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ABSTRACT

The recently developed k-ε-fP eddy-viscosity model is applied to one on-shore and two off-shore wind farms. The results

are compared with power measurements and results of the standard the k-ε eddy-viscosity model. In addition, the wind

direction uncertainty of the measurements is used to correct the model results with a Gaussian filter. The standard k-ε
eddy-viscosity model underpredicts the power deficit of the first downstream wind turbines, whereas the k-ε-fP eddy-

viscosity model shows a good agreement with the measurements. However, the difference in the power deficit predicted by

the turbulence models becomes smaller for wind turbines that are a located further downstream. Moreover, the difference

between the capability of the turbulence models to estimate the wind farm efficiency, reduces with increasing wind farm

size and wind turbine spacing. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wind turbine wakes have a high impact on wind energy production because wake deficits can cause 10% to 20% losses

in the annual energy of wind farms [1, 2] and the wake turbulence can decrease the life time of wind turbine blades. It

is therefore important to be able to predict the wake effects in wind farms during the design phase. Hence, reliable and

relatively fast methods are necessary that can predict wake deficits and wake turbulence. Engineering wake models have

shown to be fast, i.e. the N.O. Jensen model [3], however, their accuracy is not always guaranteed [4]. Fuga [5] is a fast

linearized Computational Fluid Dynamics (CFD) method that shows good agreement with measurements of wind farms,

which is mainly applicable to power predictions but not for wind turbine loads. High fidelity nonlinear Computational Fluid

Dynamics (CFD) methods as Large-Eddy Simulation (LES), have proven to produce reliable results in terms of loads and

power, that compare well with field measurements [6]. However, LES is an expensive method, that is not suited to predict

wake effects in large wind farms for the purpose of wind farm design. Reynolds-Averaged Navier Stokes (RANS), is a

nonlinear CFD method that is roughly three orders of magnitude less expensive in computational effort than LES [7]. The

reduction in computational effort is achieved by two properties of RANS. First of all, RANS is a steady state calculation,

whereas LES is transient. Secondly, RANS requires smaller grid sizes than LES. If the rotor geometry is represented by

an actuator disk method [8], one could use a grid around the wind turbine that is uniformly spaced in all directions. In this

setup a RANS grid typically needs ten cells to cover a rotor diameter [7], whereas a LES grid can require thirty [9], to

resolve the wake accurately. Hence, the RANS grid becomes twenty-seven times smaller than the LES grid. Unfortunately,

RANS methods utilize a high level of turbulence modeling, which has proven to dominate the flow solution [10]. A

commonly used turbulence model is the k-ε Eddy Viscosity Model (EVM), which is known to underpredict the wake

deficit and overpredict the turbulence intensity in the near wake [7, 10, 11, 12, 13]. The problem of the k-ε EVM is related

to the fact that the eddy-viscosity coefficient Cµ is a constant. In previous work, the k-ε EVM was extended with a scalar

relation for Cµ [7]. The scalar relation, called fP , is a function of the local shear, which reduces the eddy-viscosity for a
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high shear. Since the near wake is characterized by a high local shear, fP decreases the eddy-viscosity in the near wake

and delays the wake recovery. The extended k-ε EVM, hereafter labeled as k-ε-fP EVM, has been shown to compare well

with LES in terms of the velocity deficit of a single wakes [7, 9] and double wakes [14]. In addition, the k-ε-fP EVM does

not overpredict the turbulence intensity in the near wake.

In the current work, the performance of the k-ε-fP EVM is tested for wind farm simulations. Power measurements

from one on-shore and two off-shore wind farms are used to compare with the predicted power of the k-ε-fP EVM and

the original k-ε EVM. The three test cases are described in Section 2. The methodology and the results of the simulations

are discussed in Section 3.

2. TEST CASES

The k-ε-fP EVM and the standard k-ε EVM are applied to three wind farms: the on-shore Wieringermeer wind farm and

two off-shore wind farms, Lillgrund and Horns Rev. In total seven test cases are defined and are listed in Table I. The

test cases differ in the total ambient turbulence intensity at hub height IH,∞ ≡
√

2/3k/UH,∞ (with k as the turbulent

kinetic energy), free-stream velocity UH,∞ at hub height zH,∞, rotor diameter D and wind turbine spacing. Note, that the

total ambient turbulence intensity is derived from the stream-wise ambient turbulence intensity IH,∞,u ≡ σu/UH,∞ that

is known from the measurements. Using the ratios of the standard deviations of three velocity components that have been

summarized by Panofsky and Dutton [15]:

σv

σu

= 0.8,
σw

σu

= 0.5, (1)

the total ambient turbulence intensity can be written as:

IH,∞ = Iu,H,∞

√

1

3
(1 + 0.82 + 0.52) ≈ 0.8Iu,H,∞. (2)

The first two test cases are derived from the Wieringermeer wind farm that correspond to a low and a high ambient

turbulence intensity. Test cases 3 to 6 are based on the Lillgrund wind farm. The Lillgrund test cases differ in wind direction

and wind turbine spacing. Cases 3 and 5 correspond to the wind directions that are aligned with the rows, whereas cases

4 and 6 represent wind directions in which the rows are 15◦misaligned with respect to the incoming flow. The misaligned

cases are referred as the staggered cases. Only one test case is derived from the measurements of the Horns Rev wind farm.

The three wind farms are further described in the sections below.

Table I. Summary of cases and corresponding input parameters for numerical computations. wd = wind direction.

Case Description Measurement data IH,∞ (Iu,H,∞) UH,∞ D zH spacing

[%] [m/s] [m] [m] [m/D]

On-shore wind farm

1 Wieringermeer, low IH,∞ wd=275◦
±15◦ 2.4 (3) 6.59 80 80 3.8

2 Wieringermeer, high IH,∞ wd=275◦
±15◦ 9.6 (12) 8.35 80 80 3.8

Off-shore wind farm

3 Lillgrund south-west aligned wd=222◦
±2.5◦, rows B and D 4.8 (6) 9 92.6 65 4.3

4 Lillgrund south-west staggered wd=207◦
±2.5◦, rows B and D 4.8 (6) 9 92.6 65

5 Lillgrund south-east aligned wd=120◦
±2.5◦, rows 4 and 6 4.8 (6) 9 92.6 65 3.2

6 Lillgrund south-east staggered wd=105◦
±2.5◦, rows 4 and 6 4.8 (6) 9 92.6 65

7 Horns Rev wd=270◦
±2.5◦, rows 1-8 5.6 (7) 8 80.0 70 7.0

2.1. On-shore wind farm: Wieringermeer

A row of five wind turbines is located in Wieringermeer, a farmland area in the north west of the Netherlands. The wind

turbine row is part of the Wind Turbine Test Site, owned and maintained by ECN. The layout of the five 2.5 MW Nordex

N80 wind turbines is sketched in Figure 1. The row is orientated along the 275◦wind direction and the spacing between

the wind turbines is around 3.8D. The wind turbines have a rotor diameter and hub height of 80 m. Schepers [16] et al.

published the results of nearly five years of measurements and the ten minute averaged data is available for the present

research. From these measurements, a data set is derived with wind directions of 275◦ ± 15◦. A meteorological mast is

located south of the wind turbine row and it is used to derive the undisturbed conditions.

