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Abstract
A practical solution is presented for the design of a non-isolated high voltage DC/AC power converter.
The converter is intended to be used as a class D audio amplifier for a Dielectric Electro Active Polymer
(DEAP) transducer. A simple and effective hysteretic control scheme for the converter (buck with fourth-
order output filter) is developed and analyzed. The proposed design is verified experimentally by a 125
VAR prototype amplifier, capable of delivering a peak output voltage of 240 V within the frequency
range of 100 Hz – 3.5 kHz. A peak efficiency of 87 % is reported.

Introduction:
Sound reproduction systems are commonly build around class D audio amplifiers due to their superior
cost, size and efficiency compared to their linear counterparts [1, 2, 3, 4, 5]. While these audio systems
are dominating the market of sound reproduction, they still suffer from the poor efficiency imposed by
the electrodynamic transducer. An alternative to the electrodynamic transducer is the capacitive trans-
ducer. Capacitive transducers are most known from their usage in electrostatic loudspeakers, however
Dielectric Electro Active Polymers (DEAP) can also be used to form a capacitive transducer [6, 7, 8].
With the goal of creating smaller, cheaper and more efficient audio systems it is proposed to use a class D
amplifier as driver of the capacitive transducer [9, 10]. Class D amplifiers driving a capacitive transducer
without the use of audio or high frequency linked transformers, is an area of research with little to no
publications. This paper addresses the issue of limited frequency response and high series resistance of
capacitive transducers. The focus of the paper is placed upon Dielectric Electro Active Polymer (DEAP)
transducers, however the concept can easily be extended to other capacitive transducers like piezoelectric
ones.

A push DEAP transducer is shown in figure 1, while the measured impedance of the transducer is pre-
sented in figure 2. It is observed from figure 2, that the transducer cannot be expected to act as a capacitor
for frequencies above 100 kHz. This limits the switching frequency significantly, if the output filter is
constructed entirely by an inductor and the DEAP. Film or ceramic capacitors could be placed in parallel
with the DEAP transducer. This will improve the frequency response. However it will also increase
the reactive output power of the amplifier, because the capacitive load is increased. Another concern of
the DEAP transducer is the series resistance. Older versions of the DEAP material [6] exhibited series
resistance up to 50 Ω, while the present versions are specified within the region of 1–10 Ω. The connec-
tion between the DEAP transducer and the surrounding electronics is even more complicated than that
of the film capacitor. DEAP transducers are constructed by printing compliant electrodes on a silicone
membrane. The contact is performed on a surface exposed to significant mechanical stress.



Figure 1: DEAP push transducer.
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(a) Magnitude.
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Figure 2: Measured impedance.

Theory
Due to the high series resistance of the DEAP transducer, the magnitude of the ripple current becomes a
concern. Conduction losses will dominate, if the ripple current becomes to high. This is both a problem
in terms of efficiency, but also because of the reduced lifetime of the contact interface. In order to
estimate the switching frequency required for maintaining sufficiently low current ripple with second-
order and fourth-order output filtering, respectively, consider the Fourier series representing of a pulse-
width modulation signal (D = 0.5)

vPWM(t) =
4VS

π
sin(2π f t)+

4VS

3π
sin(3 ·2π f t) (1)

4VS

5π
sin(5 ·2π f t)+ ... (2)

Using fundamental component analysis it can be assumed that

vPWM(t) ≈ 4VS

π
sin(2π f t) (3)

The transfer function from input voltage to capacitor current for the second-order output filter is

iC(s)
vPWM(s)

=
CDEAPs

CDEAPL1s2 + L
R s+1

(4)

If a signal frequency is applied well above ω0 =
1√

L1CDEAP
, equation (4) can be simplified to

∣∣∣∣
iC( jω)

vPWM( jω)

∣∣∣∣
ω�ω0

∼= 1
L1ω

(5)



The current ripple is found by multipling equation (3) with equation (8)

ΔiC =
2VS

π2L f
(6)

