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We study theoretically the propagation of large-wave-vector waves (volume plasmon polaritons) in multilayer
hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength
metal-dielectric multilayer (substructure) are modulated (superstructured) on a larger, wavelength scale, the
propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to
photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the
superstructure geometry. When this geometry is periodic, stop bands due to Bragg reflection form within the
volume plasmonic band. When a cavity layer is introduced in an otherwise periodic superstructure, resonance
peaks of the Fabry-Pérot nature are present within the stop bands. More complicated superstructure geometries
are also considered. For example, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic
self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to
be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a
kind of information carrier or for far-field subwavelength imaging.
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I. INTRODUCTION

Metamaterials have attracted avid scientific interest over
the past decade because optical materials with properties rare
or absent in nature can be artificially engineered. Notable
examples include media with negative refraction [1] or giant
optical activity [2] and so-called indefinite media, which
exhibit hyperbolic dispersion relations [3–6]. The latter are
a special case of extreme anisotropy where components
of the diagonalized permittivity tensor have opposite signs
[e.g., ε = diag(εx,εy,εz) with εx = εy < 0, εz > 0 for uniaxial
anisotropic media]. With the introduction of these opposite
signs, the dispersion relation

ω2/c2 = k2
x

/
εz + k2

y

/
εz + k2

z

/
εx,y (1)

changes from one of a conventional elliptical form to one of
an exotic hyperbolic form [see Figs. 1(a) and 1(b)].

In the idealization that such a dispersion relation holds for
all wave vectors, the isofrequency surface in the dispersion
relation becomes unbounded [Fig. 1(b)]. As a result, waves
with very large wave vectors (k2 � εx,y,zω

2/c2), which would
normally be evanescent in any isotropic medium, can become
propagating. Information carried by these high-k modes with
anomalously small wavelength 2π/k can be used for far-
field subwavelength imaging, as in the recent proposal of
a hyperlens [7]. In addition, a multitude of high-k modes
greatly increases the local photonic density of states in the
indefinite medium, bringing about a variety of new physical ef-
fects including broadband spontaneous emission enhancement
[8,9], anomalous heat transfer beyond the Stefan-Boltzmann
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limit [10], and an optical tabletop simulation platform for
space-time phenomena such as metric signature transitions
[11,12].

Practical realization of indefinite media has been achieved
over the past few years in the form of hyperbolic metamaterials
(HMMs), which are highly anisotropic, subwavelength metal-
dielectric composites. Two geometries of HMMs have been
preferred so far due to their simplicity in both modeling
and fabrication. They are (i) metallic nanorod arrays em-
bedded in a dielectric host [13–15] and (ii) metal-dielectric
multilayers [8,9] shown in Fig. 1(c). In both structures, the
behavior expected for indefinite media was experimentally
confirmed [8,14], opening up many areas of theoretical and
experimental research (for recent reviews see [16,17] and
references therein). The finite size of the structure elements
(rods or layers) puts an upper limit on the wave vectors k

that still satisfy Eq. (1) [8,18,19]. Still, the existence of such
waves in HMMs has been clearly demonstrated [20,21]. Since
these waves underlie the operation of a hyperlens and are
crucial to other exotic physical properties of HMMs, it is very
important to understand the physical nature of these waves and
investigate the possible means of controlling their excitation
and propagation.

The metal-dielectric composition of HMMs naturally leads
one to suspect that high-k modes are plasmonic in nature.
Even though the exact mechanism of their formation has been
debated [22,23], it is generally accepted that high-k propagat-
ing waves must originate from surface plasmon excitations
at individual metal-dielectric boundaries [20]. Because of
this, names such as multilayer plasmons [24], Bloch plasmon
polaritons [20,25], or volume plasmon polaritons (VPPs) [21]
have been used by various groups. In our recent work [26]
it was shown that VPPs originate from coupling between
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FIG. 1. (Color online) Dispersion relation of (a) a conventional
anisotropic medium (εx,y,z > 0) with ellipsoidal isofrequency surface
and (b) an indefinite medium (εx,y < 0 and εz > 0) with hyper-
boloidal isofrequency surface. (c) Schematic of a periodic metal-
dielectric multilayer with the wave-vector decomposition k = wẑ +
κ x̂ used in Sec. II (schematic in which both w and k can be complex).
(d) Schematic example of a multiscale metal-dielectric HMM, which
is the main object of study in this paper.

short-range surface plasmon polaritons in the individual metal
layers.

In order to utilize the full potential of VPPs as sub-
wavelength information carriers for hyperlensing and other
applications, it is necessary to understand how these waves can
be guided and otherwise manipulated. A remarkable thing to
observe is that they are bulk propagating waves, so they should
be subject to the photonic-band-gap (PBG) effects similar to
all other kinds of propagating waves. For an idealized model
of homogeneous indefinite medium, a photonic structure can
be imagined by imposing a modulation of medium parameters
(e.g., εx,y and εz), with the PBG properties depending on the
geometry of that modulation. For example, a periodic stepwise
modulation is expected to act as a photonic crystal for VPPs.
In a realistic multilayer HMM, one can similarly envisage
adding a wavelength-scale superstructure to an HMM, which
already has a subwavelength substructure. In such multiscale
HMMs, schematically shown in Fig. 1(d), VPP propagation
is expected to be affected by the superstructure just as
conventional light waves are controlled in photonic crystals.
Just as unprecedented light control can be achieved in PBG
structures, owing to a free choice of geometrical structures
(e.g., periodic, coupled-cavity, quasiperiodic, fractal, etc.)
and parameters, unprecedented control of plasmonic wave
propagation should be possible by choosing an appropriate
superstructure geometry in multiscale HMMs.