2 Wind Energ. 2014; 00:1–20 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/we

Prepared using weauth.cls



M.P. van der Laan et al. The k-ε-fP model applied to wind farms

North

275◦

2.5D3.5D

3.8D

MM3

T5 T6 T7 T8 T9

y

D

x
D

-2

0

0

2

4

-5 5 10 15

Figure 1. Sketch of wind turbines (red dots) and meteorological mast (blue triangle) at EWTW site.

The power curve and the power coefficient CP provided by the wind turbine manufacturer is used. The thrust coefficient

CT is not given by Nordex, however, measurements of derived CT from the tower bending moment and PHATAS [17]

calculations of CT are available from Schepers [18]. The two methods agree well, except for the low wind speeds where

the uncertainty in the measured tower bending moment is high. Therefore, the calculated CT will be used. CT and CP are

plotted in Figure 2. Only the range of the rotational speed is known: Ω = 10.9 − 19.1 RPM, not the full curve. In order

to simulate the wind turbine row in CFD with rotational forces, the full RPM curve as function of the ambient velocity at

hub height is necessary. Since the CP region is relatively flat for wind speeds between 7 and 11 m/s (as indicated by the

gray area in Figure 2), it is assumed that the wind turbine starts rotating at the maximum of 19.1 RPM at the end of the flat

CP region (11 m/s), and that the rotational speed is constant up to the cut-out wind speed of 25 m/s. The rotational speed

below wind speeds of 11 m/s is derived by assuming a constant Tip Speed Ratio (TSR): TSR ≡ Ω(π/60)D/U = 7.27,

until the minimum rotational speed of 10.9 RPM is reached at a wind speed of 6.28 m/s. The estimated rotational speed

curve is shown in Figure 2.
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Figure 2. Nordex N80 wind turbine. Left: CT (solid line) and CP (dashed line). Gray area indicates the flat CP region. Right: estimated

rotational speed Ω using constant TSR (dashed line).

The meteorological mast is used to calculate the stability from the Monin-Obukhov length L, that is derived from the

Bulk Richardson number. This method is described in more detail in the work of Hansen et al. [19]. While bulk-Richardson

numbers cannot be reliably used to model the wind field [20, 21], they allow useful classification of stability regimes. Seven

stability classes are defined in Table II and the probability of each class is plotted in Figure 3, for cases 1 and 2. In the

low ambient turbulence case (case 1), the ABL is stable to very stable, whereas the high ambient turbulence case (case

2) corresponds to near unstable ABL. The present CFD simulations can only model a neutral ABL, hence it should not

be expected that the CFD simulations can predict the wake effects in the row of wind turbines for case 1. Nevertheless,

case 1 is interesting to investigate how large the disagreement between measurements and simulations is, that is associated

with not modeling atmospheric stabilty. Since case 2 is close to neutral, a better agreement between the CFD and the

measurements should be expected compared to case 1.

Wind Energ. 2014; 00:1–20 c© 2014 John Wiley & Sons, Ltd. 3
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case 1: low IH,∞ case 2: high IH,∞

PDF

Stability class
-1-2-3 2 30

0

0.1

0.2

0.3

0.4

0.5

0.6

1

PDF

Stability class
-1-2-3 2 30

0

0.1

0.2

0.3

0.4

0.5

0.6

1

Figure 3. Probability of stability classes for the on-shore wind farm Wieringermeer.

Table II. Definition of stability classes.

Class Range of L [m] Description

-3 −100 ≤ L < −50 Very unstable

-2 −200 ≤ L < −100 Unstable

-1 −500 ≤ L < −200 Near unstable

0 ‖L‖ > 500 Neutral

1 200 ≤ L ≤ 500 Near stable

2 50 ≤ L < 200 Stable

3 10 ≤ L < 50 Very stable

2.2. Off-shore wind farm: Lillgrund

Lillgrund is an off-shore wind farm, located south of the Øresund bridge that connects Copenhagen (Denmark) with Malmö

(Sweden). Figure 4 shows the layout of the off-shore wind farm, which is unique due to the missing wind turbines in the

middle of the wind farm. In addition, the wind turbine spacing of 3.2D and 4.3D for the wind direction of 120◦and 222◦,

respectively, is much smaller than the typical spacing of off-shore wind farms that are built today. Note that a spacing of

3.3D is often reported in literature [4, 22, 23, 24], however, a spacing of 300 m is reported in the official drawing of the

wind farm layout, which corresponds to a spacing of 3.24D. The narrow spacing is the result of a design change towards

maximum power instead of wind farm efficiency, in which larger wind turbines were selected than initially planned, without

changing the original layout of the wind farm [22]. Hence, wind turbine wake effects are relatively large in the wind farm

(around 30% loss in terms of the annual energy production [22]), which makes it an interesting case to simulate with CFD.

The wind farm includes 48 Siemens SWT-2.3-93 wind turbines that have a rated power of 2.3 MW, a rotor diameter

of 92.6 m and a hub height of 65 m. The CT , CP and Ω curves are provided by Hansen [23] and are shown in Figure 5.

