formulation, which is implemented in FORTRAN 90.
This procedure is described in [8].

1. Evaporation in steam power boilers

A power plant boiler is a heat exchanger which includes several units, econo-
mizer, evaporator, superheaters, reheaters and air preheater. In the evaporator
part, the fuel is burned on the furnace side and the combustion products is
a hot gas exchanging radiant heat to the water on the other side of the heat
exchanger. The boiler is traditionally built as a tower, inside the hot gas is
produced and the walls of the boiler are made of pipes welded together in which
the water flows. Frequent start/stop of ultra super critical (USC) plants, which
in fact is what is requested, is unfortunately not a realistic scenario, due to the
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costs related to start/stop. A more promising track is thus the operation of
the thermal power plant at lowest possible load during those hours where the
generation from thermal capacity is in fact not requested and furthermore, can
the load following capability of the plant be improved or at least retained at low
load (”micro load”). The answer to this problem is among other to be found in
the water walls surrounding the furnace, these tubes (panel walls), as the water
walls are composed of, must at all times be sufficiently cooled with feed water
to avoid tube material damage.

The heat flux is approximately 200-400 kW/m2 in the lower sections of
the evaporator and appears as radiation. At the upper part of the tower, the
radiation is still dominating, but it is also necessary to take convective heat
transfer into account. At the bottom section, where the radiation from gas to
the pipe wall is dominating, the heat transfer on the outside is so massive that it
is not restriction the heat transfer. Instead, the limit is set by the heat transfer
rate from the pipe-wall to the water inside the pipe.

Figure 1: Flow Regimes in vertical pipe.

1.1. Scope of study

Danish central power plants are all once-through boilers of the Benson type.
The water walls are typical constructed of some 200 tubes connected in parallel,
running from hopper to furnace outlet with an inclination angle of approx 15
degrees. Each of these tubes must be at any instant be sufficiently cooled
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at any location along the tube. Normally this corresponds to a tube mass
flux rate of 700-800 [kg/s/m2] at minimum stabel generation and 2000-2500
[kg/s/m2] at rated capacity. If cooling fails for a certain time, the tube in
question will be damaged (material creep and cyclic hoop stress) and eventually
burst. Consequently, each power plant has a minimum water fall flow rate
which must be respected in order to avoid trip of the plant - however, because
there is presumably a ’however’. The plants were designed during the 1980-
1990’ties when the extreme low load was not an issue at all and this leaves
the belief that further low load optimisation is possible. One of the easier
instruments to rapidly load control, is about to cut the high-pressure preheater,
whereby the amount of steam through the turbine train is increased, and thus
the delivered electricity production. This happens at the cost of the block
efficiency and a considerable stress on the evaporator in the form of temperature
fluctuations. This can be compensated for by controlling the feed water flow
quickly. In this paper, we examine the consequences of only lowering the feed
water temperature over 4 seconds from 270.7 [oC] to 220 [oC] at part load.
The purpose of this study is to demonstrate that it is possible to develop a
robust numerical model, which is able to dissolve the excessive dynamics that
occur in connection with an evaporation process. Based on other hard-cored
problems in power plants that have been solved with succes, it is our belief that
a through understanding of the thermo-hydraulic problems - paired with our
existing knowledge on material creep and fatigue (FEM calculations), furnace
load (CFD calculations) and more intelligent furnace control in the feed water,
fuel and combustion control systems, restricted by an intelligent distributed
control system (DCS) - will further improve the low or micro load properties
of a plant and eventually lead to enhanced low load operation. This again may
allow for further wind penetration. All aspects related to this optimisation,
except for the through comprehension of the thermo-hydraulics of the water
walls, have been throughly studied by DONG Energy - Thermal Power / DTU
thermal Energy Systems during the past decade.

2. Methods

In this section we describe the dominating phenomena in a tube of a power
plant boiler. We outline a two layer model for predominantly one-dimensional
flows in a vertical pipe element. The model uses a non-equilibrium approach and
consists of two continuity equations, two momentum equations and two energy
equations. The model is further simplified to a homogeneous formulation.

2.1. Non-Thermal Equilibrium Situations

Some degree of thermal non-equilibrium arises in practically all situations
and especially in dynamic situations, thermal non-equilibrium will be present
to make heat and mass transfer take place. Thermodynamic equilibrium does
exist between a liquid and its vapour separated by a flat interface e.g., water and
steam in a closed vessel. But, in the classical case of stationary vapour bubble in
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large volume of liquid, the vapour and liquid temperatures are equal. However,
due to the effect of surface tension, even in this equilibrium situation, the system
temperature must be slightly above the saturation temperature corresponding
to the pressure of the liquid due to [9]. It is only in the case of the flat interface,
that both phases can be exactly at saturation conditions.

In the equally classical case of nucleate boiling (NB) there must be a certain
superheat of the liquid near the wall for a bubble to nucleate and grow. In
the case of strong temperature gradients near the wall, one may have subcooled
nucleate boiling (SNB) where bubbles nucleate, grow and even detach from the
wall and survive for a while in the bulk of subcooled liquid.

In annular flow (forced convection) there is a temperature gradient in the liq-
uid film on the wall, since the liquid layer immediately adjacent to the wall is at
the wall temperature, while the interface is near saturation. This temperature
gradient drives a heat flux to the interface where evaporation takes place. In
dispersed flow film boiling regime, a two-stage heat transfer phenomenon exists,
from the wall to the vapour and from the vapour to the liquid droplets, where
temperature gradients are the driving mechanisms for these heat exchange pro-
cesses. The vapour gets superheated from the hot wall, while there is still water
in the form of droplets in the flow channel, [9].

Thermal non-equilibrium is present in flashing load situations, i.e. when
changes in the evaporator pipes result in superheating of the liquid and thereby
production of vapour. An example of absence of thermal equilibrium for this
case is a rapid depressurization of a liquid system. In this case the pressure may
drop well below the saturation pressure that corresponds to the temperature
of the liquid. The causes of this pressure undershoot is clear, it takes time for
bubbles to nucleate and grow by transferring heat from the surrounding fluid.
Consequently there is a departure from equilibrium, i.e. the liquid tends to
remain at its original temperature, whereas the vapour that is being generated
is close to saturation. Similarly, a subcooled discharge through a leakage or an
orifice may expose fluid particles to a rapid change in pressure. If the outside
pressure is below the saturation pressure corresponding to the temperature of
the liquid, the fluid flashes in a process similar to that of a rapid depressur-
ization, which results in a similar departure from equilibrium. Flashing is of
importance for critical flow situations that affect the safety of various processes
in steam power boilers.

2.2. Two-fluid model of power plant boiler evaporation

The above considerations leads to formulation of a model of the evaporation
which includes the two phases of the fluid as separate parts in each control
volume.

2.2.1. Conservation laws

In a two-fluid model, the field equations are expressed in six conservation
equations consisting of mass, momentum and energy balances for each phase.
Since these field equations are obtained from an appropriate averaging of local
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instantaneous balance equations, the phasic interaction term appears in each of
the averaged balance equations. These terms represent the mass, momentum
and energy transfer through the interface between the two phases. These terms
determine the rate of phase changes and the degree of mechanical and thermal
non-equilibrium between the phases, thus they are essentially closure relations
for the model system. A pipe channel is considered as a uniform channel with
constant cross sectional area, A, and no internal heat production. The model
resolves stratified flow transport of fluid between the layers, caused by conden-
sation or evaporation. The field equations take the form as formulated in [10],
[11] and [12], where we here describe the source/sink terms in more detail.

Figure 2: Illustration of the two control volumes in the two-phase fluid. The fluid is flowing
in a cylindrical channel with uniform radius R.

2.2.2. Conservation of mass

Conservation of mass for the gas and liquid, respectively, is formulated by:

∂ (εgρg)

∂t
+

∂ (εgρgug)

∂z
= Γg (1)

∂ (εlρl)

∂t
+

∂ (εlρlul)

∂z
= Γl (2)
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Here the independent variables t represents the time in [s] and z is the spatial
coordinate referring to the flow direction of the fluid given in [m]. The rates of
the interfacial mass transport processes caused by evaporation are signified by
Γk, defined here as the rate of phase change per unit mixture volume. For the
gas phase it is positive for evaporation, i.e., Γg > 0. In the equations, εk stands
for the phase volume fractions and ρk and uk are the density and velocity for the
k’th (k ∈ {g, l}) phase, respectively. For an adiabatic model, the rate of phase
change (Γk) would be zero. The volume fraction of the fluid can be described
as the sum of a continuous liquid phase (εl) and a continuous gas phase (εg):

εl + εg = 1 (3)

and the rate of phase change can be expressed by

Γl + Γg = 0 (4)

2.2.3. Conservation of momentum

The formulation of the momentum equations is derived on the basis of New-
ton’s 2nd law for each layer in the control volume. The momentum transfer
terms have to balance the forces acting on the fluid layers. The momentum
balance is derived for each field (gas and liquid phase). The interfacial velocity
is given as ui and is acting parallelly to the pipe main axis. The interfacial force
along the interface I is represented by Fi per unit mixture volume. Interfacial
drag and friction both contribute to this force. The forces are orientated pos-
itive in the direction of the pipe z-axis. The wall friction force is represented
by Fw,k for the fluids belonging to the wall measured per unit mixture volume.
The parameter Fvm is the virtual mass force [11] and occurs only when one of
the phases accelerates with respect to the other phase. It is caused by the fact
that the motion of the accelerating phase results in acceleration of the other
phase as well. Fg,k are gravitational forces.

Figure 3: Momentum transfer terms for the two fields on a slice of a pipe-element.

7



Figure 4: Forces acting on the two fields on a slice of a pipe-element.

∂ (εgρgug)

∂t
+

∂
(
εgρgu

2
g + εgpg

)
∂z

= −pi
∂εg
∂z

− Fw,g − Fi − Fg,g + Γgui (5)

+ Fvm + Fs,g

∂ (εlρlul)

∂t
+

∂
(
εlρlu

2
l + εlpl

)
∂z

= −pi
∂εl
∂z

− Fw,l + Fi − Fg,l + Γlui (6)

− Fvm + Fs,l

The pressure for the k’th fluid is given by pk and the interfacial pressure is given
by: pi = εgpg + εlpl. A simple and widely used choice for the interfacial velocity
is ui=(ug + ul)/2 given by [10], but a more accurate estimate is given by [12]
as:

ui =
εgρgug + εlρlul

εgρg + εlρl
(7)

The first term on the left hand side (LHS) of the momentum equations (5) and
(6) is the dynamic rate of creation of momentum, the second term is responsi-
ble for the axial convection of momentum. On the right hand side (RHS) we
have the pressure force, the rate of momentum gained by wall shear stresses,
the rate of momentum gained by interfacial drag along the interface (I) and
the gravitational force acting on the fluid. All the forces are expressed per unit
volume. Finally the two last source/sink terms denote the momentum contri-
bution, caused by the phase changes in the fluid and the virtual mass force.
In principle, we have excluded the contribution from the shear stresses in the
two-layer momentum equations, under the assumption that the fluid is non-
Newtonian. The contribution from the shear stress could be Fs,k=

∂τf,k
∂z , where

τf,k represents the shear stress generated in a gradient field of the fluid velocity.
This shear stress will act as artificial diffusion in the area between subcooled
liquid and two-phase area - an area which basically has a singularity in the
density gradient with respect to z.
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2.2.4. Conservation of energy

To derive the energy conservation equations for the flow fields, we apply
the first law of thermodynamics to the liquid and gas layer control volumes.
The temperatures Tl and Tg are the bulk liquid and gas temperature, Ti is the
temperature at the interface layer, surrounding the gas phase, which is related
to a physical length scale ai expressing the interfacial area per unit volume.
The mass transfer caused by phase changes is represented along the interface by
Γg. It is assumed that no heat generation occurs within the control volume and
that axial heat diffusion (Ed,k) is negligible in the convection dominated flow

of forced evaporation (or condensation). Other parameters are as follows: q
′′
i,l

and q
′′
i,g are the heat fluxes between liquid and gas phases and the interphases,

measured in [W/m2], controlled by the temperature difference in-between the
two layers.

The total enthalpy of flow region k is defined as the sum of the intrinsic
enthalpy, the potential energy, and the axial kinetic energy. In the derivation
the total specific energy Etk and the total specific convected energy Ek, we
define the below terms:

Etk = h̃k +
u2
k

2
− gz cos(θ) (8)

and

Ek = hk +
u2
k

2
− gz cos(θ) (9)

where h̃k is the specific internal energy and hk is the specific enthalpy, related
by:

h̃k = hk − pk/ρk (10)

The inclusion of gz cos(θ) in the definition of Etk and Ek is for generality.
Often we deal with the difference of total energy along the interface Eti − Ei,
whereby the gz cos(θ) terms cancel out.

The heat flow across the wall is defined positive for Tw > Tl or Tw > Tg.
Additionally the heat transfer across the interface is defined positive and is
positive as long as the driving temperature across the interface is going from high
to low temperature. The mass transfer across the interface due to evaporation
is represented by Γg > 0 or condensation Γl > 0. The work terms highlight the
pressure forces from the neighbour layer. The interfacial drag (friction force) as
well as the virtual mass force along the interface perform work along the interface
cross section, too. Outflow of energy is defined positive. The two-phase energy
conservation equation can now be expressed in [W/m3] as:
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Figure 5: Energy transfer and heat flow on a slice of a pipe-element.

