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Abstract

The paper investigates the importance of inflation-linked annuities to individuals facing inflation

risk. Given the investment opportunities in nominal, real, and variable annuities, as well as cash

and stocks, we investigate the consumption and investment decisions under two different objective

functions: 1) maximization of the expected CRRA utility function, and 2) minimization of squared

deviations from an inflation-adjusted target. To find the optimal decisions we apply a multi-stage

stochastic programming approach. Our findings indicate that independently of the considered ob-

jective function and risk aversion, real annuities are a crucial asset in every portfolio. In addition,

without investing in real annuities, the retiree has to rebalance the portfolio more frequently, and

still obtains the lower and more volatile real consumption.

JEL classification: C44 • D14 • D91 • G11 • G23 • J26

Keywords: Inflation-linked annuity • Retirement planning • CRRA utility • Loss disutility •Multi-stage

stochastic programming

1 Introduction

When planning for retirement, individuals often decide to purchase nominal annuities that guarantee fixed

income no matter how long one lives. However, what they tend to forget is that these products expose

them to substantial uncertainty around the real value of their income. In the event of high inflation, the

purchasing power of income may not be sufficient to cover standard living costs.

To accommodate the individuals’ needs, during the last decades a new type of financial products

became available in the market; namely, inflation-linked (real) annuities. The income provided by these

products increases each year with the Retail Price Index (RPI) or Consumer Price Index (CPI) measuring

inflation, thus gives the annuitants a natural protection against inflation. As investigated in Brown et al.

(2000, 2001), real annuities are available at least in the British and American market, and are offered

especially by private insurers.

Many scholars have investigated the demand for the inflation-linked products, mostly in the expected

utility maximization framework, see, e.g. Fischer (1975), Brown et al. (2001), Campbell and Viceira

(2001), Brennan and Xia (2002), Soares and Warshawsky (2003), Koijen et al. (2011), Han and Hung
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(2012) and Kwak and Lim (2014). These studies have shown that the existence and availability of

inflation-linked assets are desirable for individuals. Moreover, Fischer (1975) and Kwak and Lim (2014)

argue that the demand for inflation-linked bonds increases with a decline in the correlation between stocks

and inflation rate; Soares and Warshawsky (2003) argue that the prices of inflation-linked annuities over

time are much less volatile than the prices of nominal fixed and increasing annuities; whereas Campbell

and Viceira (2001), Koijen et al. (2011) and Han and Hung (2012) show that inflation-linked products

are most beneficial for conservative investors. In addition, Koijen et al. (2011) argue that in the presence

of real annuities, independently of the risk aversion level, individuals allocate only a marginal amount to

nominal annuities, whereas Kwak and Lim (2014) prove that inflation-linked bonds are not only a perfect

hedge for inflation risk, but also serve as investment opportunity and portfolio diversification.

Despite these scientific findings in favour of inflation-linked products, as recently investigated in the

UK, about 95% of retirees do not purchase inflation-linked annuities, see Cowie (2011) and Towler (2013).

British pension experts explain that retirees’ reluctance towards real annuities is related to the high price

of these products; because insurers do not know how high inflation will be in the future, they price

real annuities more conservatively than nominal annuities. Therefore, it may take many years before the

payments from real annuities exceed those from nominal annuities with constant payments. To exemplify,

Hyde (2013) shows that the initial income from inflation-linked annuities can even be 40% lower than

from annuities with constant nominal payments. Given a realized inflation of 3% per year, a retiree

would have to wait until age 82 before the lower payouts from the real annuities exceeded those from

the nominal annuities with constant payments. Accordingly, given the lifetime expectancy of nearly 90

years, individuals find this waiting period too long, and prefer to take the risk of experiencing a severe

shrinkage in their income.

On the other hand, retirees who are concerned about inflation risk, often prefer to invest in stocks.

According to a common belief, stocks are a natural hedge against inflation; however, the empirical

studies have reported a negative correlation between the stock returns and the inflation rate, see, e.g.,

Fama (1981), Geske and Roll (1983), Lee (1992), and Brown et al. (2001). Moreover, Attié and Roache

(2009) shows that assets such as commodities, which are known to be an effective hedge against inflation

in short-term investment strategies, may not work over longer horizons. Thus, retirees owning stocks or

variable annuities (annuities whose income is linked to stock returns) should not feel certain about the

real value of their income.

The purpose of this paper is twofold: 1) to investigate whether inflation-linked products are beneficial

to individuals with different retirement goals, and 2) to investigate how the retirees can protect themselves

against inflation risk without investing in real annuities. To support our argumentation, we suggest an

optimization model whose solution provides recommendations regarding how to ensure the retirement

income in real terms.

As the main goal of retirement planning is to make sure that the life-long income is sufficient to cover

standard living costs independently of the level of inflation, we model the optimization problem under

two different objective functions. The first objective is a maximization of the expected constant relative

risk aversion (CRRA) utility of real consumption, as investigated e.g., in Brown et al. (2001) and Koijen

et al. (2011). The second objective is a minimization of the expected disutility, defined by a quadratic loss

function penalizing deviations from a certain inflation-linked target. Neither the quadratic disutility nor

the target-based approach is new in the literature on retirement planning, see, e.g., Cairns (2000), Gerrard

et al. (2004), Blake et al. (2013), and Di Giacinto et al. (2014), however, none of the studies considered

inflation risk or the presence of inflation-linked products, and only Blake et al. (2013) allowed for a path-

dependent target. When searching for the optimal investment and consumption decisions under both
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objective functions, we allow the individual to allocate his savings to nominal annuities with constant

payments, inflation-linked annuities (RPI-adjusted), variable annuities and stocks (whose returns follow

the MSCI UK stock index), or keep them on a bank account with floating interest rate.

The aforementioned studies typically focus on deriving an explicit solution to a given problem by

using dynamic programming. However, solving a problem of wealth allocation to nominal, real and

variable annuities is too complicated for this approach. While Koijen et al. (2011) use a simulation-

based approach, we apply multi-stage stochastic programming (MSP). This approach is widely applied

in financial engineering and operations research, and is especially handy when it comes to incorporate

realistic constraints into the model, see, e.g., Carino and Ziemba (1998), Mulvey et al. (2008), Ferstl and

Weissensteiner (2011) and Konicz et al. (2014a). By choosing the MSP approach, we are able to find the

optimal dynamic strategy consisting of the aforementioned annuities, stocks and cash, thus, in contrast

to Koijen et al. (2011), we allow for rebalancing the portfolio and expand the investment opportunities by

adding liquid assets (stocks and cash). We further assume that annuities are irreversible (once purchased

they can never be sold), therefore rebalancing decisions concern purchases of annuities, and purchases

and sales of cash and stocks. MSP also allows to investigate the optimal strategy under exclusion of

certain products. For example, we can explore whether any of the products providing nominal income

are able to hedge against inflation.

In addition, our study contributes to the strand of literature developing scenario generation methods

for multi-stage stochastic programs under inflation risk. The prices and the cash-flows from the annuities

are stochastic and vary with the development of stock returns, an inflation index, and nominal and real

yield curves. We model jointly these three sources of uncertainty with a vector autoregressive VAR(1)

process, thus we can fully explore time-varying investment opportunities.

The remainder of the paper is organized as follows. Section 2 introduces available annuity products

together with their cash-flows and prices. Section 3 describes the model for the uncertainty about the

stock returns, the inflation index, and the real and nominal term structure, and explains the method

for scenario generation. Section 4 presents the multi-stage stochastic programming formulation for both

objective functions, while Sect. 5 illustrates the results from the optimization models. Section 6 concludes

and suggests future work.

2 Annuity products

This study focuses on individuals upon retirement with an opportunity of investing in whole life annuities

payable in arrears. By definition, the payout from these annuities starts at the end of a given interval, and

is life contingent, i.e. pays as long as the retiree is alive, see Fig. 1. We further distinguish between three

types of annuities common in the market: nominal annuities with constant payments, inflation-linked

annuities and variable annuities.

t0 1 2 3 4 etc.

