View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Timetabling at High Schools

Sgrensen, Matias; Stidsen, Thomas Jacob Riis; Herold, Michael B. ; Pisinger, David

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sgrensen, M., Stidsen, T. R., Herold, M. B., & Pisinger, D. (2013). Timetabling at High Schools. Department of
Management Engineering, Technical University of Denmark.

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/24847347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/timetabling-at-high-schools(4756333a-75ff-4c9e-be1f-cef34742d59d).html

Ph.D. thesis

Timetabling at High Schools

Matias S¢rensen

Management Science
Department of Management Engineering
Technical University of Denmark
Produktionstorvet, Building 426
DK-2800 Kgs. Lyngby
Denmark

MaCom A/S
Vesterbrogade 48, 1.
DK-1620 Kbh. V
Denmark

November, 2013

Danish title:
Skemalaegning pa gymnasiale uddannelsesinstitutioner
Type: Ph.D. thesis

Author: Matias Sgrensen, msso@dtu.dk, ms@macom.dk

ISBN-nr: 7?7

Management Science

Department of Management Engineering
Technical University of Denmark
Produktionstorvet, Building 426

DK-2800 Kgs. Lyngby

Denmark

Phone: +45 45 25 48 00, Fax: +45 45 25 48 05
phd@man.dtu.dk

MaCom A/S
Vesterbrogade 48, 1.
DK-1620 Kbh V.
Denmark

Phone: +45 33 79 79 00

November, 2013

Abstract

High school institutions face a number of important planning problems during each school-
year. This Ph.D. thesis considers two of these planning problems: The High School Timetabling
Problem (HSTP) and the Consultation Timetabling Problem (CTP). Furthermore a framework
for handling various planning problems is considered, known as the Generalized Meeting Planning
Problem (GMPP). The view taken on these problems is that they are mathematical optimization
problems, where the goal is to find the optimal solution (from the set of all feasible solutions).
This view allows state-of-the-art methods from the field of Operations Research to be applied.

This thesis is composed of three parts. The first part introduces the relevant methodologies of
Operations Research, describes the considered optimization problems, summarizes the scientific
articles and lists the scientific contributions of the thesis. The second part contains the main
scientific papers composed during the Ph.D. study. The third part of the thesis also contains
scientific papers, but these are included as an appendix.

In the HSTP, the goal is to obtain a timetable for the forthcoming school-year. A timetable
consists of lectures scheduled to time-slots, and each lecture has a number of resource require-
ments. The goal is to obtain a schedule such that the individual timetable for each resource
fulfills a number of requirements. Two versions of the HSTP are considered: The Generalized
High School Timetabling Problem (GHSTP) (based on the publicly available XHSTT format
for modeling instances and solutions of the HSTP) and the Danish High School Timetabling
Problem (DHSTP). For both problems a complex Mixed-Integer Programming (MIP) model is
developed, and in both cases are empirical tests performed on a large number of real-life datasets,
which show that the MIP model is a challenge to solve for a state-of-the-art generic MIP-solver.
A heuristic based on Adaptive Large Neighborhood Search (ALNS) is developed for the GHSTP,
and this heuristic was part of the final round of International Timetabling Competition 2011
(ITC2011). An ALNS heuristic is also developed for the DHSTP, and computational results
show that this is currently the best known solution algorithm. Furthermore, the thesis shows the
relation between the GHSTP and the DHSTP, and instances of the DHSTP are made publicly
available in the XHSTT format.

An extension of the Two-Stage Decomposition (TSD) method is also shown in this thesis,
which makes the TSD capable of handling both the GHSTP and the DHSTP. In a TSD approach,
a MIP model is split into two separate models which are solved in sequence, while maintaining
optimality (as far as possible). This reduces the total amount of variables significantly compared
to the original MIP model. Whether or not the TSD is an exact solution method in the context
of GHSTP and DHSTP is determined by certain characteristics of a given dataset. For both
the GHSTP and the DHSTP, the TSD is capable of producing lower bounds, even though it
might not be an exact method for the dataset at hand. For the DHSTP, the TSD is shown
to be theoretically capable of producing near-optimal solutions for an arbitrary dataset, and
computational results show that the TSD provides both better solutions and better bounds than
the original MIP model. For the GHSTP, the TSD is an exact method for the majority of the

I

considered datasets. However, in this case the computational results do not clearly show that
the TSD outperforms the original MIP model.

An algorithm hybridizing MIP and metaheuristics is developed and applied to both the
GHSTP and the DHSTP. This algorithm is part of the recent trend called matheuristics, which
is a promising class of solution approaches for many types of optimization problems. In the
implemented matheuristic, a MIP solver is used as a low-level search mechanism, and an adaptive
layer of the algorithm guides the search on the overall level. In terms of the GHSTP, this
matheuristic has shown to be competitive with the winner of Round 2 of ITC2011. For the
DHSTP, the algorithm outperforms the exact approaches, but not the ALNS algorithm when
compared on a low time-limit. Given a time-limit of two hours, the matheuristic obtains solutions
which are within 15.2% of optimum in average for 100 real-life dataset of the DHSTP.

The CTP has not been described in the scientific literature before. The problem consists
of scheduling meetings between a single student and a number of teachers to time-slots. The
primary aim of a meeting is to allow the teachers to provide feedback to the student w.r.t.
educational progress. A proof of AP-hardness is given, and a MIP model is developed. Also
for this problem, an ALNS heuristic is shown to perform very well, producing solutions that are
within 3% of optimum in average on 200 real-life datasets.

The GMPP is a framework for handling a number of different planning problems. The goal of
the GMPP is to schedule meetings between certain resources to time-slots, such that no resource
attends more than one meeting at any time. A model of the problem is proposed which is based
on a Column Generation approach. A key feature of this model is that most problem-specific
constraints are handled by the subproblem of the Column Generation algorithm. This leads
to a Branch-and-Price algorithm for the GMPP which is independent of these problem-specific
details, but still applicable to a range of optimization problems. As a test-case for the GMPP,
the CTP is used. The Branch-and-Price algorithm obtains solutions within 3% of optimum in
average on the same set of instances as the ALNS algorithm.

The thesis show that real-world high school timetabling problems are a challenge to solve
for exact methods, even with the recent advances of generic MIP solvers and when applying
state-of-the-art techniques such as TSD. In a practical setting for these problems, the tests
performed in this thesis show that heuristics in general produce the best solutions. However,
exact methods which can provide bounds on optimum are valuable for evaluating the performance
of the heuristics. For the CTP, the performance of an exact algorithm (the Branch-and-Price
algorithm) is competitive with the performance of the tested heuristic (the ALNS heuristic).
This shows that it is possible to use exact methods for CTP in a practical setting.

II

Resumé

In Danish

Gymnasiale uddannelsesinstitutioner skal lgse en reekke vigtige planlaegningsproblemer i lgbet af
et skolear. Denne ph.d. athandling omhandler to af disse planlaegningsproblemer: Skemalaegnings-
problemet (SP) og Konsultations-planlaegningsproblemet (KPP). Desuden betragtes det Ge-
neraliserede mgde-planlaegningsproblem (GMPP), som kan handtere en lang raekke forskellige
planlaegningsproblemer. Planlaegningsproblemerne anskues i denne athandling som matematiske
optimeringsproblemer, hvor malet er at finde den optimale lgsning (ud fra sattet af alle mu-
lige lgsninger). Ved at anskue problemerne pi denne méade er det muligt at anvende fgrende
lgsningsmetoder indenfor den videnskabelige disciplin operationsanalyse.

Afhandlingen bestar af tre dele. Den fgrste del introducerer de relevante metodologier inden
for operationsanalyse, beskriver de betragtede optimeringsproblemer, opsummerer de videnska-
belige artikler, samt gennemgar afhandlingens videnskabelige bidrag. Den anden del af afthand-
lingen indeholder de primare videnskabelige artikler som er udarbejdet i lgbet af ph.d. studiet.
Den tredje del af afthandlingen indeholder ogsa videnskabelige artikler, men disse er inkluderet
som et appendiks.

SP omhandler planlaegningen af det arlige skema, hvor alle lektioner skal tildeles en skema-
position og et sxt af ressourcer saledes, at det individuelle skema for hver ressource opfylder
et antal kriterier. To forskellige versioner af SP betragtes: Det generelle skemalaegnings-problem
(GSP) (baseret pa det offentligt tilgeengelige XHSTT format til at modellere instanser og lgs-
ninger af SP) og det danske skemalaegnings-problem (DSP). For begge problemer vises en heltal-
programmeringsmodel, og i begge tilfaelde udfgres empiriske tests pa et stort antal realistiske da-
tasaet, hvilket viser at modellerne er en udfordring for en fgrende generisk heltal-programmerings
lpsningsalgoritme. For GSP udvikles der en heuristik baseret pa Adaptive Large Neighborhood
Search (ALNS). Denne heuristik var en del af finalerunden ved International Timetabling Com-
petition 2011 (ITC2011). Endvidere udvikles ogsad en ALNS heuristik til DSP, som p.t. er den
bedst kendte lgsningsalgoritme. Ydermere vises relationen mellem GSP og DSP, og instanser af
DSP ggres offentligt tilgeengelige i XHSTT formatet.

En udvidelse af metoden To-Fase Dekomponering (TFD) vises, hvilket ggr TFD i stand til
at handtere bade GSP og DSP. I en TFD metode deles heltal-programmerings modellen i to
separate modeller, og disse to modeller lgses sekventielt, saledes at optimalitet bevares (sa vidt
som muligt). Denne fremgangsméade reducerer betydeligt det totale antal af variable i modellen.
Hvorvidt TFD er en eksakt lgsningsmetode afthaenger af forskellige karakteristika ved det enkelte
datasaet. For bade GSP og DSP er TFD i stand til at finde nedre greenser for optimum, ogsa
selvom metoden i sig selv ikke er eksakt mht. det betragtede dataseet. I tilfaelde af DSP vises
det, at TFD er teoretisk naer-optimal for et arbitraert datasaet og empiriske resultater viser, at
TFED er i stand til at finde bade bedre lgsninger og bedre nedre graenser for optimum end den
originale heltal-programmerings model. For GSP vises det, at TFD er en eksakt metode for

111

hovedparten af de betragtede datasaet. Dog viser de empiriske resultater ikke klart at TFD er en
bedre lgsningsmetode end den originale heltal-programmerings model.

En hybrid-algoritme baseret pa heltal-programmering og metaheuristikker er vist, og an-
vendt pa bade GSP og DSP. Denne algoritme er en del af den nye trend matheuristics, som er
en lovende type lgsningsalgoritme til mange optimeringsproblemer. En heltal-programmerings
lgsningsalgoritme bruges som den basale sggemekanisme, og et adaptivt lag guider sggningen
pa det overordnede niveau. Til GSP viser denne algoritme sig at veere konkurrencedygtig med
vinderen af runde 2 i finalerunden ved ITC2011. Til DSP viser algoritmen sig at veere bedre
end de eksakte lgsningsmetoder, men ikke bedre end ALNS algoritmen nar givet en kort tidsbe-
graensning. Ved en tidsbegraensning pa to timer, sa er matheuristic algoritmen i stand til at finde
lpsninger som i gennemsnit er indenfor 15,2% af optimum nér 100 realistiske problem-instanser
af DSP betragtes.

KPP er ikke blevet beskrevet i den videnskabelige litteratur for. Problemet bestar i at tildele
tidspunkter til mgder mellem en elev og et antal leerere. Det primaere mal med det enkelte mgde
er, at laererne far mulighed for at give eleven feedback mht. vedkommendes faglige udvikling.
Et bevis for at problemet er N'P-hérdt vises, og der udvikles en heltal-programmeringsmodel.
Ogsa for dette planlaegningsproblem opnér en ALNS heuristik gode resultater, da den er i stand
til at producere lgsninger som i gennemsnit er indenfor 3,0% af optimum néar 200 realistiske
problem-instanser betragtes.

GMPP er en problem-ramme til at handtere en raekke forskellige planlaegningsproblemer.
Formalet med GMPP er at tildele mgder mellem en raekke forskellige ressourcer til tidspunkter
saledes, at ingen ressourcer har mere end ét mgde i hvert tidspunkt. Der foreslads en model af
problemet, som er baseret pa en Column Generation lgsningsmetode. En vigtig egenskab ved
modellen er, at de fleste problem-specifikke begransninger bliver handteret i under-problemet i
Column Generation algoritmen. Dette leder til en Branch-and-Price algoritme til KPP som er
uafhangig af disse problem-specifikke detaljer, men som kan anvendes pa en lang rakke plan-
leegningsproblemer. Som en test af GMPP bruges KPP. I dette tilfeelde er Branch-and-Price
algoritmen i stand til at finde lgsninger, som er indenfor 3,0% af optimum i gennemsnit over de
samme problem-instanser som ALNS algoritmen blev anvendt pé.

Denne athandling viser at realistiske skemalagningsproblemer er svaere at lgse for eksakte
metoder, selv med de seneste fremskridt indenfor generiske heltal-programmerings lgsningsalgo-
ritmer, og nar state-of-the-art tekniker anvendes (f.eks. TFD). I praksis er heuristiske lgsnings-
algoritmer i stand til at producere bedre lgsninger. Eksakte metoder der kan give greenser for
optimum er dog veerdifulde nar kvaliteten af de heuristiske lgsninger skal evalueres. I tilfaclde af
CTP er en eksakt metode (Branch-and-Price algoritmen) konkurrencedygtig med den testede
heuristik (ALNS heuristikken). Dette viser at det er muligt at bruge eksakte metoder til KPP i
praksis.

IV

Preface

The studies presented in this thesis document in part the fulfillment of the requirements for
the degree of Ph.D. at the Department of Management Engineering, Technical University of
Denmark. The Ph.D. project ran from December 2010 to November 2013. The project was
supervised by Thomas R. Stidsen (main supervisor), Michael B. Herold (company supervisor)
and David Pisinger (co-supervisor).

This Ph.D. project is part of a research project which considers timetabling problems at
educational institutions. A considerable amount of the studies have been performed jointly with
Ph.D. student Simon Kristiansen from The Department of Management Engineering, Technical
University of Denmark.

This Ph.D. study was performed under the Industrial Ph.D. Programme, in which the Ph.D.
candidate is both employed in a private company and enrolled at a university. An Industrial
Ph.D. project should contribute to the perspectives of the company, as well as fulfilling the
requirements of the Ph.D. school. In this Ph.D. project the commercial product Lectio has
been used as an interface for implementation. Lectio is available to high school institutions in
Denmark, and is used by the majority of these to handle a large variety of administrative and
operational tasks.

Matias Sgrensen

Kgs. Lyngby, Denmark, November 2013

Acknowledgments

I would like to thank a number of people who helped me in various ways during this Ph.D.
project. First of all, thank you to both the division of Management Science, The Department of
Management Engineering, Technical University of Denmark, and MaCom A /S for giving me the
opportunity to pursue a Ph.D. degree. I would like to thank all my colleagues who supported my
studies for the past three years, especially Simon Kristiansen for our intensive and productive
cooperation.

Thank you to all my supervisors for the good discussions we had throughout the project, and
to Niels-Christian F. Bagger and Jorgen T. Haahr for proof reading some chapters in this thesis.

During the project I visited The Chair of Operations Research, RWTH Aachen University.
Thank you to everybody at the department for your hospitality during my stay, especially Florian
Dahms and Prof. Dr. Marco Liibbecke.

Finally T would like to thank Marie for your overwhelming support throughout the entire
project.

VII

Contents

Abstract I
Resumé 111
Preface v
Acknowledgments VI
I Introduction 1
Abl e . 3
1 Thesis Background 5
1.1 Operations Research 6
1.2 Thesis Reading Guide 9
2 High School Timetabling 11
2.1 The Generalized High School Timetabling Problem 12
2.2 The Danish High School Timetabling Problem 15
2.3 Two-Stage Decomposition 17
2.4 International Timetabling Competition 2011 18
3 The Generalized Meeting Planning Problem 21
3.1 The Consultation Timetabling Problem 23
4 Overview of Results 25
4.1 Papers and Conferences o e 25
4.2 Scientific Contributionso e e 28
4.3 Practical Applications 30
5 Conclusion 31
5.1 Future Research e 32
II Scientific Papers 39
6 Paper A: Integer Programming for the Generalized (High) School Timetabling
— Problem 41

IX

Contents

6.1 Introduction 41
6.2 Related Titeratuure v v v v i e e e e e e e e 42
6.3 Problem Description and a Mixed Integer Programming Formulation 43
6.4 Computational Results 54
6.5 Conclusion e e e e e 57
7 Paper B: Integer Programming and Adaptive Large Neighborhood Search for
Real-World Instances of High School Timetabling 63
.1 Introduction 63
7.2 The Timetabling Problem at Danish high schools 64
7.3 Adaptive Large Neighborhood Search 76
.4 Results. 81
.5 Conclusion 88
8 Paper C: A Two-Stage Decomposition of High School Timetabling applied to
__cases in Denmark 93
81 Introduction 93
82 Related work e e 95
8.3 An Integer Programming Model for High School Timetabling 96
8.4 Two-Stage Decomposition of the Integer Programming model 98
8.5 Lectio High School Timetabling Problem 107
8.6 Computational Results 111
87 Conclusion e e 116
9 Paper D: Decomposing the Generalized High School Timetabling Problem 119
91 Introduction v o e e e 119
9.2 Related Literature« . oo e 120
9.3 Problem Description - The XHSTT format 120
9.4 Two-Stage Decomposition e 122
9.5 Solution Method e 130
9.6 Computational Results 130
9.7 Conclusion e 134
10 Paper E: A Matheuristic for High School Timetabling 137
10.1 Introductiono e 137
102 Related work e e e 138
10.3 Matheuristic e 139
10.4 Test Setup 141
10.5 Computational Results e 146
106 Conclusion v i e e e e e 151
11 Paper F: The Consultation Timetabling Problem at Danish High Schools 155
111 Introduction v . o e e e e e e e 155
11.2 Consultation Timetabling Problem 156
11.3 Integer Programming modelo 158
11.4 Adaptive Large Neighborhood Search 165
11.5 Parameter tuning e e e 169
11.6 Performance Lo 171
11.7 Final Remarks and Outlook 181

Contents

12 Paper G: A Branch & Price Algorithm for the Generalized Meeting Planning

__Problem 185
121 Introduction e e e e e e 185
12.2 Previous Approaches 186
12.3 A Mixed-Integer Programming model of the Generalized Meeting Planning problem187
12.4 Test Applications e e 193
12.5 Computational Results o 195
126 Conclusion . . - . . . o o L 200

IIT _Other Contributions 203

13 Paper H: Elective Course Planning 205
13.1 Problem Description 207
13.2 Modeling of Elective Course Planning 209
13.3 Solution algorithms 210
134 Results o o e 216
135 Conclusion e e e e e e e e 220

14 Paper I: International Timetabling Competition 2011: An Adaptive Large
Neighborhood Search algorithm 223
141 Introduction Lo e e e 223
14.2 Adaptive Large Neighborhood Search 223
14.3 Algorithm setup for ITC2011 224
144 Final remarks e e e 225

15 Paper J: Comparing Solution Approaches for a Complete Model of High
School Timetabling 227
15.1 Complexity L. 227
15.2 Conversion to the XHSTT format . . . -« « v v v v v v i e e e e e 228

XI

Part 1

Introduction

Abbreviations

ALNS
B&P
CG
CTP
DHSTP
GHSTP
GMPP
HSTP
IP
ITC2011
LNS

LP

MIP
OR
PCTP
SCTP
TSD

Adaptive Large Neighborhood Search
Branch-and-Price

Column Generation

Consultation Timetabling Problem

Danish High School Timetabling Problem
Generalized High School Timetabling Problem
Generalized Meeting Planning Problem

High School Timetabling Problem

Integer Programming

International Timetabling Competition 2011
Large Neighborhood Search

Linear Program

Mixed-Integer Programming

Operations Research

Parental Consultation Timetabling Problem
Supervisor Consultation Timetabling Problem

Two-Stage Decomposition

Chapter 1

Thesis Background

The research area Fducational Timetabling is defined as the timetabling problems originating
from educational institutions such as high schools and universities. Kingston (2013a) divides
the area into several sub-fields, where the most prominent are high school timetabling, exami-
nation timetabling and university course timetabling. This thesis mainly considers high school
timetabling, denoted the High School Timetabling Problem (HSTP) in the following, but also
another important planning problem is studied, the Consultation Timetabling Problem (CTP).
These planning problems originate from high school institutions and they are a challenge to solve
for the high school administration. Furthermore a framework for handling various timetabling
problems is considered, known as the Generalized Meeting Planning Problem (GMPP).

The view taken on the timetabling problems is that they are optimization problems, where
the goal is to find the optimal solution (from the set of all feasible solutions). This view allows for
applying structured solution methods, which takes advantage of the power of modern computers.
Optimization problems are a subfield of Operations Research (OR), and OR methods are used
throughout this thesis. OR can informally be defined as a discipline that deals with the application
of advanced analytical methods to help make better decisions (INFORMS, 2013), and is usually
seen as the intersection of the disciplines computers science and mathematics. For additional
information about OR, see Section 1.1.

The application of OR techniques to optimization problems has several advantages: 1) The
ability to find the optimal solution for an optimization problem can lead to improved efficiency,
where the definition of efficiency is problem-dependent. 2) Assuming that the given solution
algorithm is faster than its alternatives; its application can reduce the amount of resources
required to solve the problem. 3) In case the solution algorithm is capable of providing several
different solutions, the owner of the optimization problem can choose the most preferable one
of these. The timetabling problems considered in this thesis are realistic planning problems
which contain all requirements needed in practice by the high schools, and the instances used
to establish empirical computational results are non-simplified. Some of the presented solution
methods have been deployed to a large number of end-users at the high schools, which show the
practical usability of the algorithms. Thereby the high schools have access to improved tools for
solving these timetabling problems.

Some of the considered optimization problems are specific to high schools in Denmark. In this
context the term ’high school’ is used rather broad, and covers institutions offering the following
upper secondary education programs: STX, HHX, HTX, and HF (The Ministry of Education
in Denmark, 2013). STX, HHX and HTX take three years to complete for a student, and HF
takes two years to complete. In Denmark there are 146 institutions offering STX and/or HF, 60

5

Chapter 1. Thesis Background 6

offering HHX, and 38 offering HTX. The Ministry of Education in Denmark (2009) claims that
the savings-potential of a more throughout digitalizing of the timetabling process for institutions
offering upper secondary educations in Denmark is 100,000,000 DKK (~ €13,400,000). This
supports the claim that efficient solution algorithms are important tools for the high schools.

1.1 Operations Research

This section gives a short introduction to OR, and briefly describes the methodologies relevant
for this thesis.

In OR, one typically uses advanced analytic mathematical method to analyze a given decision-
problem, and thereby determine the optimal solution to this problem (Taha, 1997, p. 2). The
range of applications of OR is very wide, and includes decision-problems such as supply chain
management, crew schedule planning in the airline industry, transport logistics for trucks, cost
reduction in production scheduling, design of telecommunications networks, financial engineering,
and facility location problems considering the placement of factories. Decision-problems are
usually described in terms of a mathematical model, which involves variables and relationships
between these variables (Rardin, 1998, p. 4). The variables usually model specific decisions, and
the model may contain an objective function which is capable of measuring the overall impact
of the current set of decisions (the values of the variables). Thereby the optimal solution to the
mathematical model will also define an optimal set of decisions for the decision-problem.

It is common for an optimization problem to contain both hard constraints and soft con-
straints. Hard constraints model conditions for the feasibility of a solution, such that solutions
which obey all hard constraints are said to be feasible. Soft constraints model different preferences
for the characteristics of a solution, and the objective value of solution is usually determined in
terms of the (weighted) violation of the soft constraints. The concept of soft- and hard constraints
is used intensively throughout this thesis.

1.1.1 Integer Programming

A methodology commonly used within OR is Integer Programming (IP). This is a subfield of
mathematical optimization where the variables are required to take integer values. An IP model
of an optimization problem contains a set of constraints which restrict the possible values the
variables can take, and an objective function which is sought to be minimized (or maximized).
Throughout this thesis, all considered IP models are implicitly understood to be integer linear
programs, meaning that all terms of the problem are linear, except for the integer requirements.
In case only a subset of the variables are required to take integer variables (and thereby the
remaining variables are defined over continuous range), the term Mized-Integer Programming
(MIP) is used. Throughout this thesis the term MIP is used even though a given model might
not contain any continuous variables (i.e. all variables are integer variables). Mathematical
optimization methods can be applied to a MIP model, meaning that the global best solution is
sought. Methods capable of finding optimal solutions are also known as ezact methods.

A bound on the objective value of an optimal solution of a MIP model can be obtained by
relaxing all integer requirements on the variables (such that a pure linear system of inequalities
is obtained), and thereby solve the resulting Linear Program (LP). This is known as the LP-
relaxation. Solving the LP-relaxation of a MIP model is usually much easier than solving the
MIP model itself. Throughout this thesis generic MIP solvers are used intensively, typically in
a black-box fashion. By generic is meant that these solvers take any MIP model as input, and
aim at performing well across a wide range of models. A key point in this context is that MIP

7 1.1. Operations Research

solvers use the LP-relaxation internally, and attempts to close the gap between the objective of
the LP-relaxation and the objective of the found integer solution (in case the gap is closed the
optimal solution is found). So even though the MIP solver might not find the optimal solution
within the given resource limitations, it can provide a bound on optimum as well as a sub-optimal
solution. The progress for generic MIP solvers has been considerable in the last decades. Bixby
(2012) argues that the runtime of the generic solver CPLEX has been improved with a factor
29000 since its initial release in 1991 and until version 11.0 released in 2007 (not including the
technical advances of computers).

This thesis also treats decomposition methods of MIP models, which can provide more efficient
solution methods by dividing the optimization problem into different parts. This includes Branch-
and-Price (B&P) algorithms, which is based on the Column Generation (CG) method for solving
LPs. A description of these methods is given in Chapter 3. Another type of decomposition is
Two-Stage Decomposition (TSD), which is a recent innovative method of Lach and Liibbecke
(2008, 2012). In its present form, its application is closely tied with the structure of timetabling
problems; however this might change in the future. TSD is a promising branch of exact methods
for timetabling, and an in-depth description of its application to HSTP is given in Section 2.3.

1.1.2 Heuristics

Heuristics are another type of solution method for optimization problems, which are based on
applying rules of thumb to produce a good solution to a given optimization problem (Taha,
1997). Heuristics are typically less sensitive to the size of the input-data compared to solution
approaches based on MIP, and are therefore usually used in a practical setting when compu-
tational resources are scarce (such as a low timelimit). However, heuristics generally provide
no bounding information, and can therefore not issue any certificates of optimality like MIP
methods can. Heuristics therefore reside on the fact that they perform well for the given opti-
mization problem, but rely on external information to evaluate their performance. Such external
information usually comes in the form of bounds provided by exact methods.

Metaheuristics is a sub-field of heuristics, and are defined as "...an iterative generation process
which guides a subordinate heuristic by combining intelligently different concepts for exploring
and exploiting the search space." (Osman and Laporte, 1996). Possibly the most popular type
of subordinate heuristic is local search. A local search heuristic starts from an initial solution
and examines solutions in the neighborhood (usually defined as solutions which can be found
by simple perturbations of the current solution). If one of these neighbor solutions improves
the current solution, the neighbor solution is accepted and replaces the current solution, and
the procedure is repeated. The algorithm terminates when no improving solution can be found,
thereby ending in a local optimum (Osman and Laporte, 1996). An improved algorithm embeds
this local search scheme in a metaheuristic, for instance a Simulated Annealing framework which
allows the acceptance of worse solutions with a certain probability (Laarhoven and Aarts, 1987).
This makes the algorithm capable of escaping local optimum, which can lead to better solutions.

1.1.2.1 Large Neighborhood Search

The most used metaheuristic in this thesis is based on Large Neighborhood Search (LNS), which
iteratively destroys and repairs (parts of) a solution, using problem-specific methods. The goal
is to incrementally improve the solution, by letting the destroy operation target parts of the
solution which can possibly be improved by the repair operation. The variant of LNS mainly
considered throughout this thesis is Adaptive Large Neighborhood Search (ALNS), usually cred-
ited to Pisinger and Ropke (2005); Ropke and Pisinger (2006). In this variant of the heuristic,

Chapter 1. Thesis Background 8

multiple destroy and repair methods are used, and their performance is tracked throughout the
solution approach. In every iteration, a selection of a destroy method and a repair method is
performed on the basis of certain performance-indicators obtained in the previous iterations of
the procedure. The goal of this selection is to favor the use of destroy and repair methods which
have previously performed ’good’. ALNS heuristics have been used with success for various types
of optimization problems, most prominent variants of the vehicle routing problem (see e.g. Azi
et al. (2010); Laporte et al. (2010); Salazar-Aguilar et al. (2011); Ribeiro and Laporte (2012)),
but also lot-sizing (Muller et al. (2011)), machine scheduling (Wang et al. (2012)), and others.

Due to the extensive use of ALNS heuristics throughout this thesis, its relationship with other
metaheuristics is briefly surveyed in the following. Ahuja et al. (2002) describe the class of Very
Large-Scale Neighborhood Search algorithms, and Pisinger and Ropke (2010) classify LNS algo-
rithms as belonging to this class. Very Large-Scale Neighborhood Search algorithms are defined
as having the property that the searched neighborhood grows exponentially with the instance
size or the property that the neighborhood is too large to be searched explicitly in practice
(Pisinger and Ropke, 2010). Other types of Very Large-Scale Neighborhood Search algorithms
are mentioned in the following: Variable Depth Neighborhood Search considers neighborhoods of
increasing size, using only large neighborhoods in case none of the smaller neighborhoods can
improve the current solution. Variable Neighborhood Search usually operates on structurally
different neighborhoods (Hansen and Mladenovié, 2001).

Another branch of heuristics which is related to ALNS is Hyper-heuristics, which tries to raise
the level of generality at which search methodologies can operate (Burke et al., 2003). Recently,
Burke et al. (2010) defined hyper-heuristics as follows: A hyper-heuristic is a search method
or learning mechanism for selecting or generating heuristics to solve computational problems.
Furthermore, they describe two classes of hyper-heuristics: (I) Heuristic selection methodolo-
gies which combine pre-existing low-level heuristics, and (1) Heuristic generation methodologies
which generate new heuristic methods using basic-components (which can for instance be low-
level heuristics). Furthermore, w.r.t. learning by feedback from the search process, Burke et al.
(2010) distinguishes between offline learning (learn by knowledge obtained on a set of training in-
stances) and online learning (learning takes place while solving an instance of a problem). Given
these classifications, the relationship with the ALNS methodology is discussed in the following:
Applying a destroy method and a repair method in each iteration (and thereby combining these
methods) can be seen as the generation of a new heuristic, and hence falls into classification
(IT). In terms of feedback, this is a central process in an ALNS algorithm. The feedback re-
ceived throughout the algorithm is used to increase the probability of selecting well-performing
destroy /repair methods, which is an online learning process. Notice that offline learning can also
be used in the tuning process for certain parameters of the algorithm.

1.1.3 Matheuristics

This thesis also uses algorithms based on hybridization of exact methods and heuristics, usually
denoted matheuristics in a broader sense (by the contraction of mathematical optimization and
heuristics). Informally, it is the goal of this class of methods to combine the properties of
exact methods with the rapidness of heuristics, and thereby enjoy the best from both worlds
(Ryan, 2012). The combining of these two classes of methodologies is still in its infancy, but
has a large potential for future applications according to (Maniezzo et al., 2009a,b). Blum
et al. (2011) describe the motivation behind hybridizing of algorithms as follows: ...to exploit
the complementary character of different optimization strategies, that is, hybrids are believed to
benefit from synergy.

9 1.2. Thesis Reading Guide

Caserta and Voss (2010) describe the hybridization of exact methods and metaheuristics in
terms of a master-slave structure. That is, either (I) the metaheuristic acts as at a higher level
and controls the exact approach or (II) the exact method acts as the master and controls the
metaheuristic. In algorithms of type (I), the searched neighborhood is typically composed of
only a small part of the solution space, but is searched by the exact approach. The job of the
metaheuristic is then to guide the search on an overall level. Notice that this type of algorithm
resembles the concepts of an ALNS algorithm (apart from the use of exact methods), since
an exponentially large neighborhood is searched and the approach is guided heuristically (the
adaptive layer in the ALNS algorithm). Examples of algorithms of type (II) could be MIP-
solvers, which are dependent on internal heuristics for speeding up the solution process. Having
incumbent solutions of good quality early on in the process can help in pruning nodes in the
branch-and-bound tree, and thereby reduce the computational effort. In this respect, Lodi (2013)
argues that modern MIP solvers are heuristic in nature.

1.2 Thesis Reading Guide

The literature considering educational timetabling problems by OR methods is mainly concerned
with heuristics. A contribution of this thesis is the application of exact methods to educational
timetabling problems. These exact methods are all based on IP, and generally involve large MIP
models with many diverse terms in the objective function and a large variety of constraints.
This complexity arises from the fact that the considered timetabling instances are non-simplified
real-world optimization problems which are used in practice by a large amount of high schools.
Therefore the OR model of the timetabling problem can be thought of as an abstract model
which encapsulates all requirements of the high schools. This inevitably gives rise to complicated
models, which in turn yields complex MIP models.

Another contribution of this thesis is the development of several solution methods for the
considered optimization problems. An important concept in OR is the separation of the opti-
mization problem from the solution method, so these solution methods can typically be read
without an in-dept review of the complex models (although some basic knowledge is typically
required).

The thesis is divided into three parts. Part I considers the introductory topics. Chapter 2
of Part I describes the main optimization problem of this thesis, namely the HSTP. Section 2.1 1
considers the GHSTP and Section 2.2 considers the DHSTP. Chapter 3 describes the GMPP
and the CTP. In Chapters 2 and 3 “the relationship between the optimization problems is also
discussed, including comparisons of the MIP models. Chapter 4 gives an overview of the results
obtained throughout the Ph.D. study, including a brief summary of the scientific papers and the
scientific contributions. Finally, Chapter 5 concludes on the findings and discusses subjects for
future research.

Part II of the thesis contains the main scientific papers produced throughout the Ph.D. study,
which is the scientific background for the material in Part I. Part III contains additional papers
as an appendix.

Chapter 2

High School Timetabling

This chapter describes the High School Timetabling Problem (HSTP), which is the main topic of
the thesis. Two versions of the HSTP are considered, the Generalized High School Timetabling
Problem (GHSTP), and the Danish High School Timetabling Problem (DHSTP). These are de-
scribed in Section 2.1 and in Section 2.2, respectively. The goal of these sections is to describe the
problems in detail and show how the problems relate to each other. A basic description covering
the fundamental elements of both problem-versions is given in the following paragraphs.

The HSTP concerns the constructing of a timetable for the forthcoming school-year at a
specific high school. This is a problem faced by high schools around the world at least once
per year. The specific characteristics of the HSTP vary greatly depending on the country and
the school from which it originates, due to both differences in the educational structures among
countries and different ways of organizing the teaching at each school. In general the problem
is hard to solve, which makes the solution process a time consuming task for the high school
administration, and obtaining solutions of high quality might be out of scope. Applying OR
techniques can potentially reduce the time required to solve the problem and produce solutions
of higher quality than obtained by other methods (for instance manual methods).

Formally, the HSTP can be described as follows. The set of events £ models the lectures
which are to be scheduled. The set of resources is denoted R, and each resource is of a specific
type, e.g. room, student or teacher. Each event e € £ requires a subset of resources A. C R
(fized resources), or requires that a number of resources of a certain type are assigned to it (free
resources). An event is required to be assigned a time-slot. The set of time-slots is denoted 7, and
is build by dividing each day into a number of discrete non-overlapping time-slots. Throughout
the rest of the thesis the terms time-slot and time are used interchangeably. An important
constraint is to perform the assignment of events to times such that no clashes among resources
occur, meaning that no resource is assigned more than one event in each time-slot. Various other
hard- and soft-constraints are typically imposed as well, and most of these define requirements
and preferences for the resources. For instance, a teacher might have different priorities for the
times he or she is assigned to teach.

Even though the HSTP is concerned with a yearly timetable, the planning is usually performed
w.r.t. one or two weeks only. This is based on the assumption that no differences exist among
weeks throughout the school-year, i.e. holidays and other irregular activities are assumed to
not exist. Once a satisfactory timetable has been found for this simpler problem, this timetable
is used as a basic solution for every week of the year. The weekly irregularities can then be
incorporated by performing a (hopefully small) number of perturbations for each week. The
advantage of this approach is that the yearly timetabling problem can be solved by solving a

11

Chapter 2. High School Timetabling 12

series of smaller problems. This thesis deals with the problem of constructing the basic timetable
for the short time-horizon (which is denoted the HSTP).

2.1 The Generalized High School Timetabling Problem

The GHSTP is based on the XHSTT format (see Post et al. (2012a) for an in-depth descrip-
tion of the format), which seems to be the only active format for exchanging problem-instances
and corresponding solutions for high school timetabling. The format is based on the eXtensible
Markup Language standard, and a large number of instances is publicly available at the XHSTT
website (Post, 2013b) (currently there are around 50 instances from 11 different countries avail-
able). Having a standard format for modeling problem instances is an advantage for the high
school timetabling community, as it facilitates the exchange of knowledge, for instance in terms
of a common ground for comparing solution algorithms. However, the format was developed
recently, and some effort is still required to make it more widely known within the community.
The thoroughness of the XHSTT format results in a model of the GHSTP which is complex. In
this section the most fundamental properties of the GHSTP is described and a MIP model is
shown which contains the basic constraints. The full model can be found in Paper A.

Based on the basic description of the HSTP, a description of the GHSTP is given in the
following. The GHSTP contains a number of additional properties and constraints. Each event
e € &€ has a duration D, € N, which denotes the number of times which the event spans. An
event defines a number of event resources, which each is a requirement for a certain resource
(fized resources), or a request to be assigned a resource of a certain type (free resources). An
event resource of event e € £ is indexed by er € e. An applicable resource for event resource er
is indexed by r € er.

An important concept of XHSTT is the splitting of events into smaller pieces, as described
in the documentation (Kingston, 2013c): A solver (for XHSTT) is expected to split some of the
events into smaller pieces. This allows courses to spread their lessons through the cycle, without
forcing the durations of those lessons to be fized in advance, as would be the case if each lesson
was modeled as a distinct event. To model the splitting of events, the concept of sub-events is
introduced. The set of sub-events is denoted S&, and a sub-event of an event e € £ is denoted
se € e. The duration of a sub-event is denoted D,, € N. A sub-event inherits all resource
requirements defined by the event. The set SE it build by enumerating all possible sub-events
for all events, which amounts to a total of) . ZiD:Cl | £<] elements. For instance, there exist
a total of five sub-events for an event with a duration of 3, and these have durations 1,1,1,2 and
3, respectively. By XHSTT definition, the total sum of the active sub-events of an event should
equal the total duration of the event. A sub-event is active iff it is assigned a time or a resource
which is not fixed. To allow a sub-event to be inactive (which is required for feasibility of the
MIP model), the sets of times and resources are extended by a dummy-element, denoted ¢p and
rp, respectively.

The XHSTT format includes several different types of constraints (see Table 2.1), which can
be used to model various requirement on the instance level (i.e. an instance of XHSTT is not
required to use all types of constraints). This allows instances of very diverse character of the
HSTP to be modeled in a uniform way. Denote by Cq the set of all constraints native to the
XHSTT format. With each constraint ¢ € Cg is associated a weight w. € NT, a specific way
to derive the violations incurred, and a method to convert these violations into a cost, denoted
a CostFunction. A constraint ¢ € Cg defines a set of point-of-applications, for instance a set
of events or a set of resources. A point-of-application defines an entry for which an amount of
violation can be calculated. In the following a point-of-application for constraint ¢ € Cg is indexed

13 2.1. The Generalized High School Timetabling Problem

by p € c. For constraint ¢ € Cg and point-of-application p € c a variable s, € Ny is defined,
which denotes the amount of violation. This variable is given as input to the CostFunction,
which converts the violations into a cost € Ny. Five different CostFunctions exist, the most
simple being Sum, which simply sums the violation of every point-of-application. The other types
of CostFunction are nonlinear measures, which can be calculated using auxiliary variables (see
Paper A provides a description). The contribution of a constraint ¢ € Cg to the objective is
w, - CostFunction(s.,). Furthermore, a constraint can either be defined as a hard or a soft
constraint. Therefore the objective value of a XHSTT solution consists of two values, the cost
of the violation of the hard constraint (the hard cost) and the cost of the violation of the soft
constraints (the soft cost), and is usually written as (hard cost, soft cost). Allowing the violation
of hard constraints is incompatible with the usual definition of these, but this is how the XHSTT
format is defined.

Table 2.1: Constraint types of the XHSTT format (Post et al., 2012b). See Kingston (2013b)
for more details.

Constraint Description

Assign Resource Event resource should be assigned a resource

Assign Time Event should be assigned a time

Split Events Event should split into a constrained number of sub-events
Distribute Split Events Event should split into sub-events of constrained durations
Prefer Resources Event resource assignment should come from resource group
Prefer Times Event time assignment should come from time group

Avoid Split Assignments Set of event resources should be assigned the same resource
Spread Events Set of events should be spread evenly through the cycle
Link Events Set of events should be assigned the same time

Order Events Set of events should be ordered

Avoid Clashes Resource’s timetable should not have clashes

Avoid Unavailable Times Resource should not be busy at unavailable times

Limit Idle Times Resource’s timetable should not have idle times

Cluster Busy Times Resource should be busy on a limited number of days

Limit Busy Times Resource should be busy a limited number of times each day
Limit Workload Resource’s total workload should be limited

To formulate a MIP model of the GHSTP, a number of decision variables are required. Let
variable Tge ¢ err € {0,1} take value 1 if sub-event se € S€ is placed in time (the starting time)
t € T and resource r € er is assigned to event-resource er € se, and 0 otherwise. Notice that this
variable decides the starting time of the sub-event, and the duration of the sub-event determines
the amount of contiguous times which the sub-event spans. Let variable y,.; € {0,1} take
value 1 if sub-event se € S& is assigned to starting time ¢ € 7, and 0 otherwise. Let variable
Wse er.r € {0,1} take value 1 if event resource er € se of sub-event se € SE is assigned resource
r € er, and 0 otherwise. Variable u,. € {0,1} takes value 1 if sub-event se € S€ is active, and 0
otherwise.

The MIP model of the GHSTP is shown in Model (2.1). The native constraints Cg of
the XHSTT format are not modeled here, as they are not necessary for relating the GHSTP
to the other timetabling problems of this thesis. A formulation of all native XHSTT con-
straints in context of Model (2.1) can be found in Paper A. Therefore it can be said that

Model (2.1) implicitly contains the native XHSTT constraints (as indicated by Constraint (2.1i)).

Chapter 2. High School Timetabling 14

GHSTP MIP model (2.1)
min Z w, - CostFunction(s..p) (2.1a)
ceCq
s.t.
Z Tset,er,r =1 Vse € SE, er € se (2.1b)
teT ,rcer
Z Tse terr = ler|,, - Yse, Vse € SE,t €T (2.1c)
ercse,rcer
Zacse’t’em = Wse,er,r Vse € SE,er € se,r € er (2.1d)
teT
> Yoo < Uge Vse € SE (2.1e)
teT\tp
Vse € SE,er € se,
Z Wse,er,r < Usge SFB’AST _ 067" ¢ (2'1f)
reer\rp
Z Yse,t + Z Wse,er,r > Use Vse € SE (2'1g)
teT\tp r€er\rp
ercse,PA¢.=0
> Dec - tse =D, Vee & (2.1h)
sece
(xse,t,er,ra Yse,t) Wse,er,r» Sc,p) € CG (211)
mse,t,er,ra yse,t7 wse,er,r S {Oa 1} (21.])
Sep € Ny (211{)

Constraint (2.1b) specifies that every event resource er € se of a sub-event se € S€ must be
assigned one resource r € er (the resource can be the dummy-element). Constraint (2.1c) links
variable g ¢ er» t0 variable y,. ;. Together with Constraint (ﬁ) these constraints ensure that
only a single starting time is assigned to each sub-event. Constraint (w links variable wge er r
to variable g s er,,- Constraints (2.1e) and (2.1f) determines whether a sub-event should be
marked as active given the assigning of time and resources. Constraint (2.1g) ensures that a
sub-event cannot be marked as active unless it fulfills the necessary criteria. Constraint (2.1h)
makes sure that the sum of the duration of the active sub-events of an event equals the duration
of the event. Constraint (2.1i) describes the fact that all native XHSTT constraints Cg can
be handled using the variables of the model (and other auxiliary variables), such that variable
s¢,p takes the correct value for all constraints and their point-of-applications, slightly abusing
notation.

Model (2.1) does not explicitly contains constraints such as those penalizing events which
are not assigned the appropriate resources (Assign Resource constraints) and those penalizing
conflicts between resources (Avoid Clashes constraints), since these are handled in the set Cq.
However, these constraints are part of all encountered XHSTT instances (in case of the Assign
Resource constraints, these only apply to events which contain free event resources), and are
natural constraints for any XHSTT instance. Furthermore they are essential to the described
TSD of Section 2.3, so therefore both of these constraints are formalized in the following.

An Assign Resource constraint penalizes event resources of an event e € £ which is not
assigned a resource. Let C5"8""® C C¢ denote the set of Assign Resource constraints. By e € ¢
it is denoted that constraint ¢ € CZSSignres applies to event e € £. An Assign Resource constraint

15 2.2. The Danish High School Timetabling Problem

contains a property denoted role, which must match the corresponding property of the applicable
event resources of the events. Let s2%5""* € Ny be the slack of event resource er € e (which is a

point-of-application) of event e € ¢ in constraint ¢ € CZSSignres. Eq. (2.2) constraints this variable
properly.

i assignres
D, — E DieWse,eryr = shg8M Ve e Cao8" e € ¢, er € e,role. = role,
se€e,r€er\rp

(2.2)

Let Cgoldclashes C ¢ denote the set of Awoid Clashes constraints. Denote by r € ¢ €
Cgyoidelashes that constraint ¢ applies to resource r. Let the set 752 C T be the set of times
which sub-event se € SE lies in if it is assigned starting time ¢ € T (which is derived on the basis
of the duration of the sub-event). The penalty value of an Awvoid Clashes constraint for resource
r € ¢ € Cgoiddashes ynd time t € T is denoted saveidelashes € Ny and takes value n— 1 iff resource

7 is used n times in time ¢ and n > 2. Eq. (2.3) ensures this.

Z Tsetr erm — 1 < Savoidclashes Ve € Cf&voidclashes’ reec, teT \ tD (23)

c,r,t

seESE,erEseﬂt/ET:Z"?Et

2.2 The Danish High School Timetabling Problem

This section describes the DHSTP in detail. The shown model of the problem has been used in
practice by many high schools in Denmark, and efficient solution approaches are an important
tool for the quality of the annual timetable. It will be shown how the DHSTP relates to the
GHSTP by similarity of the corresponding MIP models. However, this will show that the DHSTP
is not fully contained in GHSTP, since a few aspects are currently not supported by the XHSTT
format. Although, it should be said that the models share a lot of properties, and the DHSTP
resembles the GHSTP in many aspects. An advantage of treating the DHSTP separately from
the GHSTP is that specialized MIP models and solution approaches can be developed.
By definition, an instance of DHSTP has the following properties:

e All events have duration 1 (meaning that they span only a single time-slot), therefore only
a single sub-event is necessary for each event.

e The resource requirements of an event consist of a known set of students, a known set of
teachers, and a requirement for a single room. The set of entities A contains all students
and teachers. Let the parameter F, C £ be the set of events which require entity a € A.
Let the set of rooms be denoted Rp. Each event requires a room to be assigned. Since
all resources, except the room, for an event are known, the event resource index can be
dropped from the basic decision variable, such that this is written as x.,, which takes
value 1 if event e € £ is assigned time ¢ € 7 and room r € Rp, and 0 otherwise.

e No violation of hard constraints is allowed, so only the soft-constraints contribute to the
value of the objective function. The set of hard constraints is denoted CB™, and the set
of soft-constraints is denoted C59.

o All constraints use the CostFunction Sum. Therefore the p-index can be dropped from from
variable s, .

Chapter 2. High School Timetabling 16

Model (2.4) shows the MIP model of the DHSTP.

DHSTP MIP model (2.4)
min Z Se (2.4a)
ceCt
s.t.
> weur =1Veeéf (2.4b)
teT ,r€RD
er%r <1lVte T\tD,T eRp\rp (2.4c)
ee&
> ey <1VEET \tpacA (2.4d)
ecE,,rTERpD
(Tt Sc) € CH™ (2.4e)
Tear € OB (2.4f)
et.r €{0,1} (2.4g)
se € No (2.4h)

Constraint (2.4b) specifies that each event should be assigned one time and one room. Constraints
(2.4c) and (2.4d) specify no conflicts among rooms and resources, respectively. Constraints (2.4e)
and (2.4f) ensures that the soft constraints C%)ft should be penalized accordingly in the objective,
and that the hard constraints C%*4 should be respected, respectively.

Even though the DHSTP is not fully contained in GHSTP, a conversion from a DHSTP-
instance to a GHSTP-instance is interesting in terms of making approximated versions of DHSTP
instances available in the XHSTT format. Paper J contains a full conversion scheme from DHSTP
to GHSTP. This scheme illustrates that due to limitations of the XHSTT format, the DHSTP
cannot be modeled completely as-is. However, most of these limitations are minor flaws, and the
resulting XHSTT instances resemble the DHSTP in the major aspects. The effect of the critical
flaws is that the XHSTT instances might contain inevitable violations of some hard constraints.
The conversion scheme is briefly described below.

e The set of events £ and the set of times 7 are analogous.
e The set of resources R consists of all entities and rooms, R = {AURp}.

e Since all events have duration 1, all sub-events should be active, so variable u,. can be
dropped as well as egs. (2.1e) to (2.1h). Thereby Constraint (2.4b) resembles constraints

(21b), (2.1¢), and (2.2).

e For each event e € £ and for each entity {a € A | e € E,}, an event resource of the GHSTP
event is created which is fixed to the resource representing the entity.

e For each event e € £, a free event resource is created for the GHSTP event which requires
the assignment of a room r € Rp.

e Constraints (2.4c) and (2.4d) are handled by creating a single Awvoid Clashes constraint
(Constraint (2.3)) which is marked as a hard constraint.

What remains to be shown is that constraints C$5 and CB#" are contained in constraints Cg.

This is beyond the scope of this chapter, and the reader should look into Paper J. As already
discussed, this illustrates certain limitations of the XHSTT format.

17 2.3. Two-Stage Decomposition

2.3 Two-Stage Decomposition

A recent decomposition method is Two-Stage Decomposition (TSD), which is a promising branch
of exact methods for timetabling problems. The theory of TSD is closely tied with the optimiza-
tion problem in question, so therefore the TSD is presented on the basis of the description of the
GHSTP (see also Paper D). However, a description of TSD for the DHSTP would be analogous
(see Paper C).

TSD was first applied to the Curriculum-based University Timetabling problem of the Inter-
national Timetabling Competition 2007, see Lach and Liibbecke (2008, 2012), with good results.
The subsequent papers of Hao and Benlic (2011) and Cacchiani et al. (2013) show how the TSD
lies as a foundation for more advanced solution approaches for this problem.

The basic idea of TSD is to split the problem in two stages: In the first stage (Stage I), events
are assigned to times subject to anonymous assignment of resources to events. By this is meant
that the assignment of events to times is performed such it is ensured that an assignment of
resources can be performed subsequently, but it is currently not decided which specific resources
that are assigned to each event. The actual assignment of resources is performed in Stage II,
where the allocation to times provided by Stage I is considered as fixed. This means that Stage
I is formulated such that a solution is also feasible (or even optimal) in terms of Stage II. The
approach and its relation to the original MIP model are illustrated on Figure 2.1 for the GHSTP.
It is important to notice that Stage I and Stage II are solved in sequence, i.e. the TSD is not
an iterative approach. The only native XHSTT constraints described in Section 2.1 are Assign
Resource and Awvoid Clashes, and these are handled in the basic version of TSD described here.
For a TSD considering all native XHSTT constraints, see Paper D.

Stage I is defined in terms of variable y,. +, and Stage Il is defined in terms of variable wsge ¢y
The anonymous assignment, of resources required in Stage I is carried out by a priori building a
bipartite graph for each time ¢ € T, denoted G;. Denote by A the set of all applicable sub-events
and event resource combinations, i.e. A = {(se,er) | se € SE,er € se}. The graph contains a
vertex for every element in A and for every resource, and the set of edges is denoted Ei, i.e.
G: = {AUR, E;}. Iff a sub-event can be assigned to a resource; an edge exists between each
element of A which contains the sub-event and the resource. The graph contains a t-index, as the
set of edges (and their weights) might differ between times due to certain constraints. However,
in the context of constraints Assign Resource and Awoid Clashes this is not the case, but the
t-index is kept for generality.

The existence of a matching in the bipartite graph G; determines feasibility of the resource
assignment for time ¢ € 7. To this end the famous Hall’s Marriage Theorem is imposed. Denote
by I'(S) C R the neighbors of S C A in graph G, ie. I'(S) ={r| (a,7) € E,a € S,r € R}.

Theorem 1 (Hall’s Theorem). The bipartite graph G = (AUR, E) has a matching of all vertices
A into R if and only if |T'(S)| > |S] VS C A.

The implication of this theorem is that for a given time ¢ € T the feasibility of the matching can
be determined by the amount of elements of A assigned to time ¢. Denote by se € A the elements
of A which se are part of. For a given subset S C A, the neighbors I'(S) can be determined
a priori (because the graph is constructed initially). Furthermore, the cardinality of S can be
substituted by > o S,prerstart Yse,t/ - Thereby the feasibility of the resource matching of Stage
IT can be determined in Stalge I, maintaining optimality of the TSD. Specifically, the following
constraint are introduced in Stage I,

Sy SID(S)| VSCAnteT (2.5)

se€S,t'eTstert

Chapter 2. High School Timetabling 18

assign times and resources)

{ Original model (2s¢ ¢ 1)
(

Lower bound

Stage IT (wse,er,r)
(assign resources)

Stage I (yse,r)
(assign times)

*
se,er,r
Solution

*
mse,t,er,r

Figure 2.1: Outline of Two-Stage Decomposition.

If a solution to Stage I is feasible w.r.t. (2.5), then it is ensured that the violation of constraints
Assign Resource and Awoid Clashes is zero. However, since the GHSTP allows violating all
constraints (including hard constraints), further steps are required (which are beyond the scope
of this section to describe).

Eq. (2.5) describes an exponential amount of inequalities, so not all of these can be added
to the Stage I MIP model. Instead the only inequalities which are added are those necessary
for the specific problem instance. This means that inequalities which are dominated by other
inequalities are left out. In practice for the GHSTP (and for the DHSTP), it is shown that only
a small tractable subset of these inequalities are required. Notice that these inequalities can be
generated upfront (since only few of them are needed), contrary to generating them on-the-fly
as the algorithm proceeds.

This concludes the basic description of the TSD. Paper C and Paper D provide more details.
To summarize, the advantages of TSD are:

e The total number of variables in the model is significantly reduced (e.g. in the context of
GHSTP, variable x4 ¢ er . is dropped altogether).

e Instead of solving the entire model at once, the model is split into two smaller models
which are solved sequentially.

e For both the GHSTP and the DHSTP, the majority of constraints can be handled optimally.
However, this suggests that some constraints cannot be handled by the decomposition, but
it is shown in practice that this has little impact for both the GHSTP and the DHSTP.

As for the disadvantages, the TSD is still tied closely with its application (the optimization
problem). Since the present theory does not contain a sufficient abstraction of the method, it
is difficult to suggest other optimization problems where it can be applied. However, TSD does
require a certain structure in a problem to be applied, so it is not a general approach for MIP
models.

2.4 International Timetabling Competition 2011

The International Timetabling Competition 2011 (ITC2011) ran during 2011-2012 (Post et al.,
2013). The datasets of the competition were based on archives containing a number of XHSTT

19 2.4. International Timetabling Competition 2011

instances, specifically the archives XHSTT-2012 and XHSTT-ITC2011-hidden. The competition
was preceded by the competitions Paechter et al. (2002) and McCollum et al. (2010), which had
great impact on the timetabling community. The overall objectives of the competition were the
following (Post, 2013a):

e Allow researchers to trial their techniques in a competitive setting on ’real world’ practical
problems.

e Encourage research in the area of complex N'P-hard real world problems.
e Attract researchers from all disciplines to compete.

e Further algorithmic development in the area of educational development.
e Generate all-time best solutions to these problem instances.

These objectives illustrate that having the XHSTT format as a common ground for researchers
is a large advantage for the high school timetabling community. A total of 17 teams participated
in the competition, and the finalist teams of Round 2 were the following;:

e GOAL: This team of University of Ouro Preto used Simulated Annealing and Iterated
Local Search to perform local search around a generated initial solution (Fonseca et al.,
2012).

e HySTT: Participant from the University of Nottingham used a method based on Hyper-
heuristics (Kheiri et al., 2012).

e Lectio: This team of Technical University of Denmark used an algorithm based on ALNS,
see Paper L.

e HFT: From University of Applied Sciences Stuttgart, this team applied an Evolutionary
Algorithm (Romrés and Homberger, 2012).

e VAGOS: The algorithm of this team is so far not documented.

Table 2.2 summarizes the results of Round 2 and Round 3 of the competition. In Round 1 of the
competition, participants were allowed to submit solutions to several known instances without
any restrictions on the computational method. In Round 2, the algorithms of the finalist teams
were tested on 18 hidden (previously unseen) instances. The algorithms were run 10 times on
each instance on the same machine given the same time limit and different random seeds. Based
on these runs, the teams were ranked on their average performance. Round 3 had the same rules
as Round 2 and involved the same instances, but with unlimited computational restrictions. In
both rounds the ALNS algorithm of team Lectio finished third among the finalists.

Table 2.2: ITC2011 results (Post et al., 2013). For each participating team and each round is
shown the average rank obtained across all instances.
GOAL HySTT Lectio HFT VAGOS

ITC2011 Round 2 1.18 2.23 2.32 3.64 -
ITC2011 Round 3 1.64 2.25 2.75 3.75 3.86

Chapter 3

The Generalized Meeting
Planning Problem

The Generalized Meeting Planning Problem (GMPP) is a generalization of the following opti-
mization problem: Given is a set of entities A, a set of meetings G, a parameter C, , € {0,1}
which takes value 1 if entity a € A is part of meeting g € G, and a set of time-slots 7. The goal is
to maximize the number of meetings assigned to a time-slot, such that no clashes among entities
occur, subject to other problem specific soft- and hard-constraints. In this section the GMPP is
set up as a MIP model, and its relation to the GHSTP is discussed. The possible applications
of the GMPP are many, and some examples from the educational sector are described in the
following;:

e In the context of the HSTP, a meeting corresponds to a lecture and entities correspond to
resources. The set of time-slots is analogous. This suggests that high school timetabling
problems can be solved by the GMPP.

e In the University Course Timetabling Problem a number of lectures for courses should be
scheduled in a weekly timetable. This problem can be handled in the same way as HSTP
in the GMPP, where lectures are defined in terms of meetings.

e For the Examination Timetabling Problem, the goal is to schedule exams to times such that
the schedule for students and teacher fulfill various criteria. Thereby an exam corresponds
to a meeting in the GMPP, and students and teachers constitute the set of entities.

To formalize a MIP model of the GMPP, the variable z,, € {0,1} is introduced which
takes value 1 if meeting g € G is assigned to time ¢t € T, and 0 otherwise. The parameter
ag+ € RT denotes the profit of scheduling meeting g € G to time ¢ € 7. The solution procedure
of this model is based on a Column Generation (CG) procedure, which is used to solve (large)
LP problems. A CG procedure consists of a master problem, which is analogous (possibly a
reformulation) to the original problem, and a subproblem. Typically, the formulation of the
master problem contains too many variables (columns) to be generated upfront. Instead the
restricted master problem is considered, which contains only a subset of columns. The CG
procedure proceeds as follows: The restricted master problem is solved using the current set of
columns, obtaining the dual prices of the constraints. Given these dual values, the subproblem
is able to identify new columns. The objective of the subproblem is to minimize the reduced cost
(assuming minimization of the original problem) of the new column w.r.t. the dual variables and

21

Chapter 3. The Generalized Meeting Planning Problem 22

the naturally occurring constraints. If the objective of the optimal solution of the subproblem is
negative, the column enters the restricted master problem, and the procedure repeats (i.e. the
restricted master problem is solved next). If the objective of the subproblem is non-negative, the
optimal solution to the master problem has been found.

In context of MIP models, CG does not work out of the box. Instead a Branch-and-Price
(B&P) algorithm can be used. In a B&P algorithm, the LP-relaxation of a MIP model is consid-
ered (usually in a reformulated way, for instance by applying Dantzig-Wolfe Decomposition) and
solved by CG. This is embedded in a Branch-and-Bound framework to ensure integrality of the
solution. See Barnhart et al. (1998) for a throughout description of B&P algorithms. Paper G
describes the B&P algorithm for the GMPP in detail.

To formalize the GMPP in context of a B&P algorithm the set of entity patterns P is intro-
duced. An entity pattern is an anonymous schedule for an entity, which contains information
on which times the entity is busy, but does not contain information on the specific meetings the
entity attends. The number of patterns for each entity might be exponential, but for now it is
assumed that all of them are known. The set P, C P denotes the set of patterns for entity a € A.
Let parameter M, ,; € {0,1} take value 1 if pattern p € P belongs to entity a € A and the
pattern does not allow a meeting in time ¢t € 7, and 0 otherwise. The parameter 3, , € R denotes
the profit (possibly negative) of using entity pattern p € P which belongs to entity a € A. Let
variable A, , € {0,1} take value 1 if entity a € A is using the schedule of entity pattern p € P,
and 0 otherwise.

This CG formulation of the GMPP has the advantage of encapsulating problem-specific con-
straints in the sub-problem. This makes it more widely applicable.

Model (3.1) shows the master problem of the GMPP.

GMPP MIP Master Problem (3.1)
max Z Qg tTgt + Z ﬂa,pAa,p (3.1&)
geG,teT acA,peP,

s.t.
> wgs <1V¥geg (3.1b)
teT
Z Ca,ggt + Z Mypidap=1Vae At eT (3.1c)
geG pEP,
> Aap =1VYac A (3.1d)
pEP,
Tg.t: Aap € {0, 1} (3.1e)

Constraint (3.1b) ensures that each meeting is not assigned to more than one time. Constraint
(3.1c) relates variables x4 and), p, and specifies that if a meeting is assigned a time, then all
entities of the meeting must be assigned a pattern that allows them to have a meeting in this
time. Furthermore this constraint ensures that an entity is assigned at most one meeting in each
time. Constraint (3.1d) ensures that each entity is only assigned one pattern.

For relating GMPP to the GHSTP, it is now attempted to transform an instance of GMPP
into an instance of GHSTP. First of all, an event with duration 1 is created for each meeting
g € G. Thereby the set of entities A and the set of times T of the GMPP instance equals the set
of resources R and the set of times 7 of the GHSTP instance, respectively. An Awvoid Clashes
constraint is required to model constraint (3.1c). Thereby Model (3.1) is contained in the GHSTP
instance; however the subproblem remains to be dealt with. Clearly, if all problem-specific

23 3.1. The Consultation Timetabling Problem

constraints modeled by the subproblem of the GMPP instance can be analogously formulated in
GHSTP, any instance of GMPP can be solved by the GHSTP model. In fact, for the considered
use case of the GMPP described in the next section, the problem could be solved by the GHSTP
model.

3.1 The Consultation Timetabling Problem

In this section the Consultation Timetabling Problem (CTP) is described, and its relationship
with the GHSTP is discussed.

The CTP considers the scheduling of meetings between students and teachers to times. The
times might be spread across multiple days (usually the time horizon is short, e.g. below five
days). The primary aim of the meeting is to allow the teachers to give individual feedback to
the students. The participants of each meeting are usually only a single student and one or two
teachers. The goal of the CTP is to schedule the meetings such that the meeting plan for each
student and teacher is as desirable as possible, elaborated later in this section.

Two versions of the CTP are considered, the Parental Consultation Timetabling Problem
(PCTP) and the Supervisor Consultation Timetabling Problem (SCTP). In the PCTP, the stu-
dents are usually joined by their parents for the meeting. The PCTP is usually held in the
evening of work days. In the SCTP, the teachers usually have the role of supervisors for the
student for a specific project of the teaching curriculum. The SCTP is held during normal school
hours. Paper F shows a uniform model of the CTP, which handles both the PCTP and the
SCTP. In this model, the difference between the PCTP and the SCTP lies in differences in cer-
tain parameter values, most of them defining different preferences w.r.t. solution characteristics.
Further details are beyond this section to describe (see Paper F for more information). The
constraints of the model of the CTP are similar for the PCTP and the SCTP, and these are
described in the following, along with the relation to the GHSTP:

e Students or teachers can be occupied by other activities at certain times. This is handled
using Avoid Unavailable Times constraints.

e An idle time-slot for a student /teacher is defined as a time-slot with no meetings scheduled,
but there exists both an earlier and a later time-slot where a meeting is scheduled. Idle
time-slots are undesirable for both students and teachers, and constitute a penalty in the
objective. This corresponds to Limit Idle Times constraints of the GHSTP.

e It is undesirable for both students and teachers to have too long sequences of meetings
without breaks. This is handled by a Limit Busy Times constraint.

e If the times are spread across multiple days, it is undesirable for both students and teachers
to be assigned times on more than one day. Specifically, the number of ’excess’ days
is penalized in the objective. This is handled in the GHSTP by Cluster Busy Times
constraints.

e In the weight o+ is contained a penalty for assigning of meetings to certain times (inde-
pendent of the entities which are part of the meeting). This can be handled using Prefer
Times constraints.

Thereby it has been argued that it is possible to convert an instance of CTP to the GHSTP.

The structure of the CTP fits into the GMPP model, so the CTP can be considered as
a special-case of the GMPP. Notice that all constraints of the CTP can be handled in the
subproblem of the GMPP. Details of this application can be found in Paper G.

Chapter 4

Overview of Results

This chapter describes the scientific contributions of the thesis, as well as the practical applica-
tions of the developed solution algorithms. Throughout this chapter the average worst-case gap
to optimality is used as an indicator on how well an algorithm performs for a given optimiza-
tion problem. The gap between a solution s and a bound 5 equals 100@ for each dataset,
and the average gap is the average of these gaps taken over a set of datasets. However, the
performance of an algorithm should also be evaluated based on other criteria, such as the given
resource-limitations (e.g. the imposed time-limit). Furthermore it is not guaranteed that a so-
lution method finds a feasible solution, nor can it be guaranteed that a bound is known for a
dataset. In such cases the gap cannot be calculated. Therefore the comparison of the average gap
between different solution methods might be based on approximate numbers, but nevertheless
these average gaps are considered as important measures of performance in the following.

4.1 Papers and Conferences

This thesis is composed of seven scientific papers, which are either published or submitted to
peer-reviewed journals. In this section the content of these papers are described. The papers can
be seen in their full length in Part II. Furthermore, additional papers are listed in the appendix
Part III, and these are also briefly described in this section.

4.1.1 Paper A: Integer Programming for the Generalized (High)
School Timetabling Problem

Submitted to Journal of Scheduling, Sep. 2013

This paper describes a MIP model for the XHSTT format, which is capable of handling all types
of native XHSTT constraints, and is thereby applicable to any given instance. This constitutes
the first exact method for XHSTT. Instead of solving the MIP model directly using a generic MIP
solver, an approach is suggested which takes advantage of the objective structure of XHSTT.
Specifically, this is done using the lexzicographic method for multi-objective problems (Ehrgott,
2000). Besides generating incumbent solutions, this solution method is theoretically capable of
finding lower bounds on optimum, which can lead to optimal solutions. The model is applied to
most instances currently available in the XHSTT format and is in practice capable of producing
2 new optimal solutions, prove optimality of 4 known solutions, and generate 9 new sub-optimal

25

Chapter 4. Overview of Results 26

solutions. The new state-of-the-art solutions have been made available on the XHSTT website
(Post, 2013b).

4.1.2 Paper B: Integer Programming and Adaptive Large Neighbor-
hood Search for Real-World Instances of High School Time-
tabling

Submitted to Annals of Operations Research Jan. 2013, revision submitted Oct. 2013

This paper describes a model for the DHSTP, which is complete in the sense that it includes all
constraints also considered in practical applications by the high school administration. A MIP
model is also developed. Three different solutions algorithms are proposed: Solving the MIP
using a state-of-the-art MIP solver, a basic version of TSD, and a heuristic based on the ALNS
paradigm. The algorithms are tested on 100 real-world datasets, and computational results
show that the ALNS heuristic performs best. The gap between the found solution and the best
available bound is in average 65.3%, 41.3% and 25.6% for the MIP model, the TSD and the
ALNS heuristic, respectively, which are all rather high gaps. Three of the datasets are converted
to the XHSTT format, and made publicly available.

4.1.3 Paper C: A Two-Stage Decomposition of High School Time-
tabling applied to cases in Denmark

Published in Computers & Operations Research, vol. 43, pp. 36-49, March 201/
This work was presented at ECCO 2012.

This paper extends the basic version of TSD used in Paper B for the DHSTP, such that it
now incorporates edge weights in the anonymous resource assignment graph. This makes for a
more efficient decomposition in theory, and computational results indeed show that the generated
bounds for the 100 tested instances in general are better than the ones of the basic TSD. However,
the additional constraints have a negative effect in terms of solution quality, and the extended
method is outperformed by the basic TSD. Given these improved solutions and bounds, it is
shown that the gap between the best known solution and the best known bound is 22.3% in
average for the DHSTP. The paper also includes a detailed outline of a problem-specific way to
generate the necessary Hall’s inequality. This approach is sufficient for 98 of the 100 considered
instances. For the remaining two instances, the algorithm is still functional, but it cannot be
guaranteed that all necessary Hall inequalities are generated, which has a possible bad effect on
the quality of the solution and the generated lower bounds. Nevertheless, the paper shows that
TSD is a promising MIP-based solution approach for the DHSTP.

4.1.4 Paper D: Decomposing the Generalized High School Timetabling
Problem

Submitted to INFORMS Journal on Computing, Nov. 2013

Based on the MIP model of Paper A, this manuscript describes in detail how the MIP model
of the GHSTP can be decomposed by the TSD method, thereby reducing the total amount of
variables considerably. Optimality of the original MIP model is maintained in the process, except
for some datasets which have unfortunate characteristics. These characteristics are a result of
the large amount of different constraints in the XHSTT format. However, for most of these
unfortunate cases, the algorithm is still capable of producing lower bounds on optimum. This

27 4.1. Papers and Conferences

TSD is a first-step towards more advanced exact methods for the GHSTP. Computational results
are obtained using 12 XHSTT instances which are among the largest instances available, and
show that the models yielded by the TSD are of much smaller size than those of the original MIP
model. However, the quality of the found solutions and lower bounds are not as high as expected
for the tested XHSTT instances. It is argued that the TSD is an advantage for these instances,
but also inadequate for establishing state-of-the-art results. Further enhancements are required
before this exact method can compete with the heuristics for the GHSTP.

4.1.5 Paper E: A Matheuristic for High School Timetabling
Submitted to European Journal of Operational Research, Nov. 2013

A matheuristic is described which is a hybridization of integer programming and metaheuristics.
By construction, the heuristic uses problem-specific knowledge to divide the solution space into
different parts, and solves each part w.r.t. the complete MIP model. Different parts of the solu-
tion space are considered as the algorithm progresses, constituting different neighborhoods of the
current solution. Apart from the problem-specific knowledge used to construct neighborhoods,
the matheuristic is generally applicable to MIP models. An adaptive layer of the algorithm uses
feedback from the solution process to select the type of neighborhoods which have performed
best so far, and favors these neighborhoods in future selections. The algorithm is applied to both
the GHSTP and the DHSTP, and computational results show state-of-the-art performance for
both problems. For the GHSTP, the performance of the algorithm is comparable with the winner
of Round 2 of ITC2011. For the DHSTP, the matheuristic is the best algorithm compared to
three others given a time-limit of two hours. In fact, the solutions provided by the matheuristic
narrowed the gap from best known solution to best known bound to 15.2% in average for the
DHSTP, given a two hour time-limit. Given a four minute time-limit, the average gap is 23.4%.

4.1.6 Paper F: The Consultation Timetabling Problem at Danish High
Schools

Published in Journal of Heuristics, vol. 19, 3, pp. 465-495, Jun. 2013

This paper describes the CTP for the first time in the literature, including a motivation and
detailed description of each constraint, and the development of a MIP model. This MIP model
applies to both the PCTP and the SCTP, and is shown to be a challenge for the commercial
MIP-solver Gurobi 5.0.1. A proof of the model being N'P-hard is given by reduction from
Graph Coloring. Computational results are established using 300 real-life datasets, and an
ALNS algorithm is developed, which is shown to generally perform better than Gurobi. The
ALNS algorithm is also shown to outperform another heuristic for the problem which is used by
high schools in practice. Using the bounds obtained with Gurobi, it is shown that the ALNS
heuristic produces solutions which are within 5% of optimum in average.

4.1.7 Paper G: A Branch & Price Algorithm for the Generalized Meet-
ing Planning Problem

Submitted to Computers & Operations Research, Aug. 2013

This paper describes the GMPP in detail, which is a generalization of the CTP of Paper F. The
model of the GMPP consists of a master problem of a CG procedure, constructed such that
the problem-specific details are handled by the subproblem. This makes the model capable of
handling a variety of timetabling problems. This CG procedure is embedded in a B&P framework,

Chapter 4. Overview of Results 28

which uses Strong Branching to speed up the algorithm. Computational results reveal two things
for the CTP: 1) The B&P algorithm performs very well 2) New bounds are provided which show
that the ALNS algorithm is within 2.31% and 1.26% of optimum for the PCTP and the SCTP,
respectively.