Dahlberg [22] and Hansen [4] derived a measurement set from the SCADA data of Lillgrund. The results of Dahlberg [22]

correspond to a data set that is gathered over a period of two years using one-minute bins, in which the yaw positions are

not known. Dahlberg assumed zero yaw errors and used the nacelle positions to estimate the wind direction. More recently,

Hansen extracted a data set of three years using ten-minute bins, in which the yaw sensors are calibrated against the power

deficit peak of a nearby wind turbine, a method that is further described in the work of Barthelmie et al. [25]. Subsequently,

the wind direction is derived from the calibrated yaw sensors. The reference wind turbines that are used for determining the

wind direction are A5 and C1 for the wind directions 120◦and 222◦, respectively. The data set of Hansen is chosen in the

current research. Unfortunately, the meteorological mast shown in Figure 4 was not available for the period that Hansen

used to process the measurements. Therefore, Hansen derived the undisturbed wind speed from the power curve, shown in

Figure 5. With this method Hansen selected power data that corresponds to an estimated undisturbed wind speed of 9± 0.5
m/s. It should be noted that a group of wind turbines is used to determined the free-stream wind speed, which consists of

row 1 and row A for the south-westerly and south-easterly wind directions, respectively. The meteorological mast was

erected prior to the wind farm installation, which provides a data set of more than two years. From these measurements

Bergström [26] estimated the stream-wise turbulence intensity to be around 6%. The lack of an upstream meteorological

mast makes it impossible to investigate the atmospheric stability.

2.3. Off-shore wind farm: Horns Rev

Horns Rev is an off-shore wind farm located 14 km from the West coast of Denmark. The wind farm has a rated power of

160 MW and it consists of 10×8 Vestas V80 wind turbines. The rectangular layout is shown in Figure 6. The wind turbine

4 Wind Energ. 2014; 00:1–20 c© 2014 John Wiley & Sons, Ltd.
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Figure 4. Wind farm layout: wind turbines (red dots), grid position without a wind turbine (red circles), transformer station (green

square) and meteorological mast (blue triangle). Distances are normalized with the rotor diameter of the Siemens SWT-2.3-93 wind

turbine: D = 92.6 m.
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Figure 5. Siemens SWT-2.3-93 wind turbine. Left: CT (solid line) and CP (dashed line). Right: rotational speed Ω.

spacing is 7D in the aligned wind directions of 90◦-270◦and 174◦-354◦. With a rotor diameter of 80 m, the wind farm fits

into a square of dimensions 5.5×4 km2. The power coefficient, thrust coefficient and the rotational speed of the V80 wind

turbine are provided by the Vestas and are shown in Figure 7.

The power measurements for a wind direction of 270◦±2.5◦and a period between 2005 and 2009 are made available

by Hansen and the results are presented in Hansen et al. [19]. Non-neutral atmospheric stability data has been filtered out

using the same method as discussed in Section 2.1. Three stability classes are present in the filtered set: near unstable,

neutral and near stable. It is found that further reducing the data set, i.e. only allow the neutral class, leads to too few

observations.

Unfortunately, the quality of the measurements from meteorological mast M2 shown in Figure 6, is low. Therefore,

the free-stream conditions are estimated from wind turbine G1. The wind direction is obtained from the yaw sensor of

wind turbine G1, which is calibrated with the power ratio of G2/G1. The free-stream velocity is obtained from power

measurements of wind turbine G1 and the power curve from Figure 7.

3. SIMULATIONS

The simulations of the test cases from Table I are discussed in Sections 3.1 and 3.2, in which the method and the results

are discussed, respectively.
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Figure 6. Wind farm layout: wind turbines (red dots) and meteorological masts M2, M6 and M7 (blue triangles). Distances are

normalized with the rotor diameter of the Vestas V80 wind turbine: D = 80 m.
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Figure 7. Vestas V80 wind turbine. Left: CT (solid line) and CP (dashed line). Right: rotational speed.

3.1. Method

The flow is solved by EllipSys3D, the CFD code of DTU Wind Energy, which is originally developed by Sørensen [27]

and Michelsen [28]. The SIMPLE algorithm [29] is chosen to solve the RANS equations. A QUICK scheme [30] is used

to discretize convective terms. Since the flow variables are stored in a co-located manner, decoupling of the pressure and

body forces can occur. This problem is solved with a modified Rhie-Chow algorithm [31, 32].

The flow domain of the Wieringermeer cases is shown in Figure 8, however, the flow domain definition applies for all

cases. A region with a uniform spacing of D/10 in all direction is defined, which is labeled as the wake domain. The cell

spacing is based on a grid dependency study of single wind turbine simulations [7]. The wake domain is placed in the

center of the flow domain with respect to the xy-plane. Near the wall, at z = 0, the cells are refined in the z-direction,

towards a first cell height of 0.5 m. The cells are stretched outside the wake domain with a maximum growth ratio of

1.2. The dimension of the flow domain and the wake domain are listed in Table III. The horizontal dimensions of the

flow domain that are used for the relatively large wind farms (Lillgrund and Horns Rev), are set to a 1000D, to avoid the

influence of the symmetric boundaries at y = 0, y = Ly and outlet boundary at x = Lx, at which a fully developed flow

is assumed. The neutral log law solution is set at the inlet boundaries, located at x = 0 and z = Lz :

U (z) =
u∗

κ
ln

(

z

z0

)

, k =
u2
∗

√

Cµ

, ε =
u3
∗

κz
, (3)

where U is the stream-wise velocity, u∗ is the friction velocity, κ = 0.4 is the Von Karman constant, z0 is the roughness

height, k is the turbulent kinetic energy and ε is the turbulent dissipation. The log law solution is retained through out

6 Wind Energ. 2014; 00:1–20 c© 2014 John Wiley & Sons, Ltd.
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the domain by setting a rough wall condition at z = 0. At the rough wall, the wall stress and the turbulent dissipation are

prescribed, while a Neumann condition is used for the turbulent kinetic energy [33].

It is common to set the ambient turbulence intensity at hub height IH,∞ by changing Cµ in:

IH,∞ ≡

√

2

3
k

UH,∞

=
κ
√

2

3

ln
(

zH
z0

)

4
√

Cµ

. (4)

However, the fP function in the k-ε-fP EVM also changes because it is a function of Cµ, i.e. fP = fP (σ/σ̃) and

σ̃ = 1/
√

Cµ, with σ as the shear parameter: σ ≡ k
ε

√

(Ui,j)
2 and σ̃ as the shear parameter present in the log law solution.