Figure 6: Work terms on a slice of a pipe-element.

∂ (εgρghg)

∂t
+

∂ (εgρghgug)

∂z
= εg

(
∂pg
∂t

+
∂ (pgug)

∂z

)
+ Γghi,g + εgawq

′′
w,g (11)

− aiq
′′
i,g + Fiui − Fvmui + Ed,g

∂ (εlρlhl)

∂t
+

∂ (εlρlhlul)

∂z
= εl

(
∂pl
∂t

+
∂ (plul)

∂z

)
+ Γlhi,l + εgawq

′′
w,l (12)

+ aiq
′′
i,l − Fiui + Fvmui + Ed,l

The specific enthalpy hk for the k’th fluid is given by (10) and (9). The dynamic
transport term is described by the first part on the LHS in (11) and (12) and
is expressing the rate of increase in the specific enthalpy per measured unit of
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per volume. The second term is the axial transport of specific enthalpy. On
the RHS the first term expresses the work done by the pressure forces at the
interface, the second term is the energy transport due to mass transfer caused
by evaporation or condensation. The third term represents the rate of heat flux
across the wall q̇e = q

′′
w,g + q

′′
w,l and is defined positive for Tw > Tl and Tw > Tg,

respectively, see figure (7). The fourth term is the heat flow across the interface
and is positive for Tl > Tg due to conduction in-between the two layers. The
fifth and six terms are accounting for the friction work done at the interface
and the work done by the virtual mass force along the intercase due to the
acceleration of one phase with respect to the other phase. The last term is the
heat diffusion (Ed,k), which is assumed negligible in the convection dominated
flow. Note that 1/ai denotes the length scale at the interface and ai has the
physical meaning of the interfacial area per unit volume. In a similar manner,
aw is expressing the heated wall surface area per unit volume.

2.2.5. Constitutive relations

The wall friction force acting on the liquid element is Fw,k. It is the force
acting on the fluid in contact with the wall by the length scale aw, i.e., Fw,l for
the liquid layer and Fw,g for the gas phase. The wall friction force is given by
(13):

Fw,k =
τw,k

aw
(13)

where τw,k is the wall shear stress, where subscript k denotes the phase in
contact with the wall (k=l or g). The wall shear stress is typically expressed as:

τwk =
1

2
fwkρk |uk|uk, k = l ∨ g (14)

where the fwk denotes the wall friction factor, which can be determined by i.e.
the Colebrook and White formulation. The shear stress between the wall and
the fluid is described by τwk, where the subscript k denotes the phase in contact
with the wall, i.e., ug for the gas and ul for the liquid. The term Fi represents
the interface force per unit mixture volume and is positive for ug > ul. The
parameter Fvm is the virtual mass force and occurs only when one of the phases
accelerates with respect to the other phase. A simple and widely used expression
for one-dimensional separated flow is given by [13] and is:

Fvm = −Cvm ·
(
∂ug

∂t
+ ug

∂ug

∂z
− ∂ul

∂t
− ul

∂ul

∂z

)
(15)

where Cvm = C · εg · εl · ρ̄ and C≈1. In terms of magnitude Fvm is significant
only if the gas phase is dispersed. The exact form of the virtual mass force term
is only known from theory for some simple and idealized conditions, see [14].
Similarly the interfacial shear stress between the phases can be formulated as:

τi =
1

2
fiρi |ug − ul| (ug − ul) (16)
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where ρi = ρg · εg + ρl · εl is expressing the density of the mixing fluid at the
interface (I). Correspondingly the friction factor, fi = fg · εg + fl · εl, is given as
an averaged value of the respective friction factors of pure liquid and gas.

2.2.6. Jump Conditions

The interfacial heat flux and the mass exchange rate Γk across the interface
section are linked through the following jump condition at the interface, where
any contribution from kinetic energy is ignored:(

Γghi,g − aiq
′′
i,g

)
+
(
Γlhi,l + aiq

′′
i,l

)
= 0 (17)

The thermal jump appears when the fluid is entering the two phase region and
the following assumptions are made: The thermal hydraulic conditions along the
interface are saturated fluids, hence we may have a simple relationship between
mass transfer and latent heat of evaporation hlg at the interface formulated by:

Γg · hlg = ai

(
q
′′
i,g − q

′′
i,l

)
(18)

If we consider a control volume enclosing the interface and having an infinitisi-
mal thickness, (18) constitutes an energy balance of this control volume. In the
presence of superheated steam and subcooled liquid, there will be no heat trans-
fer initiated by convective transport of evaporated fluid by Γl. Instead there will
be an intense heat transfer created by the temperature gradient in-between the
two layers. Here q

′′
i,g and q

′′
i,l will be responsible for the heat transfer from the

subcooled liquid to the interface, where a fraction of the heat flux penetrates
into the liquid and is used to heat up the gas. The remaining fraction produces
saturated steam at the interface.

2.3. Homogeneous model

In this section we derive a homogeneous dynamic flow model based on the
two layer flow model outlined in section (2). The homogeneous model is based on
the assumption of both hydraulic and thermal equilibrium and the consequences
and aspects of this will be discussed in that context. The assumption of thermal
equilibrium is very useful in the treatment of the governing equations for two-
phase flow. For the case of boiling water and steam we assume that both phases
are at the saturation temperature T s(p) corresponding to the local pressure p.
Based on that assumption it is straightforward to calculate a local equilibrium
quality xe, which is a very useful, but not necessarily a real quantity, compared
to the true flow quality based on the ratio of the gas to total flow rates:

x =
ṁg

ṁg + ṁl

=
ρgugεgA

ρgugεgA+ ρlulεlA
(19)

12



The local equilibrium quality, xe, can be calculated by (20), under the assump-
tion that the saturation enthalpies correspond to the local pressure, hl=hs

l (p)
and hg=hs

g(p):

xe =
h− hs

l

hg − hl
(20)

For a two-layer fluid, the mixture density ρ̄ and the mass flux G are defined
as:

ρ̄ = ρg · εg + ρl · εl (21)

and

G = ρ̄ū

= G(1− ẋ) +Gẋ

= ρlulεl + ρgugεg

(22)

The slip ratio (S =
ug

ul
) between the two phases can be expressed by the

void fractions and thereby lead to the below expression for the void fraction as
function of S:

εg =

[
1 +

ρg
ρf

1− x

x
S

]−1

(23)

In homogeneous two-phase flow, there is no slip between the phases (S = 1),
which leads to:

ρ̄ =

[
x

ρsg
+

1− x

ρsl

]−1

(24)

The interfacial mass transfer model assumes that total mass transfer is par-
titioned along the vapour/liquid interface (i).

2.3.1. Conservation of mass

The mass conservation equation is derived for a pipe element. The mass
conversation equation for the total liquid and gas volume fractions are obtained
by summing (1) and (2):

∂

∂t
(εlρl) +

∂

∂t
(εgρg) +

∂

∂z
(εlρlul) +

∂

∂z
(εgρgug) = 0 (25)

which can be recast as:

∂

∂t
(ρ̄) +

∂

∂z
(G) = 0 (26)

where the mixture density ρ̄=f(p̄, h̄) for a homogeneous fluid.
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2.3.2. Conservation of Momentum

The mixture momentum equation can be obtained by adding (5) and (6).
As expected, all the interfacial force terms cancel out, leaving:

∂

∂t
(G) +

∂

∂z

(
G2

ρ′

)
= −∂p̄

∂z
− Fw − Fs − ρ̄g cos θ (27)

where ρ̄ is given by (21) and p̄ = plεl + pgεg and ρ′ is named the momentum
density and is defined as

ρ′ =
(
(1− ẋ)2

ρlεl
+

ẋ2

ρgεg

)−1

(28)

For a homogeneous flow, one assumes u = ug = ul, which leads to ρ̄ = ρ′. Hence
we have:

∂

∂t
(G) +

∂

∂z

(
G2

ρ̄

)
= −∂p̄

∂z
− Sw

A
τw − Fs − ρ̄gA cos θ (29)

where τw is given by (31) and Fs via τf is a calibration term, due to axial
shear stresses, modelled by for example by the Van Driest mixing length theory,
which here is assumed proportional to a diffusion term, see Kinney et al. [15]
and Gill et all ([16],[17]), where measurements shows that the logarithmic law
for an isotherm two phase flow follows the mixing length theory with a mixing
length scale less than observed for a single phase fluid. Normally a homogeneous
two-phase flow is assumed to be non-Newtonian, which means that the eddy
viscosity is not proportional to the second derivative of the fluid velocity with
respect to space. Nevertheless we introduce this term as a way to avoid heavy
pressure oscillations, initiated by the very high density gradients in the spatial
direction which occurs due to the evaporation of water. This eddy viscosity is
only introduced in the transition area from liquid water to the two phase regime
(x ≈0).

2.3.3. Closure laws

The axial shear stress is modelled by for example the Van Driest mixing
length theory:

τf = − ∂

∂z

(
¯ρu′v′
)

≈ l 2ρ̄
∂u2

∂z2
(30)

where u’ og v’ are the velocity components due to turbulent fluctuation. The
corresponding wall shear stress is given by

τw = fwρ̄
u · |u|
2

= fw
G · |G|
2ρ̄

(31)
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The term fw is a dimensionless coefficient based on the Darcy friction factor. It
can be found from a Moody diagram or more precisely by solving the Colebrook
equation:

fw :

⎧⎪⎪⎨⎪⎪⎩
1√
fw

= −2 log10

(
k

3.7 di
+ 2.51

Re
√
fw

)
for Re > 4000

fw = 64
Re for Re ≤ 2000

(32)

where k is the pipe inner roughness thickness, measured in meter and the
Reynolds number, Re=diui

μi
. In the two-phase region the friction factor is ad-

justed according to a two-phase multiplier formulated by ([18]). In that case
fw is based on fluid properties for saturated liquid. The model that is based on
[18] calculates the two phase multiplier as:

φ2 = 1 +B · x ·
(
ρl
ρf

− 1

)
(33)

Where the coefficient B is:

B = 1.58− 0.47
p

pc
− 0.11 ·

(
p

pc

)2
(34)

Note that the critical pressure (pc) is 221.2 [bar] for water/steam. If x ≥ 0.9 B
is adjusted linearly as B = B− (B−1) · (10 ·x−9) to obtain continuity between
the two-phase fluid and the steam phase.

2.3.4. Conservation of Energy

The mixture energy equation is obtained by adding (11) and (12), where
conservation of energy across the interface means that all the interfacial terms
cancel out, hence

∂

∂t
(εlρlEtl + εgρgEtg) +

∂

∂z
(εlρlEtlul + εgρgEtgug) =

+ aw q̇e +
∂

∂z
(ulεlpl + ugεgpg) + Ed

(35)

The heat flux q̇e is illustrated on figure (7). By using (8) and neglecting the last
term due to potential energy, we have

∂

∂t

(
ρ̄h+

1

2ρ′
G2 − p̄

)
+

∂

∂z

(
Gh̄+

1

2ρ′′2
G3

)
= aw q̇e −Ggcos(θ) + Ed (36)

where ρ̄ = ρlεl+ρgεg, ρ
′ is given by (28). The heat diffusion can be included into

the energy equation and the thermal diffusivity of the fluid can be estimated
by the fluid properties. It is a measure of the diffusion coefficient. The mixture
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pressure is given by p̄ = plεl + pgεg. ρ′′ is named the second order momentum
density and is defined as

ρ′′ =
[
(1− ẋ)3

(ρlεl)2
+

ẋ3

(ρgεg)2

]−1

(37)

Both h and h̄ appear in (36), where h is referring to a frozen flow field picture
and h̄ is the dynamic mixture enthalpy. The former can be developed from the
thermodynamic equilibrium quality as shown by

ρ̄h = ρlhlεl + ρghgεg

mh̄ = mlhl +mghg

h̄ = (1− xe)hl + xehg

(38)

where the thermodynamic equilibrium quality xe is given by (20).
By assuming thermodynamic equilibrium, we have ρ̄ = ρ′′= ρ′ = f(p̄, h),

which leads to

∂

∂t

(
ρ̄h+

1

2ρ̄
G2 − p̄

)
+

∂

∂z

(
Gh̄+

1

2ρ̄2
G3

)
= aw q̇e −Gg cos (θ) + Ed (39)

2.3.5. Homogeneous model setup

The homogeneous model consists of three conservation equations given by
(26), (27) and (36), which can be reformulated in the three independent vari-
ables density, ρ, mass flow, ṁ and internal energy, E. For ṁ = ρ̄uA we find:

Continuity equation:
∂

∂t
(ρ̄A) +

∂

∂z
(ṁ) = 0 (40)

Momentum equation:

1

A

∂

∂t
(ṁ) +

1

A

∂

∂z
(ṁu) = −∂p̄

∂z
− ρ̄g cos (θ)− Fw (41)

where Fw = Sw

A τw and τw is given by (31).