4.1.8 Other Papers

The following papers, technical reports and conference abstracts were also produced during the
Ph.D. study.

e Paper H: Elective Course Planning
Published in European Journal of Operations Research, vol. 215, 3, pp. 713-720, Dec.
2011

This paper considers the Elective Course Planning Problem at Danish high schools, which
is the first description of this problem in the literature. A MIP model of the problem is
presented, which is decomposed into a CG model. This CG model is solved in a B&P
framework, where the subproblem is handled by a polynomial algorithm. The algorithm
is tested on 98 real-life datasets, with promising results. It is argued that the algorithm
outperforms an existing metaheuristic. To enhance the B&P algorithm, Ezplicit Constraint
Branching is used.

e Paper [: International Timetabling Competition 2011: An Adaptive Large Neighborhood
Search algorithm
Presented at the Ninth International Conference on the Practice and Theory of Automated
Timetabling (2012)

This text describes a contribution to ITC2011, namely an ALNS algorithm. This algorithm
was part of the final rounds of ITC2011, and received a third place in both Round 2
and Round 3 of the competition. Furthermore, the algorithm produced several new best
solutions for different XHSTT instances. See also Section 2.4.

e Paper J: Comparing Solution Approaches for a Complete Model of High School Timetabling
Technical Report 5.2013, DTU Management Engineering, Technical University of Denmark

This technical report largely contains the same material as Paper B, and is only partially
included in this thesis. Extra material covered is the formal proof of the DHSTP being
NP-hard and a scheme for converting a DHSTP instance to an instance of the XHSTT
format.

e High School Timetabling: Modeling and solving a large number of cases in Denmark
Presented at the Ninth International Conference on the Practice and Theory of Automated
Timetabling (2012)

This conference text contains preliminary models and results of Paper B. It was presented
at PATAT2012. The text is not included in this thesis.

4.2 Scientific Contributions

The scientific contributions of this thesis are listed in the following.

e The first MIP model of the XHSTT format, and thereby the first exact method, has been
presented. This model handles an arbitrary instance of XHSTT, and has been applied

29

4.2. Scientific Contributions

to the most recent version of all XHSTT datasets. This has yielded the first proofs of
optimality for some of these benchmark instances, as well as providing new lower bounds
for other instances.

A throughout model of the Danish case of DHSTP has been shown. This includes all
constraints required by the high schools in a practical setting, such that the model speci-
fications are complete in this sense. This is the first time this problem has been described
in the scientific literature. Furthermore, a MIP model has been presented. Three datasets
have been made available in the XHSTT format, which are part of the archive XHSTT-2013.
The MIP has been evaluated on 100 real-world instances.

Heuristics based on ALNS have been developed for the considered optimization problems.
The application of ALNS to timetabling problems has not been described before in the
literature.

— For the DHSTP, an ALNS algorithm is currently among the best known algorithms.
The average gap to the currently best known bounds from the solutions obtained is
19.5% given a four minute time-limit.

— For the GHSTP, an ALNS algorithm was among the finalists in ITC2011, and is
among the best heuristics currently available.

— For 200 instances of the CTP an ALNS algorithm showed to perform within 3% of
optimum.

A matheuristic applicable to both DHSTP and GHSTP has been created, and has shown
good results for both problems. For the GHSTP, the algorithm was shown to be competitive
with the winner of Round 2 of ITC2011. For the DHSTP, the algorithm outperforms all
considered MIP approaches, and comes close to the performance of the ALNS algorithm.
Given a two hour time-limit, the average gap from the solutions of the matheuristic to the
best known bound is 15.2% on 100 instances of the DHSTP. The adaptive layer of the
algorithm resembles that of an ALNS algorithm, and the matheuristic can be thought of
as a hybrid between MIP and ALNS.

An extension of TSD has been developed, which makes the technique applicable to a
wider range of problems. The extension considers edge-weights in the graph which models
the anonymous assignment of resources, and shows how a lower bound on this weighted
assignment can be derived. This extension has shown to be required for handling both the
DHSTP and the GHSTP using TSD. A problem-specific way of generating the necessary
Hall inequalities has been developed for the DHSTP, and the same approach has shown to
also be applicable for the GHSTP.

The CTP has been described in detail. Like for the HSTP, the problem specifications of
the CTP resemble all constraints necessary to handle a practical problem instance. This is
the first description of the CTP in the literature. A MIP model has been developed, and
an ALNS algorithm suggested.

For the GMPP, a model has been described, as well as a discussion of the applicability
to a range of problems within the educational sector. The GMPP is solved using a B&P
approach, which is shown to be effective on 200 test-instances of the CTP problem.

Chapter 4. Overview of Results 30

4.3 Practical Applications

Practical usability is relevant for this Ph.D. study as it was done under the Industrial Ph.D.
Programme. Some of the solution algorithms developed throughout the study have been made
commercially available to end-users, and is used by a number of high schools. Thereby the models
of the optimization problems are tested in a practical setting, which ensures that all necessary
requirements are met. In this context it should be mentioned that the considered problem
instances of the GHSTP, the DHSTP and the CTP reflect real-life optimization problems.

Throughout the Ph.D. project, the take on the considered optimization problems has in
general been the following: Consider first a mathematical model (in practice, MIP models), and
attempt to solve this using standard techniques (in practice, generic MIP-solvers). If this is
successful within the given boundaries (i.e. time- and resource-limitations), then optimality has
been achieved and no further work is required. In case of inadequate results (all timetabling
problems considered in this thesis fall under this category), more specialized algorithms need to
be designed.

In the following the current practical applications of the contributed algorithms are described
for each optimization problem.

e HSTP: The ALNS algorithm of Paper B was made available to users of the timetabling
component of Lectio on the 27th of February 2012. This algorithm has shown to be the one
performing best among all considered solution approaches. Many high schools in Denmark
use this algorithm in support of creating their yearly (or half-yearly) timetable.

o CTP: Also the ALNS algorithm of Paper F has gone into production, and is used by many
high schools for producing timetables for the CTP.

e GHSTP: The developed algorithms for this problem have not been made available to end-
users (this is not relevant for the users of Lectio). However in the context of practical
applications, it should be mentioned that the instances of ITC2011 was classified as un-
simplified instances from real high schools around the world in Post et al. (2013).

For these practical applications, it applies that the algorithms are used in a decision-support
context. This means that the algorithms should be used as a helpful tool, capable of quickly
providing sufficiently good solutions. The users of the system are given a certain amount of
control of the solution process, e.g. by allowing them to adjust different weights w.r.t. properties
of the desired solution. Furthermore, the users are able to edit the found solutions by appropriate
graphic interfaces.

Chapter 5

Conclusion

This thesis contains contributions to the modeling and solution of difficult timetabling problems
originating from practical applications at high schools. The considered timetabling problems
are the Generalized High School Timetabling Problem (GHSTP), the Danish High School Time-
tabling Problem (DHSTP) and the Consultation Timetabling Problem (CTP). Furthermore the
Generalized Meeting Planning Problem (GMPP) has been considered which is a framework for
solving a range of timetabling problems.

Two important characteristics of these timetabling problems are: 1) They are hard to solve,
and 2) The quality of the obtained solutions define the general satisfaction with the timetable for
the stakeholders, i.e. good solutions are important. These timetabling problems are considered
as optimization problems, and applying exact solution methods will lead to the optimal solution.
Generally speaking, this thesis has advanced the fields of both heuristics and exact methods for
real-world timetabling problems. Furthermore, contributions to the modeling of these problems
w.r.t. Mixed-Integer Programming (MIP) models have been made.

In the high school timetabling problem, events require a set of resources and are sought
scheduled to times, such that the timetable of each individual resource respects certain hard-
constraints and minimizes the violation of the soft-constraints. For the GHSTP and the DHSTP,
the contributions of this thesis can be summarized as follows.

e MIP models of these unsimplified high school timetabling problems have been described,
which facilitates the use of exact solution methods. For the GHSTP, the solution of the
corresponding MIP model has yielded new optimal solutions and lower bounds for standard
benchmark instances.

e Heuristics based on Adaptive Large Neighborhood Search (ALNS) have been developed
and shown to perform well for both problems.

e Novel extensions of the Two-Stage Decomposition (TSD) method allow a wider range of
problems to be handled, and has shown good results for both the GHSTP and the DHSTP.
This method has a large potential for future applications.

e A heuristic hybridizing mathematical programming and metaheuristics, known as a
matheuristic, has shown good performance for both problems when compared to other
solution approaches.

e Benchmark datasets representing three real-world timetabling instances of DHSTP have
been made publicly available.

31

Chapter 5. Conclusion 32

For all solution methods for the DHSTP, the average gap from the best known bounds to the
obtained solutions is high when tested on 100 real-life instances with various time-limits. The
current best known result is found by the matheuristic which obtains an average gap of 15.2%
given a 2 hour time-limit. Section 5.1 discusses means for narrowing this gap.

This thesis has shown that real-world high school timetabling problems are still a challenge to
solve for exact methods, even with the recent advances of generic MIP solvers and when applying
state-of-the-art techniques such as TSD. In a practical setting for these problems, the tests
performed in this thesis show that heuristics in general produce the best solutions. Both ALNS
heuristics and the matheuristic have shown to perform well. However, exact methods which can
provide bounds on optimum are valuable for evaluating the performance of the heuristics.

The CTP concerns the scheduling of meetings between students and teachers. Each meeting
should be scheduled to a time, such that the individual timetables are as desirable as possible.
Two versions of the CTP have been examined, the Parental Consultation Timetabling Problem
and the Supervisor Consultation Timetabling Problem, which are important planning problems
for the high schools in Denmark. A generalization of the CTP is the Generalized Meeting Planning
Problem (GMPP) which has a wide range of applications. The contributions w.r.t. the CTP and
the GMPP are summarized in the following.

e The CTP has been modeled and a MIP model established for the first time in the literature.

o A Column Generation scheme and a Branch-and-Price (B&P) algorithm have been de-
veloped for the GMPP. In case of the CTP, this Branch-and-Price algorithm produces
solutions which are within 3% of optimum in average (based on 200 real-life datasets).

e An ALNS heuristic has been developed for the CTP, and this heuristic finds solutions
which are within 3% of optimum in average.

Contrary to the case of HSTP, the performance of an exact algorithm (the B&P algorithm) for
the CTP is competitive with the performance of the tested heuristic (the ALNS heuristic). This
shows that it may be possible to use exact methods for CTP in a practical setting.

5.1 Future Research

Generally, the amount of literature concerned with exact methods for timetabling problems is
still low compared to that of heuristics. The MIP models presented in this thesis can serve as a
basis for more advanced exact methods in future research. The establishment of lower bounds or
even optimal solutions is important for the high schools, but also for evaluating solution methods.

For determining the timetabling problems which are subject for future research, the magni-
tude of the average gap to the best known bounds is inspected. For the DHSTP, the current
best average gap is 15.2% (given a two hour time-limit for each dataset). This is a significant
gap, which future research should address. For the CTP, both the ALNS algorithm and the
B&P algorithm achieve solutions which are within an average gap of 3%. This is a low gap, and
thereby the CTP is not an obvious case for future research. In terms of the GHSTP, a bound
is not known for a lot of datasets, so a sufficient basis for calculating the average gap does not
exist. Providing (tight) bounds for all GHSTP instances is an obvious topic for future research.

For closing the gap to optimum, one can either seek for improved solutions or better bounds.
In the following the potential of the solution methods of this thesis are evaluated in this context.

e TSD has shown to be a promising method for high school timetabling, and it has shown
to be the best method for providing lower bounds for the DHSTP. A downside of the

33

5.1. Future Research

method is that some constraints cannot be optimally handled, due to the structure of the
problems and the current state-of-the-art theory of the TSD. Future research should clearly
state the theory of TSD, such that it is completely separated from its application to the
given optimization problem. Another topic for future research is a general algorithm for
generating the necessary Hall inequalities, i.e. an algorithm which is not problem-specific.
This would make the TSD more generally applicable.

Another topic for future research is further decomposition of the models yielded by the
TSD approach. This could for instance be the application of a B&P approach to the Stage
I model of both the DHSTP and GHSTP (as these models have shown to be hard to solve
in practice). This may lead to improved solutions.

The proposed matheuristic provides good solutions for both the GHSTP and the DHSTP.
However, on the larger instances the overhead of invoking the MIP solver is high, which
significantly harms performance. A way to handle this could be to not consider the entire
MIP model at all times, but rather to either divide it into separate models or gradually
add variables/constraints to the model.

The formulation of the GMPP is capable of handling a wide range of problems, and it
should be tested on other problems than the CTP. This could for instance be datasets of
the DHSTP or the GHSTP. GMPP is also capable of providing bounds (which were of
high quality in case of the CTP), which would be beneficial for both the DHSTP and the
GHSTP.

Furthermore, it would be interesting to apply the developed matheuristic and extended TSD to
other timetabling problems as well. This could for instance be university course-timetabling or
examination timetabling.

Even though the developed models of the considered timetabling problems are believed to

contain all constraints required in practice, future political decisions can change this. Changes in
the problem-definition will possibly require changes to the solution methods as well. Therefore
continuous research may be required in the future for these optimization problems.

Bibliography

R. K. Ahuja, Ozlem Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale neigh-
borhood search techniques. Discrete Applied Mathematics, 123(1-3):75 — 102, 2002. ISSN
0166-218X.

N. Azi, M. Gendreau, and J.-Y. Potvin. An Adaptive Large Neighborhood Search for a Vehicle
Routing Problem with Multiple Trips. CIRRELT, 2010.

C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price:
Column generation for solving huge integer programs. Operations Research, 46:316-329, March
1998. ISSN 0030-364X.

R. E. Bixby. Optimization Stories, volume Extra of 21st International Symposium on Mathe-
matical Programming Berlin, chapter A Brief History of Linear and Mixed-Integer Program-
ming Computation, pages 107-121. Journal der Deutschen Mathematiker-Vereinigung, August
19-24 2012.

C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial opti-
mization: A survey. Applied Soft Computing, 11(6):4135 — 4151, 2011. ISSN 1568-4946.

E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-heuristics: An
emerging direction in modern search technology. In F. Glover and G. Kochenberger, edi-
tors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research €
Management Science, pages 457-474. Springer US, 2003. ISBN 978-1-4020-7263-5.

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. Woodward. A classification
of hyper-heuristic approaches. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Meta-
heuristics, volume 146 of International Series in Operations Research € Management Science,
pages 449-468. Springer US, 2010. ISBN 978-1-4419-1663-1.

V. Cacchiani, A. Caprara, R. Roberti, and P. Toth. A new lower bound for curriculum-based
course timetabling. Computers € Operations Research, 40(10):2466 — 2477, 2013. ISSN 0305-
0548.

M. Caserta and S. Voss. Metaheuristics: Intelligent problem solving. In V. Maniezzo, T. Stiitzle,
and S. Voss, editors, Matheuristics, volume 10 of Annals of Information Systems, pages 1-38.
Springer US, 2010. ISBN 978-1-4419-1305-0.

M. Ehrgott. Multicriteria Optimization. Springer, 2000.

G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza. A sa-ils approach for the high school
timetabling problem. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), 2012.

35

Bibliography 36

P. Hansen and N. Mladenovi¢. Variable neighborhood search: Principles and applications. Fu-
ropean Journal of Operational Research, 130(3):449 — 467, 2001. ISSN 0377-2217.

J.-K. Hao and U. Beunlic. Lower bounds for the itc-2007 curriculum-based course timetabling
problem. European Journal of Operational Research, 212(3):464 — 472, 2011. ISSN 0377-2217.

INFORMS. What is operations research.
https://www.informs.org/About- INFORMS/What-is-Operations-Research [Accessed
25/9-2013], Sep. 2013.

A. Kheiri, E. Ozcan, and A. J. Parkes. Hysst: Hyper-heuristic search strategies and
timetabling. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), pages 497499, 2012.

J. H. Kingston. Educational timetabling. In A. S. Uyar, E. Ozcan, and N. Urquhart, editors,
Automated Scheduling and Planning, volume 505 of Studies in Computational Intelligence,
pages 91-108. Springer Berlin Heidelberg, 2013a. ISBN 978-3-642-39303-7.

J. H. Kingston. High school timetable file format specification: Constraints.
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
[Accessed 12/11-2013], 2013b.

J. H. Kingston. High school timetable data format specification.
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec [Accessed
12/11-2013], 2013c.

P. Laarhoven and E. Aarts. Simulated annealing. In Simulated Annealing: Theory and
Applications, volume 37 of Mathematics and Its Applications, pages 7-15. Springer
Netherlands, 1987. ISBN 978-90-481-8438-5.

G. Lach and M. Liibbecke. Optimal university course timetables and the partial transversal
polytope. In C. McGeoch, editor, Experimental Algorithms, volume 5038 of Lecture Notes in
Computer Science, pages 235-248. Springer Berlin / Heidelberg, 2008.

G. Lach and M. Liibbecke. Curriculum based course timetabling: new solutions to udine
benchmark instances. Annals of Operations Research, 194:255-272, 2012. ISSN 0254-5330.

G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44
(1):125-135, 2010.

A. Lodi. The heuristic (dark) side of mip solvers. In E.-G. Talbi, editor, Hybrid Metaheuristics,
volume 434 of Studies in Computational Intelligence, pages 273—284. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-30670-9.

V. Maniezzo, T. Stiitzle, and S. Vok. Matheuristics: Hybridizing metaheuristics and
mathematical programming. Annals of Information Systems, 10, 2009a.

V. Maniezzo, S. Voss, and P. Hansen. Special issue on mathematical contributions to
metaheuristics. Journal of Heuristics, 15(3), June 2009b.

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D. Gaspero,
R. Qu, and E. K. Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing, 22(1):120-130,
2010.

https://www.informs.org/About-INFORMS/What-is-Operations-Research
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec

37 Bibliography

L. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. European Journal of Operational Research, Volume
218(Issue 3):614-623, 2011.

I. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations Research, 63
(5):511-623, 1996. ISSN 0254-5330.

B. Paechter, L. M. Gambardella, and O. Rossi-Doria. The first international timetabling
competition.
http://www.idsia.ch/Files/ttcomp2002/ [Accessed 25/9-2013], 2002.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34:2403-2435, August 2005. ISSN 0305-0548.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y. Potvin,
editors, Handbook of Metaheuristics, volume 146 of International Series in Operations
Research & Management Science, pages 399-419. Springer US, 2010. ISBN
978-1-4419-1665-5.

G. Post. International timetabling competition 2011.
http://www.utwente.nl/ctit/hstt/itc2011/welcome/ [Accessed 25/9-2013], Sep. 2013a.

G. Post. Benchmarking project for (high) school timetabling.
http://www.utwente.nl/ctit/hstt/ [Accessed 25/9-2013], Aug. 2013b.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

G. Post, L. Gaspero, J. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. Annals of Operations Research, February 2013. ISSN 0254-5330.

R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998.

G. M. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem. Computers éamp; Operations Research, 39
(3):728 — 735, 2012. ISSN 0305-0548.

J. Romros and J. Homberger. An evolutionary algorithm for high school timetabling. In
Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 485-488. SINTEF, 2012.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455-472, November 2006.
ISSN 1526-5447.

D. Ryan. It is time to enjoy the best of both worlds. In The 46th ORSNZ Conference, Victoria
University of Wellington, New Zealand, 10-11 December 2012.

http://www.idsia.ch/Files/ttcomp2002/
http://www.utwente.nl/ctit/hstt/itc2011/welcome/
http://www.utwente.nl/ctit/hstt/

Bibliography 38

M. Salazar-Aguilar, A. Langevin, and G. Laporte. An adaptive large neighborhood search
heuristic for a snow plowing problem with synchronized routes. In J. Pahl, T. Reiners, and
S. Voss, editors, Network Optimization, volume 6701 of Lecture Notes in Computer Science,
pages 406—411. Springer Berlin / Heidelberg, 2011. ISBN 978-3-642-21526-1.

H. A. Taha. Operations Research An Introduction (Sizth Edition). Prentice Hall, 1997.

The Ministry of Education in Denmark. Analyse om gget anvendelse af it pa selvejende
uddannelsesinstitutioner under undervisningsministeriet — forslag til forbedringer af
studieadministrative opgaver og processer, June 2009. In Danish.

The Ministry of Education in Denmark. Four upper secondary education programmes in
denmark.
http://eng.uvm.dk/Education/Upper-Secondary-Education/
Four-Upper-Secondary-Education-Programmes-in-Denmark [Accessed 11/11-2013], 2013.

P. Wang, G. Reinelt, and Y. Tan. Self-adaptive large neighborhood search algorithm for
parallel machine scheduling problems. Journal of Systems Engineering and Electronics, 23
(2):208-215, 2012.

http://eng.uvm.dk/Education/Upper-Secondary-Education/Four-Upper-Secondary-Education-Programmes-in-Denmark
http://eng.uvm.dk/Education/Upper-Secondary-Education/Four-Upper-Secondary-Education-Programmes-in-Denmark

Part 11

Scientific Papers

39

Chapter 6 Paper A

Integer Programming for the Generalized (High)
School Timetabling Problem

Simon Kristiansen!-2, Matias Sgrensen'-?, Thomas R. Stidsen!
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

Abstract Recently the XHSTT format for (High) School Timetabling was introduced, which pro-
vides a uniform way of modeling problem instances and corresponding solutions. The format supports
a big variety of constraints, and currently 38 real-life instances from 11 different countries are available.
Thereby the XHSTT format serves as a common ground for researchers within this area. This paper
describes the first exact method capable of handling an arbitrary instance of the XHSTT format. The
method is based on a Mixed-Integer linear Programming (MIP) model, which is solved in two steps with
a commercial general-purpose MIP solver. Computational results show that our approach is able to
find previously unknown optimal solutions for 2 instances of XHSTT, and proves optimality of 4 known
solutions. For the instances not solved to optimality, new non-trivial lower bounds were found in 11
cases, and new best-known solutions were found in 9 cases. Furthermore the approach is shown to be
competitive with the finalist of Round 2 of the International Timetabling Competition 2011.

6.1 Introduction

The problem of scheduling lectures to time slots and/or resources at high schools is known as
the High School Timetabling (HST) problem. This is an important problem for high schools in
many countries, and a large amount of different solution approaches have been proposed, see the
survey Schaerf (1999).

It is well recognized that the specifications of the HST problem varies significantly depending
on the country of which the problem originates, and that the problem in general is hard to solve.
With the introduction of the XHSTT format (Post et al., 2012a), a large number of instances
from various origins became publicly available in standardized form. The format is based on
the Eatensible Markup Language (XML) standard, and all instances are available online (Post,
2013b). One purpose of the format is to serve as a common test-bed for school timetabling, in an
attempt to promote research within this area. In this context, "school timetabling" denotes the
area covering high school timetabling and university course timetabling, as the format has also
been shown capable of modeling some instances of the latter problem (see Kingston (2013a) for
an overview of educational timetabling problems).

41

Chapter 6. Paper A: Integer Programming for the GHSTP 42

This paper describes the first exact method capable of handling an arbitrary instance of the
XHSTT format. The method is based on a Mized-Integer linear Programming (MIP) model,
which is solved in two steps with a commercial general-purpose MIP solver. Computational
results are performed for all the real-life instances currently available. Thereby we are able to
find previously unknown optimal solutions, and prove optimality of already known solutions.

To the best of our knowledge, all previous solution methods for the XHSTT format have been
heuristic in nature. Therefore no proof of optimality has been made for any instance, except for
those instances where a solution with objective value 0 is known, since 0 is a trivial lower bound
for any XHSTT instance. The obvious advantage of Integer Programming (IP) over heuristic
methods is the capability to issue certificates of optimality. Therefore it is remarked that a big
advance within general-purpose MIP solvers has happened in recent years, see e.g. Bixby (2012).
Even though the MIP we will present is inevitable complex in nature, it will be shown that it can
be used to find optimal solutions for several instances of the XHSTT archive ALL_INSTANCES.
For those instances where an optimal solution cannot be found, we are able to show a non-trivial
lower bound on optimum in the majority of cases. These are significant results for high school
timetabling in general.

The outline of this paper is as follows. Section 6.2 presents related literature. Section 6.3
presents the MIP model of XHSTT. Section 6.4 describes computational results. Finally, Section
6.5 concludes and describes future research possibilities.

6.2 Related Literature

The Third International Timetabling Competition (ITC2011) considered the HST Problem,
based on instances of the XHSTT format (Post et al., 2012b). Four teams were part of the final
round: The overall winner (Team Goal) used Simulated Annealing and Iterated Local Search to
perform local search around a generated initial solution (Fonseca et al., 2012). Participant from
the University of Nottingham (HySTT) used a method based on Hyper-heuristics (Kheiri et al.,
2012). Team Lectio used Adaptive Large Neighborhood Search (ALNS) (Sgrensen et al., 2012).
Romros and Homberger (2012) (Team HFT) used an Evolutionary Algorithm. The results of
the competition can be found at the official homepage of ITC2011 (Post (2013a)).

Pimmer and Raidl (2013) describe a ’timeslot-filling’ heuristic for XHSTT, which iteratively
fills selected timeslots with sets of events. Two state-of-the-art solutions were found for instances
of the archive XHSTT-2012. Ter Braak (2012) presents a Hyper-heuristic and several other heuris-
tics for the XHSTT.

Valouxis et al. (2012) describe a two-phase approach based on MIP used to solve the Greek
case of the HST problem. This includes two instances which are part of the XHSTT project,
and which were both solved to optimality (solutions were found with an objective value of 0).

In terms of Integer Programming and HST problems not based on XHSTT, the following
contribution are mentioned: Santos et al. (2012) present a Column Generation approach for
establishing bounds for a set of datasets originating from Brazil. Birbas et al. (2009) present an
approach for Greek datasets where the Shift Assignment Problem is solved first, and the timetable
is constructed on the basis on these work-shifts for teachers. The paper of Sgrensen and Stidsen
(2013) describes a complex MIP of the Danish case of high school timetabling, and establishes
computational results for 100 real-life instances. Avella et al. (2007) present an algorithm based
on Very Large-Scale Neighborhood search where the neighborhood is explored by a MIP, for
Italian cases of high school timetabling.

43 6.3. Problem Description and a Mixed Integer Programming Formulation

6.3 Problem Description and a Mixed Integer Program-
ming Formulation

In this section a brief description of the specifications of the XHSTT format is given, and a MIP
model is formulated. The entire documentation of XHSTT is available at Post (2013b). We do
not intend to describe all properties of the format, but only those necessary to formulate the
MIP.

An instance of XHSTT consists of times (denoted T in the following), time groups (denoted
TG), resources (denoted R), events (denoted &), event groups (denoted £G) and constraints
(denoted C). An event e € £ has a duration D, € N, and a number of event resources which we
each denote er € e. An event resource defines the requirement of the assignment of a resource to
the event, and this resource can be specified to be preassigned. If the resource is not preassigned,
a resource of proper type must be assigned. Furthermore an event resource er can undertake a
specific role.,., which is used to link the event resource to certain constraints.

It is the job of any solver for XHSTT to decide how each event should be split into sub-events.
A sub-event se is defined as a fragment of a specific event e € £, has a duration Dy, < D,, and
inherits the requirement of resources defined by the event, such that each sub-event has the exact
same resource requirements as the event. Let SE denote the entire set of sub-events, and let
se € e specify that sub-event se is part of event e. The total duration of all sub-events for event
e € £ in a solution cannot exceed D.. In our model formulation we create the ’full set’ of sub-
events with different lengths, i.e. all possible combinations of sub-events for a given event can be
handled. E.g. if an event has duration 4, the set of sub-events for this event has the respective
lengths 1,1,1,1,2,2,3 and 4. As a constraint it is then specified that the summed duration of
the active sub-events in a solution must equals 4. A sub-event is active if it is assigned a starting
time or a non-preassigned resource. An active sub-event is analogous to the concept of solution
events defined in the XHSTT documentation.

The times T are ordered in chronological order, and we let p(¢) denote the index number of
time ¢t in 7. A time group 7 G defines a set of times, and we let ¢ € tg denote that time ¢ is part
of time group tg.

Each constraint ¢ € C is of a specific type, and the set C can contain several constraints of the
same type. Each constraint applies to certain events, event groups or resources, and penalizes
certain characteristics of the timetable for these entities.

The following notation shorthand is made: By the notions e € ¢, r € ¢, eg € ¢ we denote that
constraint ¢ € C applies to event e € £, resource r € R, and event group eg € £G, respectively.

The set of resources and times are both extended with a dummy-index, denoted the dummy-
resource rp and the dummy-time tp, respectively. These are necessary to ensure feasibility as we
create all combinations of sub-events for each event, and not all of these can be assigned a time
or the required resources without the duration of the active sub-events exceeding the duration
of the event. Thereby these dummy-elements in fact represent that an event resource is not
assigned a resource, and that a sub-event is not assigned a starting time, respectively.

6.3.1 Objective Function

Each XHSTT constraint penalizes timetables with certain characteristics, which contributes to
the objective function of the MIP. Each constraint ¢ € C has a set of point-of-applications
(indexed by p € ¢). With each point-of-application is associated a set of deviations (indexed by
d € p), and each deviation has a non-negative cost associated with it. How this cost is calculated
depends on the constraint type. The cost of a point-of-application is found on basis of the cost

Chapter 6. Paper A: Integer Programming for the GHSTP 44

Table 6.1: Different constraint types in the XHSTT format (Post et al., 2012b)

Constraint Description

Assign Resource Event resource should be assigned a resource

Assign Time Event should be assigned a time

Split Events Event should split into a constrained number of sub-events
Distribute Split Events Event should split into sub-events of constrained durations
Prefer Resources Event resource assignment should come from resource group
Prefer Times Event time assignment should come from time group

Avoid Split Assignments Set of event resources should be assigned the same resource
Spread Events Set of events should be spread evenly through the cycle
Link Events Set of events should be assigned the same time

Order Events Set of events should be ordered

Avoid Clashes Resource’s timetable should not have clashes

Avoid Unavailable Times Resource should not be busy at unavailable times

Limit Idle Times Resource’s timetable should not have idle times

Cluster Busy Times Resource should be busy on a limited number of days

Limit Busy Times Resource should be busy a limited number of times each day
Limit Workload Resource’s total workload should be limited

of the deviations, and is influenced by an indication on the constraint whether the constraint is
a hard or a soft constraints, the weight of the constraint (w. € N) and an indication of which
CostFunction to use. For each constraint ¢ € C we let the variable s., 4 € N be the penalty
value of the deviation d € p of the point-of-application p € ¢. The set of point-of-applications
and deviations should be understood in an abstract context; E.g. depending on the type of
the constraint, a point-of-application could be an event, a resource, etc., and likewise for the
deviations.

The objective of a solution consists of a value for both the hard constraints (denoted hard
cost) and a value for the soft constraints (denoted soft cost). Usually the objective value of a
solution is written as (hard cost, soft cost). The hard cost always takes priority over the soft
cost, i.e. solutions are first ranked on their hard cost, and secondly on the soft cost. How this
type of objective function is handled in context of a MIP is described in Section 6.3.4.

The cost of a constraint ¢ € C which contains slack variable s, , 4 is denoted f(sc p.a),

f(sep,a) = we - CostFunction(s. p q) (6.1)

Five different types of CostFunction are allowed. The most trivial one is Sum, which simply
sums the penalty value of all deviations for all point-of-applications. In the following each
CostFunction is formulated in linear terms. Let the variable obj, € Ny denote the value of the
of the CostFunction of constraint ¢ € C.

e Sum: Sum the deviations.

obj,= Y Sp4. VeeC (6.2)

pEc,dEp

e SumSquare: Sum the squares of the deviations.
To cope with this non-linear cost function, the variable s, p 4, € {0,1} is introduced, which
takes value 1 if the deviation d € p of the point of application p € ¢ of constraint ¢ € C has

45

6.3. Problem Description and a Mixed Integer Programming Formulation

the penalty i € Z, and 0 otherwise. The objective value is defined as follows:

obj,= Y i sepai VeeC (6.3)

pEc,dep,i€l

However we also need to make sure that only a single integer value is selected,

Zsc,p,d,i =1 VeelC,pec,dep (6.4)
i€l

The amount of elements in the set Z determines the maximum possible penalty for a devi-
ation, and thereby influence the maximum possible penalty for a constraint. To maintain
optimality of the model, it is therefore important that the size of Z is selected sufficiently
large. This is elaborated in Section 6.4.

SquareSum: Square the sum of deviations.

The binary slack variable w7 5™*"™ € {0, 1} is introduced, which takes value 1 if the point

of application p € c¢ of constraint ¢ € C has the deviation j € J, and 0 otherwise.

obj,= > 2wl veec (6.5)
pEC,jET

Z ui?zl)l’?resunl =1 Vece C,p cc (66)

JjeET

D Spae= D uRTN VeeC,pec (6.7)

dep JjeT

Like the set Z, the size of the set J must be selected sufficiently large to maintain optimality,
see Section 6.4.

SumStep: This penalizes by the number of positive deviations, irrespective of their value.

The binary variable u2')"s'” € {0,1} is introduced, which takes value 1 iff s, 4 > 0 for

constraint ¢ € C, point-of-application p € ¢ and deviation d € p, and 0 otherwise.

hi,= X veee o
pEc,dep
M- uit’:ldsmp > Sepd VeeEC,pEc,dep (6.9)

where M € N is some sufficiently large number.

StepSum: This CostFunction penalizes by investigating whether the constrain contains
at least one positive deviation. If this is not the case, the penalty is 0.
The binary variable uSt*Psu™ € {0, 1} is introduced, which takes value 1 if there exists at
least one positive deviation for the constraint ¢ € C, and 0 otherwise.

obj, = uStPsUm e e C (6.10)

c

M-y > g4 VeeC,pEc,dEp (6.11)

where M € N is some sufficiently large number.

Chapter 6. Paper A: Integer Programming for the GHSTP 46

6.3.2 Mixed-Integer Programming Formulation

In this section the variables and the constraints of the MIP are described. As a basis for our
approach is the variable xse i er, € {0,1}, which takes value 1 if sub-event se € SE has been
assigned time t € T as starting time and resource r € er is assigned to event resource er € se,
and 0 otherwise. To simplify notation, and to reduce the amount of non-zeros in the MIP, three
auxiliary variables are introduced which all ’inherits’ their values directly from @4 ¢ err. Let the
binary variable ys.: € {0,1} take value 1 if sub-event se € S€ has been assigned time t € T as
starting time, and 0 otherwise. The variable v;, € Ny denotes the number of times resource r is
used in time ¢ by any set of sub-events. Let variable wge e, € {0,1} take value 1 if sub-event
se € S& is assigned resource 7 € R for event resource er, and 0 otherwise.

6.3.2.1 Base Constaints

Besides all the constraints described in the specifications of the XHSTT, some basic constraints
are needed to ensure feasibility. First of all we need to make sure that a sub-event is assigned only
one starting time and that the number of resource assigned is exactly the same as the number
of event resources of the event.

Z Tseterr =1 Vse € SE er € se (6.12)

teT ,reer

The following constrains variable y. ¢, and together with (6.12) ensures that a sub-event is not
spread across multiple times. We denote by |er| . the amount of event resources of sub-event

se € SE.

Z Tseterr = €] 0 Yser Vse €SEEET (6.13)

ercse,rcer

The link to variable v, , is shown in eq. (6.15). For time ¢ € 7 and se € S is found the set of
possible starting-times for se which will cause resource r € R to be used in time ¢ € 7. Let the

set TS C T be the set of times which sub-event se lies in if it is assigned starting time ¢, i.e.

T ={t' e T\tp | p(t) = Dse +1 < p(t') < p(t)} (6.14)

Z Tse,t!er,r = Utr vVt € T\ tD; reR (615)

se€S$,ea"€se,t’GTSSS“{t

The link to variable wge cr» looks as follows:

Z Tseterr = Wseerr Vse € SE er € se,r € er (6.16)
teT

A sub-event cannot be assigned a start time if there is not enough continuous times after the
start time to fulfill the duration, ensured by the constraint:

Yset =0 Vsee SE,t €T \tp,p(t) + Dse —1 > |T]| (6.17)

47 6.3. Problem Description and a Mixed Integer Programming Formulation

Active Sub-events

As we create all possible sub-events for a given event, only a subset of these should be active
in the final solution. The binary variable us. € {0, 1} takes value 1 if sub-event se € S& is active
and 0 otherwise. Recall that a sub-event is active if its assigned a starting time, or if is assigned
at least one non-preassigned resource. Let the parameter PA,, € {0,1} take value 1 if event
resource er has a preassigned resource, and 0 otherwise. The following constraints are imposed.

Z Wseer,r < Use Vse € SE er € se, PA,, =0 (6.18)
reer\rp

Z yse,t é Use VS@ S Sg (619)
teT\tp

Z Yse,t + Z Wse,er,r Z Use Vse € Sg, er € se, PAer =0 (620)
teT\tp r€er\rp

Constraint (6.20) is necessary to ensure events are not set as active, even though they do not
meet the required criteria.

The duration of active sub-events for a given event must be exactly the same as the total
duration of the event (by definition of a valid XHSTT solution),

> Dye-tge=D. Ve€& (6.21)

sec€e

A number of constraints require that the value of a deviation V € N should be within an
upper-limit B, € N and a lower-limit B, € N. This means that the penalty is defined as the
amount which the value of a deviation exceeds B, or falls short of B,.. To simplify notation for
these cases, we introduce the function UBMECV, which is defined as follows:

s>Uy 5V = { szV-B. (6.22)
Thereby the slack-variable s is forced to take the actual value of the imposed penalty.

A resource is busy at some time if it attends at least one solution event at that time, and
busy at some time group if it is busy at one or more times within times of that time group.
Let variable ¢,; € {0,1} take value 1 if resource r € R is busy in time ¢ € 7, and 0 otherwise.
Similarly, let the binary variable p,,, € {0,1} take value 1 if resource r € R is busy in time
group tg € TG, and 0 otherwise. The values of the two variables are determined by the following
constraints.

6.23
6.24
6.25

6.26

ISE| - gry > ver VreR,t€T \tp
Qrit < Uty vreR,tGT\tD
Dritg > Qr,t Vr e R, tg S Tg,t c tg

pr,tg S Z qr,t VT S Rv tg S Tg
tetg

(6.23)
(6.24)
(6.25)
(6.26)

Constraints (6.23) and (6.25) establishes lower bounds for the variables g, ; and p .4, i.e. ensures
that these must take value 1 in case the resource is actually busy in the respective time/time

Chapter 6. Paper A: Integer Programming for the GHSTP 48

group. Constraints (6.24) and (6.26) are necessary to ensure that in case the resource is in fact
not busy in the respective time/time group, variables ¢, ; and p,;, must take value 0.

In the following the constraint types of the XHSTT documentation are formulated one by
one. Each constraint type is described in brief terms, and we refer to Kingston (2013c) for more
details. The formulation of these constraints in terms of a Mixed-Integer Linear Programming
model has not been published before. We let the ’pseudo-set’ C C C denote constraints of a
certain type depending on the context, for instance the set of all assign resource constraints.
Furthermore we in the following make use of the general slack variable s, 4, and will for each
type of constraint implicitly define a corresponding slack variable with the appropriate indices
for point-of-applications and deviations.

6.3.2.2 Assign Resources

Applies to: Events

Point-of-application: Event-resource

An Assign Resource constraint penalizes event resources that are not assigned resources. Specif-
ically, the deviation at one point of application (an event resource with the appropriate role)
is the sum of the duration of the sub-events of the respective event which are not assigned a
resource. The cost of this constraint is given by:

D, — E Dse Wse,err = Seare > Ve €C,e € ¢,er € e,10le, = role, (6.27)
sece
reer\rp

6.3.2.3 Assign Time

Applies to: Events

Point-of-application: Events

The assign time constraint penalizes sub-events which are not assigned times. The deviation at
one point of application is the total duration of those sub-events derived from a specific event
that are not assigned a time.

D, — Z Dge - Yser = gissigntime o e o c ¢ (6.28)

c,e
teT\tp
se€e

6.3.2.4 Split Events

Applies to: Events

Point-of-application: Events

A Split Event constraint places limits on the number of sub-events that may be derived from a
given event, and on their duration. Let the parameters B*™°"" ¢ N and Pimoum € N denote

the minimum and maximum amount of sub-events which is used for a given event, respectively.
And let B € N and Ef“r € N be the minimum and maximum duration a sub-event can have
for a given event, respectively.

The cost of this constraint is given by the number of sub-events whose duration is less than

—d .
BYY" or greater than B, and the amount by which the number of sub-events fall short of
amount

B2 or exceed B, . The following constraints are imposed:
spliteventamount <]
Upamouns gamount E Use < Sere Veelecc (6.29)

sece

49 6.3. Problem Description and a Mixed Integer Programming Formulation

Z Uge = sVt e e Clec e (6.30)

see€e
Tdur

B >D, VB, <Dy

The full deviation for constraint ¢ € C and event e € c is given by sSpliteventdur 4 gspliteventamount,
; :

6.3.2.5 Distribute Split Event

Applies to: Events

Point-of-application: Events

The Distribute Split Event constraints set limits on the number of sub-events which may be
derived from an event. Let D, € N be the duration of the sub-events for which this constraint
applies, and let B, and B, be the minimum and maximum number of sub-events of duration D..
which may be derived from a given event.

distsplit t z
U 5. D tse S SO YeeCeec (6.31)

see€e
Dse=D.

6.3.2.6 Prefer Resources

Applies to: Events
Point-of-application: Event-resources
This constraint defines that an event resource has different preferences for certain resources. The
deviation is calculated by taking all the solution resources derived from the event resource that
are assigned a resource that is not one of the preferred resources, and summing the duration of
the sub-events that those resources lie in. Let r € ¢ denote a preferred resources.

Z Dse - Wee,er,r = spreferres o e C o c ¢ er € e, PA,, = 0, role,, = role, (6.32)

c,er
sece

réc,r#rp

6.3.2.7 Prefer Times constraints

Applies to: Events
Point-of-application: Events
Like the Prefer Resources constraint, events might also have preferences for certain times. The
deviation is calculated for each event by summing the duration of all sub-events which is assigned
a time which is not one of the preferred time. The constraint has an optional duration-property,
denoted D, € Ny. If this property is given, only sub-events of duration D, are considered. Let
t € ¢ denote a preferred time.

Z Dge - Yse,r = gprefertime v/ = 0o ¢ ¢ (6.33)

c,e
sece

té¢ct#tp

D

c=LUse

6.3.2.8 Avoid Split Assignments

Applies to: Evengroups

Point-of-application: Eventgroups

Each solution resource can only have one resource assigned. However, when an event is split
into sub-events, each of its event resources is split into several solution resources, and a different

Chapter 6. Paper A: Integer Programming for the GHSTP 50

resource may be assigned to each of these solution resources. This constraint penalizes the
assignment of different resource to these solution resources. The constraint examines all the
solution resources derived from those event resources, and calculates the number of distinct
resources assigned to them, ignoring unassigned solution resources. The deviation is the amount
by which this number exceeds 1. Let variable k. .4 € {0, 1} take value 1 if event e is assigned
to resource r with respect to avoid split assignment constraint ¢, and 0 otherwise.

Z Wse,err < keegr Ve € C,eg € c,e € €g,s€ € e (6.34)

erce,PA..=0
role.=role.,

Z keegr—1< sij’eogdsf’htass VeeCieg€c (6.35)
reER

6.3.2.9 Spread Events

Applies to: Eventgroups

Point-of-application: Eventgroups

The Spread Event constraint has a deviation for each time group tg € ¢ € C. Let B, ., and Ec,tg
be the minimum and maximum number of sub-events of a given event which can be placed in
time group tg of constraint c¢, respectively. The deviation for each time group is given by the

amount of which the number of sub-events for the given event which fall short of B, ,, or exceeds
Bc,tg'
Uﬁmg’gc g Z Yset < sif’;geiievent VeeC,eg €c,itg€c (6.36)
: o sececeg
tetg

6.3.2.10 Link Events

Applies to: Eventgroups

Point-of-application: Eventgroups

A Link Event constraint specifies that some events should be assigned the same times. For each
event of a given event group we build the set of times that the sub-events derived from that event
are running (not just starting times). The deviation is then the number of times that appear
in at least one of these sets but not in all of them. Let variable o.; € {0,1} take value 1 if at
least one sub-event of event e € ¢ € C is assigned to time ¢ € 7, and 0 otherwise. Let variable
leg,t € {0, 1} take value 1 if at least one event of event group eg € c is assigned to time ¢ € 7, and
0 otherwise. Constraints (6.37) and (6.39) ensure that these variables take correct values. The
slack of Link Events constraints is defined in (6.40). Constraint (6.38) is necessary to restrict
o0c:+ to take value 1 in cases where the event is in fact not assigned to the particular time, which
would avoid the penalty given by constraint (6.40), if any.

> Yeew S0y Ve seceteT\tp (6.37)
¢ eTiy

> Yeew Z0cxr Vee€EteT\tp (6.38)

sece

/ ~pstart
veTs

51 6.3. Problem Description and a Mixed Integer Programming Formulation

legt > 0er Vege&G,eceg,teT \tp (6.39)
legt — 0ct < slcif;l;‘fz’ent VeeCeg€c,e€eg,t €T\ tp (6.40)

6.3.2.11 Order Events

Applies to: Pair of events

Point-of-application: Pair of events

An Order Event constraint specifies that the times two events are assigned should be in order,
such that the first event ends before the second event starts. Let the parameters B, € N and
B, € N be the minimum and maximum number of times that may separate the two events,
respectively. Let (e,e¢’) € ¢ denote an FventPair which this constraint applies to. Let the
variable h!8® € N be the ordinal number of the latest time assigned to any sub-event of event
e. Let the variable Afi™* € N be the ordinal number of the first assigned to any sub-event of
event ¢’. The deviation is then given by the amount by which the difference between these two
numbers exceeds B, or falls short of B.,..

P(t) - Yset + Dse <HX VeeCe€c,sece,teT \tp (6.41)
IT| = (T = p(t)) - ysex <RI VeeClece,se et €T \tp (6.42)
Up, 5, (N2 = hE™) S ST VeeCyed) ec (6.43

6.3.2.12 Avoid Clashes

Applies to: Resources
Point-of-application: Resources
These constraints specify that certain resources should have no clashes, i.e. they should not be
assigned two or more events simultaneously. The constraint produces a set of deviations at each
point of application (each resource). For each time a resource is assigned two or more solution
resources, there is one deviation with a value equal to the number of solution resources minus
one.

vy — 1 < svoidelashes o e 0 c et € T\ tp (6.44)

— “e,m,t

6.3.2.13 Avoid Unavailable Times

Applies to: Resources
Point-of-application: Resource
An Awoid Unavailable Times constraint specifies that certain resources are unavailable for all
events at certain times. The deviation is the number of unavailable times during which the
resource attends at least one solution event. ¢ € ¢ denotes that ¢ is an unavailable time for
constraint ¢ € C.

ant — sunavailabletimes Ve € C_, reec (645)

c,r
tec

Chapter 6. Paper A: Integer Programming for the GHSTP 52

6.3.2.14 Limit Idle Times

Applies to: Resources

Point-of-application: Resources

A resource is idle at some time ¢t € tg wrt. time group tg if it is not attending any sub-events at
that time, but it is busy at some earlier time and at some later time in time group tg. The Limit
Idle Times places limits on the number of idle times a resources may have. Let the variables
hirst € N and 2% € N indicate the ordinal number of the first and the last time, respectively,
where resource r € R is busy in time group tg. Let |tg| denote the amount of times in time
group tg. Let the variable h,;; € N denote the number of idle times of resource » € R in time

group tg € TG.

ltgl — (Itgl = p(t)) - qre > RIS Vr e Ritg e TG, t € tg (6.46)

p(t) - ars < h75 VreRtge TG, tety (6.47)

Rt — B 1= g =heyy VP ERtGETG (6.48)
tetyg

For each resource of the constraint the deviation is calculated as follows. Calculate the total
amount of idle times for all times tg € ¢, and find the amount which this summed value falls
short of minimum B, € N or exceeds maximum B, € N. The deviation is then given by the sum
of these amounts.

Up 5,) g < s Yeelrec (6.49)

tgec

6.3.2.15 Cluster Busy Times

Applies to: Resources

Point-of-application: Resources

A Cluster Busy Times constraint limits the number of time groups during which a resource may
be busy. The deviation is given by the amount of by which the number of given time groups
during which the resource is busy falls short of minimum, B, € N, or exceeds maximum, B, € N.
Let tg € ¢ denote a time group which this constraint applies to.

Up B, Z Drtg < sg{‘rmterbusy Veel,reec (6.50)

tgec

6.3.2.16 Limit Busy Times

Applies to: Resources

Point-of-application: Resources

The Limit Busy Times constraints places limits on the number of times a resource may be
busy within some time groups. These constraints produces a set of deviation at each point-of-
application, one for each given time group. The deviations are given by the amount by which
the number of times of the given time group that the resource is busy falls short of minimum,
B, €N, or exceeds maximum B, € N.

—ltgl - (1 = preg) +Up 5 Z qri < slcizitt;usy VeeC,rectgcc (6.51)
tetg

53 6.3. Problem Description and a Mixed Integer Programming Formulation

6.3.2.17 Limit Workload

Applies to: Resources

Point-of-application: Resources

A workload of a solution resource is given by We s¢ er = , where L., € N is the workload
of event resource er. The value is a floating-point number. A Lzmzt Workload Constraint places
limits on the total workload of solutions resources that certain resources are assigned to. The
deviation of this constraint is the amount by which the total workload of the solution resources
assigned to that resource falls short of B, € N or exceeds B, € N, rounded up to the nearest
integer.

Dse-Ley
D,

Upg B, Z We se.er * Tseterr < ghimitworkload /. « @ . ¢ (6.52)

— C,T
2)

e€c,teT \tp
sece,erce

6.3.3 Mixed-Integer Programming Model

Given the definitions of all constraint types of XHSTT, and their respective slack variables, the
objective of the model can be stated as eq. (6.53), setting aside the fact that some constraints
are hard-constraints and some are soft-constraints.

z :f'(is:;gnreS) + f(a551gnt1me)

sphteventamount + Ssphteventdur)

Sdlstsphtevent> + f(spreferreS) + f(prefertlme)

+ f(s?
+ f(sCieer Crer
T 4 FSTI) 4 sl (6:53)
(Sr(cier:;zenm) + f(avoidclasheS)

I

(

Sunavallabletnnes) 4 f(1dlet1mes> + f(clusterbusy)

c,rt

hmltbusy) +f(hmltworkload)

Scrtg

The full MIP would therefore consists of minimizing z, subject to eqs. (6.12) to (6.52). However,
we take a different approach, as described in the next section.

6.3.4 Solution Approach

Even though it would be natural to simply input the MIP to a generic solver, a different approach
is taken, which takes advantage of the XHSTT objective function. In this approach, the model
is solved in two steps, denoted Step 1 and Step 2 in the following.

By the definition of the XHSTT objective, hard constraints always take priority over soft
constraints. Therefore the following approach is taken for solving the model: In Step 1, a MIP
is build which only contains the hard constraints. This MIP is given as input to the MIP solver,
which is ran until the given time limit is reached, or until the model is solved to optimality.
The found objective value is the hard cost of the solution. In case the time limit is reached, all
variables are fixed to their final value (i.e. the value they take in the best found solution), and all
the soft constraints are added to identify the true cost of the found solution. In case the MIP is
solved to optimality, Step 2 is performed: All soft constraints are added and the solution process
is warm-started from its previous state, with the time limit set to what remains of the original
time limit. Furthermore a constraint is added which ensures that the optimal value of the hard
cost is kept. Let 2" denote the sum of all slack variables belonging to the hard constraints.

Chapter 6. Paper A: Integer Programming for the GHSTP 54

The following constraint is added:
Zhard — hard cost (6.54)

Now this extended MIP model is solved. The cost of the obtained solution, minus the hard cost
found in Step 1, is the value of the soft cost. Notice that the nature of this solution method
resembles lexicographic multi-objective optimization.

This approach takes advantage of the capability of MIPs to issue certificates of optimality. By
this we mean that focus is put on the hard constraints until a solution is found with the optimal
hard cost, and then we switch focus and consider the entire problem instance. If a heuristic
solution method was used the inevitable question would be: When has sufficient effort been put
into minimizing the hard cost?

6.4 Computational Results

This section presents computational results of the developed exact method, and has two primary
intentions:

e How does the MIP compete with the heuristics of the ITC2011 round 2?7 Thereby the po-
tential of this MIP approach can be evaluated on fair terms with well-performing heuristics.
This is the subject of Section 6.4.1.

e Are we able to improve the best-known solutions for some instances, or even solve them to
optimality? See Section 6.4.2.

All tests were run on a machine with an Intel i7 CPU clocked at 2.80 GHz and 12GB of
RAM, running Windows 8 64 bit. In all cases the commercial state-of-art MIP solver Gurobi
5.5.0 was used. Two distinct sets of XHSTT instances have been used, both obtained from the
XHSTT website (Post, 2013b). All obtained solutions have been verified as being valid using the
evaluator HSEval (Kingston, 2013b).

As described in Section 6.3.1, an XHSTT objective consists of both a hard cost, and a soft
cost, usually denoted (hard cost, soft cost). In case a solution has a hard cost of value 0, the
objective is simply written as the soft cost, as is usually done in context of the XHSTT format.

As discussed in Section 6.3.1, the size of the sets Z and J must be selected sufficiently high.
Notice further that if the size of these sets is selected high, it can have a big impact on the amount
of variables in the model. It would be possible to select these sizes based on the properties of
the constraints having CostFunction SumSquare or SquareSum, however this is a quite complex
operation as it must be derived based on each constraint-type. Instead we have selected |Z| = 10
| 7| = 10, such that the maximum possible penalty is 9> = 81. This means that we cannot claim
optimality for solutions with objective > 81. An easy fix for this issue is to simply perform a
re-run of Gurobi if a solution is claimed as optimal, with the size of the sets set to a higher value.
The same is applicable for lower bounds of value > 81. We consider this is an implementation
detail, and it will be seen that in practice it has no impact of the obtained results.

6.4.1 International Timetabling Competition 2011

This section compares the exact method with the results obtained by the finalists in Round 2
of ITC2011. In this round the solver for each participating team was tested on 18 previously
unknown instances from the archive XHSTT-ITC2011-hidden. The time limit for all instances
was nominated to 1000 seconds, but the organizers provided a tool to benchmark machines

55 6.4. Computational Results

to find the machine-dependent equivalent of this time limit. On our machine this amended
to 772 seconds. The possibility to benchmark machines facilitates a fair comparison with the
competitors of ITC2011, except for the fact that the rules of ITC2011 did not allow the use of
commercial software, which conflicts with our use of Gurobi. The aim of this section is therefore
to demonstrate the potential of MIP in the context of timetabling (which is often overlooked),
and not to claim how our approach would have positioned itself in ITC2011.

In terms of solver parameters, default settings are used, except for the pseudo-parameter
MIPFocus which is set to value 1, emphasizing that we are mainly interested in finding incumbent
solutions. Gurobi was only allowed to use a single CPU thread, as specified in the rules of
ITC2011.

The participants of ITC2011 round 2 ran their algorithm 10 times on each instance, to
eliminate the stochastic impact on the results. Since we are interested in the average performance
of each participant for comparison, the following processing of the results was performed: For
each instance and each participant, calculate both the average hard cost and the average soft cost,
and round both to nearest integer. These numbers then denote how this participant performed
on this instance.

Table 6.2 shows the obtained results. The value of "Avg. Ranking" was calculated as follows.
Each solution method was ranked 1 to 5 on each instance, 1 being the best, and the average of
these ranks was taken. According to this measure, the exact method of this paper is competitive
with the methods used at ITC2011. Notice in particular that the exact method performs well
on the smaller instances, and is generally not as competitive on the larger instances. On three
instances the exact method gave the best results.

6.4.2 Aiming at Optimality

In attempt to produce new (optimal) solutions, the XHSTT archive ALL_INSTANCES was used,
which contains 38 non-artificial instances. According to the website, this archive "contains all
latest versions of the contributed instances". For 10 of the instances, a solution with cost 0 is
already known, which constitutes an optimal solution by the definition of XHSTT. Hence these
instances are skipped in this test. Notice that ALL_INSTANCES contains instances which originally
came from XHSTT-ITC2011-hidden, but due to bug-fixes in some of the instances, we consider
them as two separate sets of instances (by bug-fixes we mean altering of certain constraints, such
that objective values are incomparable). We refer to (Post, 2013b) for instance-statistics.

This test was performed with the following setup: Gurobi is allowed to use all CPU cores
(which is 8 in our case), and the time-limit is set to 24 hours for each instance. As initial solution
for each instance, the current best known solution is provided. Default parameter settings of
Gurobi were used. Table 6.3 shows the obtained results. A gap between an incumbent solution
x and a lower bound LB is calculated by ‘x_IiLB‘.

For each instance a solution with XHSTT objective (H, S) is found, as well as a lower bound
(H,S). By the definition of our solution method, we only have a lower bound on the soft cost S iff
an optimal solution for the hard cost is known, i.e. H = H. If a lower bound or an objective value
is not found we write "-". Notice that even though we give the current best known solution as
starting solution, Gurobi might still not find a solution for Step 1, usually in case the instance in
question is of huge size. In Table 6.3, both the gap for the hard cost and the soft cost is shown (in
case the required costs and lower bounds are available). Table 6.3 shows that
our method obtains better solutions for 8 instances. 4 instances was solved to optimality, proving
optimality of 3 previously known solutions and finding 1 new optimal solution. Furthermore, 11
new non-trivial lower bounds and 7 new best solutions have been established for the instances
which were not solved to optimality.

Chapter 6. Paper A: Integer Programming for the GHSTP 56

Table 6.2: Performance of the MIP using same running time as specified in ITC2011. For each
instance is listed the average solution found from each of the competitors of ITC2011, and the
solution obtained by the MIP formulations. The best solutions are marked in bold. Objectives
marked with * are optimal solutions.

Instance GOAL HySST Lectio HFT Exact method
BrazilInstance2 (1, 62) (1, 77) 38 (6, 190) 46
Brazillnstance3 124 118 152 (30, 283) 39
Brazillnstance4 (17, 98) (4, 231) (2, 199) (67, 237) (5, 286)
Brazillnstance6 (4, 227) (3, 269) 230 (23, 390) 682
ElementarySchool 4 (1, 4) 3 (30, 73) 3
SecondarySchool2 1 23 34 (31, 1628) (1604, 3878)
Aigio 13 (2, 470) 1062 (50, 3165) (1074, 3573)
Ttaly Instanced 454 6926 651 (263, 6379) 17842
Kosovalnstancel (59, 9864) (1103, 14890) (275, 7141) (989, 39670) (3626, 2620)
Kottenpark2003 90928 (1, 56462) (50, 69773) (209, 84115) (8491, 6920)
Kottenpark2005A (31, 32108) (32, 30445) (350, 91566) (403, 46373) (2567, 53)
Kottenpark2008 (13, 33111) (141, 89350) (209, 98663) - (14727, 5492)
Kottenpark2009 (28, 12032) (38, 93269) (128, 93634) (345, 99999) (17512, 140)
Woodlands2009 (2, 14) (2,70) (1,107) (62,338) (1801, 705)
Spanish school 894 1668 2720 (65, 13653) (1454, 11020)
WesternGreece3 6 11 (30, 2) (15, 190) 25
WesternGreece4 7 21 (36, 95) (237, 281) 81
WesternGreece5 0 4 (4, 19) (11, 158) 15
Avg. Ranking 1.72 2.67 2.50 4.44 3.61

6.4.2.1 Alternative Formulation

The Limit Idle Times constraint is known to be difficult for solvers to handle (Dorneles et al.
(2012)). In our formulation, this constraint is formulated using Big-M notation (constraints
(6.46) and (6.47)), which can provide bad LP-relaxation, which in turn might slow down the
solution process. Furthermore this constraint is part of most instances (29 of 38 instances in
the ALL_INSTANCES archive), so an alternate formulation is proposed. The alternate formulation
uses variable h, 14+ € {0,1} which takes value 1 if resource r € R has an idle time in time ¢ € tg
in time group tg, and 0 otherwise. Constraints (6.46), (6.47) and (6.48) are replaced by

QT,t’ — QT,t + QT,t” -1 S hr,tg,t V’l" € R, tg (S Tg,t,t/,t/l € tg,p(t’) < p(t) < p(t”) (655)

This yields more rows in the MIP; for each time group tg € 7G the amount of additional con-
straints is (ltg l). Furthermore, there is a great possibility that the amount of variables increases
due to the extra dimension on the h variable. However, no Big-M notation is used.

Due to the possible big increase in the size of the model, this alternative formulation is only
tested on the smaller instances from archive ALL_INSTANCES, skipping those instances in which
the optimal solution was found in the previous test (Table 6.3). Since the goal is to achieve is good
solutions as possible, we restart the procedure from the best found solution of Table 6.3 and run
it for additional 24 hours. This test-setup means that we cannot compare the performance of the
two formulations. Table 6.4 shows the obtained results. The table shows that this formulation
is capable of finding 2 new optimal solutions. For the instances not solved to optimality, 6 lower
bounds were improved, and new best solutions were found for 6 instances.

57 6.5. Conclusion

6.5 Conclusion

This paper has shown the first exact method for (High) School Timetabling instances in the XH-
STT format. A solution method which takes advantage of the structure of the objective function
of XHSTT has been proposed. For the most recent version of the archive ALL_INSTANCES, we
were able to produce 2 new optimal solutions and prove optimality of 4 previously known solu-
tions. For 11 other instances, new non-trivial lower bounds were shown. For the instances not
solved to optimality, we were able to improve the best known solution in 9 cases.

Establishing optimal solutions and lower bounds is indeed a step forward for research within
high school timetabling, and for the XHSTT format in particular. This gives researchers a
possibility to compare their obtained solutions with an (optimal) lower bound, which is valuable
for evaluating the quality of solutions.

As subjects for future research the following are mentioned. The MIP could be used in context
of Two-Stage Decomposition (TSD), by first assigning times to events, and secondly assigning
resources to event resources. Thereby the resource-assignments are done subject to the times
assigned to events. Such an approach was used with great success in the paper of Lach and
Liibbecke (2012) for the Curriculum-based University Timetabling Problem (the optimization
problem used in the International Timetabling Competition 2007), and by Sgrensen and Dahms
(2014) for the real-world case of High School Timetabling in Denmark. In both of these papers,
the TSD is theoretically capable of producing near-optimal results, even though the problem is
split into two separate MIPs. However, the XHSTT case is possibly less suited for this type of de-
composition as instances might contain a majority of constraints related to resource assignments.
Since the assignments to times for events are performed in the first stage of the decomposition,
and because these assignments cannot be altered when the resource-assignments are performed,
a TSD approach would possibly be heuristic in nature. Obviously, if an XHSTT instance have
all resources preassigned to event resources, a TSD would be unnecessary.

Our MIP formulation is exponential in size by the amount of sub-events in the instance, as all
possible combinations of sub-events are generated. A better formulation would be less dependent
on this amount. One could for instance solve the model iteratively, and ’inject’ new sub-events
in the model on-the-fly. Another possibility would be to consider a formulation which simulate
sub-events by an integer variable which define the lengths of each respective active sub-event.
Such improved formulations are subject for future research.

Bibliography

P. Avella, B. D’Auria, S. Salerno, and I. Vasilaev. A computational study of local search al-
gorithms for italian high-school timetabling. Journal of Heuristics, 13:543-556, 2007. ISSN
1381-1231.

T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. J. of Scheduling, 12:177-197, April 2009. ISSN 1094-6136.

R. E. Bixby. Optimization Stories, volume Extra of 21st International Symposium on Mathe-
matical Programming Berlin, chapter A Brief History of Linear and Mixed-Integer Program-
ming Computation, pages 107-121. Journal der Deutschen Mathematiker-Vereinigung, August
19-24 2012.

M. ter Braak. A hyperheuristic for generating timetables in the xhstt format. Master’s thesis,
University of Twente, June 2012.

Bibliography 58

A. P. Dorneles, O. C. de Aratjo, S. Maria-Brazil, and L. S. Buriol. The impact of compact-
ness requirements on the resolution of high school timetabling problem. In Congreso Latino-
Iberoamericano de Investigacion Operativa, September 2012.

G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza. A sa-ils approach for the high school
timetabling problem. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), 2012.

A. Kheiri, E. Ozcan, and A. J. Parkes. Hysst: Hyper-heuristic search strategies and timetabling.
In Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 497-499, 2012.

J. H. Kingston. Educational timetabling. In A. S. Uyar, E. Ozcan, and N. Urquhart, editors,
Automated Scheduling and Planning, volume 505 of Studies in Computational Intelligence,
pages 91-108. Springer Berlin Heidelberg, 2013a. ISBN 978-3-642-39303-7.

J. H. Kingston. The hseval high school timetable evaluator.
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi [Accessed 12/8-2013], Aug.
2013b.

J. H. Kingston. High school timetable file format specification: Constraints.
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
[Accessed 12/8-2013|, Aug. 2013c.

G. Lach and M. Liibbecke. Curriculum based course timetabling: new solutions to udine
benchmark instances. Annals of Operations Research, 194:255-272, 2012. ISSN 0254-5330.

M. Pimmer and G. R. Raidl. A timeslot-filling heuristic approach to construct high-school
timetables. In L. Di Gaspero, A. Schaerf, and T. Stiitzle, editors, Advances in
Metaheuristics, volume 53 of Operations Research/Computer Science Interfaces Series, pages
143-157. Springer New York, 2013. ISBN 978-1-4614-6321-4.

G. Post. International timetabling competition 2011 results.
http://www.utwente.nl/ctit/hstt/itc2011/results/ [Accessed 12/8-2013], Aug. 2013a.

G. Post. Benchmarking project for (high) school timetabling.
http://www.utwente.nl/ctit/hstt/ [Accessed 12/8-2013], Aug. 2013b.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

J. Romros and J. Homberger. An evolutionary algorithm for high school timetabling. In
Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 485-488. SINTEF, 2012.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399-412, April 2012.
ISSN 0254-5330.

http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
http://www.utwente.nl/ctit/hstt/itc2011/results/
http://www.utwente.nl/ctit/hstt/

59 Bibliography

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87-127, 1999.
ISSN 0269-2821.

M. Sgrensen and F. H. W. Dahms. A two-stage decomposition of high school timetabling
applied to cases in denmark. Computers & Operations Research, 43:36—49, March 2014.

M. Sgrensen and T. R. Stidsen. Integer programming and adaptive large neighborhood search
for real-world instances of high school timetabling. Annals of Operations Research, PATAT
2012 SI:Submitted Jan 21. 2013, 2013.

M. Sgrensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages
489-492. SINTEF, 2012.

C. Valouxis, C. Gogos, P. Alefragis, and E. Housos. Decomposing the high school timetable
problem. In Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway,
August 2012.

Bibliography 60

Table 6.3: Performance of the MIP on ALL_INSTANCES. For each instance is listed the best
previously known solution "Best”, and for the solution found by our approach is listed the
time used to solve Step 1 "Time; ", the time used to solve Step 2 "Timey”. "Time" indicates
the total solving time. All times have seconds as unit. Furthermore the objective "0bj" and
the lower bound "LB" is listed. The percentage gap between the objective and the lower bound
is divided into the gap for the hard constraints "Gap, " and the gap for the soft constraints,
"Gap,". Objectives in bold denote new best solution while optimal solutions are marked with

*

MIP solution method

Instance Best Time; Times Time Obj LB Gap; Gap,
AU BGHS98 (3, 494) >86400 - >86400 (3, 494) (-,) - -
AU SAHS96 (8, 52) >86400 - >86400 (8,52) (--) - -
AU TES99 (1, 140) >86400 - >86400 (1, 140) (0,-) 100.0 -
BR Instancel 42 0 >86400 >86400 40 28 0.0 30.0
BR Instance2 5 1 >86399 >86400 5 1 0.0 80.0
BR Instance3 47 1 >86399 >86400 26 19 0.0 269
BR Instance4 78 1 >86399 >86400 61 42 0.0 31.2
BR Instanceb 43 1 >86399 >86400 30 10 0.0 66.7
BR Instance6 60 1 >86399 >86400 60 14 0.0 76.7
BR Instance7 122 1 >86399 >86400 122 22 0.0 82.0
DK Falkoner2012’ (2, 23705) >86400 - >86400 (2, 23705) (0,-) 100.0 -
DK Hasseris2012? (293, 32111) >86400 - >86400 (293, 32111) (-,-) - -
DK Vejen2009° (20, 18966) >86400 - >86400 (20, 18966) (2,-) 90.0 -
UK StPoul 136 52 >86348 >86400 136 0 0.0 100.0
FI ElementarySchool 3 2 785 787 *3 3 00 0.0
FI HighSchool 1 1 >86399 >86400 1 0 0.0 100.0
FI SecondarySchool 88 1 >86399 >86400 88 77 0.0 125
GR Unilnstance3# 5 0 3 3 *5 5 0.0 0.0
GR Unilnstance4® 8 1 >86399 >86400 8 0 0.0100.0
IT Instancel 12 1 4561 4562 *12 12 0.0 0.0
IT Instance4 78 12 >86389 >86400 62 27 0.0 56.5
XK Instancel 3 31 >86369 >86400 3 0 0.0100.0
NL GEPRO (1, 566) >86400 - >86400 (1, 566) (0,-) 100.0 -
NL Kottenpark2003 1410 57 >86343 >86400 1410 (0,-) 0.0 -
NL Kottenpark2005 1078 88 >86312 >86400 1078 9 0.0 99.2
NL Kottenpark2009 9250 92 >86308 >86400 9035 160 0.0 98.2
ZA Woodlands2009 2 22 77878 77900 *0 0 00 0.0
ES School (3, 5966) 6525 >79875 >86400 357 322 0.0 938

! Shorthand for instance FalkonergaardenGymnasium2012
2 Shorthand for instance HasserisGymnasium2012

9 Shorthand for instance VejenGymnasium2009

4 Shorthand for instance Western Greece UniversityInstance3
5 Shorthand for instance WesternGreeceUniversitylnstance
6 Kosova.

61

Bibliography

Table 6.4: Performance of the alternative formulation on the smaller instances of archive
ALL_INSTANCES. All the columns are defined in analogous way to Table 6.3, except for Objrs.g
and LBqg 3 which denote the objective value and the lower bound found in Table 6.3.

MIP alternative formulation

Instance Best Objrgg LBtgg Time; Time; Time Obj LB Gap; Gap,
BR Instancel 42 40 28 0 1918 1918 *38 38 0.0 0.0
BR Instance2 5 5 1 0 290 290 *5 5 0.0 0.0
BR Instance3 47 26 19 1 >86399 >86400 23 21 0.0 8.7
BR Instance4 78 61 42 1 >86399 >86400 61 49 0.0 19.7
BR Instanced 43 30 10 1 >86399 >86400 26 15 0.0 42.3
BR Instance6 60 60 14 1 >86399 >86400 59 18 0.0 69.5
BR Instance? 122 122 22 1 >86399 >86400 84 26 0.0 69.1
FI HighSchool 1 1 0 1 >86399 >86400 1 0 0.0 100.0
FI SecondarySchool 88 88 7 1 >86399 >86400 84 77 0.0 83
GR Unilnstance4’ 8 8 0 1 >86399 >86400 8 0 0.0 100.0
IT Instance4 78 62 27 6 >86394 >86400 57 27 0.0 52.6
ES School (3, 5966) 357 322 44 >86356 >86400 357 330 0.0 7.6

! Shorthand for instance WesternGreece UniversityInstance/

Chapter 7 Paper B

Integer Programming and Adaptive Large

Neighborhood Search for Real-World Instances
of High School Timetabling

Matias Sgrensen'-?, Thomas R. Stidsen'
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

Abstract A complex model of high school timetabling is presented, which originates from discus-
sions with high schools in Denmark. The model is complete in the sense that it contains all relevant
practical constraints required by the high schools. Furthermore, the model is used by many institutions
to produce their annual timetable. An Integer Programming (IP) formulation of the model is described
in detail, and a decomposition approach is briefly discussed. A heuristic based on Adaptive Large Neigh-
borhood Search (ALNS) is also applied. Using 100 real-world datasets, comprehensive computational
results are provided which show that the ALNS heuristic outperforms the IP approaches. Furthermore
some datasets are made publicly available using the general XHSTT format for high school timetabling.

Keywords High School Timetablinge Modelinge Integer Programming e Adaptive Large Neigh-
borhood Search

7.1 Introduction

The timetabling problem is perhaps the most important problem among the scheduling problems
which high schools face. In this paper a complex model of the problem is presented, originating
from discussions with high schools in Denmark. Thereby the developed model is tailored to
the Danish case of the timetabling problem, and it is complete in the sense that it contains all
relevant practical constraints required by the high schools. Furthermore, the model is used by
many institutions to produce their annual timetable.

This large user base requires a model which is general enough to suit many different require-
ments, and which is also tractable by computer aided solution methods. This supports the recent
trend of developing general models for timetabling problems (see Ozcan (2005); Causmaecker and
Berghe (2010); Post et al. (2012a); Bonutti et al. (2012)). Furthermore, the timetabling problem
of Danish high schools has not been formally described in the literature before. In the remainder
of this paper, the problem is denoted as the High School Timetabling Problem (HSTTP).

63

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 64

The HSTTP concerns the construction of a feasible schedule which assigns lectures to time-
slots and rooms, and maximizes individual preferences for students and teachers. The problem
is in general hard to solve, so an efficient solution approach is important for the high schools. A
computer-aided solution approach will allow the high schools to produce more preferable timeta-
bles, from the point of view of both teachers, students and the school administration. Three
different solution approaches are proposed in this paper, of which two are based on a Mixed-
Integer Programming (MIP) model and one is based on Adaptive Large Neighborhood Search
(ALNS).

The paper is structured as follows: In Section 7.2 the HSTTP is described in detail, while
simultaneously formulating a MIP model. A literature review of related problems and solu-
tion approaches is given in Section 7.2.1. Furthermore a decomposition approach of the MIP
model is suggested in Section 7.2.3. An ALNS-heuristic is described in Section 7.3. Extensive
computational results are presented in Section 7.4. Finally, Section 7.5 concludes on our findings.

7.2 The Timetabling Problem at Danish high schools

In the following the basic timetabling problem at Danish high schools is described, which in
Section 7.2.2 is formulated as a MIP model. In Section 7.2.2.2 the MIP is extended by several
necessary side-constraints. A detailed formulation of a MIP model has the advantage that each
constraint is described in a precise manner. Therefore we postpone the in-depth description of
many constraints to Section 7.2.2, and first give an overall description of the problem.