In this paper we demonstrate this multiscale approach
by proposing proof-of-concept designs of Bragg reflectors
and Fabry-Pérot resonators for high-k bulk plasmons in
multilayer metal-dielectric HMMs. Formation of PBGs in
periodic multiscale multilayers is clearly seen in the numer-
ically calculated Fresnel reflection coefficients in k space.
Breaking the periodicity in the superstructure is shown to
result in cavity resonant modes. Making the structure totally
nonperiodic increases the degree of freedom in using PBG
effects to control the dispersion properties of HMMs. In
particular, fractal multiscale HMMs are found to exhibit
characteristic self-similar spectral features. Besides showing
that high-k waves can be directly controlled by PBG effects, the

proposed approach is useful in designing HMM-based devices
to engineer and probe the spontaneous emission rate of nearby
atoms in the evanescent-wave domain.

The paper is organized as follows. In Sec. II we review
the theoretical background on wave propagation in metal-
dielectric multilayer HMMs and discuss the dispersion relation
of high-k VPP waves in such multilayers. In Sec. III we
introduce the concept of multiscale HMMs and show that
VPPs can be manipulated by PBG effects. In particular,
we demonstrate Bragg reflection and Fabry-Pérot resonances
for VPPs in several periodic and nonperiodic multiscale ge-
ometries, including practically realizable designs. Section IV
summarizes the paper.

II. VOLUME PLASMON POLARITONS IN MULTILAYER
HYPERBOLIC METAMATERIALS

Consider a subwavelength periodic metal-dielectric mul-
tilayer as shown in Fig. 1(c), where the permittivities of
dielectric and metal are εd = ε′

d + iε′′
d (ε′

d > 0) and εm =
ε′
m + iε′′

m (ε′
m < 0), respectively. The layer thicknesses are dd

for the dielectric and dm for the metal and ρ ≡ dm/(dm + dd )
denotes the metal filling fraction.

Any plane wave existing in such a multilayer can have its
wave vector k represented as a sum of its in-plane component
κ = kx x̂ + ky ŷ and its out-of-plane component w = ±wẑ. The
former is constant across all layers due to the boundary condi-
tions, so κ = |κ | can be conveniently used as a labeling param-
eter for the waves. The out-of-plane component can take the
value ±w in each layer (denoted by the subscript m or d) with

wm,d =
√(

ω

c

)2

εm,d − κ2. (2)

Generally we choose the square root of a complex number√
z such that Im

√
z > 0, taking Re

√
z � 0 if Im

√
z = 0.

Neglecting material absorption for now (ε′′
m,d = 0), we can see

that wd is real for κ <
√

εdω/c, corresponding to propagating
waves within the light cone for the dielectric layers, or purely
imaginary otherwise, corresponding to evanescent waves
outside the light cone. For metal layers below the plasma
frequency, εm < 0, so wm is always imaginary.

If the layer thicknesses are subwavelength, the effective-
medium model is commonly used. In this case, the entire
multilayer is regarded as a homogeneous medium with the
permittivity tensor ε̂eff = diag(εx,εy,εz), where

εx = εy = ρεm + (1 − ρ)εd, ε−1
z = ρε−1

m + (1 − ρ)ε−1
d .

(3)

In such an extremely anisotropic medium, the expression for
w of a p-polarized wave (for which surface plasmons can
propagate along metal-dielectric interfaces) is [27]

weff =
√(

ω

c

)2

εx − εx

εz

κ2. (4)

For layered HMMs one can choose the material parameters
such that εx < 0 and εz > 0 (again, neglecting absorption for
the moment). Then we see that the second term under the
square root in Eq. (4) becomes negative and overrules the first
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FIG. 2. (Color online) Illustration of the Fresnel reflection and
transmission coefficient derivation for (a) a single metal or dielectric
layers as in Eq. (7), (b) a metal-dielectric bilayer as in Eq. (10), and
(c) a semi-infinite periodic metal-dielectric multilayer as in Eq. (11).

term for large enough κ . So the entire expression under the root
becomes positive. Thus, the waves change from evanescent
(imaginary w) to propagating (real w) at κ = κc defined as
weff(κc) = 0.

Continuing to neglect absorption, we consider the ex-
pression of the Fresnel reflection coefficient for a boundary
between a homogeneous dielectric and a medium described
by the permittivity tensor in Eq. (3) [26],

Reff = wdεx − weffεd

wdεx + weffεd

. (5)

In the region of large real κ , for which wd is imaginary, we see
that real (rather than imaginary) weff causes Reff to acquire a
nonvanishing imaginary part [28]. In other words, Im Reff(κ)
is nonzero for those values of κ that correspond to propagating
waves in the effective medium.

This correspondence is physically significant and can be
extended to the case of actual multilayers. On the one hand, the
dispersion relation of propagating Bloch waves in an infinite
periodic metal-dielectric multilayer can be determined from
the transfer-matrix method [29]. The transfer matrix of one
period can be written as

M1 = 1

Tm

[
T 2

m − R2
m Rm

−Rm 1

] [
eiwddd 0

0 e−iwddd

]
, (6)

where the reflection and transmission coefficients of a metal
layer [see Fig. 2(a)] are given by the Airy formulas

Rm = rdm + tdmrmdtmde
2iwmdm

1 − r2
mde

2iwmdm

, Tm = tdmtmde
iwmdm

1 − r2
mde

2iwmdm

;

(7)

the coefficients rdm,md and tdm,md are the interface coefficients
for p-polarized waves determined by the Fresnel formulas

rmd = wmεd − wdεm

wmεd + wdεm

, rdm = wdεm − wmεd

wdεm + wmεd

;
(8)

tmd = 2wm

√
εmεd

wmεd + wdεm

, tdm = 2wd

√
εdεm

wdεm + wmεd

and wm,d are given by Eq. (2). According to Bloch’s theorem,
the normal wave-vector component kB of the propagating
Bloch wave with tangential wave-vector component κ (k2 =
k2
B + κ2) is determined as cos[kB(dm + dd )] = (Tr M1)/2,

resulting in a well-known dispersion relation [22,23,30]

cos[kB(dm + dd )]

= cos(wmdm) cos(wddd ) − 1

2

(
εmwd

εdwm

+ εdwm

εmwd

)
× sin(wmdm) sin(wddd ). (9)