Energy equation:

∂

∂t

(
ρ̄Ah̄+

1

2
ρ̄Au2 − pA

)
+

∂

∂z

(
ṁh̄+ ṁ

1

2
u2

)
= Aaw q̇e − ṁg cos (θ) (42)

where the independent variables are z ∈ [0 ,..., lz] and t ∈ [0 ,..., ∞[.
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Then equation (42) can be reformulated by use of the definition of the total
specific convected energy: Ē = h̄+1/2u2+gz cos (θ) and by using the continuity
equation to eliminate the gravitational terms on the left hand side, we find:

∂

∂t

(
A(ρ̄Ē − p̄)

)
+

∂

∂z

(
ṁĒ
)
= q̇eSw − ṁg cos (θ) (43)

where q̇e represents the heat flux per unit surface area through the inner wall
and Sw = awA is the perimeter of the heated domain and aw has the physical
meaning of the wall area per unit volume. The internal energy e is given as:
e = (ρ̄Ē − p̄) ·A, which is measured in [J/m].

2.4. Pipe Wall Model

The heat transfer processes from a combustion process (radiation and con-
vection) to the water and steam curcit in a power plant, is using the pipe wall
as the transfer medium, to transport the energy from the furnace to the cooling
media, which in this case is water/steam flowing in the panel wall. The solution
of problems involving heat conduction in solids can, in principle, be reduced to
the solution of a single differential equation, the heat conduction equation. The
equation can be derived by formulating an energy balance for a differential vol-
ume element in the solid. A volume element for the case of conduction only in
the z-direction is illustrated in figure (7). The balance equation for the volume
element is:

(rate of accumulation of internal energy) = (rate of heat in)

− (rate of heat out) (44)

+ (net rate of internal

energy generation (=0))

Figure 7: Energy transfer and heat flow terms on a slice of a pipe wall element.
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The generation term appears in the equation because the balance is made on
internal energy, not total energy. For example, internal energy may be generated
within a solid by an electric current or by decay of a radioactive material. The
rate at which heat enters the volume element across the face at z is given by
the product of the heat flux and the uniform cross-sectional area, q̇z|zAc, where
Ac = π(d2o−d2i )/4. Similarly, the rate at which heat leaves the element across the
face at z+Δz is q̇z|z+ΔzAc. For a homogeneous heat source/sink of strength q̇r
per unit area, the net rate of generation is q̇rSΔz, where S is the pipe perimeter
of impact. Finally, the rate of accumulation is given by the time derivative of
the internal energy of the volume element, which is Cpwρw(T − Tref)Ac, where
Tref is an arbitrary reference temperature. Thus, the balance equation becomes:

Δz ρw CpwAc
∂Tw

∂t
= (q̇z|z − q̇z|z+Δz)Ac

+ q̇rSΔz − q̇ediπΔz (45)

where Cpw and ρw are the heat capacity and the density of the pipe wall, given
below by (69). By dividing (45) by Δz and letting Δz → 0, we get a 1. order
PDE describing the energy balance in the pipe element as a function of t and z.

ρw CpwAc
∂Tw

∂t
= −Ac

∂q̇

∂z
+ q̇rS − q̇ediπ (46)

The heat flux q̇ per unit area can be expressed via the Fourier equation: q̇ =
−kw

∂Tw

∂z , where kw is the thermal conductivity measured in [W/m K]. For

isotropic materials, we introduce the thermal diffusivity given by α = kw

ρwCpw

in [m2/s], which in a sense is a measure of thermal inertia and expresses how
fast heat diffuses through a solid. For a typical panel wall, the thermal diffusivity
is approximately 1.98 ·10−6 [m2/s] at 200◦ C, see [19]. Hence the energy balance
for the isotropic pipe wall can be described by:

∂Tw

∂t
= α

∂2Tw

∂z2
+

q̇r
ρw Cpw

S

Ac
− q̇e

ρw Cpw

diπ

Ac
, z ∈ [0, lz] ∧ t ≥ 0 (47)

where q̇r is the radiation from the furnace and q̇e is the convective heat transfer
between the flowing fluid in the pipe and the pipe wall inner surface, q̇e=he(Tw−
Tf ). The convective heat transfer coefficient is named he and the driving tem-
perature difference is given by the temperature difference between the wall mean
(Tw) and the mixture fluid temperature (Tf ). For isotropic materials, we have
expressions of Cpw, kw and ρw as function of temperature in Kelvin from [19]
and [20]:

Cpw = 6.683 + 0.04906 · T + 80.74 · ln (T ) [J/kgK]

kw = 9.705 + 0.00176 · T − 1.60 · 10−6 · T 2 [W/mK] (48)

ρw = 7850 [kg/m3] at 20◦C for 13CrMo44
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A simple, fast and robust model of the heat transfer in film boiling is given
by [21]. The heat transfer coefficient hfb is given as

hfb = cf q̇
0.673 [W/m2K] (49)

where the coefficient cf is given by the below expression, which is a function of
the saturation temperature (Ts), measured in [oC]

cf =
0.06136[

1− ( Ts

378.64

)0.0025]0.73 (50)

The single phase laminar heat transfer coefficient is calculated from

Nus =
hsdi
kf

= 4.36 (51)

and is valid for L/di > 50 and diG
μ < 2000. For turbulent single phase flow and

diG
μ > 10,000 we use

Nus =
hsdi
kf

= 0.023

(
diG

μl

)0.8(
Cpμf

kf

)1/3
(52)

The total heat transfer coefficient is given by (53), and consists of two con-
tributions; one from the convective heat transfer boundary layer associated to
the flowing fluid inside the pipe and one that relates to conduction through the
pipe wall material.

he =
1

1
hc

+ ri
kw

· ln (rw/ri)
(53)

where hc is expressing the heat transfer coefficient due to the thermal boundary
on the inner side of the pipe wall and rw is defined by Tw = T (rw)z. hc is
smoothed in-between hs and hfb depending of the dryness of the fluid.

hc =

⎧⎪⎨⎪⎩
hs for x > 1 ∨ x < 0

hfb for 0 ≥ x ≤ 1

(54)

Since we use the calculated average wall tube temperature as driver in the cal-
culation of the total heat transport to the fluid, we must know rw. Due to the
knowledge of radial conduction in the pipe, we use an analytical wall temper-
ature profile for estimating the inner wall temperature. It is expressed by the
average wall temperature (Tw), based on the heat transfer through the isotropic
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pipe wall to the flowing fluid. Let T (r)z represent the radial temperature dis-
tribution by

T (r)z =
Ti − To

ln
(

ri
ro

) ln( r

ro

)
+ To (55)

= a0 ln(
r

ro
) + To

where r is the pipe radius with suffix (i inner) and (o outer). Hence, for small
values of the thermal diffusivity, the average wall temperature can reasonably
be estimated by:

Tw =
1

Ac

∫ ro

ri

2πr · T (r)dr (56)

=
2π

Ac

[
a0
[
x2 ln (x)/2− x2/4

]ro
ri

− a0 ln (ro)
[
x2/2
]ro
ri

]
+ To ·
[
x2/2
]r1
r0

= a1 · Ti + (1− a1) · To

where a1 is given by

a1 =
r2i

r2i − r2o
− 1

2 ln (ri/ro)
(57)

Hence the entire heat transfer can be estimated for the temperature range be-
tween the wall mean temperature (Tw) and the fluid mixture temperature (Tf ),
which is assumed homogeneous and well mixed with a temperature boundary
layer represented by hc. The one-dimensional pipe wall model only consists of an
axial heat transfer term, and has no spatial resolution in the radial dimension.

The inner wall temperature can be determined by use of the equation for
pure conduction through the pipe:

q̇rS =
2πkw

ln (ro/ri)
(To − Ti) =

2πkw
ln (rw/ri)

(Tw − Ti). (58)

Hence we find Ti by insertion (56) in (58):

Ti = Tw +
q̇rS ln( rori )(1− a1)

2πkw
(59)

and hence rw in (53) can be determined from (56) and (59) and we find

he =
1

1
hc

+ ri(a1−1)
kw

· ln (ri/ro)
(60)

Additionally hc is adjusted on the basis of a smoothing between laminar and tur-
bulent single phase flow as well as for two-phase flow. The simplest way to find
a suitable function is according to [22] to look at the fundamental trigonometric
function. The smoothing function is due to table (1) for n = 2. The associated
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slopes are determined numerically. The heat flux is positive for Ti > Tf . Using
the model parameters from table (2) we find a1=0.423 and the temperature
decrease above the pipe wall is To-Ti=27.9 [oC], which gives a temperature gra-
dient of dT/dr = 3930 [oC/m] for a heat flux of q̇r=100 [kW/m2]. The heat
conduction in the material is a significant barrier for an effective cooling of the
tube wall.

2.5. System of balance laws

Based on the above we can summarize the system of balance laws (SBL) into
a compact vector notation, given by:

∂Φ(z, t)

∂t
+

∂f(Φ(z, t))

∂z
= g(Φ(z, t)) + h

(
∂Φ

∂z
,Φ(z, t)

)
,

Φ ∈ Rm,m = 4, t ≥ 0 ∧ z ∈ Ω (61)

where the dependent variable Φ and the flux vector f are given as

Φ =

⎛⎜⎜⎝
ρ̄A
ṁ
e
Tw

⎞⎟⎟⎠ , f(Φ) =

⎛⎜⎜⎜⎝
ṁ

ṁ2

ρ̄A + pA
(e+pA)ṁ

ρ̄A

0

⎞⎟⎟⎟⎠
and the source and diffusion vector are given as:

g(Φ) =

⎛⎜⎜⎜⎝
0

p∂A
∂z − ρ̄gA cos θ −√ π

Afw
ṁ|ṁ|
ρ̄A

Swqw
′′ − ṁg cos (θ)

q̇r
ρw Cpw

S
Ac

− q̇e
ρw Cpw

diπ
Ac

⎞⎟⎟⎟⎠ and h(Φ) =

⎛⎜⎜⎜⎝
0

l2Sw

ρ̄A3
∂ṁ2

∂z2

0

α∂2Tw

∂z2

⎞⎟⎟⎟⎠
The dependent variables are ρ̄, ṁ, e and Tw meaning the fluid density, mass

flow, total energy of the conserved fluid and wall mean temperature, respectively.
The pressure can be determined iteratively by water steam tables: p = p(e, ρ).
The source term g consists of both source/sink terms and the diffusion term
h include contributions from the mixing length eddy viscosity, working as a
damping term in the vicinity of x = 0, and the thermal diffusion in the pipe
wall, as well.

2.6. Smoothing functions

Smoothing is a core concept in mathematical modelling and is well described
by [22]. It is in particular used in the dynamic modelling of physical problems
where, for example, material constants and material data are defined in a static
and idealized world. Smoothing is used both in start-up of dynamic models,
in order to avoid undesirable transient phenomena, but is also used to ensure
a natural continuous transition between different constitutive relations (jump
from laminar to turbulent flow for friction or heat transfer), so that discontinu-
ities are replaced and a stable solution can be found. Even in the water steam
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table, we smooth the density in the vicinity of the saturation line(s) to avoid
discontinuities. These smoothing functions T(x), can be used in the following
way to switch between the two functions g0(x) and g1(x), wherein T(x) is a
normalized function and is provided with boundary conditions at x = x0 and
x = x1, corresponding to the slope at each end of the range of the definition.

G(x) = g0(x) · T(x) + g1(x) · (1− T(x)), x ∈ � (62)

where

T(x) ≡

⎧⎪⎨⎪⎩
1 for x < x0,

t(x) for x0 ≤ x ≤ x1,

0 for x > x1.

(63)

In order to ensure that T(x) is smooth, the following restrictions apply for t(x)

dt(x)

dx
|x=x0 = 0 and

dt(x)

dx
|x=x1 = 0 (64)

According to [22] a natural choice is the following trigonometric function

t(ϕ) = a

(
cosn−1 (ϕ) sin (ϕ)

n
+

n− 1

n

∫
cosn−2 (ϕ)dϕ

)
+ b (65)

where ϕ is the phase defined by

ϕ =

(
x− x0

Δx
− 1/2

)
π, where Δx = x1 − x0 (66)

and n is a positive integer yielding the following function for t(ϕ). The two
parameters a and b can be computed from equation (64). The resulting func-
tion t(ϕ) is continuous of order n − 1. Table (1) shows the functions t(ϕ), its
derivatives and values of a and b for n = 1, 2, 3, 4.