In previous work [34], it has been found that the fP function enhances the wake recovery for higher values of Cµ

(corresponding to a lower IH,∞), which is unphysical. To avoid this problem, z0 is set to obtain the desired IH,∞ through

Equation 4, while leaving Cµ constant [7]. Subsequently, the friction velocity is adapted to set the free-stream velocity at

hub height UH,∞, using Equation 3. Hence, z0 and u∗ are not based on the field measurements and the resulting simulated

velocity profile deviates from the measured velocity profile, however, the differences in the rotor area are small. The

maximum difference in velocity in the rotor area between the present method and in a method where the standard off-shore

roughness height of 10−4 m is used, is less than 0.2% and 2% for the Horns Rev and the Lillgrund cases, respectively.

In the Wieringermeer case with low ambient turbulence (case 1), the maximum difference in velocity in the rotor area is

7%, using a field roughness height of 5 cm. This indicates that the low turbulence intensity in case 1 is not caused by the

rough wall because the turbulent adapted roughness height z0 is much smaller than one that is based on the location of the

field measurements. It is most likely that the ambient turbulence intensity in case 1 is dominated by the stable atmospheric

conditions, as also discussed in Section 2.1 and shown in Figure 3.
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Figure 8. General computational domain. Top: top view. Bottom: side view. Dashed black box marks the wake domain. ADs are

illustrated as red boxes. AD setup shown corresponds to test cases 1 and 2. One in every two nodes is shown.

3.1.1. Turbulence models

The standard k-ε EVM from Launder and Spalding [35] and the k-ε-fP EVM from van der Laan et al. [7] are applied

to the wind farm simulations. The turbulence models can only predict isotropic Reynolds-stresses u′
iu

′
j because the
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Table III. RANS flow domain definition of all test cases. Domain sizes are normalized by the rotor diameter D.

Flow domain Wake domain Total number of cells

Case Description Lx Ly Lz lx ly lz -

1-2 Wieringermeer 100 50 16 33 11.5 3 3.9 × 106

3-6 Lillgrund 1000 1000 10 55 50 4 2.4 × 107

7 Horns Rev 1000 1000 10 108 102 4 8.5 × 107

Boussinesq approximation [36] is used:

u′
iu

′
j =

2

3
kδij − νT (Ui,j + Uj,i) , (5)

where δij is the Kronecker delta, Ui,j are the mean velocity gradients and νT is the turbulent eddy viscosity:

νT = CµfP
k2

ε
, (6)

with Cµ as a constant and ε as the turbulent dissipation. In the standard k-ε EVM fP = 1 and the effective eddy-viscosity

coefficient CµfP is a constant. In the k-ε-fP EVM fP is a scalar function that depends on the local shear parameter:

σ ≡ k
ε

√

(Ui,j)
2. The effective eddy-viscosity coefficient CµfP is variable, instead of a constant, which is the only

difference with the standard k-ε EVM. The scalar function fP in the k-ε-fP EVM is defined as:

fP (σ/σ̃) =
2f0

1 +
√

1 + 4f0 (f0 − 1)
(

σ
σ̃

)2

, f0 =
CR

CR − 1
, (7)

with σ̃ as the shear parameter in an idealized (logarithmic) neutral atmospheric surface layer and CR is a calibration

parameter. In the neutral log law solution fP = 1 because σ = σ̃. In regions with a high shear parameter, i.e. σ > σ̃,

fP < 1 and the turbulent eddy viscosity from Equation (6) is decreased. The near wind turbine wake is characterized by

high velocity gradients, where σ >> σ̃. As a result, the k-ε-fP EVM delays the wake recovery compared to the standard

k-ε EVM. It should be noted that CR controls the magnitude of the delayed wake recovery. The constant CR is calibrated

against LES for eight different single wind turbine cases, in previous work [7]. The same transport equations for k and ε
are used in both turbulence models:

Dk

Dt
= ∇ ·

[(

ν +
νT
σk

)

∇k

]

+ P − ε,
Dε

Dt
= ∇ ·

[(

ν +
νT
σǫ

)

∇ε

]

+ (Cε,1P − Cε,2ε)
ε

k
, (8)

where P is the turbulent production, ν is the kinematic molecular viscosity and Cε,1, Cε,2, σk, σε are constants.

The values of the constants are listed in Table IV. Note that Cµ is based on atmospheric measurements of Panofsky

and Dutton [15], as proposed by Richards and Hoxey [37] and Cε,1 is adapted to maintain the log law solution:
√

Cµσε (Cε,1 − Cε,2) + κ2 = 0.

Table IV. Model constants.

CR Cµ Cε,1 Cε,2 σk σε κ

4.5 0.03 1.21 1.92 1.00 1.30 0.40

3.1.2. Wind turbine modeling

The wind turbine geometry is not modeled in the grid. Instead, the Actuator Disk (AD) method [8, 10, 38] is employed to

model wind turbine forces. The AD extracts momentum from the Navier-Stokes equations by the addition of a momentum

sink. Troldborg et al. [39] showed that the difference in wake flow between a full rotor simulation and an AD simulation

is negligible, as long as inflow turbulence is present. In the current work, the AD forces are modeled with the AD Variable

Scaling Method, as described in van der Laan et al. [14]. The AD Variable Scaling Method is suited to model the AD forces

of interacting wind turbines because the AD forces are a function of local AD velocity. The method uses reference blade

force distributions, which are statically scaled with the rotor diameter. In addition, the reference blade force distributions

are dynamically scaled during the simulation, with the local AD velocity averaged over the rotor disk 〈UAD〉, and with

calibrated scaling coefficients C∗
T , C∗

P and Ω∗. These scaling coefficients correspond to the thrust coefficient CT , the
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power coefficient CP and the rotational speed Ω, respectively, as function of 〈UAD〉. The relationship of C∗
T , C∗

P and

Ω∗ with 〈UAD〉 is derived from a calibration procedure, in which a number of single AD simulations are carried out, that

corresponds to a range of free-stream velocities, e.g. between 4-25 m/s with a uniform spacing of 1 m/s. Assuming that

CT , CP and Ω are known as function of the free-stream velocity, the total AD forces in each single wind turbine simulation

is prescribed and 〈UAD〉 can be extracted from the converged solution.

q
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ρRU2
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Figure 9. Calculated tangential qT (dashed line) and normal force qN (solid line) distributions [n/m].

In the present work, the calibration procedure is carried out for the following wind turbines: N80, SWT-2.3-93 and V80.