Time of death (uncertain)

Figure 1: Cash-flows (indicated by arrows) from whole life annuities in arrears purchased upon time 0.
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Nominal annuities provide fixed payments cfNt determined at the time of the purchase,

cfN1 = 1, cfNt = cfNt−1 = 1, (1)

which are guaranteed as long as the person is alive. At any time t after retirement, the price of this

annuity is given by

priceNx+t =

∞∑
s=t+1

s−tpx+t · e−y(βN
t ,s)(s−t), (2)

where, following the actuarial notation, s−tpx+t is a survival probability until time s for an individual

aged x + t, and y(βNt , s) is a nominal interest rate p.a. over the period [t, s). We describe vector βNt

later in Sect. 3.

Inflation-linked (real) annuities provide income linked to realized inflation rate, no matter how high

the inflation rate is. Specifically, the payments increase with the rate of inflation reported as Retail Price

Index (RPI),

cfR1 = I1, cfRt = cfRt−1 · erpi(t−1,t) = It, (3)

where rpi(t − 1, t) is the inflation rate realized over the period [t − 1, t) and It =
∏t
s=1 e

rpi(s−1,s).

Consequently, neither the retiree nor the annuity provider knows the level of cash-flows at the purchase

of the product. This value is revealed at the time of the payment, when the actual realized inflation is

measured. To price real annuities, their providers use the real interest rates y(βRt , s), which are known

at time t for all maturities s > t,

priceRx+t =

∞∑
s=t+1

s−tpx+t · e−y(βR
t ,s)(s−t) · It. (4)

Finally, variable annuities provide nominal income that is linked to risky assets such as bonds or

equities. In this study, we assume that the underlying portfolio comprises the index MSCI UK. Similarly

to real annuities, cash-flows from variable annuities are unknown upon the purchase of the product, and

are first revealed when the actual stock returns are observed. The size of the payments depends on some

assumed interest rate (AIR). Specifically, upon time t, the annuitant receives a cash-flow equal to the

excess return from stock returns r over the AIR r̄,

cfV1 = er(0,1)−r̄, cfVt = cfVt−1 · er(t−1,t)−r̄, (5)

where r(t − 1, t) is the stock return realized over the period [t − 1, t). The common rates for AIR are

between 3% and 7% p.a., see Dellinger (2006). The lower the AIR, the higher the expected excess return

r(t− 1, t)− r̄ (implying that the annuity payments are likely to be increasing over time), and the higher

the price, i.e.

priceVx+t =

∞∑
s=t+1

s−tpx+t · e−r̄(s−t) · cfVt . (6)
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3 Modeling uncertainty

Term structure of nominal and real interest rates To model the uncertainty in our decision

problem, we use nominal (N) and real (R) UK yield curves with a monthly frequency from October 1992

(when the inflation-targeting of the Bank of England began, see, e.g., Joyce et al. (2010)) to March 2014.1

To mitigate the problem of the curse of dimensionality inherent in our approach, we use the parametric

Nelson and Siegel (1987) and Diebold and Li (2006) framework in order to condense the information in

the two term structures of interest rates. More concise, both yield curves are modelled separately by a

three-factor model as:

y(βit, s) = βi1,t + βi2,t

(
1− e−λi

ts

λits

)
+ βi3,t

(
1− e−λi

ts

λits
− e−λ

i
ts

)
, (7)

with i ∈ {N,R} and where y(βit, s) indicates the (continuously compounded nominal/real) spot rate for

maturity s at stage t, given the parameter vector βit = [βi1,t, β
i
2,t, β

i
3,t]
> for level, slope and curvature of

the term structure of interest rates.

We follow Diebold and Li (2006) and fix λi to be time-independent and omit therefore the subscript t.

The parameter λi determines the maximum of the factor loading for the curvature. While a lower value

ensures a better fit for long maturities, increasing this value enhances the fit for short maturities. We

optimize λi separately for nominal and real yields by minimizing the sum of squared differences between

observed yields and fitted values from our model. Therefore we solve an iterative, nonlinear optimization

problem, where in each iteration the βit parameters are determined by OLS. Gilli et al. (2010) point out

that this estimation through OLS might be prone to a collinearity problem for certain λi values, which is

particularly relevant if the ultimate goal is to model the evolution of yield curves over time. Therefore,

to avoid such a problem we restrict λi such that the correlation between the second and third factor

loading is in the interval [-0.7, 0.7]. The corresponding admissible range for λi depends on the maturities

for which we have observed yields. Nominal yields in our data set start at maturities of 1 year while

real yields are only available for 2.5 years or more. For nominal yields, the restriction turns out to be

non-binding, and the optimal λN = 0.42. For real yields, however, the optimal λR = 0.34 is at the

upper end of its admissible range. In both cases the fit is very accurate, in most cases the coefficient of

determination is above 0.99.

Time-varying opportunities of term structure, inflation and stock returns The difference

between nominal and real yields for different maturities is called the “break-even” inflation rate and can

be interpreted as a result of expected inflation plus a premium for inflation risk minus a liquidity premium

(given that nominal bonds are more liquid than the inflation-linked ones). A strand of literature tries to

back out the components of the break-even inflation with different term structure models, see e.g. Joyce

et al. (2010), Christensen et al. (2010) and Geyer et al. (2012). Given the focus of this paper, here we

refrain from this attempt and include directly realized log inflation rpit from the UK RPI.2

In line with Barberis (2000) and Campbell et al. (2003), we model time-varying realized stock returns,

realized inflation, and nominal and real yield curves (represented by βNt and βRt ) with a VAR(1) model:

ξt = c + Aξt−1 + ut, (8)

1http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx
2http://www.ons.gov.uk/
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with ξt =
[
rt, rpit,β

N
t ,β

R
t

]′
, and where c is the (8 × 1) vector of intercepts, A is the (8 × 8) matrix of

slope coefficients and ut the (8 × 1) vector of i.i.d. innovations with u ∼ N(0,Σ). The covariance of

the innovations Σ is given by E(u u>). Thus, we allow the shocks to be cross-sectionally correlated, but

assume that they are homoskedastic and independently distributed over time. The estimated parameters

c and A are shown in Table 1.

rt rpit βN1,t βN2,t βN3,t βR1,t βR2,t βR3,t
c 0.01 0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00

[0.68] [0.82] [1.10] [-0.36] [-0.55] [0.41] [-2.08] [-0.88]
rt−1 0.01 0.00 0.01 0.01 -0.00 0.00 -0.02 -0.01

[0.18] [0.57] [1.51] [1.26] [-0.25] [0.56] [-2.04] [-0.94]
rpit−1 -0.59 -0.01 -0.06 0.11 0.35 -0.02 0.40 0.07

[-0.86] [-0.13] [-1.24] [1.54] [2.79] [-0.50] [3.97] [0.46]
βN1,t−1 -0.53 0.11 1.01 -0.03 -0.07 -0.01 0.09 0.17

[-1.01] [2.30] [28.34] [-0.52] [-0.75] [-0.24] [1.18] [1.57]
βN2,t−1 -0.13 0.10 0.01 1.01 -0.09 -0.02 0.14 0.06

[-0.49] [4.13] [0.60] [38.34] [-1.88] [-1.99] [3.60] [1.03]
βN3,t−1 -0.21 0.05 0.03 0.02 0.92 0.00 0.00 0.08

[-1.28] [3.09] [2.27] [1.33] [30.23] [0.00] [0.12] [2.19]
βR1,t−1 1.23 -0.19 -0.08 0.07 0.18 0.99 -0.02 -0.32

[1.53] [-2.55] [-1.54] [0.91] [1.21] [25.72] [-0.21] [-1.86]
βR2,t−1 0.02 -0.13 -0.02 -0.06 0.11 0.03 0.87 -0.10

[0.08] [-5.03] [-1.03] [-2.09] [2.17] [2.07] [21.29] [-1.64]
βR3,t−1 0.14 -0.04 -0.01 -0.01 -0.03 0.01 -0.02 0.86

[0.74] [-2.17] [-0.91] [-0.28] [-0.91] [0.88] [-0.73] [21.19]
R2 0.03 0.11 0.97 0.97 0.94 0.97 0.94 0.87

Table 1: VAR(1) parameters and t-statistics (in squared brackets) for stock returns, inflation rate, and
nominal and real yield curves, estimated from monthly data from October 1992 to March 2014.