For the fourth-order output filter a similar approach can show that

iC(s)
vPWM(s)

=
CDEAPs

s4L1L2C1CDEAP + s3 L1L2C1
R + s2(L1CDEAP +L1C1 +L2CDEAP)+ s L1+L2

R +1
(7)

∣∣∣∣
iC( jω)

vPWM( jω)

∣∣∣∣
ω�ω0

∼= 1
L1L2C1ω3 (8)

ΔiC =
VS

2L1L2C2π4 f 3 (9)

Consider a case study where VS = 300 V, L1 = 200μH and fSw = 285 kHz, the current ripple through the
DEAP transducer becomes ΔiC = 2·300V

200μH2π285kHz = 1.59 A peak for the 2th order output filter solution.
Assuming L1 = L2 = 200μH and C1 = 100nF , ΔiC = 300V

2·200μH200μH100nFπ4(285kHz)3 = 16.6 mA peak for the
4th order output filter solution. With a worst case series resistance of 10 Ω, the 2th order output filter
solution will yield a loss of 8.43 W, while the loss of the 4th order output filter solution is 0.92 mW. For
an amplifier producing a maximum output power of 125 Var, the 4th order output filter solution becomes
the right choice in terms of efficiency. A formal definition of the efficiency will be given later. Another
benefit of the 4th order output filter solution is the possibility for a film capacitor to be used in the first
LC-filter stage. The high frequency content will then flow through a capacitor with a frequency response
much better than that of the DEAP transducer.

Control
Hysteresis based self-oscillating control schemes have received great interest in class D audio amplifiers
due to the superior loop gain [11, 12, 13]. The switching frequency is defined as

fSw(D) =
D(1−D)

2VHyst
K + tD

(10)

With D been the duty cycle, tD the control-loop delay, vHyst the height of the hysteresis window, and

K = 2VS × step{ lim
s→∞

GCtrl(s)} (11)

For the purpose of designing the self-oscillation control-loop, the controller transfer function must be
defined as

GCtrl(s) =
vCarrier(s)
vPWM(s)

(12)

= KV f b1

vC1(s)
vPWM(s)

+KV f b2

vOut(s)
vPWM(s)

+KC f b1

iL1(s)
vPWM(s)

+KC f b2

iL2(s)
vPWM(s)

(13)

where definitions from figure 3(a) is utilized.
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Figure 3: Prototype class D amplifier with 4th order output filter and control.

Transfer functions
The transfer functions of equation (13) are defined as

vOut(s)
vPWM(s)

=
1

s4L1L2C1C2 + s3 L2L1C1
RP

+ s2(C1L1 +L2C2 +L1C2)+ s L1+L2
RP

+1
(14)

vC1(s)
vPWM(s)

=
s2L2C2 + s L2

RP
+1

s4L1L2C1C2 + s3 L2L1C1
RP

+ s2(C1L1 +L2C2 +L1C2)+ s L1+L2
RP

+1
(15)

iL1(s)
vPWM(s)

=
s4L1L2C1C2 + s3 L2L1C1

RP
+ s2(C1L1 +L1C2)+ s L1

RP

sL1(s4L1L2C1C2 + s3 L2L1C1
RP

+ s2(C1L1 +L2C2 +L1C2)+ s L1+L2
RP

+1)
(16)

iL2(s)
vPWM(s)

=
s2L2C2 + s L2

RP

sL2(s4L1L2C1C2 + s3 L2L1C1
RP

+ s2(C1L1 +L2C2 +L1C2)+ s L1+L2
RP

+1)
(17)

The feedback coefficients defined in figure 3(b) are

KV f b1 =
RV f b2||RC f b1||RC f b2||RV f f

RV f b2||RC f b1||RC f b2||RV f f +RV f b1
(18)

KV f b2 =
RV f b2||RC f b1||RC f b2||RV f f

RV f b2||RC f b1||RC f b2||RV f f +RV f b2
(19)