The blade force distributions from a full rotor detached-eddy simulation of the NREL-5MW wind turbine are used as the

reference blade force distributions, that are scaled as mentioned previously. The results for the normal and the tangential

force distribution are plotted in Figure 9. The numerical setup for the single wind turbine simulations is described in

detail in the work of van der Laan et al. [7]. The calibration procedure is repeated whenever the turbulence model or

the ambient turbulence intensity is changed. The calibration of the Nordex N80 wind turbine from Section 2.1 is shown

in Figure 10. The calibrated scaling coefficients C∗
T , C∗

P and Ω∗ are plotted as function of the averaged AD velocity

〈UAD〉. Four different calibrations are given that differ in turbulence model and ambient turbulence intensity. C∗
T and C∗

P

show sensitivity to the turbulence model and ambient turbulent intensity, in the low wind speed range, as also observed in

previous work [14]. The sensitivity in turbulence model is caused by the fact that the k-ε EVM underpredicts the induction

compared to LES, whereas the k-ε-fP EVM predicts a correct induction. Therefore, it is important to redo the calibration

if the turbulence model or the ambient turbulence intensity is changed. The calibration results of the other wind turbines

are not given in the paper.

IH,∞ = 2.4%, k-ε IH,∞ = 2.4%, k-ε-fP
IH,∞ = 9.6%, k-ε IH,∞ = 9.6%, k-ε-fP
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Figure 10. Nordex N80 wind turbine. Left: C∗

T (solid line) and C∗

P (dashed line). Right: rotational speed Ω∗ in RPM.

3.1.3. Post processing for measurement uncertainty of the wind direction

Gaumond et al. [40] showed that the wind direction uncertainty is large in measurements that are processed with narrow

wind direction bins. As a result, the measured power deficit decreases for a narrow wind direction bin that is aligned with
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the wind turbine rows, because power measurements outside the wind direction bin, which corresponds to partial or no

wake conditions, are also included. Gaumond et al. argued to correct model results for wind direction uncertainty, such

that a fair comparison with measurements can be made. Three sources of the wind direction uncertainty are identified by

Gaumond et al.:

1. The use of a yaw sensor to obtain the wind direction, instead of a direct measurement, i.e. a wind vane.

2. The spatial decorrelation of the reference wind direction measurement with respect to the undisturbed wind direction

that is present far away from the reference location.

3. The change in wind direction due to large scale turbulence that is statistically not well represented within ten minute

averages.

In the present work, the first two sources of wind direction uncertainty are estimated for the Horns Rev wind farm by

investigating the standard deviation of the difference in the wind direction that is measured with a wind vane at the

meteorological mast M2 θM2,i with the wind direction that is computed from the yaw sensors θyaw,i:

∆θi = θyaw,i − θM2,i (9)

Note that the meteorological mast M2 is located 2km north from the Horns Rev wind farm, as shown in Figure 6, and was

only partly available during the period of the power measurements. In Figure 11, the standard deviation of ∆θi is plotted

against the distance between M2 and the individual wind turbines ∆L. The data collapses to a linear curve:

σ∆θ = 3.5× 10−4∆L+ 2.1. (10)

Figure 11 indicates that the wind direction uncertainty increases linearly with the distance from the reference location.

In addition, even if M2 was placed at the location of the yaw sensor, still a difference in standard deviation of 2.1◦ is

predicted. In other words, the standard deviation of the wind direction is increased by 2.1◦ because a yaw sensor is used

to measure the wind direction, instead of a wind vane.

data Curve fit: σ∆θ = 3.5× 10−4∆L+ 2.1

σ∆θ [◦]

Distance from M2: ∆L [m]

2
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3

5

0
0

2000 4000 6000 8000 10000

Figure 11. Difference in standard deviation beteen meteorological mast M2 and the yaw sensors of the wind turbines in Horns Rev.

Ott and Nielsen [5] argued that the wind direction uncertainty, associated with the large scale turbulence that is

statistically not well represented within ten minute averages: σlst, can be estimated from the difference in consecutive

ten minute averaged wind direction measurements. This idea is adapted in the present work, using all three meteorological

masts at Horns Rev: M2, M6 and M7, as shown in Figure 6. For M2, σlst is obtained from a Gaussian fit of the distribution

∆θM2,i:

∆θM2,i = θM2.i+1 − θM2,i, (11)

using the consecutive wind direction measurements θM2.i and θM2,i+1. The data is filtered for outliers before the Gaussian

fit is performed. The final results of the unfiltered distribution and the Gaussian fit for M2 is plotted in Figure 12. The

exercise is repeated for M6 and M7 and the results for σlst are listed in Table V.

We assume that all three sources of wind direction uncertainty can be written as a single standard deviation σtotal:

σtotal =
√

σ2

∆θ + σ2

lst. (12)

The average result for σlst is used (2.5◦), as listed in Table V.
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data Gaussian fit: σlst = 2.6◦, µlst = 0◦

Probability

∆θM2,i [◦]
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Figure 12. The difference of consecutive ten minute wind direction averages measured at meteorological mast M2.

Table V. Estimation of σlst for three different meteorological mast at Horns Rev.

Meteorological mast M2 M6 M7 Average

σlst [◦] 2.6 2.5 2.5 2.5

It is believed that the wind direction uncertainty in the Lillgrund and Wieringermeer wind farms is lower than the

Horns Rev wind farm because both the Lillgrund and Wieringermeer wind farms are much smaller than Horns Rev. Since

the wind direction in the Lillgrund wind farm is still based on yaw sensors, it is assumed that the standard deviation in

wind direction due to using yaw sensors is 2.1◦, i.e. substituting ∆L = 0 in Equation (10). The effect of decorrelation is

neglected because the reference wind turbine that is used to obtain the wind direction, is always the first wind turbine in a

neighboring row with respect to the rows of the Lillgrund test cases (i.e A5 for row 4 and 6, and C1 for row B and D). In

other words, the distance of the measured power deficits and the reference wind turbine is small. The Wieringermeer wind

farm uses wind vanes that are positioned at a nearby meteorological mast, hence the wind direction uncertainty due to

using a yaw sensor can be neglected. The estimated wind direction uncertainty per wind farm is summarized in Table VI.

Table VI. Estimated wind direction uncertainty of the measurements.