FIG. 3. (Color online) (a) Dispersion relation for high-k Bloch
waves in an infinite metal-dielectric HMM comprising alternat-
ing Ag and epoxy layers (εm = −30.1 + iε′′

m and εd = 2.72 for
λ = 720 nm [30]) with ρ = 0.2 and different layer thicknesses.
(b) Enlarged view of a part of that dispersion relation along with the
imaginary part of the Fresnel reflection coefficient Im Rp

∞ for a semi-
infinite effective multilayer (see the inset) without losses (ε′′

m = 0) and
with losses (ε′′

m = 0.41); the corresponding dependences of Re Rp
∞(κ)

are relatively featureless [28], slowly varying between 1 and 1.5 in
the high-κ range. The dotted lines denote the limiting case of the
homogeneous effective anisotropic medium [Eq. (3)], corresponding
to a multilayer with infinitely thin layers. The horizontal dashed lines
denote the VPP band edges and faint green arrows highlight the
differences in Im Rp

∞ for lossless vs real metal. The shaded areas in
the rightmost plot correspond to a finite (50-period) multilayer as
opposed to an infinite one.

The solution of this equation in the wave-vector space defines
a band of propagating high-k VPP waves [see Fig. 3(a)], which
exists within certain limits κc < κ < κu. The lower band edge
κc is determined by the above-mentioned condition weff(κc) =
0 and coincides with the prediction of the effective-medium
theory. Conversely, the upper band edge κu ∝ (dm + dd )−1 is
associated with the breakdown of that approximation due to
the finite layer thickness [28].

On the other hand, the reflection coefficient of a semi-
infinite multilayer HMM can also be analytically determined.
Applying the Airy formulas (7) one more time to a stack of
two layers [metal and dielectric; see Fig. 2(b)] lets us express
the transmission and reflection of such bilayers in terms of the
single-layer reflection and transmission coefficients as [31]

Rmd = Rm, Rdm = Rme2iwddd , Tmd = Tdm = Tmeiwddd ,

(10)
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with Rm and Tm given by Eq. (7). Since a semi-infinite structure
remains unchanged when its outermost period is removed, its
reflection coefficient R∞ must satisfy a quadratic equation

R∞ = Rmd + TmdR∞Tdm

1 − R∞Rdm

. (11)

Solving this equation and choosing the solution for which the
wave would be decaying, rather than growing, as z increases
[see Fig. 2(c)] we can determine R∞ [32].

In the absence of losses and for κ > (ω/c)
√

εd , we can
see that wm,d are purely imaginary and consequently Rmd,dm

and Tmd,dm are purely real [see Eqs. (7) and (8)]. Then it can
be shown that the existence condition for VPPs in the form
|Tr M1| � 2 coincides with the condition D � 0, where D
is the discriminant of the quadratic equation (11), ensuring
that its roots become complex even though its coefficients
are real. This generalizes the relation between the nonzero
imaginary part of the reflection coefficient at an interface and
the existence of propagating waves beyond the interface in the
evanescent-wave domain from the case of a single interface
[as seen in Eqs. (4) and (5) above and as elaborated in the
Appendix] to the case of a semi-infinite periodic multilayer
HMM. Namely, we find that the imaginary part of R∞ is
nonzero within the VPP band found by Bloch’s theorem.
Indeed, Fig. 3(b) shows that the range where Im R∞ �= 0 is
exactly κc < κ < κu, where propagating high-k VPP waves
were shown to exist. Elsewhere in the high-κ range, Im R∞ =
0 and no propagating solutions are allowed.

Even though rigorously derived for lossless, semi-infinite
multilayers, this criterion is still a useful one if losses are
present (ε′′

m,d �= 0). Figure 3(b) shows that the abrupt appear-
ance of nonzero Im R∞ at the band edges is smeared [28]
because the sharp distinction between evanescent and prop-
agating waves can no longer be made if the materials are
lossy. However, the general argument still persists that Im R∞
is significantly nonzero when the Bloch solutions of the
dispersion equation are propagating.

Moreover, including losses makes it possible to generalize
the relation between nonzero Im R∞ and the existence of
propagating waves inside a finite multilayer structure. Note
first that for lossless finite multilayer structures with κ >

(ω/c)
√

εd we see that all quantities entering the transfer
matrix M1 are real. Hence, the reflection coefficient of such a
multilayer structure must be real too, with the exception of a
discrete set of poles where the reflection coefficient diverges
and its phase becomes indeterminate; these poles are known
to signify the presence of guided modes inside the multilayer.
As the number of layers in the structure increases, the number
of poles grows accordingly, but it is only in the limit of an
infinite multilayer that the transition from a discrete set to a
continuous band can occur, as shown above. When it occurs,
modes that are guided along the layers in a finite multilayer
acquire a real z component of the wave vector [kB as given
by Eq. (9)] and become propagating through the bulk of an
infinite multilayer; it is for this reason that we refer to these
waves as volume plasmon polaritons.

Thus, in the truly lossless case, finite multilayers only
support surface waves with a discrete set of κ > (ω/c)

√
εd ,

whereas infinite multilayers can additionally support bulk
propagating waves (VPPs) in a continuous range of κ .

However, the presence of losses (even very minor ones)
regularizes this opposition, transforming each discrete point
into a narrow peak where Im R(κ) �= 0. When there are
many layers in the structure, some of these peaks typically
merge into a continuous band [see Fig. 3(b)], which is
seen to approach the dependence Im R∞(κ) as the number
of layers increases. Within this VPP band, there are waves
inside the multilayer HMM that are quasipropagating in
the sense that (i) their propagating character is primarily
determined by the infinite-structure dispersion relation and is
only weakly influenced by the number of layers in the structure,
(ii) they undergo a much weaker attenuation than they would
undergo in any homogeneous isotropic medium, and (iii) they
become less attenuated if losses are lowered. In contrast, waves
outside the VPP band remain strongly evanescent regardless
of whether material losses are present. Hence we will be using
the existence of Im[R(κ)] as a footprint, providing evidence
for the existence of high-k waves, or VPPs, in a range of HMM
multilayer structures.