Table 1: Function t(ϕ) used in smooth functions T(x) for n=(1,2,3,4).

n t(ϕ)) dt(ϕ))
dϕ a b

1 a sin (ϕ) + b a cos (ϕ) -1/2 1/2

2 a
2 (cos (ϕ) sin (ϕ) + ϕ) + b a

(
1− sin2 (ϕ)

)
-2/π 1/2

3 a
3

(
cos2 (ϕ) sin (ϕ) + 2 sin (ϕ)

)
+ b a

3

(
cos2 (ϕ)(2− cos2 (ϕ)) + 2 cos (ϕ)

)
-3/4 1/2

4 a
8

(
2 cos3 (ϕ) sin (ϕ) + 3 cos (ϕ) sin (ϕ) + 3ϕ

)
+ b a

8

(
2 cos2 (ϕ)(4 cos2 (ϕ)− 3) + 3(2 cos2 (ϕ)− 1) + 3

)
-8/3π 1/2

2.7. Auxiliary relations

The Water / Steam library IAPWS 97 by [23] is used as a general equation
of state, to derive the speed of sound and the thermodynamic properties of
water and steam. In some relations we need a relationship for pressure as
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function of density and enthalpy: p = p(ρ, h̄). This can be done by a simple
Newton Raphson solver, where we iterate on p by given h and ρ. To improve
the computational speed it is recommended to use a bilinear interpolation, see
[8]. We create a look up table covering approximately 160000 nodes, which
ensure an accuracy below 0.3% as an absolute maximum, because we smooth
the density in the vicinity of the saturation line of water, where we experience
the highest significant error, due to [8].

2.8. Boundary conditions

With the aim to analyse the dynamic stability of vertical evaporators, we
have chosen to apply a fixed downstream pressure boundary condition, so that
pressure oscillations can be reflected downstream. This will represent an ab-
solute worst-case situation, but for the situation of an intense warm-up in the
bottom of a vertical evaporator and the overlying heavy water mass compressing
the compressible fluid around the evaporation zone in the evaporator. This will
result in pressure oscillations in the evaporator, initiated where the fluid has the
largest gradient in density. Upstream, we will apply a fluid velocity and an inlet
enthalpy boundary condition. The evaporator is influenced by a uniform heat
flux as well as a constant gravitational force. Therefore, the following properties
are used as boundary conditions; velocity (u), pressure (p) and enthalpy (h).
This allows us to rewrite the boundary conditions to those properties, which are
described by Φ, see (61). The Dirichlet boundary conditions are given by (67)
and the corresponding Neumann boundary conditions are obtained by applying
the chain rule for differentiation of complex functions as given by (68).

Dirichlet BC :

⎧⎪⎨⎪⎩
ρA

ρAu

ρA(h+ u2

2 + gz cos (θ))− pA

(67)

where θ is the angle of the pipe inclination with respect to the horizontal.

Neumann BC :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A∂ρ

∂z + ρ∂A
∂z

uA∂ρ
∂z + ρu∂A

∂z + ρA∂u
∂z

∂(ρA)
∂z

[
h+ u2

2 + gz cos (θ)
]
+ ρA
[
∂h
∂z + u∂u

∂z + g cos (θ)
]

−A∂p
∂z − p∂A

∂z

(68)

2.9. Numerical Solution of Hyperbolic Transport Equation

The developed model is solved by a fifth order Central WENO scheme for
particularly developed with focus on solving hyperbolic balance laws. The
scheme is tested for consistency and stability with respect to both a scalar and
vector based system of hyperbolic equations and is compared to analytical re-
sults from the literature as well as other published results. This work is outlined
in [8]. The semi-discrete ODE system is based on a semi-discrete central-upwind
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scheme presented in [24] and uses a five point stencil. The system is a time de-
pendent, which can be solved by any stable ODE solver, which retain the spatial
accuracy of the scheme. Here we usea third order TVD Runge-Kutta method
presented by [25].

2.10. Model setup

Three boundary conditions are applied for the hydraulic case and two Dirich-
let boundaries are applied for the pipe wall model, with zero gradients at each
pipe end, i.e., we assume no heat loss by conduction outside the pipe. The
computational results are stored as line series for an equidistant time step and
time series at two positions located at zA=

lz
8 and zB=

7lz
8 , named station A and

B respectively.

2.11. Simulation

Figure 8: Soft start response of SKV3 evaporator model @ station A.

The model is soft-started in two steps; At t = 0 the hydraulic part of the
model is soft-started from rest during 4 seconds, without heat flux. After 10
seconds the heat flux is build-up during 4 seconds to 100 [kW/m2]. This is
done to avoid heavy shock phenomena and gives a smotth and robust startup
of the simulation as illustrated in figure (8 and 9). The figure illustrates the
development of pressure, enthalpy, density, fluid velocity and wall- and fluid
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Figure 9: Soft start response of SKV3 evaporator model @ station B.

temperature. I general is the curves for wall- and fluid temperature reffering to
the same scale, meaning the red wall temperature scale.

If the soft-start period is reduced to only 1 second heavy pressure oscillations
occur, which will be damped during 15 seconds of simulation, see figure (10).
The soft start model is based on the theory outlined in section (2.6), which
gives a C2 continuous sequence, with zero gradients in the first derivative at
both ends of the soft start period.

3. Results

In this section we solve the homogeneous evaporator pipe model for Ω ∈
[0, lz], defined by the system of balance laws given by equation (61) combined
with the pipe wall model given by equation (47). The model is compared to
measurements performed by a full-scale evaporator at Skærbækværket Unit 3,
see [26] (SKV3) in Fredericia, Denmark. Secondly, a scenario is performed,
where a high pressure preheater is closed during 4 seconds.

The model data are listed below in table (2). The dynamic start-up process
is shown in figure (11), where the density is given in [kg/m3], pressure in [bar],
Temperature in [oC], enthalpy in [kJ/kg] and mixture velocity in [m/s]. Note
that the acceleration of gravity, is ajusted according to the pipe inclination of
12 degree (1.9399 [m2/s])

25



Figure 10: Time series for short dynamic soft start start-up process @ station A.

3.1. Evaporator Startup

Figure (11) illustrates the output results for each 25 seconds of the simula-
tion, referring to the solution of both the homogeneous flow equations as well
as the wall tube model. The spiral wounded furnace have tubes that are wound
at an angle of 12o around the furnace perimeter from the lower furnace inlet
headers to above the burner zone, see [26]. This arrangement means that each
tube in the furnace passes through the various heat zones so that the heat ab-
sorption for adjacent tubes is reasonably uniform. By wrapping each furnace
enclosure tube through each of the four furnace enclosure walls, each tube goes
through approximately the same variation in heat absorption, both axially and
radially. A high mass flux is required to maintain effective heat transfer across
the boiler load range as well as to avoid stratification of the two phases of water
and steam at minimum load. The potential of stratification or inadequate heat
transfer at low loads limits the minimum once-trough load (Benson load) of spi-
ral furnaces. Also the high mass flux causes a high pressure drop in the tubes,
which means feed water pump power is correspondingly high, which leads to
a high dynamic friction loss compared to the static pressure loss (hydrostatic
loss). Additionally the spiral wound furnace have a negative flow response char-
acteristic for a high mass flux system. The water flow must decrease with higher
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Table 2: Geometrical and numerical specifications.
Parameter Value Unit Parameter Value Unit

Gravity (g) 1.9399 [m/s2] Spatial start position 0.000 [m]

Spatial end position (L) 193.499 [m] Inner diameter of pipe (di) 23.8 [mm]

Outer diameter of pipe (do) 38.0 [mm] Heat conductivity in wall (kw) 10.139 [w/mK]

Wall density (ρw) 7850.0 [kg/m3] Specific heat capacity of pipe wall (Cpw) 527.21 [J/kg/K]

Heat flux (q̇e) 100.000 [W/m2] Wall roughness (λ) 10−6 [m]

Initial Enthalpy - left side 1187.6988 [kJ/kg] Initial Enthalpy - right side 1187.6988 [kJ/kg]

Initial Pressure - left side 92.3762 [Bar] Initial Pressure - right side 92.3762 [Bar]

Initial Velocity - left side 0.0 [m/s] Initial Velocity - right side 0.0 [m/s]

Pressure BC (Dirichlet - right side) 92.3762 [Bar] Enthalpy BC (Dirichlet - left side) 1187.6988 [kJ/kg]

Velocity BC (Dirichlet - left side) 1.1711 [m/s] Simulation time 1000.0 [s]

Output frequency 0.1 [s] CFL number 0.80 [-]

Number of computational grids (Np) 400 [-] Slip Correction Factor 1.0 [-]

heat input to maintain system pressure loss, which illustrate that the furnace
wall tube metal temperature are adversely affected as tube flow is reduced when
there is an above-averaged heat supply. The response time of a spiral wound
furnaces is restricted by the way the furnace is supported. Because spiral wound
tubes can not support their own weight, vertical support straps are required on
the outside of the furnace, which leads to thermal stresses between the tubes
and the support straps during dynamic load conditions, which limit the start
up speed of the boiler as strap temperature lags behind the tube temperature.
Departure from nucleate boiling (DNB) occurs when a heat flux is applied to a
boiler tube and steam film forms between the water and the tube. The result
is increased tube metal temperature due to lower steam conductivity and much
reduced furnace tube life. Under certain simplified conditions under which we
look at a long evaporator tube, feeded by subcooled water and deliver super-
heated steam at a fixed pressure to the turbine system, gives a steady state
solution, obtained after approximately 500 seconds, and is depicted in figure
(12). The model consists of 400 differential elements, thus ensuring a smooth
continuous solution. By reducing the number of computational cells to only 50
elements, one would observe a more intensive standing wave at the entrance
of two-phase region, which is due to intensive heating of the differential cell in
the vicinity of the boiling zone, where we have an intensive negative slope in
the density as function of the enthalpy, hence the density change becomes so
dramatic that a pressure wave is established to ensure momentum balance. A
steady state of general sense is not existing here, because the model successively
experiences pressure oscillations created from the transition zone between sub-
cooled and two-phase fluid, where the very large density gradients occurs. The
results show how the outlet state of the fluid gradually moves from the inlet
condition, in the form of subcooled water, to two-phase conditions, in which
the boiling is starting, and finally reaches the superheated state, where the dry
steam is at about 385 oC. The pressure is fixed downstream in the form of
a Dirichlet boundary condition, corresponding to the measured pressure levels
from (SKV3). This pressure boundary condition has an aggravating circum-
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Figure 11: Initial conditions and the solution of SKV3 evaporator model after 50, 75 and 100
sec.

stance, but needed to provoke instabilitets phenomena in the evaporator. The
pressure distribution along the evaporator reflects the pressure gradient of single
and two-phase regions, respectively. The two-phase region is modeled by the
two phase multiplier outlined in (33), which scales the pressure gradient up to
16 times relative to the pressure gradient for saturated water. The inlet velocity
is specified as an upstream Dirichlet boundary condition, and is soft started by
use of the before mentioned smoothing function, having a soft start period of 4
seconds. This ensures a smooth hydraulic flow condition of the cold evapora-
tor. Next the heating is built up smoothly, by the same smoothing technique,
so that undesirable thermal shock phenomena are avoided. The superheated
steam leaves the downstream boundary at steady state flow conditions with a
speed of 24 m/s. Pressure-drop oscillations could occur, if larger upstream com-
pressibility existed in the flow boiling system, see ([27], [28]). These oscillations
in, e.g., pressure can be generated in the form of a standing wave in the front
of the boiling zone of the fluid. This phenomenon is also present in horizontal
evaporators. The dryness line in figure (11) expresses the mass based percent-
age of the steam flowing in the evaporator tube, not surprisingly, this process
corresponds linearly to a constant heat flux along the tube.
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Figure 12: Solutions of SKV3 evaporator model after 210 [s] and 400 [s].

Figure 13: Preheater failure after 400 [s]. Left and right figures represents time series at
station A and B respectively.

3.2. Preheater failure

A high pressure preheater improves the electrical efficiency of a power plant,
by recuperating heat from a fraction of the steam from the steam turbine. Thus,
the feed water temperature is raised before entering the economizer and subse-
quently the evaporator. With a preheater failure, the plant experiences an rapid
decrease in feedwater temperature to the evaporator. By smoothly changing the
feed water temperature on the SKV3 model on the upstream Dirichlet boundary
from 1187 [kJ/kg] to 750 [kJ/kg] during 4 [s], the outlet temperature changes
from 270.7 [oC] to 220 [oC]. The model responds promptly and by observing
time series located up- and downstream the evaporator (station A and B), we
can see a response as a function of time. Not surprisingly, we see a response
in the upstream station, which is very similar to the boundary condition, while
in the downstream station B, we experience a peak in the steam temperature,
despite the fact, that we are feeding the system with less energy. This is due to
the compressibility in the evaporator, so that the fluid now takes up less space
in the upstream section and the residence time of down stream fluid becomes
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greater, for a short while, so as to achieve a higher super heating of the super-
heated fluid. After a certain period, this superheated fluid is advected out of
the down stream boundary and we will see a reduced superheating.

4. Discussion

The Central WENO schemes are designed for problems with piecewise smooth
solutions containing discontinuities. The Central WENO scheme has been quite
successful in the above applications, especially for solving the pressure distri-
bution downstream of an evaporator. The inlet conditions is subcooled water
and the outflow is superheated steam. Minor pressure waves are initiated in the
transition zones to the two phase region (x = 0), which creates pressure waves
marching downstream the pipe reaching the downstream pressure boundary
condition. Normally dynamic models using traditional numerical schemes will
have problems, and create instabilities in the transition zone between subcooled-
and two-phase fluid, but the higher order WENO schemes are perfect for han-
dling oscillations and steep gradients without introducing over-under shooting
or numerical diffusion, although numerical diffusion will be a calming measures
here.