A high school has a number of teachers employed, and has access to rooms where teaching
can be performed. Students are taught in classes of different subjects, and each class consists of
a number of weekly lectures. This means that we consider classes as an non-physical resource
(as opposed to students and teachers), which merely consists of a set of students and a (small)
set of teachers. Each day of the week is divided into modules where teaching is performed. A
combination of a day and a module is denoted a timeslot. Students and teachers are preassigned
to classes, as we assume the Teacher-Task Assignment problem (Lundberg-Jensen et al. (2008))
and the Student Sectioning problem (Kristiansen and Stidsen (2012)) have already been solved.

Lectures are represented by events, and each event must be assigned both a timeslot and a
room. However it is also possible to combine several lectures for several classes into the same
"lecture’. This is used when classes should share the same room, e.g. in case of physical education,
the sports venue. In such cases, a single event represents several lectures. An event has a set of
eligible rooms which it can be assigned to. Often the set of eligible rooms equals the set of all
rooms, but some events have special requirements, such as laboratories, sports venue, etc. See
Figure 7.1 for an illustration of the notation used.

The timetabling problem essentially consists of creating a schedule for the entire school year,
such that events are assigned a timeslot and an eligible room, and such that no clashes among
students, teachers or rooms occur. Commonly the problem is solved by assuming that no dif-
ference exists among all weeks throughout the year, hence it is sufficient to plan only a single
week. The timetable of this week is then replicated for all weeks of the school year, with manual
adjustments in case of holidays, illness, etc. In this paper we also consider the case where the
school decides to plan two consecutive weeks, which is elaborated in Section 7.2.2.4.

The concept of EventChains is introduced in the following. An EventChain forces some events
to be in either the same timeslot or in contiguous timeslots. EventChains are very flexible in
the sense that they pose no restrictions on which events are chained together. Therefore they
can be used to model a lot of special cases required in practice by the high schools. These
include, but are not limited to, the following: 1) A double-lecture can be set up by creating

65 7.2. The Timetabling Problem at Danish high schools

Timeslot Day

l
\Monday Tuesday

Module — M1

M2

M3 \ /

Event
T Teachers

{Room} Class :
Students

Figure 7.1: Notation used

an EventChain consisting of two events for the same class which must be placed in contiguous
timeslots. Similarly, triple-lectures can be created. 2) Parallel double lectures for different classes.
3) Grouping of elective classes in the same timeslot. 4) Large projects where teaching of several
classes are combined.

We remark that due to changes in the educational system, the definition of the timetabling
problem might change over time. This gives rise to new constraints and changes in the objective
weights. What is documented in this paper is how the problem currently looks in the eyes of the
high schools, which has proven to be a quite stable formulation of the problem.

7.2.1 Related work

In this section a brief literature review of related work is given.

The definition of Class-Teacher Timetabling (CTT) is more than 50 years old, see Appleby
et al. (1961) and Gotlieb (1962). In the original formulation, one is given a set of classes, a set
of teachers and a set of periods (timeslots in our terminology). A class is defined as a set of
students who follow the exact same curriculum. The goal is to find a schedule where classes meet
teachers, fulfilling the teaching demand, subject to no teachers and classes being scheduled more
than once in the same period. Furthermore, unavailabilities of teachers and classes in certain
periods are given. In these periods, teaching is forbidden. This problem is similar to the basic
version of the HSTTP, except rooms are assigned to classes instead of teachers. However, the
HSTTP contains many additional constraints, which complicates the problem significantly.

The survey Schmidt and Strohlein (1980) covers early papers in the area of school timetabling.
More recent surveys are Bardadym (1996); Carter and Laporte (1998); Schaerf (1999) and Pillay
(2010). The conference series Practice and Theory in Automated Timetabling (PATAT) has
contributed largely to the area (see Gendreau and Burke (2008); McCollum et al. (2010); Kjenstad
et al. (2012)).

Lawrie (1969) was the first to formulate the basic problem as a column-based MIP. Since,
integer programming has been used to model problems with more sophisticated requirements.
Some recent contributions include Papoutsis et al. (2003); Avella and Vasil’Ev (2005); Avella et al.
(2007); Birbas et al. (2009); Santos et al. (2012). However, integer programming is mainly used
for timetabling due to its modeling strength, and not as an actual solution method (Lach and
Liibbecke (2012)). With the acknowledgment of modern IP solvers (see Bixby (2012)), this might
be undergoing a change. The MIP formulated in this paper is among the most comprehensive
models of school timetabling found in the literature.

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 66

The International Timetabling Competition 2011 (Post et al. (2012¢)) considered a general-
ized version of high school timetabling (based on the XHSTT format (Post et al. (2012a))). A
contribution so far from this competition are several well-performing heuristics, see Fonseca et al.
(2012), Kheiri et al. (2012) and Sgrensen et al. (2012). Furthermore the competition proved the
XHSTT format as a good foundation to build on for future research within the area. In terms of
terminology, the model (and therefore also the MIP) presented in this paper is closely related to
the XHSTT format. The definitions of events, timeslots, resources (rooms, teachers, students)
and classes are equivalent. The most important difference is the fact that the XHSTT format
allows events which span multiple timeslots, which our model does not support. Furthermore,
HSTTP contains constraints which cannot currently be modeled with XHSTT, see Sgrensen and
Stidsen (2013) for details. See also Section 7.4.3.

The work presented in this paper has a practical character, as all constraints are the result
of requirements made by the high schools. Papers which describe solution methods used in
practice are not very common. Both Yoshikawa et al. (1996) and Kingston (2007) describe
implementations which are used to create timetables for a few high schools. For universities, both
Martin (2004) and Schimmelpfeng and Helber (2007) describe an IP-based approach tailored to
a specific university.

7.2.2 Problem Description and a Mixed-Integer Programming Formu-
lation

In this section the HSTTP is described in details, while simultaneously formulation a MIP model.
Starting with the basic sets describing the core elements of the problem, Section 7.2.2.1 introduces
and motivates the most elementary constraints and variables (the basic model). Sections 7.2.2.2,
7.2.2.3 and 7.2.2.4 extends the basic model w.r.t. requirements made by the high schools, and
introduces a variety of soft constraints. All in all, this builds a model of the HSTTP step-by-step,
introducing parameters and auxiliary variables in the MIP as we need them.

The presented model of HSTTP is stated such that a feasible solution always exists, as it
is possible to not assign an event to a timeslot and/or a room. However in such cases a large
penalty is given. This formulation of the model has been agreed upon during our discussions with
the high schools, and resembles the fact that a solution to the model should be a satisfactory
timetable, which is partial if necessary. A partial timetable is defined as one where not all events
are assigned a timeslot and a room. A satisfactory timetable (which is possibly partial) is one
which fulfills all the requirements (hard and soft constraints) desired by the high schools, and
can be used as-is. Hence the timetables provided by our model are of high quality, but might
require additional work by the respective high school if a timetable is partial. On the other
hand, if a solution to the model is not partial, then it is guaranteed that the solution represents
desirable timetables for all stakeholders. Thereby the model should be used in a decision-support
context by the high schools, possibly performing subsequent runs of the solution algorithm with
different input criteria (various parameters w.r.t. characteristics of the desired timetables can be
provided). How we deal with events not assigned a timeslot is discussed under future research
in Section 7.5.

The model of the HSTTP is described in the following. The following sets are given: Days
D, modules M, timeslots 7, events £, and rooms R. The set of entities is denoted A, which
includes both students and teachers. This means that an entity a € A is either a student or
a teacher. Grouping these two types of entities in the same set allows us to simplify notation
for certain constraints. To reduce problem size, students which are assigned exactly the same
events are grouped into one super-entity. This is related to the concept of curricula in university
course timetabling, and reduces the problem size considerably. Let M, € N denote the number

67 7.2. The Timetabling Problem at Danish high schools

of 'real’” entities which entity a € A represents (so M, = 1 if entity a is a teacher). As discussed
in Section 7.2, a class is defined as a set of entities which are taught/teaches a specific subject.
Each class is then associated with a certain number of events, representing the lectures which
should be scheduled throughout the week. The set of classes is denoted C. In addition, let p (7)
denote the zero-based ordinal number of ¢ € I, e.g. if I = {a,b,c}, then p(b) = 1 with respect
to set I.

Below constraints and objective function-terms of the problem are stated. First a basic model
with well known constraints is introduced, and afterwards expanded to allow more specialized
constraints. Finally various soft constraints are added, which models different quality-metrics
of the timetable. The notation used is lazy; Ve is short for Ve € £, Ve # €’ is short for Ve €
{€\{e'}}, and), is short for) ... Parameters are written in uppercase (except for cost-
parameters in the objective which are denoted with Greek letters), and variables are written in
lowercase.

7.2.2.1 Basic model

The main decision variable is z.,; € {0,1}, which takes value 1 if event e is scheduled to room
r and timeslot ¢, and 0 otherwise. Each event should be assigned exactly one room and one
timeslot, so we introduce the constraint

me,t =1 Ve (7.1)
i

To ensure a feasible solution exists, the set of timeslots and the set of rooms are extended by
‘”dummy’ elements, which models that an event is not assigned a timeslot or a room, respectively.
This means that 7 = {7 U {tp}} and R = {R U {rp}}. An assigning to either of these dummy-
elements yields a big penalty (defined in Section 7.2.4).

The auxiliary variable y., € {0,1} is introduced, which takes value 1 if event e is placed in
timeslot ¢, and is constrained by the following

Zme,r,t = Ye,t Ve,t (72)
r

This auxiliary variable is introduced for two reasons; 1) It simplifies the notation of many of the
constraints introduced further on. 2) It greatly reduces the number of non-zeros in the model,
which reduces the memory-consumption when solving the MIP model.

Each entity can only participate in one event in each timeslot, except in the dummy-timeslot.
Let B., € {0,1} take value 1 if entity a is part of event e, and 0 otherwise. The following
constraint is imposed,

Z Be,aye,t < 1 Va7t 7& tD (73)
e

Each room (except for the dummy room) can only be assigned once to each timeslot (except
in the dummy timeslot). Furthermore, a room might be unavailable for teaching in certain time
slots, for instance if it is shared by the high school and other institutions, or if it is undergoing
maintenance, etc. Let G,; € {0,1} take value 1 if room r is available at timeslot ¢, and 0
otherwise. This constitutes the following constraint,

Z Te,rt S Gr,t Vr 7é D, t 7é tD (74)
e

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 68

An event might be locked to a specific timeslot or a specific room. Let LT., € {0,1} take
value 1 if event e is locked to timeslot ¢, and let LR, , € {0,1} take value 1 if event e is locked
to room r. The following constraints are imposed,

Yer=1 Ve t,LT.; =1 (7.5)
Y @eri=1 Ve, LR, =1 (7.6)
t

Some events might require special rooms, i.e. chemistry lectures or physical education. Let
K., € {0,1} take value 1 if event e can be assigned to room r, and 0 otherwise. The following
constraint is imposed,

er,'r,t S Ke,r Ve,r (77)
t

It is not possible to assign a room to an event unless the event is also assigned a timeslot.
This is because assigning timeslots is considered far more important than assigning rooms, and
therefore it does not make sense to assign a room unless the event has a timeslot. Consider
for instance an event assigned to the dummy timeslot. This event can be assigned to any room
without violating the room conflict constraint (7.4). On the other hand, it is completely legal to
assign an event to a timeslot, but not to a room. The following constraint is imposed,

> Zerip— Y LRy <0 Ve (7.8)

reR\{rp}

This constraint specifies that if event e is not locked to any room, then it cannot be assigned to
both a room different from the dummy-room rp and the dummy-timeslot t,. However if the
event is locked to a room, it is legal to assign it to this room and the dummy-timeslot.

If an event is not assigned to a timeslot and/or a room, a penalty must be imposed. Fur-
thermore, various other criteria define priorities for the assignment of events to timeslots/rooms,
which we elaborate on in Section 7.2.4. Denote this penalty by ae .. € RT. The objective of the
model therefore reads, -

min Z Qe rtTert (7.9)

e,r,t

7.2.2.2 Extended model

In this section, the model is extended to allow for constraints which arise from the concept of
EventChains and other features required in practice by the high schools.

The EventChains are modeled by specifying that some events should be assigned the same
timeslot as others, and that some events should be in contiguous timeslots. Let S, C £ be the
set of events which must be assigned the same timeslot as event e, and let C. C &£ be the set of
events which must be assigned the timeslot following immediately after the timeslot assigned to
event e. Furthermore, d; denotes the day d € D of timeslot ¢t. The following two constraint are
added to the model,

Yot —Yerz =0 Vee €St (7.10)
Ye,t — Ye' ¥/ = 0 veve/ € Ce7t>tl7dt = dt’7p (t) +1= p(t/) (711)

The EventChains imply further restrictions; Since an EventChain can be created which in
itself causes a conflict between entities in terms of constraints (7.3) and (7.10) (i.e. more than

69 7.2. The Timetabling Problem at Danish high schools

one event containing the same entity should be scheduled to the same timeslot), modifications
to constraint (7.3) are needed. As we can a priori determine between which events in some
EventChain an entity conflict will occur, we simply exclude some events from constraint (7.3).
Let the set E/ C & be the subset of events for which entity conflicts are checked for entity a. See
Figure 7.2.

o Monday
ay) (a1
\a;l TS1 aq ai
\ E/
a) (a1) (ax \ "
T TS89 (e C)
E,,
(a) Three EventChains with several events (b) Two EventChains locked to timeslots,
where entity a; participates at same offset. with several events where entity a1
Only a subset of events are checked for participates. Only a subset of events are
conflicts for entity a;. checked for conflicts for entity aj.

Figure 7.2: Only some events are checked for entity conflicts

The modified version of constraint (7.3) is shown below,

> wer <1l VateT\{tp} (7.3

e€E/,

Furthermore, EventChains might also cause conflicts for a room in terms of constraint (7.4), if
several events are locked to the same room. See Figure 7.3. We introduce the set E”, denoting

~ Monday
= P T
71 1 !
- TS (-
_ _ \Ti«\/ 1 A, E//
D O @ TS2 |(r,)| [)
T 2 1 1
(a) Three EventChains with several events locked (b) Two EventChains locked to timeslots, with
to room 71 for same offset. Only a subset of these several events locked to room r;. Only a subset of
events are checked for conflicts. these events are checked for conflicts.

Figure 7.3: Room conflicts exceptions

the events which should be checked for room conflicts. Constraint (7.4) is modified to read

Z Le,rt S Gr,t vr # TDat 7& tD (74/)

ecE!

7.2.2.3 Timetable quality metrics

In this section, the model is extended by several quality metrics for a timetable. Most of these are
modeled in the form of unwanted properties, whose (weighted) quantitative appearance should
be minimized in the objective function, commonly known as soft-constraints. However also a few
hard-constraints are described, as some properties of a timetable are considered infeasible.

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 70

Idle timeslots An undesirable property of a timetable for an entity is idle timeslots. An idle
timeslot for an entity has no events scheduled, but there is both an earlier and a later timeslot
on that day where an event is scheduled, hence the entity must sit idle throughout this timeslot.
By interviewing the high schools, it is our experience that they especially consider idle timeslots
for students to be undesirable. This is typically due to 1) A student typically participates in so
many events that a completely compact timetable seems to be possible, and/or 2) The high school
believes that students are unlikely to do school-related tasks in an idle timeslot. For teachers,
idle slots are also undesirable. However the high school will much prefer an idle timeslot for a
teacher over an idle timeslot for a student.

Let the variable h, 4 € Ny be the number of idle timeslots for entity a on day d, and let
Ba € RT be the cost of an idle timeslot for entity a. The objective function term for this
constraint is given by

Zﬂaha,d (712)
a,d

Let the variables h, ; € No and Ea,d € Ny be ordinal number of the first and last timeslot where
entity a is active on day d, respectively. The following constraints are imposed,

Rad—hog— >, Yer+1l=hea Vad (7.13)
e€EE! teTy
M| = (IMI=p (1) Y Yet Do Va,dt €T (7.14)
ecE]
P(t) D Yer <haa Va,dt€Tq (7.15)
eceE!,

Equations (7.14) and (7.15) ensures that variables h, ; and hq 4 are constrained properly. In case
entity a has no activities on day d (which naturally entails no idle timeslots), the value of b, 4
can be set to 1, to avoid h, 4 to take value 1. Notice that these constraints use big-M notation,
which is known to give bad LP-relaxations. This might have negative impact on solution times.
A formulation without big-M notation is known, but it requires too many extra constraints to
be applicable.

Unavailabilities For each event, it might be infeasible to assign it to certain times. This is
used to prohibit teaching of certain classes at certain times. For instance it is common that
teaching of first year students is undesirable in the late modules on each day. Another example
is to prohibit all teaching in the last module on Fridays, and only use this module in case a
solution without it cannot be found.

Let D.; € {0,1} take value 1 if it is feasible to assign event e to timeslot ¢. The following
constraint for event unavailability is imposed,

> Yer=0 Ve (7.16)

t,Dc 1 =0

Furthermore, certain timeslots are undesirable for certain teachers. These ’soft-unavailabilities’
are handled by simply adjusting the weight a. , for these timeslots for those events which the
teacher is part of, see Section 7.2.4.

71 7.2. The Timetabling Problem at Danish high schools

Days off It is quite common to require that all teachers have at least one day off, i.e. a
day without any scheduled events. They can for instance use this day for preparation of future
lectures. Let F, € Ny be the number of days off required for entity a (takes value 0 for all
students). It is the job of the solution method to decide which days should have a no scheduled
events. Let f, 4 € {0,1} take value 1 if entity a has no events on day d, and 0 otherwise. To
make this variable take appropriate values, it is incorporated in constraint (7.3’). The rephrase
of constraint (7.3") is denoted (7.3"), which constraints the problem in equivalent way, but also
makes f, 4 take appropriate values,

> Yert foa<l VadteTg (7.3")

ecE)

The following constraint ensures entities are assigned to their required number of days off,

> foa>F. Va (7.17)

d

Besides the required number of days off, it is generally preferred for teachers to have as many
days off as possible. Therefore we also maximize the number of days off in the objective,

Z’Ya <D| - Z fa,d) (718)
a d

where v, € RT denotes the penalty for a day not being a day-off for entity a. Notice that the
cardinality of D is incorporated to avoid this term to go below 0. Thereby the lower bound of
the entire MIP is kept at 0.

The high schools prefer that students have no days off. Therefore days off for students are
penalized by adding the following term to the objective,

> bafad (7.19)
a,d

where §, € RT is the penalty for a entity a having a day off (takes value 0 for all teachers). Notice
that since this expression minimizes f, 4, constraint (7.3”) does not constrain f, 4 sufficiently.
Constraint (7.3”) only specifies that if an entity a has at least one event on day d, fq,q must take
value 0. This means that if an entity a has no events assigned on some day d, we need to make
sure f, 4 is forced to take value 1. This is done by the following constraint,

Z Ye,t + fa,d 2 1 Va, d (720)
e€E! teTy

Room stability It is important for teachers and students of a class that all lectures of this
particular class take place in the same room. We therefore aim at minimizing the number of
different rooms assigned to events where a given class participates. Let v., € {0,1} take value
1 if class c is assigned to room r at least once, and 0 otherwise. Let J, . € {0,1} take value 1 if
class ¢ is part of event e, and 0 otherwise. The following constraint is imposed,

Z Je,cme,r,t - Z Je,cvc,r S 0 VC,’)" (721)

e,t#tp e

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 72

Let s. € Ny be the number of rooms assigned to class ¢ minus one, i.e. the number of ’excess’
rooms. This variable is constrained by:

S ver—1<s. Ve (7.22)

€ € RT denotes the cost of each excess room assigned to class c¢. The following term is added to
the objective function,

ez Se (7.23)

Day-conflicts Each class can only be taught once each day, unless several events containing
the same class are part of the same EventChain (e.g. double-lectures), or unless several events
of this class are locked to timeslots on this day. Let variable b.; € {0,1} take value 1 if class c is
part of at least one event on day d, and let E”' C £ be the set of events for which day-conflicts
are checked. All events are included in E"’, with the following exceptions (see also Figure 7.4):

e Some events of the same class are part of the same EventChain. All of these, except one,
is excluded from E’".

e If multiple events are locked to timeslots on the same day, all of these events, except one,
are excluded from E"’.

Monday
TS]. C1
c1 B
R 82 ()| ey
C1
C1

o TS3
(a) One EventChain where class ¢; participates in (b) Two EventChains locked to the same day. Only
several events. Only one of these events is added to one event which ¢ is part of is checked for
E". day-conflicts.

Figure 7.4: Day conflicts exceptions

The following constraint is added to the model,

Z Je,cye,t S bc,t cht (724)

ecE"

Day-conflicts of classes are thereby avoided by adding following constraint,

d bey<1 Ved (7.25)
teTy

This constraint could be stated without variable b. ¢, but this variable is used in other constraints
as well.

73 7.2. The Timetabling Problem at Danish high schools

Neighbor days for classes Another undesirable property for a timetable is neighbor-day-
clashes for classes. Both students and teachers prefer that lectures of a class are spread through-
out the week, for instance to allow more time for homework between lectures. Let Py 4 take the
value 1 if day d and day d’ are neighbor days, and 0 otherwise. Neighbor-day pairs are Monday-
Tuesday, Tuesday-Wednesday, etc., excluding Tuesday-Monday, Wednesday-Tuesday, etc. Let
the variable n.4 € {0,1} take value 1 if class ¢ has a neighbor-day-conflict on day d, and 0
otherwise. If class c is locked to at least one event on two contiguous days, this is not defined
as a conflict. Let R.q € {0,1} take value 1 if class ¢ is locked to some event on day d, and 0
otherwise. The following constraints are imposed,

Z be,t + Z bet —mnea <1 Ve,d,d' ,Pygo =1,Rea+ Rear <1 (7.26)
teTy tE'Td/

Neighbor-day conflicts are penalized by the following term in the objective (where ¢ € RT),

(> nea (7.27)
c,d

In case a class has few lectures, neighbor-day conflicts might even be infeasible. Let N, € Ny
be the number of allowed neighborday-conflicts for class ¢, defined as follows:

0 NC.<2

N, =Qw NC.=3 (7.28)
3w NC.=4
4qw NC,>5

where NC. is the number of EventChains where class ¢ participates, and w € {1,2} is the
number of weeks being planned. The following constraint is added to the model,

» nea<N. Ve (7.29)
d

Teacher daily workload It can be preferred for teachers that they do not have to teach in
all modules on a day. Let W, € Ny be the maximum number of lectures on a day for entity a
(takes value 0 for all student entities). The following constraint is imposed,

Z ye,t S Wa Va,d (730)
eEE! teTy

On the other hand, teachers do not like days with too few lectures. It is generally believed among
the high schools that a teacher should have at least two lectures on ’active’ days, i.e. days with
only one lecture are undesirable. In the following the model is constrained so days with only one
active timeslot for an entity is penalized. Let 0,4 € {0,1} take value 1 if entity a is a teacher
and has only one lecture on day d, and 0 otherwise. The cost-parameter for such days is ¢ € RY.
The following constraint is imposed,

2- Z Ye,t — 2fa,d < 0aa Va,d (7.31)
e€E! teTy

The following expression is added to the objective,

Znaoa,d (732)
a,d

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 74

7.2.2.4 Two week schedule metrics

Planning two weeks instead of one gives twice the amount of timeslots, and thereby larger
flexibility, which is prefered by some high schools. For instance suppose a class on average
should have five lectures each week. Instead of assigning five events to each week, four events
could be assigned to the first week, and six events could be assigned to the second week. The
planning of two weeks yields additional quality metrics.

Days off stability for teachers It is preferred to have the required days off for entities
distributed equivalently among the two weeks, e.g. in case of 3 required days off, each week must
contain at least 1 day off. This is done by the following constraint,

‘ > faa— Y. fa,d‘él Va (7.33)

ded(T) ded(T)

where d(T) and d (7') denotes days of the first and second week, respectively. This constraint
is easily transfered into linear-form using two sets of constraints by the following approach.
Consider the expression |Y; — Y3| < 1 for which we desire a linear form. This is achieved by
introducing the constraints Y; — Y <1 and Y5 —Y; < 1.

Stability for lectures of classes Likewise, the distribution of lectures for classes should also
be evenly distributed between weeks. Let w,. € Ny be the number of events out of week-balance
for class c. This is punished in the objective by (where . € R™)

LZ We (7.34)

and is constrained by the following,

‘ Z Je7cye,t - Z Je,cye,t

eteT e teT

—1=w, Ve (7.35)

This expression can also be linearized using the described approach.

7.2.2.5 The Full Model

All ingredients of the MIP model has now been described. The objective of the model is to
minimize the sum of eqs. (7.9), (7.12), (7.18), (7.19), (7.23), (7.27), (7.32), (7.34), subject to the
described bounds on the variables and eqs. (7.1)-(7.2), (7.3"), (7.4"), (7.5)-(7.8), (7.10)-(7.11),
(7.13)-(7.17), (7.20)-(7.22), (7.24)-(7.26), (7.29)-(7.31), (7.33), (7.35). Notice that all variables
except for ¢ ¢+, Ye+ and v., can be stated as LP variables, as they will naturally take integer
values. It is expected that not having integer requirements on these variables will facilitate a
more efficient solution procedure. Furthermore, a formal proof of A"P-hard based on this model

can be found in Sgrensen and Stidsen (2013).

7.2.3 Two-Stage Decomposition

Inspired by the approach taking in Lach and Liibbecke (2012), we propose to solve the MIP
model in two stages. In stage one, events are assigned to timeslots, and in stage two, events are
assigned to rooms given their assigned timeslots. By this approach, the explosion in the number
of variables caused by z. ,: is avoided, as each stage can instead be modeled by a binary variable
with two indices.

75 7.2. The Timetabling Problem at Danish high schools

7.2.3.1 Stage One

In stage one, set R = {R Urp}, where Ry, is the set of rooms which are locked to at least one
event. If an event e is not locked to a room, set the dummy-room as the only feasible room for
this event, i.e. K.,, =1 and K., =0 Vr # rp. This forces all events which are not locked to
a room to be assigned to the dummy-room. By this setting of parameters, exactly one feasible
room exists for each event, which significantly reduces the number of variables in terms of x. ;. +.
This means that z.,; can be substituted by K. ,ye ¢-

As we would like to not only generate good solutions by this approach, but also to generate
lower bounds, it is assumed that each event can be assigned the best room possible. Hence the
0.+ Parameter is temporarily modified by

Qe rt = H}}n Qe r! t (736)

Furthermore, the room stability constraints (7.21) and (7.22) are removed. These constraints are
not redundant as they still apply to all locked rooms, but the constraints must be removed to
generate a valid lower bound, in the sense that some of the penalty produced by these constraints
might disappear when additional rooms are assigned in the stage two model.

With these modifications, the MIP model is solved to obtain a solution y; , where events are
assigned timeslots. The lower bound obtained by solving this model is a lower bound on the
original MIP. Notice that no constraints are imposed to ensure events can be assigned an eligible
room in the next stage. This might give us worse solutions, but it is expected that the natural
spread among the timeslots events are assigned to will also ensure a fair amount of rooms can
be assigned without causing conflicts. It is expected that not adding additional constraints will
give an easier model to solve.

7.2.3.2 Stage Two

In stage two, the MIP is solved with the variables y. ; fixed as set by y; ;. This turns the problem
into a matter of assigning rooms to events, and this problem has a lot less variables than the
original problem. All constraints are redundant, except for (7.4), (7.21) and (7.22). A feasible
solution for this model is clearly a feasible solution to the original MIP.

7.2.4 Weights

Below are listed the values of the weights used in the objective. These values have been selected
on the basis of experiments performed in cooperation with the high schools. A number of high
schools have chosen a set of parameter values which they felt produced good timetables, and
the numbers reported here are the averages. The individual preferences of each high school can
easily be taken into account by allowing them to adjust the weights in the input given to the
solution algorithms.

The value of o+ has the most complex definition, as it models several different requirements.
These are as follows:

e Events locked to timeslots and /or rooms receive no penalty for these respective assignments.
e The penalty of the dummy-timeslot and dummy-room are high.

e Each teacher has a set of timeslots which are undesirable (possibly empty). Let V, ; takes
value 1 if it is undesirable for entity a to be assigned timeslot ¢ (takes value 0 for all student
entities).

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 76

e 'Early’ timeslot are generally more preferable than ’late’ timeslots. Let m; denote the
module of timeslot ¢.

e An event has preferences for the room it is assigned. This is defined by pe, € {1,2,3},
which is the priority of room r for event e.

e The high schools prefer that consecutive runs of the algorithms produce similar solutions.
Therefore a small penalty is imposed on assignments of timeslots and rooms which deviate
from those of the previous solution. Let tp(e) and rp(e) be the previous timeslot and
previous room assigned to event e, respectively. If no previous solution exists, these values
are omitted.

0 LT, =1
Qe rt = 60 t= tD

2p(my) +4%, MoBeoVay else

0 LR.,=1

+410 r=rp +{1 t=tp(e) +{1 r=re(e) (7.37)
U per —1) else 0 else 0 else
Remaining weights are defined as follows:

Idle slots: Ba = 6M, if a is teacher, 7TM, if a is student (7.38)
Teachers days off: Yo = M, if a is teacher, 0 if a is student (7.39)
Students days off: 0, = 0 if a is teacher, M, if a is student (7.40)
Room stability: e=1 (7.41)
Class neighbor-days: (=38 (7.42)
Entity only one lecture: 17, = 4M, if a is teacher, 0 if a is student (7.43)
Week imbalance for class: ¢ = 8 (7.44)

Notice that by far the biggest penalty comes from not assigning an event to a timeslot.

7.3 Adaptive Large Neighborhood Search

In this section a heuristic solution approach based on Adaptive Large Neighborhood Search
(ALNS) is described.

Adaptive Large Neighborhood Search is a recent extension of the Large Neighborhood Search
(LNS) paradigm, often credited to Ropke and Pisinger (2006). As in the LNS framework, first a
destruct (ruin/remove) operator is applied to the solution at hand, and then a construct (recre-
ate/insert) operator is used to repair the solution. In an ALNS framework, multiple destruct and
construct operators are used, and the adaptive layer keeps track of their individual performance,
and increases the probability of selecting operators which have previously performed 'well’. ALNS
has mainly been applied to variants of the Vehicle Routing Problem (VRP) (Azi et al. (2010);
Hemmelmayr et al. (2011); Salazar-Aguilar et al. (2011); Ribeiro and Laporte (2012)), but lately
also other problem-domains (Muller et al. (2011); Muller (2010)). This particular implemen-
tation of ALNS is similar in structure to that of Sgrensen et al. (2012) and Kristiansen et al.
(2013). Details are given in the following.

7 7.3. Adaptive Large Neighborhood Search

An acceptance criteria of new solutions is borrowed from the Simulated Annealing meta-
heuristic. This means that worse solutions have a certain probability to be selected as the
new incumbent solution S¢,, and this probability is decreased as the algorithm progresses. Let
T € R* denote the current temperature and denote by z (S) the objective value of solution S. By
description of LNS, one new solution Syey is found in each iteration. This solution is accepted
with probability exp (W .

The initial temperature Ty is selected such that a solution with an objective which is wga €
]0; 1] percent worse than the initial solution Sy is selected with probability 0.5, i.e. Ty = wSAlniZQ(SO)
In each iteration the temperature is decreased by the decay factor dsa €]0; 1[, using the equation
T = dsaT.

The set of repair and destroy methods are denoted QT and Q~, respectively. In the following
method is used to denote both a repair and a destroy method. A run of the algorithm is divided
into segments {tg,t1,...,t,} each consisting of Nj; iterations. Let ﬂf be the weight of method
7 in segment ¢. Initially in the first section ¢y, wf“ = 1 Vi. The probability of choosing method
t

1 in segment t is E”— At the end of each segment ¢, the following update is performed for all

methods, T
7t
m = p— + (1 p)f (7.45)

RN

where a! is the number of times method i has been selected in segment ¢. 7! is the observed

weight of method 7 in segment ¢, which in each iteration is incremented depending on the quality

of the new found solution. p € [0, 1] is the reaction factor. A high reaction factor means that the

weights of a segment will be very dependent upon the observed weights of the previous segment.
The observed weight 7! is updated in each iteration, by the following:

z (Scur) -z (Snew)
z (Scur)
,ﬁ.f — ,ﬁ.f + 5min(a~gap,1) (747)

(7.46)

gap =

where o € RT is the scaling parameter.

Hence this ALNS algorithm contains parameters wsa, dga for controlling the acceptance-
criteria, and parameters Nj, p, o for controlling the adaptive selection of insert/remove methods.

A solution to the HSTTP is a list of (event,room,timeslot)-tuples, each representing an as-
signment of an event to a room and to a timeslot. The concept of a move is defined as follows:
Given some feasible solution to an instance of the HSTTP, the move M permutes the solu-
tion S; such that a new feasible solution Sy is obtained, and the change in the objective is
A (M) = z(S2) — z(S1). For simplifying notation we only consider moves which do not yield an
infeasible solution, however in practice such moves exist, but since they will never be applied to
the solution in our implementation, they are ignored in this description. Four classes of moves
have been implemented:

° Mg‘cnge assigns EventChain ec to timeslot ¢.

ime

d ec,t

un-assigns EventChain ec from timeslot ¢.

o MI%™ assigns event e to room 7.

TOOm

hd e,r

un-assigns event e from room r.

As the assign-time moves apply to EventChains, as opposed to events, the constraints for events
which should be placed in the same/contiguous timeslots are handled implicitly, which simplifies
the implementation. By these moves, the remove- and insertion-operators are constructed.

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 78

7.3.1 Insertion methods

Algorithm 1 shows the general pseudo-code for the implemented insertion methods. M ‘ime
denotes a move which assigns an EventChain to a timeslot. The insertion methods differ in
how they select this move in each iteration (line 3 in the algorithm). Once an assign-time move
has been selected, it is attempted to perform an assign-room move on each of the events in the
EventChain of this assign-time move. This can possible be improved by future research, e.g.
by the approach of Kostuch (2005). In the following, the approach for selecting the assign-time
move is described for each insertion-method.

Algorithm 1 Insertion method

1: input: A feasible solution S

2: loop

3: Mtime —

4 if A (M%™¢) >0 then stop

5. apply Mt™e to S

6: for all e € ec (M'™) do

7 MT™ = argmin,. A (Meff’rom)

8 if A (Mr°°™) < 0 then apply M™°™ to S
9: end for

10: end loop

7.3.1.1 InsertGreedy

This method iteratively performs the assign-time move which reduces the objective most, i.e.
M'me = argmin,,, A (M%), until the delta-value of the best move is positive (i.e. the best

ec,t ec,t
move makes the solution worse).

7.3.1.2 InsertRegret-k

This is similar to the Regret-N neighborhood applied to variants of the VRP (Tillman and Cain
(1972); Martello and Toth (1981); Potvin and Rousseau (1993)). Let k € {2,3,..., [T}, and let
M;‘C“Eez denote the i-th best time-move for EventChain ec. For a given k, the move selection is
given by:

k
MO = argmin | A (ntimsy) = > A (miime,) (7.48)
A(METy) <0 =2

To explain this equation, we consider an InsertRegret-2 method as an example. This method
selects in each iteration the best time move for the EventChain where the difference between the
best time move and the second-best time move is most negative. The intuition is to perform the
move which we will regret most if not done now. The following choices of k& have been made by
basic tests: 2, 3, 4, |T|, which constitute four different insertion methods.

7.3.2 Remove methods

In each iteration of the ALNS, a number of events ¢ € N is selected to be unassigned from
timeslots in the solution at hand. The quantity ¢ is selected as a random integer in the interval
[3, max (p|€|,5)], where the parameter p € [0; 1] describes the maximum percentage of events to

79 7.3. Adaptive Large Neighborhood Search

be removed. As in Kristiansen et al. (2013), p is decreased with time, i.e. at time 0: p = p3s |
and when reaching the timelimit: p = pd®. In between, a linear decay of the parameter is
applied.

Each remove-method contains its own specific remove procedure. The general concept of all
remove methods considered are the following: Repeat the remove procedure, until ¢ events have
been unassigned from their respective timeslot/room.

Recall that an event cannot be assigned a room if it is not assigned a timeslot (constraint
(7.8) in the MIP). Throughout this section it is therefore implicitly handled, that if an event is
unassigned from a timeslot, it is also unassigned from its assigned room (if any).

7.3.2.1 RemoveRandom

In this method, unassign time-moves are performed at random among all EventChains assigned
a timeslot. This method will diversify the search.

7.3.2.2 RemoveRelated

This method is related to Shaw operator (Shaw (1997, 1998)). The basic idea is to remove a set
of events which are related according to some measure. Compared to a set of random events,
related events have a higher probability for the possibility of swapping timeslots, which can
potentially lead to better solutions. Let A(ec) and C(ec) denote the set of entities and classes
of EventChain ec, respectively. R4 € [0,1] and Rc € [0,1] denotes scaling parameters which
require tuning. The amount of randomness in the selection is determined by prelated € [1, 00].
The related measurement is in this case defined as the percentage overlap among entities, and
classes between two EventChains, defined by eq. (7.49) for EventChains ec and ec/,

A U Aed)| Clec) U C(ec))
T = AR Ao JAGe)]) T min (e (e

3

(7.49)

Algorithm 2 shows the RemoveRelated procedure. Let (M) denote the number of events of the
EventChain of move M.

Algorithm 2 RemoveRelated

input: A feasible solution S, and remove-quantity ¢
g=0
ec = a random selected chain assigned to a timeslot
Dyone = {ec}
while § < ¢ do
ec’ = randomly selected from Dggne
L = all EventChains assigned to a timeslot, sorted by similarity to ec’
choose a random number y € [0;1]
ec = element number yPrelsted |L| of L
apply eig‘t" to .S, where ¢ is the timeslot assigned to EventChain ec
Dyone = Ddone U ec
g=q+ EM)
: end while
: return ¢q

= e =
sy e

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 80

7.3.2.3 RemoveTime

This remove method removes events assigned to the same timeslot, by the following procedure:
First select some random timeslot. Now remove EventChains assigned to this timeslot, until ¢
EventChains have been removed. If at some point no more EventChains are assigned to the
timeslot, select a new random timeslot.

7.3.2.4 RemoveClass

Select a random class, and remove EventChains which contain it from their respective timeslot,
until ¢ EventChains have been removed. If at some point no more EventChains are assigned to
this class, select a new random class.

7.3.3 Coupled destroy/repairs

Coupling certain destroy methods with certain repair methods is a small extension of the ALNS
framework. This implies that the logic for choosing certain destroy /repair methods are extended,
such that also certain pairs of methods can be chosen. This is useful for specialized destroy /repair
methods, where a specific part of the solution is destroyed, and a competitive solution is not
expected unless this part of the solution is repaired. In the following we describe a neighborhood
where coupling seems useful, namely InsertRoom and RemoveRoom.

7.3.3.1 InsertRoom

In InsertRoom, rooms are assigned to events in a greedy way. This means that the best assign-
room move M;™is found for any event e € £ and room r € R. If this move results in a better

solution, i.e. if A (Mcf?r"m) < 0, apply it to the solution, and otherwise stop.

7.3.3.2 RemoveRoom

In RoomRemove, ¢ random room-assignments are removed from the solution, i.e. ¢ random
unassign-room moves are performed.

7.3.4 Parameter Tuning

A basic implementation of F-Race (Birattari (2005); Balaprakash et al. (2007)) is used to tune
parameters for best algorithmic performance. Given a set of tuning-instances (different from
those datasets used to establish computational results), this algorithm is capable of automatically
tuning optimization algorithms, i.e. finding the optimal set of values for all free parameters in
the algorithm. In our experiments, the values obtained in Kristiansen et al. (2013) were used as
a starting point, and we allowed F-Race to run for 24 hours. This timelimit was not sufficient for
finding the optimal set of weights, and we report here the best found parameter-configuration.
Table 7.1 shows the chosen value for each parameter.

Parameter | wsa dsa N p o Ra Rc Drelated Phoe Pltee
Domain | J0;1[]0;1[[0;00] [0;1] [0;00] [0;1] [0;1] [L;00] [051] [051]
Value 0.01 099 100 0.3 10000 07 03 20 010 0.01

Table 7.1: List of parameters and their tuned value

81 7.4. Results

7.4 Results

The purpose of this section is to compare and evaluate the described solution approaches. A
variety of datasets are therefore selected from the database of the commercial product Lectio.
Currently, this database contains almost 5000 potential datasets from 110 different high schools.
We select 100 of these randomly for evaluating the algorithms, see (Sgrensen and Stidsen, 2013,
Table 2 p. 26) for more details and statistics. Using these datasets, we aim at answering these
question:

e How does the found solutions compare with the bounds obtained from the IP-based solution
approaches? This is a way of evaluating the quality of the obtained solutions, and/or the
bounds obtained by the MIP approaches.

e Which solution approach obtains best solutions within a short timeframe? This is impor-
tant in practice for the high schools, as they expect an algorithm capable of producing
good timetables quickly.

In all cases Gurobi 5.01 has been used as MIP-solver, and tests were run in C# 4.5 using nUnit
2.6 on Windows 8 64bit. The machine was equipped with an Intel i7 CPU clocked at 2.80GHz
and with 12GB of RAM. As initial solution ("MIPStart’ parameter), events were assigning to
either their locked timeslot /room or the dummy-timeslot /room. The percentage-gap between an
objective value z and a lower bound LB is calculated by gap = 100#.

7.4.1 Solution approach comparison

In this section a comparison between the proposed solution approaches is performed with the
following goals: 1) Compare the solutions obtained by each solution approach given a high time-
limit. This is important for evaluating the potential of each approach. 2) Evaluate the solution
approaches in terms of the bounds obtained by solving the MIP and the two-stage MIP. This is
an important measure of solution quality.

The default parameter settings of Gurobi were used. The maximum number of threads and
time-limits were set as follows:

MIP 2-stage MIP ALNS

Max. CPU threads 8 8 1
Time limit (s) 7200 6480 / 720 240
No. of runs 1 1 10

As we are interested in obtaining good bounds from the MIP approaches, these are allowed
more computational time and more CPU threads. This means the comparison of solution quality
favors the MIP approaches. In the next section, a more direct comparison of solution quality is
made. It should be noted that the described version of ALNS has no parallelization implemented,
so it would not benefit from more threads. A parallel version is considered for future work (see
e.g. Ropke (2009)).

Table 7.2 shows the obtained results (a summary is given in the last rows in the table). This
shows that the ALNS heuristic finds the best solution in 78 cases. In no cases are the pure
MIP approach best, and in 20 cases are the two-stage approach best. In those cases where the
two-stage approach is best, the dataset is usually small in terms of number of events.

To establish statistical significance of the results, the non-parametric statistical test Wilcozon
Signed-Rank has been used. Given a number of pairs of values, the null-hypothesis of the test is
that the median difference between the pairs is zero. For the values in Table 7.2, this gives the

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 82

following results. The null-hypothesis when comparing MIP /Two-stage MIP, MIP/ALNS and
Two-Stage MIP/ALNS can in all cases be rejected with confidence > 99%. This means that the
performance differences are statistical significant.

It was expected that the two-stage approach would outperform the pure MIP, but it is sur-
prising that the ALNS heuristic outperforms both MIP approaches. On the larger datasets, the
ALNS algorithm generally performs best. We expect this is due to the fact that ALNS is not
prone to the curse of dimensionality, and overall scales better with the size of the datasets.
The exact reasoning for this behavior is hard to pin-point, but it is a common pattern when
comparing heuristics with exact methods.

In total, a lower bound was found for 79 datasets. The MIP was able to find a lower bound
in 46 cases, whereas the two-stage approach found a bound in 79 cases. This means that for the
two-stage model, Gurobi was not able to solve the LP-relaxation of the root node in the stage
one model in 21 cases, which is surprising. The model is not numerically instable, so currently
our best guess is that we are facing issues with degeneracy. In 33 cases, the bound obtained by
the MIP were best, and in 46 cases the bound obtained by the two-stage model were best. Note
that if the root LP-relaxation was not solved for a specific dataset, the reported solution is equal
to the initial solution. In case the root LP-relaxation is not solved, the ALNS algorithm clearly
performs better.

For those instances where a bound is found, the gap obtained for the ALNS is in average
25.6%, which seems rather high. Especially considering that those instances where a gap is not
found are the big instances, which we expect are more difficult to solve. The inevitable question
arises whether this is due to a poor bound, or due to poor solution quality. Future research will
hopefully shed light upon this matter.

Figure 7.5a shows the linear regression of objectives as a function of number of events in
dataset. This shows that as the size of datasets grows, the performance advantage of ALNS
compared to the other solution approaches increases. This means that the ALNS heuristic scales
better with the size of the datasets. Figure 7.5b summarizes key measurements from Table 7.2.

Table 7.2: Comparison of solution approaches. For the MIP model, column "Time’ shows the
runtime, column ’Obj’ shows the objective of the obtained solution, column LB’ shows the lower
bound, and ’Gap’ shows the gap between the objective and the bound found by the MIP and
the two-stage MIP. For the two-stage MIP, column ’Stgl’ and ’Stg2’ shows the elapsed time for
solving the first and second stage, respectively. The remaining columns are analogous to the
those defined for the MIP approach. For ALNS is shown the average objective found over 10
runs ’Obj’, the standard deviation of these runs ’o’, and ’Gap’ denotes the gap between the
average objective and the best bound found. When a bound or solution is not found within the
timelimit, a dash is written. The best solution for each dataset is written in bold font (skipping
draws).

MIP Two-stage MIP ALNS
Dataset Time Obj LB Gap Stgl Stg2 Obj LB Gap Obj o Gap
AalborTG2012 >7200 6118 5946 2.8 >6480 1 6018 5934 1.2 6317 66.6 5.9
AarhusA2011 >7200 58015 - 89.7 >6480 93 15872 5986 62.3 10037 387.2 404
AarhusA2012 >7200 17096 5722 64.9 >6480 >720 8947 6005 32.9 7971 87.9 24.7
Aars2009 >7200 49504 - 76 >6480 6 20780 11874 42.9 14900 154 20.3
Aars2010 >7200 81970 - 84 >6480 15 25057 13134 47.6 16268 158.8 19.3
Aars2011 >7200 77967 - 87.6 >6480 11 30623 9709 68.3 14256 287.1 31.9
Aars2012 >7200 55049 - 86.5 >6480 4 21206 7456 64.8 10701 99.1 30.3
Alssund2010 >7200 52717 - 87.1 >6480 27 23173 6811 70.6 9967 438.5 31.7
Alssund2012 >7200 108810 - - >6480 2 108810 - - 29803 609.9 -
Bagsva(G2010 >7200 6777 3171 53.2 >6480 14 3916 3063 19 3960 87.8 19.9

Continued on next page

83 7.4. Results
Table 7.2 — continued from previous page
MIP Two-stage MIP ALNS
Dataset Time Obj LB Gap Stgl Stg2 Obj LB Gap Obj o Gap
BirkerG2011 >7200 119600 - - >6480 1 119600 - - 42063 751.9 -
Birker(G2012 >7200 110180 - 85.8 >6480 >720 19322 15662 18.9 19552 54.1 19.9
BjerrG2009 >7200 52639 - 789 >6480 8 35514 11094 68.8 16877 271 34.3
BjerrG2010 >7200 12868 3928 69.5 >6480 22 5788 3868 32.1 4983 74 21.2
BjerrG2011 >7200 13009 4142 68.2 >6480 >720 9302 4060 55.5 6334 119.1 34.6
BjerrG2012 >7200 17200 5055 70.6 >6480 354 15265 5007 66.9 8023 220.3 37
BroendG2012 >7200 2005 1881 6.2 1173 14 1929 1859 2.5 2040 30 7.8
CPHWGym2010 >7200 34415 - 89.1 >6480 2 19363 3759 80.6 6775 328.6 445
CPHWGym2011 >7200 38232 - 89.3 >6480 2 16212 4095 74.7 5679 179.3 27.9
CPHWGym2012 >7200 40945 - 89.7 >6480 2 15543 4205 73 6762 217.7 37.8
CPHWHG2012 >7200 46625 8157 82.1 >6480 10 23088 8338 63.9 11077 227.6 24.7
CPHWHTX2010 >7200 27174 9179 66.2 >6480 10 15943 8828 42.4 11342 146.4 19.1
CPHWHTX2011 >7200 22466 20460 8.9 >6480 5 20708 18490 1.2 20734 27.6 1.3
CPHWHTX2012 >7200 25998 14481 44.3 >6480 13 21392 13115 32.3 16256 126.1 10.9
DetFG2012 >7200 8017 7168 10.6 >6480 6 7265 7018 1.3 7560 73.4 5.2
DetKG2010 >7200 6058 1732 69.9 >6480 1 4006 1821 54.5 2947 69 38.2
DetKG2011 >7200 5594 1732 68.2 >6480 14 4366 1780 59.2 2820 136 36.9
EUCN2009 >7200 7557 2911 61.5 >6480 2 4298 2856 32.3 3737 116 22.1
EUCN2010 >7200 4231 3329 21.3 >6480 32 3463 3246 3.9 3882 76 14.2
EUCN2011 >7200 1435 1395 2.8 >6480 1 1430 1384 2.5 1468 13 4.9
EUCN2012 >7200 9430 2327 74.9 >6480 1 5059 2363 53.3 3289 160 28.2
EUCNHG2010 >7200 1476 1371 7.1 >6480 5 1421 1368 3.5 1505 28 8.9
EUCS2012 >7200 4689 3576 23.7 >6480 12 3783 3347 5.5 3714 32 3.7
FaaborgG2008 >7200 125330 - - >6480 54 125330 - - 68124 2156 -
FalkonG2009 >7200 88890 - - >6480 0 88890 - - 10449 251 -
FalkonG2011 >7200 76170 - 932 >6480 >720 16543 5183 68.7 8584 271 39.6
FalkonG2012 >7200 100190 - 939 >6480 >720 16666 6105 63.4 10143 432 39.8
GUAasia2010 >7200 6579 6354 3.4 6 >720 6461 6035 1.7 6527 727
GUQaqor2011 >7200 19623 4537 76.8 >6480 6 10005 4554 54.5 6674 301 31.8
GUQaqor2012 >7200 11488 4314 62.5 >6480 15 7619 4294 434 5733 134 24.8
HadersK2011 >7200 51190 - 924 >6480 >720 14229 3909 72.5 7128 386 45.2
HasserG2010 >7200 96790 - - >6480 0 96790 - - 11963 132 -
HasserG2011 >7200 99840 - - >6480 1 99840 - - 16061 472 -
HasserG2012 >7200 112160 - - >6480 2 112034 - - 18338 672 -
HerningG2010 2 37 37 0 0 2 37 35 0 37 0 0
HerningG2011 >7200 163785 - 94 >6480 12 23117 9829 57.5 15091 144 349
HerningG2012 >7200 185433 - 94.7 >6480 >720 14952 9763 34.7 13147 76 25.7
HoejeTaG2008 >7200 6292 2253 59.3 >6480 1 2707 2563 5.3 2958 92 134
HoejeTaG2009 >7200 45260 - 87.2 >6480 470 26066 5773 77.9 9157 303 37
HoejeTaG2010 >7200 45095 - 86.3 >6480 116 25678 6188 75.9 9862 232 37.3
HoejeTaG2011 >7200 51050 - 86.8 >6480 48 32630 6726 79.4 10158 201.5 33.8
HoejeTaG2012 >7200 72455 7592 89.2 >6480 224 18627 7845 57.9 12502 143.4 37.3
HorsenS2009 63 3100 3100 0 0 2 3100 2865 0 3111 9 04
HorsenS2012 >7200 86090 - - >6480 0 86090 - - 10056 434.9 -
Johann2012 >7200 92575 - 80.1 >6480 >720 27781 18456 33.6 23001 193.4 19.8
KalundG2011 >7200 126150 - - >6480 1 126150 - - 38479 5145 -
KalundG2012 >7200 123010 - - >6480 1 123010 - - 26768 348.8 -
KalundHG2010 >7200 12103 4540 62.4 >6480 16 6351 4551 28.3 5631 83.1 19.2
KoebenPG2012 >7200 1872 637 65.7 >6480 2 874 642 26.5 888 31 27.7
KoegeH2012 >7200 108347 - 91.6 >6480 2 20150 9096 54.9 11418 136.2 20.3
KongshoG2010 >7200 8889 2411 72 >6480 3 7954 2488 68.7 4296 175.8 42.1
MariageG2009 >7200 54030 - 90.5 >6480 161 20138 5118 74.6 8013 251.6 36.1
MorsoeG2012 >7200 42762 - 91 >6480 54 10241 3854 62.4 5651 122.6 31.8
NaerumG2008 >7200 118370 - - >6480 0 117894 - - 24104 502.8 -
NaerumG2009 >7200 100450 - 949 209 >720 6681 5114 23.5 7667 62.5 33.3
NielsSG2011 >7200 10464 3323 67.4 >6480 2 6132 3412 444 4953 111.7 31.1
NielsSG2012 >7200 12747 5722 55 >6480 16 8003 5738 28.3 6952 1074 17.5

Continued on next page

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling 84

Table 7.2 — continued from previous page
MIP Two-stage MIP ALNS

Dataset Time Obj LB Gap Stgl Stg2 Obj LB Gap Obj o Gap

NordfynG2012 >7200 8201 4152 49.4 >6480 205 4890 4048 15.1 5160 38.6 19.5
NyborgG2011 >7200 94059 - 93.5 >6480 >720 31809 6129 80.7 13944 434.4 56.1

OdderCfU2010 >7200 59540 - 79.5 >6480 1 40032 12188 69.6 18219 189.2 33.1
OdderG2009 >7200 59851 - - >6480 2 57586 - - 9308 206.8 -
OdderG2012 >7200 17402 9602 44.8 >6480 >720 14888 8878 35.5 12307 157.8 22
OrdrupG2010 >7200 75700 - 85.9 >6480 37 12936 10665 17.6 13663 391.8 21.9
OrdrupG2011 >7200 116400 - 85.5 >6480 >720 31329 16904 46 21612 630.4 21.8
RibeK2011 >7200 61945 - 73.8 >6480 390 43175 16209 62.5 21679 260.1 25.2
RysenG2010 >7200 110690 - - >6480 1 110690 - - 39971 148 -
RysenG2011 >7200 100313 - 823 >6480 >720 25989 17756 31.7 22260 99.1 20.2
RysenG2012 >7200 110111 - 86.3 >6480 >720 22156 15115 31.8 19841 189.2 23.8
SanktAG2012 >7200 4624 3415 26.2 75 >720 3911 3376 12.7 4207 33.5 18.8
SkanderG2010 >7200 7708 6051 21.5 77 >720 6875 5712 12 7209 36.5 16.1
SkanderG2011 >7200 88470 - - >6480 0 88470 - - 22525 368.5 -
SkanderG2012 >7200 98487 - - >6480 1 95319 - - 20138 682.8 -
SkiveG2010 >7200 194740 - - >6480 21 194740 - - 43120 1261.2 -
Slagel G2012 >7200 162960 - - >6480 36 162765 - - 32167 1225.7 -
SoendS2011 >7200 83560 - - >6480 1 83560 - - 11776 2484 -
SoendS2012 >7200 17778 6838 61.5 >6480 2 11915 6647 42.6 8420 94 18.8
StruerS2012 >7200 - - - >6480 18 207488 - - 73361 3188 -
VardeG2012 >7200 20933 5921 71.7 >6480 13 20622 5720 71.3 10777 1911 45.1
VejenG2009 >7200 69450 - - >6480 0 69450 - - 11264 209 -
Vejlefjo2011 >7200 52035 83.6 >6480 >720 18043 8511 52.8 13514 183 37

VestfynG2009 >7200 11606 4176 64 >6480 347 5999 4137 30.4 5973 148.5 30.1
VestfynG2010 >7200 16895 4308 74.5 >6480 354 5974 4225 27.9 6761 211.3 36.3
VestfynG2011 >7200 13624 5110 62.5 >6480 25 6657 4925 23.2 7013 2187 27.1
VestfynG2012 >7200 11095 4279 61.4 >6480 48 5212 4210 17.9 5244 52.5 18.4

ViborgK2011 >7200 99170 - - >6480 0 99170 - - 14923 406.1 -
ViborgTG2009 >7200 19891 8695 56.3 >6480 33 12077 8356 28 10216 102 14.9
ViborgTG2010 >7200 12727 4130 67.6 >6480 112 10226 3990 59.6 4932 66 16.3
ViborgTG2011 >7200 16433 6716 59.1 >6480 46 9808 6204 31.5 7478 40 10.2
VirumG2012 >7200 140883 - 87.4 >6480 >720 32183 17770 44.8 27738 502 35.9
VordingbG2009 >7200 17025 5457 68 >6480 91 9905 5243 44.9 8568 97 36.3
Avg. T 65.3 41.3 25.6
Max. 94.9 80.7 56.1
No. times best 0 20 78

No. bound found 46 79

No. best bound 33 46

T Rows where either of the gap columns are not available are skipped for a fair comparison.

7.4.2 Operational considerations

In this section it is considered what approach can be used to find the best solutions within a
short time horizon. This means that for the MIP approaches, we are not interested in the bound,
but only in actual solutions. According to the documentation of Gurobi, some parameters will
make the solver focus on finding good solutions. Table 7.3 shows the chosen values for these
parameters, which have been selected ad-hoc on the basis of the documentation of Gurobi and
with the help of Gurobi Support. Furthermore the maximum number of threads for Gurobi is set
to 1, to obtain a fair comparison with the ALNS heuristic. In our experience, the high schools
expect that an algorithm should produce a timetable within a fairly small time horizon. Table
7.4 shows for each dataset the best found solution by each solution approach after 240, 420 and
600 seconds. The table shows that the ALNS algorithm finds better solutions for all three time

85

7.4. Results

200,000 T

150,000 |

100,000 |

Objective

50,000 |

1,000

1,500
€]

2,000

2,500

MIP mm Two-stage MIP mmm ALNS |

(a) Objective of datasets as a function of number
of events. Linear regression for each set of points

is also shown.

G,

6; %,

/

y 4, 00
&,
({’10 5o, ("r/ "/f(“/ %" "G
S "7(/&’(9@ N
))

| == MIP m Two-stage MIP mmm ALNS |

‘) 6’:9,)

(b) Bar plot summary from Table 7.2.

Figure 7.5: Performance of the three solution approaches illustrated.

Table 7.3: Gurobi parameter settings in operational setting

Default Value Intention

MIPFocus
Heuristics

ImproveStartTime

Cuts

0 1

0.05 0.90
infinity 0
-1 0

Focus on finding good solutions

Attempt to spend 90% of solver time on heuristics
Immediately focus on solution quality

Turn off all cuts

horizons in the majority of cases (88, 86 and 87, respectively). Furthermore ALNS is able to find
a feasible solution in all cases, and is the best algorithm in an operational setting.

Table 7.4: Best found solutions for the three solution approaches at certain points in time.

240s 420s 600s
Dataset MIP 2SMIP ALNS MIP 2SMIP ALNS MIP 2SMIP ALNS
AalborTG2012 8530 6182 6296 8530 6069 6278 7776 6067 6259
AarhusA2011 58015 58015 10244 58015 58015 10063 58015 58015 9995
AarhusA2012 66350 12121 8013 66350 10966 7907 66350 10738 7880
Aars2009 - 49484 15068 49504 49484 14900 49504 49484 14835
Aars2010 - 81970 16474 - 30344 16250 - 30344 16127
Aars2011 - 64774 14511 77967 64774 14230 77967 64774 14150
Aars2012 - 52520 10674 55049 25984 10544 55049 25252 10510
Alssund2010 52717 52585 9825 52717 52585 9714 52717 52585 9658
Alssund2012 - 108810 30349 - 108810 29088 - 108810 28530
BagsvaG2010 9212 5855 3942 9212 5400 3939 8142 5247 3939
BirkerG2011 - 119600 42190 - 119600 41415 119600 119600 41066
Birker(G2012 - 19526 19642 - 19497 19566 - 19464 19434
BjerrG2009 52639 52395 17152 52639 52395 16846 52639 52395 16716
BjerrG2010 44901 7327 4923 14512 7118 4889 14512 7052 4885
BjerrG2011 52933 11371 6339 52933 11059 6302 52933 10796 6257
BjerrG2012 39745 39745 7974 39745 39745 7838 39745 39745 T797
BroendG2012 2263 1935 2040 2207 1935 2036 2002 1935 2036

Continued on next page

Chapter 7. Paper B: IP and ALNS for Real-World Instances of High School Timetabling

86

Table 7.4 — continued from previous page

240s 420s 600s
Dataset MIP 2SMIP ALNS MIP 2SMIP ALNS MIP 2SMIP ALNS
CPHWGym2010 34415 34415 6670 34415 34415 6583 34415 34415 6560
CPHWGym2011 38232 37368 5713 38232 16573 5628 38232 16573 5601
CPHWGym2012 40945 37095 6554 40945 37095 6508 40945 21405 6487
CPHWHG2012 46625 46099 11023 46625 46099 10954 46625 46099 10919
CPHWHTX2010 38497 21441 11293 38497 21441 11215 38497 21441 11199
CPHWHTX2011 30578 21508 20745 24403 21349 20729 24403 21024 20724
CPHWHTX2012 31860 27169 16137 31860 26028 16096 31860 25441 16090
DetFG2012 19736 7460 7583 14147 7417 7557 13618 7415 7546
DetKG2010 7556 6139 2951 7556 6046 2949 7418 6041 2949
DetKG2011 14445 6360 2863 6653 6348 2848 6653 6185 2846
EUCN2009 18590 5833 3680 18590 5693 3672 7856 5335 3671
EUCN2010 5958 3961 3940 5947 3873 3916 5947 3873 3910
EUCN2011 1451 1484 1479 1448 1478 1479 1448 1478 1479
EUCN2012 22570 8262 3253 22570 7549 3227 22570 6993 3223
EUCNHG2010 1847 1443 1488 1842 1442 1484 1842 1442 1484
EUCS2012 6629 4229 3710 5169 4078 3707 5169 4078 3706
FaaborgG2008 - 125330 69675 - 125330 64777 - 125330 62082
FalkonG2009 - 88890 10541 - 88890 10212 - 88890 10098
FalkonG2011 - 76170 8629 76170 76170 8375 76170 76170 8286
FalkonG2012 - 82629 10153 100190 82629 9786 100190 82629 9688
GUAasia2010 - 6466 6534 38850 6462 6515 38850 6457 6509
GUQaqor2011 38210 11910 6749 38210 11795 6625 38210 11810 6577
GUQaqor2012 42346 10810 5780 42346 9306 5694 42346 9296 5666
HadersK2011 51190 51190 7156 51190 51190 7029 51190 51190 6974
HasserG2010 - 96790 12061 96790 96790 11645 96790 96790 11491
HasserG2011 - 99840 15970 - 99840 15479 99840 99840 15280
HasserG2012 - 112034 19099 - 112034 18379 - 112034 18016
HerningG2010 - 37 37 - 37 37 - 37 37
HerningG2011 163785 102119 15971 163785 26648 15602 163785 26646 15347
Herning(G2012 185433 - 13290 185433 28140 13117 185433 28140 12964
HoejeTaG2008 14865 4950 2941 6923 4646 2921 6923 4175 2920
HoejeTaG2009 - 45260 9275 45260 45260 9118 45260 28064 9079
HoejeTaG2010 - 45095 9733 45095 32686 9644 45095 28120 9615
HoejeTaG2011 - 51050 10168 - 51050 10065 51050 51050 10021
HoejeTaG2012 - 30074 12468 - 30074 12349 - 25206 12298
HorsenS2009 3100 3100 3115 3100 3100 3115 3100 3100 3115
HorsenS2012 - 86090 10181 - 86090 9733 86090 86090 9550
Johann2012 - 92575 23104 - 31672 22892 92575 31507 22780
KalundG2011 - 126150 39102 - 126150 38464 126150 126150 37929
KalundG2012 - 123010 27503 - 123010 26451 - 123010 25828
KalundHG2010 27530 7981 5631 12214 7879 5599 12008 7758 5596
KoebenPG2012 2517 1589 876 2517 1483 876 2517 1333 876
KoegeH2012 - 26279 11431 108347 22745 11338 108347 21005 11274
KongshoG2010 34265 10249 4302 34265 8675 4278 34265 8602 4268
MariageG2009 54030 54030 8152 54030 54030 8045 54030 54030 7962
MorsoeG2012 42762 42395 5681 42762 42395 5627 42762 42395 5609
NaerumG2008 - 117894 24543 118370 117894 23776 118370 117894 23311
NaerumG2009 - 6752 7767 - 6752 7679 - 6746 7545
NielsSG2011 - 10828 4852 19200 10486 4799 19200 8954 4796
NielsSG2012 50253 11041 6945 50253 10756 6902 50253 10752 6848
NordfynG2012 63210 6216 5218 63210 5909 5158 8227 5909 5137
NyborgG2011 - 85372 14041 - 85372 13647 94059 85372 13430
OdderCfU2010 - 59473 18229 - 59473 18059 - 59473 17997
OdderG2009 59851 57586 9271 59851 57586 9037 59851 57586 8939
OdderG2012 86520 16963 12482 86520 14977 12282 86520 14976 12210
OrdrupG2010 75700 75700 13645 75700 14806 13465 75700 13944 13337
OrdrupG2011 - 116400 21986 - 116400 21798 - 116400 21541

Continued on next page

87 7.4. Results

Table 7.4 — continued from previous page

240s 420s 600s
Dataset MIP 2SMIP ALNS MIP 2SMIP ALNS MIP 2SMIP ALNS
RibeK2011 - 61945 21762 61945 61945 21544 61945 61945 21490
RysenG2010 - 110690 40194 - 110690 40010 110690 110690 39778
RysenG2011 - 89741 22391 100313 89741 22191 100313 89741 22006
RysenG2012 - 95590 20242 - 95590 19910 110111 95590 19598
SanktAG2012 54080 3824 4252 54080 3821 4200 54080 3819 4172
SkanderG2010 - 6893 7320 - 6878 7234 - 6876 7152
SkanderG2011 - 88470 22985 - 88470 22374 - 88470 22087
SkanderG2012 - 95319 20367 - 95319 19659 - 95319 19334
SkiveG2010 - 194740 43699 - 194740 42967 - 194740 42127
SlagelG2012 - 162765 30743 - 162765 30186 - 162765 29673
SoendS2011 83560 83560 12049 83560 83560 11674 83560 83560 11519
SoendS2012 87883 14589 8451 16717 13920 8355 16717 12765 8298
StruerS2012 - 207488 69927 - 207488 68367 - 207488 67294
VardeG2012 60980 60980 9684 60980 60980 9526 60980 60980 9455
Vejen(G2009 - 69450 11224 - 69450 10886 69450 69450 10779
Vejlefjo2011 - 52035 13478 - 52035 13338 52035 52035 13293
Vestfyn(G2009 62063 7914 6117 62063 5867 6037 62063 5755 6011
VestfynG2010 61216 11853 6647 61216 10155 6562 61216 9303 6548
VestfynG2011 67790 8577 7068 67790 8521 6997 67790 8269 6936
VestfynG2012 66096 7607 5241 66096 7354 5187 66096 7352 5182
ViborgK2011 - 99170 15459 - 99170 14670 - 99170 14360

ViborgTG2009 39385 21077 10229 39385 14309 10156 39385 13630 10141
ViborgTG2010 34980 12299 4972 34980 11733 4943 34980 10977 4934
ViborgTG2011 36300 11887 7496 36300 9723 7474 36300 9723 7469

VirumG2012 - 111119 23561 140883 111119 23359 140883 34158 23176
VordingbG2009 55115 11646 8607 55115 10953 8535 55115 10939 8523
No. solutions 55 99 100 70 100 100 81 100 100
No. times best 1 11 88 1 13 86 1 12 87

7.4.3 XHSTT Datasets

To make our datasets public available, a conversion scheme to the XHSTT format has been de-
veloped (see Sgrensen and Stidsen (2013)). Most constraints of HSTTP are modeled analogously
by XHSTT, but some important are not supported: Constraints (7.3"), (7.4’) and (7.24) only
considers a subset of events w.r.t. entity conflicts, room conflicts and day conflicts for classes,
respectively. In the current version of XHSTT such constraints consider the full set of events,
which might lead to inevitable violations of hard constraints. Constraint (7.8) specifies that an
event cannot be assigned a room unless it is assigned a timeslot, which is not possible in XHSTT.
Constraint (7.26) excludes some classes from be checked from neighbor-day conflicts on certain
days, which is also not possible in XHSTT (all neighbor-days will be penalized).

Currently, copyright issues have been settled with three schools, such that three datasets have
been made available in the archive XHSTT-2013. We hope to be able to make more datasets
publicly available soon. Table 7.5 shows statistics for the datasets converted into the XHSTT
format. The heuristic described in Sgrensen et al. (2012) is applied to all instances 10 times,
each with a timelimit of 240 seconds, and the best solution found is shown in the table. It is
seen that all found solutions contain hard constraint violations. As previously described, it is
expected that in the majority of cases, the optimal solution will contain some violation of hard
constraints.

Bibliography 88

Table 7.5: XHSTT datasets statistics.

Dataset Times Teach. Rooms Classes Stud. Events Duration Best sol.

FalkonG2012 50 91 63 313 278 1120 1120 (101,19464)
HasserG2012 50 100 69 423 521 1475 1475 (319,24312)
Vejen(G2009 60 46 53 189 163 928 928 (2,23275)

7.5 Conclusion

A complex Integer Programming model of timetabling for high schools in Denmark has been
described. The model contains all constraints required in practice by a large number of high
schools, and it is used by many schools to produce annual timetables. The model is N"P-hard,
but a simple decomposition has been suggested which facilitates solution times. Furthermore, a
heuristic based on Adaptive Large Neighborhood Search has been discussed, which yields a total
of three different solution approaches.

Using 100 real-world datasets, these solution approaches have been evaluated in terms of
lower bounds derived from the MIP approaches, and solution quality in a production setting.
The ALNS heuristic proved to perform best wrt. both aspects.

The gap between the solutions found by ALNS and the best bound found is in average
25.6%, which is unsatisfactory. Future research will hopefully be able to narrow this gap, either
by finding better bounds, or by strengthening the solution approaches.

The chosen problem formulation might leave events which are not assigned to a timeslot.
This can happen either because the problem is too constrained due to the parameters set by the
high school, or it can happen as a sub-optimal solution was provided by the algorithm. A way to
tackle such unassigned events is a topic for future work. Currently we believe a solution could be
to incorporate a different algorithm which is independent of the solution approaches described
in this paper. This should be understood in the following sense. Once the algorithm to solve the
HSTTP is finished, assume a number of events are left unassigned to timeslots. For one or several
of these events, the high school can then attempt to find an alternative solution which assigns
a timeslot to these events, such that the current solution does not change significantly. Such an
algorithm could possibly be based on a concept like Cyclic Transfers (Post et al. (2012b)) or a
variant of the Repair Problem for timetables (Kaneko et al. (1999); Kingston (2012)).

Bibliography

J. S. Appleby, D. V. Blake, and E. A. Newman. Techniques for producing school timetables on
a computer and their application to other scheduling problems. The Computer Journal, 3(4):
237-245, 1961.

P. Avella and 1. Vasil’Ev. A computational study of a cutting plane algorithm for university
course timetabling. Journal of Scheduling, 8:497-514, 2005. ISSN 1094-6136.

P. Avella, B. D’Auria, S. Salerno, and I. Vasilaev. A computational study of local search al-
gorithms for italian high-school timetabling. Journal of Heuristics, 13:543-556, 2007. ISSN
1381-1231.

N. Azi, M. Gendreau, and J.-Y. Potvin. An Adaptive Large Neighborhood Search for a Vehicle
Routing Problem with Multiple Trips. CIRRELT, 2010.

89 Bibliography

P. Balaprakash, M. Birattari, and T. Stiitzle. Improvement strategies for the f-race algorithm:
sampling design and iterative refinement. In Proceedings of the 4th international conference
on Hybrid metaheuristics, HM’07, pages 108-122; Berlin, Heidelberg, 2007. Springer-Verlag.

V. Bardadym. Computer-aided school and university timetabling: The new wave. In E. Burke
and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture
Notes in Computer Science, pages 22—45. Springer Berlin / Heidelberg, 1996.

M. Birattari. The Problem of Tuning Metaheuristics as seen from a Machine Learning Perspec-
tive, volume 292 Dissertations in Artificial Intelligence - Infix. Springer, 1 edition, 2005.

T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. J. of Scheduling, 12:177-197, April 2009. ISSN 1094-6136.

R. E. Bixby. Optimization Stories, volume Extra of 21st International Symposium on Mathe-
matical Programming Berlin, chapter A Brief History of Linear and Mixed-Integer Program-
ming Computation, pages 107-121. Journal der Deutschen Mathematiker-Vereinigung, August
19-24 2012.

A. Bonutti, F. De Cesco, L. Di Gaspero, and A. Schaerf. Benchmarking curriculum-based course
timetabling: formulations, data formats, instances, validation, visualization, and results. An-
nals of Operations Research, 194(1):59-70, April 2012. ISSN 0254-5330.

M. Carter and G. Laporte. Recent developments in practical course timetabling. In E. Burke and
M. Carter, editors, Practice and Theory of Automated Timetabling II, volume 1408 of Lecture
Notes in Computer Science, pages 3—19. Springer Berlin / Heidelberg, 1998.

P. D. Causmaecker and G. Berghe. Towards a reference model for timetabling and rostering.
Annals of Operations Research, pages 1-10, 2010. ISSN 0254-5330.

G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza. A sa-ils approach for the high school
timetabling problem. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), 2012.

M. Gendreau and E. Burke, editors. PATAT2008: Proceedings of the 7th International Conference
on the Practice and Theory of Automated Timetabling, 18 - 22 August 2008.

C. C. Gotlieb. The construction of class-teacher timetables. In C. M. Popplewell, editor, IFIP
Congress, volume 62, pages 73-77, North-Holland Pub. Co, 1962.

V. C. Hemmelmayr, J.-F. Cordeau, and T. G. Crainic. An adaptive large neighborhood search
heuristic for two-echelon vehicle routing problems arising in city logistics. Technical Report
CIRRELT-2011-42, Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation, July 2011.

K. Kaneko, M. Yoshikawa, and Y. Nakakuki. Improving a heuristic repair method for large-
scale school timetabling problems. In J. Jaffar, editor, Principles and Practice of Constraint
Programming, volume 1713 of Lecture Notes in Computer Science, pages 275—288. Springer
Berlin / Heidelberg, 1999. ISBN 978-3-540-66626-4.