Given that all eigenvalues of A have modulus less than one, the stochastic process in equation (8)

is stable with unconditional expected mean µ and covariance Γ for the steady state at t = ∞, see, e.g.,

Lütkepohl (2005):

µ := (I−A)−1c

vec(Γ) := (I−A⊗A)−1vec(Σ),

where I refers to the identity matrix, the symbol ⊗ is the Kronecker product and “vec” transforms a

(K ×K) matrix into a (K2 × 1) vector by stacking the columns. In the steady state, both yield curves

are increasing (15y nominal yields at 3.5% p.a.), and the average break-even inflation rate is equal to

2.95% p.a.. Stocks have a drift of 7.00% p.a. and a volatility of 15.22%. The correlation between the

inflation rates and stock returns is nearly zero (0.0375).

Scenario generation In a multi-stage stochastic programming, the uncertainty is represented by a

scenario tree. As shown on Fig. 2, a scenario tree consists of nodes n ∈ Nt uniquely assigned to periods

t, and representing possible outcomes for the uncertainties, ξt,n =
[
rt,n, rpit,n, β

N
t,n, β

R
t,n

]′
. At the initial

stage t0 there is only one node n0, which is the ancestor for all the nodes n+ at the subsequent stage t1.

These nodes are further the ancestors for their children nodes n++, etc., until the final stage T . As the

nodes at the final stage have no children, they are called the leaves. We define a scenario Sn as a single

branch from the root node to the leaf, i.e. each scenario consists of a leaf node n and all its predecessors

n−, n−−, . . . , n0. Consequently, the number of scenarios in the tree equals the number of leaves. Each

node has a probability prn, so that ∀t
∑
n∈Nt

prn = 1, implying the probability of each scenario Sn is
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equal to the product of the probabilities of all the nodes in the scenario.

n0

n1 n2 n3

n4 n5 n6 n7 n8 n9 n10 n11 n12

n13
n14

n15
n16

n17
n18

n19
n20

n21
n22

n23
n24

n25
n26

n27
n28

n29
n30

n31
n32

n33
n34

n35
n36

n37
n38

n39

t0

t1

t2

T

Figure 2: An example of a scenario tree with three periods, a branching factor of 3, and 33 = 27 scenarios
defined as a single path from the root node to the leaf (such as the one marked in blue).

When working with an MSP approach, one must be aware of the curse of dimensionality. Specifically,

the size of the tree grows exponentially with the number of periods, implying that for a large number

of periods the problem becomes computationally intractable. Therefore, when generating scenarios, we

approximate the discrete-time multivariate process in Eq. (8) with a few mass points, accordingly reducing

the computational complexity.

To uncouple our results from a particular root note, we start the tree construction from the uncon-

ditional expected values as done, e.g., by Campbell et al. (2003) and Ferstl and Weissensteiner (2011).

We use the technique proposed by Høyland and Wallace (2001) and Høyland et al. (2003) to match the

first four moments and the correlations with a branching factor of 14. Given that we use decision steps

longer than one year but calibrate the VAR process to monthly data, we follow Pedersen et al. (2013) to

calculate aggregated stock returns and inflation between two decision stages.

For notation brevity, we define ζτ as the vector of cumulated stock returns, cumulated inflation,

and the Nelson/Siegel parameters,3 and introduce an indicator matrix J = diag(1, 1, 0, 0, 0, 0, 0, 0). The

following equations show how to calculate the expectation and the covariance of ζτ for two time steps

(i.e., months) of Eq. (8), and for a general number of time steps:

ζ1 = ξ1,

ζ2 = (I + A) c + A2 ξ0 + A u1 + u2︸ ︷︷ ︸
ξ2

+ J(c + A ξ0 + u1︸ ︷︷ ︸
ξ1

). (9)

The expected value of ζ2 results as:

E(ζ2) = (I + A + J) c +(J A + A2) ξ0,

and the corresponding covariance as:

V(ζ2) = Σ + (J + A)Σ(J + A)>.

Expanding Eq. (9) to more discrete steps (T ) and collecting the terms, we obtain the following general

3The difference to ξ is given by first row, see Eq. (8). While in ξ realized inflation and stock returns are on a monthly
basis, ζτ cumulates τ monthly rates. The Nelson/Siegel parameter vector is the same for ξ and ζ.
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result:

E(ζT ) =

((
T−1∑
i=1

(I + J(T − i)) Ai−1

)
+ AT−1

)
c +

(
AT +

T−1∑
i=1

J Ai

)
ξ0, (10)

and

V(ζT ) = Σ

+ (J + A) Σ (J + A)
>

+
(
J + J A + A2

)
Σ
(
J + J A + A2

)>
+ . . .

+

(
AT−1 +

T−1∑
i=1

J Ai−1

)
Σ

(
AT−1 +

T−1∑
i=1

J Ai−1

)>
. (11)

Thus, we use (10) and (11) to build our scenario tree.

4 Optimization

Multi-stage stochastic programming is an optimization approach, where the decisions are computed

numerically at each node of the tree, given the anticipation of the possible future outcomes, see, e.g.,

Birge and Louveaux (1997). After the outcomes have been observed, the decisions for the next period

are made. These depend not only on the realizations of the random vector but also on the previously

made decisions. Because the multi-stage stochastic programming approach combines anticipative and

adaptive models in one mathematical framework, it is particularly appealing in financial applications.

For example, an investor composes his portfolio based on anticipation of possible future movements of

asset prices, and rebalances the portfolio as prices change, see Zenios (2008).

In this study we explore two optimization models, which differ mostly with respect to the objective

function. Throughout this section, we use capital letters to denote the variables and lower-case letters to

specify the parameters.

Power utility maximization In the first model we consider an investor who obtains utility from real

consumption. Similarly to Brown et al. (2001) and Koijen et al. (2011), we maximize the expected real

consumption over the stochastic lifetime (i.e. the time of death is unknown),

max Et0,w0

[ ∞∑
t=t0

tpx u (t, Ct)

]
. (12)

Function u denotes a utility function with a constant relative risk aversion (CRRA) 1 − γ, and a time

preference factor ρ, reflecting how important the current consumption is relatively to the consumption in

the future,

u (t, Ct) =
1

γ
e−ρt

(
Ct
It

)γ
, (13)

where It is the level of the inflation index (RPI) at time t (we normalize it by assuming that the current

inflation index It0 is equal to 1), and E denotes the expectation operator under the physical probability

measure P, given that at time t0 the individual has an initial wealth w0. We multiply the utility at
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each period by the probability that a retiree aged x survives until time t, tpx, which we calculate from

mortality tables.4

As the curse of dimensionality characteristic for multi-stage stochastic programming does not allow us

to make optimal decisions for the entire lifetime of the individual, we must simplify the model. Specifically,

we choose some horizon T and define the scenario tree only up to this horizon. To make sure that the

individual has enough savings for the rest of his life, we further maximize the utility of the final wealth

upon horizon T . Consequently, we calculate the optimal consumption and asset allocation only up to time

T − 1, which can be interpreted as the annuitization time (i.e. the retiree has to convert all his wealth in

cash and stocks into annuities). From T and onwards the individual no longer rebalances the portfolio,

but consumes the cash-flows from the annuities that he has purchased during the period [t0, T − 1], as

shown on Fig. 3.

tt0 t1 t2 T − 1 T T + 1

Rebalancing and consumption decisions Consumption equal to annuity cash-flows

Annuitization

Figure 3: Overview of the model.