A very interesting phenomenon that we can see in figure (13), is the appear-
ance of flashing (temperature oscillations) induced by pressure and enthalpy
oscillations. During periods the fluid temperature assumes a temperature cor-
responding to the local saturation temperature, and at other times the pressure
increases (and enthalpy), so that the fluid is being superheated. This results in
a short-term temperature rise, which takes a size of typically 10 [oC]. This will
affect the small metal structures on the inner side of the tube and can eventually
result in microscopic cracks.

The operational staff on SKV3 has by their own vision experienced dramatic
dynamic stresses on the boiler, particularly at cold start can be observed dra-
matic dynamic stresses, which are able to move the boiler outlet pipes up to half
a meter out of their natural position. Fortunately, these tubes are mounted in
the straps, attached to the top of the boiler construction, so that they have the
necessary flexibility. But in the long run, there is violent impacts that should
be analyzed in order to fatigue of boiler tubes.

We find that the WENO solver is able to solve such an strong, nonlinear,
physically complex system of PDE in a mixture of hyperbolic fluid equations
and a parabolic model of the wall with respect to the transformed independent
solution parameters. The model is very time consuming in solving the system,
because the total energy is determined iteratively as well as the density is a
function of pressure and enthalpy. The solution time is up to a couple of hours,
runnung on a portable PC (Lenovo T520 i5-2520M CPU @2.5GHz with 8GB
memory). The iteration accuracy for calculating the pressure is set to 10−13,
which is very low and is an obvious target for optimization. The model is stable
as long as the CFL number is less than one and the speed of sound is below
the highest calculated speed of sound along the entire spatial solution area of
the fluid, which is determined at each time step. The observed oscillations are
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caused by the compressibility of the fluid and are initiated in the transition zone
between the subcooled- and the two-phase boiling zone. This is thus due to the
physical properties of the evaporator and is not caused by numerical instabilities,
as shown in by investigations and test cases performed in [29]. If we reduce
the degree of subcooling to a minimum, we will see a much smoother solution
that will achieve a steady state solution much faster. We can conclude that the
solution procedure is non-oscillatory in the sense of satisfying the total-variation
diminishing property in the one-dimensional space. No numerical wiggles are
observed in the hyperbolic models and smooth solutions are observed in the
continuous zones of the flow regimes.

5. Conclusion

I this article is developed a numerical model of a complete evaporator, which
can handle a fluid in different thermodynamic conditions, as subcooled liquid,
saturated liquid, two-phase fluid, saturated gas and as a superheated gas. The
model is developed on the basis of a two-layer model, which is a good approach
to the understanding of the thermal hydraulic conditions in an evaporator. This
model is solved numerically by means of a fifth-order WENO scheme that uses
a five point stencil in the semi-explicit solution method. It is the same scheme
used in all the thermodynamic conditions. Time integration is handled by a
third-order TVD time integrator. Model simulations show that it is possible
to demonstrate the very dynamic and oscillatory conditions, which occur in a
vertical evaporator with a fixed back pressure. The model also respond ade-
quately to dynamic changes in the upstream boundary. In connection with the
analysis of the consequences of a preheater failure, we see that the fluid with
a momentary change of inlet temperature, get changed the specific volume, so
that the residence time of the fluid in the downstream part of the evaporator
increases, with a short-term increase in superheat to follow. We can conclude
that the WENO scheme is robust and suitable for further studies in two-phase
flows.
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Abstract
In this article a numerical model for solving a transient one dimensional compressible homogeneous two phase model

is developed. It is based on a homogeneous model for predominantly one-dimensional flows in a vertical pipe element

with internal rifles. The homogeneous model is based on the assumption of both hydraulic- and thermal equilibrium.

The consequences and aspects will briefly be discussed in that context. The homogeneous flow model consists of three

hyperbolic fluid conservation equations; continuity, momentum and energy and the pipe wall is modelled as a one

dimensional heat balance equation. The models can be reformulated in the four in-dependant parameters p(pressure),

h(enthalpy) u(velocity) and Tw(wall temperature). Constitutive relations for the thermodynamic properties are limited to

water/steam and is given by the IAPWS 97 standard. Wall friction and heat transfer coefficients are based on the Blasius

friction model for rifled boiler tubes and the correlation by Jirous respectively. The numerical method for solving the

homogeneous fluid equations is presented and the method is based on a fifth order Central WENO scheme, with sim-

plified weight functions. Good convergence rate is established and the model is able to describe the entire evaporation

process from sub-cooled water to super-heated steam at the outlet.

1. Introduction/motivation

Along with the liberalization of electricity markets in Northern Europe and Denmark, there is an increasing need

to quickly regulate the large central power plants to cover the current supply of electricity and district heating. Much

focus has been put in optimizing the individual power plants, so they can meet the requirements to stabilize the power

supply and district heat production, caused by the stochastic nature of wind farms. Electricity generation based on wind

has primacy in terms of production and the central power plants have to fill the gap between producing and consuming

power. In periods of very high wind generation, the central power plants are thus forced to run down into low load

and maintain a contingency in case the wind unexpectedly fails to come. In these situations, there may still be a need

for district heating production, why we might consider turbine bypass in the steam power plants and directly produce

district heating from the boiler at moderate pressure.

c© 2012 Published by Elsevier Ltd.
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Operating flexibility is therefore of great importance for the business economics of the plants and also a

prerequisite for a stable electrical system. No matter how strong focus is put on this operational flexibility,

power plants, however, will always be subject to technical limitations - e.g. boiler dynamics, coal mill dy-

namics, flame stability and material constraints. The power plants’ ability to stabilize the electrical system

can be increased substantially if we get a better understanding of the thermodynamic and flow changes,

which occur in the evaporation process. Siemens has spent years developing a new evaporator concept, in

brief; it has developed an evaporator with vertical boiler tubes lined with internal rifles. The system is called

the SLMF principle (Siemens Low Mass Flux), see [1], which can be used for very specific evaporator sys-

tems. One of the advantages of using SLMF is that the boiler’s primary operating area (Benson minimum)

can be moved from the traditional 35-40% load. In new constructions this transition point is to around 20%

load. In this way we avoid the very expensive and time consuming Benson transition, when an installation

must adapt to the free electricity market and drive down the load. There is very little literature on the subject

and there is a modest material relating to the mathematical description of heat transfer and pressure drop

in rifled boiler tubes. Back in 1985 Harald Griem, [1] wrote on the subject, and both KEMA and Siemens

have performed considerable experimental work that is considered company secrets. Other authors who

have dealt with the topic experimentally are [2], [3], [4] and [5]. They have developed consistent algebraic

expressions for frictional pressure drop and heat transfer in internally rifled boiler tubes. A Weighted Es-

sentially non-oscillatory (WENO) solver code is implemented in c++ under MicroSoft Visual Studio 2008,

and the solver is validated in [6]. The water/steam table is based on a fast bi-linear interpolation scheme,

where the lookup table are based on the IAPWS97 standard, which is implemented in FORTRAN 90. The

lookup table is described in [7].

2. Evaporation in steam power boilers

A power plant boiler works as a heat exchanger. On one side the fuel is burned and the product of

combustion is a hot gas exchanging radiant heat to the water on the other side of the heat exchanger. The

boiler is traditionally built as a tower, inside the hot gas is produced and the walls of the boiler are made of

pipes welded together, in these pipes the water flows.

The heat flux is approximately 200-400 kW/m2 in the lower sections of the boiler and is represented as

radiation. At the upper part of the tower, the radiation is still dominating, but it is also necessary to take

convective heat transfer into account. At the bottom section, where the radiation from gas to the pipe wall

is dominating, the heat transfer on the outside is so massive that it is no longer setting the restriction for the

optimal heat transfer. Instead, the limit is set by the heat transfer rate from the pipe-wall to the water inside

the pipe.

Fig. 1. Center cutting of an internal rifled boiler tube

One parameter that determines the heat transfer rate on the inside of the pipe is the fluid velocity near

the inner pipe wall. If the velocity can be increased without increasing the net mass flux through the boiler,

the heat transfer rate can be increased. With that assumption it is possible to build a more compact boiler,
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by taking into account the specific type of combustion processes (Coal, Gas Wood pellets ect.). Internally

rifled boiler tubes (IRBT) are an attempt to speed up the velocity at the wall and keep the vertical tube of

a boiler construction. The mass flux through the IRBT are usually in the range of 1000 kg/m2s and is less

than the half as is seen in traditional Benson boiler panel walls, with a moderate pipe inclination.

In addition to the increase in heat transfer, the IRBTs are characterised by an excellent performance

concerning two phase flow. The swirl is very good for separation of liquid from gas. The centrifugal force

will increase the rate of light fluid to the centre of the pipe and force the heavy fluid components to near the

wall, which will improve the cooling of the pipe and thereby increase the heat transfer and decrease the wall

temperature of the pipe. Additionally the IRBT have the following advantages: The rifles will enlarge the

surface of convective heat transfer, increasing the turbulent intensity in the boundary layer and increase the

relative velocity between the wall and core fluid by rotational flow.

The advantages of the IRBT have a price. The pressure loss is higher than in the traditional boiler tubes,

but it can be used in a constructive way. When super critical boilers operate at part load, stability problems

can occur. The problem is usually solved by building individual pressure loss at each pipe inlet section.

Thus the increased pressure loss in the IRBT can be utilized to replace the traditional built in pressure loss

and thereby not increase the pumping power
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3. Methods

Although the assumptions of thermodynamic equilibrium are often made in two-phase flow models,

the phases rarely find themselves at thermal equilibrium. Some degree of thermal non-equilibrium arises

in practically all situations and specially in dynamic situations, thermal non equilibrium must always be

present so that heat and mass transfer can take place. Thermodynamic equilibrium does exist between a

liquid and its vapour separated by a flat interface e.g., water and steam in a closed vessel. In the classical

case of stationary vapour / bubble in large amount of liquid, the vapour and liquid temperatures are equal.

However, due to the effect of surface tension, even in this equilibrium situation, the system temperature

must be slightly above the saturation temperature corresponding to the pressure of the liquid. It is only in

the case of the flat interface, that both phases can be exactly at saturation. Thus, the absence of hydraulic

and thermal equilibrium is the rule rather than the exception in multi phase flows. In this chapter we outline

a homogeneous dynamic flow model, based on the two layer flow model outlined in [8].

3.1. Thermo-Hydraulic model

The homogeneous model is based on the assumption of both hydraulic and thermal equilibrium and

consists of three conservation equations, which can be reformulated in the three in-dependant variables

ρ(density), ṁ(mass flow) and E(internal energy), where the dependant variables z (axial position in the pipe)

∈ [0 ,..., lz] and t(time) ∈ [0 ,...,∞[. The pipe length is lz. For the massflow given by: ṁ = ρ̄uA we find:

Continuity equation:
∂

∂t
(ρ̄A) +

∂

∂z
(ṁ) = 0 (1)

where A=πr2
i is the cross section area of the pipe and ri is the inner radius of the pipe. The mixture density

is given by ρ̄.

Momentum equation:

1

A
∂

∂t
(ṁ) +

1

A
∂

∂z
(ṁu) = −∂p̄

∂z
− ρ̄g cos (θ) − Fw − Fs (2)

where the mixture fluid velocity is given by u, g is the gravity and θ is the angle of pipe inclination measured

from the vertical direction. The mixture pressure is given as p̄ and the shear forces due to wall friction is

given by: Fw=
S w
A τw and τw is given by (6) and S w is the perimeter. The turbulent Reynolds stresses in the

mixing fluid is given by Fs =
S w
A τs.

Energy equation:

∂

∂t

(
ρ̄Ah̄ +

1

2
ρ̄Au2 − pA

)
+
∂

∂z

(
ṁh̄ + ṁ

1

2
u2

)
= S wq

′′
e − ṁg cos (θ) (3)

Here the mixture enthalpy is given as h̄. Equation (3) can be reformulated by use of the definition of the

total specific convected energy: ē = h̄ + 1/2u2 + gz cos (θ) and by using the continuity equation to eliminate

the gravitational terms on the left side, we find:

∂

∂t
(A(ρ̄ē − p̄)) +

∂

∂z
(ṁē) = q

′′
e S w − ṁg cos (θ) (4)

where q
′′
e represents the heat flux per unit surface area through the inner wall and S w is the perimeter of the

heated domain. The internal energy E is given as: E=(ρ̄ē − p̄) · A, which is measured in [J/m].
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3.2. Hydraulic closure laws
Closure laws in relation to the momentum equation is presented here. The axial shear stress is modelled

by for example the Van Driest mixing length theory, see [9]:

τs = − ∂
∂z

(
¯ρu′v′

)

≈ l 2ρ̄
∂u2

∂z2
(5)

and is used as an damping in the solution domain where we experienced transients initiated by large gradients

in the density (compressibility). This is only applied for a restricted domain where the steam quality x ∈
[-0.02,0.02]. The corresponding wall shear stress is given by

τw = fwρ̄
u · |u|

2

= fw
G · |G|

2ρ̄
(6)

The term fw is the dimensionless friction coefficient based on the single phase frictional coefficient in heated

rifled tubes: fw= a
Reb+c. In table (1) we propose coefficients given by [1], for different rifled profiles. In [3]

the same formulation of fw is used and the author has for specific rifled pipes reported an absolute relative

error less than 6.3 %.