A. Kheiri, E. Ozcan, and A. J. Parkes. Hysst: Hyper-heuristic search strategies and timetabling.
In Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 497499, 2012.

Bibliography 90

J. Kingston. The kts high school timetabling system. In E. Burke and H. Rudova, editors,
Practice and Theory of Automated Timetabling VI, volume 3867 of Lecture Notes in Computer
Science, pages 308-323. Springer Berlin / Heidelberg, 2007.

J. H. Kingston. Repairing high school timetables with polymorphic ejection chains. In Proceedings
of the Ninth International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012), 2012.

D. Kjenstad, A. Riise, T. E. Nordlander, B. McCollum, and E. Burke, editors. PATAT 2012:
Proceedings of the 9th International Conference on the Practice and Theory of Automated
Timetabling, 29 -31 August 2012.

P. Kostuch. The university course timetabling problem with a three-phase approach. In E. Burke
and M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616 of
Lecture Notes in Computer Science, pages 109-125. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-30705-1.

S. Kristiansen and T. R. Stidsen. Adaptive large neighborhood search for student sectioning at
danish high schools. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

S. Kristiansen, M. Sgrensen, M. B. Herold, and T. R. Stidsen. The consultation timetabling
problem at danish high schools. Journal of Heuristics, 19(3):465-495, June 2013.

G. Lach and M. Liibbecke. Curriculum based course timetabling: new solutions to udine bench-
mark instances. Annals of Operations Research, 194:255-272, 2012. ISSN 0254-5330.

N. L. Lawrie. An integer linear programming model of a school timetabling problem. The
Computer Journal, 12(4):307-316, 1969.

M. Lundberg-Jensen, J. Bruun, and J. Ahmt. Task assignment for high school teachers. Technical
report, Operations Management, Department of Informatics and Mathematical Modeling. Kgs.
Lyngby. Technical University of Denmark, 2008.

S. Martello and P. Toth. An algorithm for the generalized assignment problem. Operational
research, 81:589-603, 1981.

C. H. Martin. Ohio university’s college of business uses integer programming to schedule classes.
Interfaces, 34(6):460-465, November 2004.

B. McCollum, E. Burke, and G. White, editors. PATAT2010: Proceedings of the 8th International
Conference on the Practice and Theory of Automated Timetabling, 10 - 13 August 2010.

L. Muller. An adaptive large neighborhood search algorithm for the multi-mode resource-
constrained project scheduling problem. 1, Department of Management Engineering, Techni-
cal University of Denmark Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark,
2010.

L. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. FEuropean Journal of Operational Research, Volume
218(Issue 3):614-623, 2011.

K. Papoutsis, C. Valouxis, and E. Housos. A column generation approach for the timetabling
problem of greek high schools. The Journal of the Operational Research Society, 54(3):230-238,
2003.

91 Bibliography

N. Pillay. An overview of school timetabling research. In Proceedings of the International Con-
ference on the Theory and Practice of Automated Timetabling, pages 321-335, Belfast, United
Kingdom, 2010.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An
xml format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012a. ISSN 0254-5330.

G. Post, S. Ahmadi, and F. Geertsema. Cyclic transfers in school timetabling. OR Spectrum, 34
(1):133-154, 2012b. ISSN 0171-6468.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012c.

J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research, 66(3):331
— 340, 1993. ISSN 0377-2217.

G. M. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the cumu-
lative capacitated vehicle routing problem. Computers €amp; Operations Research, 39(3):728
— 735, 2012. ISSN 0305-0548.

S. Ropke. Parallel large neighborhood search - a software framework. In MIC 2009, The VIII
Metaheuristics International Conference, 2009.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455-472, November 2006.
ISSN 1526-5447.

M. Salazar-Aguilar, A. Langevin, and G. Laporte. An adaptive large neighborhood search heuris-
tic for a snow plowing problem with synchronized routes. In J. Pahl, T. Reiners, and S. Voss,
editors, Network Optimization, volume 6701 of Lecture Notes in Computer Science, pages
406-411. Springer Berlin / Heidelberg, 2011. ISBN 978-3-642-21526-1.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399-412, April 2012. ISSN
0254-5330.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87-127, 1999.
ISSN 0269-2821.

K. Schimmelpfeng and S. Helber. Application of a real-world university-course timetabling model
solved by integer programming. OR Spectrum, 29:783-803, 2007. ISSN 0171-6468.

G. Schmidt and T. Strohlein. Timetable construction —an annotated bibliography. The Computer
Journal, 23(4):307-316, 1980.

P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing prob-
lems, 1997.

P. Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In M. Maher and J.-F. Puget, editors, Principles and Practice of Constraint Programming
— CP98, volume 1520 of Lecture Notes in Computer Science, pages 417-431. Springer Berlin
/ Heidelberg, 1998.

Bibliography 92

M. Sgrensen and T. Stidsen. Comparing solution approaches for a complete model of high school
timetabling. Technical Report 5.2013, DTU Management Engineering, Technical University
of Denmark, March 2013.

M. Sgrensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 489—
492. SINTEF, 2012.

F. A. Tillman and T. M. Cain. An upperbound algorithm for the single and multiple terminal
delivery problem. Management Science, 18(11):664 — 682, 1972. ISSN 002519009.

M. Yoshikawa, K. Kaneko, T. Yamanouchi, and M. Watanabe. A constraint-based high school
scheduling system. IEEE Expert, 11(1):63 —72, feb 1996. ISSN 0885-9000.

E. Ozcan. Towards an xml-based standard for timetabling problems: Ttml. In G. Kendall,
E. K. Burke, S. Petrovic, and M. Gendreau, editors, Multidisciplinary Scheduling: Theory and
Applications, pages 163—-185. Springer US, 2005. ISBN 978-0-387-27744-8.

Chapter 8 Paper C

A Two-Stage Decomposition of High School
Timetabling applied to cases in Denmark

Matias Sgrensen'-2, Florian H. W. Dahms?
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A/S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark
3Chair of Operations Research, RWTH Aachen University, Kackertstrake 7, 52072 Aachen,
Germany

Abstract Integer Programming (IP) has been used to model educational timetabling problems since
the very early days of Operations Research. It is well recognized that these IP models in general are
hard to solve, and this area of research is dominated by heuristic solution approaches. In this paper a
Two-Stage Decomposition of an IP model for a practical case of high school timetabling is shown. This
particular timetabling problem consists of assigning lectures to both a timeslot and a classroom, which
is modeled using a very large amount of binary variables. The decomposition splits this model into
two separate problems (Stage I and Stage II) with far less variables. These two separate problems are
solved in sequence, such that the solution for the Stage I model is given as input to the Stage IT model,
implying that irreversible decisions are made in Stage I. However, the objective of the Stage IT model is
partly incorporated in the Stage I model by exploiting that Stage II can be seen as a minimum weight
mazimum matching problem in a bipartite graph. This theoretically strengthens the decomposition
in terms of global optimality. The approach relies on Hall’s theorem for the existence of matchings
in bipartite graphs, which in its basic form yields an exponential amount of constraints in the Stage
I model. However, it is shown that only a small subset of these constraints is needed, making the
decomposition tractable in practice for IP solvers. To evaluate the decomposition, 100 real-life problem
instances from the database of the high school ERP system Lectio are used. Computational results show
that the decomposition performs significantly better than solving the original IP, in terms of both found
solutions and bounds.

8.1 Introduction

Integer Programming (IP) has been used to model educational timetabling problems since the
very early days of Operations Research (see e.g. Gotlieb (1962) and Lawrie (1969)). It is
well recognized that these IP models in general are hard to solve (most forms of educational
timetabling are in fact AP-hard (Bardadym (1996))), and this area of research is dominated by
heuristic solution approaches.

93

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 94

In this paper a large IP model for a real-world case of high school timetabling is considered,
which has previously been shown to be a challenge for state-of-the-art MIP solvers. We consider
a basic version of this IP, which includes the essential constraints of most timetabling problems.
An innovative decomposition of this model is shown, which proves to be more efficient to solve.

When facing a hard IP model, decomposition is a commonly used tool to help speed up the
solution procedure. Perhaps the most successful decomposition method in recent years is Column
Generation (CG). However, not many papers on CG and timetabling models are found in the
literature, and it seems that only relatively small instances have been attempted. Papoutsis
et al. (2003) uses CG to solve a Greek case of high school timetabling, with the largest instance
containing 9 class section, 21 teachers and 306 teaching hours. Santos et al. (2012) handle larger
instances, but only generate lower bounds. Qualizza and Serafini (2005) describe a CG procedure
for a university timetabling problem with 63 courses and 25 timeslots. The real-world instances
considered in this paper are of much larger size.

A crucial part of a CG procedure is the identification of a block-diagonal structure in the
problem, otherwise the CG procedure is most likely not efficient. For the high school timetabling
problem described in this paper, it has not been possible to identify such a structure. Therefore
this paper shows a different type of decomposition, a Two-Stage Decomposition (TSD). Such
an approach was first used for timetabling applications in Lach and Liibbecke (2008) and Lach
and Liibbecke (2012) with great success for the curriculum-based university course timetabling
problem. The goal of this paper will be to modify the aforementioned approach to be applicable
for the high school timetabling problem - giving special attention to the high school system in
Denmark.

The considered timetabling problem essentially consists of assigning lectures to rooms and
timeslots, which is commonly modeled using a very large amount of binary variables. There are
three key points to the TSD:

e By substitution, the total amount of variables is significantly reduced, while linearity is
maintained.

e Instead of solving the entire model at once, it can be solved in a two-stage fashion. IL.e.
both the set of variables and constraints are divided into two distinct sets, corresponding
to two smaller IPs (denoted Stage I and Stage II, respectively).

e It will be evident that, except for two soft-constraints, this decomposition maintains opti-
mality of the original model.

The outline of the TSD is to first solve Stage I, which provides a solution where lectures are
assigned to timetslots. This partial solution is given as input to Stage II, which will assign rooms
to the lectures, obtaining a solution for the original problem. The drawback of this decomposition
is that the timeslots assigned to lectures in Stage I are considered as fixed by the Stage II model,
which might prevent an optimal allocation of rooms to lectures. However, by exploiting the
structure of the Stage II model, the Stage I model can be constrained in such a way that some
penalties for assigning rooms to lectures are handled implicitly. Note that if all penalties for
room assigning could be handled implicitly, the approach would be exact. However, two soft-
constraints are not fully incorporated, so only a lower bound on the room penalties are known by
the Stage I model. In fact, one of these soft-constraints are not handled at all by the described
approach. Despite this, it seems likely that incorporating this lower bound in the Stage I model
will provide better results overall (assuming that computing the lower bound does not have very
bad influence on the computational efforts of the used IP solver). IL.e. instead of the Stage I
model being completely unaware of the penalties for room allocation, it seems better to at least
incorporate some of them. Furthermore, the decomposition of the problem into two smaller

95 8.2. Related work

problems presents a big advantage in terms of reduction in the number of variables. Therefore
the overall benefits of the TSD out-weight the downsides, and computational results will show
that it is indeed way more effective than solving the original IP.

The contributions of this paper are the following: 1) It is shown that the approach from
Lach and Liibbecke (2008) can also be applied to a high school timetabling problem originating
from a practical setting, and by extensive computational results it is argued that the TSD is
more effective than solving the original IP. Notice that a similar composition is briefly mentioned
in Sgrensen and Stidsen (2013) for the same high school timetabling problem, but this paper
enhances the approach such that the theoretical maximum gap from optimality is narrowed. The
presented approach turns out to be the most efficient exact algorithm for the problem so far. 2)
Generally, it is shown how this type of decomposition can be applied to models with set-packing
structure, by modifying the underlying equations originating from Hall’s Theorem for matchings
in bipartite graphs. 3) It is shown how the room-priorities of lectures can be handled, by adding
a lower bound on the corresponding penalties to the Stage I model. This facilitates the quality
of the solutions found, as shown by the computational results.

We expect that the basic structure required for applying the TSD can be found in other
timetabling problems as well, and therefore the decomposition can potentially be used more
broadly than the case of high school timetabling shown in this paper. This seems likely because
the essential constraints used in the decomposition are among the most common ones found in
timetabling problems.

The paper is structured as follows. First related papers are described in Section 8.2. The
basic IP model is introduced in Section 8.3, including the essential constraints. Section 8.4 shows
the TSD of this model, and derives the lower bound on room allocation penalties for the Stage
I model. Section 8.5 extends the model so it encapsulates a practical version of the high school
timetabling problem, defined by the online high school administration system Lectio. Section
8.6 shows computational results, comparing the decomposition to previous approaches for 100
problem instances taken from the Lectio database. Section 8.7 concludes on our findings.

8.2 Related work

Integer Programming has been used to model various educational timetabling problems. How-
ever, heuristics are still the most popular method for these problems, see surveys Schaerf (1999)
and Pillay (2013). In terms of IP, de Werra (1985) describes what is called ’a simple model’ for
the class-teacher problem, and existence of solutions is proven under certain circumstances using
graph theoretical models. The problems considered are feasibility problems, and soft constraints
are not added to the models. Birbas et al. (1997) describes a ’fully defined’ IP model for Greek
secondary schools, which is evaluated on five different schools with success. Avella et al. (2007)
formulates an IP model which is used to solve small instances of various origin. The IP is solved
within a VLSN algorithm, with good results.

For the related university course timetabling problem, Daskalaki et al. (2004) presents a
model which schedules courses to timeslots and classrooms, using many so called operational
rules. Three different problem instances of significant size are all solved to optimality using
CPLEX. MirHassani (2006) describes the problem for an Iranian university, and reports good
results by applying the XA solver. In Dimopoulou and Miliotis (2001) an IP model is used to
solve the timetabling problem for The Athens University of Economics and Business.

Decomposition of IP models for educational timetabling is not a very well researched topic.
Burke et al. (2010) state that: In the timetabling community, the “times first, rooms second”
decomposition is a standard procedure. However, it seems that this procedure has not been applied

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 96

much in context of IP models. Burke and Newall (1999) apply the procedure in context of an
Evolutionary Algorithm for Examination Timetabling. In terms of multistage-decompositions,
the importance of Lach and Liibbecke (2008) and Lach and Liibbecke (2012) has already been
discussed. Carter (1983) presents an interesting decomposition algorithm for course timetabling
with elective courses. Stating the problem in terms of a vertex coloring problem facilitates the
decomposition of the graph by cliques, such that the subproblem defined by each clique is solved
separately.

In Burke et al. (2010), experiments are conducted on disabling different combinations of soft-
constraint penalties of the Udine Course Timetabling Problem, including one where all room
penalties on room allocation are disabled. Thereby a similar decomposition to that of Lach and
Liibbecke (2012) is obtained.

Daskalaki and Birbas (2005) presents an approach for university timetabling, where courses
are first assigned to days (skipping some requirements for compactuness), and in the following
stage the timetable for each day is treated locally (enforcing the compactness). Convincing
computational results are shown. In Birbas et al. (2009), a high school timetabling problem
is solved by first allocating ’work shifts’ to teachers, and then solving the actual timetabling
problem. This is related to the type of decomposition performed in this paper. Badri (1996)
uses a related approach for university course timetabling, where faculties are first assigned to
courses, and then faculties are assigned to timeslots. However the problems solved are tiny.

Recently, high school timetabling received attention in the International Timetabling Compe-
tition 2011 (ITC2011), see Post et al. (2012a). This competition built upon an uniform format
for formulating problem instances (and their solutions), known as XHSTT (Post et al. (2012b)).
Currently, around 50 problem instances are available in this format. The problem considered
in this paper deviates from the XHSTT format in several important ways, which is beyond the
scope of this section to elaborate on. Even though many researches participated in ITC2011, it
seems that all were applying heuristics.

8.3 An Integer Programming Model for High School Time-
tabling

As the origin for our approach lies the IP model presented in Sgrensen and Stidsen (2013). To
make a clear presentation of the TSD, this IP model is reduced to its essential parts, which is
described in the following. In Section 8.5, the full IP model is shown in context of the TSD.

A set of events £ is given. Each event generally represents one lecture, which is defined as
a meeting between specific resources, with a certain subject as teaching-objective. The set of
resources is denoted A. The goal of the high school timetabling problem is to assign each event
to a room and to a timeslot, such that no conflicts among resources occur. The set of rooms and
timeslots are denoted R and 7, respectively. The decision variable z.,; € {0,1} takes value 1 if
event e € &£ is assigned room r € R and timeslot ¢ € 7. To ensure a feasible solution exists, both
the set of timeslots 7 and the set of rooms R are extended with a single dummy element, i.e.
T={TUtp} and R = {RUrp}. This should be interpreted in the way that assigning to these
dummy-elements actually means that no timeslot/room was assigned to the event. Thereby the
goal of the IP is to assign as many events as possible to a timeslot and/or a room. From a
practical point of view this is desirable, as the model is used in a decision support context where
it might not be evident how to handle infeasibility. ¢., € RT denotes the penalty for assigning
event e € £ to timeslot ¢ € T, and 7., € RT denotes the penalty for assigning event e € £ to

97 8.3. An Integer Programming Model for High School Timetabling

room r € R. Major penalties are given for assignments to the dummy-elements, i.e.

Getp > ber Ve€E,teT\tp (8.1)
Tenrp > Teyr Vec€&,r€R\rp (8.2)

A room might be unavailable in certain timeslots, indicated by the binary parameter G, ; €
{0,1}, which takes value 1 if room r € R is available in timeslot ¢ € T, and 0 otherwise.
Furthermore, a set of eligible rooms exists for each event. Let parameter K. , € {0,1} take value
1 if event e € £ can take place in room r € R, and 0 otherwise. Each event requires a fixed set
of resources. Let E!, a € A, denote the set of events where resource a participates.

We include in the model a set of constraints which will be described later, denoted by the
constraint-set Pyyper, slightly abusing notation. These constraints define various other important
criteria, such as forbidden timeslots for certain events, events which must be placed in the same
timeslots, etc. Since these constraints are not required for describing the decomposition, their
definitions are postponed to Section 8.5. We allow the set of constraints FPytner to also denote
soft-constraints (i.e. constraints which result in a weighted penalty in the objective function if
it is not fulfilled). Thereby these constraints contain all necessary for conditions for modeling
the timetabling instances in question, and represents a large set of distinct types of constraints.
It will be argued in the next section that these constraints can be handled in the decomposition
such that optimality of the IP model is not lost, with one exception.

Model (8.3) shows the IP model.

IP Model for High School Timetabling (8.3)
min w= Y (s + Ter) Tet (8.3a)
e€E,reRLET

S.t.

(one time/room) Z Tepr =1 Veel (8.3b)
reR,teT

(resource conf.) Z Tert <1 VYae AteT\tp (8.3¢)
reR,ecE),

(room conf.) er,r,t < Gpy VreR\rp,t €T \tp (8.3d)
ecé

(eligible rooms) Z Tert < K., ,Veec&reR (8.3¢)
teT
Tert € Potner (83f)
Le,rt € {07 1} (83g)

The objective of the model is to minimize the overall penalty for assignments, given by (8.3a).
Constraint (8.3b) specifies that each event must be assigned exactly one timeslot and one room.
Events which require the same resource cannot be scheduled simultaneously (except in the
dummy-timeslot), which is ensured by constraint (8.3c). A room cannot be used by more than
one event in each timeslot. This is specified in constraint (8.3d). The requirement for eligible
rooms is specified in constraint (8.3e). Constraint (8.3f) specifies that constraints Pyper should
be respected.

Theorem 2. The High School Timetabling Problem as specified in (8.3) is N'P-hard.

Proof. We conduct a reduction from Vertex Coloring. Let G = (V, E) be an arbitrary graph and
k be an arbitrary number. The question of the coloring problem would now be whether it is
possible to color G with k colors, such that no two adjacent vertices share the same color.

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 98

Now construct a High School Timetabling instance in the following way:
e Let there be an event for every vertex, ie. £E=V.

e Make sure there are enough rooms for all events, therefore create a room for every event
(i.e. |R| = |€]) and make sure all events fit in all rooms (i.e. K., =1Ve € £,7 € R), and
that all rooms are available in all timeslots (i.e. G, =1Ve € £,r € R).

e For every edge {v1,v2} € F we create a resource in A (i.e. A= E). The events using this

resource will be the vertices connected by the edge (i.e. E%vl,vz} = {v1,v2}).

e We use exactly k timeslots (i.e. T ={1,...,k}).

e The additional constraints Pytpe, can be dropped without loss of generality, as we impose
no other restrictions on the timetabling instance. Also as we only search for a feasible
solution, the soft constraints can easily be ignored.

Now we have a direct relation between the Vertex Coloring problem and the new timetabling
instance. A solution of one problem can be transformed into a solution of the other by translating
the colors of the vertices into timeslots, and vice versa. The rooms pose no restriction as every
event can be scheduled in its own room.

Therefore solving the timetabling instance would result in solving the Vertex Coloring Prob-
lem, and the High School Timetabling problem is A'P-hard. O

Here we remark that Model (8.3) encapsulates many of the basic constraints required by most
timetabling problems. If we for instance consider the XHSTT format, the basic requirement is
to assign events to timeslots and resources (corresponding to rooms in our cases), subject to no
clashes between resources. Therefore it is believed that the type of decomposition considered in
this paper can in principle be applied to other timetabling problems as well.

8.4 Two-Stage Decomposition of the Integer Programming
model

The TSD of Model (8.3) is performed as follows. The model is split into two stages; In Stage I,
events are assigned to timeslots, and in Stage II, events are assigned to rooms. The respective
decision variables for these stages are the following; y., € {0,1} takes value 1 if event e € £ is
assigned timeslot ¢ € 7, and 0 otherwise; z., € {0,1} takes value 1 if event e € £ is assigned
room r € R, and 0 otherwise. This means that constraints (8.3b) and (8.3c) are part of Stage I,
and constraints (8.3d) and (8.3e) are part of Stage II.

As for constraints (8.3f), defined by the set Pyiper, it is assumed that each of the constraints
in Pyiher is either only touching the assignment of events to timeslots (denoted Piimesior) Or the
assignment of events to rooms (denoted Proom) It is shown in Section 8.5 that this assumption
holds, with one exception. This means that constraints Piimesiot can be fully stated in terms of
variable y. ¢+, and constraints Prom can be fully stated in terms of variable z. ,. As constraints
Piimesloy are part of Stage I, these are handled optimally. This is different for P,oom, as those
constraints are harder to consider during Stage I. We will therefore address them with greater
care in the next sections and show how we can add weighted room allocations to the decomposed
model as a good approximation.

The solution obtained from the Stage I model is given as a parameter to the Stage II model,
denoted y; ,. The advantage of this approach is the huge reduction in the number of variables in

99 8.4. Two-Stage Decomposition of the Integer Programming model

both stages, which results in a significantly decreased solving time. The following substitution
of variables are made:

Z Te,rit = Ye,t (Sta‘ge I) (84)
reR
Tert =Y, 2er (Stage II) (8.5)

The objective (8.3a) of the original model defines a natural objective for both Stage I and Stage
I1, since it can be split into two independent expressions (denoted w! and w!!, respectively). If
this was not the case (e.g. if an event had different priorities for rooms depending on the timeslot
it was assigned), it would complicate matters in terms of the Stage I model.

To sum up, Models (8.6) and (8.7) show Stage I and Stage I, respectively.

Stage I (8.6)
min w! = Z GetYe.t (8.6a)
c€E teT
S.t.
(one timeslot) Zye,t =1Vecé& (8.6b)
teT
(resource conf.) Z Yer <1Vae At €T \tp (8.6¢)
e€eE],
Ye,t S]Dtimeslot (86(21)
Yer € {0,1} (8.6€)
Stage 11 (solution from Stage I is denoted y; ;) (8.7)
min w!! = Z TerZer (8.7a)
ecE,reER
s.t.
(one room) Z Zew =1 Veef& (8.7b)
reR
(room conf.) Zy;tzeyr <Gy VreR\rp,t €T \'tp (8.7¢)
ec&
(eligible rooms) z , <K.,Veec&reR (8.7d)
Ze,r € Proom (876)
Zer €{0,1} (8.71)

The outline of the TSD is shown in Figure 8.1. For a variable = the star-suffixed version z*
denotes a feasible solution. Stage I is solved using a MIP solver to obtain a solution y; ;, which
is given as input to the Stage II model. Note that Stage I possesses the coloring structure from
theorem 2. Therefore Stage I is already a hard problem in its most basic form. Furthermore the
value of the LP-relaxation of the Stage I model (denoted w!%) is a lower bound on the original
model, as the Stage I model can be seen as a relaxation. Solving the Stage II model subject to
the solution of the Stage I model obtains a solution z7,, and a solution to the original model
x} ., can then be derived by equations (8.4) and (8.5).

For this paper we will solve Stage II using the specified IP even though we have not established
its complexity yet. But as constructing a polynomial time algorithm for Stage II that can cope
with all the additional constraints would be out of this papers scope we will postpone this to

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 100

assign timeslots and rooms)

{ Original model (z¢ ,¢)
(

Ix*
Lower bound wis

Stage IT (ze,r)
(assign rooms)

Stage I (ye,r)
(assign timeslots)

Solution

*
xe,r,t

Figure 8.1: Two-Stage Decomposition flow chart.

a potentially later point in time. In the computational results section we will see that solving
Stage II will not be the time-wise bottleneck anyhow.

As previously discussed, the penalties for room allocation can be implicitly handled in Stage I,
which is described in Section 8.4.1. This extension of Stage I will not only allow better solutions
to be found, but possibly also improvements in the bounds found by means of the LP relaxation.

As an alternative approach, we remark that an iterative procedure could in principle be used,
such that the solution obtained from the Stage II model is given as input to the Stage I model,
and the whole procedure is repeated. It is however unclear how the input from the Stage II
model should effect the Stage I model to obtain convergence towards better solutions in terms of
the overall objective. Furthermore, such an approach would require that both Stage I and Stage
IT can be solved ’quickly’ (for the practical problem treated in this paper, computational results
will show that this is in fact not the case for the Stage I model).

8.4.1 Extending Stage I with room allocation

The key idea behind extending Stage I with room allocation penalties is to consider Stage II as
a matching problem in a bipartite graph. Constraints (8.7e) are set aside in the following, as
they have not been defined yet. However, it will be seen later that these constraints does not
fully obey the matching problem structure, and therefore Stage II must be solved with a MIP
solver. This means that the room penalties are only partly incorporated in Stage I, but still this
seems better than having Stage I being totally unaware of these penalties, as already discussed
in Section 8.1.

Some basic graph notation is introduced in the following. A graph is bipartite if its set of
vertices can be partitioned into two sets A and B, such that every edge has one endpoint in
A, and the other endpoint in B. A matching in a graph is a set of edges such that no two
of these edges share endpoints. A mazimum matching is a matching that contains the largest
possible number of edges. The matching number v (G) of graph G is the number of edges in a
maximum matching. For a graph with edge-weights, a minimum weighted mazimum matching
is a maximum matching where the sum of the weights on the edges of the matching is minimal.

In the Stage II model (8.7), notice first that the only constraint which treats timeslots is
constraint (8.7c). Since this constraint applies to timeslots individually, Model (8.7) can be
split into |7| independent optimization problems. Second, assume that the minimum weighted

101 8.4. Two-Stage Decomposition of the Integer Programming model

maximum matching problem of the weighted bipartite graph Gy = (£ UR, E;) fully describes
the optimization problem of timeslot ¢ of Model (8.7). To recognize this, let Rp be the set of |£]
distinct dummy-rooms. IL.e. for each event a dummy-room is created (and a corresponding edge
is added to the graph) to ensure a matching of every event to a room will always exist. Hence
the room-vertices of graph G is given by R = R U Rp. The set of edges is given by (skipping
edge definitions for the dummy-room vertices) E; = {e € £,r € R | K., = 1 A G, = 1}, and the
weight on each edge is given by 7. .. The goal of the matching problem is to select a maximum
matching with minimum weight. A trivial maximum matching will assign every event to the
dummy-room. Clearly this resembles component ¢ € 7 of Model (8.7).

Stating the Stage II model in terms of this graph allows us to exploit some well-known
properties of matching problems in bipartite graphs. In the following, notation is simplified by
dropping the t-index where applicable, i.e. we write GG instead of G; and F instead of F;. Denote
by I' (S) the neighbors of event-nodes S C € in graph G, i.e. T'(S)={ie R |j € S, (i,j) € E}.
Hence I' (S) € R. The well-known theorem of Hall states that a bipartite graph G = (€ UR, E)
has a matching of all vertices £ into R if and only if |T"(S)| > |S|] VS C £. Observe that for
timeslot ¢ € T, the variable y., determines whether event e € £ is part of graph G. Lach and
Liibbecke (2012) used this theorem to add constraints of the form

D yer <IT(S)) VSCELeT (8.8)

ecS

to the Stage I model to guarantee that the Stage I model would yield a feasible matching problem
for every component ¢t € T of the Stage II model. However, such constraints are redundant in
our case, as we are guaranteeing that no matter how y.; is selected, a feasible matching will
always exist (due to the dummy-rooms). Instead we modify the expression (8.8) to provide a
lower bound on the weighted matching problem.

For the bipartite graph G = (S UR, E) (the edge-weights are set aside for now), let the
deficiency of a vertex set S C & be defined as def (5) = |S| — |T' (S)]. Let the deficiency of G be
defined as def (G) = maxgcg def (S). Theorem 1.3.1 of Lovasz and Plummer (2009) states the
following:

Theorem 3. The matching number of the bipartite graph G = (EUR,E), is v(G) = [€] —
def (G).

Le. for the bipartite graph G, def (G) denotes the amount of vertices which are not matched
in the maximum matching.
Let W denote the ordered set of different values found in =, i.e.
W={weR"|Jec&,FreR:me, =w} (8.9)
w; < w;j < ord(w;) < ord(w;) V(wi,w;) €W (8.10)
Notice that no restrictions are posed on the amount of different values found, but it should be
remarked that for our practical case, the cardinality of W is small (typically below 10).

The bipartite graph G is split into subgraphs, one subgraph for each w € W. A subgraph is
denoted as G<,, = (5 UR, ng), where the set of edges are those with at least weight w,

E<y,={(e,r) € E|me, <w} (8.11)
By these definitions, it is clear that

T (Gew) ST (Gewy)| <= (8.12)
def (Ggwl) Z def (Gng) Z e (813)

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 102

Using the deficiencies of these subgraphs, a lower bound on the minimum weight maximum
matching can be stated. Let a,, € Ny be defined as

G, = {I/ (Ggwi) -V (Gswi_l) = def (Ggwi_l) — def (Gﬁw,;) ifie>1

v (G<w,) = |&| — def (G<w,) otherwise (8.14)

The intuition behind a,, is to measure the change in the matching number when edges with
weight w are added to the subgraph G<,, ,. Note that 0 < a,, < |£] for any w € W, as
0 < def (G<w) < |€].

Theorem 4. The quantity

§ W * Gy

wew

15 a lower bound on a minimum weight mazimum matching in the edge-weighted bipartite graph

G.

Proof. Assume for contradiction there exists a maximum matching M with lower weight, i.e.

Zwe< Zw-aw

eeM weW

Let b,, denote the number of edges in M of weight lesser or equal w, i.e.
by ={e€ M :w, < w}

Let k be the smallest number such that,

k
bw, > Z Qo
i=1

This number must exist since M is a cheaper matching. For the subgraph G<,,,, b, can never
exceed the matching number v (G<,,) (by Theorem 3). We say ’exceed’ as the matching might
not include precisely v (G<.,,) edges of weight lesser or equal wy. This gives:

bwk < V(Gﬁwk)
— €] - def (Gzu,)
= ‘5‘ —def (GSwl) + def (Ggwl) — def (Ggwg) + ...+ def (Gka—l) —def (Ggwk)

k
= E awi
i=1

which is a contradiction. O

=0

This lower bound is minimized in the objective of the Stage I model. Hence, any lower bound
on the Stage I model is a lower bound on the overall problem. Additional notation is needed for
stating the extended Stage I model.

The neighbors of event-nodes S C £ in graph G <., is denoted I'y <, (S) for timeslot ¢ and
weight w. Let the variable def; <,, € Ny be the deficiency of subgraph G <,,. The deficiencies

103 8.4. Two-Stage Decomposition of the Integer Programming model

for each subgraph can be determined by adding the following constraint (follows directly from
Theorem 3 and the definition of the deficiency for a bipartite graph),

3 eu —defy < < [Docu (S)] VSCEtET,weW (8.15)
ecS

Model (8.16) shows the extended model. Variables def; <., and a; ., are specified to be continuous
as they will naturally take integer values. Obviously an exponential amount of constraints is
added due to (8.16d), but it will be shown that for our practical purpose, the amount of required
constraints is low.

Stage I extended with Hall’s condition (8.16)
min w! = Z e tYet + Z Wat g (8.16a)
ecE teT teT , weW
s.t.
(one timeslot) Z Yot =1 Ve e & (8.16b)
teT
(resource conf.) Z Ye,t <1 Vae At e T \tp (8.16¢)
ecE!,
(Hall’s) > Yer—defy <y < Tocw (S)| VS CELET, weW (8.16d)
e€sS
(LB) €] — defy <, = Gy, vte T (8.16e)
(LB) defy <y, —defy <ip = ay Vte T,we W,ord(w) > 1 (8.16f)
Yer €{0,1} (8.16g)
def; <y, a1 € RT (8.16h)

Example 1. Below is shown an example of a bipartite graph and its subgraphs for some
timeslot. Three different room-weights exists, W = {0,2,10}. Clearly, an optimal solution to
the matching problem of this graph is (e1,7r1), (e2,73), (e3,72) with value 2. The subgraphs for
weights 0 and 2 are shown, and the lower bound derived.

Ye, — defcg <1
€1 -

0 r Yey — defgo <2
0 - <
al Yeo — defco < 1 defeg = 1
T _ < <
rp)10 e1 f 5)0 Yer T Yo — defco <2 a = |€] — defey =3—1=2

Yer + Yes — defgo <2

A Yeo T Yeu — defey <2
7‘% 10 { €2 =0 T2 Yey + uefjg Yes2— defgn <2
2 €1 =0 T .
0 (2) Ye, — defoy <3
7% 10-{ es 7 “ g = Yes ™ defgz =1 defey =0
€3 0 T3 Yeu + Yea = dEfSZ =3 az = defgo - d8f§2 =1-0=1

Yer + Yo, — defg <2
Yeo + Yoy — defcy <3
Yer + Yo + Yes — defey <3

Hence the lower bound is derived as:

LB = ag0+ a2 =2

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 104

Example 2. Naturally, the lower bound is not necessarily tight, as shown by the following small
example.

€1 T3

€2 T4

For weight wy = 1 the deficiency of Gy is def (G1) = 1 and therefore a; = 1. As the deficiency
for Go is def (G2) = 0 we also have ay = 1. The lower bound therefore reads 1-1+2-1 = 3.
But obviously the only (and therefore minimal weight) mazimum matching has weight 4. In fact,
by increasing the weight on the weight 2 edges, it is seen that the gap between the lower bound
and the actual minimal weight mazimum matching could potentially be arbitrarily large. For the
practical problem handled later, the weights can take values {1,2,...,10}, and therefore the gap
between weights is low. The gap between the lower bound and the actual matchings obtained will
be investigated experimentally.

8.4.2 An exact approach using Egervary’s theorem

An an alternative approach to the derived lower bound, the theorem of Egervary (Egervary
(1931)) can be used to characterize the minimum weight of a matching in a bipartite graph,
which deserves a mentioning in this context. The theorem states the following ((Schrijver, 2003,
Theorem 17.1), here stated as a minimum weight problem):

Theorem 5. Let G = (V,E) be a bipartite graph and let w : E — R be a weight function.
Then the minimum weight of a matching in G is equal to the mazimum value of y(V'), where
y:V = R* is such that

Yu + Yo Swe Yu,v €V, (u,v) €E

However, since we consider a bipartite graph for each timeslot, and each bipartite graph in worst
case has |£]|R| vertices (which occurs often in practice), the amount of required constraints is
of magnitude |E| |R]| |7, so this is not a tractable approach. Furthermore, since the graph is not
static (i.e. its structure depends on assignments of events to timeslots), a min — max formulation
would be required.

8.4.3 Generating Hall’s inequalities

To generate the Hall’s inequalities, it is necessary to exploit the structure of the underlying graph.
I.e. we use problem specific knowledge to overcome the requirement of enumerating all subsets
of events. In the Lectio case, two important features are known about the bipartite graphs:

e An event often has a special association with one specific room. This is either because the
event is locked to that room, or because a penalty is imposed on not assigning an event to
the room it was previously assigned to. In the later case, this means that one room has a
lower weight than all other rooms for the particular event. Hence, in the subgraph G<,,
for this respective lower weight, only a single edge exists for the event. An event with only
a single adjacent edge is denoted as a singleton event from now on.

e Furthermore, predefined feature-groups of rooms exist. A feature group of rooms is devoted
to a certain type of lecture, for instance chemistry or physics, which require a room with
specialized equipment. Hence many events are adjacent to the exact same set of rooms.

105 8.4. Two-Stage Decomposition of the Integer Programming model

These graphs are hence exploited by separately considering the inequalities induced by singleton
events and the inequalities induced by all other events, and finally those inequalities induced by
combining these. The approach is formalized below. It should be remarked that applying this
type of decomposition will require exploiting at least some properties of the underlying graph.
We refer to Balas and Pulleyblank (1983), Edmonds (1965) and Lach and Liibbecke (2008) as
helpful resources in this aspect.

For a subset of rooms R C R, let "' (R) be the set of events adjacent to only rooms in R,
ie. "' (R)={ec&|T ({e}) CR}.

Theorem 6. The Hall inequalities

Y ye—def<|T(S) VSCE

ecS

are fully contained in

> ye—def<|R| VRCR
eel'"1(R)

Proof. Let S C € be any set of events. Now we let R =T (S). Obviously we have S CT'~! (R) =
r-4(r(s)). It Ycer-1(r) Ye — def < |R| holds we get

D ye—def < > yo—def <[R|=|T(9) O

e€sS eel'~1(R)

This means that instead of having a constraint for every subset of events we can do with a
constraint for every subset of rooms (which are considerably less).

Next we can further reduce the number of necessary constraints by exploiting symmetry
between rooms. Rooms which are adjacent to exactly the same events can be grouped, and
essentially treated as one room.

Theorem 7. Let Ry,...,R,, C R be distinct (i # j = R; N R; = 0) subsets of rooms. Let
I C{1,...,m} be an index set such that

UF_I(Ri) _ ! (U Ri) (i.e. there is no event that only fits into a

combination of the room sets in I)

icl i€l

Then the Hall constraint

Z Ye —def <

eel~t (Uiel Ri)

Ur

iel

is dominated by

> ye—defi<|R| Viel
eER;
Z def; < def

i€l

where def; € Ny is the deficiency of index i € I, i.e. def; = def (F’l (Rl))

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 106

Proof. First note that), ; def; < def implies

S ge—def <> Z ye*defi

e€l 1 (Uer Ri) i€l eeT—

Next by > cp-1(g,) Ye — def; < [R;| we get

> Z y—defiSZIRz-\:URi

i€l ecl'— el el

where the later equality holds as the R; are distinct. O

Since the amount of possible ways to select I is exponential, this shows a potential way to limit
the amount of necessary inequalities.

The graphs of the Lectio instances usually have the following structure, as previously dis-
cussed: Certain events are fixed to a specific room. These events are known as singleton events,
and are denoted with the set E'. If the singleton events are discarded, all other rooms can be
grouped into groups Z = {1,2,...,m}, i.e. R; C R Vi € Z, where every room is connected to
the very same events as the other rooms of the same group. In particular this means

TH(R\E'=0 VRCRjicl (8.17)

I.e. no event is adjacent to only a subset of rooms of the room-groups, except for the singleton
events. The key observation here is that the number of these groups of rooms is low, yielding a
tractable way to generate the Hall inequalities. By Theorem 6 we know that a subset of rooms
fully characterises one of the Hall constraints (and that it is sufficient to consider only those).

Corollary 1. Given the structure of the Lectio graphs, only the following subsets of rooms need
to be considered wrt. eq. (8.15) (in the altered form defined by Theorem 6):

(I) T(e) VeecE! (8.18)
Ur vicz (8.19)
el

Proof. For contradiction, let RC R be any other subset of rooms, i.e.
R#T(e) VYee E!
R#£|JR: vICI
icl

R can~be dgcomposed into subsets Ri,i € 7, such that él C Rl,RQ C Ry,.. .,Rm C R,, and
UiEI R; =R. ~

For each of the decomposed room sets R; we can now have one of the three following cases
(by eq. (8.17), which disallows that R; # R; and T'~! (RZ) \E £ 0):

1. R, =R,
Ri # R; and ! (Ri) NE' 40

3. Ri# Ry and I (Ri) =0

107 8.5. Lectio High School Timetabling Problem

Let the respective indices be contained in the sets I, I5 and I3. The rooms from the third case
(Ri,i € I3) do not add events to the left hand side of a Hall constraint and can therefore be
ignored.

If combining the rooms from the first case to R’ = (J;¢;, R; we get one of the already consid-
ered combinations of room groups. Now note that there is no event fitting into the combination
of R’ with any of the rooms from the second case (their I'~! only contains singleton events) and
therefore the condition for Theorem 7 is met:

(g P! (R)) Ur Y (R)=T1"" ((g RZ-) U R’)

So we now know that the Hall constraint corresponding to Ris unnecessary. O

Algorithm (1) shows the implemented algorithm for generation all necessary Hall constraints
according to this construction.

Algorithm 1 Generating Hall’s conditions

: input: bipartite graph G = (5 UR, E)

: output: set of sets of rooms H, which each constitute a Hall inequality

: identify E' of G

N, ={ecE\E'|rel(e)#0} > Identity adjacent events for each room

: T={RCR|(rir;) € Ri#j, Ny, =N, } > Groups of rooms which are adjacent to the
same events

T o W N

6: for all S € P(T)do > P(T) denotes the powerset of T, i.e. the collection of all subsets
7 H=HU{reR|ReS} > Add set of room (eq. (8.19))
8: end for

9: H=HU{r} VreTl (E') > Add rooms of singleton events (eq. (8.18))

In Line 5 rooms are grouped. Here it should be remarked that this is done in a way that
identifies the minimum number of groups of rooms. The amount of generated inequalities is
hence exponential in the number of groups of rooms. For the Lectio high school timetabling
problem, this number is in general low. However, an artificial limit of a maximum of 12 different
groups of rooms is imposed, allowing in magnitude of 2'? inequalities to be generated for each
timeslot. In practice, only two problem instances are restricted by this limit ("HasserG2012"
and "SlagelG2012"). The room groups to generate inequalities are selected by ordering the room
groups in terms of total number of adjacent events to all other room groups, and taking those
room groups where this number is highest. Obviously, omitting some inequalities will not change
the fact that the room allocation penalty added to Stage I is a lower bound on the objective of
Stage II.

8.5 Lectio High School Timetabling Problem

To establish computational results, Stage I and Stage II are extended to the full version of the
Danish case of high school timetabling described in Sgrensen and Stidsen (2013). This variant
of the problem is used in the timetabling component of the high school ERP-system Lectio, and
hence reflects all aspects of a practical timetabling optimization problem. Lectio Timetabling
is used by many high schools in Denmark, and this formulation of the problem has been used
in production mode for over a year. In this paper a brief introduction to each of the added

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 108

constraints and variables is given. More in-depth description and motivation can be found in
Serensen and Stidsen (2013).

This timetabling problem contains more types of constraints than what is usually found in
the literature. This is mainly related to the big number of different high schools which use it,
which inevitably gives a big variety of required features. However, a conversion scheme from this
timetabling problem to the general XHSTT format is known, so the Lectio problem fits within
the general concepts of high school timetabling problems.

Extensive computational experiments have shown that the usual formulation of this time-
tabling problem using a binary variable with three indices is very challenging for the commercial
MIP solver Gurobi 5, which is among the very best general-purpose MIP solvers according to
recent benchmarks of Mittelman (2013). Therefore this timetabling problem is a good candidate
for testing the TSD approach.

8.5.1 Stagel

The set of timeslots T is defined by the combination of the set of days D, and the set of daily-
timeslots (known as modules) M. The set of resources A consists of teachers and students, which
is also known as the set of entities. Furthermore, the set of classes is denoted C. A class c € C
is a non-physical resource treating a specific teaching-subject, and is associated with a certain
set of events. Hence, an event can be viewed as a single lecture of a certain class. Parameter
Je.c € {0,1} takes value 1 if event e € & is part of class ¢ € C, and 0 otherwise.

Variable v, € {0,1} takes value 1 if entity a € A is active in timeslot ¢ € T, and 0 otherwise.
Variable f, 4 € {0,1} takes value 1if entity a € A has no events scheduled on events on day d € D
(we say that the entity has a day off, even though he/she might be occupied by unscheduled
activities, such as lecture preparation), and 0 otherwise. Variable b., € {0,1} takes value 1 if
class ¢ € C has at least one lecture in timeslot ¢ € 7, and 0 otherwise. Variable n.q4 € {0,1}
takes value if class ¢ € C has a neighbor-day conflict on day d € D. A neighbor-day conflict
occurs when the same class has scheduled events on two consecutive days. Variable o, 4 € {0,1}
takes value 1 if entity a € A has only one event on day d € D, and 0 otherwise. Days with only
one lecture are undesirable and should be avoided. Variable w, € Ny is the amount which class
¢ € C is ’out of week-balance’. ILe. if the set of timeslots is made up of times from more than one
week, the amount of events of each class in each week must be equivalent (as far as possible).
Variable h, 4 € Ny is the amount of idle timeslots (a timeslot with no activity, but there exists
both at least one earlier and one later timeslot with activity) for entity a € A on day d € D.
Variables ﬁa)d,ﬁmd € Ny denote the ordinal number of the first and last timeslot with activity
on day d € D for entity a € A, respectively.

The objective consists of 6 additional terms. These denote the weighted sum of entity idle
slots (weight ¢, € RT), neighbor-day conflicts (weight ¢ € R*), days with only one lecture
(weight 7, € RT), days-off for teachers (weight v, € RT), days-off for students (weight d, € RT),
and class week stability (weight ¢ € RT), respectively.

Let parameters S, and C. be the set of events which should be scheduled in the same timeslot
as event e € £, and in the timeslot immediately following event e € &, respectively. Parameter
P4 € {0,1} takes value 1 if day d € D and day d’ € D are neighbor-days, and 0 otherwise.
Parameter R, 4 € {0, 1} takes value 1 if class ¢ € C is part of some event which is locked to some
timeslot on day d € D, and let N, € Ny be the number of allowed neighbor-day conflicts for class
¢ € C. T4 denotes the set of timeslots on day d € D. Parameter D., € {0,1} takes value 1 if
event e € £ can be scheduled in timeslot ¢t € 7, and 0 otherwise. Parameter F, € Ny denotes
the amount of required days off for entity a € A. Parameter W, € Ny denotes the maximum
amount of events which can be scheduled to entity a € A on any given day.

109 8.5. Lectio High School Timetabling Problem

A class can only have one event assigned to each day, unless it is specified that multiple events
should be placed in contiguous positions. We say that such day-conflicts are infeasible. The set
E"" C £ denotes the set of events for which day-conflicts are checked.

The most common case is that a school creates a timetable for a single week. However,
some schools desire to create a two-week timetable instead. This allows more flexibility in the
planning; take for instance a class with a nominated teaching load of three events per week. In
case the school uses a two-week timetable, this class can for instance have one double lecture in
the first week, and two double lectures in the second week. d(7) and d (7) denotes the set of
days in the first and in the second week, respectively. 7 and T denotes the timeslots in the first
and second week, respectively.

The complete Stage I model is shown in (8.20).

Stage I Lectio (8.20)
Z ¢e,tye,t + Z Wat,w + Z Baha,d
ecEteT teT , weW a€A,deD
min wl = +C Z Ne,d + Z NaOa,d + Z Ya |:|D| - Z fa,d:| (820&)
ceC,deD acA,deD acA deD
+ Z 6afa,d+Lch
a€A,deD cec

s.t.

(one timeslot) Z Ye,t =1 Vee & (8.20b)
teT

(entity time aux.) Z Yot =vq: Va€AtET (8.20c)
ecEl

(entity conf.) Z Vat + fa,d <1 Va e A,d e D (8.20(31)
teTa

(Hall’s) > e — defy <oy — [Tt <u (S))] <0 VSCE&EteT,weWw (8.20¢)
e€sS

(room alloc. 1b) |E] — def; <u, = G, VLET (8.20f)

(room alloc. 1b) def; <,_, — defy <, = arw VtET,weW,ordw)>1 (8.20g)

(locked time) ye =1 Vee&teT,LT.;=1 (8.20h)

(same time) Yet — Ye t =0 Vec&,e €S, teT (8.20i)

. - Ve € £,¢ € Ce, (t,t') € T,dy = .
(cont. times) Yert — Yer 7 =0 d, ord(t)+ 1= ord(t) (8.205)
Ve € C,(d,d/) € D,Pd,d/ =1,

(n.d. conf.) Z bey + Z et — Ne,d <1 Rt Row <1 (8.20k)
teTa t€Tyr

(n.d. conf.) Z Neyd < N, VeeC (8.201)
deD

(forbid. times) Z Ye t =0 Ve € £ (8.20m)
t€T,De v =0

(idle slots) had—hog— Y Var +1 = hoaq Yac AdeD (8.20n)

teTa

(idle slots) M| = (IM| — ord(t)) v+ >h,q Yac A deDteTy (8.200)

(idle slots) ord(t) v, < haa Yac A deDiteTy (8.20p)

(days off) > faa >F, VYacA (8.20q)
deD

(days off) > Vot + faa >1 VYacAdeD (8.20r)
teTa

(day conf.) Z Je cYet < b VeelCiteT (8.20s)
ecE"

(day conf.) > bey <1 VeeCdeD (8.20t)
teTa

(work limit) > Yeu <W, Vac€AdeD (8.20u)

e€€ teTa

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 110

(one lecture) 2 — Z Vat — 2fad < 044 Yae A deD (8.20V)
teTq

(class stabl.) ‘ Z JecYert — Z JeclYer| — 1= w, VceCl (8.20W)
ecE tel e€ELET

(d.o. stabl.)] S fea— S faa <1 VacAd (8.20x)
ded(T) ded(T)
Yer €{0,1} (8.20y)
Va,t, fa,d7 bc,t> Ne,ds Oa,d S [O: 1] (820Z)
ha,d7ﬁa‘dvﬁa,d7wcvdeft,ngat,w S R+ (82034&)

Constraint (8.20c) constraints the auxiliary variable v,, properly. Constraint (8.20d) treats
entity conflicts in a slightly changed formulation, to also constrain variable f, 4 properly. Con-
straints (8.20e)-(8.20g) define the lower bound on room allocation, and are similar to those
previously described. Constraint (8.20h) ensures the assigning of events are locked to a certain
timeslot. Constraints (8.20i) and (8.20j) ensure the placement of events which must be placed in
the same/contiguous timeslots. Constraints (8.20k) and (8.201) ensure that variable n. 4 is con-
strained properly, and that no more than N, neighbor-day conflicts are scheduled for class ¢ € C.
Constraint (8.20m) poses restrictions on timeslots for which an entity is unavailable. Constraints
(8.20n)-(8.20p) ensures that idle slots for entities are penalized accordingly. Constraint (8.20q)
ensures that sufficient days off is assigned to each entity. Constraint (8.20r) makes sure that if
an entity a € A has no event on some day d € D, then variable f, q is forced to take value 1.
This is necessary as this variable is minimized in the objective. Constraints (8.20s) and (8.20t)
ensure that day-conflicts for classes does not occur, and constraints the variable b,; properly.
Constraint (8.20u) ensures that the limit on the amount of events assigned to a day for entity
a is respected. For an entity, days with only one event scheduled are undesirable. Constraint
(8.20v) penalizes days with only one events scheduled for entity a. Constraint (8.20w) forces
week-stability for events of classes, i.e. in case two-weeks are being planned, events for courses
must be spread evenly throughout the weeks. Constraint (8.20x) ensures that in case several
weeks are being planned, the days off for an entity are spread evenly throughout the weeks.

8.5.2 Stage II

Let variable v, , € {0, 1} take value 1 if there is at least one event of which class ¢ € C participates
assigned to room r € R, and 0 otherwise. Variable s, € Ny is the amount of ’excess’ rooms
assigned to events of class ¢ € C, i.e. the total amount of rooms assigned minus one. This is used
to enforce room stability for classes, since it is undesirable for a class to be assigned too many
different rooms. Parameter LR, , € {0,1} takes value 1 if event e € £ is locked room r € R.

Stage II Lectio (8.21)
min w!! = Z TerZer + ez Se (8.21a)
ecE,reER c
s.t.
(one room) Z Ze,r =1 Veeé& (8.21b)
reR
(room conf.) Z Yo 1Ze.r < Gpy VreR\rp,t €T \tp

ecé
(8.21c)

(eligible rooms) z , <K, Veec&reR (8.21d)

111 8.6. Computational Results

(locked rooms) ze, =1 Vee&,reR,LR.,=1
(8.21e)
(room stbl.) Z Je.cYs 1Zer — Z JecVer <0 VreR\rp,cel
ecE teT \tp ec&
(8.21f)
(room stbl.) Z Ve — 1 <s. VeeCl (8.21g)
reR
(not only room) Z Yo tpZer — Z LR, , <0 Veef (8.21h)
reR\rp reR
ey Vor e {0,1} (8.21i)
S eR* (8.21])

Constraint (8.21e) ensures that events with locked rooms are assigned accordingly. Constraints
(8.21f) and (8.21g) constraints variables v, ,. and s. properly, and thereby penalizes room stability.
Constraint (8.21h) enforces that an event cannot be assigned a room if it not assigned to a
timeslot, unless the event is locked to a specific room.

Notice that the room stability constraints (8.21f) and (8.21g) of Model (8.21) are not handled
in any way in the Stage I model. Additional constraints which handle these constraints would
theoretically improve the decomposition. It is however not trivial to model these constraints as a
matching problem in a bipartite graph, so another approach may be required. This is a subject
for future research. Apart from the room stability constraints, all other constraints are optimally
handled by the decomposition, with the exception of the room allocation penalties, which are
only partially integrated in the Stage I model.

8.6 Computational Results

For implementation purposes, Gurobi 5.0.1 was used as MIP solver on a machine with an Intel
Core i7 930@2.80GHz CPU and 12GB of RAM, running Windows 8 64bit. Default parameter
settings were used, and the interface was C# 4.5. The problem instances have been taken directly
from the Lectio database, and are the same ones used in Sgrensen and Stidsen (2013). These 100
real-world datasets provide a substantial ground for concluding on the numerical experiments.
Note that 3 of these instances are available in the XHSTT format (Post et al. (2012a)) at
http://www.utwente.nl/ctit/hstt/. We plan to make additional datasets available in this
format in the future.

A time limit of 7200 seconds was imposed (6480 seconds for Stage I, and 720 seconds for
Stage IT), and Gurobi was allowed to use 8 threads. For the Stage I model, the initial solution
given to Gurobi consists of assigning all events to the dummy-timeslot, except for those events
locked to a specific timeslot. The initial solution for the Stage II model is analogous; Events are
assigned to the dummy-room or the room which the event is locked too. A single run was used
to establish results, as Gurobi has deterministic behavior.

Two other solution approaches are described for the same timetabling problem in Sgrensen
and Stidsen (2013). These are used in comparison with the algorithm of this paper, and are
briefly described below:

e The ’usual’ formulation using a three-index binary variable, denoted 3-index model in the
following. This is solved using Gurobi with standard settings, with a time limit of 7200
seconds. The objectives listed are the result of a single run.

http://www.utwente.nl/ctit/hstt/

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 112

e An Adaptive Large Neighborhood Search heuristic, denoted ALNS in the following. The
reported objectives for this method is the average obtained over 10 runs, each run with
a timelimit of 240 seconds. Hence, the comparison of objectives wrt. this heuristic is
not ’fair’, but it will be seen that even with this shorter timelimit, the ALNS in general
performs best. This method is the one currently used by the customers of Lectio.

Furthermore, we test the described decomposition both with and without the room penalties
added to the Stage 1 model (i.e. Model (8.20) with and without equations (8.20e), (8.20f) and
(8.20g)). Thereby an empirical test of the effect of extending Stage I is performed. In the
following, these two methods are denoted TSD and TSDF°°™LB respectively. Notice that the

results for TSD can also be found in the technical report Sgrensen and Stidsen (2013).
Table 8.1 shows the obtained results. Table 8.2 summarizes some key numbers. Table 8.3
gives a summary for the three exact methods. A gap between an IP objective z and a lower

bound LB is calculated by 100#.

Table 8.1: Computational results. For each dataset is shown the objective ’Obj’ obtained by
each method. For the IP-based approaches, also the best found lower bounds 'LB’ are shown (i.e.
for the 3-index model is shown the final value of the LP-relaxation used internally by Gurobi,
and for TSD is shown the final value of the LP-relaxation of the Stage I model, as described
in Section 8.4). If a solution is best overall, it is marked in bold. If a bound is best overall,
it is marked with a "*’. For the two-stage approach of this paper is shown the runtime Time’
and final gap ’Gap’ found by Gurobi for both Stage I and Stage II. For Stage II, column 'Diff.’
denotes the difference between the lower bound for room allocation of Stage I, and the actual
matching obtained by Stage II (excluding room stability). Column 'Gap’ denotes the best overall
gap, i.e. the gap between the best available solution and the best available bound.

Previous methods TSpRoomLB
ALNS 3-index model TSD Stage 1 Stage I1
Dataset Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap
AalborTG2012 6317 6118 *5946 6018 5934 >6480 0.7 4 0.0 0 6005 5941 1.0
AarhusA2011 10037 58015 - 15872 *5986 >6480 66.6 154 0.0 160 18122 5985 40.4
AarhusA2012 7971 17096 5722 8947 *6005 >6480 49.4 108 0.0 48 11936 5962 24.7
Aars2009 14900 49504 - 20780 11874 >6480 47.9 14 0.0 0 24240 *12641 15.2
Aars2010 16268 81970 - 25057 13134 >6480 42.7 22 0.0 1 24692 *14151 13.0
Aars2011 14256 77967 - 30623 9709 >6480 68.9 10 0.0 3 33790 *10501 26.3
Aars2012 10701 55049 - 21206 7456 >6480 60.3 21 0.0 1 20274 *8044 24.8
Alssund2010 9967 52717 - 23173 6811 >6480 67.9 324 0.0 8 21455 *6876 31.0
Alssund2012 29803 108810 - 108810 - >6480 - 6 0.0 0 108810 - -
BagsvaG2010 3960 6777 3171 3916 3063 >6480 19.4 14 0.0 9 4051 *3227 17.6
BirkerG2011 42063 119600 - 119600 - >6480 - 7 0.0 0 119600 - -
BirkerG2012 19552 110180 - 19322 15662 >6480 0.9 >720 1.0 16 18182 *17709 2.6
BjerrG2009 16877 52639 - 35514 11094 >6480 55.2 11 0.0 0 27396 *12288 27.2
BjerrG2010 4983 12868 *3928 5788 3868 >6480 33.1 13 0.0 37 5977 3925 21.2
BjerrG2011 6334 13009 *4142 9302 4060 >6480 64.8 97 0.0 20 11676 4079 34.6
BjerrG2012 8023 17200 *5055 15265 5007 >6480 71.2 160 0.0 16 17404 4991 37.0
Broend(G2012 2040 2005 *1881 1929 1859 1028 0.0 17 0.0 5 1928 1877 2.4
CPHWGym2010 6775 34415 - 19363 *3759 >6480 77.4 11 0.0 16589 3752 44.5
CPHWGym2011 5679 38232 - 16212 4095 >6480 72.7 10 0.0 15046 *4103 27.8
CPHWGym2012 6762 40945 - 15543 4205 >6480 75.5 19 0.0 17194 *4215 37.7

0
0
1
CPHWHG2012 11077 46625 8157 23088 *8338 >6480 64.1 16 0.0 0 23219 8326 24.7
CPHWHTX2010 11342 27174 9179 15943 8828 >6480 52.1 7 0.0 0 19314 *9259 18.4
CPHWHTX2011 20734 22466 20460 20708 18490 >6480 0.6 0.0 11 20632 *20470 0.8
CPHWHTX2012 16256 25998 14481 21392 13115 >6480 35.4 0.0 0 22481 *14531 10.6
DetFG2012 7560 8017 *7168 7265 7018 >6480 0.7 0.0 68 7258 7116 1.2
DetKG2010 2947 6058 1732 4006 *1821 >6480 55.6 0.0 4 4102 1814 38.2

W 0o = O

113 8.6. Computational Results

Table 8.1 — continued from previous page

Previous methods TSDRoomLB
ALNS 3-index model TSD Stage I Stage II
Dataset Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap
DetKG2011 2820 5594 1732 4366 1780 >6480 60.9 2 0.0 2 4577 *1781 36.8
EUCN2009 3737 7557 2911 4298 2856 >6480 40.3 4 0.0 0 5001 *2982 20.2
EUCN2010 3882 4231 3329 3463 3246 >6480 1.4 6 0.0 1 38430 *3375 1.6
EUCN2011 1468 1435 *1395 1430 1384 >6480 2.2 1 0.0 2 1426 1384 2.2
EUCN2012 3289 9430 2327 5059 *2363 >6480 60.2 4 0.0 0 5913 2359 28.2
EUCNHG2010 1505 1476 1371 1421 1368 >6480 2.1 2 0.0 0 1408 *1378 2.1
EUCS2012 3714 4689 3576 3783 3347 >6480 3.0 3 0.0 0 3695 *3584 3.0
FaaborgG2008 68124 125330 - 125330 - >6480 - 14 0.0 0 125330 - -
FalkonG2009 10449 88890 - 88890 - >6480 - 5 0.0 0 88890 - -
FalkonG2011 8584 76170 - 16543 *5183 >6480 75.9 >720 0.0 48 20758 4953 39.6
FalkonG2012 10143 100190 - 16666 *6105 >6480 58.6 >720 0.1 121 14908 6050 39.8
GUAasia2010 6527 6579 6354 6461 6035 26 0.0 >720 0.1 5 6422 *6374 0.7
GUQaqor2011 6674 19623 4537 10005 *4554 >6480 59.9 3 0.0 18 11396 4542 31.8
GUQaqor2012 5733 11488 4314 7619 4294 >6480 55.1 10 0.0 0 9650 *4324 24.6
HadersK2011 7128 51190 - 14229 *3909 >6480 76.2 >720 0.0 43 16494 3888 45.2
HasserG2010 11963 96790 - 96790 - >6480 - 6 0.0 0 96790 - -
HasserG2011 16061 99840 - 99840 - >6480 - 6 0.0 0 99840 - -
HasserG2012% 18338 112160 - 112034 - >6480 - 7 0.0 0 112160 - -
HerningG2010 37 37 *37 37 35 0 0.0 1 0.0 0 37 35 0.0
HerningG2011 15091 163785 - 23117 *9829 >6480 61.8 108 0.0 169 26410 9746 34.9
Herning(G2012 13147 185433 - 14952 9763 >6480 48.4 >720 0.1 262 19834 *9817 25.3
HoejeTaG2008 2958 6292 2253 2707 2563 >6480 6.4 3 0.0 0 2775 *2587 4.4
HoejeTaG2009 9157 45260 - 26066 *5773 >6480 79.7 105 0.0 3 27779 5628 37.0
HoejeTaG2010 9862 45095 - 25678 *6188 >6480 78.1 106 0.0 5 27886 6116 37.3
HoejeTaG2011 10158 51050 - 32630 *6726 >6480 78.2 66 0.0 3 30327 6601 33.8
HoejeTaG2012 12502 72455 7592 18627 7845 >6480 79.8 9 0.0 3 39326 *7952 36.4
HorsenS2009 3111 3100 *3100 3100 2865 1 0.0 4 0.0 13 3100 3059 0.0
HorsenS2012 10056 86090 - 86090 - >6480 - 3 0.0 0 86090 - -
Johann2012 23001 92575 - 27781 18456 >6480 33.5 233 0.0 6 29491 *19590 14.8
KalundG2011 38479 126150 - 126150 - >6480 - 9 0.0 0 126150 - -
KalundG2012 26768 123010 - 123010 - >6480 - 11 0.0 0 123010 - -
KalundHG2010 5631 12103 4540 6351 4551 >6480 29.7 6 0.0 0 6605 *4642 17.6
KoebenPG2012 888 1872 637 874 642 >6480 37.9 1 0.0 2 1052 *645 26.2
KoegeH2012 11418 108347 - 20150 9096 >6480 53.7 12 0.0 0 20390 *9440 17.3
KongshoG2010 4296 8889 2411 7954 *2488 >6480 65.9 30 0.0 0 7208 2451 42.1
MariageG2009 8013 54030 - 20138 5118 >6480 69.7 >720 0.0 18 17506 *5286 34.0
Morsoe(G2012 5651 42762 - 10241 3854 >6480 66.0 23 0.0 6 11674 *3947 30.2
NaerumG2008 24104 118370 - 117894 - >6480 - 7 0.0 0 117894 - -
NaerumG2009 7667 100450 - 6681 *5114 >6480 0.3 >720 6.2 0 5466 5113 6.4
NielsSG2011 4953 10464 3323 6132 *3412 >6480 37.6 9 0.0 0 5397 3367 31.1
NielsSG2012 6952 12747 5722 8003 *5738 >6480 37.6 14 0.0 4 9192 5724 17.5
NordfynG2012 5160 8201 *4152 4890 4048 >6480 23.3 35 0.0 59 5510 4107 15.1
NyborgG2011 13944 94059 - 31809 *6129 >6480 - 7 0.0 4 85816 - 56.0
OdderCfU2010 18219 59540 - 40032 12188 >6480 66.9 66 0.0 2 38875 *12865 29.4
OdderG2009 9308 59851 - B57586 - >6480 78.1 67 0.0 67 24686 *5361 424
OdderG2012 12307 17402 9602 14888 8878 >6480 64.2 4 0.0 57 27199 *9688 21.3
OrdrupG2010 13663 75700 - 12936 10665 >6480 39.5 10 0.0 0 18101 *10810 16.4
OrdrupG2011 21612 116400 - 31329 16904 >6480 38.7 305 0.0 8 28884 *17692 18.1
RibeK2011 21679 61945 - 43175 16209 >6480 53.8 229 0.0 5 39107 *18055 16.7
RysenG2010 39971 110690 - 110690 - >6480 - 6 0.0 0 110690 - -
RysenG2011 22260 100313 - 25989 17756 >6480 71.4 9 0.0 5 68927 *19725 11.4
RysenG2012 19841 110111 - 22156 15115 >6480 71.7 14 0.0 15 59124 *16708 15.8
SanktAG2012 4207 4624 3415 3911 3376 >6480 0.7 >720 0.5 39 38721 *3538 4.9
SkanderG2010 7209 7708 6051 6875 5712 >6480 0.6 >720 0.5 72 6485 *6238 3.8
SkanderG2011 22525 88470 - 88470 - >6480 - 5 0.0 0 88470 - -

SkanderG2012 20138 98487 - 95319 - >6480 - 7 0.0 3 95319 - -

Chapter 8. Paper C: A TSD of High School Timetabling applied to cases in Denmark 114

Table 8.1 — continued from previous page

Previous methods TSDRoomLB
ALNS 3-index model TSD Stage I Stage II

Dataset Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap
SkiveG2010 43120 194740 - 194740 - >6480 - 526 0.0 0 194740 - -
Slaug;elGrZOlQJr 32167 162960 - 162765 - >6480 - 417 0.0 0 162960 - -
SoendS2011 11776 83560 - 83560 - >6480 - 131 0.0 0 83560 - -
SoendS2012 8420 17778 *6838 11915 6647 >6480 T72.5 8 0.0 4 24668 6739 18.8
StruerS2012 73361 - - 207488 - >6480 - 700 0.0 0 211960 - -
VardeG2012 10777 20933 *5921 20622 5720 >6480 72.1 12 0.0 2 20496 5668 45.1
Vejen(G2009 11264 69450 - 69450 - >6480 73.9 >720 0.0 7 27954 *7290 35.3
Vejlefjo2011 13514 52035 - 18043 8511 >6480 60.0 456 0.0 3 22066 *8805 34.8
VestfynG2009 5973 11606 4176 5999 4137 >6480 14.5 553 0.0 18 5032 *4211 16.3
VestfynG2010 6761 16895 *4308 5974 4225 >6480 16.3 65 0.0 21 5239 4290 17.8
VestfynG2011 7013 13624 5110 6657 4925 >6480 19.6 38 0.0 24 6522 *5159 20.9
VestfynG2012 5244 11095 4279 5212 4210 >6480 17.5 149 0.0 21 5319 *4315 17.2
ViborgK2011 14923 99170 - 99170 - >6480 - 6 0.0 0 99170

ViborgTG2009 10216 19891 8695 12077 8356 >6480 34.7 45 0.0 3 13387 *8740 144
ViborgTG2010 4932 12727 4130 10226 3990 >6480 60.9 11 0.0 19 10665 *4146 15.9
ViborgTG2011 7478 16433 6716 9808 6204 >6480 38.8 12 0.0 13 11088 *6772 9.4
VirumG2012 27738 140883 - 32183 17770 >6480 75.3 16 0.0 9 79111 *19486 29.7
VordingbG2009 8568 17025 5457 9905 5243 >6480 33.6 10 0.0 167 8972 *5787 32.5

Avg. 44.3 0.1 17.9 22.3

T An artificial bound on the amount of Halls’ inequalities was enforced for tractability, see Section 8.4.3.

Table 8.2: Results summary. Note that rows ’Best solution’ and ’Best bound’ also counts draws.

ALNS 3-index model TSD TSDRoomLE

Solution found 100 99 100 100
Best solution 77 2 8 18
Bound found - 46 79 80
Best bound - 13 19 49

Table 8.3: Comparison of the amount of best found solutions for the exact methods. Draws are
also counted.

3-index model TSD TSDReomLBE
Best solution 16 66 52

A number of conclusions can be drawn from the numbers:

e For 97 instances, the solution obtained by TSDY°°mLB ig at least as good as the solution
obtained by the 3-index model, and for most instances significantly better.

o TSDROOMLB g generally the best method for generating bounds, finding the best bound on
49 instances overall.

o TSDR0omLB was capable of finding a lower bound for 80 instances. This means that for
20 instances, Gurobi was unable to solve the LP-relaxation of the root node of the Stage
I model within the timelimit. Table 8.4 shows statistics for these instances (the presolved
models). It is seen that the problems does not contain coefficients of huge magnitude in

115 8.6. Computational Results

neither the objective, system matrix, or rhs. Hence the issue seems related to the relatively
big number of constraints and variables. In average, these instances have more than 100000
constraints and variables, hence we think its fair to consider them as large-scale. Note that
if the root-LP was not solved for an instance, the reported solution replicates the initial
solution provided by us to Gurobi (Gurobi apparently starts its solution process by verifying
the feasibility of the MIP Start attributes).

o TSDReomLB 115 duces the best solution for 18 instances overall, while TSD produces the best
solution on 8 instances. The ALNS heuristic is best on 77 instances, and is currently the
best algorithm for this problem (keep in mind the ALNS algorithm was allowed significantly
less CPU time).

e Comparing the exact methods (Table 8.3), it is seen that it is generally not profitable to
use the extended Stage I model if the goal is to obtain good solutions. Both variants of
the decomposition finds more best solutions than the pure 3-index model.

e The Stage I model of TSDR°™LB s 4 challenge for Gurobi, with an average gap of 44.3%
over all instances where a LB was found. Only 4 instances are solved to optimality, and
these are among the smallest instances (see Sgrensen and Stidsen (2013) for instance statis-
tics).

e The Stage IT model of TSD¥°°"LB is in general easy to solve. The average gap for this
model over all problem instances is 0.1%, and 89 instances are solved to optimality. This
means that future research can focus on solving the Stage I model.

e The difference between the lower bound on room allocation and the actual allocation of
rooms (column ’Diff.”) is low, compared to the magnitude of objectives in general. This
means that only a small increase in solution quality can be gained by improving the bound
on room allocation.

Table 8.4: Statistics of the Stage I models (after presolve) where Gurobi was unable to solve
the LP-relaxation of the root-node within the timelimit (i.e. for those instances where the
TSDROmLB as unable to provide a lower bound). Column ’Cons.’” shows the number of
constraints and ’Non-zeros’ shows the amount of non-zeros in the model. ’Variables’ shows the
amount of continuous, integer and binary variables. ’Obj. coef.’;, 'Model coef.’, and 'RHS coef’
shows the smallest and largest coefficient in the objective function, system matrix and right-hand
side, respectively.

Variables Obj. coef. Model coef. RHS coef.

Cons. Non-zeros Cont. Integer Binary Min. Max. Min. Max. Min. Max.

Min. 73293 881433 24089 52518 41121 1 84 1 4 0 6
Max. 167978 4200206 52015 252514 246874 1 1120 1 16 1 103
Avg. 118396 1967455 36918 101460 88321 1 264 1 7 1 32

As an extension to the decomposition, one could use the ALNS heuristic to provide a starting
solution. Since the ALNS heuristic is able to produce a fairly good solution quickly, this would
most likely lead to improved performance.

As aloose remark, we mention that Burke et al. (2010) formulates an IP of the Udine Course
Timetabling Problem (used in the International Timetabling Competition 2007), using a three-
indexed binary variable, and reports that CPLEX 11 uses up to 6400 seconds when solving

Bibliography 116

the root LP (using Dual Simplex, which is also used by Gurobi as default). Their model is
quite similar in structure to ours, so possibly this class of IP formulations contain undesirable
properties in the eyes of general-purpose MIP solvers.

8.7 Conclusion

A Two-Stage Decomposition for a real-world high school timetabling problem has been shown.
This splits the Integer Programming model into two smaller models, which reduces the number
of variables significantly. Computational results show that this approach is way more effective
than solving the usual original IP with a 3-index binary variable, in terms of both the obtained
solutions and the obtained bounds. This constitutes the TSD as the best exact method for
solving this particular timetabling problem. However, the integration of the lower bound on
room allocation in the Stage I model has bad influence on the quality of solutions, but makes the
decomposition capable of achieving better lower bounds. Nevertheless this extension of the Stage
I model represents interesting theory which can likely be used in the context of decomposing other
timetabling problems.