KC f b1 =
RV f b2||RC f b1||RC f b2||RV f f

RV f b2||RC f b1||RC f b2||RV f f +RC f b1
(20)



KC f b2 =
RV f b2||RC f b1||RC f b2||RV f f

RV f b2||RC f b1||RC f b2||RV f f +RC f b2
(21)

KV f f =
RV f b2||RC f b1||RC f b2||RV f f

RV f b2||RC f b1||RC f b2||RV f f +RV f f
(22)

Design
Using equation (13) and equation (11), the constant K can be derived

K =
2VsKC f b1N1RB1

L1
(23)

It is assumed, that the inner current loop is dominating at the high frequencies.

Experimental results:
A ± 300 V half-bridge based class D amplifier driving a 100 nF load in the midrange region of 0.1-3.5
kHz is used for experimental verification. The amplifier is build around a Si8235 isolated gate driver and
SPA08N80C3 MOSFET’s. Figure 4(a) shows a picture of the prototype amplifier. Design parameters
are presented in Table I, while derived component values are gathered in Table II.

Efficiency
When driving a DEAP transducer it is appropriate to give a formal definition of the term efficiency. The
first order approximation will yield a capacitive load. Accordingly no real power will be delivered to the
load. Efficiency will thus be defined as

η =
POut

POut +PIn
(24)

where POut =
V 2

rms(
1

2π fRe f CDeap

) , is the reactive power delivered to the load, and PIn corresponds to the real

power consumed by the amplifier. This definition of the term efficiency will be used throughout the
paper.

The measured efficiency can be seen in figure 4(b). The efficiency is defined in accordance with equa-
tion 24. Note, that the efficiency at 100 Hz is below 40 %. Because the output voltage is kept fixed with
respect to frequency, the reactive output power will drop inversely proportional with the frequency. At
100 Hz the switching loss becomes comparable with the reactive output power. An efficiency above 80
% is achieved for the frequencies of 1 and 3.5 kHz. Voltage mode control of electrostatic transducers
is preferred for applications where displacement is of concern. Charge mode control ensures greater
linearity at the expense of displacement [14].

Designator Value

Idle switching frequency fSw 285 kHz
Output filter inductance L1 200 uH
Output filter inductance L2 200 uH
Output filter capacitance C1 100 nF
DEAP Capacitance CDEAP 100 nF
Supply voltage ±VS ±300V
Closed loop gain AV 75 V

V

Table I: Design parameters.

Component Value

RB1 110 Ω
RB2 10 Ω
CPI 1.5 nF
RPI 1 kΩ
RCb f1 4 kΩ
RCb f2 4 kΩ
RV f f 2 kΩ
RV f b1 300 kΩ
RV f b2 300 kΩ
R1, R2, R3, R4, R5 and R6 1 kΩ
N1 and N2

√
200nH
980uH ≈ 0.014

Table II: Component values.



(a) Picture of prototype amplifier.
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Figure 4: Prototype amplifier.

Figure 5: THD+N of the prototype for reference frequencies of 100 Hz and 1 kHz.

THD+N
THD+N is measured using an APX525 audio analyzer and a voltage attenuation interface. The voltage
attenuation interface is necessary in order to protect the input-stage of the audio analyzer. Design and
implementation of the voltage attenuation interface is well-described in the literature [10, 15]. Figure 5
gives the measured THD+N as a function of the reference voltage for the frequencies of 100 Hz and 1
kHz. THD+N is below 0.1% over a significant part of the operation range for the reference frequency of
100 Hz. Noise is the dominating factor in the measured THD+N.

Conclusion:
A class D audio amplifier with 4th order output filter for capacitive transducers is proposed and analyzed.
The amplifier addresses the issues of high series resistance and limited frequency response of the capac-
itive transducers, potentially paving the way for increased industry adoption of this highly promising
technology. THD+N below 0.1% is reported for the ± 300 V prototype amplifier producing a maximum
of 125 Var at a peak efficiency of 87 %.
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