III. MULTISCALE HYPERBOLIC METAMATERIALS

Since VPPs are bulk Bloch plasmonic waves with propa-
gating character, they have to be subject to the PBG effects just
like any other kind of propagating waves. A straightforward
idea is to apply these PBG effects to modulate the properties
of a subwavelength multilayer HMM (in particular, the metal
filling fraction ρ) on a larger length scale [Fig. 1(d)]. To
distinguish the two scales, we will refer to the coarser,
wavelength-scale modulation as the superstructure consisting
of several superlayers; Fig. 4(a) displays two kinds of such
superlayers (denoted A and B) with thicknesses DA,B and
filling fraction ρA,B , respectively. The finer subwavelength
periodic metal-dielectric structure within each superlayer,
which gives rise to HMM properties, is called the substructure.
Thus, each superlayer contains a certain number of subperiods
NA,B = DA,B/(dm + dd ) or twice as many sublayers.

The resulting multiscale multilayer is expected to exert the
same degree of control over VPP waves as the corresponding
photonic multilayers control propagation of conventional
electromagnetic waves. Hence, a periodic arrangement of

FIG. 4. (Color online) (a) Schematic of a multiscale HMM with
periodic geometry, showing the division into the superstructure and
substructure. (b) Dependence of the QW layer thickness DQW/λ on
filling fraction ρ and the target PBG location κ0 according to Eq. (12).
The solid green line denotes the lower VPP band edge κc(ρ) and
the dashed yellow line marks the boundary of the HMM regime
(Re[εx] = 0).
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superlayers, where the layers denoted by A and B simply
alternate, should result in a band gap for VPPs. In a further
analogy with photonic multilayers, this band gap should forbid
the propagation of waves with values of κ around a certain
midgap value κ0, for which the superlayers are close to being
a quarter wave (QW), i.e., their optical thickness should be
close to one-quarter of the wavelength that corresponds to
weff(κ0). In the remainder of this section, we will investigate
the influence of the superstructure geometry on the VPP
propagation in a variety of multiscale HMMs.

A. Bragg reflectors and Fabry-Pérot resonators
with thick-layer superstructure

In order to demonstrate the multiscale concept, we first
consider structures where the superstructure and substructure
length scales are clearly separated, i.e., λ/4 	 DA,B � dm,d

(or NA,B � 1). Keeping in mind that the wavelength of high-k
VPPs, λ 	 2π/k, can be anomalously small compared to the
vacuum wavelength λ0 = ω/c, it can be expected that the
target κ0 should be no more than several times larger than
ω/c. To overcome this apparent contradiction, we determine
the thickness DQW of a model homogeneous layer made of the
effective medium [see Eq. (3)] and satisfying the QW condition
for a given κ0, i.e., a layer whose optical thickness with respect
to a high-kwave with certain parameters equals one-quarter of
its effective wavelength. From Eq. (4),

DQW = λ

4

(
Re

[√
ω2

c2
εx − εx

εz

κ2
0

])−1

. (12)

We will use the term “QW layer” to denote a superlayer with
thickness DQW determined by Eq. (12).

The dependence of DQW on ρ and κ0 is shown in Fig. 4(b).
We are looking for the regime when we can achieve the band
gap for waves with sufficiently large κ0 using QW superlayers
with sufficiently large thickness so that the superlayer can
contain enough subperiods for the effective-medium theory to
be applicable; in other words, we look for the values of ρ for
which DQW/λ remains larger than dm,d/λ (and therefore have a
clear separation of length scales DQW � dm,d ) for sufficiently
large κ0 > κc. It can be seen in Fig. 4(b) that these conditions
are satisfied for the filling fractions slightly above 0.08, for
which εx � 0.

Therefore, the design of a Bragg reflector for VPPs involves
choosing two values of ρ for the superlayers (ρA and ρB) and
then using Eq. (12) to determine the superlayer thicknesses
DA,B . Following the example of Ni et al. [30] and choosing
silver and epoxy as metal and dielectric materials, respectively
(εm = −30.1 + 0.41i, εd = 2.72 for λ = 720 nm), we choose
ρA = 0.1 and ρB = 0.14. To form a band gap at a target
κ0 = 4ω/c, we arrive at DA = 116.4 nm and DB = 65.8 nm,
approximately corresponding to NA = 29 and NB = 16 metal-
dielectric bilayers with dm + dd = 4 nm thickness [Fig. 5(a)].

Such layers would be very difficult to fabricate and
are so thin that it is unlikely bulk optical constants could
be used to characterize them. Nonetheless, as an initial
analysis we theoretically characterize these nominal structures
[Figs. 5(b)–5(g)] to help identify some of the essential physics.
Considering first the semi-infinite superstructure (M = 104

periods in practical calculations) to suppress passband states
and artificially lowering the imaginary part of the metal

FIG. 5. (Color online) (a) Characterization of a multiscale Bragg reflector for high-k waves shown schematically with the default geometry
comprising a superstructure with M = 104 periods of HMM layers with (ρA + ρB )/2 = 0.12, the substructure period dm + dd = 4 nm, and
superlayer thickness NA,B determined from Eq. (12). The top row shows the function Im[R(κ)] for a varying depth of superstructure modulation
(�ρ = ρA − ρB ) for (b) 10% losses in silver (ε′′

m = 0.04), (c) full losses in silver (ε′′
m = 0.41), and (d) full losses in silver compensated by gain in

the epoxy layers as described in [30] (ε′′
m = 0.41 and ε′′

d = −0.04); the dotted line shows the structure with no superstructure (ρA = ρB = 0.12),
with the full high-κ band shown in the inset of (c). The bottom row shows the dependence of Im[R(κ)] for the structure with ρA = 0.1, ρB = 0.14,
NA = 29, and NB = 16 near the gap region for (e) varying amount of loss in silver ε′′

m for ε′′
d = 0, (f) varying amount of gain in dielectric ε′′

d

for ε′′
m = 0.41, and (g) varying number of superperiods M . The inset in (f) compares the cases of 10% losses without gain and 100% losses

with gain. The insets show Im R versus κ/(ω/c).
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permittivity to 10% of its actual value, we clearly see a range of
very low Im R around the target midgap κ0 = 4ω/c [Fig. 5(b)],
signifying inhibited VPP propagation as described in Sec. II
above. This range, or stop band, is seen to widen as the
modulation depth of the filling fraction ρ increases, which
is characteristic of a PBG opening and confirms that VPPs
indeed undergo Bragg reflection in a periodic-superstructure
multiscale HMM.