For other types of (timetabling) problems, this type of decomposition might be a way of
enhancing computational times. However, a special structure is required for applying the decom-
position, which limits the set of applicable problems. On the other hand, the advantage gained
by reducing the number of variables should not be underestimated, and we encourage researchers
to attempt this type of decomposition if possible.

Approximating the room allocation penalties in the Stage I model is an interesting approach,
and also sets a possible agenda for future work; 1) Can a better approximation (or even the
exact value) be found for the minimum weight maximum matching problem representing room
penalties? 2) Can the room stability penalties be incorporated in the Stage I model? However,
the most important issue for future research is a more efficient way of solving the Stage I model.
This is the bottleneck of the TSD for this particular problem.

Bibliography

P. Avella, B. D’Auria, S. Salerno, and I. Vasilaev. A computational study of local search al-
gorithms for italian high-school timetabling. Journal of Heuristics, 13:543-556, 2007. ISSN
1381-1231.

M. A. Badri. A two-stage multiobjective scheduling model for [faculty-course-time| assignments.
European Journal of Operational Research, 94(1):16 — 28, 1996. ISSN 0377-2217.

E. Balas and W. Pulleyblank. The perfectly matchable subgraph polytope of a bipartite graph.
Networks, 13(4):495-516, 1983. ISSN 1097-0037.

V. Bardadym. Computer-aided school and university timetabling: The new wave. In E. Burke
and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture
Notes in Computer Science, pages 22—45. Springer Berlin / Heidelberg, 1996.

T. Birbas, S. Daskalaki, and E. Housos. Timetabling for greek high schools. Journal of the
Operational Research Society, 48:1191-1200(10), 1997.

T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. J. of Scheduling, 12:177-197, April 2009. ISSN 1094-6136.

117 Bibliography

E. Burke and J. P. Newall. A multistage evolutionary algorithm for the timetable problem.
Evolutionary Computation, IEEE Transactions on, 3(1):63-74, 1999. ISSN 1089-778X.

E. Burke, J. Marecek, A. Parkes, and H. Rudova. Decomposition, reformulation, and diving in
university course timetabling. Computers € Operations Research, 37(3):582-597, 2010.

M. Carter. A decomposition algorithm for practical timetabling problems. Technical Report
83-06, Department of Industrial Engineering, University of Toronto, 1983.

S. Daskalaki and T. Birbas. Efficient solutions for a university timetabling problem through
integer programming. FEuropean Journal of Operational Research, 160(1):106 — 120, 2005.
ISSN 0377-2217.

S. Daskalaki, T. Birbas, and E. Housos. An integer programming formulation for a case study
in university timetabling. European Journal of Operational Research, 153:117-135, 2004.

D. de Werra. An introduction to timetabling. European Journal of Operational Research, 19(2):
151 — 162, 1985. ISSN 0377-2217.

M. Dimopoulou and P. Miliotis. Implementation of a university course and examination time-
tabling system. FEuropean Journal of Operational Research, 130(1):202 — 213, 2001. ISSN
0377-2217.

J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of
the National Bureau of Standards B, 69:125-130, 1965.

E. Egervary. Matrixok kombinatorius tulajdonsagairél. Matematikai és Fizikai Lapok, 38:16—28,
1931.

C. C. Gotlieb. The construction of class-teacher timetables. In C. M. Popplewell, editor, IFIP
Congress, volume 62, pages 73-77, North-Holland Pub. Co, 1962.

G. Lach and M. Liibbecke. Optimal university course timetables and the partial transversal
polytope. In C. McGeoch, editor, Experimental Algorithms, volume 5038 of Lecture Notes in
Computer Science, pages 235-248. Springer Berlin / Heidelberg, 2008.

G. Lach and M. Liibbecke. Curriculum based course timetabling: new solutions to udine bench-
mark instances. Annals of Operations Research, 194:255-272, 2012. ISSN 0254-5330.

N. L. Lawrie. An integer linear programming model of a school timetabling problem. The
Computer Journal, 12(4):307-316, 1969.

L. Lovasz and M. D. Plummer. Matching Theory. AMS Chelsea Publishing, 2009.

S. MirHassani. A computational approach to enhancing course timetabling with integer pro-
gramming. Applied Mathematics and Computation, 175(1):814 — 822, 2006. ISSN 0096-3003.

H. Mittelman. Benchmarks for optimization software.
http://plato.asu.edu/bench.html [Accessed 20/8-2013], Aug. 2013.

K. Papoutsis, C. Valouxis, and E. Housos. A column generation approach for the timetabling
problem of greek high schools. The Journal of the Operational Research Society, 54(3):
230-238, 2003.

N. Pillay. A survey of school timetabling research. Annals of Operations Research, February
2013. ISSN 0254-5330.

http://plato.asu.edu/bench.html

Bibliography 118

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

A. Qualizza and P. Serafini. A column generation scheme for faculty timetabling. In E. Burke
and M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616 of
Lecture Notes in Computer Science, pages 161-173. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-30705-1.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399-412, April 2012.
ISSN 0254-5330.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87-127, 1999.
ISSN 0269-2821.

A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24 of Algorithms
and Combinatorics. Springer, 2003.

M. Sgrensen and T. Stidsen. Comparing solution approaches for a complete model of high
school timetabling. Technical Report 5.2013, DTU Management Engineering, Technical
University of Denmark, March 2013.

Chapter 9 Paper D

Decomposing the Generalized High School
Timetabling Problem

Matias Sgrensen!-?, Thomas R. Stidsen'
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

Abstract In the scientific literature, high school timetabling problems are generally solved by heuris-
tics, and exact solution methods are not widely used. This paper presents a Two-Stage Decomposition
(TSD) of an Mixed-Integer Programming (MIP) model for the Generalized High School Timetabling
Problem, which is based on the publicly available XHSTT format. TSD is a recent method which has
shown good results for other timetabling problems with similar structure, and it has a number of ad-
vantages over the original MIP model, most notably that the total amount of variables is significantly
reduced. The method can be applied to all types of XHSTT instances, however in this paper it is
tested on the 12 instances where the differences compared to the original MIP model are most notable.
Whether or not the method is exact is dependent on specific characteristics of the dataset in question,
and we provide a list of necessary requirements. Investigations of these 12 instances show that for 6
of these the decomposition is exact. For 9 of the instances, the decomposition is capable of providing
lower bounds (the structure of the remaining 3 instances prevent the generation of lower bounds). Com-
putational experiments on these 12 instances show that the decomposition yields significantly smaller
models. However, the quality of the obtained solutions and lower bounds are not as high as expected
compared to the original MIP model.

9.1 Introduction

The High School Timetabling Problern (HSTP) is a widely known optimization problem which
have attracted researchers for many decades. Most of the work on this problem has been per-
formed on specialized cases, often only applying to few educational institutions. The introduction
of the XHSTT format (Post et al. (2012)) aims at bridging this gap by being widely applicable
and providing many instances of HSTP of different origins and with different characteristics.
The format was used in the International Timetabling Competition 2011 (ITC2011), and its
popularity in the community is rising. Kristiansen et al. (2013) introduces a Mized-Integer Lin-
ear Programming (MIP) model for the XHSTT format. This MIP model was capable of solving
some instances to optimality, and providing lower bounds on optimum for several other instances.
Based on this MIP model, we present a Two-Stage Decomposition (TSD) approach.

119

Chapter 9. Paper D: Decomposing the Generalized High School Timetabling Problem 120

The idea of TSD is to split the MIP model into two smaller MIP models, while maintaining
optimality (as far as possible) of the original model. TSD was first introduced in Lach and
Liibbecke (2008, 2012), where it was applied to the Curriculum-based University Timetabling
Problem. This problem was considered in one of the tracks of the International Timetabling
Competition 2007 (ITC2007) (McCollum et al., 2010). Sgrensen and Dahms (2014) applied
TSD to another timetabling problem, the Danish case of high school timetabling, and suggested
extensions of the decomposition to handle additional details of the optimization problem. The
application of TSD is at present closely tied to the specific optimization problem, so a well-defined
description of the method on an abstract level cannot be given. However, given an optimization
problem for which TSD is applicable, the decomposition can be easily described (see Section
9.4). With the contributions of this paper, TSD has shown to be capable of handling instances
from both ITC2007 and ITC2011, and is a promising branch of exact methods for timetabling
problems. We see no reason that TSD could also be applied to other types of problems with
similar structure, for instance Nurse Rostering (Santos et al., 2012).

The paper is structured as follows: Section 9.2 presents related literature. Section 9.3 de-
scribes the generalized HSTP in detail, including basic details of a MIP model. Section 9.4
gives details on the TSD for the problem. Section 9.5 outlines the solution method. Section 9.6
presents results from the computational experiments. Section 9.7 concludes on our findings.

9.2 Related Literature

The amount of attention given to TSD is still small within the timetabling community, so not
much literature exists. However, some extensions of Lach and Liibbecke (2008, 2012) have been
proposed, described in the following. Cacchiani et al. (2013) propose a new method for computing
lower bounds, by splitting the problem based on the objective function. Hao and Benlic (2011)
also develops lower bounds for the ITC2007 Track 3 instances, using a partition-based approach
with an embedded Tabu Search. Both of these methods could in principle also be applied to
the XHSTT case on the basis of the TSD described in this paper. Burke et al. (2010) use a
multiphase approach for the ITC2007 instances where partial solutions are produced, build by
subproblems of similar difficulty. A lower bound on a subproblem is also a lower bound on the
overall problem. Daskalaki and Birbas (2005) do not consider the ITC2007 instances, but uses
a two-stage approach, where the first stage is a relaxed version of the original problem. The
second stage then solves small parts of the problem and established local optima.

In terms of XHSTT, Kristiansen et al. (2013) propose the first (and currently only) exact
method, based on a MIP model. The presented TSD is based on this MIP. Heuristic approaches
to XHSTT are mainly those of ITC2011. The finalists of the competition were Fonseca et al.
(2012); Kheiri et al. (2012); Romros and Homberger (2012); Sgrensen et al. (2012). An obvious
advantage of the exact methods is that they allow lower bounds to be found, which yields fair
evaluation criteria for solution methods. Some recent contributions to heuristic methods for
XHSTT are Shambour et al. (2013) which apply a hybrid of a Evolutionary Algorithm and
Simulated Annealing, Pimmer and Raidl (2013) which apply a heuristic that fill one timeslot at
a time, and Ter Braak (2012) which applies hyper-heuristics.

9.3 Problem Description - The XHSTT format

An instance of XHSTT contains a set of events £, a set of times T, and a set of resources R.
Each event has a duration D, € N*, and can be split into parts which are denoted sub-events.
The duration denotes the amount of times which the event spans. The entire set of sub-events

121 9.3. Problem Description - The XHSTT format

is denoted S&, and by se € e we denote that sub-event se is a part of event e. Each sub-event
se € S€ has a duration Dy, € NT, and it applies that Dy, < D..

Furthermore an event e contains a set of event resources, which we each denote by er € e.
An event resource describes a requirement of a resource, either one that is already known (a
preassigned resource), or a resource of a certain type (a free resource). We denote by r € er
that resource r can be assigned to event resource er. The parameter PA.,. € {0,1} takes value
1 if event resource er is preassigned, and 0 otherwise. Let |er|,, denote the amount of event
resources of sub-event se € S€.

The total duration of the active sub-events of event ¢ € £ in a solution cannot exceed D.. A
sub-event is active if it assigned a time and/or has an event resource with a resource assigned,
and this resource is not preassigned.

An XHSTT instance also contains a set of constraints C, and each constraint ¢ € C is of
a particular type, and applies to certain events or resources. A constraint penalizes certain
characteristics of a solution to the instance. For instance, an Assign Times constraint penalizes
events which are not assigned to a time.

Typically, a solution is desired which assigns events to times and resources. WLOG, we let
the variable xse ¢ e € {0, 1} take value 1 if sub-event se € S is assigned to starting time t € T
and resource r € er is assigned to event-resource er € se, and 0 otherwise. Variable y,.; takes
value 1 if sub-event se € S& is assigned time ¢t € 7 as starting time, and 0 otherwise. Variable
Wge,er,r takes value 1 if event resource er € se of sub-event se € S& is assigned resource r € er,
and 0 otherwise. Variable u,. takes value 1 if sub-event se € S€ is active, and 0 otherwise.

Model (9.1) shows a basic MIP model of XHSTT. Constraint (9.1b) ensures that each sub-
event and corresponding event resource is assigned one time and one resource. Constraint (9.1c)
links variables ¢ ¢ er» and yset, by ensuring that the amount of resources assigned to a sub-
event se € SE at a particular time ¢t € T corresponds to |er|,, yse+. Together with constraint
(9.1b) this ensures that a sub-event is only assigned to one starting time. Constraint (9.1d) links
variables Zge ¢ err and Wge err. To ensure that a feasible solution exists, the set of times and the
set, of resources are both extended with a dummy-element, i.e. 7 = {7 Utp} and R = {RUrp}.
These dummy elements are necessary due to the equality sign of constraints egs. (9.1b) to (9.1d),
and correspond to the case where a sub-events or a event-resource is not assigned a time or a
resource, respectively.

Constraint (9.1e) makes sure that if a sub-event is assigned a time, it is also marked as active.
Likewise, Constraint (9.1f) ensures that if a sub-event is assigned a non-preassigned resource it
is marked as active. Constraint (9.1g) ensures that if a sub-event is not assigned a time or a
non-preassigned resource, it cannot be marked as active. Constraint (9.1h) makes sure that the
sum of the duration of the active sub-events of an event sum to the total duration of the event.

Furthermore, all constraints C of the XHSTT format (see Post (2013)) are included in Con-
straint (w, slightly abusing notation. For each constraint ¢ € C the slack variable s., € Ny
is introduced, which denote the penalty incurred for point-of-application p of constraint ¢ by
the setting of values in Zsc+er,. This should be understood in the way that the values taken
by Zse,t,er,r inevitably yields specific penalty values for all XHSTT constraints, since this is the
basic variable of the MIP model. A MIP formulation of the XHSTT constraints (i.e. formulated
in terms of Zse ter,r) can be found in Kristiansen et al. (2013).

By definition of the objective of XHSTT, with each constraint ¢ € C is associated a specific
CostFunction (which can be either one of the following: Sum, SumSquare, SquareSum, SumStep,
StepSum) and a weight w. € Ny. Given the penalty value s. ,, the contribution to the objective
of constraint ¢ is w. - CostFunction(s.,). This constitutes the objective of the MIP model.
Furthermore, each constraint is either a hard constraint or a soft constraint. The violation of
these constraints is denoted hard cost and soft cost, respectively. A solution which respects all

Chapter 9. Paper D: Decomposing the Generalized High School Timetabling Problem 122

hard constraints, meaning that the hard cost is 0, is said to be feasible. Solutions to a XHSTT
instances are ranked by the hard cost first, and the soft cost second. How we deal with this
structure of the objective is described in Section 9.6.

XHSTT MIP model (9.1)
min Z w, - CostFunction(s, p) (9.1a)
ceC
s.t.
Z Tse,t,er,r =1 Vse € SE,er € se (9.1b)
teT ,rcer
Z Lse,t,er,r = |€’f’|se *Yse,t Vse e SE,t €T (91C)
ercse,rcer
ste,t,er,r = Wse,er,r Vse € Sg, er € se,r € er (91d)
teT
> Yeer < Uge Vse € SE (9.1¢)
teT\tp
Vse € SE,er € se,
Z wse,er,r S Use PAGT _ O (glf)
r€er\rp
Z Yse,t T Z Wse,er,r = Use Vse € SE (91g)
teT\tp r€er\rp
ercse,PA..=0
Z Dse *Uge = De Ve S E (91h)
sece
(xse7t,er,r7 Sc,p) S C (911)
xse,t,er,m yse,t7 wse,er,’r S {07 1} (QIJ)
sc,p S N0 (911{)

9.4 Two-Stage Decomposition

The decomposition is performed as follows. Model (9.1) is split into two smaller MIP models,
denoted Stage I and Stage II, respectively. Loosely speaking, the aim of Stage I is to assign
sub-events to times, and the aim of Stage II is to assign sub-events to resources, subject to the
assignment to times performed in Stage I. The key advantage of this approach is that variable
Tse,t,er,r 15 NO longer necessary, which significantly reduces the total amount of variables. Specif-
ically, the basic variables of the two stages are ysc+ and wge er ., respectively. The decomposition
progresses as follows: Stage I is solved, obtaining solution yj, ;. This solution is not necessarily
the optimal one. yg,, is given as input to Stage II, where it is used as a parameter. Stage II
is solved, obtaining a solution wg, ., .. A solution to the original model is found by calculating
Tseterr = Yse tWseerr VS€ € SE,t € T,er € se,r € er. Clearly, Stage I is a relaxation of the
original model, and the lower bound obtained by solving Stage I is therefore a lower bound on
the original model. To summarize, Figure 9.1 shows the outline of TSD.

A discussion is needed on how the set of constraints C (Constraint (9.1i)) should be handled in
this decomposition. Obviously, constraints which only base their evaluation on the assignment
of events to times can be optimally handled in Stage I. Furthermore, constraints which deal
only with preassigned resources can also be handled optimally in Stage I, as full information is

123 9.4. Two-Stage Decomposition

assign times and resources)

{ Original model (2se ¢ err)
(

Lower bound

Stage IT (wse,er.r)
(assign resources)

Stage I (yse,t)
(assign times)

Solution
*
xse,t,er,r

Figure 9.1: Outline of Two-Stage Decomposition (Sgrensen and Dahms, 2014).

available. This is done by introducing the parameter Wse ¢, in Stage I, which can be used to
derive 24 ¢ er,» in combination with ys. . The issue that remains is therefore constraints which
deal with free resources, known as free resource constraints in the following. This is discussed in

Section 9.4.1.

9.4.1 Handling of free resources

By construction, Stage II is solved subject to the solution of Stage I. This is unfortunate as
optimality of the original model might be lost in the process, as Stage I is not aware of the
objective of Stage II. A key point of TSD is therefore to consider an extension of Stage I which also
consider the objective of Stage II. In our case, we aim at making Stage I perform an assignment
of times which allows the optimal assignment of resources in the subsequent stage. If such an
extension is found, the TSD is an exact method.

Denote by A the set of all eligible combinations of sub-events and event-resources, i.e. A =
{(se,er) | se € SE, er € se}. Consider the graph G, which contains a vertex for every element in
A and a vertex for every resource r € R. All edges of the graph E connects an element of A and
a resource vertex, and denotes that this is a feasible assignment of the resource. Clearly this is
a bipartite graph, and we denote it by G = (AU R, E). An assignment of resources is clearly a
matching in this graph, i.e. for each vertex in A select one adjacent edge such that no vertex of
R is adjacent to more than one vertex. Thereby the matching problem of this graph resembles
Stage II in its most basic form. Exploiting properties of this graph allows us to enhance the
TSD.

Denote by I'(S) the neighbors of S C A in graph G, i.e. T'(S)={r | (a,7) € E,a € S,;r € R}
The famous theorem of Hall state the following:

Theorem 8 (Hall’s Theorem). The bipartite graph G = (AUR, E) has a matching of all vertices
A into R if and only if [T'(S)| > |S| VS C A.

Furthermore, let the deficiency of vertex set S C A be defined as def(S) = [S| — |T'(5)].
Let the deficiency of G be defined as def(G) = maxgc 4 def(S). The matching number of G is
defined as v(G) = |A| — def(G), and denotes the number of elements of A which are matched in
a maximum matching.

Recall that in Stage II, the times of all sub-events are fixed by y;,.,. Consider the graph
Gi = (At UR, E), where A; denotes the element of A where the sub-event is assigned to time

Chapter 9. Paper D: Decomposing the Generalized High School Timetabling Problem 124

t € T. Thereby G; is a subgraph of G. Let T';(S) denote the neighbors of S C A; in graph
G;. By Theorem 8, a matching of all elements in A; into R exists iff I';(S) > |S| VS C A;.
Let T35 C T be set the of times which are used by sub-event se € SE if its starting time is
t € T (this parameter is derived from the duration of the sub-event). Consider the following two
observations:

e Denote by se € S C A all elements of A which contain sub-event se € SE. |S| can be
substituted by > . Serstart Yse,t/, 1-e. the amount of sub-events which are assigned a
starting-time which results in them lying in time ¢ € 7. An auxiliary variable could be
introduced which determines all times which a sub-event lies in, which would reduce the
amount of non-zeros in the model. This has not been done as it would increase the amount
of variables in the model.

e Assuming that we seek to minimize the deficiency, the deficiency of graph G; can be derived
by applying the constraints (here def(G}) takes the role of a variable),

> Yeew —def(Gy) S |Ty(S)| VS C A (9.2)

secS,t’ ET:;‘:‘;“

How we deal with the exponential amount of constraints of eq. (9.2) is discussed in Section
9.4.3.

To summarize, we state the following: A necessary and sufficient condition has been found
for the assignment of resources to all event resources. Eq. (9.2) state this condition for a specific
time ¢ € T, incorporating a slack variable def(G;) which determines the number of (sub-event,
event resource) elements not assigned a resource. The condition is stated in terms of variables
of Stage I only, and thereby Stage I can be made aware of the resource assignment performed in
Stage IL. If the slack variable def(G;) has value 0, all event-resources can be assigned a resource.

What we can determine using eq. (9.2) is the amount of (sub-event, event resource) elements
not assigned a resource for a particular time ¢ € 7, contrary to which specific elements this will
ultimately turn out to be. This allows some of the XHSTT constraints w.r.t. free resources to
be evaluated optimally or partially. In the following each constraint is discussed. The XHSTT
constraints Assign Time, Split FEvents, Distribute Split Events, Prefer Times, Spread Fvents,
Link Events, and Order Events only considers time assignments and can be optimally handled
in Stage I. Constraints Limit Idle Times, Cluster Busy Times, Limit Busy Times and Limit
Workload involve the evaluation of characteristics for a specific resource across multiple times,
which cannot be done using conditions similar to eq. (9.2). Hence these constraints can not be
taken into account by the decomposition if they apply to free resources, however in practice this
has little importance, as discussed in Section 9.4.2.

The remaining constraints are Assign Resource, Prefer Resource, Avoid Split Assignments,
Avoid Clashes and Avoid Unavailable Times, denoted by the set C” in the following. These con-
straints are modeled by altering the set of edges and their corresponding weights in the bipartite
graphs, however this is not sufficient for all constraints C* (as described below). Consider the
bipartite graph G = (AU R, E) with edge weights w, € Ny Ve € E. As a starting point we add
an edge for every element in A which have a prefixed resource, and for those elements not having
a prefixed elements an edge to every possible resource of the appropriate type is added. In the
following details are provided on how to model each constraint ¢ € C*.

e Assign Resource: This constraint penalizes event resources which are not assigned a re-
source. It applies to a certain set of events Fassienresource C & and the entire set of resources
R. For each e € E3&%s'snresource 5 corresponding dummy-vertex is added to G, along with

125 9.4. Two-Stage Decomposition

an edge having the weight w,. for the Assign Resource constraint ¢ € C. This represents
the option to not assign a resource to the event, and is penalized accordingly.

e Prefer Resources: This constraint penalizes event resources which are assigned resources
that are not among the preferred resources. This is modeled in the graph by adding the
weight of the Prefer Resource constraint ¢ € C to edges which models an assignment of a
resource which is not preferred.

o Awoid Split Assignments: This constraint tries to avoid the assignment of different resources
to the same event resource of sub-events for an event. Hence, this constraint is not specific
to a given time, and since we cannot determine which resource is assigned to an event
resource, we cannot evaluate this constraint. Therefore our approach is heuristic in nature
for XHSTT instances which use this constraint for free resources. However, since a penalty
of zero is imposed in Stage I, the lower bound on Stage I is also a lower bound on the
original model.

e Awoid Clashes: This constraint penalizes resources which are assigned to more than one
event at each time, and applies to the entire set of events £, and to a set of resources
Raveidelashes ¢ R - Unfortunately, we see no way of modeling this constraint accurately in
the graph G. However, the penalty is approximated by adding a dummy-vertex for every
resource r € Raveldclashes 'which have the same adjacent edges as the vertex of the resource
itself. The weight of the edge is the weight of the Avoid Clashes constraint ¢ € C. Section
9.4.2 will show that this approximations in in fact an exact approach for the considered
instances.

e Avoid Unavailable Times: This constraint ¢ € C specifies that certain resources
Ravoidunavailable 516 ypavailable at certain times T2veidunavailable “and penalizes the assign-
ment of resources to these times. This is handled by issuing a separate version of G for
every time, denoted G;. For every Awoid Unavailable Times constraint ¢ € C and for ev-
ery time ¢ € Taveidunavailable jt applies to, add the penalty w. to all edges adjacent to the
resources Ravoldunavailable iy the oraph (.

Since the bipartite graph now contains edge-weights, we seek a minimum weight maximum match-
ing, i.e. a maximum matching which assigns (sub-event, event resource) elements to resources
such that the summed weight on the used edges is minimal. However, since the Awvoid Split
Assignments constraints can not be handled, the value of the matching is only a lower bound on
the actual penalty (for instances which actually use this constraint). The quality of this lower
bound depends on the dataset in question. Theorem 4.2 of Sgrensen and Dahms (2014) states
the following.

Theorem 9 (Lower bound on minimum weight maximum matching). Given a bipartite graph
G = (AUR, E) with edge weights, where W denotes the set of all edge weights in G sorted from
smallest to largest, G<,, is the subgraph of G containing only edges with weight < w € W, and
ay € Ny defined as

B |A| — defl(G<y) ord(w) =0, 9.3)
Y def(Gew) — def(G<y) ord(w) > 0, ord(w') = ord(w) — 1, '
then Y ey Gw 18 a lower bound on the minimum weight mazimum matching in G.

Thereby we can approximate the penalty of the resource constraints in Stage I of the de-
composition. This requires the following variables; def; <,, € RT is the deficiency of subgraph

Chapter 9. Paper D: Decomposing the Generalized High School Timetabling Problem 126

Gt <w of graph G, for time ¢t € T, and a;,, € RT is the variable associated with Theorem 9 for
time ¢t € T and weight w € W. The parameter I'; <,,(S) defines the neighbors for set S C A of
subgraph G .

Models (9.4) and (9.5) shows Stage I and Stage II, respectively. In the original model
egs. (9.1e) to (9.1h) define that the duration of the active sub-events must match the duration
of the equivalent event. Since we cannot determine which events will be assigned free resources,
these constraints are simplified in Stage I. The imposed condition is that a sub-event is active
if it is assigned a time, contrary to also involving the assignment of free resources. Constraint
(9.4c) defines this requirement. Whether this is a limitation of the model is discussed in Section
9.4.2. As described above, only a subset of native XHSTT constraints C can be optimally han-
dled in Stage I. These are denoted C’, and are defined by Constraint (9.4g). Equations (9.4d)
to (9.4f) along with the additional term in the objective function define the lower bound on the
constraints C". Notice that all variables except Yse,t Ca be stated as continuous, as they will
naturally take integer values.

Given the solution for Stage I y;, ;, a solution to the full model can be derived by Stage II.
Constraint (9.5b) ensures that each event resource is assigned one resource (possibly the dummy
resource).

Stage 1 (9.4)
min 2/ = Z w, - CostFunction(s,,,) + Z g (9.4a)
cec! teT ,wew
s.t.
> Yoot =1 Vse € SE (9.4D)
teT
Z Yse,t = De Ve e & (94(})
se€e teT\tp
Y Yeew —deficu < [Tocu(S)| VS C AL te T weW (9.4d)

se€S,t/eTstart

Z Yse,t’ — deft,gw

se€ Ay t' €T

At VteT,weW,ord(w) =0 (9.4e)

YVt e T,w,w, € W,ord(w) > 0,

deft)gw/ — deft7gw = at,w OI'd(’LU/) _ OI‘d(’U}) -1 (94f)
(yse,ta Sc,p) S CI (94g)
Yse,t S {07 1} (94h)
deft,§w7 At wsy Se,p € R+ (941)

127 9.4. Two-Stage Decomposition

Stage II (9.5)
min 21 = Z w, - CostFunction(s,,p) (9.5a)
ceC
S.t.
Z Wse,er,r =1Vsee SE,er € se (9.5b)
reR
(wse,er,ra y:@,t, sc,p) S C (95C)
Wse,er,r € {07 1} (95d)
Se,p c R+ (958)

9.4.2 Practical Considerations

The described TSD has some limitations, described below in details. The impact of each limita-
tion in practice is discussed.

e Recall that a sub-event is active if it is assigned a time and/or a non-preassigned resource.
Constraint (9.1h) of the original MIP model ensures that the sum of the duration of all
active sub-events of an event must equal the duration of the event. This raises an issue in
the decomposition, since it might be optimal to leave a sub-event inactive by not assigning
it to a time in Stage I, and only making it active by assigning a resource to one of its
event-resources. However, we consider this scenario unlikely, on the basis of the follow-
ing: By investigation of the available XHSTT instances, every event not preassigned to a
time is considered by an Assign Time constraint, and this constraint is a hard constraint.
This means that all such events request an assignment of a time. Likewise, all free event
resources are considered by a hard Assign Resource constraint. This means that if for
some instance a solution with 0 violations of hard constraints is known, then it cannot
be optimal to not assign times to sub-events for this event. Furthermore, suppose that
some event resource is free, its Assign Resource constraint has weight w, and its Assign
Time constraint that applies to the event has weight wy. If a solution is known with
violation of hard constraints less than wy — w; then the TSD will be an exact approach
in this aspect. By investigation of the XHSTT instances, it is shown that this limitation
only has impact the instances DenmarkFalkonergaardensGymnasium2012, DenmarkHas-
serisGymnasium2012 and DenmarkVejenGymnasium2009. Thereby lower bounds cannot
be generated for these instances, so optimality cannot be guaranteed theoretically.

e The lower bound on constraints C" assumes that the CostFunction for these constraints
is Sum, as the nonlinear CostFunctions requires more detailed information on the specific
origin of the constraint violations. For instance, a nonlinear CostFunction for an AssignRe-
source constraint requires knowledge on which specific sub-events and event resources that
are not assigned a resource, contrary to only knowledge of the magnitude of the violation
as determined by the lower bound. However in practice, all XHSTT instances encountered
use the Sum CostFunction for all constraints C*. Thereby this is not an issue in practice.

e Constraints Limit Idle Times, Cluster Busy Times, Limit Busy Times, Limit Workload and
Avoid Split Assignment cannot be handled optimally for free resources by the decomposi-
tion. Table 9.1 shows the encountered XHSTT instances with at least one free resource,
and the constraints of each instance which applies to at least one free resource. The table
shows that no instance contains Limit Idle Times or Cluster Busy Times constraints which

Chapter 9. Paper D: Decomposing the Generalized High School Timetabling Problem 128

apply to free resources, so these constraints can be optimally handled by the decomposi-
tion for the considered instances. In case of Limit Busy Times, Limit Workload and Avoid
Split Assignment, the same three instances contain such constraints which applies to free
resources. Therefore the decomposition cannot guarantee optimally for these instances, but
is though capable of providing lower bounds. For the remaining instances, these constraints
can be handled optimally.

e The Awoid Clashes constraint can only be approximated in theory. However, practical
considerations of the XHSTT instances have shown the following two observations: 1) No
two Awvoid Clashes constraints apply to the same resource, and 2) All Avoid Clashes and
Assign Resource constraints are hard constraints, and have a weight of value 1, except in
the three Australian instances. These observations mean that in terms of these constraints,
equivalent cost arises given the same amount of violation of either of them (since we also
assume CostFunction Sum for these constraints, as previously described). Therefore these
constraints be modeled accurately in the bipartite graph by introducing a dummy-vertex
for each event-vertex, with a single edge of weight 1 which is adjacent to the event-vertex.
However, the following approach is more efficient in practice. Denote by a§'®® € Ny the
amount of violation of all Awvoid Clashes and Assign Resource constraints in time ¢ € T .
Constrain this variable by

Z Yse,t' — Z At = aglaSh vteT, (96)

seC Ayt TSt wew

and penalize it in the objective function accordingly. By this approach, the size of the
bipartite graph is significantly reduced.

To summarize these considerations, all XHSTT instances, except the three Australian and the
three Danish, can be solved optimally in theory by the decomposition, if we were capable of
determining the optimal matching of sub-events to resources in Stage I. However, since we only
know a lower bound on the matching, optimality cannot be guaranteed. In favor of the decom-
position is the fact that the total amount of variables in the problem is considerably reduced,
which might be beneficial for the MIP solver. In case of the Australian instances, lower bounds
can be generated. In case of the Danish instances, their structure prevent the generation of lower
bounds.

9.4.3 Generating Hall Inequalities

Constraint (9.4d) contains an exponential amount of inequalities, so in practice it is intractable
to generate them all. However, not all of these inequalities are necessary for maintaining opti-
mality. In fact, in practice only a small subset is required. Our approach for generating these
necessary inequalities is domain-specific, and based on characteristics of the bipartite graphs of
the XHSTT instances. We already argued that most XHSTT instances contain only one Assign
Resource constraint and one Awvoid Clashes constraint. What remain to be considered is there-
fore Prefer Resources and Avoid Unavailable Times. In the following, an informal explanation
of our approach to generate these inequalities is given. For formal proofs of the following claims
for the general case of bipartite graphs, see Serensen and Dahms (2014).

Consider a subset a C Ay for some time t € T . If all sub-events of a are adjacent to the exact
same set of rooms with the same edge-weights, then it is easy to see that only one inequality is
required, namely the one for a itself. Furthermore, consider two subsets a;,as C A; with the same
property. In this case, three inequalities are required, namely those of a1, as and a; Uasy. Using

129 9.4. Two-Stage Decomposition

this analogy of grouping of elements of A; all required inequalities can be generated. However,
the amount of inequalities is exponential in the number of groups, and the number of groups
might not be small. In our terminology, a Prefer Resources constraint alters the weight on edges
between a certain set of events and a certain set of resources, and an Awvoid Unavailable Times
constraint alters the weight on all edges adjacent to a certain set of resources (since we consider
the graph for a specific time). Hence if a XHSTT instance contains few of these constraints, it
is reasonable to expect that the amount of groups of (event,event-resource) elements is low.

Another common property of the bipartite graph which we exploit is the following: Many
event-resources are fixed to a certain resource, and therefore only contain one edge in the graph.
Such event-resources can be excluded from the grouping of elements of A;, and handled implicitly
using auxiliary variables, see (Sgrensen and Dahms, 2014, Theorem 4.5).

By these considerations, it has been possible to generate the necessary Hall inequalities for
most XHSTT instances. We will assume that the presented approach is intractable in case more
than 10 groups of resources are needed. In these cases the groups are ranked based on amount
of adjacent edges to the other groups, and the inequalities are generated for the top 10 groups.
This limitation was necessary for four instances, see Table 9.2.

Table 9.1: Constraints of XHSTT instances in the archive ALL_INSTANCES which applies to events
with free resources or resource which are free for at least one event. "Y" means that the instance
contains at least one of such constraints which applies to at least one event with at least one free
resource.

i'\)
N
é\\z
5 Q)
v
s X
§ & & § & &
F F 8 S &
S&F 88
s & F S &F & ¢
g & & F &S
F P & & S ¥ & ¢ ¢
g O L E &£y FSE S
FIFT TS FSFS
S S A S S A A NS G
Y F &L F LI FFFFS
F F YT FITITSFSSFFTS
N~ S <A S A A
F & & & & & 9 F @ & S
§ § 5§ FFFEFEFSF
S T N N N S
Assign Resource Y Y Y Y Y Y Y Y Y Y Y Y
Assign Times Y Y Y Y Y Y Y Y Y Y Y Y
Avoid Clashes Y Y Y Y Y Y Y Y Y Y Y Y
Avoid Split Assignment Y Y Y - - - - - - - - -
Avoid Unavailable Times Y Y Y - - - - - Y Y Y Y
Cluster Busy Times - - - - - - - - - - - -
Distribute Split Events Y Y - - - - - - - - - -
Link Events Y Y Y Y Y Y Y - Y Y Y -
Limit Busy Times Y Y Y - - - - - - - - -
Limit Idle Times - - - - - - -
Limit Workload Y Y Y - - - - - - - - -
Order Events - - - - - - - - - - - -
Prefer Resources Y Y Y Y Y Y - Y Y Y Y Y
Prefer Times Y Y - - - - - Y Y Y Y -
Split Events Y Y - - - - - Y Y Y Y Y
Spread Events Y Y Y Y Y Y Y Y Y Y Y Y

Chapter 9. Paper D: Decomposing the Generalized High School Timetabling Problem 130

9.5 Solution Method

Given the structure of the XHSTT objective, solutions are always ranked first on the hard cost,
and secondly on the soft cost. Kristiansen et al. (2013) propose a two-step solution method which
first solves a partial model containing only the constraints and variables necessary to determine
the hard cost. This is denoted Step I. Once Step I is solved, the hard cost of the final solution
is known. Now the model is extended with variables and constraints necessary to determine
the soft cost. This is denoted Step II. The same approach is used in each stage of the TSD, as
described in the following. First the Stage I model is constructed such that it only contains hard
constraints. This model represents Step I of Stage I and is denoted Mssttjffl. Mssttjffl is solved
given some timelimit, to obtain a solution which represents the hard cost. The obtained lower
bound is a lower bound on the hard cost for the original problem. Stanel

age

Mssséff !is now extended with soft constraints as well, to obtain model MStepII In case model

Mssttjgf ! was solved to optimality, the violation of the hard constraints of model Mgf;;gfll must

equal the violation of the hard constraints of model Msstt;ff I, which is ensured by an equality
constraint on the relevant variables. The lower bound obtained is an lower bound on the soft

cost of the overall problem. In case model Mg;:ff ! was not solved to optimality, all variables in

model Mstt;fﬁl are fixed to their equivalent value in model Mgsjgf ! to obtain the soft cost of the
solution. The reasoning is that the algorithmic time should be spend on minimizing the hard
cost defined by model Mgﬁ:pgfl. So if this model is not solved to optimality, the MIP solver is
only invoked on model Mg,f:fﬁl to obtain the soft cost.

In case the dataset in question has no free resources, the solution to Stage I is also a solution
to the original problem, meaning that Stage II can be skipped. In case the dataset contains
free resources, the solution of Stage I is given as input to Stage II, and the solution procedure
continues. Model M. Stafen is build, which contains all hard constraints of the dataset. The two-
step procedure of Stage II is analogous to that of Stage I, except that Stage II does not generate
lower bounds on the cost. The output of Stage II is a solution to the original model.

Figure 9.2 illustrates the solution method.

StageI StageI y“, it StageII StageII
StepI StepII StepI StepH
hard cons.) (soft cons.) \ hard cons.) soft cons.)
Lower bound Lower bound Solution Solution
on hard cost on soft cost (if no free resources) (if any free resources)

Figure 9.2: Solution method outline.

9.6 Computational Results

To evaluate the TSD, empirical results are established on a number of XHSTT instances. Specif-
ically, the XHSTT archive ALL_INSTANCES is used, which contains 38 non-artificial instances.
During the computational experiments the following observations has been made for instances
with only fixed resources (recall that in such cases, only Stage I is needed in the solution process):

131 9.6. Computational Results

e The size of the original MIP model (9.1) and the Stage I model (9.4) are roughly the same
after presolve.

e By inspection of the presolved model of Stage I, all =4 ¢ variables have been removed
from the model.

e The performance of the TSD is roughly equal to that of the original MIP.

In the following an argument for this behavior is attempted. Given is a dataset with all resources
are fixed. This means that for sub-event se € S€ and time ¢t € T, indices er and r can be dropped
from 24e ¢,err. Furthermore, all variables wge er, are fixed to value 1 by definition. Therefore the
Stage I model (9.4) will closely resemble the original MIP model (9.1) in these particular cases.
However, due to the heuristic behavior of presolve of the MIP solver, it cannot be guaranteed
that these exact reduction steps is performed. But as the observed sizes of the models are roughly
equal, and the models perform similarly, only performance for instances with free resources are
reported in the following.

Table 9.2: Comparison of solution methods for instances in archive ALL_INSTANCES with free resources. Columns Time; and Times
indicate the time spend on Step I and Step II, respectively. For both solution approaches is shown the obtained lower bound LB and
the objective value of the obtained solution Obj. In case a lower bound or a solution was not found, a dash "-" is written. Columns
Best and Best LB indicate the best known solution and lower bound, respectively.

TSD
Original MIP model Stage I Stage 11

Instance Time; Timeg LB Obj Time; Times Time; Times LB Obj Best Best LB
AU BGGHS98 >21600 - (-, -) (-, -) 20520 - - - 0, -) () (3, 494) (0, 0)
AU SAHS98 >21600 - (-, -) (-, -) 20520 - - - (0, -) -) (8, 52) (0, 0)
AU TES99 >21600 - -, -) ,-) 20520 - 1 1 (0, -) (162044 85) (1, 140) (0, 0)
DK Falkoner2012 >21600 - (0,-) (341106, 9951) 20520 - 4 3 (0, -) 2(3981, 14196) (2, 23705) (0, 0)
DK Hasseris2012 >21600 - (7,-) (869471, 14414) 20520 - 6 7 1(102,-) (5850, 38941) (293, 32111) (0, 0)
DK Vejen2009 >21600 - (2, -) (928, 8078) 20520 - 2 2 1(2,-) 2(3344, 20643) (20, 18966) (2,0)
ENG StPaul >21600 - (0, -) (1227, 0) 20520 - 2 2 (0, -) (80783, 10516) (0, 136) (0, 0)
FI ArtificialSchool >21600 - (0, -) (12, 31) 669 19851 0 0 (0, 0) (0, 1) (0, 0) (0, 0)
NL Kottenpart2003 >21600 - (-, -) (-, -) 20520 - 2 2 0, -) (11398, 3660) (0, 1410) (0, 0)
NL Kottenpart2005 >21600 - -, -) (1617, 68) 20520 - 3 3 0, -) (13341, 672) (0, 1078) (0, 9)
NL Kottenpart2009 >21600 - (0, -) (12461, 20) 20520 - 3 2 (0,-) (118236, 1845350) (0, 9035) (0, 160)
ES School 6125 >15475 (0, 309) (0, 6818) 2246 18274 0 0 (0, 331) (0, 718) (0, 357) (0, 330)

11t cannot be guaranteed that this is a true lower bound. See Section |9 4.2.
2 An artificial limit on the amount of Hall inequalities was imposed at least one time.

wqOIJ SurqeIdwr], [00YDS YT pozierouar) o) Sursodwosd((] odeg -6 101dey)

44!

133 9.6. Computational Results

Step I of org. MIP model TSD Msstt:gfl
Instance Vars Cons Non-zeros Vars Cons Non-zeros
AU BGGHS98 1.2-10" 5.5-10° 6.8-10" 1.6-10° 1.8-10° 1.3-107
AU SAHS98 - - - — - —
AU TES99 8.0-10° 1.1-10° 4.1- 106 6.2-10* 9.1-10* 1.2-107

DK Falkoner2012 85-10* 1.4-10* 3.3-10° 7.6-10> 4.2-10° 1.2-10°
DK Hasseris2012 46-10 26-10° 1.8-10" 1.5-10° 1.5-10° 1.6-107
DK Vejen2009 6.6-10 4.1-10° 2.5-107 2.3-10° 2.3-10° 4.4-10°
ENG StPaul 3.7-10 19-10° 1.4-107 1.0-10° 6.4-10* 1.6-106
FI ArtificialSchool 2.4-10 1.6-10° 9.2-10% 4.7-10* 3.5-10* 3.8-10°
NL Kottenpart2003 1.9-10° 2.0-10° 7.5-10% 1.4-10° 1.3-10° 2.8-10°
NL Kottenpart2005 2.9-10¢ 2.7-10° 1.1-10" 1.8-10° 1.8-10° 3.6-10°
NL Kottenpart2009 3.3-10° 2.0-10° 1.3-10" 9.1-10* 6.9-10* 3.9-10°
ES School 5.6-10* 1.9-10* 3.2-10° 3.8-10* 2.0-10* 8.1-10°

Table 9.3: Comparison of models Step I of original MIP model and Mg,f:ffl model of TSD after
presolve performed by Gurobi. Columns Vars, Cons, Non-zeros denotes the number of variables,
constraints and non-zeros, respectively. Instance AU SAHS98 cannot be presolved within a 48

hour time-limit, so results for this instance are not reported.

All experiments were performed on machines with an Intel Core i7 CPU clocked at 2.80GHz
and 12 GB of RAM, running Windows 8 64bit. Gurobi 5.5.0 was used as MIP solver, which is one
of the best performing general-purpose MIP solvers available (see Mittelman (2013)). On this
particular CPU, Gurobi uses eight threads. By default, Gurobi uses the dual simplex algorithm
to solve the root LP-relaxation. A study of the performance of Gurobi for the XHSTT models
has indicated that it is usually advantage to instead use the concurrent method, which uses one
thread for the primal simplex algorithm and one thread for the dual simplex algorithm, and the
remaining threads (six in this case) are used by the barrier algorithm. We use this parameter
setting for all experiments.

To evaluate the performance of the TSD, the following test setup is used. A time-limit of 6
hours (21600 seconds) is imposed for both the original MIP model and the TSD. In case of the
TSD, the time-limit for Stage I is set to 0.95 - 21600s = 20520s, as it is expected that Stage I is
way harder to solve than Stage II. Thereby the time-limit for Stage II is 1080s. In case Stage 1
is solved to optimality, the excess time is added to the time-limit of Stage II.

Table 9.2 shows the obtained results. The TSD produces the best solution in 6 cases, and
the MIP model is best in 6 cases. It was expected that the advantage of the TSD would be more
pronounced. Table 9.2 shows that the majority of time is spend in Step I for the MIP model,
and in model Mssssg;?r for the TSD. To further compare the differences between the solution
approaches, Table 9.3 shows statistics of these models after presolve has been invoked by the
MIP solver. The table shows that the Mg,f:sfl model is significantly smaller than the Step I
model of the original MIP model. Therefore it is surprising that the TSD does not significantly
outperform the original MIP model. When investigating the logs of the MIP solver for the
TSD, it is seen that the solver seems to spend a lot of time improving the LP-relaxation in the
rootnode. In many cases the total amount of nodes explored throughout the solution process is
very small (for the larger instances, work is only performed on the rootnode). This suggests that
the instances are a significant challenge for the MIP solver, even for the smaller models produced
by the TSD. It is remarked that for two of the smallest instances (FI ArtificialSchool and ES

School), the Mss,f:lffl model is solved to optimality, and in these cases the TSD outperforms the

Bibliography 134

original MIP model in terms of both solution- and lower bound quality. This suggests that the
potential of techniques based on TSD is large, but the approach presented in this paper is not
sufficient for obtaining good results in all cases.

In all cases are the root LP-relaxation of the Msstt:gfl model solved in the TSD (indicated by
the LB column). For the MIP model. this is only the case for 7 instances. All lower bounds
produced by the TSD are better or equivalent to those produced by the MIP model. Table 9.2
also shows that the obtained solutions are far from the best known ones. This indicates that
significant work is still needed on exact methods before these can compete with heuristics for
this particular optimization problem.

9.7 Conclusion

A Two-Stage Decomposition (TSD) for the generalized High School Timetabling Problem has
been proposed, based on a Mixed-Integer Programming (MIP) formulation of the general XHSTT
format. The approach is innovate and it has been shown that in theory the decomposition is
advantageous to solve compared to the original MIP model.

The XHSTT instances can be thought of as two distinct groups, those where all resources
are preassigned (fixed resources), and those where at least one event expects the assignments of
some resource of a certain type (free resources). For an instance with only preassigned resources,
the decomposition model roughly resembles that of the original MIP model, and no significant
difference was observed in computational experiments. For an instance with free resources, the
decomposition yields significantly smaller models, which is an advantage in theory. However, for
the tested instances (a total of 12 of the considered instances have free resources), the decompo-
sition did not produce as good solutions and lower bounds as was expected on beforehand.

Even though TSD is a promising method in theory, many of the tested instances are too large
to be handled effectively. We believe that the decomposition is advantageous for these instances,
but still inadequate for establishing state-of-the-art results (at least with the used test-setup).
This is indicated by the fact that for two of the smallest instances with free resources, the
computational results show that the decomposition outperforms the original MIP model. To
enhance the decomposition, further steps are required. This could for instance be other types of
decomposition which could be applied to the MIP models yielded by the decomposition, such as
Dantzig-Wolfe Decomposition.

Another topic for future research is more theoretical insight in the decomposition, both w.r.t.
deriving a better bound (or even optimal solution) of the matching in the bipartite graph model-
ing the anonymous assignment of resources, and w.r.t. an algorithm for generating the necessary
Hall inequalities. Such improvements would theoretically strengthen the decomposition. Fur-
thermore, the application of TSD to the XHSTT format could be improved in a number of ways
(see Section 9.4.2). Ultimately, this would lead to the possibility of generating lower bounds for
any XHSTT instances independently of the characteristics of the particular instance.

Bibliography

M. ter Braak. A hyperheuristic for generating timetables in the xhstt format. Master’s thesis,
University of Twente, June 2012.

E. Burke, J. Marecek, A. Parkes, and H. Rudova. Decomposition, reformulation, and diving in
university course timetabling. Computers € Operations Research, 37(3):582-597, 2010.

135 Bibliography

V. Cacchiani, A. Caprara, R. Roberti, and P. Toth. A new lower bound for curriculum-based
course timetabling. Computers € Operations Research, 40(10):2466 — 2477, 2013. ISSN 0305-
0548.

S. Daskalaki and T. Birbas. Efficient solutions for a university timetabling problem through
integer programming. Furopean Journal of Operational Research, 160(1):106 — 120, 2005.
ISSN 0377-2217.

G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza. A sa-ils approach for the high school
timetabling problem. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), 2012.

J.-K. Hao and U. Benlic. Lower bounds for the itc-2007 curriculum-based course timetabling
problem. European Journal of Operational Research, 212(3):464 — 472, 2011. ISSN 0377-2217.

A. Kheiri, E. Ozcan, and A. J. Parkes. Hysst: Hyper-heuristic search strategies and timetabling.
In Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 497499, 2012.

S. Kristiansen, M. Sgrensen, and T. R. Stidsen. Integer programming for the generalized (high)
school timetabling problem. Journal of Scheduling, Submitted 5/9-2013, 2013.

G. Lach and M. Liibbecke. Optimal university course timetables and the partial transversal
polytope. In C. McGeoch, editor, Experimental Algorithms, volume 5038 of Lecture Notes in
Computer Science, pages 235-248. Springer Berlin / Heidelberg, 2008.

G. Lach and M. Liibbecke. Curriculum based course timetabling: new solutions to udine bench-
mark instances. Annals of Operations Research, 194:255-272, 2012. ISSN 0254-5330.

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D. Gaspero,
R. Qu, and E. K. Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing, 22(1):120-130, 2010.

H. Mittelman. Benchmarks for optimization software.
http://plato.asu.edu/bench.html [Accessed 28/10-2013], 2013.

M. Pimmer and G. R. Raidl. A timeslot-filling heuristic approach to construct high-school
timetables. In L. Di Gaspero, A. Schaerf, and T. Stiitzle, editors, Advances in
Metaheuristics, volume 53 of Operations Research/Computer Science Interfaces Series, pages
143-157. Springer New York, 2013. ISBN 978-1-4614-6321-4.

G. Post. Benchmarking project for (high) school timetabling.
http://www.utwente.nl/ctit/hstt/ [Accessed 28/10-2013], 2013.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012. ISSN 0254-5330.

J. Romrés and J. Homberger. An evolutionary algorithm for high school timetabling. In
Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 485-488. SINTEF, 2012.

H. Santos, T. Toffolo, S. Ribas, and R. Gomes. Integer programming techniques for the nurse
rostering problem. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

http://plato.asu.edu/bench.html
http://www.utwente.nl/ctit/hstt/

Bibliography 136

M. K. Y. Shambour, A. T. Khader, A. Kheiri, and E. Ozcan. A two stage approach for high
school timetabling. In M. Lee, A. Hirose, Z.-G. Hou, and R. Kil, editors, Neural Information
Processing, volume 8226 of Lecture Notes in Computer Science, pages 66—73. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-42053-5.

M. Sgrensen and F. H. W. Dahms. A two-stage decomposition of high school timetabling
applied to cases in denmark. Computers & Operations Research, 43:36—49, March 2014.

M. Sgrensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages

489-492. SINTEF, 2012.

Chapter 10 Paper E

A Matheuristic for High School Timetabling

Matias Sgrensen!-?, Thomas R. Stidsen'
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

Abstract An emerging branch within Operations Research is the hybridization of Metaheuristics
and Mathematical Programming, commonly known as matheuristics. This paper presents a matheuristic
for two versions of the high school timetabling problem, the generalized problem based on the XHSTT
format, and the Danish case, respectively. The algorithm is build on top of a Mized-Integer Linear
Programming (MILP) formulation (distinct formulations are used for the two versions of the problem),
such that the feasible area is explored iteratively using a state-of-the-art MILP solver. Specifically, the
algorithm iteratively considers a (small) part of the MILP model (denoted a subproblem), and attempts
to improve the current best solution by altering the values of the respective variables of the considered
part. The matheuristic is in principle applicable for general MIPs, but we have chosen to build the sub-
problems using problem-specific knowledge to improve performance. Extensive computational results are
established, and good performance is shown for both versions of the problem; for the generalized problem,
the matheuristic is competitive with the winner of round 2 of the International Timetabling Competition
2011. For the Danish version of the problem, the matheuristic performs best compared to three other
algorithms, given a large timelimit. Given a smaller timelimit, the matheuristic is outperformed by
another heuristic.

10.1 Introduction

For many practical optimization problems a full-scale exact solution approach is computational
intractable, and (meta)heuristics have proven capable of providing good solutions. An emerg-
ing branch within Operations Research is the hybridization of these two classes of methods,
commonly known as matheuristics. Both of these classes of methods has specific advantages;
Heuristics are usually less sensitive to the size of the input data, whereas mathematical program-
ming techniques are theoretically capable of finding optimal solutions. By hybridization, it is
the desire to enjoy the best from both worlds (Ryan (2012)).

In this paper two versions of the High School Timetabling Problem (HSTP) are considered.
A Mized-Integer Linear Programming (MIP) formulation is known for both these test-cases,
which lies as a foundation for our approach. A matheuristic for this problem is constructed
by iteratively solving an artificially-constrained version of the problem (from now on known as
a subproblem) by the MIP solver. Specifically, the solution space is reduced considerably by
allowing the MIP solver to change the value of only a subset of variables in each iteration. This

137

Chapter 10. Paper E: A Matheuristic for High School Timetabling 138

results in MIPs which are considerably simpler than the original MIP, and which can be solved
effectively by the MIP solver. In the following, the size of a subproblem refers to the amount of
free variables.

Selecting the artificial constraints to add to the model poses a trade-off; On one hand, the
constraints should make the problem solvable by the solver. On the other hand, the constraints
should allow as much freedom as possible, such that improving solutions can be found. Clearly,
what makes a good subproblem w.r.t. these aspects might differ among problem instances.
Therefore we propose to dynamically adjust the size of sub-problems based on previous perfor-
mances of the solver for the particular problem-instance. Hence, if a given problem-instance is
‘easy’, then the size of subproblems will be increased by the adaptive layer of the heuristic, giv-
ing more degrees of freedom to the solver. If applicable, subproblems might be expanded to full
problem-size, and the approach will be exact. If a given problem-instance is ’hard’, subproblems
will be down-sized accordingly.

Our approach also considers various ways of constructing subproblems. This means that a
way of selecting a subproblem to use is needed, which is another feature of the adaptive layer.
Specifically, we track the total improvement made by the subproblem to the objective so far,
as well as the total time spend. On the basis of these indicators, a mechanism for subproblem-
selection is imposed which selects the most favorable subproblems often.

Even though a process like the one described could be designed to give optimal solutions,
that is not the focus of this paper. Instead we aim at an algorithm which finds good incumbent
solutions, by heuristically constructing subproblems and not requiring to solve these to optimality.
Furthermore, the general matheuristic described in this paper is not problem-specific. Problem-
specific knowledge is used to construct the subproblems, but this should be easily adaptable to
other (timetabling) optimization problems.

The paper is organized as follows; Section 10.2 describes related approaches from the litera-
ture. Section 10.3 describes the matheuristic in details. Section 10.4 describes both versions of
the high school timetabling problem in details. Section 10.5 shows the obtained computational
results. Section 10.6 concludes on our findings.

10.2 Related work

In terms of high school timetabling in general, we refer to Pillay (2013) for a recent survey
on different solution methodologies. In the following we briefly survey methods related to the
described matheuristic.

The Corridor Method (Sniedovich and Vofs, 2006) is similar to our approach in that exoge-
nous constraints are imposed on the optimization problem at hand, to make it tractable by a
given exact optimization method. The method resides on method-based neighborhoods, implying
that the subproblems should be constructed such that they are easily solvable by the exact opti-
mization method. This is in contrary to move-based neighborhoods, in which very small changes
is made to a given feasible solution.

Large optimization problems can often be seen as being composed of different parts. The idea
of POPMUSIC (or Partial Optimization Meta-heuristic under Special Intensification Conditions)
is to locally optimize sub-parts of a solution in an iterative fashion (Voss (2001), Taillard and Voss
(2002)). The method is stopped once optimal solutions are found for all sub-parts, contrary to
the concept of our approach.

Our approach can be seen as a heuristic version of Local Branching (Fischetti and Lodi, 2003).
Local Branching is a general technique for solving MIPs with binary variables, in which linear
inequalities are used to control the number of changes &k made to the current solution. Branching

139 10.3. Matheuristic

on < k and > k+1 respectively, it is then the desire to quickly achieve good incumbent solutions.
Instead of a general methodology for MIPs, our method uses problem dependent knowledge in
selecting the variables of subproblems.

A notable contribution within the area of matheuristics is Maniezzo et al. (2009a), which
covers material presented at the Matheuristics 2008 workshop. Blum et al. (2011) survey differ-
ent branches within hybrid metaheuristics, dividing the algorithms into five different categories.
Prandtstetter and Raidl (2008) hybridize Integer Linear Programming and Variable Neighbor-
hood Search for a car sequencing problems, such that large neighborhoods are searched by a
MIP solver when smaller heuristic-based neighborhoods was unable to improve a solution fur-
ther. Another noteworthy contribution is Maniezzo et al. (2009b) which contains contributions
from the Matheuristics workshops.

Solving timetabling problems by exact methods is not very common in the literature. One
exception is Avella et al. (2007) which presents a MIP model for a case of high school timetabling,
and solves this MIP within a Very-Large Neighborhood Search (VLSN) algorithm. Such a type of
algorithm indeed fits within the matheuristic paradigm. In the VLSN algorithm of Avella et al.
(2007) a timetable is iteratively improved by fixing the schedule for all teachers except two. This
is quite similar to our approach, except we do not restrict the algorithm to choose any specific
number of teachers, nor to any specific type of resource. In fact, the number of resources which
can have their timetable altered in an iteration is adaptively adjusted for better performance.
Unfortunately the datasets which Avella et al. (2007) use to establish computational results are
not available in a standard format, so a comparison of empirical results cannot be made.

Our approach can be seen as being related to Large Neighborhood Search (LNS) (Pisinger and
Ropke, 2010), and the variant Adaptive Large Neighborhood Search (ALNS). In a LNS algorithm,
a solution is iteratively changed using destroy and repair operators. In a ALNS algorithm,
multiple destroy/repair operators are used, and those that perform well are used most often.
Sgrensen and Stidsen (2013b) apply ALNS to the Danish case of high school timetabling.

10.3 Matheuristic

The key idea of our approach is to iteratively improve a solution by exploring neighbor-solutions,
as is done in local search methodologies. We say that we explore the neighborhood of a solution,
and this is done by a MIP solver. Multiple neighborhoods are used, denoted by the set N, and
we impose an adaptive mechanism to select the neighborhood structures which have previously
performed best. Furthermore it is assumed that a solution S can be fully described by the
values of the decision variables X. This should be understood such that a setting of values in X
implicitly define the values for all other variables by means of the constraints of the MIP, and
thereby X are sufficient for describing a solution to the problem instance at hand. Note that
we pose no restrictions on how the variables X are defined; They can be defined as integer or
continuous as desired.

A neighborhood n € N is essentially a method that selects a subset of variables X C X. This
neighborhood is explored by fixing all other variables X'\ X to their current value, such that the
values of variables X can be freely selected by the solver. For a solution S, the notation n (S) is
used to denote this neighborhood. Each neighborhood has a property which defines the amount
of variables to select, found by |n| = a|X|, where « €]0;1]. The value of « is adaptively adjusted

throughout the algorithm, which we elaborate on later. Initially it is set to oy = max(1, %),

where |n|, € NT is the ’target’ absolute amount of variables initially. Thereby the amount of
variables is selected relative to the total amount of decision variables, for better adapting to the
size of each problem instance. Hence a neighborhood consists of a (small) part of the overall

Chapter 10. Paper E: A Matheuristic for High School Timetabling 140

solution space. A MIP solver might be able to explore this small sub-space effectively, making
this iterative approach attractive. We will rely on empirical results to support this claim. One
of the most prominent effects of fixing many variables is that the solver is able to greatly reduce
the size of the problem in the presolve face.

The matheuristic algorithm is shown in Algorithm 1. In the remainder of this section we
describe this algorithm in details. The algorithm can in principle be applied to any MIP model,
however this would require generic MIP-neighborhoods. Such neighborhoods could for instance
be constructed by identifying related variables in terms of amount of constraints which involves
these variables. In this paper we consider the neighborhoods problem-specific, in the hope of
improving performance.

Algorithm 1 Matheuristic algorithm

1: input: problem instance of HSTP, neighborhoods N

2: output: feasible solution S

3: S := initial (HSTP) > Construct initial solution
4: HSTP = MIPPresolve(HSTP) > Presolve model
5: while stopping criteria not met do

6: choose neighborhood n

7: obtain variables V :=n (5)

8: fix variables X \ V' to their current value

9: invoke MIP-solver on S with timelimit typ

10: if MIP-gap < gpmin then

11: increase size of n

12: else if MIP-gap > gyax then

13: decrease size of n

14: end if

15: unfix all variables

16: end while

An initial solution is constructed in a problem-specific way in Line 3. For both our test cases,
this is performed by a heuristic based on a greedy principle which we describe in detail in Section
10.4. In both cases the greedy heuristic has a low running time.

In Line 4 of the algorithm, the MIP is presolved by the solver. For most problem instances,
this greatly reduces the size of the MIP. In effect, the iterative process is performed on the
presolved model, which has the advantage of preventing the same presolve-steps to be performed
in each iteration. Note that presolve is also performed in the iterative steps of the algorithm,
and we note that it has great impact on reducing problem size when a neighborhood has been
applied to the MIP model.

Lines 6-9 resides in the iterative part of the algorithm, and chooses a neighborhood, applies
it to the current solution, and invokes the MIP solver.

As previously discussed, it seems advantageous to adaptively adjust the size of neighborhoods.
This is done by querying the resulting gap of the MIP solver (Lines 10-14). If this gap is below
a threshold g, the size of the neighborhood is increased by a = « 4 0.02. If it is above a
threshold gpax, the size is decreased by o = o — 0.02. Obviously, the MIP-gap depends on the
applied neighborhood and its current size.

It should be remarked that the current solution S is not excluded in the search space of n (S)
by this approach. This has the advantage that the MIP solver is able to warm-start, as the final
state of the previous solve operation is not made invalid by the added constraints.

141 10.4. Test Setup

10.3.1 Neighborhood selection

A mechanism for selecting the neighborhood to use in each iteration is needed (Line 6 of the
algorithm). We use a roulette-wheel approach, where the probability of selecting neighborhood n
is P(n). Two factors determine the magnitude of the probability: 1) The previous improvement
made by the neighborhood, relative to the total improvement made by all neighborhoods. A
high value results in higher probability. 2) The total time spend in this neighborhood, relative
to the total time spend by all neighborhoods. Low value results in higher probability. Associate
with neighborhood n the total amount of seconds used S,,, and the total absolute improvement
found by the neighborhood O,,. Let Ol and St°*a! denote the total absolute improvement so
far and the total amount of seconds spend so far, respectively,

Ototal — Z On (10.1)
neN

gtotal _ Z S, (10.2)
neN

The following quantity is the heart of the mechanism,

(10.3)

0. {8%m+ (1= 9) (1= 5¥m) 0" > 0,5 >0
" 1 else

where 8 € RT weights the expression. Intuitively, neighborhoods which result in large improve-
ments and/or requires a small computational effort are favored by this expression. Notice that
the condition Ot > (0, §total > () holds for all iterations of the matheuristic except the first
one. The probability for selecting neighborhood n is defined as

@n
Zn’EN Qn/

The weighted roulette wheel mechanism for selecting neighborhoods is commonly used in
ALNS algorithm, as well as in hyper-heuristics (see for instance Misir et al. (2012)).

P(n) = (10.4)

10.4 Test Setup

Two different test cases are used to evaluate the matheuristic. Both are cases of High School
Timetabling, and have the same overall goal: Schedule a set of events to timeslots, subject to
the requirements of resources for each event, such that the individual timetable for each resource
is feasible (obeys hard constraints), and as far as possible obeys individual requests (obeys soft
constraints).

Two essential issues should be considered when selecting the subset of variables which con-
stitutes a neighborhood n (S):

e The resulting subproblem should be solvable by the MIP solver. Notice that it is not a
requirement that the subproblem is solved to optimality, so solvable is in our terminology
defined as yielding a final MIP-gap below gpax-

e The free variables should have a structure which allows improved solutions to be found,
so the free variables should be related is some way. If this is not the case, there is a good
chance that the values of the fixed variables will implicitly define values for all the free
variables.

Chapter 10. Paper E: A Matheuristic for High School Timetabling 142

Neighborhoods for both test cases are based on the same procedure, presented in Algorithm 2.
The idea is to select decision variables related to the same resources, according to some way of
measuring the quantity of relatedness among resources. This could for instance be the amount
of events which require a specific resource. In Line 11 of the algorithm, decision-variables are
selected on the basis of their dependency on the resource in question. This is done in a problem-
specific way, elaborated in Section 10.4.1 and Section 10.4.2.

Algorithm 2 Neighborhood Related Resources

1: input: Set of problem-resources R, neighborhood size |n|
2: output: Set of decision-variables V'
3: d := random element of R

4: D = {d}

5: while |V| < |n| do

6: D:=R\D > Resources not processed yet
7 if |E| =0 then

8: stop

9: end if

10: d := best element in D according to some rank-measure

11: v := decision-variables of X which relates to d

12: V:={VUuv}
13: D:={DuUd}
14: end while

10.4.1 Generalized High School Timetabling Problem (XHSTT for-
mat)

The first of our test is the generalized version of HSTP. Based on the Extensible Markup Language
(XML) standard, the XHSTT format for modeling instances of (high) school timetabling was
recently established (Post et al., 2012a). One purpose of the format is to serve as a common test-
bed for researchers within the area. The International Timetabling Competition 2011 (ITC2011)
was based on instances in this format (Post et al., 2012b), and the attention level for XHSTT
format is generally rising.

In Kristiansen et al. (2013) a MIP model for the XHSTT format were presented. The MIP
is described in the following. A set of events is given, denoted £, which should be assigned
times (the set T) and resources (the set R). Specifically, each event contains a number of event
resources (indexed by er € e) which defines a requirement for a resource. An resource which can
be assigned to event resource er is denoted by r € er. Each event has a certain duration D., and
it is possible to split events into sub-events, which defines a portion of the event with the same
resource-requirements and with the duration Dg.. The set of all sub-events is denoted SE. The
summed duration of all active sub-events of an event in a solution must equal D,.. The times are
typically divided into different time groups, denoted by the set 7G. A timetable is sought which
schedules sub-events to times and resources, such that a number of constraints is obeyed. The
set of constraints is divided into soft and hard constraints, and an objective value of a solution
describes the amount of violation of each of these, denoted (hardcost, softcost).

The basic decision variable of the MIP is xgse s err € {0,1}, which takes value 1 if sub-event
se € S& is assigned to starting-time ¢ € 7 and event-resource er € se is assigned resource
r € er, and 0 otherwise. A basic constraint of the model is (10.5), which specifies that each
event-resource er € se of sub-event se € SE should be assigned exactly one resource. Since it

143 10.4. Test Setup

is feasible to not assign a resource to an event-resource (such cases are usually penalized by the
constraints of the problem), the set of resources R is extended with a dummy-element rp.

Z Tse terr = 1 Vse € SE,er € se (10.5)
teT,reR

The variable ys.; € {0,1} takes value 1 if sub-event se € SE is assigned to starting-time ¢ €
T, and 0 otherwise. Let |er|,, denote the amount of event resources of sub-event se € S€E.
Constraints (10.6) specifies the link to variable y,. ; and ensures in combination with (10.5) that
each sub-event is only one starting time.

Z Tse,t,er,r = |€T|Se *Yse,t Vse € 85, (106)
ercse,reER teT

On top of these variables and constraints are build a large set of additional constraints and
auxiliary variables. The full set of decision variables is X = {®se t.err U Yse,t }-

By definition of the XHSTT format, the objective is to minimize the violation of both the hard
and the soft constraints. However, solutions are first ranked on their hard cost, and secondly on
their soft cost. Therefore Kristiansen et al. (2013) proposes to solve the MIP in two steps; In Step
1, a MIP with all hard constraints is build, and solved with a generic MIP solver until optimality
is found or the given timelimit is reached. In case optimality is found, all soft constraints are
added, as well as a constraint which ensures that the violation of the hard constraints found in
Step 1 is maintained, and the MIP is again solved by a MIP solver. This is Step 2 of the procedure.
In our implementation this two-step procedure is also used, with the MIP solver replaced by the
matheuristic. However this has the unfortunate disadvantage that the matheuristic in general is
unable to determine whether a found solution is optimal, except for the case where a solution
with objective 0 is found (which is optimal for any XHSTT solution). Therefore the following
heuristic stopping criteria is imposed: If in Step 1, the found solution has not been improved in
the last s seconds, stop and continue to Step 2. s is set to 30% of the overall timelimit imposed
for the matheuristic.

For constructing the initial solution, an algorithm based on a greedy principle is used. A
(partial) solution S is given, as well as a set of moves M. With each move M € M is associated a
value A(M, S) € Ny which denotes the contribution of move M to solution S. If this contribution
is negative, the move results in an improved solution. The set of moves M consists of all possible
moves M., which assigns sub-event se € S& to time ¢t € 7T, and all possible moves M, ¢, se
which assigns resource r € R to event resource er € se of sub-event se € SE (see also Sgrensen
et al. (2012)). The initial solution is constructed by selecting the move from M for which %
is most negative. The division with Dy, is added as this has shown to produce better solutions
than the pure greedy algorithm. The selected move is applied to S, all A — values are updated,
a new move is selected, and the process is repeated until no move exists which will result in an
improved solution.

10.4.1.1 Neighborhoods

Several different neighborhoods are imposed, described in the following. All are based on Al-
gorithm 2, and hence each of them requires to define the set of resources it applies to, the
rank-measure to select related resources, and a mechanism to extract decision variables for a
resource.

Same Events This neighborhood applies to the set of events £, and for each event selects the
decision variables related to all sub-events of the events. The rank-measure to select a related

Chapter 10. Paper E: A Matheuristic for High School Timetabling 144

event is based on the amount of applicable resources which the events share. Specifically, D is
a set of events, and the set R’ = {r € er | er € e € D} is the set of applicable resources for
all these events. Associate with an event ¢ € £\ D the number of shared resources with R’,
|R'N{r €er|erce}l. The event for which this number is largest is selected next.

This neighborhood gives the opportunity for the algorithm to change the assigned time and
resources of the sub-events of the selected events. The fact that the events are related increases
the probability of achieving an improved solution.

Related Resources This applies to the set of resources R, and selects the decision variables
by finding the events for which it is possible to assign the resource to. The relatedness between
resources are determined by the amount of events which the resource can be assigned to.

Continuous Times This neighborhood applies to the set of times, and selects the decision
variables by means of each time. Times are selected in chronological order, such that the forth-
coming time is selected next.

Time Groups This neighborhood applies to the set of time groups. For a given time group,
the decision variables are selected on the basis of all times of the time group. The relatedness
between time groups is determined by the amount of times which are shared among the time
groups.

10.4.2 The Danish High School Timetabling Problem

The second test-case is the Danish version of the HSTP. A MIP model for this problem is
established in Sgrensen and Stidsen (2013a). This timetabling application is used in practice by
many high schools in Denmark, and the model is complete in the sense that no constraints are
left out in our formulation.

Let £ denote the set of events (an event general mimics a lecture) to be scheduled. The
set of resources is denoted A. Each event requires a subset of resources (in this case classes,
students and teachers) A C A. Each event should be scheduled to one timeslot and one room,
denoted by the sets 7 and R, respectively. This is modeled by the variable z.,; € {0,1}
which takes value 1 if event e € £ is assigned to room r € R and timeslot ¢t € 7, and 0
otherwise. In a feasible schedule, each resource and each room can only be occupied by one
event in each timeslot. To ensure feasibility the sets of timeslots and rooms are both extended
by a dummy-element; 7 = {T Utp}, R = {R Urp}. The objective of the problem is to
minimize ZeEE,TGR,tET(¢€>t + e r)Te rt, Where ¢ ¢, T, € RT denotes the penalty for assigning
event e € £ to timeslot t € T and room r € R, respectively. The penalty for assigning to the
dummy timeslot and the dummy room is much larger than all other penalties. Besides these
requirements, many additional constraints and auxiliary variables are used in the MIP model,
see Sgrensen and Stidsen (2013a) for details.

Previous work on the MIP model of HSTP has shown that a two-stage decomposition is way
more effective than solving the MIP based on the three-index variable z. ,; (Sgrensen and Dahms,
2014). The key idea of the decomposition is to split the model into two distinct MIPs, each
based on a binary variable with two indices (y.; and z ,, denoting time- and room-assignment,
respectively). In the first MIP (Stage I), events are assigned to timeslots, and in the second MIP
(Stage II) events are assigned to rooms, subject to the assigning to timeslots provided by Stage
I. Tt is shown by Sgrensen and Dahms that this decomposition maintains near-optimality of the
original MIP, and that the decomposition obtains both better solutions and better lower bounds.
Furthermore, it is argued that future research should focus on solving the Stage I model, as the

145 10.4. Test Setup

Algorithm 3 Greedy algorithm

1: input: problem instance of HSTP
2: S := empty solution

3: loop

4: MZ, = eeI},'l,ltIéTA(Me’t’ S)
5 if A(M;,;,S) >0 then

6: return S

7 end if

8 apply M}, to S

9: end loop

Stage II model is easy to solve using a state-of-the-art MIP solver. Therefore the matheuristic
presented in this paper solves the Stage I model, and we rely on a MIP solver to handle Stage II.