Accordingly, we define the nodal representation of the objective function defined in Eq. (12) as

max

T−1∑
t=t0

tpx
∑
n∈Nt

f1−γ
t,n u (t, Ct,n) · prn + T px

∑
n∈NT

f1−γ
T,n u (T,WT,n) · prn, (14)

where

u (t, Ct,n) =
1

γ
e−ρt

(
Ct,n
It,n

)γ
, u (t,Wt,n) =

1

γ
e−ρt

(
Wt,n

It,n

)γ
, (15)

Ct,n is the consumption during the subsequent period, WT,n is the value of wealth upon horizon, prn is

the probability of being at node n, and ft,n is the multiplier accounting for the length of the subsequent

interval. We calculate ft,n as

ft,n =


∑t+∆t
s=t s−tpx+t e

−y(βR
t,n,s)(s−t), t = t0, . . . , T − 1, n ∈ Nt,

∑ω−x−t
s=t s−tpx+t e

−y(βR
t,n,s)(s−t), t = T, n ∈ NT ,

(16)

where ω is the maximum age, at which the individual is assumed to be dead with certainty. The multiplier

ft,n is necessary because we are interested in the utility of the yearly consumption u(t, Ct,n/ft,n) taken

each year during ∆t, i.e. ft,n · u(t, Ct,n/ft,n) = f1−γ
t,n · u(t, Ct,n). By definition of the utility function we

further have that Ct,n > 0 and WT,n > 0 for γ ∈ (−∞, 1) \ {0}.
Let A denote a set of available assets: nominal, real, and variable annuities, cash, and stocks, whereas

K ⊂ A is the subset including cash and stocks. For each asset a ∈ A, we define variable Buyat,n denoting

the number of units of asset a purchased, and variable Holdat,n denoting the number of units of asset a

held at time t and node n. Because annuities are often irreversible (i.e. once purchased they can never be

sold) or have prohibitive transaction costs, we do not allow for selling these products. Nevertheless, we

4We use British mortality tables for males based on 2000-2006 experience from UK self-
administered pension schemes. Source: http://www.actuaries.org.uk/research-and-resources/documents/

s1pml-all-pensioners-excluding-dependants-male-lives.
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define the variable Sellat,n for cash and stocks. Then the optimization problem consists of the following

constraints: the budget constraint, the inventory constraint, the annuitization constraint, and the non-

negativity constraint.

In the budget constraint we equal the incoming payments (the initial wealth, the cash-flows from the

annuities, and the cash-flows from sales) to the outgoing payments (consumption and the purchase of

new assets),

Ct,n = w01{t=t0} +
∑
a∈A

cfat,nHold
a
t−1,n− +

∑
a∈K

priceat,nSell
a
t,n1{t<T} −

∑
a∈A

priceat,nBuy
a
t,n1{t<T},

t = t0, . . . , T, n ∈ Nt, (17)

and calculate the value of savings upon horizon, equal to the sum of the cash-flows provided by the

annuities held in the portfolio, and of the market value of these annuities,5

Wt,n =
∑
a∈A

(
cfat,n + priceat,n

)
Holdat−1,n− , t = T, n ∈ NT . (18)

The nominal and real interest rates, and thus annuity prices and income are the parameters in the model

calculated based on the scenario tree,

cfNt,n = cfNt−1,n− , t = t0, . . . , T, n ∈ Nt, (19)

cfRt,n = cfRt−1,n− · erpin(t−1,t), t = t0, . . . , T, n ∈ Nt, (20)

cfVt,n = cfVt−1,n− · ern(t−1,t)−r̄, t = t0, . . . , T, n ∈ Nt, (21)

and

priceNt,n =

ω−x−t∑
s=t+1

s−tpx+t · e−y(βN
t,n,s)(s−t), t = t0, . . . , T, n ∈ Nt, (22)

priceRt,n =

ω−x−t∑
s=t+1

s−tpx+t · e−y(βR
t,n,s)(s−t) · It,n, t = t0, . . . , T, n ∈ Nt, (23)

priceVt,n =

ω−x−t∑
s=t+1

s−tpx+t · e−r̄(s−t) · cfVt,n, t = t0, . . . , T, n ∈ Nt. (24)

The inventory constraint keeps track of the current holdings in a given asset,

Holdat,n = Holdat−1,n−1{t>t0} +Buyat,n − Sellat,n1{a∈K}, t = t1, . . . , T − 1, n ∈ Nt, a ∈ A.(25)

We further add a terminal condition reflecting annuitization, i.e. the retiree converts all the savings held

on the bank account and in stocks into annuities the latest upon time T − 1, so that upon horizon his

wealth consists only of annuities,

Holdat,n = 0, t = T − 1, n ∈ Nt, a ∈ K. (26)

5By definition of annuities in arrears, the current price does not include the current cash-flows from the annuities.
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Finally, we add the non-negativity constraints on the purchase, hold and sale variables,

Buyat,n ≥ 0, Holdat,n ≥ 0, t = t0, . . . , T − 1, n ∈ Nt, a ∈ A, (27)

Sellat,n ≥ 0, t = t0, . . . , T − 1, n ∈ Nt, a ∈ K, (28)

implying that we do not allow for having a short position in any asset, or for borrowing money.

Loss disutility minimization The second objective is to minimize a disutility function, written in

terms of a loss function. This objective penalizes squared deviations from a certain target Ĉ, which

defines the level of consumption necessary to cover standard living costs. While some retirees may

consider penalizing the deviations above the target as a drawback, doing so prevents the retiree from

exposure for unnecessary financial risk. Once the target is achieved, the individual follows a more risk-

averse strategy. At each period the target Ĉ is multiplied by the RPI index, thus accounting for an

increase in living costs. The objective is as follows:

min Et0,w0

[ ∞∑
t=t0

tpx L (t, Ct)

]
, L (t, Ct) = e−υt

(
Ĉ · It − Ct

)2

, (29)

where υ is the subjective discount factor reflecting how important minimizing current deviations from

the target is relatively to minimizing deviations in the future, and tpx is the survival probability until

time t of the retiree aged x. A similar loss function has been considered in, e.g., Gerrard et al. (2004) and

Di Giacinto et al. (2014), who applied a dynamic programming approach to find the optimal solution in

a closed form. However, none of these studies optimize over the target, nor do they include inflation risk

and inflation-linked products.

To implement this objective in a multi-stage stochastic programming framework, we rewrite Eq. (29)

to a nodal representation:

min

T∑
t=t0

tpx
∑
n∈Nt

L (t, Ct,n) · prn, L (t, Ct,n) = e−υt
(
Ĉ · It,n − Ct,n

)2

. (30)

To ensure computational tractability, we sum the disutility function up to a finite horizon T . Thus,

similarly to the CRRA utility maximization, the retiree makes consumption and investment decisions

only up to time T − 1, whereas from T and onwards he consumes the income from the annuities that he

has purchased during the period [t0, T − 1].

The model constraints are identical to the case of the power utility maximization. Specifically, the

model comprises the budget constraint (17), the inventory constraint (25), the annuitization constraint

(26), the non-negativity constraints (27–28), and a constraint defining the risk aversion of the retiree

Ĉ ≥ cmin, (31)

where cmin is a lower limit for the target defined by the individual. The higher the target, the less risk

averse the retiree is.
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5 Numerical results

The scope of this paper is to investigate whether inflation-linked annuities are a good investment, and if

so, under which circumstances. Afterwards, we search for an optimal investment strategy in the absence

of inflation-linked products, and analyze the corresponding level of consumption.

We choose the intervals of length ∆t = 5 years between the decision stages, and the horizon T = 20

years. Accordingly, the investor makes consumption and investment decisions, starting at his retirement

(assumed age 65), and until he reaches age 85. Upon that age and until his death, his consumption

is equal to the cash-flows received from the whole life annuities purchased during the first 20 years of

retirement.