Wind direction uncertainty in terms of σ [◦]

Case Description Decorrelation Yaw sensors Large scale turb. Total

1-2 Wieringermeer - - 2.5 2.5

3-6 Lillgrund - 2.1 2.5 3.3

7 Horns Rev 3.5 × 10−4∆L+ 2.1 2.5
√

(3.5 × 10−4∆L+ 2.1)2 + 2.52

The three sources of wind direction uncertainty are taken into account by averaging the simulated wind directions with

a Gaussian filter [40], in which the standard deviation is based on total standard deviation listed in Table VI. The Gaussian

averaging is performed over an interval of ±3σtotal such that 99.7% of the Gaussian filter is applied.

3.2. Results and Discussion

The results of the on-shore Wieringermeer wind farm and the two off-shore wind farms Lillgrund and Horns Rev, are

discussed separately in the proceeding sections. In all power deficit plots, two results for each RANS turbulence model are

shown; the solid line represents the result of each single wind direction and the dashed line is the post-processed result of

a Gaussian average using an interval of ±3σtotal. This Gaussian averaging represents the wind direction uncertainty that is

typically observed in measurements that are processed with narrow wind direction bins, as explained in Section 3.1.3. The

wind farm efficiency of all test cases is evaluated in Section 3.2.4.
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Figure 13. Power deficit in the Wieringermeer wind farm as function of wind direction. Measurements include error bars of one

standard deviation. Solid and dashed lines: solution without and with Gaussian averaging (GA), respectively.

3.2.1. Wieringermeer

In Figure 13, the power deficit is plotted as function of westerly wind directions for each of the four downstream wind

turbines (T6, T7, T8 and T9) separately, for low and high ambient turbulence intensities (cases 1 and 2 of Table I). The
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power deficit of each wind turbine is normalized by the first turbine in the row (T5). The numerical computations using

the standard k-ε EVM and k-ε-fP EVM are carried out for relative wind directions between 0◦and 24◦, with a constant

interval of 3◦. The results of the negative relative wind direction range (-24◦to 0◦) is the mirror image of the results of

the positive relative wind directions. Hence, the effect of rotation on the power deficit is assumed to be negligible. This

assumption is tested at the end of the present section. The Gaussian averaged results, indicated with the dashed lines, are

computed using an interval of ±3σtotal with a standard deviation σtotal of 2.5◦, as motivated in Section 3.1.3. The power

deficits are compared with measurements from Wieringermeer [16], as described Section 2. In case 1, the measured power

deficit of the second wind turbine (T6) is very large due to the low ambient turbulence of 2.4%. The calculated power deficit

predicted by the k-ε-fP EVM is even larger than the measured one, however, the power deficit becomes more comparable

when the wind direction uncertainty is taken into account. Further downstream, the k-ε-fP EVM underpredicts the power

deficit compared to the measurements. In addition, the measured width of the power deficit is larger than the calculated

one. Figure 3 from Section 2.1 shows that the low ambient turbulence in the measurements is caused by very stable

atmospheric conditions, which are not modeled in the current RANS simulations. A stable ABL suppresses the generation

of wake turbulence and it delays wake recovery, which increases the power deficit. Hence, the stability is a plausible cause

for the difference between the measured and the calculated power deficit.

The standard k-ε EVM is known to underpredict the velocity deficit in the near wake [7, 10, 11, 12, 13]. The

underpredicted velocity wake deficit translates to an overprediction of the power of the second wind turbine in case 1

by 40%, at a relative wind direction of 0. The difference between the standard k-ε EVM and the k-ε-fP EVM becomes

smaller at the third wind turbine (T7) and further downstream the turbulence models predict similar power deficits. This

effect is caused by the increasing turbulence intensity in the (merged) wakes because the single wake simulations have

shown, that the difference between the RANS turbulence models is small, when a high ambient turbulence intensity is set

at the inlet [7]. In addition, an other mechanism minimizes the difference between the turbulence models in terms of the

power deficit of the wind turbines further downstream in the row. Since the k-ε EVM is overpredicting the wake recovery

of the first wind turbine wake, the second wind turbine experiences larger forces and its corresponding wake deficit is

compensated. Hence, the difference in forcing of the second wind turbine, results in a smaller difference between the

turbulence models, in terms of power deficit of the third wind turbine in the row.

In case 2, the ambient turbulence intensity is four times higher than in case 1. The power deficits predicted by the k-

ε-fP EVM is in reasonable agreement with the measurements. The influence of the Gaussian averaging is small because

the wind direction uncertainty is estimated to be low. In addition, the difference between the standard k-ε EVM and the

k-ε-fP EVM, in terms of the power deficit of the second wind turbine, is smaller than observed in case 1 because of the

higher ambient turbulence intensity.
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Figure 14. Power deficit in the Wieringermeer wind farm for a wind direction of 275◦
±3◦. Measurements include error bars of one

standard deviation. Solid and dashed lines: solution without and with Gaussian averaging (GA), respectively.

A linear averaged power deficit is shown in Figure 14 for the low and high ambient turbulence cases. The measured

average consist of three bins between relative wind directions of -3◦and 3◦, and the average from the simulations represents

three simulations corresponding to relative wind direction of -3◦, 0◦and 3◦. Figure 14 emphasizes the statements that the

standard k-ε EVM significantly underpredicts the power deficit at the second wind turbine, the k-ε-fP EVM compares

much better with the measurements and both turbulence models show an underpredicted power deficit for the further

downstream wind turbines for case 1. Figure 14 also shows that the measured power deficit in case 2 has almost already
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reached its asymptotic value at the second wind turbine, since the power deficit does not change much at the other

downstream wind turbines. In other words, the momentum loss caused by wake effects, is not further increased when going

downstream in the row, because it is in equilibrium with the transport of fresh momentum coming from the undisturbed

flow.
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Figure 15. Effect of rotational forces on power deficit in the Wieringermeer wind farm for a wind direction of 275◦
±3◦.