For constructing the initial solution, a basic greedy algorithm is used, see Algorithm 3. The
move M, ; denotes the assigning of event e € £ to timeslot ¢ € 7. The algorithm iteratively finds
the move which lowers the objective value the most, and applies it to the solution.

10.4.2.1 Neighborhoods

The following neighborhoods are used.

Continuous Timeslots This neighborhood starts by selecting a random timeslot, and selects
decision variables related to this timeslot. The next timeslot selected is the one immediately
following the previously selected timeslot.

Related Classes This neighborhood applies to the set of classes, and selects decision variables
based on the events related to each class. The relatedness between classes is determined by the
amount of events which are shared among the classes. A variant of this neighborhood is denoted
Related Classes Sparse uses the same criteria, but selects only 1—10 of the decision variables of
the class in question in each iteration of the selection process. This variant of the neighborhood
allows the set of selected decision variables to be more loosely coupled w.r.t. classes.

Related Students/Teachers This neighborhood is similar to Related Classes except that it
applies to the sets of students and teachers instead of the set of classes. Also this neighborhood
is used in a sparse variant.

10.4.3 Parameter values

The described matheuristic contains a number of parameters which should be tuned for optimal
performance. Automated tuning procedures for heuristics have started to emerge (Birattari
(2005); Hutter et al. (2009), but these are still time demanding algorithms which provide no
guarantee to find the optimal set of parameter values. Therefore the tuning procedure has been
done ad-hoc, using a set of instances for each of the test-problems which are distinct from the
set of instances used to establish computational results. Table 10.1 shows each parameter and
its corresponding chosen value.

Chapter 10. Paper E: A Matheuristic for High School Timetabling 146

Table 10.1: Parameter values

Sym. Description Range Value

In|, Neighborhoods initial size z+ 1000
Neighborhood weight factor [0, 1] 0.70

tmip Timelimit for MIP solver Rt 5

gmin If MIP-gap below this, in- [0, 100] 2
crease the size of the neigh-
borhood

gmax If MIP-gap above this, de- [0,100] 10
crease the size of the neigh-
borhood

10.5 Computational Results

All tests were ran on a 64-bit Windows machine with an Intel i7 930 CPU @ 2.80GHz and 12
GB RAM. Gurobi 5.5.0 was used as MIP solver, which is among the best MIP solvers available
according to recent benchmarks (Mittelmann, 2013). For all tests, the Gurobi pseudo-parameter
MIPFocus was set to value 1, emphasizing that we are interested in feasibility. Furthermore,
Gurobi was only allowed to use a single CPU thread.

10.5.1 XHSTT - International Timetabling Competition 2011

To evaluate the matheuristic on the XHSTT format, the collection of datasets used in Round 2
of ITC2011 is used. In this round of the competition, the finalist algorithms were tested on 18
previously unseen datasets on the same machine. The organizers of the competition provided
a tool which can be used to benchmark other machines to achieve the equivalent runtime (772
seconds in our case), facilitating a fair comparison. In the following we compare our algorithm
with the finalists of ITC2011, which is in fact a comparison on even terms, except for the fact
that commercial software was not allowed in ITC2011 (which conflicts with our use of Gurobi).
Future research will show how the matheuristic will perform with a non-commercial MIP solver.
As the matheuristic is stochastic, it was ran 5 times on each dataset.

An objective of a XHSTT solution is written as (hard cost, soft cost), denoting the violation
of the hard constraints and the soft constraints, respectively. In case the hard cost has value 0,
only the soft cost is written. Table 10.2 shows the obtained results. The table shows that the
matheuristic is among the best algorithms, obtaining the best result on 10 datasets. The table
also shows the average rank of each solution method computed in the following way: For each
dataset, rank each solution from 1 to 6, 1 being the best. The row Avg. Ranks shows the average
of all ranks for each solution method. According to this measure, the matheuristic performs
second best.

Table 10.2: Performance of the MIP using same running time as specified in ITC2011. For each instance is listed the average solution
found from each of the competitors of ITC2011, and the solution obtained by the MIP formulations. Columns GOAL, HySTT, Lectio
and HFT denote the finalists of ITC2011. Column MIP denotes the performance of the MIP of [Kristiansen et al. (2013). For the
matheuristic, column Obj denotes the average of the found objectives, column o denotes the standard deviation of the found objectives,
and columns T and T3 denotes the running time for Step 1 and Step 2, respectively. The best solutions are marked in bold. Row

vl

Avg. Ranks denotes the average ranking of each solution method, 1 being best.

Matheuristic

GOAL HySST Lectio HFT MIP Obj o Ty Ta
BR Instance2 (1, 62) (1, 77) 38 (6, 190) 46 6 (0,1) 4 768
BR Instance3 124 118 152 (30, 283) 39 27 (0, 2) 9 763
BR Instanced (17, 98) (4, 231) (2, 199) (67, 237) (5, 286) 58 0,3) 51 721
BR Instance6 (4, 227) (3, 269) 230 (23, 390) 682 57 (0,4) 11 761
FI ElementarySchool 4 (1, 4) 3 (30, 73) 3 3 (0, 0) 18 754
FI SecondarySchool2 1 23 34 (31,1628) (1604, 3878) 6 (0,3) 32 740
GR Aigio 13 (2, 470) 1062 (50, 3165) (1074, 3573) 180 (1,104) 410 362
IT Instanced 454 6926 651 (263, 6379) 17842 48 (0,7) 71 701
XK' Instancel (59, 9864) (1103, 14890) (275, 7141) (989, 39670) (3626, 2620) (9, 23525) (10, 2359) 772 -
NL Kottenpark2003 90928 (1,56462) (50, 69773) (200, 84115) (8491, 6920) (238, 43143) (0,0) 772 -
NL Kottenpark2005A (31, 32108) (32, 30445) (350, 91566) (403, 46373) (2567, 53) (566, 19968) (0,0) 772 -
NL Kottenpark2008 (13, 33111) (141, 89350) (209, 98663) - (14727, 5492) (6112, 353671) (2465, 22992) 772 -
NL Kottenpark2009 (28, 12032) (38, 93269) (128, 93634) (345, 99999) (17512, 140) (9418, 705605) (0,0) 772 -
ZA Woodlands2009 (2, 14) (2, 70) (1, 107) (62, 338) (1801, 705) (2, 429) (2,355) 645 127
ES SpainSchool 894 1668 2720 (65, 13653) (1454, 11020) 485 (1,52) 163 609
GR WesternGreece3 6 11 (30, 2) (15, 190) 25 6 (0, 1) 7 765
GR WesternGreeced 7 21 (36, 95) (237, 281) 81 12 (0,3) 23 749
GR WesternGreeceb 0 4 (4, 19) (11, 158) 15 0 (0, 0) 6 66
Avg. Ranks 2.2 3.4 3.3 5.3 4.6 2.3

1 Kosova.

sy nsoy reuonyeinduwo) GO

Chapter 10. Paper E: A Matheuristic for High School Timetabling 148

10.5.2 The Danish High School Timetabling Problem

To evaluate the developed matheuristic on the Danish case of HSTP, it is tested against 100 real-
life datasets taken from the database of the commercial system Lectio!. These datasets are the
same ones used in Sgrensen and Dahms (2014) and Sgrensen and Stidsen (2013a), allowing for
a comprehensive comparison with other solution approaches. The previous solution approaches
are the following:

o Adaptive Large Neighborhood Search heuristic: In Sgrensen and Stidsen (2013a) a heuristic
based on ALNS is presented.

e 3-index MIP model: This approach solves the MIP model based on the 3-indexed variable
Ze,rt using Gurobi 5.0.1 with standard settings. The MIP is presented in Sgrensen and
Stidsen (2013a).

e Two-Stage Decomposition (TSD): This denotes the MIP decomposition method described
in Section 10.4. We compare with two versions of TSD, with and without room penalties
not integrated in Stage I, denoted TSD and TSDR™MB regpectively. See Sgrensen and
Dahms (2014) for more details of this approach.

The timelimit was set to 7200 seconds, but we report the found solution at several different
points in time. In fact, the timelimit for all solution approaches are 7200s, except for the ALNS
algorithm which had a 240s timelimit. To compare with the ALNS heuristic, we log the solution
found at 240s. The matheuristic was ran 5 times on each dataset, and the numbers reported are
averages. All tests of the previous solution approaches were run on the same type of machines
as used for our tests.

Since we use the matheuristic to solve the Stage I model, as described in Section 10.4, the
Stage II model must be solved to obtain a solution to the overall problem. In Sgrensen and
Dahms (2014) it was shown that the Stage II model in general is easy to solve by a MIP solver.
Therefore we impose a timelimit of 60s to the Stage II model. These 60s are deduced from the
overall timelimit, e.g. the objective reported for 240s is the result of 180s seconds for the Stage I
model with the matheuristic, and 60s for the Stage II model using Gurobi. Since a fixed timelimit
is imposed for the two stages, it might happen that Gurobi were unable to find a feasible solution.
In such cases we report the objective value as "-". The same notation is used to denote that a
lower bound is not known for a given dataset.

Table 10.3 shows the obtained results, and Table 10.4 summarizes some key numbers. For
a timelimit of 240s, the matheuristic is compared with the ALNS algorithm. This shows that
the ALNS algorithm performs best on 71 datasets, and the average gap across all datasets is
19.53%. This outperforms the matheuristic, which is best on 29 datasets, and has an overall gap
of 23.38%. For a timelimit of 7200s, the matheuristic outperforms the 3-index MIP and both
versions of TSD, with an average gap of 15.20% and the best average solution on 81 datasets.

I Cloud-based ERP system for high schools used by the majority of high schools in Denmark,
http://www.lectio.dk

149 10.5. Computational Results

Table 10.3: Computational results for the Danish High School Timetabling Problem. For each
dataset is shown the objective obtained by each solution method. Column LB denotes the best
known lower bound. For the matheuristic is shown the value of the initial solution Greedy, as
well as the obtained average objective value at different points in time. For each datasets and

for each solution method, the gap to the best known lower bound is calculated by %, and
the last row Avg. Gap denotes the average gap across all datasets.
Previous methods Matheuristic
Dataset ALNS 3-idx MI[P TSD TSDReomIB 1B Greedy 120s 240s 360s 480s 7200s
AalborTG2012 6317 6118 6018 6005 5946 8218 6831 6161 6081 6055 6035
AarhusA2011 10037 58015 15872 18122 5986 14276 12900 11195 10610 10202 9236
AarhusA2012 7971 17096 8947 11936 6005 11888 9854 8204 7579 7324 7040
Aars2009 14900 49504 20780 24240 12641 22864 20495 16588 15468 14744 14043
Aars2010 16268 81970 25057 24692 14151 22291 20914 18139 17314 16681 15742
Aars2011 14256 77967 30623 33790 10501 18164 17216 15710 14978 14400 13442
Aars2012 10701 55049 21206 20274 8044 16956 15096 12626 11572 11088 10094
Alssund2010 9967 52717 23173 21455 6876 18885 16075 12962 11853 11044 9325
Alssund2012 29803 108810 108810 108810 - 42831 42815 42492 41995 40846 32137
BagsvaG2010 3960 6777 3916 4051 3227 6164 4105 3740 3643 3607 3575
BirkerG2011 42063 119600 119600 119600 - 62242 62225 62067 61581 60174 46790
BirkerG2012 19552 110180 19322 18182 17709 19993 19209 18806 18737 18711 18609
BjerrG2009 16877 52639 35514 27396 12288 26422 24440 20900 18799 17287 15546
BjerrG2010 4983 12868 5788 5977 3928 7737 5930 5014 4837 4678 4500
BjerrG2011 6334 13009 9302 11676 4142 10355 9122 7581 7007 6464 5600
BjerrG2012 8023 17200 15265 17404 5055 13001 11948 9768 9016 8403 7322
BroendG2012 2040 2005 1929 1928 1881 3284 1946 1934 1933 1933 1932
CPHWGym2010 6775 34415 19363 16589 3759 11345 10116 8909 8147 7482 6239
CPHWGym2011 5679 38232 16212 15046 4103 11779 9477 7051 6332 5759 5203
CPHWGym2012 6762 40945 15543 17194 4215 12311 11159 9668 8954 7948 6343
CPHWHG2012 11077 46625 23088 23219 8338 20253 18874 15494 13202 11930 10385
CPHWHTX2010 11342 27174 15943 19314 9259 14277 13383 12182 11774 11466 10742
CPHWHTX2011 20734 22466 20708 20632 20470 22619 20898 20690 20657 20646 20646
CPHWHTX2012 16256 25998 21392 22481 14531 19035 17924 16810 16440 16235 15789
DetFG2012 7560 8017 7265 7258 7168 10123 7940 7387 7331 7325 7313
DetKG2010 2947 6058 4006 4102 1821 6113 4253 3196 2941 2847 2661
DetKG2011 2820 5594 4366 4577 1781 5831 4234 3196 2935 2732 2460
EUCN2009 3737 7557 4298 5001 2982 55636 4649 3895 3716 3583 3395
EUCN2010 3882 4231 3463 3430 3375 5065 3897 3634 3535 3529 3500
EUCN2011 1468 1435 1430 1426 1395 1681 1472 1456 1450 1443 1433
EUCN2012 3289 9430 5059 5913 2363 6138 5038 3621 3429 3365 2972
EUCNHG2010 1505 1476 1421 1408 1378 2014 1459 1411 1408 1407 1405
EUCS2012 3714 4689 3783 3695 3584 4366 3695 3666 3663 3661 3659
FaaborgG2008 68124 125330 125330 125330 - - - - - - -
FalkonG2009 10449 88890 88890 88890 - 19562 19628 19118 18135 15912 10403
FalkonG2011 8584 76170 16543 20758 5183 15380 14166 11745 10315 9435 7688
FalkonG2012 10143 100190 16666 14908 6105 18664 16205 12898 11631 10645 9302
GUAasia2010 6527 6579 6461 6422 6374 6567 6430 6431 6431 6431 6431
GUQaqor2011 6674 19623 10005 11396 4554 10612 9383 8256 7588 7142 6444
GUQaqor2012 5733 11488 7619 9650 4324 9645 7754 6397 6004 5735 5492
HadersK2011 7128 51190 14229 16494 3909 14268 12790 10628 9467 8444 6851
HasserG2010 11963 96790 96790 96790 - 22438 22480 21863 21109 19543 11814
HasserG2011 16061 99840 99840 99840 - 27370 27510 27028 26555 25307 16744
HasserG2012 18338 112160 112034 112160 - 28125 28231 27344 26004 24316 17223
HerningG2010 37 37 37 37 37 35 35 35 35 35 35
Herning(G2011 15091 163785 23117 26410 9829 20432 17329 14437 13909 13526 12752
HerningG2012 13147 185433 14952 19834 9817 - - - - - -
HoejeTaG2008 2958 6292 2707 2775 2587 4092 3434 2949 2849 2801 2742
HoejeTaG2009 9157 45260 26066 27779 5773 16478 15985 14665 13329 11872 9362
HoejeTaG2010 9862 45095 25678 27886 6188 16538 15542 13862 12609 11514 9524

Continued on next page

Chapter 10. Paper E: A Matheuristic for High School Timetabling 150

Table 10.3 — continued from previous page

Previous methods Matheuristic
Dataset ALNS 3-idx MIP TSD TSDRoomLB 1R Greedy 120s 240s 360s 480s 7200s
HoejeTaG2011 10158 51050 32630 30327 6726 15428 14844 13945 13379 12497 9894
HoejeTaG2012 12502 72455 18627 39326 7952 17056 15502 13375 12008 11219 9739
HorsenS$2009 3111 3100 3100 3100 3100 3186 3100 3100 3100 3100 3100
HorsenS2012 10056 86090 86090 86090 - 20756 20611 19831 18956 17605 10497
Johann2012 23001 92575 27781 29491 19590 27947 27300 25508 24354 23338 22061
KalundG2011 38479 126150 126150 126150 - 48260 48327 48130 47696 46977 41105
KalundG2012 26768 123010 123010 123010 - 38923 39098 38948 38574 37634 31708
KalundHG2010 5631 12103 6351 6605 4642 8167 6971 6112 5809 5521 5254
KoebenPG2012 888 1872 874 1052 645 1441 944 845 825 814 790
KoegeH2012 11418 108347 20150 20390 9440 16301 12720 11298 10942 10714 10454
KongshoG2010 4296 8889 7954 7208 2488 8983 6342 4850 4391 4122 3635
MariageG2009 8013 54030 20138 17506 5286 14176 12168 9691 8929 8324 7385
MorsoeG2012 5651 42762 10241 11674 3947 7250 6863 6289 6151 5870 5418
NaerumG2008 24104 118370 117894 117894 - 43055 42047 37086 32760 29054 23251
NaerumG2009 7667 100450 6681 5466 5114 8614 6144 5676 5647 5630 5636
NielsSG2011 4953 10464 6132 5397 3412 8381 7106 5637 5077 4784 4444
NielsSG2012 6952 12747 8003 9192 5738 9367 7587 6761 6619 6548 6403
NordfynG2012 5160 8201 4890 5510 4152 6410 5239 4895 4803 4760 4705
NyborgG2011 13944 94059 31809 85816 6129 22029 21902 20815 19686 18161 13741
0OdderCfU2010 18219 59540 40032 38875 12865 26010 25912 25726 25317 24679 20016
0dderG2009 9308 59851 57586 24686 5361 15776 15328 13731 12793 11456 8796
OdderG2012 12307 17402 14888 27199 9688 16982 14061 12241 11909 11651 11310
OrdrupG2010 13663 75700 12936 18101 10810 22742 18723 14628 13238 12362 11877
OrdrupG2011 21612 116400 31329 28884 17692 - - - - - -
RibeK2011 21679 61945 43175 39107 18055 27405 26894 25786 25053 24353 22067
RysenG2010 39971 110690 110690 110690 - 46067 44259 41892 41447 41202 40066
RysenG2011 22260 100313 25989 68927 19725 29641 26402 22759 22239 22023 21549
RysenG2012 19841 110111 22156 59124 16708 24265 22655 20876 19926 19646 19169
SanktAG2012 4207 4624 3911 3721 3538 4607 3931 3760 3746 3729 3723
SkanderG2010 7209 7708 6875 6485 6238 7459 7026 6644 6587 6556 6540
SkanderG2011 22525 88470 88470 88470 - 32962 32576 31306 30276 28752 22546
SkanderG2012 20138 98487 95319 95319 - 35642 35716 35603 35118 34178 25121
SkiveG2010 43120 194740 194740 194740 - - - - - - -
SlagelG2012 32167 162960 162765 162960 - - - - - - -
SoendS2011 11776 83560 83560 83560 - 22600 21286 17996 15979 14008 10832
SoendS2012 8420 17778 11915 24668 6838 11170 76062 42608 74114 89229 88714
StruerS2012 73361 - 207488 211960 - - - - - - -
VardeG2012 10777 20933 20622 20496 5921 15714 14075 11739 10941 10098 8644
VejenG2009 11264 69450 69450 27954 7290 23373 23874 20421 41357 47520 19884
Vejlefjo2011 13514 52035 18043 22066 8805 18934 18587 17760 17173 16020 13037
VestfynG2009 5973 11606 5999 5032 4211 8423 5701 4887 4738 4678 4631
VestfynG2010 6761 16895 5974 5239 4308 10313 7403 5940 5703 5430 5016
VestfynG2011 7013 13624 6657 6522 5159 10857 7487 6397 6217 6149 6072
VestfynG2012 5244 11095 5212 5319 4315 8207 5435 4958 4905 4848 4762
ViborgK2011 14923 99170 99170 99170 - 24813 25041 24683 24113 22923 17081
ViborgTG2009 10216 19891 12077 13387 8740 12950 11493 10284 9967 9803 9595
ViborgTG2010 4932 12727 10226 10665 4146 6904 5796 5090 4927 4842 4664
Viborg TG2011 7478 16433 9808 11088 6772 9596 8104 7617 7468 7383 7276
VirumG2012 27738 140883 32183 79111 19486 25321 24387 23465 23134 22825 22197
VordingbG2009 8568 17025 9905 8972 5787 12390 10188 8560 8109 7768 7386

Avg. Gap 19.53 53.01 33.57 36.68 36.03 29.41 23.38 21.26 19.34 15.20

151 10.6. Conclusion

ALNS 3-idx MIP TSD TSDR°mLB \fatheuristic

Best@240s 71 29
Best@7200s 3 8 15 81

Table 10.4: Results summarized for the Danish High School Timetabling Problem. The number
of best found solutions at different points in time (including draws).

10.6 Conclusion

This paper has shown a matheuristic which can be applied to general MIPs, but which uses
problem-specific knowledge to explore small portions of the solution space iteratively. The algo-
rithm has been applied to two different cases of high school timetabling: The generalized problem
based on the XHSTT format, and the Danish version of the problem.

Extensive computational results were established for both versions of the problem, and good
performance was shown in both cases. In case of the generalized problem, the algorithm were
shown to almost perform as well as the winner of round 2 of the International Timetabling
Competition 20111. In case of the Danish version of the problem, the matheuristic is the best
known algorithm given a timelimit of 7200s, with an average gap of 15.20% to the best known
lower bound. In case of a timelimit of 240s, the matheuristic is outperformed by another heuris-
tic. These results show the potential of the hybridization of Metaheuristics and Mathematical
Programming.

In terms of future research, we mention that the matheuristic could be a general solution
algorithm for MIPs if it is equipped with general-purpose neighborhoods. Such neighborhoods
could for instance select decision variables based on the amount of constraints which applies to
these variables. Furthermore, the computational overhead for the algorithm on very large MIPs
is still significant. An improved algorithm could possibly handle this by not building the entire
MIP initially.

Bibliography

P. Avella, B. D’Auria, S. Salerno, and I. Vasilaev. A computational study of local search al-
gorithms for italian high-school timetabling. Journal of Heuristics, 13:543-556, 2007. ISSN
1381-1231.

M. Birattari. The Problem of Tuning Metaheuristics as seen from a Machine Learning Perspec-
tive, volume 292 Dissertations in Artificial Intelligence - Infix. Springer, 1 edition, 2005.

C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial opti-
mization: A survey. Applied Soft Computing, 11(6):4135 — 4151, 2011. ISSN 1568-4946.

M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23-47, 2003. ISSN
0025-5610.

F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stiitzle. Paramils: an automatic algorithm con-
figuration framework. J. Artif. Int. Res., 36:267-306, September 2009. ISSN 1076-9757.

S. Kristiansen, M. Sgrensen, and T. R. Stidsen. Integer programming for the generalized (high)
school timetabling problem. Journal of Scheduling, Submitted 5/9-2013, 2013.

V. Maniezzo, T. Stiitzle, and S. Vok. Matheuristics: Hybridizing metaheuristics and mathemat-
ical programming. Annals of Information Systems, 10, 2009a.

Bibliography 152

V. Maniezzo, S. Voss, and P. Hansen. Special issue on mathematical contributions to metaheuris-
tics. Journal of Heuristics, 15(3), June 2009b.

M. Misir, K. Verbeeck, P. Causmaecker, and G. Berghe. An intelligent hyper-heuristic framework
for chesc 2011. In Y. Hamadi and M. Schoenauer, editors, Learning and Intelligent Optimiza-
tion, Lecture Notes in Computer Science, pages 461-466. Springer Berlin Heidelberg, 2012.
ISBN 978-3-642-34412-1.

H. Mittelmann. Benchmarks for optimization software.
http://plato.asu.edu/bench.html [Accessed 9/9-2013], 2013.

N. Pillay. A survey of school timetabling research. Annals of Operations Research, February
2013. ISSN 0254-5330.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y. Potvin,
editors, Handbook of Metaheuristics, volume 146 of International Series in Operations
Research & Management Science, pages 399-419. Springer US, 2010. ISBN
978-1-4419-1665-5.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

M. Prandtstetter and G. R. Raidl. An integer linear programming approach and a hybrid
variable neighborhood search for the car sequencing problem. European Journal of
Operational Research, 191(3):1004 — 1022, 2008. ISSN 0377-2217.

D. Ryan. It is time to enjoy the best of both worlds. In The 46th ORSNZ Conference, Victoria
University of Wellington, New Zealand, 10-11 December 2012.

M. Sniedovich and S. Vof. The corridor method: a dynamic programming inspired
metaheuristic. Control and Cybernetics, 35(3):551, 2006.

M. Sgrensen and F. H. W. Dahms. A two-stage decomposition of high school timetabling
applied to cases in denmark. Computers & Operations Research, 43:36—49, March 2014.

M. Sgrensen and T. Stidsen. Comparing solution approaches for a complete model of high
school timetabling. Technical Report 5.2013, DTU Management Engineering, Technical
University of Denmark, March 2013a.

M. Sgrensen and T. R. Stidsen. Integer programming and adaptive large neighborhood search
for real-world instances of high school timetabling. Annals of Operations Research, PATAT
2012 SI:Submitted Jan 21. 2013, 2013b.

M. Sgrensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages
489-492. SINTEF, 2012.

http://plato.asu.edu/bench.html

153 Bibliography

E. D. Taillard and S. Voss. Popmusic — partial optimization metaheuristic under special
intensification conditions. In Fssays and Surveys in Metaheuristics, volume 15 of Operations
Research/Computer Science Interfaces Series, pages 613-629. Springer US, 2002. ISBN
978-1-4613-5588-5.

S. Voss. Meta-heuristics: The state of the art. In A. Nareyek, editor, Local Search for Planning
and Scheduling, volume 2148 of Lecture Notes in Computer Science, pages 1-23. Springer
Berlin Heidelberg, 2001. ISBN 978-3-540-42898-5.

Chapter 11 Paper F

The Consultation Timetabling Problem at
Danish High Schools

Simon Kristiansen!-2, Matias Sgrensen'-?, Michael B. Herold?, Thomas R. Stidsen'
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

Abstract In the different stages of the educational system, the demand for efficient planning is increas-
ing. This article treats the AN"P-hard Consultation Timetabling Problem, a recurrent planning problem
for the high schools in Denmark, which has not been described in the literature before. Two versions of
the problem are considered, the Parental Consultation Timetabling Problem (PCTP) and the Supervisor
Consultation Timetabling Problem (SCTP). It is shown that both problems can be modeled using the
same Integer Programming model. Solutions are found using the state-of-the-art MIP solver Gurobi and
Adaptive Large Neighborhood Search (ALNS), and computational results are established using 300 real-
life datasets. These tests show that the developed ALNS algorithm is significantly outperforming both
Gurobi and a currently applied heuristic for the PCTP. For both the PCTP and the SCTP, it is shown
that the ALNS algorithm in average provides results within 5% of optimum. The developed algorithm
has been implemented in the commercial product Lectio, and is therefore available for approximately
95% of the Danish high schools.

Keywords High School e Timetabling ¢ Metaheuristics e Integer Programming e Adaptive Large
Neighborhood Search e F-Race Tuning

11.1 Introduction

The Consultation Timetabling Problem (CTP) is a recurrent planning problem for the high
schools in Denmark, which concerns the creation of a schedule for student-teacher meetings, given
the students requests of teachers, subject to various soft constraints and resource constraints.
The problem has not been described in the literature before, but it shares some properties with
other problems within the educational sector, see Section 11.2.1. There exists several variants
of the problem. In this paper we consider the two most important versions for the Danish high
schools, namely the Parental Consultation Timetabling Problem (PCTP) and the Supervisor
Consultation Timetabling Problem (SCTP).

This paper is written in cooperation with the Danish company MaCom A/S. MaCom A/S
is the developer of the cloud-based high school administration system Lectio, which handles all
sorts of administrative tasks for the high schools, including a GUI and a heuristic-based solver for

155

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 156

the PCTP. Through this cooperation we have access to real-life data for approximately 95% of
all Danish high schools, which constitutes thousands of datasets. We will provide computational
results for 300 of these datasets, which is a very big amount of real-life data compared to the
majority of scheduling literature.

Our task of this paper is to give a detailed description of the CTP, and model it using Integer
Programming. This model should support both the PCTP and the SCTP. To find solutions,
both a state-of-the-art MIP solver and an Adaptive Large Neighborhood Search (ALNS) heuristic
is attempted. These solution approaches are compared to the existing heuristic used in Lectio,
and the best approach is made available for all users of Lectio.

11.2 Consultation Timetabling Problem

In the following we describe the CTP in details, starting with specifications of the two versions
of the problem.

Parental Consultation Timetabling Problem: Once or twice a year the high schools invite
the students and their parents to participate in meetings with the teachers of the student. The
goal of these meetings is to allow the teachers to inform of the educational progress of the student,
and possibly address relevant problems. Parental consultations usually take place in the evening
of a normal work day, and each meeting generally has a duration between 5 and 15 minutes. The
order of events for parental consultations is the following: The high school administration selects
days where the meetings should take place, and for each day a feasible time-interval is chosen.
Each student (usually in collaboration with his parents) makes prioritized requests of groups of
teachers he would like to meet. Few of these teacher groups contain more than a single teacher,
because the student is taught by only one teacher in most classes. Usually the high school also
allows the students to request specific time intervals, within the overall time interval on each day,
where the student will be available for meeting teachers. Given the student’s choice of teachers
and time intervals, it is then up to the high school administration to decide which teachers a
student should meet, and when the meetings should take place.

Supervisor Consultation Timetabling Problem: In the last year of a high school
education, the students are required to make a large study project (Danish: Studieretnings
Projekt). Each student selects two subjects/courses as combined subject for his project, e.g.
English and History. Each student is then assigned two teachers whom will be his supervisors
for the project. The objective of the SCTP is to plan meetings between the students and their
respective supervisors. The goal of these meetings is for the supervisors to provide the student
with some useful hints for problem definition, literature research, etc. Typically supervisor
consultations take place in the daytime, where both the student and the corresponding teachers
are located at the high school.

From a timetabling point of view, these two types of consultations are almost identical.
For both types, as many as possible of the meeting requests should be fulfilled, and both
essentially contain the same constraints. Therefore we will in this paper model both types of
consultations using the same Integer Programming model. In the remainder of this paper we
refrain, as much as possible, from distinguishing between the two variants of the problem, and
will by CTP denote the problem which is the superset of the PCTP and the SCTP.

In the following further details of the soft constraints of the CTP is given. These soft
constraints define various scheduling preferences for the students and teachers.

157 11.2. Consultation Timetabling Problem

A contiguous streak of meetings for a teacher or student are from now on denoted a se-
quence. A time slot is void for a teacher or student if the time slot is empty and no meetings
are scheduled in either earlier time slots or in later time slots. A break for a student or teacher
is defined as a time slot which is not void, and which has no meetings assigned. Void time slots
must be distinguished from breaks because they do not effect the density of a schedule. This is
due to the fact that students and teachers are not obligated to stay at the school throughout
the entire duration of the consultation. Given these definitions, we formulate the following soft
constraints:

e It is attempted to achieve a solution where the positions of the granted meetings for a
given individual are placed in a sequence. l.e. for both students and teachers the number
of breaks should be minimized. This is to achieve a schedule with as little waiting time
as possible. However, for the students it is possible for the high school administration to
declare whether they need a break after each meeting. This is usually selected if there
exists "traveling" time between the meeting rooms where the teachers are located. The
CTP only takes consultation meetings into consideration when determining a sequence,
and not other activities.

e When assigning a meeting to a time slot, the availability of the student and teacher must be
taken into consideration. The high school administration decides whether this constraint
should be defined as a hard- or a soft-constraint. It is common that in case of SCTP,
this is defined as a soft-constraint as it is feasible for the students to leave classes to have
meetings with their supervisors. In case of the PCTP, this constraint is usually treated as
a hard-constraint, as a solution should respect activities such as meetings, study-trips, etc.

e It is undesirable for teachers to have too long sequences of meetings. Therefore a maximum
on the length of sequences for teachers is given (treated as a soft-constraint). This is not
required for the students, since they typically have a low number of requests.

e For a consultation which spans over several days it is desired that a student or a teacher
only have meetings in one of the days, such that they are not obligated to attend both.
This is especially critical for students, as they have a low number of requests.

e The high school administration prefers if the meetings are placed as close as possible to a
specific time slot on each day. This is usually selected as the first timeslot on each day.

Figure 11.1 shows an example of a consultation schedule on one day. The schedule contains 1
void time slot, 2 breaks, and 7 consultations.

Time slots

4 4 4 4 y
t t t t 1

T§<>§<>§<>§<>gT NS

Void time slot Break Break

Figure 11.1: Example of a feasible consultation schedule.

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 158

11.2.1 Literature Review

The CTP has, to the best of our knowledge, not been described in the literature before. However
there exist many types of related timetabling problems within the educational system, see Schaerf
(1999); Burke and Petrovic (2002); McCollum (2006); Pillay (2010) for overviews of this field.
Problems such as Course Timetabling and Student Sectioning have been looked in to, e.g. Tri-
pathy (1984); Erben and Keppler (1996); Carter and Laporte (1998); Miiller and Murray (2010).
Related problems for Danish high schools include Kristiansen et al. (2011) and Kristiansen and
Stidsen (2012) regarding the Elective Course Planning Problem, and Sgrensen and Stidsen (2012)
regarding the timetabling problem. For all these problems it applies that they attempt to assign
requests to time slots in a given schedule.

The requirement for compact schedules is well known in educational timetabling. In Santos
et al. (2012) the Class-Teacher Timetabling Problem with Compactness Constraints is described.
The compactness is defined in terms of teacher "holes", which is equivalent to our definition of
breaks. The teacher holes are modeled with a linear IP, which entails the need for two auxiliary
variables, and three additional constraints. This approach can be directly applied to the CTP.
de Haan et al. (2007) specifies that the timetabling problem at Dutch high schools requires
compact schedules for both classes and teachers. This is addressed using heuristic methods. For
Greek high schools the situation is similar, see e.g. Birbas et al. (2009). Here the problem is
handled using a MIP solver for a complicated IP.

11.3 Integer Programming model

The following IP model for the CTP aims at maximizing the number of granted meeting requests
and minimizing the violating of soft constraints, while respecting the hard constraints.

A consultation problem at a high school contains set of students .S, a set of teachers T, a set
of teacher groups G, an ordered set of time slots B and a set of of days D. V;, 4 € {0,1} takes
value 1 if time slot b is part of day d, and zero otherwise.

The decision whether a student s is given a meeting with teacher group g in time slot b is
defined by the binary variable z, 45 € {0,1}. The profit of meeting (s, g) in timeslot b is given
by as 45 € RT. The basic objective function is therefore

max Z Os,9.6%s.g.b (11.1)
s,g,b

11.3.1 Unavailabilities

In some situations it can be allowed to interrupt other activities at the high schools to satisfy
a meeting request. Let D;; € {0,1} take value 1 if teacher ¢ is not available (i.e. occupied by
other activities) in time slot b, and zero otherwise. Let E;j, € {0,1} be the completely analogous
parameter for the students. If a consultation meeting is placed in a time slot where either a
student or a teacher has some other activities, it is penalized by the following.

- Z <Z 5t : Dt,b : Pg,t + 55 : Es,b) Ts,g,b (112)
t

$,9,b

If it is not allowed to interrupt activities this term is not added to the objective, and these
constraints take the form of hard-constraints by forbidding meetings of teacher ¢ in time slot b
if Dy =1, and likewise for student s in time slot b if Es;, = 1.

159 11.3. Integer Programming model

It is of course not allowed to assign a student to a consultation meeting with a teacher group,
if the student has not requested this teacher group. And is it not allowed for the student or
teacher to have more than one meeting in each time slot. This imposed the following constraints.
The parameter P, ;, € {0,1} takes value 1 if teacher ¢ is in teacher group g, and zero otherwise.
R, 4 € {0,1} takes value 1 if student s has requested teacher group g, and zero otherwise.
Cs.p € {0,1} takes value 1 if student s has requested time slot b.

Y zogs<Reyg Vs,g (11.3)
b

Y wegp <Cop Vs,b (11.4)
g9

> Ppiasgr<1 Vtb (11.5)
5,9

11.3.2 Undesirable breaks

One of the undesirable properties of the CTP is the breaks for both students and teachers. Let
the variables z; 4 € N and w4 € N be the number of breaks in day d for a student and for a
teacher, respectively. As we do not penalize void time slots as shown in Figure 11.1, we need
to know when a individual have his first and last meeting. Let variables fi'* and £ denote
the timeslot of the first and last meeting for student s, respectively. Let h?jist and hlfff be the
analogous variables for teacher ¢. Let variable n, ;4 € {0,1} take value 1 if student s is placed in
time slot b on day d. The idle time slots for a student is then given by the following constraints

Z ‘/b,d *Ts,g,b = Ns,b,d VS, ba da ‘/b,d =1 (116)
g
st IS 1= nepa- L+ HS)+ HS =24 Vs,d (11.7)
b
|Bla — (|Bla — ord(b)) - ngp.q > fout Vs,b,d, Vpg=1 (11.8)
ord(b) - ngpa < f5 Vs, bd, Vyg=1 (11.9)

The parameter HS € {0,1} indicates whether a student is required a break after each meeting,
zero otherwise. This parameter is selectable for the user of Lectio. We want to penalize the
cost such that it increases exponential on the number of breaks. The cost function is modeled
as a piece-wise linear function by introducing a new variable vs; 4 ; € {0,1}, where j € 1,...,m,
which takes value 1 if student s has j breaks in day d. This imposes the following constraints.

Y vssay-ord(j) =20 Vs.d (11.10)
i

D wsea; =1 Vs.d (11.11)
j

As for the teacher let variable p;;q € {0,1} take value 1 if teacher ¢ has a meeting in time
slot b on day d. The cost for teacher breaks is also made as a piece-wise linear function, using
the new variable vt; 4 ; € {0,1} The following constraints are imposed to denote the number of
undesirable breaks for a given teacher,

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 160

Z Vod Pyt Tsgp=0iba Vt,b,dVoa=1 (11.12)
g,s

|B|d - (|B|d - Ord(b)) *Ptb,d Z hlt:l,l;ist Vt7 ba da ‘/b,d =1 (1113)

ord(b) - prpa < B Vi,0,d,Vig=1 (11.14)

hE — Rt +1 - Zpt,b,d =wyqg Vi d (11.15)

b

> wtyay-ord(j) =wa Vtd (11.16)
J

S vtea; =1 Vtd (11.17)
J

The contribution to the objective is as follows

— Y e VSsag — D B vty (11.18)

s,d.j t,d,j

11.3.3 Sequences

In connection with the undesirable breaks, the CTP also contains some needed breaks. For the
students it is often necessary to give them a break between each consultation meeting due to
traveling time between meeting rooms. This impose the following constraints.

> (Tagh + Tgpirs) <1Vs,dbe B\{bp, }, HS =1,Voa= Vi, a =1 (11.19)
g

The teachers seldom change location during the consultation period, so travel time is not needed.
However, as mentioned it is undesirable for the teachers to have a long sequence of meetings,
as they need a break now and then. The maximum size of a sequence for a teacher is denoted
Q@ € N. Let the variable y; 4 € {0,1} take value 1 if time slot b is the start of a sequence of
length greater than @ on day d for teacher ¢t. The following equation constraints this variable,

b+Q
S pwa—wea<Q Vtdbe B\{b;lj > Bl - Q}Vea=1 (11.20)
g

The contribution to the objective is given by

— S W s (11.21)

t,b,d

11.3.4 Day distribution

In case the consultation has more than one day it is preferred that each student and each teacher
only has meetings on a single day. u; 4 € {0,1} and u;s 4 € {0,1} denotes if teacher ¢ or student s
has a meeting on day d, respectively. v; € N and vs € N denotes the number of days where teacher
t and student s have meetings, respectively. The number of days with meetings is punished in
the objective by

161 11.3. Integer Programming model

> v =D Gy (11.22)
s t

and is constrained by the following

D Vo wsgh <usa Vs,bd (11.23)
g9

Y VhaPrg-wegp <una Vibd (11.24)
S)Q

ZUS»d —1 < vy Vs (11.25)
d

Zuud —1<wv VYt (11.26)
d

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 162

11.3.5 IP model for CTP

The entire model for CTP is given in (11.27).

Consultation Timetabling Problem IP

max E

s.t.

$,9:b

t,b,d

E :$s,g,b

b

E :ws,g,b

g

§ :Pg,t *Ts,g,b

8,9

E : (!L‘s g,b + Tgbiq,s)

b+Q

Z Z Pt d = Ytbd

S
Vb/d 1

§ vaA,d *Ts,g,b

9
|Bla — (I1Bla — ord(b)) - ns b4
ord() Nsb,d

last fﬁrst+1_znsbd (1+HS)+HS

b

E VSs,d,j - ord(j
E USs,d,j
§ ‘/bd gt “ Ts,g,b

|B|d = (|Bla — ord(b)) - pe.b.a
Ord(b) pt,b,d
hlast htﬁrst +1-— Zpt,b,d

thnd,j ~ord(4)
i Vo Prg-Tsgp
S a1

S g1

d
lhsvg,b S {07 1}7 Yt,bi S {07 1}
We,d c N, Zs,d N
vtra; € {0,1}, vssq,; € {0,1}

ﬁrst c N last c N hﬁrst c N hlast eN

pt,b,d S {O 1} Nsb,d € {0 1}
us.q € {0,1}, urq € {0,1}
Vs € N, vt € N

<as,gb_zat'Dtb'Pgt+§ 'Esb> *Ts,g,b —
_Zw ytbd_z<s Vs — ZCt Ut

IN - IA

IA

IN

IN IV Il Il Il AN

IN IN IN

IN

s,d,j

Rs,g
Cs,b

1

Ns.b,d
ﬁrst

last
s,d

Zs,d

Pt,b,d

hﬁrst
last

hia

We,d

We,d

Ut,d
Vs

Ut

(11.27)

S e vssag— Y Bryovtea; (11.27a)

t,d,j

Vs, g (11.27b)
Vs, b (11.27¢)
Vi, b (11.27d)

Vs,d,be B\{bp,}, HS =
1,Voa=Va=1 (11.27e)

Vt,d,b e B\{b;|j >

i 11.27f
B = Q) Vha =1 (11270
Vs,b,d, Vog =1 (11.27g)
Vs,b,d, Vg =1 (11.27h)
Vs,b,d, Vyg =1 (11.27i)
Vs,d (11.27j)
Vs,d (11.27k)
Vs,d (11.271)
Vi b,d Vi =1 (11.27m)
Vi,b,d, Vg =1 (11.27n)
Vi b,d Vi =1 (11.270)
vit,.d (11.27p)
vt d (11.27q)
vt d (11.27r)
Vs, b,d (11.27s)
Vit bd (11.27t)
Vs (11.27u)
vt (11.27v)
(11.27w)
(11.27x)
(11.27y)
(11.272)
(11.27aa)
(11.27ab)
(11.27ac)

163 11.3. Integer Programming model

11.3.6 Complexity

In the following a proof of A’P-hardness is given by showing that a well known NP-hard problem,
the Graph Coloring Problem (GCP), is polynomially reducible to CTP.

An arbitrary instance of GCP consists of a graph G = (V, E) and a number of colors k. The
decision-version of the GCP asks the following: Does graph G admit a proper vertex coloring
with k colors, such that no adjacent vertices take the same color?

To answer this question we solve a CTP with parameters 6; = 0, = vs; = Bt,j =w = (s =
(¢ =HS =0,a,4s = 1,Csp = 1. This makes all constraints redundant, except for (11.27b),
(11.27c) and (11.27d). Further assuming every student has exactly one request, > R, 4 = 1Vs,
makes constraint (11.27c¢) redundant.

For each vertex v € V in graph G, create a student s and a teachergroup g, and let the
meeting request (s, g) represent vertex v. The set of vertices is hence represented by a setting of
parameter R, ;. If vertex vi = (s1,¢1) and vertex vy = (s2,g2) are adjacent in graph G, create
a teacher ¢ and assign it to both g, and g9, i.e. Py, ; = Py, = 1. Le. every teacher will have
exactly two meeting requests. Let the set of time slots B represent the set of colors (such that
| B| = k).

Hence the GCP-instance is represented by the following CTP instance:

max Y e (11.28a)
5,9,b

s.t. Zg Ts,g.b < R,y Vs,g (11.28b)
Xb: Pyi-xsgp < 1 Vitb (11.28¢)
ey € (0,1} (11.28d)

Constraint (11.28b) specifies that each vertex (meeting request) can at most be assigned one
color (time slot). Constraint (11.28¢c) specifies that no teacher can be assigned more than one
meeting in each time slot, which specifies that no adjacent vertices can take the same color.

To answer the question whether G is k-colorable, solve the CTP instance and check if all
meeting requests are assigned a time slot, i.e. >, 545 = 1Vs,g9, Rs g = 1. If so the answer is
yes, otherwise the answer is no. Hence the Graph Coloring Problem is polynomially reducible to
CTP, and CTP is therefore N'P-hard.

11.3.7 Defining weights

In the following the weights of the model are selected due to the preferences of the Danish high
schools. MaCom A /S has greatly assisted this process. Table 11.1 lists all the weights in the
model and their priority.

From analysis of previous consultations in the Danish high schools, it is noticed that the students
rarely request more than five teacher groups for consultations. And even though the students
have the opportunity to request more than five, they seldom use this option. From this analysis
it is chosen to stick the request with priority higher than five to the same weight. This gives the

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 164

Table 11.1: Weight prioritizing

Weight Symbol Priority Value dependency

(Max) Request fulfilling agg9p Very High Priority of request (s, g)
in time slot b

(Min) Teacher holes Bt High Amount of requests of
teacher ¢

(Min) Teacher sequence violation w High N/A

(Min) Teacher activities interruption 0y Medium N/A

(Min) Teacher multiple days G Medium N/A

(Min) Student holes Vs,j High Amount of requests of
student s

(Min) Student activities interruption s Medium N/A

(Min) Student multiple days Cs Medium N/A

following function for the request weights a4

o mer12-2G-1 i< (11.29)
S0P 49 i>6 '

where i € Z7 is the priority of request (g, s). Furthermore there is a set-point for each day given
by b} for which it is desired that the schedule plan for the given day is centered around. Let x;
denote the penalty for assigning a request to time slot b, defined by

iy = — S i (11.30)

The cost of an undesirable break for a teacher, 3 ;, is defined as follows,

0 j=0
Bij=13 j>1ASCTP (11.31)
j*T j>1APCTP

where 7y is the number of requests for teacher groups where teacher ¢ is a group member,
M =254 gt Rsg- Le. fBi; depends on the number of requests for the given teacher ¢. The
distribution of §; ; is chosen such that a teacher which few students have requested is given a
high penalty for undesirable breaks. Likewise, a teacher with many requests has a low penalty
for undesirable breaks. This is due to the fact that teachers with many requests will most likely
have a more dense schedule, and are therefore not too picky about additional breaks. The reason
why there is a difference between the weights for the different consultations types is due to
the consultation interval. For the PCTP the consultation meetings are normally located in the
evening, and hence we want to penalize the undesirable breaks. The SCTP is typically taken
place in the daytime, i.e. the teachers are already at the high school, hence undesirable breaks
are not that significant. The weight of an undesirable break for a student ~s ; is analogues,

0 j=0
5.q = 11.32
Vs,j {j1+n25 i>1 (11.32)

where 7, is the number of requests of student s.
The cost for violating the length of a sequence for a teacher is given by w.

w=2 (11.33)

165 11.4. Adaptive Large Neighborhood Search

In our model of the CTP the high school administration selects if interrupting other activities of
the students or teachers is allowed. If this is not the case, the costs d; and &, are selected as in-
finitely high (implementation-wise the corresponding constraints are treated as hard-constraints).
If interrupting other activities are not allowed, these costs are selected as a constant value,

oo Interrupting activities not allowed
0t =05 = ¢4 Interrupting activities allowed A PCT P (11.34)
1 Interrupting activities allowed A SCT P

Like for the undesirable break cost 3; ;, we distinguish between the two consultations types. For
the PCTP it is expensive to interrupt other activities since it is held in the evening and hence
other activities are typically other types of meetings. The SCTP is held in the daytime, and it
is allowed to ’lent’ a student from a lecture for a small cost.

11.4 Adaptive Large Neighborhood Search

In this section a heuristic alternative to solving the IP-model (11.27) is described. The perfor-
mance of these two methods are compared in Section 11.6.

As the local search algorithm we have chosen to use the Large Neighborhood Search (LNS)
proposed by Shaw (1998). Most local search algorithms explicitly defines the neighborhood,
but the neighborhood in LNS is defined implicitly by a destroy and a repair method. The
neighborhood of a solution is then defined as the set of solutions that can be reached by first
applying a destroy method and then a repair method. In this article we will use Adaptive Large
Neighborhood Search (ALNS), in which the LNS is extended by multiple destroy and repair
methods. ALNS was first described in Pisinger and Ropke (2005), and has since been used with
success on various problems, especially variants of Vehicle Routing Problems (VRP), see e.g.
Ropke and Pisinger (2006); Laporte et al. (2010); Azi et al. (2010); Ribeiro and Laporte (2012);
Lei et al. (2011). A pseudo-code for the ALNS heuristic is shown in Algorithm 1.

Algorithm 1 Adaptive Large Neighborhood Search

S

1: input: a feasible solution x

b
2: solution Zpest = z, m = (1,. g , 1)
3: while stop-criterion not met do
4: =z
5: select destroy and repair methods d € 2~ and r € QF using =
6: select ¢ € N
7 remove g requests from x’ using d
8: reinsert removed requests into 2’ using r
9: if ¢(a') > ¢(2pest) then
10: Thest = T’
11: end if
12: if accept(z’, =) then
13: x=ua
14: end if
15: update 7

16: end while
17: return Tpest

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 166

The sets of destroy and repair methods are denoted Q= and Q7, respectively. The variable
m, which stores the weight of all destroy and repair methods, is introduced in line 2. Initially all
methods have the same weight. In line 5 the weight parameter 7 is used to select the destroy
and repair methods. In line 12 an accept function evaluates if the new solution should become
the new current solution. The accept function can be implemented in different ways. We have
chosen to implement a Simulated Annealing-like acceptance criterion, which will be described
later.

An ALNS framework has the advantage of using different neighborhoods, such that the al-
gorithm hopefully explores a large part of the solution space. For more information regarding
ALNS we recommend Ropke and Pisinger (2006) and Pisinger and Ropke (2010).

11.4.1 ALNS scoring scheme

A central part of the ALNS algorithm is the scoring scheme of destroy and repair methods. A
scoring scheme can essentially be characterized by two central topics; 1) How to quantify the
performance of each heuristic. 2) The reaction factor, i.e. how sensitive is the selection process
to recent records of performance.

We adapt a scoring scheme based on the technical report of Muller and Spoorendonk (2010),
where performance is tracked by the percentage-wise gap between the new found solution and
the current solution. This scoring scheme has the advantage of having few parameters to tune,
and using the gap between solutions seems as a intuitively good way of measuring heuristic
performance. Below the scoring scheme is explained in details.

Runs of the algorithm is divided into segments {tg, t1, ..., t,} each consisting of Ny iterations.
Let 7! be the weight of heuristic 7 in segment ¢. The probability of choosing heuristic i in segment

tis ZT;W}' At the end of each segment ¢, the following update is performed for all heuristics,

S

it = p=t + (1 - p)nt (11.35)

&

where a! is the number of times heuristic i has been selected in segment ¢. 7! is the observed

weight of heuristic ¢ in segment ¢, which in each iteration is incremented depending on the quality
of the new found solution. p € [0, 1] is the reaction factor. A high reaction factor means that the
weights of a segment will be very dependent upon the observed weights of the previous segment.

The observed weight 7! is updated in each iteration. Let = be the current solution, and 2’ the
new found solution by applying neighborhood 4. In the technical report Muller and Spoorendonk
(2010) the following formula is used,

gap = C(xl()j(;)c(x) (11.36)
T = @ +msP (11.37)

where m is a constant. We will use a slightly changed version of this formula, since we have
observed that the gap formulated by (11.36) most often yields values of magnitude +£107%,
meaning that the observed weight 7! will rarely change value of significant magnitude. Therefore
we introduce a scale parameter in the formula,

7t = 7t 4 mmino-gap.1) (11.38)

K3
where o € RT is a parameter that needs tuning. We fix m = 5 and rely on the parameter tuning
to set a suitable value for 0. The min-operator in the exponent of m is necessary to ensure the
weight stay within a reasonable interval, in case we hit an iteration where the scaled gap is big
and positive.

167 11.4. Adaptive Large Neighborhood Search

11.4.2 Request removal

The ALNS heuristic for the CTP makes use of two different removal heuristics, each searching a
given removal neighborhood. The heuristics takes as input a given solution x, 45, and an integer
q € N. The output of the heuristics is the solution where g meetings have been removed. The
value of q is selected as a random number which satisfies,

3 < ¢ < max (g : ZR&g,E)) (11.39)

9,8

where £ €]0,1] is the maximum percentage of requests to remove. In accordance with Muller
(2009) we decay & over time, starting with a high value &t and ending with a smaller &qpq.
Given the runtime of the algorithm, we divide it into 100 segments such that £ is decreased by
5“"“{% in each segment. This decay of £ means that the size of the searched neighborhood
is progressively reduced. This has the advantage of only performing small changes towards the
end of the solution process, where we expect a good solution has been found.

11.4.2.1 Random removal

The simplest removal heuristic, which randomly removes ¢ meetings from the solution. This
simple heuristic obviously has the effect of diversifying the search.

11.4.2.2 Shaw removal

This removal heuristic was introduced in Shaw (1997, 1998) where it is used on the VRP. In this
section the heuristic is modified to suit the CTP. The general idea of the heuristic is to remove
meetings which are somehow related, since there is a good chance that such requests can swap
positions and possibly improve the solution. In this paper two factors determine if meeting ¢ is
related to meeting j: Similarity between students, and similarity between teachers. S; and T;
indicates the set of students and teachers of meeting i, respectively. Notice that a meeting always
contains exactly one student, i.e. |S;| = 1. Let the measure of relatedness between meeting i
and j be defined by M(i,5) € [0,1],

. TNTy +1Sn S
MI) = L) + 1

(11.40)

Le. relatedness is the percentage of individuals which is shared between the meetings, such that a
high value of M means that the meetings are very related. This simple formulation of relatedness
is done without any additional parameters. An alternative natural formulation would be to scale
the student-relatedness and teacher-relatedness by two independent parameters. However we
have chosen the shown formula due to its simplicity. An addition to the formula could be
to introduce a term which determines time slot relatedness, although it should be noted that
relatedness between slots is only directly relevant if there also exists some relatedness between
students or teachers.

A pseudo code for Shaw removal is shown in Algorithm 2.

To avoid the situation where the same meetings are removed over and over, the algorithm
is randomized. The level of randomness is controlled by the parameter psnaw € RT, pshaw > 1.
This means that pshaw somehow defines how random the element is chosen, where pghaw = 1
corresponds to completely random.

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 168

Algorithm 2 Shaw removal

1: input: A feasible solution z; 45, ¢ € N, pshaw € RT

2: request: r = a randomly selected meeting from z 4

3: set of requests : D = {r}

4: while |D| < ¢ do

5: r = randomly selected meeting from D

6: L — all meetings from x5 45 not in D, sorted by decreasing similarity to r
7: choose a random number yPseaw € [0, 1]

8: [= element number yPsbaw . |L|

9: D =DU L[]

10: end while

—
—_

: remove the meetings in D from x, 45

11.4.3 Repair heuristic

The repair heuristics are given a set of consultation meetings and a set of not granted meeting-
requests.

11.4.3.1 Basic greedy heuristic

A trivial algorithm for the CTP is a simple greedy algorithm which places one request at a
time in order of contribution to the objective. In each iteration of the algorithm this process is
repeated until no more requests which improves the solution can be inserted. Implementation
wise the algorithm suffers from cost-dependencies, since the contribution of inserting each request
possibly changes after each insertion. This is slightly optimized by only recalculating the cost
of those requests which the last insertion can possibly effect. I.e. recalculate the cost of those
requests which has the same student as the last insertion, or if the teacher group overlaps with
the one of the last insertion. This repair heuristic is used to create an initial feasible solution for
the CTP.

11.4.3.2 Regret heuristics

The regret heuristic improves the basic greedy by incorporating a kind of look-ahead information
when selecting a request to insert. Informally speaking, the heuristic aims at inserting the request
which we will regret most if not inserted immediately. The regret heuristic has been used by
Potvin and Rousseau (1993) and Pisinger and Ropke (2005) for the Vehicle Routing Problems
with Time Windows. Let c¥ denote the change in the objective value by inserting request r into
the k' best position. E.g. ¢? denotes the change in the objective value by inserting request 7 in
the second best position. A Regret-2 heuristic will in each iteration choose to insert the request
r where the difference between best and second best position is largest, i.e.

r = argmax (cp — c?) (11.41)
rE€RS,ct>0

The request r is inserted at its best position, so we restrict the heuristic to only look at requests
where the best position is actually feasible and yields a positive change in objective. This
restriction is necessary since the objective of the CTP contains both a minimization and a
maximization part, and we are not interested in inserting requests which have negative impact
on the objective. The heuristic can be extended by looking at k positions for each request. The

169 11.5. Parameter tuning

request to insert is then chosen according to
k
7= argmax Z (cr — cf) (11.42)

TERY,c1>0, "5

We will in this paper incorporate the regret heuristic for several choices of k. The basic
greedy algorithm from the previous section is a Regret-1 heuristic due to the tie-breaking rules.
For a Regret-1 heuristic the most profitable request is inserted in each iteration. Most papers
distinguish between Regret-1 and other regret heuristic, however implementation wise they are
not very different. Setting k = | B| corresponds to the full Regret-k heuristic.

Even though the regret heuristic is designed for VRP, it seems well suited for the CTP due
to its assignment character. It seems valuable to attempt to predict which request is the most
critical to insert. By some basic tests, we have chosen to use Regret-2, Regret-3, and Regret-|B]
as insertion heuristics.

11.4.4 Algorithm setup

According to Ropke and Pisinger (2006), using myopic repair heuristics, like those of this paper,
one may apply noise to the objective function to obtain a more efficient algorithm. By applying
noise, the repair heuristic will not always make the move that seems best locally. Ropke and
Pisinger (2006) support this by strong computational results. However, preliminary tests show
that, in our case, adding noise does not yield a more efficient algorithm. More precisely, noise
was added such that it was controlled by a linear-scale parameter, and excessive tuning on this
parameter yielded no convergence at all. I.e. this parameter had (close to) no impact on the
algorithm efficiency. A similar result for the Cumulative Capacitated Vehicle Routing Problem is
reported in Ribeiro and Laporte (2012).

In occurrence with Ropke and Pisinger (2006) we borrow an acceptance criteria from Simu-
lated Annealing. A solution z is always accepted if c(x) > ¢(Tpest)- If ¢(x) < c(@pest) then x is
accepted with probability

_ c(@pest)—c(x)

exp(+> In each iteration the temperature T is updated by T = dgaT, where

0 < dga < 1. Giving the temperature control parameter wsa, 0 < wspa < 1, T is initially selected
such that a solution is accepted with probability % if its change in objective is wga percent worse
than the initial solution xy, i.e.
c —(1- . .
exp ~ (e(xo) — (1 —wsa) - ¢(0)) 1 wsa - ¢(20)
In(2)

= = = T = 11.43
- : (11.43)
This has the advantage of better adapting the temperature to each dataset.
Furthermore at the start of each segment (those of the ALNS scoring scheme), the current
solution is set to the current best.

11.5 Parameter tuning

The proposed heuristic contains many free parameters. It is essential that these parameters are
tuned to achieve good performance, see e.g. Adenso-Diaz and Laguna (2006) and Diao et al.
(2003). Tuning of metaheuristics is usually done by rules-of-thumb and the researchers personal
experience. However some well performing automated algorithms have lately been introduced,
mainly ParamILS (Hutter et al. (2009)) and Race-algorithms (Birattari (2005)). In this paper
we will use the F-Race algorithm for tuning, as its implementation burden seems light, and it

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 170

has proven competitive for some heuristic methods, see Montero et al. (2010) and Pellegrini et al.
(2010).

The main idea of a race algorithm is to sequentially process a set of data instances using
all possible parameter configurations. In each iteration, the parameter configurations which
are statistically inferior are eliminated. The algorithm is ran until one parameter configuration
remains or the specified time limit is exceeded, see Algorithm 3. If more than one parameter
configuration remains once the algorithm terminates, the one which in average has performed
best is selected. The advantage of a race algorithm is that bad parameter configurations are
eliminated early, such that no more valuable computation time is spend on evaluating these. The
racing algorithm differs from most other tuning approaches in the sense that it only performs
one algorithm run per parameter configuration per data instances. This relies on the proof
in Birattari (2005) where it is shown that this is the optimal experimental setting in terms of
variance of the estimated performance.

Algorithm 3 Race Tuning
1: input:

2: ©: Set of parameter configurations

3: Texp: Computation time of each experiment

4 Tiotal: Time limit

5: «: Confidence level

6

7

8

9

:1=0,5=06,Co=10

: while ¢ < Tiota1 AND |Sy| > 1 do
dataset = RandomSampled()
for all § € Sy do

10: C% = EvalSolution(Tey,p, 0, dataset)

11: end for

12: t=1+1

13: Drop inferior parameter configurations from Sy by statistical test, using confidence level
o

14: end while

In a F-Race algorithm, the Friedman Two-way Analysis of Variance by Ranks test is used to
determine whether there is sufficient statistically evidence to eliminate parameter configurations
from future iterations. If this is the case, then post-tests are performed where pairwise compar-
ison between the best candidate and the remaining determines which configurations should be
eliminated, if any. The F-Race algorithm has been successfully used for tuning in a number of
cases, see e.g. Chiarandini et al. (2006); Becker et al. (2006); Pellegrini and Birattari (2007).

A problem of the described Racing algorithm, which applies to most tuning frameworks, is
the so-called full-factorial design, meaning that the full set of parameter configuration is initially
considered. This results in the F-Race becoming impractical and computational prohibitive, if
there exists a large number of parameters and each parameters can take a modest number of
values. This has been addressed in Balaprakash et al. (2007) by defining a probabilistic model on
the set of all possible parameter configurations, such that a small set of parameter configurations
is generated in each iteration of the tuning process. Elite configurations are used to update the
model to bias the search around high quality parameter configurations. This version of F-Race
is denoted Iterative F-Race (I1/F-Race).

In this paper we use a simplified I/F-Race algorithm, where we start out with a small subset
of parameter configurations, and based on the Race-results of these we manually construct new
configurations, which are believed to be superior. One could think of this approach as a sort of

171 11.6. Performance

manual iterative F-Race. Table 11.2 shows the best found parameter configuration. It should be
mentioned that we set bgp = by and §° = §* = oo, since these are the most common values chosen
by the users. The datasets used are of the school year 2011/2012. wgy is the temperature control

Table 11.2: Final values of tuned parameters, found by the F-Race algorithm with confidence
level av = 0.05.

Parameter wsa dsa N P o Estart &end Pshaw
Value 0.01 099 100 0.50 1000 0.30 0.0033 20

parameter and dga is the decay parameter for the SA based acceptance criteria. Ny, defines the
number of iterations between resets. p and o are reaction factor and the scale parameter for the
ALNS scoring scheme, respectively. &part and Eeng are the destroy percentage in the beginning
and in the end of the running time. Finally, pshaw indicates how random the element is chosen
in the Shaw removal.

11.6 Performance

The goal of this section is to evaluate the performance of the developed solution methods, the
ALNS algorithm and solving the IP model. Also a comparison with the existing heuristic of
Lectio is made. All tests are performed using nUnit 2.6 in C# 4.0 on a machine with an Intel
i7-930@2.8GHz CPU and 12GB of RAM. No parallelization has been implemented.

11.6.1 Performance comparison between ALNS and Gurobi

In the following, the performance of the state-of-the-art MIP solver Gurobi 5.01 (currently top-
ranked in the MIP benchmark of Mittelman (2013)) and the implemented ALNS algorithm are
compared. For both the PCTP and the SCTP, 100 datasets from the school-year 2011/2012 are
selected from the database of Lectio.

In this experimental setup, the ALNS algorithm is run for 2 minutes. This low running time
is due to the following: 1) The schools does generally not expect an algorithm to run longer, as
they are usually not aware that it is a hard problem to solve. Some even believe the problem
is trivial. 2) The ALNS "tailors-off" after a while, i.e only minor improvements are seen on the
best found solution after the 2 minute mark.

The Gurobi solver is run for 1 hour, because we do not only want to evaluate the performance
in terms of best found IP solution, we also want a good upper bound for the instances.

In the performance tests it is not allowed to interrupt other activities for the PCTP, i.e.
0y = 05 = 0o. For the SCTP interrupting activities is allowed. This is due to the fact that PCTP
is normally arranged in the evening while SCTP is during the normal work-hours.

From Table 11.3 it is seen that ALNS in average finds solutions 4% from optimum. Even
though ALNS has far lower running time than Gurobi, it finds better solutions in almost all
cases.

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 172

Table 11.3: Gurobi 5.01 and ALNS for the PCTP on 100 datasets. For each dataset is listed the
number of time slots "|B|", the total number of meeting requests "> R", the average number of
requests pr. student, and the average number of requests pr. teacher. For Gurobi is shown the
final objective value "z", the best bound found "UB", and the reported gap between these two.
For ALNS, column "Z" is the mean performance of the algorithm over 10 runs, and column "o"
is the standard deviation for these runs. Finally, column "Gap" is the gap of mean performance
and the upper bound found by Gurobi. The best found solution is marked with bold for each

instance.

Gurobi 5.01 ALNS

Bl YR &t %t @ UB Gap|%| & o Gap|%]
Alleroed 12 51 3.0 24 485.0 485.0 0.0 484.8 0.1 0.0
Alssund 18 84 2.5 4.0 850.6 850.6 0.0 849.4 0.6 0.1
Aurehoejl 18 537 4.0 9.9 3270.3 3774.3 154 3655.9 6.9 3.2
Aurehoej2 18 409 3.8 6.6 3033.1 3300.5 8.8 3219.5 3.9 2.5
Broenderslev 24 241 4.0 4.8 1656.2 1965.1 18.7 1905.6 3.0 3.1
CPHWEST 39 133 3.7 5.8 990.5 1124.7 13.5 1044.5 3.0 7.7
DetKristne 32 247 4.1 11.2 1553.3 1978.5 27.4 1830.9 49 8.1
Dronninglund1 30 108 49 7.7 726.0 801.5 10.4 782.0 4.1 2.5
Dronninglund2 30 94 4.1 8.6 636.6 672.7 5.7 664.5 0.6 1.2
Egedal 27 408 3.4 6.3 3143.5 3625.0 15.3 3558.2 3.7 1.9
Egaa 24 265 3.2 9.8 2101.7 2374.0 13.0 2318.5 7.7 2.4
Esbjergl 24 345 3.9 9.6 2306.2 2465.3 6.9 2402.1 4.2 2.6
Esbjerg2 24 307 3.5 4.3 2117.6 2439.9 15.2 2314.3 24 54
Esbjerg3 24 255 3.8 94 1770.0 1888.1 6.7 1839.5 28 2.6
Esbjerg4 24 351 4.0 9.2 2493.8 2700.5 83 2612.3 4.5 3.4
Frederikssund 24 49 3.3 4.5 404.2 406.8 0.7 403.8 0.4 0.8
Frederiksvaerk 8 74 24 3.2 699.0 699.0 0.0 697.9 0.6 0.2
Gefion 18 479 3.1 7.2 3316.6 4248.9 28.1 3958.1 23.7 7.4
Gladsaxe 40 901 4.1 11.0 5516.0 7163.7 29.9 6950.7 15.1 3.1
Greve 18 336 4.5 4.4 2133.1 2535.9 189 2482.6 4.4 2.2
Haslevl 18 123 29 5.4 1051.5 1077.1 24 1060.2 0.5 1.6
Haslev2 18 122 3.2 4.2 983.5 1019.6 3.7 988.7 2.6 3.1
Herlufsholm1 24 143 4.3 14.3 853.1 918.9 7.7 894.5 1.2 2.7
Herlufsholm?2 24 88 49 6.8 599.5 671.3 12.0 621.8 1.9 8.0
Herningl 27 118 3.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0
Herning?2 27 75 3.4 6.3 0.0 0.0 0.0 0.0 0.0 0.0
Herning3 27 140 3.7 4.5 2.0 2.0 0.0 20 0.0 0.0
Himmelev 34 453 3.7 84 3118.1 3736.1 19.8 3471.7 8.8 7.6
Hjoerring 30 179 3.8 2.1 751.2 1229.9 63.7 1009.2 15.3 21.9
HorsensGym 18 123 3.2 34 1131.5 1133.8 0.2 11294 1.1 0.4
HorsensStats 21 143 2.9 3.0 1217.8 1289.3 5.9 1253.8 1.9 2.8
Ikast-Brande 30 52 3.5 5.8 419.4 463.7 10.6 449.7 04 3.1
Johannesskolenl 24 165 4.5 7.9 1131.2 1296.8 14.6 1188.3 4.3 9.1

Johannesskolen2 24 97 3.7 75 7014 786.3 121 743.9 5.0 5.7

Johannesskolend 28 135 3.6 7.5 519.2 5814 120 519.9 3.2 11.8

Kalundborg 27 299 3.0 4.8 2281.0 2587.0 13.4 2458.3 5.3 5.2
Continued on next page

173 11.6. Performance

Table 11.3 — continued from previous page

Gurobi 5.01 ALNS

Bl SR %t %t @ UB Gap|%| = o Gap|%|
Kolding 18 80 3.5 4.0 T721.4 725.2 0.5 721.0 0.2 0.6
Langkeerl 18 52 3.5 2.6 471.1 471.1 0.0 470.6 0.3 0.1
Langkeer2 18 90 3.5 3.8 788.9 814.6 3.3 805.9 0.5 1.1
Middelfart 27 223 3.1 6.2 1682.5 1923.6 14.3 1788.1 7.4 7.6
Morsoel 27 105 3.9 10.5 768.8 834.2 8.5 804.2 3.2 3.7
Morsoe2 27 113 4.7 10.3 732.9 815.2 11.2 778.4 4.2 4.7
Munkensdam1 21 256 3.6 4.7 18719 2251.6 20.3 2198.6 5.3 24
Munkensdam?2 21 345 3.4 6.3 2352.8 2931.6 24.6 2846.8 6.7 3.0
NielsSteensens1 36 117 59 7.8 715.8 781.9 9.2 757.2 3.9 3.3
NielsSteensens2 30 328 7.5 17.3 12499 1764.9 41.2 1656.6 5.9 6.5
NielsSteensens3 30 365 7.9 20.3 1125.7 1895.7 68.4 1800.3 7.4 5.3
NielsSteensens4 30 234 6.7 13.8 1101.6 1230.0 11.7 1144.4 5.2 7.5
NielsSteensensd 30 263 6.3 17.5 1461.7 1634.2 11.8 1557.1 5.7 5.0
Noerre 18 422 2.7 7.8 3574.1 4031.6 12.8 3944.5 5.2 2.2
Nordfyns 23 192 2.6 6.6 17619 1863.5 5.8 1795.5 6.2 3.8
Nordsjaellands1 34 1187 6.4 25.3 6001.7 7018.5 16.9 6597.3 27.9 6.4

Nordsjaellands2 34 1038 6.6 23.1 2298.7 2626.1 14.3 2453.2 14.7 7.1
Nordsjaellands3 34 457 6.3 13.9 2225.4 2858.3 284 2634.7 7.8 8.5

Nordsjaellands4 34 163 4.9 9.6 1100.9 1210.0 9.9 11724 29 3.2
Nordsjaellands5 40 712 5.6 19.8 2543.1 4796.2 88.6 4460.5 16.6 7.5
Nordsjaellands6 34 780 6.1 19.0 2500.4 4899.0 959 4612.2 14.2 6.2
Nordsjaellands7 34 880 6.1 19.1 2763.3 3047.9 10.3 2894.5 6.3 5.3
Nordsjaellands8 34 23 1.6 3.3 242.1 242.1 0.0 2419 0.3 0.1
Nordsjaellands9 34 949 6.2 22.1 3202.9 5519.0 72.3 5037.1 31.8 9.6
Nordsjaellands10 34 31 19 44 272.2 2729 0.2 269.1 3.3 14
Nyborg 24 119 3.2 5.7 55.4 55.4 0.0 55.4 0.0 0.0
Nykoebing 24 182 3.0 3.2 1447.1 1502.2 3.8 1483.1 1.2 1.3
NZahlesl 25 324 43 9.5 2116.2 2456.3 16.1 2365.7 5.5 3.8
NZahles2 24 301 41 89 20353 2280.1 12.0 2217.8 6.5 2.8
Odder 18 95 4.0 73 740.0 773.5 4.5 762.7 1.5 14
Odsherreds 21 193 34 5.0 15334 1619.6 5.6 1595.4 2.2 1.5
Risskovl 15 65 3.1 4.6 539.7 539.7 0.0 536.7 2.5 0.6
Risskov2 15 149 3.5 5.7 1263.2 1273.1 0.8 1256.9 2.9 1.3
Risskov3 15 181 3.7 6.2 1396.9 1406.8 0.7 1389.7 4.8 1.2
Roedkilde 18 266 3.6 9.2 2161.1 23529 89 2325.2 52 1.2
Roedovre 51 779 3.6 10.3 1513.8 20324 34.3 1661.7 20.1 22.3
Rosborgl 24 218 3.5 99 1742.7 1876.3 7.7 1827.9 54 2.7
Rosborg?2 28 268 3.7 11.7 1960.9 2297.2 17.2 2223.3 114 3.3
Rosborg3 28 487 19 9.6 4568.5 4939.6 8.1 4750.0 10.1 4.0
Rosborg4 26 235 3.6 84 1713.8 2033.2 18.6 1960.4 11.1 3.7
Roskilde 48 263 3.7 64 17164 2251.7 31.2 2112.8 64 6.6
Rybners 24 267 3.1 6.9 1923.3 24723 28.5 2402.5 3.8 2.9
SanktAnnae 21 320 41 7.0 2115.0 2498.7 18.1 2381.6 5.6 4.9
Skive 36 220 3.6 129 1611.0 1903.2 18.1 1850.3 2.9 2.9

Continued on next page

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 174
Table 11.3 — continued from previous page
Gurobi 5.01 ALNS

Bl SR it &t @ UB Gap|%| =z o Gap|%]
Slagelse 30 8 3.0 39 805.3 8054 0.0 802.6 0.8 0.4
Solroed1 16 341 3.3 7.4 24182 2468.7 2.1 2436.8 6.1 1.3
Solroed2 16 415 3.4 7.2 3083.3 3317.9 76 3263.0 5.2 1.7
Soroe 24 369 3.7 82 2587.1 3111.2 20.3 2947.3 12.1 5.6
Soroe 33 335 42 5.6 1594.3 2649.3 66.2 2255.0 12.3 17.5
Stenhus 18 221 43 3.2 0.0 0.0 0.0 0.0 0.0 0.0
Stoevring 24 62 3.7 44 521.4 5214 0.0 520.5 0.5 0.2
Struerl 30 237 3.3 44 1596.8 1801.2 12.8 1656.9 2.1 8.7
Struer2 30 333 3.3 8.8 2301.3 2790.8 21.3 2534.0 7.9 10.1
Svendborgl 18 96 2.1 29 9914 9914 0.0 991.1 0.2 0.0
Svendborg2 18 134 2.6 4.5 1289.0 1289.1 0.0 1283.0 0.3 0.1
Taarnby 36 791 4.6 11.0 4397.7 5918.0 34.6 5609.2 17.7 5.5
UCH 32 104 1.0 17.3 949.8 949.8 0.0 922.6 0.0 2.9
ViborgGym1 30 206 4.3 5.2 1367.7 1486.5 8.7 1434.0 26 3.7
ViborgGym?2 30 149 44 53 1094.0 1146.6 48 1133.4 0.9 1.2
ViborgGym3 30 294 3.7 4.6 2153.6 2275.5 5.7 2211.7 1.8 2.9
ViborgHandel 30 324 4.2 180 2111.8 2615.9 23.9 2526.7 9.7 3.5
ViborgKatedral 40 337 4.8 11.2 1935.5 2516.5 30.0 23134 8.6 8.8
Vordingborgl 16 315 3.8 6.3 2222.0 2358.8 6.2 2304.3 28 2.4
Vordingborg2 16 239 3.3 5.6 1867.5 1950.0 44 1924.6 2.0 1.3
Average 26 279 39 83 14.8 4.0
Max 51 1187 7.9 25.3 95.9 22.3

Table 11.4 shows the performance for the SCTP.