Among the available assets we consider a bank account with a floating spot rate y(βNt , 5), the MSCI

UK stock index, and three types of whole life annuities in arrears: nominal, inflation-linked (real) and

variable annuities with r̄ = 5%. We assume that all the annuities are fairly priced (equations (19)–(24)),

and provide cash-flows every fifth year, starting in the period following the purchase and ending upon the

individual’s death. The cash-flows from nominal annuities are constant (in nominal terms), whereas the

cash-flows from real and variable annuities vary with inflation and stock returns. In addition, the prices

of all annuities vary across scenarios due to changes in stock returns, the inflation index, and nominal

and real yield curves. Table 2 shows the expected prices and cash-flows in nominal terms of each annuity,

and their development over time for the first 20 years after retirement. Upon retirement the cheapest

product is the variable annuity, whereas the most expensive product is the real annuity.

Prices (in £), E[priceat ] Cash-flows (in £), E[cfat ]
Annuity 65 70 75 80 85 65 70 75 80 85
Nominal annuities 2.02 1.63 1.22 0.85 0.54 0.00 1.00 1.00 1.00 1.00
Real annuities 2.86 2.64 2.30 1.87 1.40 0.00 1.22 1.48 1.80 2.20
Variable annuities 1.65 1.54 1.37 1.13 0.85 0.00 1.17 1.37 1.62 1.91

Table 2: Expected prices and cash-flows in nominal terms from whole life annuities in arrears paying
cfat,n every fifth year.

Break-even age Towler (2013) argues that 95% of British retirees do not bother to protect their savings

against inflation by purchasing real annuities, and that a possible explanation for such behaviour is that

retirees find inflation-linked products too expensive. Before deciding which annuity to buy, individuals

often compare the payout from different products. The cash-flows from real annuities are always lower

for some years after the purchase than the cash-flows from nominal annuities with constant payments,

and it may take many years to see the benefits of real annuities. To exemplify, given our choice of

parameters, for a lump sum of £100 the retiree can purchase 49.5 units of nominal annuities or 35 units

of real annuities. The income upon age 70 from real annuities is £42.5 (35 ·1.22), which is 15% lower than

from nominal annuities with constant payments. Given a realized inflation equal to E[rpit] = 3.92%, it

will take 14 years before the smaller payouts from inflation-linked annuity exceed the fixed rate payouts.

Fig. 4 shows the accumulated payouts from both annuities. We observe that the break-even age (i.e. the

time when the payouts cross) is around 79 years. If the realized inflation rate is lower than expected, the

individual has to wait even longer for his payments to exceed those from the nominal annuity.6

6The inflation target range of the Bank of England is between 1 and 3%, see http://www.bankofengland.co.uk/

monetarypolicy/Pages/framework/framework.aspx.
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Figure 4: The accumulated payout in real terms from a nominal annuity with constant payments and
from an inflation-linked annuity, both purchased upon retirement and paid in arrears every fifth year,
given £100 invested upon retirement.

Optimization-based results Looking at the break-even age, not surprisingly the individuals feel

reluctant to purchase a real annuity. Therefore, to investigate whether these products are beneficial for

individuals, we consider an optimization-based approach.

As described in the previous section, we study two different objective functions implying different

consumption and investment decisions. We implement the multi-stage stochastic models in GAMS 24.1.3.

We use MOSEK 7.0.0.75 to solve the power utility maximization problem, and CPLEX 12.5.1.0 to solve

the loss minimization problem. The scenario tree has four stages, each with a branching factor of 14 (which

is the minimum number of branches providing enough uncertainty without arbitrage opportunities).

Consequently, the number of scenarios in the tree is equal to 144 = 38, 416. The running time on a Dell

computer with an Intel Core i5-2520M 2.50 GHz processor and 4 GB RAM is approximately 1.5 minutes.

To get an economic intuition for the optimal decisions (which are non-linear in the state variables), we

follow Koijen et al. (2011), and approximate the strategy using linear decision rules. We run multilinear

regressions to examine the optimal conditional and unconditional asset allocation, however, in contrast

to the mentioned study, we investigate how the optimal decisions are affected by conditional future state

variables relatively to the current state. Among the expected state variables of the successor nodes, we

consider stock returns and changes in the level of inflation, long-term real, and long-term nominal interest

rates:

Y 1
t,n = E[rt+1], E[rt+1] =

∑
n+∈Nt+1

rt+1,n+ · prn+ ,

Y 2
t,n = E[rpit+1]− rpit,n, E[rpit+1] =

∑
n+∈Nt+1

rpit+1,n+ · prn+ ,

Y 3
t,n = E[y(βRt+1, 30)]− y(βRt,n, 30), E[y(βRt+1, 30)] =

∑
n+∈Nt+1

y(βRt+1,n+ , 30) · prn+ ,

Y 4
t,n = E[y(βNt+1, 30)]− y(βNt,n, 30), E[y(βNt+1, 30)] =

∑
n+∈Nt+1

y(βNt+1,n+ , 30) · prn+ .

We further normalize the state variables

Ỹ jt,n =
Y jt,n − E(Y jt )

σ(Y jt )
, j = 1, . . . , 4,
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where Y jt is a vector of the j-th state variable at all nodes assigned to stage t, so that we can approximate

the optimal decisions consumption by

Ct,n
cfat,nHold

a
t−1,n− + priceat,nSell

a
t,n

≈ αC,0t +

4∑
j=1

αC,jt Ỹ jt,n, t = t0, . . . , T − 1, n ∈ Nt,

priceat,n(Buyat,n − Sellat,n)

It,n
≈ αa,0t +

4∑
j=1

αa,jt Ỹ jt,n, t = t0, . . . , T − 1, n ∈ Nt, a ∈ A.

The first equation defines the consumption relative to the retirement income, which consists of the cash-

flows from the purchased annuities and the cash-flows from selling cash and stocks. The second equation

defines the total traded amount at time t equal to the difference between the purchase and sale amount

of a given asset in real terms (recall that Sellat,n = 0 for all the annuities). Accordingly, the terms

αC,0t and αa,0t are the unconditional relative consumption and traded amount, and the slope coefficients

αC,jt and αa,jt are the change in the corresponding variables for a one standard deviation increase in the

corresponding j-th state variable.

Power utility maximization Figure 5a shows the expected optimal consumption and retirement

income for an individual with risk aversion γ = −7 and γ = −2. Consistently with Yaari (1965), in the

absence of a bequest motive the individual holds his assets in life contingent annuities rather than in

cash and stocks, and consistently with Milevsky and Young (2007), he does not delay his annuitization

decision, but purchases annuities as soon as he seizes a chance to do so. In particular, he allocates his

wealth mainly to two types of annuities: real and variable. As also shown in Table 3, the ratio between the

assets varies with the risk aversion. The more risk averse retiree (γ = −7) allocates 68% of the portfolio

to real annuities and 30% to variable annuities, whereas the less risk averse retiree (γ = −2) allocates,

respectively, 29% and 71%. Thus, in line with Campbell and Viceira (2001), Koijen et al. (2011), and

Han and Hung (2012)—the more risk averse the investor, the more he is concerned about the uncertainty

of his real income. In addition, as also shown in Koijen et al. (2011), the allocation to nominal annuities

is marginal for all levels of γ.

The more risk averse individual expects a 5-year consumption level upon retirement of £29.7, and this

amount decreases over time to £24 upon survival until age 110 (see Fig. 5a). The less risk averse retiree

consumes initially £33.0, then he increases his consumption until horizon T , and decreases afterwards

to obtain £23.5 upon age 110. Looking at the volatility of consumption, we conclude that it varies

significantly with each scenario. Consumption is approximately twice as volatile for the retiree with

γ = −2 than for γ = −7, and its standard deviation at age 85 is as high as £21.4.

We further observe that during retirement the individual consumes almost the entire cash-flow from

the annuities (the black line indicating consumption on Fig. 5a is nearly as high as the bars showing

the annuity payouts and cash-flows from the sales). Table 4 illustrates these findings in detail. Upon

retirement, the less risk averse individual consumes αC,0t0 = 33% of his savings (£33), and spends the rest

on the purchase of real (£19.4) and variable (£47.6) annuities. At the later stages, the unconditional

consumption is as high as αC,0t = 98% of the retirement income, and increases to 100% per one standard

deviation when the retiree expects high stock returns in the next period (αC,1t = 2%), and to 99% per

one standard deviation when he expects an increase in real interest rates (αC,4t = 1%). Whenever he

anticipates a decrease in stocks and real interest rates, he consumes less and spends the residual cash-flow

primarily on the purchase of real annuities.