The effect of the rotational forces is shown in Figure 15, in which the power deficit is plotted with and without rotational

forces. Only the k-ε-fP EVM is used in the comparison and for the simulations without rotational forces a recalibrated

C∗
T is used to scale the reference thrust force distribution. Hence, the two methods would predict the same power when

they are applied to a single wind turbine simulation. Figure 15 shows that there is a very weak influence of the rotational

force on the power deficit. This observation is in contradiction with the work of Wu and Porté-Agel [41], who argued that

the rotational forces do influence the power deficit in their LES AD computations of the Horns Rev wind farm. However,

Wu and Porté-Agel used different methods to represent the variable forces in the LES simulation with (ADM-R) and

without rotation (ADM-NR), which may have led to an unfair comparison. In the ADM-R simulation the forces were

based on tabulated airfoil data, as introduced by Sørensen and Shen [42]. The ADM-NR simulations were carried out by a

uniformly distributed AD, where the total force is based on a variable thrust force coefficient, using the thrust curve and a

local free-stream velocity UH,∞, that is estimated from the local induction factor ax and an averaged velocity at the AD

〈UAD〉: UH,∞ = 〈UAD〉/(1− ax). This method leads to an overprediction of the power, because the free-stream velocity

is overestimated, as shown in van der Laan et al. [14]. Hence, the difference between ADM-R and ADM-NR in terms of

power deficit is most likely caused by the difference in AD force method, rather than the effect of wake rotation.

3.2.2. Lillgrund

The results of four wind directions, corresponding to the four wind farm cases of Table I, are shown in Figure 16.

For each case the power deficit of two rows are plotted; rows B and D for cases 3 and 4 and rows 6 and 4 for cases 5

and 6, respectively. Rows D and 4 are rows where one and two wind turbines are missing. Cases 3 and 5 correspond to

wind directions that are aligned with the rows, whereas cases 4 and 6 represent a staggered layout in which the wind

directions are 15◦misaligned with the direction of the rows. All plots in Figure 16 include results of the standard k-ε
EVM and the k-ε-fP EVM. For both models two results are shown; the power deficit without Gaussian averaging (solid

line) and with Gaussian averaging (dashed line). The Gaussian averaging represents the wind direction uncertainty and it

is performed over an interval of ±3σtotal with σtotal = 3.3◦, as discussed in Section 3.1.3. The RANS based models are

Gaussian averaged using seven relative wind directions between -15◦,15◦, with uniform interval of 5◦. In addition, the

LES results of Churchfield et al. [24] are included for case 3, which corresponds to a single high fidelity simulation. Note

that the LES data from Churchfield et al. is renormalized with the power of the first wind turbine, such that a comparison

can be made with the results of the RANS models. The wind direction uncertainty is not taken into account in the LES

data from Churchfield et al. because only one wind direction was simulated.

First, the Gaussian averaged results are discussed. In all aligned cases (cases 3 and 5), the standard k-ε EVM is not

able to predict the measured power deficit of the second wind turbine, whereas the k-ε-fP EVM shows favorable results.

In addition, all cases show that the power deficit calculated by the k-ε EVM approaches the one of k-ε-fP EVM when

going downstream. These two observations were also made in the results of the on-shore wind farm Wieringermeer, in

Section 3.2.1. In one of the staggered cases (case 4), both the k-ε EVM and the k-ε-fP EVM underpredicts the measured

power deficit, especially for row B. The two downstream wind turbines in row B do not experience large wake effects in
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Figure 16. Power deficit in rows in the Lillgrund wind farm for aligned flow directions. LES from Churchfield [24]. Dashed lines include

Gaussian averaging (GA).
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Figure 17. Power deficit in rows in the Horns Rev wind farm for a wind direction of 270◦ ± 2.5◦. Dashed lines include Gaussian

averaging (GA).

the simulations for a wind direction of 207◦ , because the upstream wake does not hit the two downstream wind turbines.

This is effect is more pronounced in the k-ε-fP EVM because the standard k-ε EVM has too wide wakes, as observed

in single wind turbine simulation in previous work [7]. It is plausible that the uncertainty of the wind direction is larger
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for case 4, although further downstream in rows B and D, the simulated power deficit of the wind turbines will not be

improved by a Gaussian filter with a larger standard deviation.

In general, the Gaussian averaging improves the results of the k-ε-fP EVM. However, the measured power deficit of

the second wind turbine of case 5 is best predicted without Gaussian averaging.

Comparing the available LES results with the measurements and other models for case 3, shows that the LES predicts a

reasonable wake deficit for row B. However, the LES underpredicts the asymptotic value of the power deficit, as also noted

by Churchfield et al. [24]. The LES overpredicts the power deficit in row D for the upstream turbine of the gap and the

asymptotic value is again not reached. The reasons for these differences are not clear. One should keep in mind that only

one LES simulation is shown (without the Gaussian averaging), which makes it difficult to compare with measurements

that include wind direction uncertainty.

3.2.3. Horns Rev

The measured power deficit in the Horns Rev wind farm is plotted in Figure 17 for all eight rows, for a wind direction

of 270◦ ± 2.5◦. The measured power deficit is compared with two results of the k-ε EVM and the k-ε-fP EVM, where

the dashed and solid lines represents the power deficit with and without Gaussian averaging. The Gaussian averaging is

meant to include the wind direction uncertainty of the measurements in the simulations, as discussed in Section 3.1.3. The

variable standard deviation of the wind direction uncertainty from Table VI is applied. In order to perform the Gaussian

averaging over an interval of ±3σtotal, nine different wind directions are simulated per turbulence model, covering a wind

direction range of 250◦-290◦, with a uniform interval of 5◦. Without the Gaussian filter, the power deficit of the second

wind turbine, calculated by the k-ε-fP EVM, is overpredicted in all rows. When the results are Gaussian averaged, the

measured power deficit of the second wind turbine and the one calculated by the k-ε-fP EVM compare better, but there

is still an overprediction that continues to exist for the wind turbines further downstream. Possibly, the wind direction

uncertainty is higher than estimated in Section 3.1.3. In addition, the Gaussian averaged results would improve if the wind

direction uncertainty of Gaumond et al. [40] is applied. Gaumond et al. used a row specific σtotal, that is obtained from

fitting the power deficit of each second wind turbine in a row, predicted by Fuga [5], to the measurements. This shows that

the results are very sensitive to the estimation of the wind direction uncertainty.

It should be noted that the standard deviation of the power measurements is almost twice as high as the data set

that includes all atmospheric stability classes. This is not understood because it is expected that the variability of the

measurement would decrease when non-neutral atmospheric stability data is filtered out. Note that the average number of

observations per wind turbine is 45, which is believed to be sufficient.

As seen in the other test cases, the k-ε EVM predicts a lower power deficit compared the k-ε-fP EVM, for the second

wind turbine in each row, although the difference is not as large as seen in the Lillgrund wind farm (Figure 16). This is

caused by the larger wind turbine spacing in Horns Rev (7D) compared to the one in the Lillgrund wind farm (3.2D-4.3D).