Restoring the amount of losses in metal to their actual value
[Fig. 5(c)], we see that the band gap is less pronounced but
nevertheless quite visible. Compensating the loss in silver by
incorporating optical gain in the dielectric layers of the HMM
(setting εd = 2.72 − 0.04i, as was recently envisaged by Ni
et al. [30]) restores the pronounced character of the band gap
[see Fig. 5(d)]. The effects of loss and gain on the band-gap
visibility are additionally highlighted in Figs. 5(e) and 5(f),
where it is shown that adding gain to the dielectric layers
indeed results in partial loss compensation. Since the working
filling fractions are around 0.1, so that dd ≈ 10dm, the negative
imaginary component of εd in the range of 0.04 is sufficient
to compensate the loss in silver corresponding to ε′′

m = 0.41.
Indeed, the inset in Fig. 5(f) demonstrates that the gap profile
for the gain-compensated HMM is almost identical to that for
the structure where loss is artificially reduced to 10%. Finally,
Fig. 5(g) shows that reducing the number of superperiods does
not change the location of the stop band for VPPs but strongly
modifies the propagation of such waves in the surrounding
passband of the high-κ range, featuring multiple band-edge-
like resonances.

Stacking a periodic Bragg reflector with its mirror image
forms a structure with geometry ABAB . . . ABBA . . . ABAB
[Fig. 6(a)], creating a half-wave defect or cavity (BB) in
an otherwise periodic structure. By analogy with photonic
multilayers, such a structure should function as a Fabry-Pérot
resonator for VPPs, creating a narrow band of κ ≈ κres where
the plasmon energy gets trapped in the cavity and the waves can
tunnel through the structure despite the presence of a band gap.
This feature should be observed as a sharp peak of Im[R(κres)]
inside the forbidden gap. Varying the thickness of the cavity
layer (by adjusting the number of subperiods in it), it should
be possible to tune the location of κres across the band gap.

Such behavior is indeed observed in Fig. 6. The peak
location is seen to shift as additional substructure periods are
removed from or added to the defect layer, varying its thickness
[Fig. 6(b)]. Note the stark contrast between the marked shift
of the central resonance peak and the nearly absent shift of the
remaining resonances in the wave-vector spectra. This means
that the central peak is a Fabry-Pérot resonance, whereas
the remaining peaks are not related to the cavity layer. For
VPPs corresponding to the Fabry-Pérot resonance, it can be
concluded that they are localized in the defect and guided
within the x-y plane.

Note that a much smaller number of periods in the
superstructure is necessary for the appearance of the resonance
peak than for the appearance of the band gap (see Fig. 5). For a
larger number of periods in the superstructure it is seen that the
guided high-k VPP waves decouple from the incident wave,
making them harder to characterize or interact with [Fig. 6(c)].
Also, similar to what we could see in Fig. 5, absorption in metal
is highly detrimental: Without compensation, the resonance

FIG. 6. (Color online) Characterization of a multiscale Fabry-
Pérot resonator for VPPs. (a) Schematic of the structure.
(b) Dependence Im[R(κ)] for different thickness of the defect layer
expressed in the number of superperiods Nd for a superstructure
with the same parameters as in Fig. 5 but with M1 = M2 = 5 and
1% losses (ε′′

m = 0.004); the inset shows the excerpt of the same
dependence (Im R versus κc/ω) for full losses in metal compensated
by gain in the dielectric (ε′′

m = 0.41 and ε′′
d = −0.04). Also shown

are the enlarged views of the cavity resonance peak under varying
conditions in structures with (c) varying number of superperiods
M1 = M2 and (d) varying degree of loss and gain in the constituent
materials.

peaks all but vanish when the imaginary part of εm reaches
10% of its actual value. However, in the presence of gain
the peaks are seen to reappear even with full metal losses
[Fig. 6(d)]; the peaks are notably broadened, but their location
is not affected [see the inset in Fig. 6(b)].

B. Bragg reflectors and Fabry-Pérot resonators
with thin-layer superstructure

The approach of the previous section has a didactic advan-
tage, with its easy separation of superstructure and substructure
length scales; this makes the multiscale features that arise easy
to understand. However, structures with dm + dd = 4 nm, and
indeed with dm 	 0.5 nm, cannot be easily fabricated and, even
if they could, the optical response of such thin layers would
not likely be described by bulk dielectric constants. Further,
even were fabrication possible it was shown that absorption
is very detrimental to PBG effects, requiring either low-loss
plasmonic materials [33] or loss compensation means [30] for
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FIG. 7. (Color online) Characterization of a Bragg reflector for high-k waves comprising a superstructure of 10–30 layers, each consisting
of one subperiod (NA = NB = 1) with ρA = 0.60, ρB = 0.34, and dm + dd = 20 nm. (a) Schematic of the structure. (b) Dispersion relation
similar to Fig. 3 for an infinite double-periodic structure for small and large filling fraction modulation �ρ. A plot of Im R(κ) is shown for
full metal losses (c) without and (d) with gain in the dielectric. The dashed line shows the reference VPP band from a HMM with average
ρA = ρB = 0.473. (e) Electric-field distribution in the structure with 20 periods for κc/ω equal to 4.6 (below the band gap), 6.0 (inside the
band gap), and 7.5 (above the band gap).

the effects to be observed. These disadvantages are worsened
by the need for structures consisting of hundreds (if not
thousands) of sublayers, leading even the most optimistic to
despair of fabrication at any time in the near future. As a result,
thick-superlayer structures for VPPs in multilayer HMMs can
only be considered as proof-of-concept structures and are not
viable from a practical point of view.