Nevertheless, during retirement the unconditional purchase amount of any of the assets is marginal
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(a) Power utility maximization, ρ = 0.04, γ = −7 (left) and γ = −2 (right).
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(b) Disutility minimization, υ = 0.0, Ĉ ≥ 25.9 (left) and Ĉ ≥ 30 (right).

Figure 5: Expected optimal consumption and retirement income in real terms (in £). Retirement income
consists of the cash-flows from the annuities and the amount earned from selling cash and stocks.

(αa,jt is below £2), which indicates that the main investment and consumption decisions are made upon

retirement. Afterwards the individual makes only small re-adjustments to the portfolio. Konicz et al.

(2014b) show that when a retiree has access to immediate and deferred annuities, both with different

maturities, he never consumes the entire cash-flows from annuities, but keeps a certain amount for

rebalancing purposes. In addition, he invests in liquid assets (stocks and bonds) and explores time-varying

investment opportunities more frequently when he has a bequest motive. In this study we consider only

life long immediate annuities and no bequest motive, therefore we observe a different behaviour of a

retiree.

Disutility minimization A second objective that we analyze is the minimization of the deviations

from a target consumption Ĉt, which is adjusted to inflation. We allow the target to be a variable in

the program, but to account for risk aversion we set a lower limit on this target. The higher the limit,

the more aggressive the investment strategy, and the lower the risk aversion. In particular, we define the

retiree to be risk averse when he chooses his target to be at least equal to the cash-flows from the real

annuities, i.e. Ĉ = 25.9 (£). A less risk averse retiree chooses any target higher than this amount.
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Power utility maximization
γ = −7 γ = −2

65 70 75 80 65 70 75 80

Asset allocation

Nominal 0 1 1 1 0 1 1 1
Real 68 69 70 70 29 31 33 34
Variable 30 30 29 29 71 69 66 65
Cash 2 0 0 0 0 0 0 0
Stocks 0 0 0 0 0 0 0 0

Consumption
E[Ct] 29.7 29.6 29.1 28.5 33.0 33.3 33.5 33.6
σ[Ct] 0.0 4.0 6.1 9.7 0.0 9.0 13.6 21.4

Disutility minimization
Ĉ ≥ 25.9 (£) Ĉ ≥ 30 (£)

65 70 75 80 65 70 75 80

Asset allocation

Nominal 0 0 0 0 0 1 1 1
Real 100 100 100 100 91 91 89 88
Variable 0 0 0 0 6 8 9 9
Cash 0 0 0 0 3 1 0 1
Stocks 0 0 0 0 0 0 1 0

Consumption
E[Ct] 25.9 25.9 25.9 25.9 24.7 26.4 27.4 28.6
σ[Ct] 0.0 0.0 0.0 0.0 0.0 1.3 1.4 2.1

Table 3: The expected optimal asset allocation (rounded to the nearest percent) and consumption (in £)
under the power utility maximization with ρ = 0.04 and the disutility minimization with υ = 0.

Figure 5b shows that, similarly to the power utility maximization, the primary assets in the portfolio

are the real and variable annuities. The optimal investment strategy for Ĉ ≥ 25.9 (£) comprises 100%

in real annuities, implying the optimal target level equal to the lower bound. Table 3 shows that the

consumption is constant in real terms (has zero volatility), and the target is achieved at every single

scenario. This result further shows that real annuities are the only products that give a perfect hedge

against inflation, and investing only in inflation-linked annuities is a risk-free investment in real terms.

To investigate the optimal decisions for a less risk averse retiree, we increase the target consumption

by choosing Ĉ ≥ 30 (£). We observe that his investment strategy is more aggressive (he invests a small

percentage of the portfolio (6-9%) in variable annuities), and the resulting consumption is on average

higher but also more volatile. The optimal solution is a trade-off between trying to reach the target and

minimizing squared deviations from the target. Consequently, as reaching the higher target implies more

aggressive investment strategy and more volatile consumption, the retiree consumes on average less than

the target.

Similarly to the power utility maximization, the main investment decisions are made upon retirement.

While the more risk averse retiree does not make any decisions at all during retirement, the less risk averse

individual re-adjusts the portfolio by purchasing small amounts of all available assets. In particular, from

Table 4 we read that upon age 70 and 75, the retiree trades mainly stocks (αS,0t = 3.7 (£)), and that he

sells them whenever expecting low stock returns and a decrease in inflation, real and nominal returns.

Comparing the consumption and investment decisions in the disutility minimization framework and in the

power utility maximization framework, we find that the latter leads on average to much higher, though

more volatile consumption (which is achieved by following a significantly more aggressive investment

strategy).

No access to inflation-linked annuities The results from the considered optimization models clearly

show that, independently of their risk aversion and objective function, retirees should invest in real
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Relative Purchase – Sale (in £)
Consumption (in %) Nominal Real Variable Cash Stocks

Power utility maximization, γ = −7

t = t0 αa,0t 30 0.0 47.9 21.1 1.2 0.0

t = t1, t2

Constant, αa,0t 99 0.8 1.1 0.0 0.0 0.5

Stock returns, αa,1t 1 0.1 -0.5 0.0 0.0 -0.3

Inflation, αa,2t 0 -0.1 -0.1 0.0 0.0 0.0

Real returns αa,3t 0 0.2 -0.1 0.0 0.0 0.0

Nominal returns, αa,4t 0 -0.4 -0.2 0.0 0.0 0.1

Power utility maximization, γ = −2

t = t0 αa,0t 33 0.0 19.4 47.6 0.0 0.0

t = t1, t2

Constant, αa,0t 98 1.2 1.7 0.4 0.0 0.0

Stock returns, αa,1t 2 -0.4 -1.5 0.5 0.0 0.0

Inflation, αa,2t 0 0.3 -0.2 -0.1 0.0 0.0

Real returns αa,3t 1 0.1 -0.5 0.3 0.0 0.0

Nominal returns, αa,4t 0 -0.1 -0.5 0.4 0.0 0.0

Disutility minimization, Ĉ ≥ 25.9 (£)

t = t0 αa,0t 26 0.0 74.1 0.0 0.0 0.0

t = t1, t2

Constant, αa,0t 100 0.0 0.0 0.0 0.0 0.0

Stock returns, αa,1t 0 0.0 0.0 0.0 0.0 0.0

Inflation, αa,2t 0 0.0 0.0 0.0 0.0 0.0

Real returns αa,3t 0 0.0 0.0 0.0 0.0 0.0

Nominal returns, αa,4t 0 0.0 0.0 0.0 0.0 0.0

Disutility minimization, Ĉ ≥ 30 (£)

t = t0 αa,0t 25 0.0 68.4 4.7 2.2 0.0

t = t1, t2

Constant, αa,0t 96 0.9 1.1 0.9 0.2 3.7

Stock returns, αa,1t 1 0.5 -0.1 0.1 -0.2 -1.4

Inflation, αa,2t 0 -0.4 0.0 0.1 -0.1 -0.9

Real returns αa,3t 0 0.3 0.1 0.1 0.0 -1.0

Nominal returns, αa,4t 0 0.4 0.1 0.1 -0.1 -0.5

Table 4: Regression coefficients indicating the conditional and unconditional optimal consumption relative
to the retirement income (in %) and conditional and unconditional optimal traded amount (in £, given
that the individual trades at all).

annuities. Nevertheless, having in mind that 95% of British retirees are reluctant to purchase inflation-

linked annuities, we explore how they should optimally allocate their savings without investing in real

annuities. In particular, we solve the same two optimization problems, but with variable BuyRt,n set to

zero.

Figures 6a and 6b show the results for the individual who maximizes the expected utility of con-

sumption, and who penalizes the deviations from the target, respectively, under the assumption of zero

investment in inflation-linked annuities. We observe that the individual tries to hedge inflation risk by

allocating his wealth primarily to variable and nominal annuities. The disutility minimizing individual

invests furthermore a small amount of savings in stocks and cash (see also Table 5).