Table 1. Algebraic relations of fw for different profiles. [1]

type RR6 RR5 RR4 RR2

a 1702 0.56 16.26 1.65

b 1.18 0.32 0.71 0.44

c 0.032 0.01309 0.01509 0.02344

In the two-phase region the friction factor is adjusted according to a two-phase multiplier, formulated

by [10]. In that case fw is based on fluid properties for saturated liquid. The model that is based on [10]

calculates the two phase multiplier as:

φ2 = 1 + B · x ·
(
ρl

ρ f
− 1

)
(7)

Where the coefficient B is:

B = 1.58 − 0.47
p
pc
− 0.11 ·

(
p
pc

)2

(8)

Note that the critical pressure (pc) is 221.2 [bar] for water/steam. B is adjustment as: B = B - (B - 1)·(10· x
- 9). The correlation of (7) is compared to the well known and more computation intensive model of Friedel

and is illustrated in figure (2).

3.3. Pipe Wall Model
The heat transfer processes from a combustion process (radiation and convection) to the water and steam

circuit in a power plant, is using the pipe wall as the transfer median, to transport the energy from the furnace

to the cooling media, in this case water / steam flowing in the panel wall. The solution of problems involving

heat conduction in solids can, in principle, be reduced to the solution of a single differential equation, by

Fourier’s law. The equation can be derived by making a thermal energy balance on a differential volume

element in the solid. A volume element for the case of conduction only in the z-direction is illustrated in

figure (3).
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Fig. 2. Comparison of two-phase-multipliers of Jirous and Friedel.

Fig. 3. Energy transfer and heat flow terms on a slice of a pipe wall element.

The balance equation becomes:

∂Tw

∂t
= α
∂2Tw

∂z2
+

q̇r

ρw Cpw

S
Ac
− q̇e

ρw Cpw

diπ

Ac
, z ∈ [0, lz] ∧ t ≥ 0 (9)

where Cpw and ρw are the heat capacity and the density of the pipe wall and Ac = π(r2
o − r2

i ) is the cross

section area of the pipe wall. Tw is the mean wall temperature forced by the heat fluxes q̇r and q̇e expressing

the heat flux from the furnace and the heat flux to the cooling fluid respectively.

Hence we can summarize the system of balance laws (SBL), given by (1), (2), (4) and (9), into a compact

vector notation, given by:

∂Φ(z, t)
∂t

+
∂ f (Φ(z, t))
∂z

= g(Φ(z, t)) + h(
∂Φ

∂z
,Φ(z, t)), Φ ∈ Rm,m = 4, t ≥ 0 ∧ z ∈ Ω (10)



Axel Ohrt Johansen / SIMS 00 (2012) 1–21 7

where the dependent variable Φ and the flux vector f are given as

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρ̄A
ṁ
E
Tw

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , f (Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṁ
ṁ2

ρ̄A + pA
(E+pA)ṁ
ρ̄A
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the source and diffusion vectors are given as:

g(Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p ∂A
∂z − ρ̄gA cos θ − √

π
A fw

ṁ|ṁ|
ρ̄A

S wq
′′
w − ṁg cos (θ)

α∂
2Tw
∂z2 +

q̇r
ρw Cpw

S
Ac
− q̇e
ρw Cpw

diπ
Ac

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and h(Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
l2S w
ρ̄A3

∂ṁ2

∂z2

0

α∂
2Tw
∂z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here the dependent variables are ρ̄, ṁ, E and Tw meaning the fluid density, mass flow, total energy of

the conserved fluid and wall mean temperature respectively. The pressure can be determined iteratively by

water steam tables: p=p(E, ρ). The source term g consists of both source/sink terms and the diffusion term h
includes contributions from the mixing length eddy viscosity (5), working as a damping term in the vicinity

of x=0, and the thermal diffusion in the pipe wall as well.

3.4. Constitutive relations for the heat pipe model
For isotropic materials, we introduce the thermal diffusivity given by: α = kw

ρwCpw
given in [m2/s], which

in a sense is a measure of thermal inertia and expresses how fast heat diffuses through a piece of solid. For

a typical panel wall, the thermal diffusivity is approximately 1.98 · 10−6 [m2/s] at 200◦C, see [11]. The

radiation from the furnace to the pipe surface is given by the heat flux q̇r. The heat flux q̇e represents the

convective heat transfer between the pipe wall inner surface and the flowing fluid in the pipe, and is given

as: q̇e=ht(Tw−T f ), where ht is the convective heat transfer coefficient and Tw−T f is the driving temperature

difference, which is positive for boiling. For isotropic materials (pipe wall), we have expressions for specific

heat capacity Cpw, heat conductivity kw and density ρw as function of temperature in Kelvin from [11] and

[12].

A simple, fast and robust model of the heat transfer in film boiling, is given by [13]. The heat transfer

coefficient h f b is given as

h f b = c f q̇r
0.673 [W/m2K] (11)

where the coefficient c f is given by the below expression, which is a function of the saturation temperature

(Ts), measured in [oC]

c f =
0.06136[

1 − ( Ts
378.64

)0.0025
]0.73

(12)

The single phase laminar heat transfer coefficient (hs) is calculated from

Nus =
hsdi

k f

= 4.36 (13)

and is valid for L/di > 50 and diG
μ
< 2000. For turbulent single phase flow and diG

μ
> 10,000 we use

Nus =
hsdi

k f

= 0.023

(
diG
μl

)0.8 (
cpμ f

k f

)1/3

(14)
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The total heat transfer coefficient is given by (15), and consists of two contributions; one from the

convective heat transfer boundary layer associated to the flowing fluid inside the heat pipe and one that

relates to conduction through the pipe wall material.

h =
1

1
hc
+ ri

kw
· ln (rw/ri)

(15)

where hc is expressing the heat transfer coefficient due to the thermal boundary on the inner side of the pipe

wall and rw is defined by Tw = Tr(rw). Since we use the calculated average wall tube temperature as driver

in the calculation of the total heat transport to the fluid, we must know rw.

Due to the knowledge of radial conduction in the pipe, we use a simple analytical wall temperature

profile, for estimating the inner wall temperature, expressed by the averaged wall temperature (Tw), based

on the heat transfer through the isotropic pipe wall to the flowing fluid. Let Tr(r) represent the radial

temperature distribution by

Tr(r) =
Ti − To

ln( ri
ro

)
ln(

r
ro

) + To (16)

= a0 ln(
r
ro

) + To

where r is the pipe radius with suffix (i=inner) and (o=outer). This temperature profile for radial isotropic

pipes, is the steady state solution to the 1D Fourier’s law of heat transfer. Hence, for small values of the

thermal diffusivity, the averaged wall temperature can reasonable be estimated by:

Tw =
1

Ac

∫ ro

ri

2πr · Tr(r)dr (17)

=
2π

Ac

[
a0

[
x2 ln (x)/2 − x2/4

]ro

ri
− a0 ln (ro)

[
x2/2

]ro

ri

]
+ To ·

[
x2/2

]r1

r0

= a1 · Ti + (1 − a1) · To

where a1 is given by

a1 =
r2

i

r2
i − r2

o
− 1

2ln(ri/ro)
(18)

Hence the entire heat transfer can be estimated for the temperature range in between the wall mean

temperature (Tw) and the fluid mixture temperature (T f ), which is assumed homogeneous and well mixed

with a temperature boundary layer represented by hc. The one dimensional pipe wall model does only

consists of axial heat transfer term, and have no spatial resolution in the radial dimension.

The inner wall temperature can be determined by use of the equation for pure conduction through the pipe:

q̇rS =
2πkw

ln (ro/ri)
(To − Ti) =

2πkw

ln (rw/ri)
(Tw − Ti). (19)

Hence we find Ti by insertion (17) in (19):

Ti = Tw +
qrS ln( ro

ri
)(1 − a1)

2πkw
(20)

and hence rw in (15) can be determined from (17) and (20) and we find

h =
1

1
hc
+

ri(a1−1)
kw
· ln (ri/ro)

(21)

where hc is smoothed in-between hs and h f b depending of the dryness of the fluid. Additionally hc is adjusted

on the basis of a smoothing between laminar and turbulent single phase flow as well as for two-phase
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flow. The smoothing function is based on a third order function and the associated slopes are determined

numerically. Note that the heat flux is positive for Ti > T f . Using the model parameters from table (2)

we find a1=0.423 and the temperature fall above the thermal boundary is: To-Ti=27.9 [oC], which gives a

temperature gradient in the pipe wall of dT/dr= 3930 [oC/m] for a heat flux of qe=100 [kW/m2]. The heat

conduction in the material is the most significant barrier for an effectively cooling of the tube wall.

3.5. Auxiliary relations

The Water / Steam library IAPWS 97 by [14] is used as a general equation of state, to derive thermody-

namic properties of water and steam. In some relations we need a relationship for the pressure as function

of density and enthalpy: p=p(ρ,h̄). This can be done by a Newton Rapson solver. To improve the com-

putational speed, we recommended to use a look up table within at least 200000 nodes, based on bilinear

interpolation, see [7]. Here we create a look up table to ensure water/steam properties within an accuracy

below 0.3% as an absolute maximum, due to [7]. Note that the density is smoothed in the vicinity of the

saturation line of water to avoid heavy gradients and discontinuities.

3.6. Boundary conditions

It is convenient to use boundary conditions to the model which are physically measurable. Therefore,

the following properties are used as boundary conditions; velocity (u), pressure (p) and enthalpy (h). This

allows us to rewrite the boundary conditions to those properties, which are described by Φ, see (10). The

Dirichlet boundary conditions are given by (22) and the corresponding Neumann boundary conditions are

obtained by applying the chain rule for differensation of complex functions, and are given by (23).

Dirichlet BC :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρA
ρAu
ρA(h + u2

2
+ gz cos (θ)) − pA

ρTw

(22)

where θ is the angle of the pipe inclination with respect to the horizontal.

Neumann BC :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ∂ρ
∂z + ρ

∂A
∂z

uA ∂ρ
∂z + ρu

∂A
∂z + ρA

∂u
∂z

∂(ρA)

∂z

[
h + u2

2
+ gz cos (θ)

]
+ ρA

[
∂h
∂z + u ∂u

∂z + g cos (θ)
]
− A ∂p

∂z − p ∂A
∂z

∂Tw
∂z

(23)
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3.7. Numerical Solution of Hyperbolic Transport Equation

Let us consider a hyperbolic system of balance laws (SBL) formulated on a compact vector notation,

given by (10), where Φ is the unknown m-dimensional vector function, f(Φ) the flux vector, g(Φ) a contin-

uous source vector function on the right hand side (RHS), with z as the single spatial coordinate and t the

temporal coordinate, Ω is partitioned in nz non-overlapping cells: Ω= ∪nz
i=1

Ii ∈ [0, lz], where lz is a physically

length scale in the spatial direction. This system covers the general transport and diffusion equations used

in many physical aspects and gas dynamics as well. The SBL system is subjected to the initial condition:

Φ(z, 0) = Φ0(z) (24)

and the below boundary conditions given by:

Dirichlet boundaries:

Φ(z = 0, t) = ΦA(t) and Φ(z = lz, t) = ΦB(t) (25)

and

Neumann boundaries:
∂Φ(z = 0, t)
∂z

=
∂ΦA(t)
∂z

and
∂Φ(z = lz, t)
∂z

=
∂ΦB(t)
∂z

(26)

The above boundary conditions can be given by a combination of each type of boundaries. The Dirichlet

condition is only specified, if we have ingoing flow conditions at the boundaries.

The development of a general numerical scheme for solving PDE’s may serve as universal finite-

difference method, for solving non-linear convection-diffusion equations in the sense that they are not tied

to the specific eigenstructure of a problem, and hence can be implemented in a straightforward manner as

black-box solvers for general conservation laws and related equations, governing the spontaneous evolution

of large gradient phenomena. The developed non-staggered grid is suitable for the modelling of transport of

mass, momentum and energy and is illustrated in figure (4),where the cell I j=
[
z j−1/2, z j+1/2

]
has a cell width

Δz and Δt the time step.

Fig. 4. The computational grid [0,lz] is extended to a set of ghost points for specifying boundary conditions.