To alleviate these challenges in fabrication, we consider
here the other extreme of the multiscale concept and analyze
the structures where superlayers consist of just one subperiod
(NA = NB = 1), allowing the metal and dielectric sublayers
to be only moderately thin. In this regime, the subwavelength
approximations will certainly fail [28], so Eq. (12) can no
longer be regarded as an accurate prediction of a QW layer
thickness. Instead, the structure can be considered as a periodic
multilayer with a more complicated unit cell containing four
layers [a double-periodic structure; see Fig. 7(a)]. Calculating
its transfer matrix in a manner similar to Eq. (6) and applying
Bloch’s theorem along the lines of Sec. II, one can obtain the
high-k dispersion relation of such a double-periodic structure
with an infinite number of periods. One can see [Fig. 7(b)] that
if the filling fraction difference �ρ = ρA − ρB is nonzero, the
VPP band splits into two, leaving a gap between them, which
widens as �ρ increases. Since we are no longer restricted by
the condition DA,B � dm.d , we can consider a structure with
thicker sublayers (e.g., dm + dd = 20 nm), which would be far
more realistic for fabrication. We are also free to work with a
greater contrast of ρ and, as seen in Fig. 7(b), a prominently
wide band gap can be achieved for an example structure with
ρA = 0.60 and ρB = 0.34. The gap location is now in the
higher-κ part of the wave-vector space, around κ 	 5 . . . 7ω/c,
and it turns out that Eq. (12) is still able to give a meaningful

estimate of the gap location, predicting the midgap κ to be
6.75ω/c.

Figures 7(c) and 7(d) show the characterization of such a
multiscale HMM with a different number of superperiods. We
can see that a PBG for VPPs does form at the predicted location
with clear separation between passbands and stop bands with
as few as several tens of superlayers. Together with practically
achievable values for the sublayer thicknesses, this makes
the whole structure much more promising for experimental
realization than the thick-superlayer counterparts. Finally, it
can be seen that the PBG is still clearly pronounced with the
realistic account for the losses in silver [Fig. 7(c)]. To make
sure that the feature seen in Fig. 7(c) is actually a PBG for VPPs
seen in Fig. 7(b), we compare the electric-field distribution at
three different κ , namely, below, inside, and above the band
gap [Fig. 7(e)]. The field distribution shows the evanescent vs
extended character of the waves inside the HMM for κ inside
vs outside of the band gap, respectively.

By adding gain to the dielectric layers, the gap becomes
even more clearly defined, approaching abrupt band edges
characteristic for the lossless case [see Fig. 3(b)]. This near-
total loss compensation makes this structure a practically
realizable candidate for a Fabry-Pérot resonator for VPPs.
As before, a basic half-wave defect is formed by repeating
one of superlayers twice or more simply by stacking a
three-superperiod structure (ABABAB) with its mirror image
(BABABA), as seen in Fig. 8(a). Rather than varying the
number of sublayers in the cavity region (which is not possible
since NA = NB = 1 and Nd = 2), the resonance location can
be tuned by adjusting the thickness of one of the metal layers
in the cavity region. Indeed, the characterization in Fig. 8(b)
shows the possibility of moving the VPP resonance peak across
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FIG. 8. (Color online) Characterization of a Fabry-Pérot resonator for high-k waves comprising a superstructure with M1 = M2 = 3 periods
of two superlayers with the same substructure as in Fig. 7. (a) Schematic of the structure, highlighting the cavity region and variable-thickness
metal layer in it. (b) Plot of Im R(κ) in the presence of gain for varying thickness of the central metal layer, �dc being the thickness adjustment
compared to the ideal half-wave defect. (c) Plot of Im R(κ) for 100% of metal losses and gain compensation in the dielectric. (c) Enlarged view
of the peak for varying number of superperiods and degree of gain. The pictures at the bottom show the field distribution in the structures with
(d) �dc = 0 and (e) �dc = 2 nm; in the top plots κ = 5.47ω/c (on peak for �dc = 2 nm) and in the bottom plots κ = 5.85ω/c (on peak for
�dc = 0). The color scale is the same as in Fig. 7(e).

the band gap. The field distribution calculations show that
when κ matches the peak in the dependence Im R(κ), the
structure features a Fabry-Pérot resonant mode localized near
the cavity layer, whereas elsewhere in the band gap the waves
in the HMM remain evanescent.

Figure 8(c) shows the dependence of the peak profile on
the number of superperiods in the Bragg mirrors surround-
ing the cavity. As before, increasing this number beyond
4 makes the peak vanish by decoupling the localized VPP
mode from the incident wave and reducing the amount of
gain leads to broadening of the peak, again to the point of
vanishing, due to the decrease of its Q factor from around 300
in the presence of gain to around 50 without it. Even though
these values are not spectacular from the resonator standpoint,
we expect that the localization seen in Fig. 8(c) will contribute
to the Purcell factor enhancement in the same way as does the
judicious choice of the emitter position inside an HMM [19].

Overall, we see that thin-superlayer multiscale HMMs
can exert the same PBG behavior on VPPs as their thick-
superlayer counterparts, but with a much smaller number of
moderately thin layers, making such structures much more
feasible for experimental realization. As a price to pay, the gap
and/or resonance position can no longer be smoothly tuned
by varying the number of subperiods in the superstructure;
other methods such as departing from the QW condition in
selected layers have to be used instead. We also see that for
this thin-superlayer structure the gain compensation is quite
successful in increasing the visibility of PBG effects. However,
we refrain from far-reaching conclusions based on this result
because the behavior of VPPs in the presence of gain strong
enough to fully compensate (or even overcompensate) losses
needs further investigation.