In most of the considered cases, retirees who decide not to allocate their savings to real annuities face

lower retirement income. The only exception is the power utility maximizing individual with γ = −2, who

achieves a higher expected consumption, though at the price of employing a more aggressive investment

strategy (a 10% higher allocation to variable annuities than if he invested in real annuities). Moreover,
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(a) Power utility maximization, ρ = 0.04, γ = −7 (left) and γ = −2 (right).
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(b) Disutility minimization, υ = 0.0, Ĉ ≥ 25.9 (left) and Ĉ ≥ 30 (right).

Figure 6: Expected optimal consumption and retirement income in real terms (in £) without investment
in real annuities. Retirement income consists of the cash-flows from the annuities and the amount earned
from selling cash and stocks.

the lack of real annuities in the portfolio leads to more volatile retirement income.

The regression results on the relative consumption and on the traded amount, both presented in

Table 6, show that the lack of investment in inflation-linked annuities requires more frequent rebalancing.

Accordingly, to benefit from time-varying investment opportunities, the retiree has to sacrifice some of

his consumption. To exemplify, the disutility minimizing retiree consumes 80% of his retirement income

(in contrast to 100% for Ĉ ≥ 25.9 (£) and 96% for Ĉ ≥ 30 (£), if he invested in real annuities), and

spends the residual amount on the purchase of nominal annuities, cash and stocks. Independently of risk

aversion, he buys cash and sells the stocks when he expects high stock returns and an increase in real

and nominal interest rates. Under such market conditions, he also consumes less, as his goal is to smooth

the consumption by penalizing both positive and negative deviations from the target. This behaviour

differs from the behaviour of the power utility maximizing retiree, who consumes more when expecting

high stock returns and an increase in real returns.
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Power utility maximization
γ = −7 γ = −2

65 70 75 80 65 70 75 80

Asset allocation

Nominal 69 67 64 62 18 20 21 22
Real 0 0 0 0 0 0 0 0
Variable 31 33 36 38 82 80 79 78
Cash 0 0 0 0 0 0 0 0
Stocks 0 0 0 0 0 0 0 0

Consumption
E[Ct] 28.7 28.7 28.8 28.0 32.6 33.9 35.0 36.2
σ[Ct] 0.0 3.8 6.1 11.2 0.0 10.2 15.8 25.3

Disutility minimization
Ĉ ≥ 25.9 (£) Ĉ ≥ 30 (£)

65 70 75 80 65 70 75 80

Asset allocation

Nominal 92 89 86 82 81 81 77 72
Real 0 0 0 0 0 0 0 0
Variable 4 6 8 10 10 14 18 21
Cash 3 4 4 6 9 5 2 5
Stocks 0 1 2 3 0 0 3 2

Consumption
E[Ct] 24.0 24.6 25.0 25.2 23.7 25.6 26.9 27.9
σ[Ct] 0.0 0.8 0.9 1.9 0.0 2.1 2.3 4.1

Table 5: The expected optimal asset allocation (rounded to the nearest percent) and consumption (in
£) under the power utility maximization with ρ = 0.04 and the disutility minimization with υ = 0, and
given no investment in real annuities.

6 Conclusions and future work

This paper studies optimal consumption and investment decisions for an uncertain lived retiree facing

inflation risk. Having access to nominal, real, and variable annuities, as well as a bank account and stocks,

the individual optimizes his decisions under two different objectives: 1) maximization of the power utility

of real consumption, and 2) minimization of the squared deviations from the target that increases with

inflation.

Our findings show that independently of the considered objective function and risk aversion, the

optimal asset allocation comprises real annuities. The second crucial asset in the portfolio are variable

annuities, and their weight increases with the risk tolerance. Our results are thus consistent with the

literature investigating the demand on the inflation-linked products—they are beneficial for individuals.

Furthermore, the results indicate that the most important decisions are made upon retirement, and even

though the individual is allowed to rebalance the portfolio, he makes only small re-adjustments during

the retirement period. In addition, we find that the allocation to nominal annuities, cash, and stocks, is

marginal, unless the retiree chooses not to invest in real annuities at all. In such a case, he tries to hedge

his portfolio against inflation by purchasing primarily nominal and variable annuities. Consequently, the

real consumption is more volatile than if he invested in real annuities, and in most of the cases lower. The

lack of real annuities in the portfolio also requires more frequent rebalancing, leading to an investment

strategy that may be too complicated for many retirees.

The model could be improved in multiple ways. Some straightforward extensions include adding a be-

quest motive, additional contributions, and/or other annuities such as joint life or nominal annuities with

different payouts. Among more advanced improvements, an inclusion of other inflation-linked products,

e.g. those offering a deflation floor to the initial cash-flow, would definitely be worth to investigate.

19



Relative Purchase – Sale (in £)
Consumption (in %) Nominal Variable Cash Stocks

Power utility maximization, γ = −7

t = t0 αa,0t 29 49.5 21.8 0.0 0.0

t = t1, t2

Constant, αa,0t 92 2.8 0.0 1.8 0.0

Stock returns, αa,1t 1 -0.5 0.0 0.7 0.0

Inflation, αa,2t 0 -0.1 0.0 -0.1 0.0

Real returns αa,3t 1 0.1 0.0 0.6 0.0

Nominal returns, αa,4t 0 0.0 0.0 0.6 0.0

Power utility maximization, γ = −2

t = t0 αa,0t 33 12.4 54.9 0.0 0.0

t = t1, t2

Constant, αa,0t 94 2.8 0.0 1.5 0.0

Stock returns, αa,1t 4 -1.4 0.0 -0.2 0.0

Inflation, αa,2t 0 -0.1 0.0 0.0 0.0

Real returns αa,3t 0 -0.3 0.0 0.2 0.0

Nominal returns, αa,4t 0 -0.1 0.0 0.3 0.0

Disutility minimization, Ĉ ≥ 25.9 (£)
t = t0 αat 24 70.2 3.3 2.6 0.0

t = t1, t2

Constant, αa,0t 80 4.6 0.0 2.1 3.3

Stock returns, αa,1t 1 0.2 0.0 1.7 -1.5

Inflation, αa,2t 0 -0.4 0.0 -0.2 0.6

Real returns αa,3t -2 0.8 0.0 0.6 -1.0

Nominal returns, αa,4t -1 0.2 0.0 1.4 -0.9

Disutility minimization, Ĉ ≥ 30 (£)

t = t0 αa,0t 24 61.5 7.7 7.1 0.0

t = t1, t2

Constant, αa,0t 81 5.0 0.0 3.9 3.6

Stock returns, αa,1t -1 -0.2 0.0 1.7 -1.9

Inflation, αa,2t 1 0 0.0 -0.1 0.0

Real returns αa,3t -2 0.2 0.0 0.9 -1.2

Nominal returns, αa,4t -1 0.5 0.0 1.4 -0.7

Table 6: Regression coefficients indicating the conditional and unconditional optimal consumption relative
to the retirement income (in %) and conditional and unconditional optimal traded amount (in £, given
that the individual trades at all), given no investment in inflation-linked annuities.
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Attié, A. P. and Roache, S. K. (2009). Inflation hedging for long term investors. Technical report,
International Monetary Fund.

Barberis, N. C. (2000). Investing for the long run when returns are predictable. The Journal of Finance,
55:225–264.

Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Programming. Springer Series in
Operations Research and Financial Engineering. Springer, corrected edition.

Blake, D., Wright, D., and Zhang, Y. (2013). Target-driven investing: Optimal investment strategies in
defined contribution pension plans under loss aversion. Journal of Economic Dynamics and Control,
37(1):195–209.

Brennan, M. and Xia, Y. (2002). Dynamic asset allocation under inflation. Journal of Finance,
57(3):1201–1238.