In this section, we review the central fifth order WENO schemes in one spatial dimension, developed by

[15] with uses modified weight functions outlined by [16]. We recall the construction of the non-staggered

central scheme for conservation laws. The starting point for the construction of the semi-discrete central-

upwind scheme for (10) can be written in the following form:

dΦ j(t)
dt

= − 1

Δz

[
F j+1/2 − F j−1/2

]
+ S j(Φ). (27)

where the numerical fluxes F j+1/2 are given by

F j+1/2 =
a+j+1/2 f (Φ−j+1/2) − a−j+1/2 f (Φ+j+1/2)

a+j+1/2
− a−j+1/2

+
a+j+1/2a−j+1/2

a+j+1/2
− a−j+1/2

[
Φ+j+1/2 − Φ−j+1/2

]
. (28)
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Notice that the accuracy of this scheme is determined by the accuracy of the reconstruction of Φ and the

ODE solver. In this chapter the numerical solutions of (27) is advanced in time by mean of third order TVD

Runge-Kutta method described by [17]. The local speeds of propagation can be estimated by

a+j+1/2 = max

⎧⎪⎪⎨⎪⎪⎩λN

⎛⎜⎜⎜⎜⎝∂ f (Φ−j+1/2)

∂Φ

⎞⎟⎟⎟⎟⎠ , λN

⎛⎜⎜⎜⎜⎝∂ f (Φ+j+1/2)

∂Φ

⎞⎟⎟⎟⎟⎠ , 0
⎫⎪⎪⎬⎪⎪⎭ , (29)

a−j+1/2 = min

⎧⎪⎪⎨⎪⎪⎩λ1

⎛⎜⎜⎜⎜⎝∂ f (Φ−j+1/2)

∂Φ

⎞⎟⎟⎟⎟⎠ , λ1

⎛⎜⎜⎜⎜⎝∂ f (Φ+j+1/2)

∂Φ

⎞⎟⎟⎟⎟⎠ , 0
⎫⎪⎪⎬⎪⎪⎭ .

with λ1 < ... λN being the eigenvalues of the Jacobian given by J= ∂ f (Φ(z,t))
∂Φ

. Here, Φ+j+1/2=p j+1(z j+1/2), and

Φ−j+1/2=p j(z j+1/2) are the corresponding right and left values of the piecewise polynomial interpolant {p j(z)}
at the cell interface z=z j+1/2.

To derive an essentially non-oscillatory reconstruction (ENO), we need to define three supplementary

polynomials (Φ̃1, Φ̃2, Φ̃3), approximating Φ(z) with a lower accuracy on Ii. Thus, we define the polynomial

of second-order accuracy, Φ̃1(z), on the reduced stencil S 1: (Ii−2, Ii−1, Ii), Φ̃2(z) is defined on the stencil

S 2: (Ii−1, Ii, Ii+1), whereas Φ̃3(z) is defined on the stencil S 3: (Ii, Ii+1, Ii+2). Now, we have to invert a 3 × 3

linear system for the unknown coefficients {a j}, j ∈ {0, ..., 2}, defining Φ̃1, Φ̃2, Φ̃3. Once again, the constants

determining the interpolation are pre-computed and stored before solving the PDEs. When the grid is

uniform, the values of the coefficients for Φ̃1, Φ̃2 and Φ̃3 can be explicitly formulated. It is left to the reader

to read [15] or [6] for further details about determining the coefficients in the reconstructed polynomials. To

implement a specific solution technique, we extend the principle of the central WENO interpolation defined

in [18]. First, we construct an ENO interpolant as a convex combination of polynomials that are based on

different discrete stencils. Specifically, we define in the discrete cell Ii:

Φ̃i(z) ≡
∑

j

w j × Φ̃ j(z),
∑

j

w j = 1 for wj ≥ 0 for j ∈ {1, .., 4}, (30)

and Φ̃1, Φ̃2 and Φ̃3 are the previously defined polynomials. Φ̃4 is the second-order polynomial defined on

the central stencil S 5: (Ii−2, Ii−1, Ii, Ii+1, Ii+2) and is calculated such that the convex combination in (30), will

be fifth-order accurate in smooth regions. Therefore, it must verify:

Φ̃opt(z) =
∑

j

C j × Φ̃ j(z) ∀z ∈ Ii,
∑

j

C j = 1 for C j ≥ 0 for j ∈ {1, .., 4}, (31)

The calculation of Φ̃+i+1/2,Φ̃−i+1/2 produces the following simplified result:

Φ̃+i+1/2 =

(
− 7

120
w4 − 1

6
w1

)
Φ̄i−2 +

(
1

3
w2 +

5

6
w1 +

21

40
w4

)
Φ̄i−1 (32)

+

(
5

6
w2 +

1

3
w1 +

11

6
w3 +

73

120
w4

)
Φ̄i +

(
−1

6
w2 − 7

6
w3 − 7

120
w4

)
Φ̄i+1 +

(
1

3
w3 − 1

60
w4

)
Φ̄i+2

Φ̃−i+1/2 =

(
− 1

60
w4 +

1

3
w1

)
Φ̄i−2 +

(
−1

6
w2 − 7

6
w1 − 7

120
w4

)
Φ̄i−1

+

(
5

6
w2 +

1

3
w3 +

11

6
w1 +

73

120
w4

)
Φ̄i +

(
1

3
w2 − 5

6
w3 +

21

40
w4

)
Φ̄i+1 +

(
−1

6
w3 − 7

120
w4

)
Φ̄i+2

(33)

To calculate the weights wj, j∈ {1, 2, 3, 4}, we review another technique to improve the classical smoothness

indicators to obtain weights that satisfy the sufficient conditions for optimal order of accuracy. It is well

known from [15], that the original WENO is fifth order accurate for smooth parts of the solution domain
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except near sharp fronts and shocks. The idea here is taken from [16] and uses the hole five point stencil

S 5 to define a new smoothness indicator of higher order than the classical smoothness indicator IS i. The

general form of indicators of smoothness are defined in [18]:

IS i
j = a2

1Δz2 +
13

3
a2

2Δz4 + O(Δz6), j ∈ {1, 2, 3}. (34)

and the form of IS i
4

is given by [15]:

IS i
4 = a2

1Δz2 +

[
13

3
a2

2 +
1

2
a1a3

]
Δz4 + O(Δz6). (35)

where a0 and a1 can be determined by solving the coefficients to reconstructed polynomial Φ̃4 on S 5. For

estimating the weights wk, k ∈ {1, 2, 3, 4}, we proceed as follows: Define

IS ∗k =
IS k + ε

IS k + ε + τ5

(36)

where IS k, k ∈ {1, 2, 3} are given by (34), IS 4 given by (35) and τ5=|IS 1 − IS 3|. The constant ε is a small

number. In some articles ε ≈ from 1 ·10−2 to 1 ·10−6, see [18]. Here we use much smaller values of ε for the

mapped and improved schemes in order to force this parameter to play only its original role of not allowing

vanishing denominators at the weight definitions. The weights wk are defined as:

wk =
α∗k∑4

l=1 α
∗
l

, α∗k =
Ck

IS ∗k
, k ∈ {1, 2, 3, 4} (37)

The constants C j represent ideal weights for (30). As already noted in [18], the freedom in selecting these

constants has no influence on the properties of the numerical stencil; any symmetric choice in (31), provides

the desired accuracy for Φ̃opt. In what follows, we make the choice as in [15]:

C1 = C3 = 1/8,C2 = 1/4 and C4 = 1/2. (38)

3.7.1. Convection-Diffusion equations
Let us again consider the general System of Conservation Laws (SCL), given by equation (10), where

the source term g is replaced by a dissipative flux:

∂Φ(z, t)
∂t

+
∂ f (Φ(z, t))
∂z

=
∂

∂z

(
g(Φ(z, t),

∂Φ

∂z
)

)
, t ≥ 0, z ∈ Ω (39)

The gradient of g is formulated on the compressed form: g(Φ, ∂Φ
∂z )z as a nonlinear function � zero.

This term can degenerate (39) to a strongly parabolic equation, admitting non smooth solutions. To solve

it numerically is a highly challenging problem. Our fifth-order semi-discrete scheme, (27)-(28), can be

applied to (10) in a straightforward manner, since we can treat the hyperbolic and the parabolic parts of (39)

simultaneously. This results in the following conservative scheme:

dΦ j(t)
dt

= − 1

Δz

[
F j+1/2 − F j−1/2

]
+G j(Φ, t). (40)

Here F j+1/2 is our numerical convection flux, given by equation (28) and G j is a high-order approxima-

tion to the diffusion flux g(Φ, ∂Φ
∂z )z. Similar to the case of the second-order semi-discrete scheme of [19],

operator splitting is not necessary for the diffusion term. By using a forth order central differencing scheme,

outlined by [20], we can apply our fifth-order semi-discrete scheme, given by (27) and (28), to the parabolic

equation (10), where g(Φ, ∂Φ
∂z )z is a function of φ and its derivative in space (diffusion). The diffusion term

can be expressed by a high-order approximation:

G j(t) =
1

12Δz

[
−G(Φ j+2, (Φz) j+2) + 8 ·G(Φ j+1, (Φz) j+1) − 8 ·G(Φ j−1, (Φz) j−1) +G(Φ j−2, (Φz) j−2)

]
(41)
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where

(Φz) j+2 =
1

12Δz

[
25Φ j+2 − 48Φ j+1 + 36Φ j − 16Φ j−1 + 3Φ j−2

]
, (42)

(Φz) j+1 =
1

12Δz

[
3Φ j+2 + 10Φ j+1 − 18Φ j + 6Φ j−1 − Φ j−2

]
,

(Φz) j−1 =
1

12Δz

[
Φ j+2 − 6Φ j+1 + 18Φ j − 10Φ j−1 − 3Φ j−2

]
and

(Φz) j−2 =
1

12Δz

[
−3Φ j+2 + 16Φ j+1 − 36Φ j + 48Φ j−1 − 25Φ j−2

]

and Φ j are the point-values of the reconstructed polynomials.

3.7.2. Source Term
Next, let us consider the general SCL given by (10) and restrict our analysis to the source term of the

form: g(Φ, t) as a continuous source vector function � zero. By integrating system (10) over a finite space-

time control volume Ii,Δt one obtains a finite volume formulation for the system of balance laws, which

usually takes the form

Φ(z, t)n+1
j = Φ(z, t)n

j −
Δt
Δz

(
f j+1/2 − f j−1/2

)
+ Δtg(z, t) j, t ≥ 0, z ∈ Ω (43)

The integration of (10) in space and time gives rise to a temporal integral of the flux across the element

boundaries f j+1/2 and to a space-time integral gi of the source term inside Ii. In practice, one must replace

the integrals of the flux and the source in (43) by some suitable approximations, that is to say one must

choose a concrete numerical scheme. For SBL a numerical source must be chosen. Here, not only the three

classical properties are required, but some additional properties are needed for the global numerical scheme:

It should be well-balanced, i.e. able to preserve steady states numerically. It should be robust also on coarse

grids if the source term is stiff.

3.7.3. Boundary conditions for Non-staggered grid
For a system of m equations we need a total of m boundary conditions. Typically some conditions must

be prescribed at the inlet boundary (z=a) and some times at the outlet boundary (z=b). How many are

required at each boundary depends on the number of eigenvalues of the Jacobian A that are positive and

negative, respectively and whether the information is marching in or out for the boundaries.

By extending the computational domain to include a few additional cells on either end of the solution

domain, called ghost cells, whose values are set at the beginning of each time step in some manner that

depends on the boundary condition. In figure (4) is illustrated a grid with three ghost cells at each boundary.

The idea behind the ghost point approach is to express the value of the solution at control points outside the

computational domain in terms of the values inside the domain plus the specified boundary condition. This

allows the boundary condition to be imposed by a simple modification of the internal coefficients using the

coefficients of the fictitious external point. This can result in a weak imposition of the boundary condition,

where the boundary flux not exactly agree with the boundary condition. By establishing a Taylor expansion

around the boundary a or (b), we can express a relationship between the ghost points outside the solution

domain and grid points inside the domain. For further details see [6].

3.7.4. Time discretization
The semi-discrete ODE given by (27) is a time dependent system, which can be solved by a TVD

Runge-Kutta method presented by [17]. The optimal third order TVD Runge-Kutta method is given by

Φ
(1)
j = Φ

n
j + ΔtL(Φn

j ), (44)

Φ
(2)
j =

3

4
Φn

j +
1

4
Φ

(1)
j +

1

4
ΔtL(Φ

(1)
j ),

Φn+1
j =

1

3
Φn

j +
2

3
Φ

(2)
j +

2

3
ΔtL(Φ

(2)
j ), for j ∈ [1, nz].
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The stability condition for the above schemes is

CFL = max

(
un

j
Δt
Δz

)
≤ 1, (45)

where CFL stands for the Courant-Friedrichs-Lewy condition and un
j is the maximum propagation speed in

cell I j at time level n.
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4. Results

In this section we setup and solve a homogeneous boiler tube model for two cases; one without IRBT

and one with Siemens RR5 pipes. The governing equations are defined by the system of balance laws given

by equation (10) including the pipe wall model given by equation (9) for the solution domain given by Ω ∈
[0,lz].

4.1. Numerical setup

Three Dirichlet boundary conditions are applied for the hydraulic case and two Neumann boundaries are

applied for the pipe wall model, given as zero gradients in the wall temperature at each pipe end (No heat

loss). The intention is to model an evaporator, which can induce oscillations initiated by the compressibility,

which arise as a result of a phase shift in the lower part of the evaporator. Therefore, we apply a constant

downstream Dirichlet pressure boundary condition, that is corresponding to a stiff system, without any

pressure absorption effects in the down stream turbine system due to compressibility. An analogy to this

is a geyser, where there is a constant surface pressure and an intense heat absorption in the bottom region,

whereby an oscillating pressure wave is initiated due to the compressibility of the fluid, caused by intense

heat from the underground. Additionally we force the model with both a constant enthalpy and mass flux

located on the upstream boundary, supplied by a constant heat flux along the entire heat pipe. The numerical

scheme is the fifth order WENO scheme outlined in chapter (3.7) and consists of 400 computational points

with CFL number of 0.8. The numerical scheme is tested for consistency and stability with respect to both a

scalar- and a system of hyperbolic equations and has been successfully compared to analytical results from

the literature as well as other published results. This work is outlined in [7].