Table 11.4: Gurobi and ALNS for the SCTP on 100 datasets. Columns are defined in analogous
way to Table 11.3. The average number of requests pr. student is not shown, as it is 1.0 in all

cases.

Gurobi 5.01 ALNS

Bl YR & 2 UB Gap[%] z o Gap[%]
Aabenraa 60 226 4.3 2461.2 2495.7 1.4 23875 3.3 4.5
Broendby1l 21 69 38 677.3 707.3 44 683.2 238 3.5
Broendby2 14 69 4.3 770.2 7795 1.2 768.6 1.0 14
Broendby3 24 62 34 609.0 632.8 3.9 614.8 1.3 29
Broenderslevl 69 115 3.5 1335.4 1340.9 0.4 13024 2.1 3.0
Broenderslev2 102 115 3.5 1253.4 1272.5 1.5 1236.0 1.6 3.0
Christianshavns 43 210 4.8 2329.7 2423.7 4.0 22237 44 9.0
Dronninglund1l 100 134 4.2 1442.7 1481.3 2.7 1453.5 2.1 1.9
Dronninglund2 60 134 4.3 1553.3 1561.9 0.6 15375 2.8 1.6
Egaa 29 214 4.8 2257.5 2457.1 8.8 2376.2 4.0 34
Falkonerl 30 64 34 671.6 679.0 1.1 668.0 2.6 1.6
Falkoner2 37 206 4.2 2188.3 2345.6 72 2266.1 5.0 3.5

Continued on next page

175 11.6. Performance

Table 11.4 — continued from previous page

Gurobi 5.01 ALNS

Bl SR ¢ z UB Gap|%] T o Gap|%]
Falkoner3 30 64 34 664.9 672.3 1.1 664.9 0.0 1.1
Grenaal 28 122 3.8 1280.7 1380.3 7.8 13254 3.1 4.2
Grenaa?2 24 122 38 1249.2 1330.7 6.5 1290.3 3.8 3.1
Grevel 28 157 3.3 1575.1 1762.2 11.9 1693.3 3.2 4.1
Greve2 62 259 4.1 28054 3035.8 82 2913.5 74 4.2
Greve3 20 51 3.2 566.4 569.9 0.6 566.3 0.0 0.6
Gribskov1 74 182 4.1 1867.8 1914.6 2.5 1787.6 3.2 7.1
Herlev1 24 71 2.8 729.9 751.5 3.0 730.2 0.9 29
Herlev2 29 78 2.8 682.1 791.7 16.1 750.2 1.2 5.9
Hoengl 21 66 3.5 607.9 686.5 12.9 621.5 0.4 10.5
Hoeng?2 23 98 3.9 1029.8 1071.8 41 1038.5 2.2 3.2
Hoeng3 22 45 2.7 392.7 481.7 22.7 408.3 1.2 18.0
Hoeng4 23 56 2.6 589.1 6124 4.0 589.2 1.8 3.9
Koebenhavnsl 16 143 3.9 1239.8 1278.3 3.1 1242.0 6.1 2.9
Koebenhavns?2 16 100 3.7 786.4 786.5 0.0 785.6 0.8 0.1
Koebenhavns3 16 100 3.7 725.8 725.9 0.0 725.8 0.0 0.0
Koebenhavns4 25 146 3.8 1402.3 1486.1 6.0 1424.6 0.8 4.3
Koegel 30 255 85 13482 2475.2 83.6 2333.2 10.3 6.1
Koege2 36 261 6.2 2381.3 2493.7 4.7 2045.7 5.2 21.9
Koege3 74 258 8.6 2775.1 2903.2 4.6 26229 5.0 10.7
Koldingl 24 219 5.0 2283.5 2430.9 6.5 2348.7 4.8 3.5
Kolding?2 45 174 3.8 1934.9 2005.3 3.6 1908.8 4.1 5.1
Langkaerl 62 215 5.4 2195.8 2472.6 126 22394 7.8 10.4
Langkaer2 60 216 5.4 2351.0 2481.0 5.5 2240.1 9.3 10.8
Langkaer3 60 216 5.4 2359.1 24728 4.8 2258.3 6.6 9.5
Langkaer4 30 57 3.8 546.4 596.1 9.1 566.2 3.6 5.3
Langkaerb 56 217 5.6 2282.3 2493.5 9.3 2253.3 34 10.7
Langkaer6 62 56 3.7 631.5 652.6 3.3 629.2 0.7 3.7
Mariagerfjord1l 29 123 4.0 1227.0 1387.2 13.1 1318.6 2.0 5.2
Mariagerfjord2 29 123 4.0 1269.0 1402.6 10.5 1345.3 4.0 4.3
Marselisborgl 22 102 34 1021.3 1087.4 6.5 1045.4 1.9 4.0
Marselisborg?2 17 106 3.3 1036.2 1046.9 1.0 10354 1.0 1.1
Marselisborg3 22 105 3.9 1049.3 1156.3 10.2 1098.3 4.3 5.3
Marselisborg4 17 9% 3.2 948.6 955.2 0.7 9472 0.9 0.8
Munkensdam 43 191 5.6 2179.9 2203.8 1.1 20679 4.6 6.6
Nordfynsl 22 173 5.1 1871.9 1974.3 5.9 1926.6 1.6 2.5
Nordfyns2 21 173 5.2 1846.9 1975.6 7.0 1929.9 26 2.4
Nordfyns3 22 173 5.1 1831.5 1973.7 7.8 1908.1 2.1 34
Nordfyns4 21 173 4.1 1438.0 1538.2 70 1478.3 3.7 4.1
Noerresundby 31 303 4.7 2959.5 34374 16.2 3291.7 2.6 4.4
NZahles1 13 69 3.3 615.7 636.9 3.5 619.1 0.9 29
NZahles2 13 62 3.9 512.1 524.3 2.4 509.5 1.3 2.9
Odsherreds 49 119 3.8 1365.1 1372.6 0.6 1289.4 34 6.5
Oeregaardl 20 219 5.6 2257.3 2296.6 1.7 2258.1 5.6 1.7

Continued on next page

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 176

Table 11.4 — continued from previous page

Gurobi 5.01 ALNS

Bl SR ¢ @ UB Gap|%] z o Gap|%]
Oeregaard2 20 213 5.0 1728.9 1778.5 2.9 1743.9 3.2 2.0
Oeregaard3 20 219 5.6 2327.5 2372.3 1.9 2340.2 3.3 14
Oeregaard4 20 219 5.6 2338.4 2373.5 1.5 2339.9 26 1.4
Risskov 36 215 6.1 2400.4 24274 1.1 2353.2 2.0 3.2
Roedkilde 18 230 4.4 2452.3 2534.1 3.3 2495.7 3.1 1.5
Rosborgl 22 257 4.9 2756.7 2895.6 5.0 2837.4 3.2 2.1
Rosborg2 22 257 4.8 2651.0 2860.6 7.9 2805.4 3.3 2.0
SanktAnnael 23 149 3.6 1554.1 1675.1 7.8 1580.4 3.9 6.0
SanktAnnae2 24 165 3.8 1682.9 1850.2 9.9 1753.4 4.0 5.9
SanktAnnae3 17 21 2.6 1979 1979 0.0 1979 0.0 0.0
SanktAnnae4 31 162 4.2 1359.0 1719.9 26.6 1598.9 3.6 7.6
Skanderborgl 57 232 3.9 2440.0 2640.1 8.2 2547.4 34 3.6
Skanderborg?2 60 229 49 2369.5 24144 1.9 23204 34 4.1
Skivel 16 140 3.3 1417.5 1458.6 29 1430.9 3.8 1.9
Skive2 31 103 2.6 865.5 1062.6 22.8 995.5 2.5 6.8
Skive3 31 140 3.3 1189.7 1452.9 22.1 1372.7 44 5.8
Skive4 16 21 2.1 227.8 227.8 0.0 2276 0.1 0.1
Skived 16 98 3.0 960.9 9729 1.3 960.7 0.9 1.3
Skive6 16 110 3.1 1106.9 1144.7 3.4 1119.3 2.0 2.3
Skive7 31 134 3.0 1152.9 1365.6 18.5 1284.6 3.2 6.3
Skive8 16 107 3.0 1006.8 1015.8 0.9 1007.1 0.9 0.9
Skive9 31 100 3.0 907.8 1034.9 14.0 983.0 4.6 5.3
Soenderborgl 22 234 3.7 2105.1 2590.6 23.1 2475.3 4.9 4.7
Soenderborg?2 22 236 34 2095.1 2703.9 29.1 2577.9 4.2 4.9
Soenderborg3 21 236 34 2452.5 2688.1 9.6 2597.3 4.0 3.5
Soenderborg4 22 235 34 1927.6 2681.3 39.1 2554.2 3.7 5.0
Solroed1 18 242 4.6 1935.5 2181.4 12.7 2130.3 6.8 2.4
Solroed2 20 22 1.8 228.6 228.6 0.0 2286 0.0 0.0
Solroed3 17 22 1.8 223.3 2233 0.0 223.3 0.0 0.0
Solroed4 54 243 4.6 2309.9 2562.4 10.9 2354.2 5.2 8.8
Solroed5 20 243 45 1555.0 2185.8 40.6 2054.9 8.0 6.4
Solroed6 17 215 4.2 1703.0 1835.0 7.8 1775.5 6.8 34
Solroed7 17 194 4.0 1599.6 1748.0 9.3 1679.2 2.6 4.1
Vejenl 10 41 24 424.2 424.2 0.0 424.2 0.0 0.0
Vejen2 19 126 3.8 1171.2 1225.0 4.6 1198.5 3.0 2.2
Vejen3 19 125 4.2 1172.1 1234.9 5.4 1204.6 24 2.5
Vejend 19 125 4.2 1130.2 1205.3 6.6 11725 24 2.8
Viborgl 19 105 3.8 1004.3 1100.3 9.6 1034.2 0.6 6.4
Viborg2 49 187 4.4 2081.7 2153.0 3.4 2060.0 4.8 4.5
Viby1l 20 124 3.7 1278.3 12794 0.1 1256.9 1.2 1.8
Viby2 13 93 5.2 957.5 957.5 0.0 957.5 0.0 0.0
Viby3 8 45 2.7 480.0 480.0 0.0 480.0 0.0 0.0
Viby4 16 93 5.2 1057.7 1057.7 0.0 1053.3 0.3 04
Vibyb 21 123 3.7 1378.6 1378.8 0.0 1356.1 1.1 1.7

Continued on next page

177 11.6. Performance

Table 11.4 — continued from previous page

Gurobi 5.01 ALNS
Bl SR ¢ @ UB Gap|%] I o Gap|%]
Average 30 148 4.1 7.7 4.1
Max 102 303 8.6 83.6 21.9

From Table 11.4 it is seen that ALNS in average finds solutions 4.1% from optimum for the
SCTP. This is lower than the average gap for Gurobi, which is 7.7%.

From Table 11.3 it is seen that ALNS outperforms Gurobi for the PCTP. For the SCTP, the
results are more blurred, but the ALNS still performs best in 70 out of 100 cases. What can also
be seen from Table 11.3 and 11.4 is that the standard deviation for the ALNS is low in all cases,
and the maximum gap obtained across all datasets is considerably lower than the maximum gap
which Gurobi obtains (even given the higher running time of Gurobi). This is important as the
customers of Lectio expects a consistent and stable solution procedure.

11.6.2 Performance comparison of ALNS and current heuristic of Lec-
tio

The current algorithm in Lectio is an undocumented heuristic, which initially attempts to fulfill

every meeting request by assigning them to random time slots, and then attempts to find im-

proving solutions with a hill-climber embedded in a Simulated Annealing (SA) framework. This

heuristic does not support the SCTP. In this section, we compare the existing heuristic of Lectio

with the implemented ALNS algorithm.

The comparison of algorithms for the PCTP is done by adapting the objective of the ALNS
so it matches the one of the implemented SA algorithm, which yields the following changes:

e Since the SA algorithm attempts to fulfill all meeting requests, we set a; to a huge value
for all meeting requests, effectively making the ALNS behave the same way.

e We set 8t =~% =2.
e The SA algorithmn does not allow interrupting of activities, i.e. §* = §* = oo.

e The time slot set-point setting of the SA solver is broken, so we set k = 0 and likewise for
the SA solver.

e The violation of sequence length for teachers is penalized in quadratic way. This means
that term (11.21) is now written as — >, , ; (yt.5,4)”, and w = 2.

We evaluate the algorithms on 100 randomly selected datasets for the school-year 2009/2010.
The reason a new batch of datasets is selected for this test is that the existing heuristic of
Lectio does not support all features mentioned in this paper. Due to customer requests, Lectio
is continuously developed, and this also effects the CTP. E.g. datasets from the school-year
2009/2010 does not support features such as multiple days for a consultation.

Experience has shown that the SA algorithm needs long runtime to provide meaningful so-
lutions. We set runtime equal to 10 minutes, which is significantly higher than the preferable
runtime of the high schools, as described in Section 11.6.1. Furthermore, to reduce the influence
of stochastic behavior, we perform 10 runs on each dataset with each solver.

Table 11.5 shows the average performance, the standard deviation and the number of unas-
signed requests of both algorithms. Recall that in this test both algorithms attempt to fulfill

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 178

every meeting request. However it cannot be guaranteed that the algorithms can find a solu-
tion which satisfies this, nor that it even exists. Furthermore we compare the algorithms in the
domain of the SA algorithm, and in this domain it is only attempted to minimize the different
costs, i.e. no benefit is made from fulfilling meeting requests. This means it would not be fair to
compare solutions which does not have the same amount of unassigned requests, since additional
fulfilled requests will potentially yield additional cost of e.g. number of breaks, interrupted ac-
tivities, etc. Therefore we enforce the following criterion to determine whether the comparison
of solutions for a dataset is valid: The difference in the number of unassigned requests must
lie in the interval £1. This means the comparison of solvers in Table 11.5 is only approximate,
however it can be considered as a very good approximation, since a difference of one fulfilled
meeting request will have minor influence of the objective. Notice that the objectives are given
in the domain of the SA algorithm, which is of different magnitude than the objective of this
article. This is due to the fact that the undocumented heuristic aims at minimizing whereas the
approach of this paper is to maximize.

Given the average objective of the SA algorithm Zga and the average objective of the ALNS
algorithm Zapns, and that the comparison of these two is valid, we compute the difference
Tsa — TarNs-. For almost every instance where comparison is valid, the ALNS algorithm in
average finds a better solution. Furthermore the solutions from the ALNS algorithm has far
lower deviation than the SA algorithm, which are important, as the users of the algorithm will
usually only run the algorithm once.

Table 11.5: Comparison of performance of the SA algorithm and the ALNS algorithm. Each
algorithm is ran 10 times on each dataset. For each algorithm and each dataset is listed the
mean objective "Z", standard deviation of objective "o", and the number of unassigned meeting
requests "#UA". Notice that the objectives are given in the domain of the SA algorithm, which
is of different magnitude than the objective of this article. Those datasets where the number of
unassigned requests differs between the algorithms with more than 41 are struck out, as this is
not considered a fair comparison. Column "Diff" is the difference between mean objectives.

Lectio SA ALNS
z o #UA z o #UA Diff.
Aabenraal 640.90 83.36 17.0 555.00 0.00 17.0 85.90
Aabenraa2 384.00 41.86 9.0 315.90 18.27 9.0 68.10

Aabenraab 36.00 9.30 0.0 37.60 0.84 0.0 -1.60

Aabenraa6 0.00 0.00 60.0 0.00 0.00 60.0 0.00
Aabenraa? 0.00 0.00 52.0 0.00 0.00 52.0 0.00
Aurehoej 283.30 37.99 12.8 165.70 12.72 12.0 117.60
Birkeroed2 493.80 88.41 30.1 92.40 19.21 29.5 401.40
Bjerringbro 2994.60 390.30 22.0 1393.20 16.90 22.0 1601.40

Broenderslev 154.40 51.04 0.0 22.20 6.96 0.0 132.20

CPHWEST 1244.40 38.56 0.0 1105.00 0.00 0.0 139.40
Esbjerg 0.00 0.00 407.0 0.00 0.00 407.0 0.00

Continued on next page

179

11.6. Performance

Table 11.5 — continued from previous page

Lectio SA ALNS
T o #UA T o #UA Diff.
Fjerritslev 2088.50 72.25 0.0 1904.20 6.34 0.0 184.30
Frederikssund1 330.40 39.98 0.0 257.70 6.34 0.0 72.70
Frederikssund2 436.40 22.85 0.0 340.00 4.59 0.0 96.40
Frederiksvaerk 25.90 1.85 34.0 25.00 0.00 34.0 0.90
GlHellerup1 130.90 29.37 4.0 29.50 5.78 4.0 101.40
GlHellerup2 268.70 36.58 1.0 88.60 12.95 1.0 180.10
Gefion 112.40 22.04 0.0 16.70 3.65 0.0 95.70
Haderslevl 0.00 0.00 225.0 0.00 0.00 225.0 0.00
Haderslev2 0.00 0.00 185.0 0.00 0.00 185.0 0.00
Haslevl 1239.10 56.96 0.0 1181.00 0.00 0.0 58.10
Haslev2 0.00 0.00 51.0 0.00 0.00 51.0 0.00
Hasseris1 10.20 4.52 0.0 0.90 0.57 0.0 9.30
Hasseris2 68.80 18.94 0.0 14.90 2.56 0.0 53.90
Hasseris3 34.30 25.95 2.9 5.10 2.02 3.0 29.20
Hasseris4 11.10 6.23 0.0 0.10 0.32 0.0 11.00
Herlufsholm1 46.70 8.90 0.0 34.30 5.54 0.0 12.40
Herlufsholm?2 86.30 14.35 1.2 60.20 4.05 0.0 26.10

Herlufsholm4——267.30— 3227 — 33— 176.90—9.80— 20— N/A—

11.86

0.0

1.60 1.84

0.0 14.10

Herlufsholm5 15.70

Herningl 843.30 119.31 1.0 632.10 9.00 1.0 211.20
Herning2 103.50 16.25 0.0 74.20 0.42 0.0 29.30
Himmelev 262.10 35.44 0.0 96.30 16.22 0.0 165.80
Horsens 17.20 7.50 2.0 6.50 1.35 2.0 10.70
Kongsholm 102.20 39.82 21.4 62.30 8.64 21.0 39.90
Mariagerfjord 190.00 52.75 0.9 89.00 17.58 1.0 101.00
Morsoel 17.20 9.74 3.0 0.50 0.71 3.0 16.70
Morsoe2 44.00 21.91 0.0 2.70 1.42 0.0 41.30
Mulernesl 21.50 8.22 0.0 2.60 0.97 0.0 18.90
Mulernes2 27.60 12.51 0.0 1.30 1.16 0.0 26.30
NZahlesl 97.40 28.46 2.2 64.50 0.71 2.0 32.90
NZahles2 111.20 35.32 0.9 72.60 6.10 0.0 38.60
NielsSteensenl 309.80 42.98 3.0 214.40 38.20 3.0 95.40
NielsSteensen2 124.10 24.92 0.0 90.50 22.65 0.0 33.60
NielsSteensen3 186.40 37.65 5.0 147.60 22.31 5.0 38.80
Nordsjaelland1 1036.30 74.52 4.0 652.20 55.28 4.0 384.10
Nordsjaelland2 69.50 2.17 586.0 68.50 1.58 586.0 1.00
Nordsjaelland3 1681.40 132.07 45.0 1927.20 191.16 45.0 -245.80
Nordsjaelland4 1627.80 135.70 65.7 2335.90 270.87 65.8 -708.10
Nordsjaelland5 1699.10 118.08 27.6 1104.40 76.82 27.0 594.70
Nordsjaelland6 1369.00 102.13 32.1 1109.90 61.44 32.0 259.10
Nordsjaelland7 1646.40 106.74 49.1 1567.70 87.35 49.0 78.70
Nordsjaelland8 2065.30 179.20 37.0 1736.00 93.59 37.0 329.30

Continued on next page

Chapter 11. Paper F: The Consultation Timetabling Problem at Danish High Schools 180

Table 11.5 — continued from previous page

Lectio SA ALNS
z o #UA z o #UA Diff.
Nyborgl 89.70 16.45 0.0 72.10 0.32 0.0 17.60
Nyborg2 93.50 23.75 0.0 51.00 1.49 0.0 42.50
Nyborg3 0.40 0.70 55.6 0.00 0.00 55.0 0.40
Nyborg4 14.40 6.75 3.0 1.50 0.85 3.0 12.90
Naerum 424.50 43.07 9.0 248.40 50.63 9.0 176.10
Noerresundby1 36.10 18.11 0.0 9.90 3.54 0.0 26.20
Noerresundby2 115.70 26.60 0.3 34.90 10.12 0.0 80.80
Odder 69.80 27.68 6.0 21.00 0.00 6.0 48.80
Paderup 141.50 15.81 0.0 75.50 4.48 0.0 66.00
Randersl 168.40 22.17 0.0 93.50 0.53 0.0 74.90
Randers2 244.00 7790 0.0 10.80 3.79 0.0 233.20
Rosborgl 0.00 0.00 246.0 0.00 0.00 246.0 0.00
Roskilde 202.30 60.81 0.0 139.00 23.25 0.0 63.30
Rybnersl 27490 4542 0.0 174.90 1.10 0.0 100.00
Rybners2 1043.80 67.33 15.0 789.10 4.15 15.0 254.70
Roedkildel 10.90 4.84 0.0 2.00 1.33 0.0 8.90
Roedkilde2 19.30 7.48 7.0 12.00 2.67 7.0 7.30
Roedkilde3 57.10 11.75 0.0 6.80 2.35 0.0 50.30
SanktAnnae2 0.00 0.00 7.0 0.00 0.00 7.0 0.00
Skanderborgl 3.50 1.65 0.0 0.00 0.00 0.0 3.50
Skanderborg?2 3540 34.59 0.9 5.80 3.79 1.0 29.60
Skive 176.50 47.52 18.0 89.00 25.05 18.0 87.50
Slagelsel 130.80 5.94 3.0 114.90 5.49 3.0 15.90
Slagelse2 29.70 19.44 0.2 3.50 2.55 0.0 26.20
Soroe 2117.10 111.78 14.5 883.20 49.02 13.5 1233.90
Stoevringl 17.50 4.93 0.0 2.70 1.42 0.0 14.80
Stoevring?2 229.20 55.04 0.0 16.40 4.14 0.0 212.80
Stoevring3 260.60 71.41 0.0 14.30 2.36 0.0 246.30
Stoevring4 124.70 48.48 0.0 13.80 2.25 0.0 110.90
Stoevringh 65.90 22.83 6.0 10.30 2.54 6.0 55.60
Varde 867.40 152.80 10.0 326.20 9.46 10.0 541.20
Vejen 0.30 0.48 0.0 0.00 0.00 0.0 0.30
ViborgG 267.90 8.84 940 257.80 1.03 94.0 10.10
ViborgH 102.20 28.61 0.0 22.60 9.16 0.0 79.60
Average 431.53 47.78 339 319.50 20.14 32,5 133.60

By the computational tests of this section, it has been shown that the ALNS algorithm is the
best solution procedure, of those considered in this paper, for the CTP. It outperforms both
Gurobi and the existing heuristic of Lectio in terms of both solution quality and reliability.

181 11.7. Final Remarks and Outlook

11.7 Final Remarks and Outlook

It has been shown how the CTP, an important real-life problem for the Danish high schools,
can be modeled using linear IP. ALNS has proven successful in establishing solutions for two
versions of the problem, the PCTP and the SCTP. Furthermore, F-Race has shown to be an
efficient method for tuning of the free parameters. The developed ALNS algorithm has been
implemented in Lectio and is hence available for 95% of the Danish high schools.

In case of the PCTP, it has been shown that the ALNS algorithm in average finds solutions
which are less than 4% from optimum. This average is taken over 100 real-life dataset, and
therefore we have high confidence in this result. Furthermore it has been shown that comparing
with the existing algorithm in Lectio, which is the only other known heuristic algorithm for the
problem, the ALNS algorithm is far superior. For 83 of the 86 datasets, ALNS finds better
solutions, and in many cases the solution quality of the ALNS is considerably better. For the
remaining 14 datasets a comparison was not considered fair.

The performance for the SCTP is also tested on 100 real-life dataset. For these datasets, it
is shown that the ALNS algorithm in average finds solutions less than 5% from optimum.

For both the PCTP and SCTP the average solution found by ALNS is better than the
solutions found by the state-of-the-art MIP solver Gurobi 5.01.

The main subject for further research is considered to be the use of Dantzig-Wolfe decom-
position and solution using Branch-and-Price. In this context, a column in the master problem
could represent a meeting-plan for a student or a teacher. This would move many constraints to
the subproblem, possibly giving a stronger IP formulation, which could lead to a more efficient
IP-based solution approach.

Another possibility for future research is to combine the two solution methods described,
i.e. using the MIP solver as a repair heuristic within the ALNS. Similar approaches are seen in
Muller et al. (2011) and Prescott-Gagnon et al. (2009), with competitive results.

Bibliography

B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental designs
and local search. Operations Research, 54(1):99-114, 2006.

N. Azi, M. Gendreau, and J.-Y. Potvin. An Adaptive Large Neighborhood Search for a Vehicle
Routing Problem with Multiple Trips. CIRRELT, 2010.

P. Balaprakash, M. Birattari, and T. Stiitzle. Improvement strategies for the f-race algorithm:
sampling design and iterative refinement. In Proceedings of the Jth international conference
on Hybrid metaheuristics, HM’07, pages 108-122, Berlin, Heidelberg, 2007. Springer-Verlag.

S. Becker, J. Gottlieb, and T. Stiitzle. Applications of racing algorithms: An industrial perspec-
tive. In E.-G. Talbi, P. Liardet, P. Collet, E. Lutton, and M. Schoenauer, editors, Artificial
Evolution, volume 3871 of Lecture Notes in Computer Science, pages 271-283. Springer Berlin
/ Heidelberg, 2006.

M. Birattari. The Problem of Tuning Metaheuristics as seen from a Machine Learning Perspec-
tive, volume 292 Dissertations in Artificial Intelligence - Infix. Springer, 1 edition, 2005.

T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. J. of Scheduling, 12:177-197, April 2009. ISSN 1094-6136.

E. Burke and S. Petrovic. Recent research directions in automated timetabling. European Journal
of Operational Research, 140(2):266 — 280, 2002. ISSN 0377-2217.

Bibliography 182

M. Carter and G. Laporte. Recent developments in practical course timetabling. In E. Burke and
M. Carter, editors, Practice and Theory of Automated Timetabling II, volume 1408 of Lecture
Notes in Computer Science, pages 3—-19. Springer Berlin / Heidelberg, 1998.

M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid algorithm for
university course timetabling. Journal of Scheduling, 9:403-432, 2006. ISSN 1094-6136.

P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A case study for timetabling in a dutch
secondary school. In E. Burke and H. Rudova, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 267-279. Springer
Berlin / Heidelberg, 2007.

Y. Diao, F. Eskesen, S. Froehlich, J. Hellerstein, L. Spainhower, and M. Surendra. Generic online
optimization of multiple configuration parameters with application to a database server. In
M. Brunner and A. Keller, editors, Self-Managing Distributed Systems, volume 2867 of Lecture
Notes in Computer Science, pages 79-93. Springer Berlin / Heidelberg, 2003.

W. Erben and J. Keppler. A genetic algorithm solving a weekly course-timetabling problem. In
E. Burke and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153
of Lecture Notes in Computer Science, pages 198-211. Springer Berlin / Heidelberg, 1996.

F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stiitzle. Paramils: an automatic algorithm con-
figuration framework. J. Artif. Int. Res., 36:267—-306, September 2009. ISSN 1076-9757.

S. Kristiansen and T. R. Stidsen. Adaptive large neighborhood search for student sectioning at
danish high schools. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

S. Kristiansen, M. Sgrensen, and T. R. Stidsen. Elective course planning. Furopean Journal of
Operational Research, 215(3):713 — 720, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.06.039.

G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44
(1):125-135, 2010.

H. Lei, G. Laporte, and B. Guo. The capacitated vehicle routing problem with stochastic demands
and time windows. Computers & Operations Research, 38(12):1775 — 1783, 2011. ISSN 0305-
0548. doi: DOI:10.1016/j.cor.2011.02.007.

B. McCollum. University timetabling: Bridging the gap between research and practice. In in
Proceedings of the 5th International Conference on the Practice and Theory of Automated
Timetabling, pages 15-35. Springer, 2006.

H. Mittelman. Benchmarks for optimization software, 2013. URL http://plato.asu.edu/
bench.html.

T. Miiller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249-269, 2010. ISSN 0254-5330.

E. Montero, M.-C. Riff, and B. Neveu. An evaluation of off-line calibration techniques for evolu-
tionary algorithms. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation, GECCO ’10, pages 299-300, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0072-8. doi: 10.1145/1830483.1830540.

http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

183 Bibliography

L. Muller. An adaptive large neighborhood search algorithm for the resource-constrained project
scheduling problem. In MIC 2009: The VIII Metaheuristics International Conference, 2009.

L. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. Furopean Journal of Operational Research, Volume
218(Issue 3):614—623, 2011.

L. F. Muller and S. Spoorendonk. A hybrid adaptive large neighborhood search algorithm applied
to a lot-sizing problem. Technical report, DTU Management Engineering, 2010.

P. Pellegrini and M. Birattari. Implementation effort and performance. pages 31-45. 2007.

P. Pellegrini, T. Stiitzle, and M. Birattari. Off-line vs on-line tuning: A study on max-min ant
system for the tsp. In Swarm Intelligence, volume 6234 of Lecture Notes in Computer Science,
pages 239-250. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-15460-7.

N. Pillay. An overview of school timetabling research. In Proceedings of the International Con-
ference on the Theory and Practice of Automated Timetabling, pages 321-335, Belfast, United
Kingdom, 2010.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34:2403-2435, August 2005. ISSN 0305-0548.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y. Potvin, editors,
Handbook of Metaheuristics, volume 146 of International Series in Operations Research &
Management Science, pages 399-419. Springer US, 2010. ISBN 978-1-4419-1665-5.

J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research, 66(3):331
— 340, 1993. ISSN 0377-2217.

E. Prescott-Gagnon, G. Desaulniers, and L.-M. Rousseau. A branch-and-price-based large neigh-
borhood search algorithm for the vehicle routing problem with time windows. Networks, 54
(4):190-204, 2009. ISSN 1097-0037. doi: 10.1002/net.20332.

G. M. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the cumu-
lative capacitated vehicle routing problem. Computers €amp; Operations Research, 39(3):728
— 735, 2012. ISSN 0305-0548.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455-472, November 2006.
ISSN 1526-5447.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399-412, April 2012. ISSN
0254-5330.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87-127, 1999.
ISSN 0269-2821.

P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing prob-
lems, 1997.

Bibliography 184

P. Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In M. Maher and J.-F. Puget, editors, Principles and Practice of Constraint Programming
— CP98, volume 1520 of Lecture Notes in Computer Science, pages 417-431. Springer Berlin
/ Heidelberg, 1998.

M. Sgrensen and T. R. Stidsen. High school timetabling: Modeling and solving a large number
of cases in denmark. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), pages 359-364. SINTEF, 2012.

A. Tripathy. School timetabling—a case in large binary integer linear programming. Management
Science, 30(12):1473-1489, 1984.

Chapter 12 Paper G

A Branch & Price Algorithm for the Generalized
Meeting Planning Problem

Niels-Christian Fink Bagger!, Matias Sgrensen'?, Simon Kristiansen'?, Thomas R. Stidsen!
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

Abstract Meetings form an important activity in modern society. Persons meet with other people
for business or pleasure, but usually a meeting rules out other meetings for the same persons at the
same time. Planning a large number of meetings hence present an important but difficult optimization
problem.

The Meeting Planning problem comes in all kinds of different variations. In this article, we present
a Mixed-Integer Programming model which can model many of these variations and we also present a
Branch & Price algorithm which enables optimization of many types of meeting problems. The Branch
& Price algorithm is tested on two problems occurring in Danish high schools, the Parental Consulta-
tion Timetabling Problem and the Supervisor Consultation Timetabling Problem, each represented by
100 real-world datasets. The tests show that the Branch & Price algorithm performs well compared
with a compact Mixed-Integer Programming model and with an Adaptive Large Neighborhood Search
algorithm.

12.1 Introduction

Meetings form an important activity in modern society, both in people’s business- and private
life. If the occurrence of meetings is large, and the meetings are interrelated, planning them
becomes a puzzle. In this article we will study the Generalized Meeting Planning problem.

Every day numerous secretaries have to solve the following planning problem: Find a meeting
time for a number of persons to meet. If the secretary is using a standard electronic calendar
system, there usually exists a function for finding the first time-interval where all persons are
available. This is a simple function and very useful for the meeting planners. If the secretary
has to plan more meetings, the function works as well, unless one or more of the persons have
to participate in several meetings. Then planning one meeting renders these persons unavailable
to participate in other meetings in the same time-interval, if we assume that a person can only
participate in one meeting at a time.

The problem of planning a number of meetings in time-intervals (time slots), some of which
requires the participation of the same person, is the Generalized Meeting Planning (GMP) prob-

185

Chapter 12. Paper G: A Branch & Price Algorithm for the GMPP 186

lem. We need to stress that the term meeting should be understood in its most general form:
A meeting consists of a number of entities meeting each other in a specific time-interval. The
entities can be managers, teachers and students, or any other type of resource attending the
meetings.

There are naturally many variations of the GMP problem, both in the objective, i.e. what
should be achieved, and in the constraints, i.e. which extra requirements are there. On the other
hand, all GMPs share the same basic structure and a planning approach, i.e. optimization, for
one version of a GMP may benefit from approaches for other GMPs.

The Mixed-Integer Programming (MIP) model that we will present makes it obvious to apply
a Branch & Price (B&P) algorithm to find the optimal solution, due to an exponential number of
variables. This works by splitting the model in a master problem and a number of subproblems.
The Linear Programming (LP) relaxation of the master problem, denoted the Relaxed Master
Problem (RMP), will be solved using a Column Generation (CG) algorithm. To find integer
solutions by means of this LP relaxation, a Branch & Bound scheme is used, which thereby leads
to a B&P algorithm. B&P algorithms have been very successful for a large number of hard
optimization problems, e.g. Savelsbergh (1997); Mehrotra and Trick (2007). For an excellent
introduction to B&P we refer to Liibbecke and Desrosiers (2005).

This paper is based on a technical report Bagger (2012), in which a number of different
approaches to the GMP problem are attempted. We will refer to this technical report for details
on various matters throughout this paper.

The outline of the paper is as follows. In Section 12.2 we will briefly survey previous ap-
proaches. In Section 12.3 we define the GMP problem as a MIP model. We will test our
approach on two different variations of the GMP problem which are described in Section 12.4:
The Parental Consultations Timetabling problem in Section 12.4.1, and the Supervisor Consul-
tation Timetabling Problem in Section 12.4.2. The problems are formulated more generally as
the Consultation Timetabling Problem. In both tests, we will use real-life data from a large
number of Danish high schools. Computational results are presented in Section 12.5. Finally we
will give a conclusion in Section 12.6.

12.2 Previous Approaches

The generalized version of the meeting planning problem considered is widely applicable, as
the required structure is simple; A number of meetings between entities (e.g. individuals) are
to be scheduled, and each entity can participate in multiple meetings. Hence both entity and
meeting are actually used as abstracts terms here, since their definitions are problem-specific.
To the best of our knowledge, the abstract form of this problem has not been considered before
in the literature. However, several well-described problem domains exist for which the GMP is
applicable, especially within timetabling problems in the educational sector.

In case of High School Timetabling, a meeting could be defined as a lecture, and entities could
be students, teachers, classes, or a combination of these. Santos et al. (2012) describes a Cut
and Column Generation algorithm for class/teacher timetabling at Brazilian high schools, where
the set of teachers is used as entities. Papoutsis et al. (2003) also uses teachers and entities, and
schedules for Greek high schools.

The field of University Timetabling is dominated by heuristic approaches. The problem
is closely related to graph coloring and many early approaches were based on graph coloring
heuristics, but recently meta-heuristics have gained the most interest Lewis (2008). However some
researchers have applied column generation approaches. Qualizza and Serafini (2005) describes an
approach where a column represents the assigning of time slots for a single course. Computational

187 12.3. A Mixed-Integer Programming model of the Generalized Meeting Planning problem

results for a single problem instance shows convincing results.

For Ezamination Planning many different approaches have been suggested, though most
heuristic. A survey by Qu et. al in Qu et al. (2006) considers the recent research applied in the
field. Here it is noted that decomposition methods have not attracted much attention. One of
the reasons is that some soft constraints cannot be evaluated in the decomposition and so global
optimality may be missed. Like for university timetabling, most of the early approaches applied
graph-heuristics, but lately methods such as Tabu Search Pais and Amaral (2008); Di Gaspero
and Schaerf (2001) and Simulated Annealing Thompson and Dowsland (1996b,a) have gained
attention. In Thompson and Dowsland (1996a) it is mentioned that this method resulted in an
implementation which were used at University of Wales Swansea. Defining a single exam as a
meeting between students (usually only a single student) and a group of teachers would allow
applying the terminology of this paper.

In this paper we consider the case of the Consultation Timetabling Problem for high schools
in Denmark, which essentially consists of meetings between a group of teachers and a single
student. This problem is only described in the literature in Kristiansen et al. (2013).

12.3 A Mixed-Integer Programming model of the Gener-
alized Meeting Planning problem

There are numerous ways to model the GMP problem using MIP models. In Bagger (2012) a
number of these are presented, including a compact model (i.e. a model with a polynomially
limited number of variables and constraints). Here we will only present what is known as the
Entity Pattern model, as this performed best wrt. computational results.

An entity is a resource that has to participate in a number of meetings. Let the set of entities
which are part of the GMP problem be given by the set F, indexed by e € E. Let further the
set of time slots be given by B, indexed by b € B. Each meeting concerns a group g of entities
which should meet and which is part of a set of groups G, i.e. g € G.

Given the three sets £, B and G, further data about the problem is given: oy, is the profit
of scheduling a meeting g € G to time slot b € B. The incidence matrix Aj defines the groups
such that A7 = 1 if entity e € E belongs to group g € G and A = 0 otherwise.

In the Entity Pattern model we will use two types of variables: The binary variable g
which defines that group g € G meets in time slot b € B, and the binary variable AP which
defines whether the meetings of entity e € E follows the patterns p € P. A pattern is essentially
a schedule for an entity, which defines the time slots in which the entity is attending a meeting,
but does not explicit denote which meetings. The number of patterns for an entity may be
exponential. We will here assume to know the entire set of patterns P, for each entity, and we
will also assume to know the cost 37 for using entity pattern p € P.. Let incidence matrix M;""
take value 1 if pattern p € P, does not allow a meeting in time slot b € B.

The entire Entity Pattern model can now be formulated, see Model 1. This constitutes the
master problem in our CG formulation. The notation used is lazy; Let Va be shorthand for
Va € A, and let) be shorthand for > ,.

Model 1 consists of one objective function and three types of constraints: The objective
function given by eq. (1a) weighs the two terms, the revenue for allocating a meeting and the
revenue of the entity pattern for each entity. What exactly is contained in the revenue term of
the groups a and the revenue term of the patterns 3 is dependent on the actual meeting planning
problem. In the settings we consider, different properties of the patterns are penalized, e.g. too
many consecutive meetings, idle time slots and so on. It is desired to minimize these penalties,
so we let 3 take non-positive values. The constraint in eq. (1b) ensures that each meeting can be

Chapter 12. Paper G: A Branch & Price Algorithm for the GMPP 188

Model 1 Master problem of the pattern formulation.

max Z Qgp - Tgp+ Z ger - AP (1la)
g,b e,pe P,
s. t. ng,b <1 Vg (1b)
b
DA g+ > AP-MPP =1 Ve,b (1c)
g pEP.
DA =1 Ve (1d)
pePe
zgb, AP €{0,1} (1e)

arranged at most one time. The constraint in eq. (1c) links the group allocation variables z
with the entity patterns AP, i.e. ensures that an entity can only be assigned a time slot which
is allowed. Finally the convexity constraint given by eq. (1d) ensures that exactly one entity
pattern is chosen for each entity.

Of all the approaches attempted in Bagger (2012), Model 1 performed best in the tests and
it indeed possess a number of features which makes it attractive:

1. Model 1 can be converted into a set-partition model. These models are very well studied
which means that the theory is well-developed and a number of good performing heuristics
are known.

2. The entity patterns can be generated in the subproblem when using a CG algorithm, hence
overcoming the problem of the exponential number of AP variables.

3. Relations between meetings for one entity in the entity pattern is handled in the subproblem
of the CG algorithm.

4. The x4 variables can be used in a B&P algorithm, such that branching is performed only
on these variables. A proof of this will be given in Section 12.3.2.

5. Branching only on the z,; variables does not change the structure of the subproblem, as
opposed to other branching schemes, facilitating a simpler B&P algorithm.

Because of the above reasons, we consider the entity pattern Model 1 a promising model.
There are however a couple of weaknesses which also deserves to be mentioned:

1. Any relation between entity patterns, i.e. between the meetings of different entities becomes
more cumbersome to model.

2. There is no definition of where the meetings should take place, e.g. allocation of meetings

to rooms. For simplicity we have chosen to ignore this issue in this paper.

12.3.1 Obtaining Dual Bounds

When solving the RMP problem a CG algorithm will be used. Using this approach only a subset
of the patterns are initially included in the model. In this case all the x4 variables are initially

189 12.3. A Mixed-Integer Programming model of the Generalized Meeting Planning problem

included in the RMP and one A\%? variable for each entity derived from an initial solution. This
problem is called the Restricted Master Problem and the dual information of the solution is used
to generate new variables (columns) to include in the model. When using CG to solve the RMP
a dual bound can be calculated in each iteration. Let vg, 7. and pe be the dual variables of
the constraints (1b), (1c) and (1d) respectively. Consider some iteration of the CG procedure
and let (T4, T, i) be the dual solution of the Restricted Master Problem. Then the subproblem
consists of finding the pattern with the highest reduced cost for each entity. For an entity e the
subproblem can be denoted in the following way:

pe Pe} (12.1)

Let (ac;b,)\e’p’*) be the optimal solution to the RMP and let (fg,b,xe’p,ﬁg,ﬁi,ﬁe) be the
primal-dual solution to the Restricted Master Problem in any iteration. Furthermore let the
optimal solution for the subproblem for entity e € E given the dual solution be denoted z&p (7, 7).
Lastly because of the strong duality theorem we have that:

Zagb Tgb + Z Bor X Zig"‘zfg"‘Zﬁe (12.2)
e,pEP. g e,b e

So a bound on the gap between the optimal solution to the RMP and the current considered
solution in the Restricted Master Problem can be calculated:

Za%b why b Y PPN N =Y wm - > f < (12.3)
g e,b e

e,pePe
Zag,b Ty, + Z BT NP
e,pEPe
—Zug z; Z DAy DA M| = Y AP = (124)
g pEP, e,pEP,
> (ag,b —Ty— Y A ~7T§> Thpt Y (Be*’ = T Myt — %) SASPE(12.5)
g,b e e,peP, b

The step from eq. (12.3) to eq. (12.4) is done by using eq. (1b), (E) and (1d) since they must

hold for the optimal solution. The step from eq. (12.4) to eq. (12.5) is merely a rearrangement
of the terms.

If the RMP is dualized then, for a group g and a time slot b, one of the constraints that
are obtained is Ug + 2 Ay - mp < g Since x4, are non-negative variables then this means
that Zg b (ag b—TUg— > Ae ﬁb) zy;, < 0 thus removing this term from (12.5) provides an
upper bound. Now cons1der the coefficient of the A*P-*-variables in (12.5). These correspond to
the objective function of the subproblems in the current iteration of the CG algorithm. Since
zZép (T, 1) is the objective value of the optimal pattern for the subproblem of entity e then each
coefficient must be bounded by this value, i.e.

> (o) e s et 320 120
b

e,peP, pEP,

Chapter 12. Paper G: A Branch & Price Algorithm for the GMPP 190

As (1d) constrains } p AP to be one for each entity e then we can replace this sum by one
and so an upper bound on the optimal solution of the RMP can be calculated:

Zagb Ty + Z Ber - /\ep*<2agb Tgp + Z ger . X —|—Zzspﬂ',u (12.7)

e,pEP, e,p€Pe

This means that if all the subproblems are solved to optimality then we can obtain a dual
bound for the RMP in every iteration of the CG algorithm at a negligible computational cost.
So in a B&P algorithm this upper bound can be checked against the incumbent in each iteration
of the CG algorithm. If the bound gets below the incumbent in some iteration, the node can
be fathomed before all the columns are generated instead of putting off the fathoming until the
node is solved to optimality. The drawback of this approach is that we need to generate the
optimal columns in each iteration to get the correct bound. However this can be circumvented
by replacing Z§p with an upper bound on the subproblem (12.1). In our testing we will only add
the optimal solutions of the subproblem.

12.3.2 Branching in the Branch & Price Algorithm

Model 1 has the important feature that it is possible to only branch on the x,; variables. This
simplifies the algorithm significantly because the standard B&P branching techniques can be
avoided. In the remainder of this section we will show that branching on only the z,; variables
is indeed enough to obtain the optimal integer solution, i.e. that branching on the A®? variables
is never necessary. To show this we will use the properties of perfect matrices Ryan and Falkner
(1988).

Definition 12.1. (Padberg (1974); Ryan and Falkner (1988)) An m Xn zero-one set-partitioning
polyhedron characterized by

{z|lz e R, Az = e,z > 0} (where e=(1,1,..., 1)T) is said to be perfect if it has only zero-one
integral vertices.

Assume that in some node in the Branch & Bound tree the optimal solution to the RMP is
integral on the z,; variables and that all the branching performed until this node has only been
done on the x4 variables. Let T, be the solution and assume that all feasible patterns for the
entities are in the model. If the z4; variables are substituted with the values Z,; in Model 1
then the remaining problem will be as in Model 2. B

Model 2 Master problem of the pattern formulation given the integral solution T .

max Z BEP - \&P (2a)
e,peP,

st Y AP MPP =13 AS-T,, Veb (2b)
pEP, g
Z ASP =1 Ve (2¢)
pPEP.
AP e {0,1} (2d)

Consider any entity e. If p Ag Ty, = 1for any time slot b then the corresponding constraint
and every pattern p € P. where M;"¥ =1 can be removed from the model. Removing all the

191 12.3. A Mixed-Integer Programming model of the Generalized Meeting Planning problem

constraints and patterns fulfilling the latter creates a zero-one set partitioning problem. Note that
the model is decomposable by the entities, i.e. the optimal solution for an entity is independent
of the remaining entities. The problem is very easy to solve since each entity can only be assigned
one pattern and each of the patterns can be deduced from the Z,; values. However since the
solution is based on the RMP it could be the case that fractional patterns were chosen and
further branching were needed on the AP variables.

To see if there exists an integral solution to the problem in Model 2, it could be checked
whether the set-partitioning polyhedron is perfect. However this might not be so easy to show
but, as mentioned earlier, since the problem is decomposable on the entities then subproblems
can be generated by decomposing Model 2 on the entities. If the set partitioning polyhedron
of each of these subproblems are perfect then the subproblems has integral optimal solutions
meaning that the overall problem has an integral optimal solution. To see that the subproblems
are perfect we need Definition 12.2 and Theorem 10.

Definition 12.2. (Padberg (1974); Ryan and Falkner (1988)) An m X k zero-one matriz Ay,
with k < m is said to have the property Ilg ;. if:

o Ay contains a k X k non-singular submatriz By, where all rows and columns sum to 3.

e Every row in Ay which is not in By, is either equal to a row in By or the sum of the row
is strictly less than (3.

Theorem 10. (Padberg (1974); Ryan and Falkner (1988)) A perfect m x n zero-one matriz A
does not contain any m x k submatriz Ay where 3 < k < m with the property 1l ;, where 5 > 2.

Consider the subproblem for any entity and let A be the corresponding zero-one matrix which
could look like the following;:

11 1 1
11
1 1
A=
1111 - 1]

Note the last row in the matrix which corresponds to the convexity constraint for the entity
and thus has ones in all the columns. This row ensures that the matrix does not contain a
submatrix Ay with property Ilg j.

Claim 12.3. A is a perfect matrix.

Proof of Claim 12.3. To prove that A is a perfect matrix we will show by contradiction that A
fulfills Theorem 10. Assume that there is a submatrix A, of A with property 1z, and let By
be the corresponang k x k non-singular submatrix of Ay where all rows and columns sum to
B. Consider the last row r corresponding to the convexity constraint. We will give the following
two claims:

Claim 12.4. Row r cannot be one of the rows in the submatriz By,.
Claim 12.5. Row r cannot be one of the remaining rows of Ay not in By.

Assuming that both Claim 12.4 and 12.5 are true then clearly they present a contradiction
thus Claim 12.3 must hold. This concludes that A is a perfect matrix. [

Chapter 12. Paper G: A Branch & Price Algorithm for the GMPP 192

Proof of Claim 12.4. We know that row r sums to k in the matrix Ay since it has ones in all
columns. This means that if r is in Bj then all the other rows must also sum to k which can
only be done if they have ones in all columns as well. This contradicts that By is non-singular
and so r cannot be one of the rows in Bj,. n

Proof of Claim 12.5. All the rows in Bj must sum to § which must strictly be less than k,
otherwise By would not be non-singular as mentioned in the proof of Claim 12.4. Since row r
sums to k then this contradicts the assumption that Ay had property Ilg ; as this would imply
that the sum of row r should be strictly less than 5 < k. Therefore the row r cannot be one of
the rows in A;, which is not in Bj. n

Since Claim 12.3 holds then if the x4 variables are integral in the optimal solution for the
RMP in some node of the B&P tree then there exists an integral optimal solution for the RMP in
that node. The patterns that can be deduced from the z,; variables are the only patterns that
can be used in an integral solution because of the convexity constraints and so these patterns
must be the optimal patterns to choose. This means that the branching can be done solely on
the x4, variables, i.e. the subproblems do not need to be changed throughout the branching
tree.

12.3.3 Branching Selection

When branching on a fractional x4 variable, one problem is that the one-branch creates a more
restricted subproblem than the zero-branch. Therefore the B&P tree becomes very unbalanced.
This is a well-known issue. A way to circumvent this could for instance be to use constraint
branching as the Ryan-Foster branching method for which empirical studies has shown that this
approach performs well on set partitioning problems Ryan and Foster (1981). The branching is
performed by identifying two constraints r and s. Either these two constraints must be fulfilled
by the same variable or by different variables. So if a,; and a, ; are the coefficients associated
with the variable x; in the constraints r and s respectively then the branching is done in the
following way:

Z SCj:O \Y Z Ijil

Jiarj=as;=1 Jiarj=as;=1

The difference between the Ryan-Foster branching and variable branching in this context
only occurs if two entities are in more than one group together. We cannot guarantee that this
is true, and for the tests performed in Section 12.4 this is rarely the case, so the majority of the
Ryan-Foster branching will result in branching on a single variable. Therefore we have decided
to do a variable branching instead.

So the choice resides on how to do the variable branching. A usual approach is to branch
on a variable x which is most fractional, i.e. a variable where the fractional part is closest to
0.5. Another idea is to consider a subset of all the fractional variables as potential candidates
for branching, and then for each of these variables solve the relaxations of the two subproblems.
This branching scheme is known as strong branching and the candidates we will consider are
the k candidates which are closest to 0.65, as done by Regpke (Rgpke, 2013). Instead of just
solving the relaxations of all the subproblems induced by the candidates, a more clever approach
to speed up strong branching is used, as described in Rgpke (2012).

The main difference between our implementation and that of Rgpke is the choice of the
candidates to consider. The k candidates which are closest to 0.65 are chosen to be considered
when branching. Rgpke chose to set £ = 30 in the beginning of the B&P algorithm and then at

193 12.4. Test Applications

some point lower k to 15 Rgpke (2013). The reason for this is that it is usually more important
to do good branching decisions in the beginning of the B&P algorithm. Instead of choosing a
depth of the tree or a number of processed nodes to be the breaking point of when to lower k,
we have chosen to determine k£ based on the number of fixed variables. This is because when a
variable is fixed to zero then in most cases this is a very weak restriction and so two subproblems
at the same depth in the tree can have a great difference in the size of the problem in terms of
non-fixed variables. One thing to note is that when one of the z,; is fixed to one then a lot
of other variables get fixed to zero. So when we calculate the number of fixed variables we will
count every |B| — 1 variables which are fixed to zero as one variable fixed to one. This means
that if in some node of the B&P tree O is the set of variables fixed to one and Z is the set of
variables fixed to zero then the counted variable fixings is |O| + |Z|/ (]B| — 1). Then for every
tenth counted variable fixing, we half the value of k beginning with 60.

12.4 Test Applications

In this section we describe two different applications of the GMP problem. Both of these ap-
plications originate from the Danish high school system, and the description of the problems
given in the following has shown to be applicable to hundreds of different high schools. Sections
12.4.1 and 12.4.2 describe the two test-applications, and Section 12.4.3 presents a subproblem in
context of GMP which can be used to solve both applications. In Kristiansen et al. (2013) it is
shown that both test-applications are A/"P-hard and since these are a special case of GMP this
means that GMP is A'P-hard as well.

12.4.1 Parental Consultation Timetabling Problem

The first application is the Parental Consultation Timetabling Problem (PCTP). Few times a
year, the Danish high schools, 9th to 12th school year, offer the possibility for school meetings
where the parents together with the pupil meet selected teachers for short private meetings. The
pupil and the parents will choose a number of teachers they wish to meet. At a certain date,
the booking possibility is closed, and a secretary at the high school will use an optimization
algorithm (see Kristiansen et al. (2013)) to plan the meetings. At the day of the meeting, the
parents and pupil will come to the school, and the different teachers will be spread out in different
class-rooms at the school. The parents and the pupil are then given a schedule, for which teacher
to meet in which time slot. The parental meetings are often placed in the evening of a normal
workday to ease the attendance of the parents. Evening work is however more demanding for
the teachers, so compact schedules becomes important. The GMP problem can be used to find
the best schedules of both the parents and the teachers.

12.4.2 Supervisor Consultation Timetabling Problem

The second application is for Supervisor Consultation Timetabling Problem (SCTP). In the final
year for a student at a Danish high school, the student is required to do a large study project.
Each student selects two course subjects and thereby two teachers whom will be supervisors on
the project. During the project process, the students are required to attend a meeting with their
supervisors. These meetings are used to give the students some guidance for different parts for
the project, such as problem definition or literature research.

The planning of the SCTP is very similar to the PCTP, however in SCTP the students have
only one request for a meeting (where both supervisors attend). These meetings are normally
placed in the daytime, hence it is often necessary to interrupt the lectures for a given student.

Chapter 12. Paper G: A Branch & Price Algorithm for the GMPP 194

However it is not allowed to assign a meeting during lunch breaks. As each student only has one
meeting the SCTP essentially consists of finding the best schedules for the teachers.

12.4.3 Generalized Meeting Planning Subproblem for the Consulta-
tion Timetabling Problem

There are a number of requirements to be fulfilled for an entity pattern to be feasible for both
PCTP and SCTP:

e For entity e € E the incidence matrix Cf € {0, 1} defines whether a meeting can take place
in time slot . A teacher might be unavailable if he is occupied by other activities, such as
teaching.

e For each entity e € F only a maximum number of meetings (). in a row can be accepted.
This can either be a hard or soft constraint specified by HS, € {0,1}. If the constraint is
hard (HS. = 1) then a meeting cannot be scheduled after a sequence of Q. meetings. If
the constraint is soft (H.S, = 0) then a sequence can be longer than Q. but at a cost of w,
times the number of time slots that the sequence exceeds Q..

We introduce the set of days, D, indexed by d € D. The parameter V; 4 € {0,1} denotes
whether time slot b is at day d. Let vy, m.p and p. be the dual variables associated with the
constraints (1b), (1c) and (1d), respectively. Let Cy € {0, 1} take value 1 if entity e is available
in time slot b, and 0 otherwise. Let m; € {1 — Cf, 1} be a variable denoting whether the entity
does not have a meeting in time slot b. Let f3%¢ € {0,1} and f}** € {0,1} indicate the first and
last time slot the entity has a meeting in day d € D, respectively.

The cost function for idle time slots are modeled as a piece-wise linear function by introducing
the variable vq; € {0,1}, where j € {1,...,m}, which takes value 1 if entity e has j idle time
slots in day d, and 0 otherwise. The variable y;, 4 € R takes value 1 if the length of the sequence
starting in time slot b on day d exceeds Q.. Let variable uy € {0,1} take value 1 if the entity
has at least one meeting at day d, and 0 otherwise, and variable v € RT denotes the amount of
days the entity has scheduled meetings, minus one.

Model 3 shows the entire subproblem.

Constraints (3b) and (3c) are not essentially needed to get feasible patterns, however they
can help avoiding infeasible solutions. As an example say entity e is in two groups and that the
dual values make it attractive for entity e; to have meetings in time slots 1 and 6. Assigning
meetings for e; in these two time slots would create a lot of idle time slots in the schedule and
therefore assigning meetings in time slot 2, 3, 4 and 5 (assuming these time slots are feasible for
the entity) would remove the idle time slots. This is an infeasible pattern as e is in two groups
but scheduled for six meetings. Constraints (3b) ensure that only requested meeting are assigned
and (3c) ensure that a group can only be placed at time slot b if that time slot is available for
the entity. Constraints (3f), (3g) and (3h) denote the number of idle time slots the entity has
at a given day. If an idle time slot is required after each sequence of meetings of size Q. in (3h)
(i.e. HS = 1) this is not counted as a idle time slot. Constraints (3i) are convexity constraints
ensuring that only one of the idle time slot variables is set to one.

Constraints (3d) and (3e) are the hard sequential constraints. If HS. = 1, a sequence of
meetings cannot exceed (). Constraints (3j) are the soft constraints of sequential meetings (i.e.
HS, = 0). The way the number of time slots that exceeds Q. in some sequence of length k is
computed by settings lower bounds of 1 on the first £ — Q. of the y; 4 variables. As an example
let an optimal solution for the entity have scheduled meeting in the time slots 1, 3, 4, 5, 6, 7,
8 and 10 which are all connected to day 1 and let Q. = 4 then the sequence 3, 4, 5, 6, 7, 8

195

12.5. Computational Results

Model 3 subproblem of the entity patterns formulation given the dual values {T.;} and {@w,}.

max(e, 7, 1) — Y V5, Vdj — P We Ybd —Ce V= Y Tep My — I, (3a)
d,j b,d b
s. t. fo%b < A7 Vg (3b)
b
> AL g +my =1 Vb (3¢)
g
b+Q s
¢ / Vb < Bl — Qu — 1,
DD Vi Ay rzgp < Qe ¢ £e HS =1,Vhg=1 (3d)
g b=b s
b+ Qe
vd,b < |B| — Qe — 1,
S Vi my >1 BESIBI D Qe (3¢)
b =b Y
£t 4 bmy >b Vb,d, V=1 (3f)
fAst _ (1Bl —b—1)-my <b Vb,d, Vy,g =1 (3g)
HS HS
f.}l“t—fé?“w(w) S Vg (1—ma) = S vay < — 128 v (3h)
Q) 4 ; Qe
> va =1 vd (31)
j
b+ Qe
vd,b < |B| — Qe — 1, i
Z Vird - Myt + Yb,d >1 HS;:‘ 0‘7 Vbcgle: 1 (31)
b’ =b s
mp + Uq >1 Vb, d, Vg =1 (3k)
D ug—w <1 (31
d
Tg,b,vd,; € {0,1} (3m)
mp € {1 - Cy, 1} (3n)
fizsts flasts Yo,d Ug,v € RY (30)

exceeds Q. by 2 meetings. This means that y3 1 and y, 1 both will get a lower bound of 1 and
since they are not bounded by any other constraint they will be set to 1 in the optimal solution.
This means that this sequence will be correctly penalized by 2 times w, in the objective function.
Constraints (3k) and (31) sets the values for the variables ug and v.

12.5 Computational Results

To evaluate the B&P algorithm we compare it with two other known solution approaches for
both the PCTP and the SCTP. These are described in detail in Kristiansen et al. (2013) as well
as the values of the different parameters of the model.

e Adaptive Large Neighborhood Search: This is a heuristic based on Adaptive Large Neigh-
borhood Search, which is currently used by many high schools in Denmark to solve both
the PCTP and the SCTP.

e Gurobi 5.0.1: This denotes the performance of Gurobi v. 5.0.1 on a standard MIP model
(the formulation from Bagger (2012) where Gurobi performed best). The results reported
here are not the same ones used in Kristiansen et al. (2013) as new runs were performed

Chapter 12. Paper G: A Branch & Price Algorithm for the GMPP 196

to obtain more information. Therefore small variations are seen in the data.

The implementation was done in C# 4.5 running on a Windows machine equipped with an Intel
i7 CPU clocked at 2.80GHz and with 12GB of RAM. Gurobi 5.0.1 was used as LP solver for the
master problem and as MIP solver for the subproblems (with default parameter settings). The
maximum running time for Gurobi and B&P was set to 1 hour, while the ALNS ran 10 times
with a time limit of 2 minutes (we report the average objective values). Thereby the comparison
is "unfair’ in favor of Gurobi and B&P, which should be kept in mind throughout this section.

As a starting solution to the B&P algorithm we use a solution obtained by a single run
of the ALNS algorithm. Since the ALNS algorithm is stochastic, the B&P algorithm is also
stochastic, but for time reasons only a single run of the B&P algorithm was performed. It should
be noted that the deviation between solutions obtained by ALNS for the same datasets have
experimentally been shown to be low. Therefore the solutions obtained by the B&P algorithm
are also expected to have low deviation between them. The single run of ALNS to get the initial
solution is included in the reported running time for B&P.

All datasets have been obtained from the database of the commercial product Lectio, which
is used by hundreds of high schools in Denmark. Thereby all datasets represent a case of a
real-world optimization problem.

12.5.1 Parental Consultation Timetabling Problem

fTable 5_2,1 shows the results obtained for the PCTP. Table 12.2 shows these results in summarized
ormat.

Table 12.1: Computational results for 100 datasets for the PCTP problem. Column ’ALNS’
denotes the solution obtained by a problem-specific Adaptive Large Neighborhood Search heuris-
tic. For Gurobi the obtained lower- and upper bound (columns ’Obj’ and "UB’ respectively) is
shown, as well as the final gap. The amount of required seconds is also shown. For the B&P
algorithm, the final number of explored nodes in the B&P tree is shown, as well as the obtained
bounds, the final gap, and total run time. Note that a node is only counted as being explored
after a branching has been performed, i.e. if the optimal solution is found in the root node the
number of explored nodes is 0. The best found solution is marked in bold, and the best found
bound is marked with a ’*’.

Gurobi 5.0.1 B&P
Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time
Alleroed 51 12 38 484.8 485.0 *485.0 0.0 3 67 485.0 *485.0 0.0 167
Alssund 84 18 55 849.4 850.6 *850.6 0.0 503 112 850.4 850.8 0.1 >3600
Aurehoejl 537 18 189 3655.9 3429.4 3773.0 10.0 >3600 148 3660.7 *3763.0 2.8 >3600
Aurehoej2 409 18 170 3219.5 2976.6 3297.1 10.8 >3600 154 3219.3 *3272.0 1.6 >3600
Broenderslev 241 24 111 1905.6 1650.4 1965.2 19.1 >3600 88 1910.9 *1936.0 1.3 >3600
CPHWEST 133 39 59 1044.5 1001.8 1124.0 12.2 >3600 32 1041.4 *1067.8 2.5 >3600
DetKristne 247 32 83 1830.9 1455.6 1973.1 35.6 >3600 40 1829.5 *1900.2 3.9 >3600
Dronninglundl 108 30 36 782.0 744.0 801.5 7.7 >3600 210 783.9 *798.0 1.8 >3600
Dronninglund2 94 30 34 664.5 641.4 672.5 4.9 >3600 810 658.2 *671.8 2.1 >3600
Egaa 265 24 109 2318.5 2132.1 2374.0 11.4 >3600 140 2317.7 *2365.0 2.0 >3600
Egedal 408 27 186 3558.2 3091.5 3625.2 17.3 >3600 16 3568.3 *3608.4 1.1 >3600
Esbjergl 345 24 124 2402.1 2333.5 2466.1 5.7 >3600 228 2403.5 *2440.3 1.5 >3600
Esbjerg2 307 24 160 2314.3 2119.4 2440.3 15.1 >3600 92 2315.6 *2365.7 2.2 >3600
Esbjerg3 255 24 94 1839.5 1801.8 1885.6 4.7 >3600 32 1837.8 *1860.1 1.2 >3600
Esbjerg4 351 24 126 2612.3 2451.6 2706.2 10.4 >3600 228 2616.7 *2657.2 1.5 >3600
Frederikssund 49 24 26 403.8 404.2 406.6 0.6 >3600 161 404.2 *404.2 0.0 1513
Frederiksvaerk 74 8 54 697.9 699.0 *699.0 0.0 22 168 699.0 *699.0 0.0 186
Gefion 479 18 220 3958.1 3309.4 4248.8 28.4 >3600 68 3920.6 *4175.6 6.5 >3600
Gladsaxe 901 40 302 6950.7 5443.7 7163.9 31.6 >3600 0 6944.2 *7142.7 2.9 >3600
Greve 336 18 152 2482.6 2192.9 2535.9 15.6 >3600 78 24743 *2532.6 2.4 >3600
Haslevl 123 18 65 1060.2 1058.0 1072.6 1.4 >3600 115 1061.3 *1061.3 0.0 475

Continued on next page

197 12.5. Computational Results

Table 12.1 — Continued from previous page

Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time
Haslev2 122 18 67 988.7 977.2 1020.9 4.5 >3600 1512 989.8 *1004.4 1.5 >3600
Herlufsholm1 143 24 43 894.5 842.2 919.1 9.1 >3600 533 895.1 *905.1 1.1 >3600
Herlufsholm2 88 24 31 621.8 594.8 664.4 11.7 >3600 720 623.6 *633.1 1.5 >360

Herningl 118 27 64 0.0 0.0 *0.0 0.0 0 0 0.0 *0.0 0.0 120
Herning?2 75 27 34 0.0 0.0 *0.0 0.0 0 0 0.0 *0.0 0.0 120
Herning3 140 27 69 2.0 2.0 *¥2.0 0.0 0 0 2.0 *2.0 0.0 120
Himmelev 453 34 177 3471.7 3093.4 3735.0 20.7 >3600 10 3483.9 *3586.7 2.9 >3600
Hjoerring 179 30 132 1009.2 790.1 1231.4 55.9 >3600 0 999.2 *1178.3 17.9 >3600
HorsensGym 123 18 75 1129.4 1132.4 *1132.5 0.0 2544 467 1129.3 1133.8 0.4 >3600
HorsensStats 143 21 98 1253.8 1217.8 1286.3 5.6 >3600 802 1254.2 *1268.1 1.1 >3600
Ikast-Brande 52 30 24 449.7 448.5 458.6 2.3 >3600 169 449.7 *452.7 0.7 >3600
Johannesskolenl 165 24 58 1188.3 1136.3 1293.1 13.8 >3600 496 1187.1 *1212.3 2.1 >3600
Johannesskolen2 97 24 39 743.9 704.1 786.4 11.7 >3600 788 748.0 *761.7 1.8 >3600
Johannesskolen3 135 28 56 519.9 500.3 588.4 17.6 >3600 508 522.0 *548.2 5.0 >3600
Kalundborg 299 27 164 2458.3 2212.2 2592.0 17.2 >3600 66 2457.0 *2517.8 2.5 >3600
Kolding 80 18 43 721.0 721.4 723.2 0.2 >3600 998 721.1 *721.8 0.1 >3600
Langkaerl 52 18 35 470.6 471.1 *471.1 0.0 309 269 471.1 *471.1 0.0 750
Langkaer?2 90 18 50 805.9 788.6 814.1 3.2 >3600 945 806.0 *810.0 0.5 >3600
Middelfart 223 27 109 1788.1 1653.9 1916.6 15.9 >3600 98 1784.6 *1821.5 2.1 >3600
Morsoel 106 27 37 804.2 755.1 834.1 10.5 >3600 352 802.3 *824.2 2.7 >3600
Morsoe2 113 27 35 778.4 715.1 815.0 14.0 >3600 300 773.0 *806.5 4.3 >3600
Munkensdam1 256 21 127 2198.6 1851.6 2252.1 21.6 >3600 74 2210.4 *2234.8 1.1 >3600
Munkensdam?2 345 21 157 2846.8 2464.9 2930.1 18.9 >3600 42 2831.1 *2905.2 2.6 >3600
NielsSteensensl 117 36 35 757.2 704.3 781.8 11.0 >3600 38 757.4 *776.9 2.6 >3600
NielsSteensens2 328 30 63 1656.6 1414.6 1763.7 24.7 >3600 52 1655.3 *1728.0 4.4 >3600
NielsSteensens3 365 30 64 1800.3 1587.7 1895.6 19.4 >3600 50 1800.7 *1859.4 3.3 >3600
NielsSteensens4 234 30 52 11444 1086.9 1229.4 13.1 >3600 4 1146.3 *1191.0 3.9 >3600
NielsSteensens 263 30 57 1557.1 1451.1 1632.9 12.5 >3600 110 1560.5 *1606.9 3.0 >3600
Noerre 422 18 209 3944.5 3469.9 4033.6 16.3 >3600 100 3952.3 *4011.7 1.5 >3600
Nordfyns 192 23 102 1795.5 1782.3 1858.8 4.3 >3600 412 1793.4 *1836.9 2.4 >3600
Nordsjaellandsl 1187 34 232 6597.3 5867.3 7020.9 19.7 >3600 6 6565.1 *6971.6 6.2 >3600
Nordsjaellands2 1038 34 203 2453.2 2300.1 2624.8 14.1 >3600 50 2460.0 *2582.7 5.0 >3600
Nordsjaellands3 457 34 106 2634.7 2092.3 2858.0 36.6 >3600 8 2633.4 *2759.4 4.8 >3600
Nordsjaellands4 163 34 50 1172.4 1117.5 1209.8 8.3 >3600 92 1173.0 *1206.1 2.8 >3600
Nordsjaellands5 712 40 164 4460.5 3808.0 4801.9 26.1 >3600 4 4467.5 *4692.6 5.0 >3600
Nordsjaellands6 780 34 170 4612.2 4025.4 4897.2 21.7 >3600 16 4599.6 *4829.8 5.0 >3600
Nordsjaellands7 880 34 190 2894.5 2527.6 3048.3 20.6 >3600 22 2884.9 *3010.3 4.3 >3600
Nordsjaellands8 23 34 21 241.9 242.1 *242.1 0.0 6 21 242.1 *242.1 0.0 261
Nordsjaellands9 949 34 196 5037.1 4479.7 5518.7 23.2 >3600 12 5056.7 *5426.4 7.3 >3600
Nordsjaellands10 31 34 23 269.1 270.4 276.1 2.1 >3600 58 272.2 *272.2 0.0 479
Nyborg 119 24 58 55.4 55.4 *55.4 0.0 0 0 55.4 *55.4 0.0 120
Nykoebing 182 24 118 1483.1 1471.3 1495.2 1.6 >3600 661 1484.0 *1489.3 0.4 >3600
NZahles1 324 25 109 2365.7 1936.3 2456.2 26.9 >3600 44 2356.3 *2447.8 3.9 >3600
NZahles2 301 24 107 2217.8 2000.0 2280.1 14.0 >3600 68 2211.6 *2275.6 2.9 >3600
Odder 95 18 37 762.7 751.8 773.2 2.8 >3600 832 761.8 *772.6 1.4 >3600
Odsherreds 193 21 96 1595.4 1548.3 1619.7 4.6 >3600 24 1597.5 *1610.0 0.8 >3600
Risskov1l 65 15 35 536.7 539.7 *539.7 0.0 577 212 539.7 *539.7 0.0 387
Risskov2 149 15 69 1256.9 1264.6 1272.0 0.6 >3600 1624 1248.6 *1270.2 1.7 >3600
Risskov3 181 15 78 1389.7 1402.7 *1406.5 0.3 >3600 1920 1391.1 1407.3 1.2 >3600
Roedkilde 266 18 103 2325.2 2218.2 23529 6.1 >3600 32 2321.1 *2352.7 1.4 >3600
Roedovre 779 51 291 1661.7 1482.8 2008.2 35.4 >3600 14 1683.7 *1812.1 7.6 >3600
Rosborgl 218 24 85 1827.9 1752.1 1876.2 7.1 >3600 522 1798.5 *1866.6 3.8 >3600
Rosborg2 268 28 95 2223.3 1972.9 2297.3 16.4 >3600 154 2229.4 *2273.5 2.0 >3600
Rosborg3 487 28 307 4750.0 4602.1 4938.2 7.3 >3600 124 4752.9 *4824.9 1.5 >3600
Rosborg4 235 26 94 1960.4 1643.4 2033.0 23.7 >3600 184 1967.7 *2015.7 2.4 >3600
Roskilde 263 48 113 2112.8 1663.0 2252.6 35.5 >3600 0 2107.7 *2171.1 3.0 >3600
Rybners 267 24 126 2402.5 1952.4 2473.4 26.7 >3600 34 2395.1 *2446.5 2.1 >3600
SanktAnnae 320 21 124 2381.6 2114.8 2499.1 18.2 >3600 48 2375.6 *2458.5 3.5 >3600
Skive 220 36 78 1850.3 1604.5 1903.2 18.6 >3600 34 1849.0 *1877.5 1.5 >3600
Slagelse 85 30 50 802.6 805.3 *805.3 0.0 337 164 802.3 805.4 0.4 >3600
Solroedl 341 16 148 2436.8 2397.5 2468.9 3.0 >3600 378 2426.7 *2468.3 1.7 >3600
Solroed2 415 16 182 3263.0 3140.2 3318.4 5.7 >3600 238 3256.1 *3315.8 1.8 >3600
Soroel 369 24 145 2947.3 2648.0 3106.8 17.3 >3600 58 2957.9 *3042.5 2.9 >3600
Soroe2 335 33 139 2255.0 1615.9 2641.1 63.5 >3600 10 2247.6 *2441.3 8.6 >3600
Stenhus 221 18 121 0.0 0.0 *0.0 0.0 0 0 0.0 *0.0 0.0 120
Stoevring 62 24 31 520.5 521.4 *521.4 0.0 21 76 521.4 *521.4 0.0 335
Struerl 237 30 127 1656.9 1610.0 1794.2 11.4 >3600 160 1656.4 *1697.2 2.5 >3600
Struer2 333 30 138 2534.0 2094.3 2793.9 33.4 >3600 104 25325 *2637.4 4.1 >3600
Svendborgl 96 18 79 991.1 991.4 *991.4 0.0 35 1619 991.4 *991.4 0.0 >3600

Continued on next page

Chapter 12. Paper G: A Branch & Price Algorithm for the GMPP 198
Table 12.1 — Continued from previous page
Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time
Svendborg2 134 18 82 1288.0 1289.1 *1289.2 0.0 142 764 1288.2 1289.4 0.1 >3600
Taarnby 791 36 244 5609.2 4587.1 *5918.9 29.0 >3600 0 5622.2 5927.8 5.4 >3600
UCH 104 32 110 922.6 922.6 *922.6 0.0 4 0 922.6 *922.6 0.0 143
ViborgGym1 206 30 88 1434.0 1348.6 1482.5 9.9 >3600 122 1437.9 *1467.2 2.0 >3600
ViborgGym?2 149 30 62 1133.4 1101.2 1146.9 4.2 >3600 384 1134.4 *1138.1 0.3 >3600
ViborgGym3 294 30 143 2211.7 2081.2 2275.6 9.3 >3600 118 2210.0 *2236.0 1.2 >3600
ViborgHandel 324 30 95 2526.7 2160.1 2615.9 21.1 >3600 58 2537.4 *2614.2 3.0 >3600
ViborgKatedral 337 40 101 2313.4 1755.6 2516.6 43.4 >3600 8 2304.7 *2465.0 7.0 >3600
Vordingborgl 315 16 132 2304.3 2201.4 2353.5 6.9 >3600 38 2304.2 *2349.2 2.0 >3600
Vordingborg2 239 16 115 1924.6 1893.2 1949.4 3.0 >3600 436 1926.9 *1949.0 1.1 >3600
TA wrong upper bound was reported in Kristiansen et al. (2013).