20



Brown, J. R., Mitchell, O. S., and Poterba, J. M. (2000). Mortality risk, inflation risk, and annuity
products. NBER Working Papers 7812, National Bureau of Economic Research, Inc.

Brown, J. R., Mitchell, O. S., and Poterba, J. M. (2001). The role of real annuities and indexed bonds
in an individual accounts retirement program. Risk aspects of investment-based social security reform,
pages 321–369.

Cairns, A. (2000). Some notes on the dynamics and optimal control of stochastic pension fund models
in continuous time. ASTIN Bulletin, 30(1):19–55.

Campbell, J. Y., Chan, Y. L., and Viceira, L. M. (2003). A multivariate model of strategic asset allocation.
Journal of Financial Economics, 67:41–80.

Campbell, J. Y. and Viceira, L. M. (2001). Who should buy long-term bonds? American Economic
Review, 91(1):99–127.

Carino, D. R. and Ziemba, W. T. (1998). Formulation of the Russell-Yasuda Kasai financial planning
model. Operations Research, 46(4):433–449.

Christensen, J. H. E., Lopez, J. A., and Rudebusch, G. D. (2010). Inflation expectations and risk
premiums in an arbitrage-free model of nominal and real bond yields. Journal of Money, Credit and
Banking, 42:143–178.

Cowie, A. (2011). 95pc of private sector pensions have no inflation protection at
all. The Telegraph, http://blogs.telegraph.co.uk/finance/ianmcowie/100012810/

95pc-of-private-sector-pensions-have-no-inflation-protection-at-all/.

Dellinger, J. K. (2006). The Handbook of Variable Income Annuities. Hoboken, NJ : Wiley.

Di Giacinto, M., Federico, S., Gozzi, F., and Vigna, E. (2014). Income drawdown option with minimum
guarantee. European Journal of Operational Research, 234(3):610–624.

Diebold, F. X. and Li, C. (2006). Forecasting the term structure of government bond yields. Journal of
Econometrics, 130:337–364.

Fama, E. (1981). Stock returns, real activity, inflation, and money. American Economic Review,
71(4):545–565.

Ferstl, R. and Weissensteiner, A. (2011). Asset-liability management under time-varying investment
opportunities. Journal of Banking & Finance, 35(1):182 – 192.

Fischer, S. (1975). The demand for index bonds. Journal of Political Economy, 83(3):509.

Gerrard, R., Haberman, S., and Vigna, E. (2004). Optimal investment choices post-retirement in a
defined contribution pension scheme. Insurance: Mathematics and Economics, 35(2):321–342.

Geske, R. and Roll, R. (1983). The fiscal and monetary linkage between stock returns and inflation.
Journal of Finance, 38(1):1–33.

Geyer, A., Hanke, M., and Weissensteiner, A. (2012). Inflation forecasts extracted from nominal and real
yield curves. Working paper. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_

id=1727068.

Gilli, M., Große, S., and Schumann, E. (2010). Calibrating the Nelson-Siegel-Svensson model. COMISEF
Working Paper Series, pages 1–23.

Han, N. and Hung, M. (2012). Optimal asset allocation for DC pension plans under inflation. Insurance:
Mathematics and Economics, 51(1):172–181.

Høyland, K., Kaut, M., and Wallace, S. W. (2003). A heuristic for moment-matching scenario generation.
Computational Optimization and Applications, 24(2-3):169–185.

Høyland, K. and Wallace, S. W. (2001). Generating scenario trees for multistage decision problems.
Management Science, 47(2):295–307.

21

http://blogs.telegraph.co.uk/finance/ianmcowie/100012810/95pc-of-private-sector-pensions-have-no-inflation-protection-at-all/
http://blogs.telegraph.co.uk/finance/ianmcowie/100012810/95pc-of-private-sector-pensions-have-no-inflation-protection-at-all/
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1727068
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1727068


Hyde, D. (2013). The inflation-linked pensions that don’t pay off until you’re 97, leaving retirees £20,000
out of pocket. Time is Money, http://www.thisismoney.co.uk/money/pensions/article-2281283/
The-inflation-linked-pensions-dont-pay-youre-97-leaving-retirees-20-000-pocket.html.

Joyce, M., Lildholdt, P. M., and Sorensen, S. (2010). Extracting inflation expectations and inflation risk
premia from the term structure: A joint model of the UK nominal and real yield curves. Journal of
Banking and Finance, 34(2):281–294.

Koijen, R. S. J., Nijman, T. E., and Werker, B. J. M. (2011). Optimal annuity risk management. Review
of Finance, 15(4):799–833.

Konicz, A. K., Pisinger, D., Rasmussen, K. M., and Steffensen, M. (2014a). A combined stochastic
programming and optimal control approach to personal finance and pensions. OR Spectrum.

Konicz, A. K., Pisinger, D., and Weissensteiner, A. (2014b). Optimal retirement planning with a focus
on single and multilife annuities. Technical report, DTU Management Engineering.

Kwak, M. and Lim, B. H. (2014). Optimal portfolio selection with life insurance under inflation risk.
Journal of Banking and Finance, 46:59–71.

Lee, B. (1992). Causal relations among stock returns, interest-rates, real activity, and inflation. Journal
of Finance, 47(4):1591–1603.

Lütkepohl, H. (2005). Introduction to Multiple Time Series Analysis. Springer.

Milevsky and Young (2007). Annuitization and asset allocation. Journal of Economic Dynamics and
Control, 31(9):3138–3177.

Mulvey, J. M., Simsek, K. D., Zhang, Z., Fabozzi, F. J., and Pauling, W. R. (2008). Assisting defined-
benefit pension plans. Operations Research, 56(5):1066–1078.

Nelson, C. R. and Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business,
60:473–489.

Pedersen, A. M. B., Weissensteiner, A., and Poulsen, R. (2013). Financial planning for young households.
Annals of Operations Research, 205(1):55–76.

Soares, C. and Warshawsky, M. (2003). Research paper no. 2003-01 annuity risk: Volatility and inflation
exposure in payments from immediate life annuities.

Towler, J. (2013). A hard sell: The problem with inflation-linked annu-
ities. IFAonline, http://www.ifaonline.co.uk/ifaonline/feature/2301326/

a-hard-sell-the-problem-with-inflation-linked-annuities.

Yaari, M. E. (1965). Uncertain lifetime, life insurance, and the theory of the consumer. The Review of
Economic Studies, 32(2):137–150.

Zenios, S. (2008). Practical Financial Optimization: Decision Making for Financial Engineers. Wiley.

22

http://www.thisismoney.co.uk/money/pensions/article-2281283/The-inflation-linked-pensions-dont-pay-youre-97-leaving-retirees-20-000-pocket.html
http://www.thisismoney.co.uk/money/pensions/article-2281283/The-inflation-linked-pensions-dont-pay-youre-97-leaving-retirees-20-000-pocket.html
http://www.ifaonline.co.uk/ifaonline/feature/2301326/a-hard-sell-the-problem-with-inflation-linked-annuities
http://www.ifaonline.co.uk/ifaonline/feature/2301326/a-hard-sell-the-problem-with-inflation-linked-annuities


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DTU Management Engineering 
Institut for Systemer, Produktion og Ledelse 
Danmarks Tekniske Universitet 
 
Produktionstorvet 
Bygning 424 
2800 Lyngby 
Tlf. 45 25 48 00 
Fax 45 93 34 35 
 
www.man.dtu.dk 
 
 
 

The paper investigates the importance of inflation-linked annuities to individuals 
facing inflation risk. Given the investment opportunities in nominal, real, and variable 
annuities, as well as cash and stocks, we investigate the consumption and investment 
decisions under two different objective functions: 1) maximization of the expected 
CRRA utility function, and 2) minimization of squared deviations from an inflation-
adjusted target. To find the optimal decisions we apply a multi-stage stochastic 
programming approach. Our findings indicate that independently of the considered 
objective function and risk aversion, real annuities are a crucial asset in every 
portfolio. In addition, without investing in real annuities, the retiree has to rebalance 
the portfolio more frequently, and still obtains the lower and more volatile real 
consumption. 
 