From the third wind turbine in the row and further downstream, the difference between the turbulence models is negligible.

3.2.4. Wind farm efficiency

The wind farm efficiency is defined as the total power of the wind farm normalized by the power of a single wind

turbine without wake effects and the number of wind turbines. In Figure 18, the wind farm efficiency is plotted for all test

cases employing the k-ε EVM and k-ε-fP EVM and the results are compared with the measurements. Note that the wind

farm efficiency is only computed for the simulated wind directions, which does not cover the full wind rose. Results with

and without Gaussian averaging are shown with the non-filled and filled symbols, respectively. In the first Wieringermeer

case, the calculated wind farm efficiencies do not compare well with the measurements, because the effect of atmospheric

stability is not modeled. The second Wieringermeer case corresponds to a data set that is measured in near neutral ABL

conditions. The k-ε-fP EVM compares well with the measurements in this test case, whereas, the k-ε EVM overpredicts

the measured wind farm efficiency. In the Lillgrund cases (cases 3 to 6), the results of the k-ε EVM and the k-ε-fP EVM,

are reasonably close to the measured values. The effect of Gaussian averaging in the Wieringermeer and Lillgrund cases is

small. However, the Gaussian averaging improves the results significantly in the Horns Rev test case (case 7). In addition,

the difference between the two turbulence models is negligible. The Horn Rev test case shows that the effect of Gaussian

averaging is larger than the difference in wind farm efficiency between the two turbulence models. This indicates that the

post processing of the CFD results is just as important as the choice of turbulence model.

The difference in wind farm efficiency between the k-ε EVM and the k-ε-fP EVM becomes smaller with increasing

wind farm size and wind turbine spacing. In the Wieringermeer cases (5 wind turbines, with 3.8D spacing), the aligned

Lillgrund case (48 wind turbines, with 3.2D-4.3D spacing) and the Horns Rev wind farm (80 wind turbines, with 7D

spacing), the difference in wind farm efficiency without Gaussian averaging is 0.10-0.11, 0.05-0.07, 0.04, respectively. In

addition, for wind direction that correspond to staggered configurations, the difference in wind farm efficiency is negligible,

as observed in the staggered Lillgrund cases 4 and 6. In other words, if the annual energy of a large wind farm needs to be

calculated, the standard k-ε EVM will show a similar performance as the k-ε-fP EVM, because the complete wind rose
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Figure 18. Wind farm efficiency for all test cases. Cases 1 and 2: Wieringermeer with low and high ambient turbulence intensity,

Cases 3 and 5: Lillgrund with aligned wind directions, with 4.3D and 3.2D spacing. Cases 4 and 6: Lillgrund with staggered wind

directions, with 4.3D and 3.2D spacing. Case 7: Horns Rev. Non-filled symbols are Gaussian Averaged (GA) results.

calculation corresponds to mostly wind directions with staggered configurations and the difference in power is negligible

at the third or fourth wind turbine in a row.

3.2.5. Computational cost

The simulations are computed on a user-shared PC cluster that has eighty nodes with two Intel Xeon X5650 processors

with six cores each. The clock frequency of a core is 2.66 GHz. The total number of CPU hours (number of CPUs × wall

clock time) per wind direction is listed in Table VII and it is computed as an average of all simulated wind directions. The

k-ε-fP EVM needs more iterations than the k-ε EVM, especially for the case with aligned wind directions, which causes

the difference in computational cost. However, the k-ε-fP EVM is still three orders of magnitude cheaper compared to

LES. For example, Churchfield et al. [24] performed LES of the Lillgrund wind farm that took approximately 1,000,000

CPU hours using 4096 cores to simulate only 10 minutes of realtime data for a single wind direction. It should be noted

that Churchfield et al. used the actuator line technique [42], which requires a finer cell spacing than the AD method, and

the time step is limited to the tip speed (Churchfield et al. used D/53 = 1.75 m and 0.015 s, respectively). If ADs are

used, a significant reduction in computational cost can be achieved because a cell spacing of D/30 is required if the

Reynolds-stresses in the wake need to be resolved, and even D/15 is enough if only the mean velocity deficit is desired

[9]. In addition, the time step in a AD-LES is not limited to the tip speed, but it can be set to a Courant-Friedrichs-Lewy

condition that is based on the free-stream velocity.

Table VII. Average computational effort in CPU hours per wind direction.

Case Description Cores Cells CPU k-ε CPU k-ε-fP

1-2 Wieringermeer 1×12 3.9×106 14 15

3-6 Lillgrund 6×12 2.4×107 250 309

7 Horns Rev 9×12 8.5×107 1043 1527

4. CONCLUSIONS

The performance of the k-ε EVM and the k-ε-fP EVM is evaluated for seven test cases corresponding to three different

wind farms: Wieringermeer, Lillgrund and Horns Rev. The wind direction uncertainty of the measurements is used to

correct the model results with a Gaussian filter, such that a fairer comparison can be made between the measurements and

simulations. For wind directions that are aligned with the wind turbine rows, the k-ε EVM underpredicts the power deficit

at the second wind turbines in all cases, whereas the k-ε-fP EVM shows comparable results with the measurements.

Further downstream, at the third or fourth wind turbine in a row, the RANS turbulence models predict similar power

deficits.
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The two Wieringermeer cases imply that the effect of wake rotation on the power deficit is negligible. However, it is

believed that the atmospheric stability does influence the power deficit, since the k-ε-fP EVM is not able to predict the

power deficit in Wieringermeer wind farm that is measured in stable atmospheric conditions.

The Horns Rev case shows that the effect of Gaussian averaging on the power deficit and wind farm efficiency is larger

than the difference between k-ε EVM with the k-ε-fP EVM. Hence, the choice of turbulence model is just as important as

including the wind direction uncertainty in the post processing. Therefore, it is important to further investigate the methods

that are used to estimate the wind direction uncertainty.

The difference in wind farm efficiency predicted by the k-ε EVM and the k-ε-fP EVM becomes smaller for increasing

wind turbine spacing and wind farm size. In addition, the difference between the prediction of the two models is small for

wind directions that are misaligned with respect to the wind turbine rows. Hence, it is expected that the k-ε EVM and the

k-ε-fP EVM will predict similar values of the annual energy production for large wind farms with relatively large wind

turbine spacing.
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