C. Multigap and fractal Cantor multiscale HMMs

As a final example, we briefly touch upon the possibility
of band-gap engineering for VPPs by using more complicated
superstructure geometries than simple periodicity. Note that
doubling the number of subperiods in some superlayers
of thin-superlayer structures (changing from NA,B = 1 to
NA,B = 2) drastically influences the corresponding layers:
They transform from quarter-wave-like to half-wave-like. This
is expected to result in band-gap splitting. Indeed, Fig. 9 shows

that by simple alteration of the superstructure periodicity,
this multigap multiscale HMM can be realized. Aside from
providing more versatility in the control over high-k wave
propagation, this effect allows us to push the band gap
to the region with lower κ , which are easier to excite and are
more prevalent in the emission of a realistic source (of finite
size and/or located at a finite distance from the HMM [18,34]).

We can also envisage multiscale HMMs where superlayers
lose their periodicity entirely while maintaining their long-
range order, i.e., an ordered nonperiodic superstructure. Out
of the many examples of such nonperiodic geometries [35],
we will focus on a fractal Cantor-like structure [36–38].
These structures are known for scalable and self-similar
features in their optical spectra closely related to their
geometry [38–40].

FIG. 9. (Color online) Schematics and high-k band characteriza-
tion of the structure with NA = NB = 1 vs structures with doubled
number of subperiods (NA = 2, NB = 1; NA = 1, NB = 2; NA =
NB = 2) with M = 20 superperiods. Other parameters are the same
as in Fig. 7. Full metal losses are considered.
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FIG. 10. (Color online) (a) Schematic of the middle-third Cantor
section algorithm and an example of the optical spectrum of a Cantor
multilayer [38,39]. (b) Schematic and high-k band characterization of
a second-generation Cantor structure (C2, 9 superlayers). (c) Same as
(b) but for the third-generation Cantor structure (C3, 27 superlayers).
The substructure geometry is the same as in Fig. 7. Full metal losses
are considered.

Specifically, we will consider the simplest middle-third
Cantor sequence [Fig. 10(a)], described by the inflation rules

A → AAA, B → BAB, (13)

applied to a single layer of the type B (the seed) several times
to form the Cantor structure of a given number of generation.
This procedure yields the following sequence:

C0 = B, C1 = BAB, C2 = BABAAABAB,
(14)

C3 = BABAAABABAAAAAAAAABABAAABAB.

It can also be written as a recurrent relation

Cn+1 = Cn (A)3n

Cn, (15)

which underlies its geometrical self-similarity and gives rise
to self-similar features in the optical spectra [Fig. 10(a)] [39].

Using the substructure geometry similar to the previ-
ous cases as the building blocks for A and B layers in
Eqs. (13)–(15), we analyze the fractal multiscale HMMs corre-
sponding to the second- and third-generation Cantor structures
(containing 9 and 27 superlayers, respectively). The results are
shown in Figs. 10(b) and 10(c). It can be seen that characteristic
scalable signatures of the Cantor spectra can be observed
for VPPs in the high-κ region of the wave-vector space.
These features are distorted compared to the traditional fractal
multilayers because of the non-QW nature of the sublayers
involved. Nonetheless, they are observed in a realistic structure
with metal losses taken into account. So we can expect that
known relations between geometrical and optical properties in
deterministic nonperiodic multilayers should also be manifest
in HMMs with corresponding superstructure geometry. As
a result, we can make use of the extensive knowledge of

PBG properties of multilayers [37] to be able to control VPP
propagation in multiscale HMMs with significant freedom.

IV. CONCLUSION

To summarize, we have demonstrated that a multiscale
approach can be used to control large-wave-vector, bulk
plasmonic waves (volume plasmon polaritons) in multilayer
metal-dielectric HMMs. As a proof of concept, we have
proposed the design of Bragg reflectors and Fabry-Pérot
resonators for these VPP waves. The designs consists of
two levels of structuring: (i) a substructure of subwavelength
metal and dielectric layers, responsible for creating hyper-
bolic dispersion, and (ii) a superstructure, which constitutes
wavelength-scale variation of the metal filling fraction and
exerts PBG effects on VPPs. Band gaps and resonances for
VPPs have been demonstrated by examining the Fresnel
reflection coefficient in the large-wave-vector region. More
complicated superstructure geometries such as fractal Cantor-
like multiscale HMMs have also been studied.

Along with proof-of-concept designs involving very large
numbers of layers, more realistic thin-superstructure designs
have been proposed, containing several tens of layers with
thickness on the order of 10 nm, which is within reach of
modern fabrication technology. It has also been shown that
mechanisms to mitigate material absorption, for example, by
introducing gain-based compensation in dielectric layers [30],
make PBG effects more pronounced in all of the considered
structures.

Our results show that VPPs can be directly controlled by the
PBG effects, which may be enabling for employing VPPs to
transmit optical signals. Using a great variety of superstructure
geometries in the proposed multiscale approach is promising
in the design of HMM-based devices with a predetermined
wave-vector–space distribution of bulk plasmonic waves. Such
devices can be used in hyperlenses with tailored properties, as
well as to probe and tailor light-matter interaction phenomena
of nearby emitters (such as atoms and molecules) in the
evanescent-wave domain.
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APPENDIX: FRESNEL’S REFLECTION COEFFICIENTS IN
THE EVANESCENT-WAVE DOMAIN

In this Appendix we discuss the physical meaning of the
Fresnel reflection coefficient at a plane interface between two
media for such values of the in-plane component of the wave
vector κ that the waves in one or both of the media can be
evanescent. The goal is to understand which attributes of the
complex reflection coefficient (the real part, imaginary part,
amplitude, and phase) have direct physical interpretation and
to show that this interpretation changes significantly when the
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incident wave is evanescent rather than propagating. We need
this knowledge in order to elucidate the relation between the
existence of propagating waves in the HMM structures and the
nonzero imaginary part of the reflection coefficients introduced
in the text in Eqs. (5), (7), (8), (10), and (11), as well as through
the transfer-matrix calculation procedure.