The model is soft started in two steps, at t=0 [s] is the pure hydraulic model soft started during 4 seconds,

without heat flux. After 10 seconds the heat flux is build-up during four seconds. This is done to avoid heavy

shock waves moving forward and back in the entire solution domain. If the soft start period is reduced to

only 1 second, heavy pressure oscillations occur. The soft start model is based on a third order theory [21],

which gives a C2 continuous sequence, which means zero gradients of the first derivative at both ends of the

soft start period. The model data are listed below in table (2). The dynamic start-up process can be seen in

figure (6), where the density is given in [kg/m3], pressure in [bar], Temperature in [oC], enthalpy in [kJ/kg]

and mixture velocity in [m/s].

4.2. Model consistency

The model consists of 400 differential elements, thus ensuring a smooth continuous solution. By reduc-

ing the number of computational cells to only 50 elements, one would observe a more intensive standing

wave at the entrance of two-phase region, which is due to intensive heating of the differential cell in the

vicinity of the boiling zone, where we have an intensive negative slope in the density as function of the en-

thalpy, hence the density change becomes so violent that a pressure wave is established to ensure momentum

balance. Using a CFL number higher than 1.0 is leading to instabilities due to the semi implicit scheme.

4.3. Simulation results - without IRBT

In figure (5) we illustrate the output results for each 25 sec. of simulation, referring to the solution of

the full-scale evaporator at Skærkækværket unit 3 (SKV3) in Fredericia (Denmark), without IRBT. Here

we have a tower boiler which consists of 4x56 parallel boiler tubes representing an entire mass flow of 90

[kg/s] flowing in 193.5 meter long heat pipes with an inclination of 12 degree. A steady state solution is

obtained after approximately 250 seconds, and is depicted in figure (6) together with the initial conditions.

The entire pressure drop and heat uptake fit (± 5 %) with steady state experiments performed at (SKV3).

The simulation results shows how the state of the fluid gradually moves from the inlet condition, in the form

of subcooled water, to the two phase zone, in which the boiling is starting, and finally reaches the super

heating zone, where the dry steam is superheated to approximately 360 [oC]. The pressure drop is fixed

downstream in the form of a Dirichlet boundary condition, corresponding to measured pressure level from

(SKV3). The Pressure distribution along the evaporator reflects different pressure loss models, the pressure



16 Axel Ohrt Johansen / SIMS 00 (2012) 1–21

Table 2. Geometrical and numerical specifications. Data in parentheses are referring to simulation without IRBT.

Parameter Value Unit Parameter Value Unit

Gravity (g) 9.81 [m/s2] Spatial start position 0.000 [m]

Spatial end position (L) 38.25 (193.40) [m] Inner diameter of pipe (di) 23.8 [mm]

Outer diameter of pipe (do) 38.0 [mm] Heat conductivity in wall (kw) 10.139 [w/mK]

Wall density (ρw) 7850.0 [kg/m3] Specific heat capacity of pipe wall (Cpw) 527.21 [J/kg/K]

Heat flux (q̇e) 100.000 [W/m2] Wall roughness (λ) 1.0E-6 [m]

Initial Enthalpy - Inlet 1187.6988 [kJ/kg] Initial Enthalpy - Outlet 1187.6988 [kJ/kg]

Initial Pressure - Inlet 92.3762 [Bar] Initial Pressure - Outlet 92.3762 [Bar]

Initial Velocity - Inlet 0.0 [m/s] Initial Velocity - Outlet 0.0 [m/s]

Pressure BC (Dirichlet - Outlet) 92.3762 [Bar] Enthalpy BC (Dirichlet - Inlet) 1187.6988 [kJ/kg]

Velocity BC (Dirichlet - Inlet) 0.200(1.1711) [m/s] Simulation time 200.0 [s]

Output frequency 0.1 [s] CFL number 0.80 [-]

Number of computational grids (Np) 400 [-] Riffle type RR5 1.5994(No rifels) [-]

[a] [b]

[c] [d]

Fig. 5. Solution of SKV3 evaporator model without IRBT after (a):25, (b):50, (c):75 and (d):100 sec.

gradient of single and two-phase regions respectively. The pressure drop in the two-phase region involves

the two phase multiplier, outlined in (7), which multiplies the pressure gradient with up to 16 times relative

to the pressure gradient for saturated water. The inlet velocity is specified as an upstream Dirichlet boundary

condition, and is soft started by use of the before mentioned smooth function, having a soft start period of

four seconds. The super heated steam leaves the down stream boundary at steady state flow condition with a

speed of app. 24 [m/s]. This ensures a smooth hydraulic flow condition of a cold evaporator. After words the

heating is build up smoothly, applied by the same smoothing technique, so that undesirable thermal shock

phenomena is reduced to a minimum. A standing pressure wave in the front of the boiling zone of the fluid

is created by the very intense negative slope in the fluid density at the entrence to the two phase region. This
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[a] [b]

Fig. 6. Initial (a) and steady state solution (b) of SKV3 evaporator model without IRBT.

[a] [b]

[c] [d]

Fig. 7. Solution of Modified SKV3 vertical evaporator model with SLMF after (a):50, (b):100, (c):150 and (d):200 [s].

pressure-drop oscillations could occur, when there exists large upstream compressibility in the flow boiling

system, see ([22], [23]). This phenomenon is increased in a vertical evaporator where the heating phase has
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Fig. 8. Modified SKV3 vertical evaporator model with IRBT at station A(left) and B(right).

a heavy column of liquid to be transported out of the solutions area, which can initiate stability problems.

This phenomenon occurs at low operating pressure in the evaporator or low firing, ie. heating the bottom

of the evaporator. The dryness line in figure (5) expresses the mass based percentage of the steam flowing

in the evaporator tube, not surprisingly, this process linearly corresponding to a constant heat flux along the

tube.

Pressure-drop oscillations can be characterised as a secondary phenomenon of dynamic instability,

which is triggered by a static instability phenomenon. Pressure-drop oscillations occur in systems hav-

ing a compressible volume upstream of, or within, the heated section. Pressure-drop oscillations have been

studied in considerable details by Maulbetsch [24] and Griffith [25], for sub cooled boiling of water, and by

Stenning et al. [26], [27], for bulk boiling of freon-11. Maulbetsch and Griffith found that the instability

was associated with operation on the negative sloping portion of the pressure-drop - flow curve.

4.4. Simulation results - with IRBT

By converting the SKV3 boiler to a system equipped by RR5 internal rifled boiler tubes (IRBT), this will

normally lead to a complete redesign of both the furnace- and the evaporator system, but in this fictive case

we use the same heat transfer area, despite the fact, that the IRBT considerably improve the heat transfer in

the boiling zone. In this new setup, the length of the boiler tubes are reduced from 193.5 [m] to 38.25 [m]

and the number of parallel tubes are increased from the original 4 x 56 to 4 x 270 parallel tubes. We have

proved used a very low mass flux (corresponding to approx. 10% load), specifically to analyze the effects of

the wall temperature distribution. It should be emphasized that this simulation event is a fictional setup and

is rather a calculation example of what can happen in an evaporator tubes, if near zero flow momentarily

occurs.

The vertical IRBT leads to an decrease in the mass flux, which is illustrated in (7) for instant pictures of

100, 150, 175 and 200 [s] of simulation. The wall temperature are varying in time and reach a peak while

the flow locally is approaching zero, caused by local pressure oscillations initiated by the compressibility

at the entrance of the two phase region. The bad cooling caused by near zero flow can have disastrous

consequences for the pipe material and may ultimately lead to a meltdown of the evaporator tube. In practice,

this is avoided by increasing the circulation through the evaporator. The pressure drop through the evaporator

tube is unrealistically low, due to the very low mass flux (105 [kg/m2s]). Normally, the mass flux of IRBT

is approx. 1200 [kg/m2s] at 100% load. In figure (8) is listed timeseries of the thermo hydraulic data at two

stations located at A(z= 1
8
lz) and B(z= 7

8
lz). The thermo hydraulic conditions in station A is situated in the

subcooled region while the station B is situated in the super heated region. Both stations are affected by

the compressibility effect, initiated in the entrance to the boiling zone. Pressure waves are approaching up-

and down stream due to the eigenvalues of the hyperbolic governing equations (λ1=c, λ2=u+c and λ3=u-
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c) where λi, i=1,3 is the eigenvalues and c is the local speed of sound for the two phase mixture. In the

downstream station B we can also see minor slugs of enthalpy for t=100 [s], which also is referring to the

compresibility phenomena.

4.5. Model consistency

The model consists of 400 differential elements, thus ensuring a smooth continuous solution. By reduc-

ing the number of computational cells to only 50 elements, one would observe a more intensive standing

wave at the entrance of two-phase region, which is due to intensive heating of the differential cell in the

vicinity of the boiling zone, where we have an intensive negative slope in the density as function of the en-

thalpy, hence the density change becomes so violent that a pressure wave is established to ensure momentum

balance. Using a CFL number higher than 1.0 is leading to instabilities due to the semi implicit scheme.

4.6. Discussion

The two simulation cases shows two very different thermo hydraulic conditions. The simulation of

(SKV3) without IRBT is verified against steady state measurements and the pressure drop and heat uptake

fits quite well (± 5 %). The case of IRBT does not reach a steady state condition after 200 [s] and is

illustrating an absolute worst case of boiler layout. It is interesting to see that it is possible to initiate local

temperature spikes in an evaporator tubes - even before the boiling region - caused by the compressibility

phenomena. The above results show that the numerical model is able to simulate the pressure drop and

heat transfer in evaporator tubes (with and without IRBT), in both a time and spatial resolution. However,

despite the extremely large in-linearities in the fluid density, and the hyperbolic nature of the governing

equations, the model is capable to calculate a dynamic response over the saturation zones in the evaporator.

Under normal conditions, the sub-cooled section of the evaporator will be separated from the two-phase

section, to ensure numerical stability, but by use of the WENO technique, this can be handled in one setup.

It is unfortunately not possible to compare the numerical calculations with measured data, since the IRBT

evaporator model is a hypothetical example, but the boundary data are taken from measurements from

SKV3.

It is interesting to see how the tube wall temperature may be increased, as a result of poor heat transfer

due to the low flow rate in the subcooled section of the evaporator. Further downstream, where the flow

speed increases, progressively better heat transfer are observed and a more homogeneous axial temperature

distribution all the way down to the superheated section, where the material temperature rises again.

Similarly, we can observe that there are several different models of the wall friction into play, which

is revealed by considering the slope of the pressure downstream in figure (7). The pressure gradient is

ultimately the greatest in the two-phase region, due two-phase multiplier. we see also that the pressure

gradient for superheated steam also, not surprisingly, are larger than sub-cooled liquid.

The Central WENO schemes are designed for problems with piecewise smooth solutions containing

discontinuities. The Central WENO scheme has been successful in the above applications, especially for

solving the pressure distribution down streams an evaporator. The inlet conditions is sub cooled water and

the out flow is superheated steam. Minor pressure waves are initiated in the transition zones to the two

phase region (x=0), because of the compressibility of the fluid. The pressure oscillations generated in the

entrance to the boiling zone is controlled by the shear stresses in the momentum equation (0.01 [m2/s],

which smooth the oscillations due to diffusion of momentum. The model is very time consuming in solving

the system, because the total energy is determined iteratively as well as the density is a function of pressure

and enthalpy. The model is stable as long as the CFL number is less than one and the speed of sound is below

the highest calculated speed of sound in the fluid domain, determined at each time step. We can conclude that

the solution procedure is non-oscillatory in the sense of satisfying the total-variation diminishing property

in the one-dimensional space. No numerical wiggles are observed in the hyperbolic models and smooth

solutions are observed in the continuous zones of the flow regimes.
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4.7. Conclusion

In this article we have solved the dynamic flow equations and associated wall model for a boiler tube, by

use of a fifth order WENO scheme. Simulations with and without a model of the inner rifling of the boiler

tube has been carried out. The calculations include the entire evaporation process from sub-cooled water to

super-heated steam, which includes a massive change in fluid density downstream. The simulations show

that there is a very large pressure drop across the boiler tube without rifling, while the tube with rifling has

a significantly lower pressure drop, due to the lower mass flux, although the relative pressure drop in the

rifle tube is significantly higher compared to the smooth boiler tube. We also see that the mass flux in IRBT

for design reasons are significantly lower. The model handles perfect the pressure oscillations occurring

in the two phase region, as a result of the increased compressibility of the fluid. This instability generates

minor enthalpy slugs downstream in the calculations. In the IRBT simulations we experience very low

mass flux just before the entrance to the two-phase region, which locally gives a very poor cooling of tube

wall and rising wall temperature. We can generally conclude that WENO scheme both numerically and in

terms of stability is well suited to solve such an complicated hyperbolic system of PDE’s with respect to the

transformed independent solution parameters.
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