We use the interface between two nonmagnetic, isotropic
media as an example and begin by recalling the expression
for the reflection coefficient for a p-polarized wave at such an
interface,

rij (κ) = wi(κ)εj − wj (κ)εi

wi(κ)εj + wj (κ)εi

, (A1)

assuming that there are no losses; therefore, we assume that
εi,j are purely real (positive or negative) and in turn that wi,j ,
defined in the same way as in Eq. (2), are both one of the
following:

wi(κ) is

{
real and positive for εi > 0, κ < ω

c

√
εi

positive imaginary otherwise.

(A2)

As mentioned in Sec. II, the first case corresponds to a
wave that is propagating in medium i, whereas the second
case corresponds to a wave that is evanescent in medium i.
Depending on which of the cases of Eq. (A2) takes place for
the two media (i and j ) in Eq. (A1), four scenarios can be
identified.

(i) Both wi and wj are real and hence rij is real. This is
the usual Snell refraction scenario: According to Eq. (A2), this
is only possible if both εi and εj are non-negative so that the
waves in both media are propagating, resulting in |rij | < 1,
which means that the transmitted wave carries some of the
incident energy away.

(ii) wi is real but wj is imaginary; the incident and reflected
waves are propagating but the transmitted wave is evanescent.
This is the total reflection scenario: either conventional total
internal reflection on a dielectric-dielectric interface beyond
the critical angle (

√
εj < κc/ω <

√
εi) or total reflection from

a dielectric-metal interface (εj < 0 < εi). Here the reflection
coefficient is of the form (a − ib)/(a + ib) and therefore
|rij | = 1, signifying that the transmitted evanescent wave
transfers no energy away from the interface.

(iii) Both wi and wj are imaginary. Similar to (i) above,
this means that rij must be real; however, |rij | can be below
or above unity depending on the signs of εi,j . This is the
scenario where all waves (incident, reflected, and transmitted)
are evanescent and no energy transfer through the interface
occurs. If we were to change the medium i so as to support
a propagating incident wave (e.g., by increasing its refractive
index if it is a dielectric), this scenario would change to (ii).

(iv) Finally, wi is imaginary but wj is real. Similar to (ii)
above, rij is of the form (a − ib)/(a + ib) and therefore has
an imaginary part. This is the reversed total reflection scenario
when the incident and reflected waves are evanescent but the
transmitted wave is propagating; if we were to change the
medium i so as to support a propagating incident wave, this
scenario would change to (i).

Suppose now that we know nothing about the nature of
medium j beyond the interface and only treat that region as a

black box (or the sample). We still know, and can choose,
the medium i in front of the interface (the cladding) and
we can perform some sort of ellipsometry-type reflectivity
measurements on the interface. An important observation
about the four scenarios listed above is that with the first two
of them it is the amplitude of the reflection coefficient |rij (κ)|
that characterizes the sample’s behavior at this particular κ; we
can conclude that |rij | = 1 means that there are no propagating
waves in the sample (everything is totally reflected) and
|rij | < 1 means that there are propagating waves in the sample.
On the other hand, the phase of the reflection coefficient (or
individually its real or imaginary part) cannot be attributed
such physical significance. Indeed, adding a cladding layer of
thickness d in front of the sample will not change anything
in the physical system but will, according to Eq. (10) and
Fig. 2(b), change rij (κ) to r ′

ij (κ) = rij (κ)e2iwi (κ)d , making its
phase dependent on d and therefore arbitrary.

On the other hand, if we apply the same line of reasoning to
scenarios (iii) and (iv), we see that adding a similar cladding
layer of thickness d in front of the sample, with similar
transformation rij (κ) → r ′

ij (κ) = rij (κ)e2iwi (κ)d , will change
the amplitude rather than the phase of the reflection coefficient
since we are in the regime where wi is imaginary; hence, it
is |rij | that can be made largely arbitrary. Therefore, it is now
the phase of the reflection coefficient that characterizes the
physics of the sample: arg rij �= 0 indicates that there are bulk
propagating waves in the sample, while arg rij = 0 (real rij )
unambiguously means that there are no such waves (although
surface waves at the interface may still exist).

For practical purposes, whenever rij is nonzero, we can
introduce a modified criterion based on the imaginary part
of rij rather than on its phase. In these terms, Im rij = 0
(real rij ) signifies the absence of bulk propagating waves in
the sample, whereas Im rij �= 0 indicates their presence, as
confirmed in Fig. 3. We stress here that the magnitude of
Im rij still carries no direct physical significance in terms of
characterizing the sample since |rij | can be arbitrary; it is
only whether it is zero or nonzero that is meaningful in the
rigorous sense. However, we can relax our criterion somewhat,
saying that Im rij ≈ 0 implies the absence of propagating
waves in the sample and significantly nonzero Im rij implies
their presence, as is demonstrated for the Bloch waves in
Fig. 3(b). Vague as the words “significantly nonzero” are, the
criterion in this form was demonstrated to be useful in a broad
range of parameters, including complex multilayers and lossy
structures, as confirmed by calculating the field distribution at
corresponding κ; the only regime where we expect it to break
down would be the case of high losses, where any nonarbitrary
distinction between propagating and evanescent waves would
be difficult.

We note finally that while the above analysis is carried
out for an interface between two isotropic media, it remains
valid if the sample is a homogenized HMM. Indeed, we see
that Eq. (5) is essentially similar to Eq. (A1) as regards
the applicability of Eq. (A2) and the subsequent reasoning;
the sole reason for the explicit use of Eq. (A1) was to ease the
explanation by being able to introduce a simple expression for
wj using εj . Moreover, as outlined in Sec. II in the discussion
of Eq. (11), the reasoning remains applicable to more complex
samples such as infinite (and to some extent finite) multilayers.
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