Table 12.2: Summary of results for PCTP. 'Best obj’ denotes the amount of instances where the
algorithm provided the best objective value (including draws). 'Best UB’ denotes the amount of
instances where the algorithm found the best upper bound (including draws). Columns 'Gap < ¢
shows the amount of instances for which the respective algorithm provided a gap < q. ’Avg. Gap
to best UB’ is found for each algorithm by finding the best available UB for each instance,
calculating the gap to the solution provided, and averaging these gaps.

Best obj Best UB Gap =0% Gap <2% Gap <5% Avg. Gap to best UB
ALNS 46 - - - - 2.31%
Gurobi 21 19 17 23 35 9.37%
B&P 54 94 16 54 92 2.32%

The most prominent numbers drawn from these results are the gap to the best upper bound.
This shows that the B&P algorithm in average is only 2.32% within optimum, which is slightly
worse than the ALNS algorithm, but far better than the solutions Gurobi provides. Furthermore
the B&P algorithm finds solutions within 5% from optimum for 92 instances.

12.5.2 Supervisor Consultation Timetabling Problem

Table 12.3: Computational results for 100 datasets for the SCTP. Columns have same meaning
as in Table 12.1.

Gurobi 5.0.1 B&P
Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time
Aabenraa 226 60 279 2387.5 2111.1 t2490.8 18.0 >3600 0 2384.9 *2465.1 3.4 >3600
Broendbyl 69 21 87 683.2 672.1 704.9 4.9 >3600 825 682.2 *689.7 1.1 >3600
Broendby?2 69 14 85 768.6 770.9 779.4 1.1 >3600 2401 772.0 *772.4 0.0 >3600
Broendby3 62 24 80 614.8 603.9 633.7 4.9 >3600 669 617.7 *620.7 0.5 >3600
Broenderslevl 115 69 148 1302.4 1276.0 T*1341.7 5.2 >3600 0 1300.7 1347.2 3.6 >3600
Broenderslev2 115 102 148 1236.0 1142.4 t*1271.8 11.3 >3600 0 1234.9 1443.5 16.9 >3600
Christianshavns 210 43 254 2223.7 1723.3 f2386.1 38.5 >3600 44 2217.2 *2264.6 2.1 >3600
Dronninglundl 134 100 166 1453.5 1382.4 t%1480.7 7.1 >3600 0 1454.7 1668.1 14.7 >3600
Dronninglund2 134 60 165 1537.5 1530.2 t*1561.7 2.1 >3600 0 1539.8 1568.8 1.9 >3600
Egaa 214 29 259 2376.2 2228.1 2458.3 10.3 >3600 88 2380.4 *2408.5 1.2 >3600
Falkonerl 64 30 83 668.0 671.6 677.3 0.9 >3600 36 671.6 *671.6 0.0 216
Falkoner2 206 37 255 2266.1 2056.3 f2345.0 14.0 >3600 46 2265.2 *2297.4 1.4 >3600
Falkoner3 64 30 83 664.9 664.9 670.4 0.8 >3600 178 664.9 *664.9 0.0 554
Grenaal 122 28 154 1325.4 1291.8 1379.6 6.8 >3600 164 1328.5 *1348.1 1.5 >3600
Grenaa2 122 24 154 1290.3 1264.9 1329.6 5.1 >3600 361 1295.9 *1306.7 0.8 >3600
Grevel 157 28 205 1693.3 1620.6 1761.3 8.7 >3600 428 1695.9 *1710.0 0.8 =>3600

Continued on next page

199 12.5. Computational Results

Table 12.3 — Continued from previous page

Gurobi 5.0.1 B&P
Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time
Greve2 259 62 322 29135 2627.9 13035.3 15.5 >3600 0 2915.1 *3025.2 3.8 >3600
Greve3 51 20 67 566.3 566.4 570.7 0.8 >3600 8 b566.4 *566.4 0.0 138
Gribskov1l 182 74 226 1787.6 1269.7 T1912.1 50.6 >3600 0 1788.9 *1849.1 3.4 >3600
Herlevl 71 24 96 730.2 728.3 750.7 3.1 >3600 980 730.7 *734.0 0.4 >3600
Herlev2 78 29 106 750.2 729.5 792.7 8.7 >3600 442 750.7 *764.8 1.9 >3600
Hoengl 66 21 85 621.5 605.6 688.0 13.6 >3600 4 621.8 *621.8 0.0 139
Hoeng?2 98 23 123 1038.5 1036.0 1070.2 3.3 >3600 84 1041.4 *1041.4 0.0 298
Hoeng3 45 22 62 408.3 387.0 479.9 24.0 >3600 20 409.8 *409.8 0.0 167
Hoeng4 56 23 78 589.2 590.0 612.4 3.8 >3600 368 591.9 *591.9 0.0 721

Koebenhavnsl 143 16 180 1242.0 1246.7 1273.4 2.1 >3600 1406 1243.5 *1256.4 1.0 >3600
Koebenhavns2 100 16 127 785.6 786.4 *786.5 0.0 197 2852 784.9 786.9 0.2 >3600

Koebenhavns3 100 16 127 725.8 725.8 *725.8 0.0 23 2672 725.8 *725.8 0.0 2991
Koebenhavns4 146 25 184 1424.6 1406.0 1486.1 5.7 >3600 842 1424.7 *1432.5 0.5 >3600
Koegel 255 30 285 2333.2 1039.0 2474.3 138.1 >3600 416 2357.1 *2388.2 1.3 >3600
Koege2 261 36 303 2045.7 1790.3 122781 27.2 >3600 304 2056.8 *2075.2 0.9 >3600
Koege3 258 74 288 2622.9 2381.7 12890.0 21.3 >3600 0 2621.3 *2809.1 7.2 >3600
Koldingl 219 24 263 2348.7 2287.1 2422.6 5.9 >3600 666 2354.3 *2364.0 0.4 >3600
Kolding2 174 45 220 1908.8 1727.2 T2003.2 16.0 >3600 28 1910.9 *1936.4 1.3 >3600
Langkaerl 215 62 255 2239.4 1661.7 12465.4 48.4 >3600 0 2230.2 *2307.5 3.5 >3600
Langkaer2 216 60 256 2240.1 1746.1 124771 41.9 >3600 0 2239.6 *2303.6 2.9 >3600
Langkaer3 216 60 256 2258.3 1950.4 2470.4 26.7 >3600 0 2267.4 *2303.7 1.6 >3600
Langkaer4 57 30 72 566.2 562.5 594.5 5.7 >3600 398 573.4 *573.4 0.0 1128
Langkaer5b 217 56 256 2253.3 1982.9 24942 25.8 >3600 6 2252.3 *2299.1 2.1 >3600
Langkaer6 56 62 71 629.2 623.3 1652.0 4.6 >3600 128 629.1 *632.1 0.5 >3600

Mariagerfjordl 123 29 154 1318.6 1216.6 1385.9 13.9 >3600 266 1315.9 *1331.2 1.2 >3600
Mariagerfjord2 123 29 154 1345.3 1282.9 1401.3 9.2 >3600 172 1347.6 *1362.7 1.1 >3600
Marselisborgl 102 22 132 1045.4 1019.3 1090.3 7.0 >3600 1130 1044.5 *1053.4 0.8 >3600
Marselisborg2 106 17 138 1035.4 1035.4 1047.3 1.2 >3600 694 1037.1 *1037.1 0.0 995
Marselisborg3 105 22 132 1098.3 1076.3 1155.4 7.4 >3600 126 1106.0 *1106.0 0.0 524
Marselisborg4 96 17 126 947.2 948.0 952.9 0.5 >3600 327 947.7 *951.2 0.4 >3600

Munkensdam 191 43 225 2067.9 1741.7 72201.2 26.4 >3600 14 2075.6 *2111.2 1.7 >3600
Noerresundby 303 31 367 3291.7 31314 3460.7 10.5 >3600 132 3304.5 *3320.1 0.5 >3600
Nordfynsl 173 22 207 1926.6 1884.0 1972.4 4.7 >3600 398 1930.3 *1940.3 0.5 >3600

Nordfyns2 173 21 206 1929.9 1905.6 1975.0 3.6 >3600 488 1929.4 *1945.9 0.9 >3600
Nordfyns3 173 22 207 1908.1 1870.5 1972.9 5.5 >3600 464 1911.8 *1924.5 0.7 >3600
Nordfyns4 173 21 215 1478.3 1452.7 1536.9 5.8 >3600 486 1478.6 *1499.8 1.4 >3600
NZahles1 69 13 90 619.1 615.6 634.8 3.1 >3600 4625 620.1 *620.5 0.1 >3600
NZahles2 62 13 78 509.5 511.7 522.4 2.1 >3600 5453 513.0 *513.1 0.0 >3600
Odsherreds 119 49 150 1289.4 1211.3 T1367.2 12.9 >3600 24 1291.0 *1305.7 1.1 >3600
Oeregaardl 219 20 258 2258.1 2257.3 2295.7 1.7 >3600 492 2259.3 *2289.9 1.4 >3600
Oeregaard?2 213 20 256 1743.9 1749.4 1810.2 3.5 >3600 362 1774.0 *1798.0 1.4 >3600
Oeregaard3 219 20 258 2340.2 2311.5 2372.4 2.6 >3600 338 2343.2 *2361.5 0.8 >3600
Oeregaard4 219 20 258 2339.9 2325.0 2371.7 2.0 >3600 378 2334.1 *2363.1 1.2 >3600
Risskov 215 36 250 2353.2 2165.8 12426.8 12.1 >3600 26 2352.6 *2389.7 1.6 >3600
Roedkilde 230 18 282 2495.7 2473.3 2534.6 2.5 >3600 790 2495.7 *2523.0 1.1 >3600
Rosborgl 257 22 310 2837.4 2787.5 2895.3 3.9 >3600 182 2839.7 *2893.3 1.9 >3600
Rosborg2 257 22 311 2805.4 2640.8 2859.4 8.3 >3600 182 2805.5 *2838.8 1.2 >3600
SanktAnnael 149 23 191 1580.4 1539.7 1671.3 8.6 >3600 462 1584.5 *1599.6 1.0 >3600

SanktAnnae2 165 24 209 1753.4 1689.4 1844.9 9.2 >3600 250 1754.5 *1773.3 1.1 >3600

SanktAnnae3 21 17 29 197.9 197.9 *197.9 0.0 7 45 197.9 *197.9 0.0 142
SanktAnnae4 162 31 201 1598.9 1415.3 1718.0 21.4 >3600 108 1593.4 *1634.7 2.6 >3600
Skanderborgl 232 57 291 2547.4 2131.4 12640.6 23.9 >3600 0 25454 *2588.6 1.7 >3600
Skanderborg2 229 60 276 2320.4 2000.8 '2414.4 20.7 >3600 0 2324.7 *2374.6 2.2 >3600
Skivel 140 16 182 1430.9 1420.9 1459.2 2.7 >3600 1088 1436.1 *1444.9 0.6 >3600
Skive2 103 31 143 995.5 856.3 1061.3 24.0 >3600 126 996.5 *1025.7 2.9 >3600
Skive3 140 31 182 1372.7 1307.0 1451.9 11.1 >3600 144 1373.1 *1401.6 2.1 >3600
Skived 21 16 31 227.6 227.8 *227.8 0.0 12 24 227.8 *227.8 0.0 141
Skives 98 16 131 960.7 963.6 971.7 0.8 >3600 234 959.1 *965.4 0.7 >3600
Skive6 110 16 145 1119.3 1111.6 1143.1 2.8 >3600 298 1115.3 *1131.1 1.4 >3600
Skive7 134 31 179 1284.6 1169.3 1365.8 16.8 >3600 114 1289.7 *1310.0 1.6 >3600
Skive8 107 16 143 1007.1 1005.7 1016.5 1.1 >3600 2423 1006.9 *1008.9 0.2 >3600
Skive9 100 31 133 983.0 959.0 1034.9 7.9 >3600 358 979.1 *1000.7 2.2 >3600

Soenderborgl 234 22 298 2475.3 2262.0 2590.4 14.5 >3600 104 2456.3 *2515.5 2.4 >3600
Soenderborg2 236 22 305 2577.9 2297.0 2701.0 17.6 >3600 118 2569.9 *2617.3 1.8 >3600
Soenderborg3 236 21 305 2597.3 2288.3 2686.6 17.4 >3600 222 2601.5 *2619.2 0.7 >3600
Soenderborg4 235 22 304 2554.2 2341.7 2679.2 14.4 >3600 102 2563.3 *2597.2 1.3 >3600
Solroedl 242 18 295 2130.3 1983.7 2180.6 9.9 >3600 646 2132.7 *2164.6 1.5 >3600

Continued on next page

Bibliography 200

Table 12.3 — Continued from previous page

Gurobi 5.0.1 B&P
Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time
Solroed?2 22 20 34 228.6 228.6 *228.6 0.0 0 0 228.6 *228.6 0.0 120
Solroed3 22 17 34 223.3 223.3 *223.3 0.0 0 0 223.3 *223.3 0.0 120
Solroed4 243 54 296 2354.2 736.6 2565.5 248.3 >3600 2 2358.2 *2401.2 1.8 >=3600
Solroed5 243 20 297 2054.9 1843.1 2187.6 18.7 >3600 578 2052.8 *2096.6 2.1 >3600
Solroed6 215 17 266 1775.5 1694.5 1833.5 8.2 >3600 846 1774.5 *1802.7 1.6 >3600
Solroed7? 194 17 242 1679.2 1534.9 1744.7 13.7 >3600 1120 1676.5 *1703.5 1.6 >3600
Vejenl 41 10 58 424.2 424.2 *424.2 0.0 1 105 424.2 *424.2 0.0 137
Vejen2 126 19 159 1198.5 1184.2 1225.0 3.5 >3600 1182 1197.1 *1224.6 2.3 >3600
Vejen3 125 19 155 1204.6 1186.9 1234.8 4.0 >3600 1110 1207.4 *1214.3 0.6 >3600
Vejen4 125 19 155 1172.5 1145.2 1206.0 5.3 >3600 285 1182.5 *1182.5 0.0 852
Viborgl 105 19 133 1034.2 10114 1099.6 8.7 >3600 403 1034.9 *1034.9 0.0 1518
Viborg2 187 49 230 2060.0 1778.8 21524 21.0 >3600 4 2057.8 *2108.2 2.4 >3600
Vibyl 124 20 158 1256.9 1255.0 11279.1 1.9 >3600 582 1260.5 *1266.3 0.5 >3600
Viby2 93 13 111 957.5 957.5 *957.5 0.0 2 0 957.5 *957.5 0.0 122
Viby3 45 8 62 480.0 480.0 *480.0 0.0 1 14 480.0 *480.0 0.0 131
Viby4 93 16 111 1053.3 1053.5 *1053.5 0.0 3 2 1053.5 *1053.5 0.0 125
Vibyb 123 21 156 1356.1 1355.6 11374.3 1.4 >3600 554 1356.7 *1364.6 0.6 >3600

T A wrong upper bound was reported in Kristiansen et al. (2013).

Table 12.4: Summary of results for SCTP. Columns are equivalent to those in Table 12.2.

Best obj Best UB Gap = 0% Gap <2% Gap <5% Avg. Gap to best UB

ALNS 37 - - - - 1.26%
Gurobi 16 14 10 22 42 7.13%
B&P 68 95 23 80 97 1.15%

Also for the SCTP the B&P algorithm performs better than Gurobi, providing the best
solution in 68 cases. Also in terms of bounds, the B&P algorithm outperforms Gurobi as it finds
the best bound in 95 cases. On average, the B&P algorithm is 1.15% within optimum when
comparing with the best found bounds which is slightly better than the ALNS algorithm. This
is also significantly lower than the 7.13% obtained by Gurobi.

12.6 Conclusion

In this paper we have presented a generalization of a whole family of planning problems, the
Generalized Meeting Planning problem. A Branch & Price algorithm has been presented which
were tested on two different versions of the Generalized Meeting Planning problem: The Parental
Consultation Timetabling Problem and the Supervisor Consultation Timetabling Problem. For
both problems the developed B&P algorithm is tested on 100 real-world data examples from
Danish high schools. The B&P algorithm on average obtains a gap of 2.32% for the Parental
Consultation Timetabling Problem and 1.15% for the Supervisor Consultation Timetabling Prob-
lem. These are convincing results for effectiveness of the algorithm. We find it likely that there
are many other problems where the Generalized Meeting Planning problem is applicable, and
the described B&P approach therefore can be applied.

Bibliography

N.-C. F. Bagger. Generalized Meeting Planning using Mathematical Programming. Technical
report, DTU-Management, 2012.

201 Bibliography

L. Di Gaspero and A. Schaerf. Tabu search techniques for examination timetabling. In Practice
and Theory of Automated Timetabling III, pages 104-117. Springer, 2001.

S. Kristiansen, M. Sgrensen, M. B. Herold, and T. R. Stidsen. The consultation timetabling
problem at danish high schools. Journal of Heuristics, 19(3):465-495, June 2013.

R. Lewis. A survey of metaheuristic-based techniques for university timetabling problems. OR
spectrum, 30(1):167-190, 2008.

M. E. Liibbecke and J. Desrosiers. Selected topics in column generation. Operations Research,
53(6):1007-1023, 2005. ISSN 0030364x, 15265463.

A. Mehrotra and M. A. Trick. A branch-and-price approach for graph multi-coloring. Extending
the Horizons: Advances in Computing, Optimization, and Decision Technologies, pages 15-29,
2007.

M. W. Padberg. Perfect zero—one matrices. Mathematical Programming, 6(2):180-196, 1974.
ISSN 00255610, 14364646.

T. C. Pais and P. Amaral. Managing the tabu list length using a fuzzy inference system: an
application to exams timetabling. In The 7th International Conference for the Practice and
Theory of Automated Timetabling, pages 1-6, 2008.

K. Papoutsis, C. Valouxis, and E. Housos. A column generation approach for the timetabling
problem of greek high schools. The Journal of the Operational Research Society, 54(3):230-238,
2003.

R. Qu, E. Burke, B. McCollum, L. T. Merlot, and S. Y. Lee. A survey of search methodologies
and automated approaches for examination timetabling. Computer Science Technical Report
No. NOTTCS-TR-2006-4, UK, 2006.

A. Qualizza and P. Serafini. A column generation scheme for faculty timetabling. In E. Burke
and M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616 of
Lecture Notes in Computer Science, pages 161-173. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-30705-1.

S. Rgpke. An era in vehicle routing research is coming to an end: the full solomon test set is
solved to optimality, October 2012. Presentation in Recent Research Results in Operations
Research at Department of Manegement Science at the Technical University of Denmark.

S. Ropke. Private communication, April 2013.

D. Ryan and J. Falkner. On the integer properties of scheduling set partitioning models. European
Journal of Operational Research, pages 442-456, 1988.

D. Ryan and B. A. Foster. Integer programming approach to scheduling. Computer Schedul-
ing of Public Transport, Urban Passenger Vehicle and Crew Scheduling: Papers Based on
Presentations at the International Workshop., pages 269-280, 1981.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399-412, April 2012. ISSN
0254-5330.

M. Savelsbergh. A branch-and-price algorithm for the generalized assignment problem. Opera-
tions Research, 1997.

Bibliography 202

J. Thompson and K. A. Dowsland. General cooling schedules for a simulated annealing based
timetabling system. In Practice and Theory of Automated Timetabling, pages 345-363.
Springer, 1996a.

J. M. Thompson and K. A. Dowsland. Variants of simulated annealing for the examination
timetabling problem. Annals of Operations research, 63(1):105-128, 1996b.

Part 111

Other Contributions

203

Chapter 13 Paper H

Elective Course Planning

Simon Kristiansen'?, Matias Sgrensen'?, Thomas R. Stidsen’
!Management Science, Department of Management Engineering,
Technical University of Denmark
MaCom A/S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

Abstract Efficient planning increasingly becomes an indispensable tool for management of both

companies and public organizations. This is also the case for high school management in Denmark,
because the growing individual freedom of the students to choose courses makes planning much more
complex. Due to reforms, elective courses are today an important part of the curriculum, and elective
courses are a good way to make high school education more attractive for the students. In this article,
the problem of planning the elective courses is modeled using integer programming and three different
solution approaches are suggested, including a Branch-and-Price framework using partial Dantzig-Wolfe
decomposition. Explicit Constraint Branching is used to enhance the solution process, both on the
original IP model and in the Branch-and-Price algorithm. To the best of our knowledge, no exact
algorithm for the Elective Course Planning Problem has been described in the literature before. The
proposed algorithms are tested on data sets from 98 of the 150 high schools in Denmark. The tests
show that for the majority of the problems, the optimal solution can be obtained within the one hour
time bound. Furthermore the suggested algorithms achieve better results than the currently applied
meta-heuristic.
Management of high schools in Denmark has become increasingly complex during the last decade,
due to a number of economical and educational reforms. Furthermore the high schools, 10th to
12th grade, became self-governing institutions as of 1/1 2007. Hence the administration of a high
school in Denmark has lately been given much more freedom to manage the high school. On the
other hand, the high school management now has a much higher economical responsibility and
the high schools can even become insolvent, which has indeed happened in a few cases. The by
far most important income for the high schools is the grant received from the government. Due to
the recent reforms, high schools receive this grant based on the number of students graduating.
This has forced the high school management to focus on attracting students, while reducing
teaching and administration costs. In this paper we present the Elective Course Planning Problem
(ECPP), which is of crucial importance for maintaining student contentment.

Due to the special structure of the Danish high schools, literature concerning the ECPP is
very limited. However, problems such as Course Timetabling and Student Sectioning have been
looked in to, see e.g. Laporte and Desroches (1986); Tripathy (1984); Erben and Keppler (1996);
Rudova and Murray (2003); Miiller and Murray (2010). The problem in Tripathy (1984) is
actually closely related to the ECPP of this article, but does however lack many of the relevant
constraints.

205

Chapter 13. Paper H: Elective Course Planning 206

The International Timetabling Competition 2007 had two tracks focusing on course time-
tabling, Post Enrolment based Course Timetabling and Curriculum based Course Timetabling.
The first track considers the problem of construction a timetable according to the choice of
lectures of the students (Lewis et al. (2007); Miiller (2009)), while the second considers weekly
scheduling of lectures within a given number of rooms and time periods (Gaspero et al. (2007);
Miiller (2009)). Neither of these problems matches the ECPP, which is the problem of fulfilling
as many elective course requests as possible. L.e. the ECPP is a matter of deciding which course
requests should be fulfilled, while the course timetabling problems of ITC2007 are concerned
with constructing a timetabling according to some predefined assignments to courses. Still, the
ECPP does in fact share several constraints with the mentioned problems, e.g. students can
only attend one course at a time. But as will be described in Section 13.1, the ECPP includes
other important constraints which are not part of any of the tracks of ITC2007. The timetabling
part of the ECPP lies in the fact that, even though the objective is to maximize the number
of fulfilled course requests, the course requests should be able to fit in a number of predefined
time-blocks.

Both de Werra (1985) and Costa (1994) deals with the problem of first assigning teachers to
classes and then assigning classes to a schedule. However, in the Danish education system, the
ECPP must be dealt with before allocating teachers to classes. Miiller et al. (2007) combines
University Course Timetabling and Student Sectioning in an online system based on an Iterative
Forward Search algorithm. Neither this combination of the two problems proves very resourceful
for the ECPP. There exist more practical based publications on solving problems concerning
Course Timetabling and Student Sectioning, but it seems none of these are directly related to
the ECPP.

Binzer and Kjeldsen (2008) is by far the most relevant source for this article, since it de-
scribes the ECPP in detail, and solves the problem using both Tabu Search and GRASP. Both
these meta-heuristics rely on a complicated neighborhood, based on a number of simple moves.
Binzer and Kjeldsen (2008) points to the fact that the ECPP has features usually discarded in
timetabling literature. For instance, the ECPP is concerned with both optional assigning to time
slots and division of classes. Most literature is only concerned with one of these aspects.

Notice that Binzer and Kjeldsen (2008) applies heuristics. In this paper, exact solution
methods will be attempted. To the best of our knowledge, no exact algorithm for the ECPP
has been described in the literature before.

There are two reasons why solving the ECPP to optimality is so crucial to the high
schools. First of all, each offered elective class costs app. 200,000 DKK (28,500 EUR) per
year to complete. These costs are fixed costs to be paid, no matter how many students are
actually enrolled in the course. If the school has too many courses running with a low number
of students it will hence inflict a heavy financial burden on the school. Secondly, if a student
is not granted its elective course requests, the student may decide to switch to another high
school, which is highly undesirable for the high school administration. Given these important
trade offs it is natural that the high schools devote significant resources to find good elective
course plans. This is either done manually (typically requiring 2 weeks of full time work) or
using existing software solutions. Today most of the high schools (87%) use the cloud-based
MaCom Lectio software system for all administrative purposes, and Lectio includes a solver for
the ECPP, which is based on the meta-heuristics from Binzer and Kjeldsen (2008). It should be
mentioned that the solver in Lectio is highly effective compared to the approach of solving it
manually, however in this paper we will show that better algorithms can be found.

The structure of this article is as follows: The ECPP is described in detail in Section 13.1.
In Section 13.2 a MIP model is presented. In Section 13.3 the ECPP MIP model is Dantzig-

207 13.1. Problem Description

Wolfe decomposed and a Branch-and-Price algorithm is designed. Furthermore, Section 13.3
presents an alternative approach, Explicit Constraint Branching. In Section 13.4 the algorithm
is compared to an existing meta-heuristic for the ECPP, on real-life data from 98 Danish high
schools. Finally a conclusion is attempted in Section 13.5.

13.1 Problem Description

In Denmark there exists several types of upper secondary educations. The focus in this paper is
STX (Upper Secondary School Leaving Examination). STX is a broad general education and it
is the most common type of secondary education in Denmark. The education takes 3 years and
consists of 13 to 16 courses.

Once a student has chosen a type of upper secondary education, he needs to choose a study
line which fit his interests. Different high schools offer different study lines, so the students choice
of high school is somewhat correlated with the choice of study line. It is important to notice that
the students can choose free of charge among all Danish high schools. Each study line consists
of both a number of mandatory courses and a number of elective courses. When the student has
chosen a study line, he is assigned a so-called common class. A common class always consists of
students from the same study line. The idea is that courses should be taught in classes with as
many students as possible from the same common class, to facilitate the cooperation and social
interaction between students.

It should be noted that some courses have a duration of more than one year. This yields
many pre-assignment of students to classes, which from this point on will be known as existing
classes.

The elective courses give the students some influence on the contents of their education. An
elective course can either be an upgrade of a mandatory course to a higher educational level,
or it can be a course with a subject the students has not been taught before. Furthermore the
students have the opportunity to select an elective course as their second priority. I.e. if an
elective course request is not granted, it is possible to assign the student to his second priority
course instead. The priority of elective course requests is however omitted in this article as the
test data did not contain information regarding priority. A solution-approach for the prioritized
requests would be to weight the requests based on their priority. In this article all requests are
equally weighted.

13.1.1 Weekly Schedule

In a typical weekly schedule for a high school, each day consists of four modules where teaching
is performed. The ECPP is concerned with assigning so-called blocks to modules in the weekly
schedule. Blocks consist of a given number of classes teaching specific courses. The students
cannot be taught two courses simultaneously, so they must only be part of one class in each
block. Binzer and Kjeldsen (2008) refers to blocks as finished chunks of a time plan, which seems
as a proper description. Figure 13.1 illustrates how five different blocks are assigned to modules.

The elective courses are placed in special blocks in the weekly schedule, e.g. the grey blocks in
Figure 13.1. The mandatory courses will hence be taught in the white blocks in the schedule
of Figure 13.1. As teaching of the mandatory courses and elective courses can be said to be
independent in the weekly schedule, we will in the remainder of the article ignore the problem
of planning the mandatory courses.

Chapter 13. Paper H: Elective Course Planning 208

Monday Tuesday | Wednesday | Thursday Friday

8.15

045 BLOCK1 BLOCK3

10.00

11.30 BLOCKS

Lunch break

12:00
13:30

13:45

1515 BLOCK2 BLOCK4

Figure 13.1: Assigning blocks to modules in a weekly schedule

Ideally all elective course requests should be fulfilled. However this is usually unrealistic,
not only because of a number of resource limitations of the school, but also due to regulations
enforced by education policies. Some common resources limitations are:

e Availability of classrooms. The number of classrooms at the high school is limited. Fur-
thermore some course subjects may require special classrooms, e.g. physics and music
education.

e Availability of teachers. It is obvious that a block cannot contain more physics classes than
the number of physics teachers available. Furthermore teachers are limited to a certain
number of teaching lessons per week.

e Limitations on class sizes.

To model the resource limitations, the concept of subjects is introduced. Let each course be
associated with exactly one subject. Resource limitations can then be modeled by specifying a
maximum number of courses of a given subject in a block. It is hence assumed that no resource
is shared between subjects. This assumption is not too realistic, however it is necessary to
compare our results with the existing meta-heuristic algorithm. In a better modeling approach,
constraints for each resource should be part of the model. Although it should be noted that
only few of the 98 obtained datasets actually specifies this maximum number of classes for any
subject, so the negative impact of this assumption is limited.

13.1.2 The Problem

The objective of the ECPP can be stated as follows: Fulfill as many elective course requests as
possible using a minimum number of blocks and a minimum number of classes, and assign all
existing classes to a block. This suggests that the problem is multi objective, where each of the
following is part of the objective:

e Minimize the number of created classes.
e Minimize the number of blocks used for elective courses.
e Maximize the number of elective course requests granted.

Due to compatibility with Binzer and Kjeldsen (2008), it is chosen to keep both the number of
created classes and number of blocks constant. Hence the objective is to maximize the number
of fulfilled student requests, given a choice of number of classes and blocks. A subject for future
research would be to model this with multiple objectives.

209 13.2. Modeling of Elective Course Planning

Due to resource limitations and limits on the both number of blocks and classes, our mathe-
matical formulation will not guarantee that students are granted the required courses. Consider
the following case. A majority of the students in their first school year needs to choose either
German B or French B. If however only a single student chooses French B, then this student
will in practice never be granted his request, as no high schools will create a class with just one
student. The high school has a number of options in this scenario:

e Convince the student to select another course, e.g. German B, instead.

Convince the student to select a different study line where French B is mandatory.

Assign the student to a class teaching French B, but where all the other students are from a
different common class. Possibly even violate the upper limit on class size to fit the student
in.

The student chooses another high school, which is able to fulfill his requests.

All of these options have a downside which we will not discuss. The point is that these special
scenarios cannot be taken into account by a mathematical model, as the possibilities are very
diverse and wide-ranging.

13.2 Modeling of Elective Course Planning

The ECPP is now formulated as an IP model which aims at maximizing the number of granted
course requests while respecting the conditions. For a particular high school there is a set of
students s € S, a set of courses offered ¢ € C and a set of blocks b € B. Each course belongs
to one of the subjects f € F. The maximum number of classes of each subject f in a block is
given by SM; € Z". The relationship between course ¢ and subject f is defined by SC. ;. Each
student chooses a set of elective courses which he or she wishes to follow, given by V€ {0,1}
which takes value 1 if student s has chosen course ¢, and zero otherwise. For each class there is
a lower bound and an upper bound on the number of students, L. € Z and U, € Z respectively.
Naturally it applies that L. < U.. The number of classes which can be established is given by
the number Q. Finally, there is a set of existing classes t € T. Each existing class contain a
set of students E*! € {0,1}, which takes value 1 if student s is part of existing class ¢, and 0
otherwise. H! € {0,1} is 1 if existing class ¢ is teaching course c. The decision whether a student
s should be assigned to course c in a block b, is defined by the binary variable x7 ,. The number
of necessary elective course classes to form in block b of course c is given by the integer variable
Yep € Z1. Finally, the variable u} takes value 1 if existing class ¢ is placed in block b, and 0
otherwise.

The entire MIP model for the ECPP is given in model (13.1).

Chapter 13. Paper H: Elective Course Planning 210

IP Model for the ECPP (13.1)
max Y @l (13.1a)
c,b,s
sty ak, +> B <1 Vb, s (13.1b)
c t
>, <V Ve, s (13.1c)
b
Z xi,b > L. Ye,b v C, b (13.1d)
Zwi,b <UcYep Ve,b (13.1e)
S
> es <Q (13.1f)
c,b
S SCesyep +Y.SCey Hi-uf < SM; Vb, f,SM; >0 (13.1g)
c c,t
> =1 vt (13.1h)
b
zgp €{0,1} (13.1i)
Yeb € No (13.1j)
uh € {0,1} (13.1k)

The objective simply sums up the number of student requests it was possible to satisfy. The
constraint (13.1b) ensures that no student is taught simultaneously in two classes, no matter if
the classes are elective classes or existing classes. Constraint (13.1c) ensures that a student is only
granted an elective course if requested, and each request is only granted once. The constraints
(13.1d) and (13.1e) sets the lower and upper bound respectively on the number of students in
elective course classes. Constraint (13.1f) limits the maximal number of elective course classes
which can be offered. Constraint (13.1g) ensures that the resource limit on subject f is respected.
Finally constraint (13.1h) ensures that all existing classes are placed in a block.

The ECPP has been proven A'P-hard with a N"P-complete decision problem in both Binzer
and Kjeldsen (2008) and, in a slightly varied form, in Kristiansen and Sgrensen (2010), and
the problem contains more than 150.000 binary variables in several of the instances tested.
Furthermore the model also contains a great deal of symmetry, since blocks are interchangeable
and students who request identical courses are also interchangeable. Notice that all requests
provide the same contribution to the objective when granted. See Kaibel et al. (2007) and
Margot (2003) regarding solving large integer linear programs with much symmetry. We can not
expect that we are able to solve the model with a standard IP solver for problem of non-trivial
size.

13.3 Solution algorithms

In this section we will describe a Dantzig-Wolfe decomposition of the ECPP and an alternative
approach where Explicit Constraint Branching is applied. Dantzig-Wolfe decomposition is a
well-known approach applied to hard optimization problems (see e.g. Vanderbeck (2000)). For
an introduction to Dantzig-Wolfe decomposition we refer to Desrosiers and Liibbecke (2005);
Dantzig and Wolfe (1960). The ECPP can be Dantzig-Wolfe decomposed in a number of different
ways. Decomposition by classes has been found to be most intuitive, i.e. a subproblem is formed

211 13.3. Solution algorithms

for each combinations of a course and a block. This decomposition is done partially, such that
the part of the model concerning existing classes is left as-is. A solution to a subproblem is
hence a set of students attending the given course in the given block. It will be shown that this
decomposition approach leads to subproblems which we are able to solve to optimality with a
greedy algorithm.

13.3.1 The Master Problem

It is the job of the master problem to select those columns, generated by the subproblems, which
fulfills as many elective course requests as possible, while maintaining the necessary constraints.
Each column corresponds to a number of classes of a specific course given in a specific block. To
enumerate the columns, a new index for each course block pair (¢,b), p € P, is used. For each
column a binary variable 2, € {0,1} is representing the usage of the corresponding column. If
a student s is assigned to the course ¢ in block b in column p the constant A2P €{0,1} is equal
to 1 and otherwise zero. The number of classes which is required for the course ¢ in block b in
column p is given by the constant Df;b € Z*. With these definitions, the full master model (13.2)
is created.

Decomposed ECPP - Master Problem (13.2)
max Z AP -2l (13.2a)
c,b,s,p
s.t. Z ATE 2 +> B <1 Vb,s (13.2b)
Z AZE 2, <V Vs (13.2¢)
Z D, -2t <Q (13.2d)
c,b,p

Zscc,f-Df,b-zfvb +> SCoy-HL-upy <SMp Vb, f,SMy>0 (13.2¢)

c,p c,t

> up =1 Vit (13.2f)
b

>, <1 Yeb (13.2g)
p

2, €{0,1} (13.2h)

ul e {0,1) (13.2i)

The objective function of the master problem, like objective function (13.1a), calculates the
number of satisfied elective course requests. Constraint (13.2b) ensures that no student is taught
in two courses in the same block. Constraint (13.2c) ensures that an elective course request
is only satisfied once. Constraint (13.2d) ensures that no more than @ classes are established.
Constraint (13.2e) ensures that the resource limitations of subject f are not exceeded. Constraint
(13.2f) ensures that the existing classes are taught. Finally Constraint (13.2g) ensures that only
one non-zero zf’b is applied for each pair (¢,b). This is the convexity constraint.

The full master problem (13.2) is analogous to the direct model (13.1). Unfortunately the
master problem has an exponential number of variables, hence column generation is applied to
solve the relaxed master problem where the 27, variables and the uj variables are relaxed such
that 22, € [0,1] and uf € [0,1]. Now it is possible to start with a restricted master problem
where only a subset of zf,b variables are used and more variables are only added if necessary.

Chapter 13. Paper H: Elective Course Planning 212

The subproblem is described in Section 13.3.2, and is is dependent on the dual variables of the
constraints in model (13.2), see Table 13.1.

Table 13.1: List of dual variables and the corresponding bounds for the master problem

Constraint Dual variable Bound

(13.2b) ag >0
(13.2¢) pe >0
(13.2d) v >0
(13.2¢) S, 1 >0
(13.2f) nt free
(132g ¢c,b > 0

13.3.2 Subproblem

A subproblem is defined for each combination of a block and a course, i.e. for each (c,b). Given
a course ¢ and a block b the subproblem should find the set of students S’ € S who is taught
the course ¢ in block b with the maximal reduced profits. Notice that several classes of course ¢
may have to be given to teach the S’ students. Given a fixed block b and a fixed course ¢ the
binary variable x® defines whether student s should be included into the set of students S’. The
number of classes which are required to teach the S” students is defined by the integer variable
y. With these definitions we can now present the entire subproblem in model (13.3).

Decomposed ECPP - Subproblem (13.3)
max C;i;i:—Z(as—i-ﬂs—WS)~IS—(V+Z(5f)-y—¢ (13.3a)
s f

st. 2f <V Vs (13.3b)

Yot =Ly (13.3¢)

Yot <U-y (13.3d)

(0 <qQ (13.3¢)

SCr-y <SMy V f,SMy >0 (13.3f)

2* €{0,1} (13.3g)

y € Ny (13.3h)

The objective function of the subproblem defines the reduced profit for the subproblem, given the
current value of the dual variables o, 87, v, dp,5 and ¢.; from the master problem. Constraint
(13.3b) ensures that only students who request the course ¢ can be enrolled into S’. Constraint
(13.3c) ensures that enough students are enrolled to satisfy the minimal class size and con-
straint (13.3d) ensures that no more students are enrolled than the maximal class size times the
number of classes. Constraint (13.3e) ensures that the no more than the maximal number of
allowed classes are created. Finally constraint (13.3f) ensures that the resource limitations are
not exceeded.

213 13.3. Solution algorithms

13.3.3 Combinatorial solution of the Subproblem

It will now be shown that subproblem can be solved to optimality using a greedy algorithm with
a time complexity of O(]|S|log(]S|)). This is possible due to the uniform knapsack structure of
constraint (13.3d), i.e. all students take up the same amount of space in each elective course
class. Therefore a greedy algorithm can be written by simply processing the students in order of
their contribution to the objective. So even though a lot of different subproblems exist, it will
be possible to solve these in an small amount of time. Remember that a course ¢ and a block b
is given explicitly.

The objective of the subproblem is now divided in two parts. I.e. a part defined for each of
the variables z® and y. Let p° define the contribution student s makes to the objective if he is
included in the solution. It is not feasible to include student s in the solution if the student has
not requested course c. This is denoted by a contribution to the objective of —oo.

ps _ {_(as + ﬂs - WS) Vcs =1 (134)

—00 Otherwise

Likewise r is the contribution to the objective given by an increase of y by one.
r= 77—2(& (13.5)
f

By these definitions the objective can be written as
cryl = Zpsxs +r-y—¢ (13.6)
S

Notice that, by Table 13.1, » < 0, whereas p® has unrestricted sign. This entails the following
observation: The objective of the subproblem is to find those students which maximizes) _ p®,
while y should be selected as low as possible, i.e. the students should be fitted into as large
classes as possible. The maximal number of classes N which can be created for a course ¢ and a
block b is given by equation (13.7).

N = min (Q, SMj) (13.7)

Given these definitions we are now ready to present a combinatorial algorithm for finding the
optimal set of students S°P* which corresponds to the optimal solution of the subproblem, see
Algorithm 1. The algorithm gradually builds up a set of students S°P* which constitutes an
optimal solution. First all the students with positive contributions p* are included, line 5-7. If
the number of student in the class S’ is below the lower class limit, extra students are added in
line 8-13. Finally it is checked if the group of students in S’ will improve the current solution
SoPt if yes S’ is included into the solution otherwise the algorithm terminates.

13.3.4 Solving the ECPP by Column Generation

The Dantzig-Wolfe decomposition of the ECPP, defined by the relaxed master problem from
model (13.2) and the subproblem model (13.3), is solved using the standard Column Generation
framework (see e.g. Barnhart et al. (1998)). A simple heuristic is used to find the initial feasible
solution. For each course/block pair, create a column which contains all the students which have
elected this course. As all constraints of the decomposed part of the problem are set packing

constraints, no columns are needed to ensure feasibility.

Chapter 13. Paper H: Elective Course Planning 214

Algorithm 1 Revised Subproblem (c,b)

1: input: p®, r

2: output: Optimal set S’

3: Let 5 denotes the student with highest p® value, not already included in S°P* U S’
4: yZO,Sopt:{}

5: while y < N do

6: S ={}

7: while |S’| < U and p(s) > 0 do

8: Add 5 to S’

9: Update 5

10: end while

11: if |S’| < L then

12: Calculate n = [SP!| + |S'| = L- (y+1)
13: Let 5 denotes the student with highest p® value, not included in S°Pt U S’
14: while n < 0 do

15: Add 5 to &’

16: Update n and §

17: end while

18: end if

19: if > g p°+7>0then
20: Sert = Govt y &/
21: y=y+1
22 else
23: STOP
24: end if

25: end while

26: if Y .o p*+7—¢ >0 then

27 Add column of S°P! to master problem
28: end if

215 13.3. Solution algorithms

13.3.5 Explicit Constraint Branching

Explicit Constraint Branching (ECB) is a rather new technique used to improve the performance
of Branch and Bound algorithms. The idea is to divide the set of variables into smaller subsets
and explicitly add constraints to the problem, and possible also new variables. These additions
equip the model with additional structure which may provide superior branching. The approach
is generally used when the problem structure required for general constraint branching is lacking.
ECB is originally developed for standard MIP solving, see Appleget and Wood (2000).

Suppose a generic MIP is solved, with the integer variable z; > 0, j € J. Then let J' C J be
a subset of J and define integer coefficient «; for each j € J' such that Zj ajx; must be integer
in any solution to the MIP. A branching scheme to this problem is derived from

Z a;jz; <m or Z ajr; >m+1 (13.8)
jeJ’ jeJ’

where m is any integer. This implies the following steps, which constitute ECB.
e Define the subsets of Jj, of the index set J of integer variables.
o Define the integer coefficients oy, ; for each £ and for each j € Jj.
e Define the general integer ECB variables y;, for each k.
e Add the ECB constraints.
Y apjri—y=0 Vk (13.9)
J€Jk

Constraint branching is then performed by standard variable branching on the variable y;. It
should be mentioned that the subsets Jix can even be defined dynamically such that these are
updated in each iteration of the branching procedure. The idea is that the variables should
be roughly evenly divided such that in each subset there is equally many fractional variables,
variables with value zero and variables with value one. Moreover if none of 3, ; x; is fractional
then one or some of the fractional variables should be moved between the subsets such that every
sum is fractional.

Keeping the subsets Jj, static throughout the process is known as static ECB. The following
is the basic ECB constraint,

» xj—y;=0 (13.10)
jeJ
which is simply defined over the entire set of variables J. In principle the ECB constraints can
be defined over the already existing indices in the model. This approach is applied to the basic
ECPP model (13.1), by the following steps:

e Define static ECB-constraint by
> Yep—0e=0 Ve (13.11)
b

where the ECB variable to be branched on is o, € Ny. Le. o. is the number of classes
teaching course c¢. According to Appleget and Wood (2000) branching over this kind of
variable breaks some of the symmetry of the model.

e Solve the model with a standard MIP solver with branching priority for o. set to highest
among all variables.

Chapter 13. Paper H: Elective Course Planning 216

13.3.5.1 Using ECB in a Branch and Price Context

ECB can indeed also be used in a Branch and Price framework, where branching is performed
on the master problem. Again we choose to apply constraints which are defined over the already
existing indices. For instance the following,

p, < Y DV P < B, Ve (13.12)

b.p

which defines a lower and an upper bound on the total number of classes teaching course c.
Initially P, = 0 and 5. = @ and branching is performed by changing these bounds. Suppose that
for a given c expression (13.12) takes the fractional value I. The tree is now split by the two
conditions

p, =[] and p,=0Q (13.13)
p,=0 and p, = [l] (13.14)

which excludes the fractional solution from the feasible area, but maintains all integer solu-
tion. Notice that condition (13.13) will potentially result in an infeasible MP. Therefore dummy
columns should be added such that feasibility is maintained. Another constraint which could be
used exactly the same way is the following

> DPP, —r =0, Wb (13.15)
P

which is the total number of classes being taught in each block. Yet another is

S AP, —0.=0, Ve (13.16)

b,s,p

which is the total number of student being taught course ¢. A Branch and Price algorithm using
ECB will be tested in Section 13.4. Note that even if all ECB variables are integer it is not
guaranteed that the solution is in fact integral. Therefore a Branch and Price algorithm using
this form of ECB should also implement a second priority branching scheme, such as standard
variable branching. Note that imposing ECB constraints results in very little modification of the
DWD. The additional constraints are imposed on the MP, which results in new dual variables.
However it is trivial to incorporate this new dual variable in the revised subproblem. E.g. the
dual variable of constraint 13.12 is simply added to equation (13.5).

13.4 Results

In the previous sections we have suggested four different algorithms. In the initial tests the
Branch-and-Price algorithm without the ECB constraints had inferior performance and will
hence not be further tested. The remaining three optimization algorithms which we will test are:

e Solving the basic model (13.1) using a standard MIP solver.

e Solving the basic model (13.1) with both the basic ECB constraint (13.10) and constraint
(13.11), using a standard MIP solver.

e Branch and Price algorithm using equations (13.12) and (13.15) in an ECB branching
scheme, as described in Section 13.3.5.1.

217 13.4. Results

The three algorithms are tested on datasets from 98 Danish high schools for the year 2008.
The current version of the high school administration system Lectio applies the meta-heuristic
developed by Binzer and Kjeldsen (2008). Given that the three suggested algorithms can achieve
optimal results, it is now possible to evaluate the efficiency of the meta-heuristic in Lectio. Tests
are ran on a notebook equipped with an Intel Core2 T7200 CPU @ 2 GHz, 4 GB of RAM,
and running Windows Vista 32bit. This particular CPU has 2 cores, which is irrelevant as no
parallelization has been implemented. The BnP algorithms have been implemented in Microsoft
Visual C# using .NET framework version 3.5. The direct models have been implemented in
GAMS 22.6.149. For all tests CPLEX 10.0 has been used as solver.

The number of elective course requests which can be fulfilled depends upon the choice of
number of blocks and the choice of number of classes. These quantities are attempted selected
such that they both are somewhat binding. In Binzer and Kjeldsen (2008) an inspection of
dual bounds with respect to number of elective classes is performed. The conclusion is that
increasing the number of elective course classes allows for granting more course requests, which
is somewhat obvious. However if the number of classes is selected very high, the elective course
planning reduces into the more simple matter of assigning students to blocks. A similar analysis
could be made for the choice of number of blocks. This motivates the following choice of the
maximum number of elective course classes available, see equation (13.17).

Q= [Z (Z[‘}Vﬂ (13.17)

A choice on the number of blocks should also be made. The reason why |B| is not predefined
is because the high schools usually select this quantity using an ad-hoc procedure. The high
school administration will usually like to see solutions for several values of |B|. In the following
we attempt to derive a formula which selects a tight value for |B|. A tight value is preferred, as
it provides more interesting results. Let k; denote the highest number of existing classes which
a single student is attending,

ky =max » E"* (13.18)
t

At least k1 blocks should always be established to ensure feasibility. Let ks denote the rounded
average number of courses pr. student,

V'Cs +E5’t
ks = Round (Zc’s’t(g)> (13.19)

By inspection of the data, selecting the number of blocks equal to ko yields an extremely tight
problem. Therefore it seems appropriate to always select a slightly higher value than this. We
have chosen to select the number of blocks using equation (13.20), such that the number of blocks
can never be lower than ko + 1.

|B| = max(ky, ko + 1) (13.20)

13.4.1 Performance

Table 13.2 contains the average running time and the gap for all problems. It should be noted
that for those problems not solved within one hour, 3600s is used for the calculation of the

Chapter 13. Paper H: Elective Course Planning 218

average time. The table shows that in average Direct/w ECB performs best and BnP/w ECB
performs worst. Furthermore it is seen that Direct/w ECB in no cases provided a gap worse
than 5%, which is quite low. The BnP/w ECB generally performs bad, and even worse than the
pure direct model, which is disappointing.

Table 13.2: Running time and gaps for the algorithms

Direct Direct/w ECB BnP/w ECB

Average time 1373s 1121s 1523s
Average gap 0.9% 0.6% 2.8%*
Max gap 7.0% 5.0% 29.0%

" Three problems did not result in a gap within one hour

Table 13.3 contains the percentage of problems solved to optimality within different time spans.
The number of solved problems are indicated in brackets.

Table 13.3: Percentage of solved problems

Time(s) Direct Direct /w ECB BnP /w ECB
< 60 45.9 % (45) 50.0 % (49) 35.7 % (35)

60 - 600 12.2 % (12) 122 % (12) 19.4 % (19)
600 - 1800 6.1 % (6) 82 % (8) 31% (4)
1800 - 3600 1.0 % (1) 31% (3) 1.0% (1)
> 3600* 34.7 % (34) 26.5 % (26) 31.6 % (39)

E3
Problems not solved to optimality within one hour

No.of No.of No.of No. Assigned Assigned

student requests courses blocks Objective classes requests

Vejen 382 586 29 3 69572 36 586
Silkeborg 927 1789 65 5 208203 7 1786
Falkoner 421 1080 49 4 127690 66 1080
Vordingborg 415 1462 61 5 182790 68 1462
Alssund 385 650 31 5 64271 34 645
Holstebro 345 567 18 5 56700 29 567
Frederikssund 159 273 18 4 28690 18 273

Table 13.4: Results for a given set of real-life problems at Danish high schools.

The table also shows that Direct/w ECB clearly performs best, solving 50% of the data
instances in less than a minute.

Table 13.5 shows a comparison between the meta-heuristic which is currently applied to the
ECPP and the direct method with ECB from this paper. It is seen that the exact method does
provide a improvement. Even though the average difference is small it must be considered inter-
esting for the high schools to get access to a better approach. For some schools an improvement
of 10 classes could be found, and for these high schools the accessibility for a better solution must
be considered very important. It should be noted that the running time for the Meta-heuristic
is roughly 2 minutes whereas the running time for the Direct method with ECB is one hour.

219 13.4. Results

Table 13.5: Comparison between Direct /w ECB and the Meta-heuristic solver.

Direct /w ECB Meta-heuristic ~Abs. diff Rel. diff
Average 27 28 1.1 2.9

However in empirical experiments performed in Kristiansen and Sgrensen (2010) it is shown that
for a small sample of datasets, Direct /w ECB also performs better with a running time of 2
minutes. In the majority of cases, a running time of 2 minutes actually provided the same best
solution as with a running time of 1 hour.

13.4.2 Extension

It is preferable if elective courses classes consist of students from the same common classes, as
this entails several benefits from a social point of view. This is done by extending the ECPP
such that it minimizes the total number of represented common classes while simultaneously
maximizing the number of granted elective course requests. The extension is added using the
e-constraint method (Ehrgott (2000)), such that the problem is multi-objective. Given the result
of the Direct/w ECB algorithm, an extended model is formulated, using a new binary variable
v¥, € {0,1}. This variable states whether any student from common class k is taught course c
in block b. The objective for the new model is then simply to minimize the total sum of common
classes, see equation (13.21).

min » Y o, (13.21)
c b k

Instead of the old objective function (13.1a), a new constraint on the number of granted elective
class requests is included, see equation (13.22).

DD D Weal, e (13.22)
c b s

Finally a link between the ’uf’b variables and the 27, variables is given, see equation (13.23).
The matrix G** is an incidence matrix which is 1 if student s is part of common class k and 0
otherwise. The following constraint ensures that if one common class is represented in a course
in a block, it is counted.

vf,b > xi,b v &) ba S, k, Gs’k =1 (1323)

The parameter ¢ defines the acceptable number of granted elective courses, compared to the
optimal solution of direct model, see equation (13.24).

e=R-> T, (13.24)

c,b,s

By adjusting the ratio R to different values we generate the results in Table 13.6. The closer to 1
the diverge percentage R is the less the extended solution differs from the original solution. The
table lists the objective solutions. The total number of represented common classes is shown in
brackets. Basic denotes the solution from the model without use of the extension.

It is clearly seen that if the ratio R is low, fewer elective course requests are granted and less
common classes are represented. The most interesting result from this test are the difference

Bibliography 220

Table 13.6: Performance test of common class extension

Objective
1D Basic R =1.00 R =0.95 R=090 R=0.75 R=0.50
Avedgre 347 (54) 347 (39) 330 (32) 313 (29) 263 (21) 174 (12)
Esbjerg G. 417 (85) 417 (46) 397 (36)* 379 (33)* 313 (24) 209 (14)
Metropolitan 419 (65) 419 (52)* 399 (42)* 378 (37)* 315 (28) 213 (16)
Nordsjeellands 155 (24) 155 (20) 148 (16) 140 (15) 117 (11) 78 (6)
Neerum 972 (190) 972 (115) 924 (89) 875 (76) 729 (52) 486 (29)
Rysensteen 313 (31) 313 (21)* 208 (19)* 282 (17) 237 (14) 159 (8)
Silkeborg 669 (195) 669 (111)* 636 (85)* 604 (72) 502 (46) 339 (22)
Skanderborg 384 (47) 384 (39) 365 (24) 346 (20) 288 (13) 201 (8)
Stenhus 1056(229) 1056 (144)* 1004 (109)* 951 (92) 792 (63) 528 (33)
Stovring 334 (58) 334 (36) 318 (31) 301 (27) 251 (19) 167 (11)
Aalborg 880 (182) 880 (139)* 836 (103)* 792 (88) 660 (60) 440 (33)
Aalborghus 370 (75) 370 (49) 352 (38) 334 (33) 280 (24) 189 (13)
Average 526 (103) 526 (68) 501 (52) 475 (45) 396 (31) 265 (17)

F3
Not solved to optimality within one hour

between Basic and R = 1.0. The number of granted elective course requests is the same, but there
is a big difference in the number of represented common classes. On average 103 common classes
are represented using the basic ECPP whereas with a diverge percentage of 1 only 68 common
classes are used. An improvement of 34%. For some of the larger data sets the improvement
are more than 40%. The reason that the extended model is able to improve the solution so
significantly is due to symmetry. As mentioned previously the ECPP contains a great deal of
symmetry. The extension takes advantage of this to swap students such that the number of
represented common classes are minimized while the number of granted requests remains high.

13.5 Conclusion

In this article we have demonstrated how a critical planning problem for the Danish high schools
can be optimized by applying three different approaches: Direct MIP model solution, MIP
model solution with Explicit Constraint Branching and Branch-and-Price with Explicit Con-
straint Branching. The algorithms are tested on 98 data sets from different high schools of
school-year 2008. The tests show that Explicit Constraint Branching is an interesting tool.
Furthermore, the tests reveal that the current meta-heuristic algorithm can be significantly im-
proved. Furthermore, we have shown that an important secondary objective, minimization of the
number of common classes, can improve the solution substantially using the e-constraint method.
Finally it should be mentioned that currently the approaches in this article are not implemented
in any software tools accessible for the Danish high schools. However, showing that the elective
course planning can be improved has indeed raised interest among several high schools.

Bibliography

J. Appleget and R. Wood. Ezplicit-Constraint Branching for Solving Mized-Integer Programs,
chapter 14, pages 245-262. Springer Netherlands, 2000.

221 Bibliography

C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price:
Column generation for solving huge integer programs. Operations Research, 46:316-329, March
1998. ISSN 0030-364X.

S. P. Binzer and S. H. Kjeldsen. Metaheuristics for high school planning. Master’s thesis, IMM,
DTU, 2008.

D. Costa. A tabu search algorithm for computing an operational timetable. Furopean Journal
of Operational Research, 76(1):98 — 110, 1994. ISSN 0377-2217.

G. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research, 8
(1):101-111, 1960.

D. de Werra. An introduction to timetabling. European Journal of Operational Research, 19(2):
151 — 162, 1985. ISSN 0377-2217.

J. Desrosiers and M. Liibbecke. Selected topics in column generation. G-2002-64, 34:1-34, 2005.
M. Ehrgott. Multicriteria Optimization. Springer, 2000.

W. Erben and J. Keppler. A genetic algorithm solving a weekly course-timetabling problem. In
E. Burke and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153
of Lecture Notes in Computer Science, pages 198-211. Springer Berlin / Heidelberg, 1996.

L. D. Gaspero, A. Schaerf, and B. McCollum. The second international timetabling competi-
tion (itc-2007): Curriculum-based course timetabling (track 3). Technical report, School of
Electronics, Electrical Engineering and Computer Science, Queen’s University SARC Building,
Belfast, United Kingdom, 2007.

V. Kaibel, M. Peinhardt, and M. Pfetsch. Orbitopal fixing. In M. Fischetti and D. Williamson,
editors, Integer Programming and Combinatorial Optimization, volume 4513 of Lecture Notes
in Computer Science, pages 74-88. Springer Berlin / Heidelberg, 2007.

S. Kristiansen and M. Sgrensen. The class packing problem. Master’s thesis, DTU-Management,
2010.

G. Laporte and S. Desroches. The problem of assigning students to course sections in a large
engineering school. Computers & Operations Research, 13(4):387 — 394, 1986. ISSN 0305-0548.

R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling: A description
of the problem model used for track two of the second international timetabling competition.
Cardiff Accounting and Finance Working Papers A2007/3, Cardiff University, Cardiff Business
School, Accounting and Finance Section, 2007.

F. Margot. Exploiting orbits in symmetric ilp. Mathematical Programming, 98:3-21, 2003. ISSN
0025-5610.

T. Miiller. Ttc2007 solver description: a hybrid approach. Annals of Operations Research, 172:
429-446, 2009. ISSN 0254-5330.

T. Miiller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249-269, 2010. ISSN 0254-5330.

T. Miiller, K. Murray, and S. Schluttenhofer. University course timetabling & student sectioning
system, 2007. Space Management and Academic Scheduling, Purdue University.

Bibliography 222

H. Rudova and K. Murray. University course timetabling with soft constraints. In Practice And
Theory of Automated Timetabling I'V., pages 310-328, 2003.

A. Tripathy. School timetabling—a case in large binary integer linear programming. Management
Science, 30(12):1473-1489, 1984.

F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and ways to perform
branching in a branch-and-price algorithm. Operations Research, 48:111-128, January 2000.
ISSN 0030-364X.

Chapter 14 Paper1

International Timetabling Competition 2011: An
Adaptive Large Neighborhood Search algorithm

Matias Sgrensen'-2, Simon Kristiansen!-2, Thomas R. Stidsen’
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

14.1 Introduction

An algorithm based on Adaptive Large Neighborhood Search (ALNS) for solving the generalized
High School Timetabling problem in XHSTT-format (Post et al. (2012a)) is presented. This
algorithm was among the finalists of round 2 of the International Timetabling Competition 2011
(ITC2011). For problem description and results we refer to Post et al. (2012b).

14.2 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search was first developed as a metaheuristic for the class of
Vehicle Routing Problems (Pisinger and Ropke (2005); Ropke and Pisinger (2006)). It has been
applied for few other problem classes as well, including Project Scheduling (Muller (2009, 2010)),
Lot-sizing (Muller et al. (2011)), Optimal Statistic Median Problem (Katterbauer et al. (2012)).

Recently we have developed a framework based on ALNS for solving combinatorial optimiza-
tion problems (written in C# 4.0). This framework is part of the commercial product Lectioi,
where it is used to solve various practical timetabling problems, see Kristiansen et al. (2011);
Sgrensen and Stidsen (2012) and Kristiansen and Stidsen (2012).

The pseudo code for a general ALNS algorithm is given in Algorithm 1.

L http://www.lectio.dk
Cloud-based administration system for high schools. Developed by MaCom A/S, Vesterbrogade 48 1., 1620
Copenhagen V, Denmark

223

Chapter 14. Paper I: International Timetabling Competition 2011: An ALNS algorithm 224

Algorithm 1 Adaptive Large Neighborhood Search

1: candidate solution x, remove-methods Q~, insert-methods Q%
2: Tpest = T
3: while stop-criterion not met do

4:

10:
11:
12:
13:

=z
RemoveStrategy: select ¢ as some quantity to be removed
AdaptiveStrategy: select remove-method r € Q™ and insert-method i € QF
remove requests from z’ using r(q)
insert requests into 2’ using ¢
AdaptiveStrategy: update performance indicators
if c(2') < ¢(@best) then
Thest = &’
end if
AcceptStrategy: set candidate solution x to either ', Zpes; or x itself

14: end while
15: return Tpest

The main points of the algorithm are described below in general terms.

e In each iteration, a remove and insertion method is chosen and applied to the candidate

solution. The combination of these methods defines the neighborhood of the algorithm,
hence there exists [Q~| - |27| different neighborhoods.

RemoveStrategy: Governs the selection of ¢. This has major influence on how much
computational time each iteration requires.

AdaptiveStrategy: Responsible for selecting remove and insertion methods in each it-
eration, and updating their respective performance indicators of these method by some
metric.

AcceptStrategy: Determines which solution to use as candidate solution for next iteration.
This could in principle be any known solution, but is usually selected as either the current
candidate solution z itself, the newly produced solution z’, or the current best solution
Thest -

14.3 Algorithm setup for ITC2011

Here we describe our implementation of a ALNS algorithm for the XHSTT format. The choice
of ALNS strategies are briefly mentioned below. More details will be available in the full paper.

e RemoveStrategy: The remove and insertion methods deal with sub-events. ¢ is defined as

the sum of the duration of the sub-events which are removed from the solution. We select ¢
as a random number, bounded by a percentage of the total duration of all instance events.

AdaptiveStrategy: We have chosen a metric essentially based on two parameters for each
method; The number of times the method was part of an iteration which yielded a better
solution than the current one, and the relative gap between the current solution and the
resulting solution from applying the method.

225 14.4. Final remarks

e AcceptStrategy: An acceptance criteria borrowed from Simulated Annealing (SA) is used,
with the following additional property: If no new best solution has been found in a number
of iterations, the temperature is increased by a factor, and the candidate solution is set
to the best known solution. The intention is to allow more diverse exploring of the area
around the best known solution, in case the algorithm gets ’stuck’.

Let a move be a small perturbation on a solution. The following moves are used in this
implementation: Move M, ; denotes the assigning of sub-event se to time t. M, ¢ sc denotes
the assigning of resource r to event resource er on sub-event se. Furthermore we also implement
the corresponding unassign-moves, denoted M , and M., .., respectively.

Using these moves a total of 9 insertion methods (all more or less based on the greedy
principle, e.g. regret heuristics (Potvin and Rousseau (1993); Sgrensen and Stidsen (2012)), and
14 remove methods (all based on some element of relatedness and an element of randomness) are
implemented. These methods are divided into three categories, based on what they (un-)assign:
Only times, only resources, or both times and resources.

An example of a remove method is the following, which removes sub-events from non-preferred
times: Given an XHSTT instance, and a solution S to this instance. Find all tuples (se, t) of S,
where sub-event se is assigned time ¢, and ¢ is not a preferred time for sub-event se (see Prefer
times constraints, Kingston (2010)). Let the set of these tuples be denoted U. Select randomly
a subset of these tuples U C U such that the sum of the duration of all sub-events of the tuples
in U equals q. Perform an unassign time move M, se,t for each of the tuples in U.

An example of an insertion method is the following: Let A (M) € R be the profit of performing
move M on the solution at hand S. Select Mpest = argmin,, , (A (Mset)), and if A (Mpest) < 0,
apply Mpest to S and repeat, otherwise stop. This is a greédy method which assigns times to
sub-events, until no profitable move can be found.

In the full paper all insert/remove methods will be described in detail.

The final algorithm contains 9 free parameters, which were tuned for best performance using

the irace package (see Lopez-Ibanez et al. (2011); Birattari (2005)).

14.4 Final remarks

This paper documents how Adaptive Large Neighborhood Search can be applied to problems in
XHSTT format.

The proposed algorithm was applied to all instances in archive XHSTT-ITC2011, and showed
competitive results in most cases (comparing to the best known solutions at that point in time).

ALNS has not been used much in the field of timetabling, but we see no reason to believe
that ALNS should not perform well on other (related) problems in this field.

Acknowledgements Thank you goes to Michael Herold for fruitful discussions concerning ALNS
strategies. Thank you to Manuel Lopez-Ibaifiez for help using the irace package. And finally thank you
to David Pisinger for advice on ALNS implementation.

Bibliography

M. Birattari. The Problem of Tuning Metaheuristics as seen from a Machine Learning Perspec-
tive, volume 292 Dissertations in Artificial Intelligence - Infix. Springer, 1 edition, 2005.

K. Katterbauer, C. Oguz, and S. Salman. Hybrid adaptive large neighborhood search for the
optimal statistic median problem. Computers & Operations Research, 39(11):2679 — 2687,
2012. ISSN 0305-0548.

Bibliography 226

J. H. Kingston. The hseval high school timetable evaluator, 2010. URL http://it.usyd.edu.
au/~jeff/hseval.cgi.

S. Kristiansen and T. R. Stidsen. Adaptive large neighborhood search for student sectioning at
danish high schools. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

S. Kristiansen, M. Sgrensen, and T. R. Stidsen. Elective course planning. Furopean Journal of
Operational Research, 215(3):713 — 720, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.06.039.

M. Lopez-Ibénez, J. Dubois-Lacoste, T. Stiitzle, and M. Birattari. The irace package: Iterated
racing for automatic algorithm configuration. Technical Report TR/IRIDIA /2011-004, Uni-
versité Libre de Bruxelles, IRIDIA, Av F. D. Roosevelt 50, CP 194/6 1050 Bruxelles, Belgium,
Februrary 2011. http://iridia.ulb.ac.be/irace.

L. Muller. An adaptive large neighborhood search algorithm for the resource-constrained project
scheduling problem. In MIC 2009: The VIII Metaheuristics International Conference, 2009.

L. Muller. An adaptive large neighborhood search algorithm for the multi-mode resource-
constrained project scheduling problem. 1, Department of Management Engineering, Techni-
cal University of Denmark Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark,
2010.

L. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. FEuropean Journal of Operational Research, Volume
218(Issue 3):614-623, 2011.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34:2403-2435, August 2005. ISSN 0305-0548.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An
xml format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research, 66(3):331
- 340, 1993. ISSN 0377-2217.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455-472, November 2006.
ISSN 1526-5447.

M. Sgrensen and T. R. Stidsen. High school timetabling: Modeling and solving a large number
of cases in denmark. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), pages 359-364. SINTEF, 2012.

http://it.usyd.edu.au/~jeff/hseval.cgi
http://it.usyd.edu.au/~jeff/hseval.cgi

Chapter 15 Paper J

Comparing Solution Approaches for a Complete
Model of High School Timetabling

Matias Sgrensen'-?, Thomas R. Stidsen'
Management Science, Department of Management Engineering,
Technical University of Denmark
2MaCom A /S, Vesterbrogade 48 1., DK-1620 Kbh V., Denmark

DTU Technical Report 5.2013 which preceded Paper B. Only parts of the text are replicated
here. References to equations in Paper B are used throughout.

15.1 Complexity

Most common variants of non-trivial school timetabling problems have been proved to be N'P-
hard, see Even et al. (1975); Cooper and Kingston (1996); ten Eikelder and Willemen (2001).
However, we have not been able to find a formulation of timetabling which resemble exactly the
one of this paper.

To prove that the Danish High School Time Problem (DHSTP) is A'P-hard, Proposition 6.3
of Wolsey (1998) is used. Le. it must be shown that DHSTP is in AP, and that another N/'P-
complete problem can be polynomially reduced to the decision-version of DHSTP (by Definition
6.7 of (Wolsey, 1998, p. 83)).

Let the objective value of model (w be denoted zpgsTp. The decision version of model
(2_4) asks whether a solution exists with objective zppstp < k. Clearly the decision version of
DHSTP is in N'P as a solution z.,; to model (2.4), can be checked to have objective value less
than £ in polynomial time.

The well known N “P-complete problem Graph k-Colorability problem (GCP) asks whether
it is possible to assign each vertex of a graph G a color such that no two adjacent vertices have
the same color, using at most & colors. To show that GCP is polynomial reducible to DHSTP,
a conversion scheme is now given, which transforms any instance of GCP into an instance of
DHSTP. An instance of GCP consists of a graph G with vertices V' and edges F', and a number
of colors k.

e Start with an empty instance of DHSTP,ie. D=M==C=0,T ={tp},R ={rp}.
e For each vertex v € V, create an event e.

227

Chapter 15. Paper J: Comparing Solution Approaches for a Complete Model of HST 228

e For each edge f € F between vertices v; and vo, create an entity a. Let events e; and eq
represent vertices v; and vg, respectively. Assign entity a to both e; and eg, i.e. Be, o =
Be, =1

e Create one day d with k timeslots {to,...t5_1}.

0 t=t
o Set ey = Daandezﬁa:’)/a:(sa:C:LZOZT]QZO.
e 1 else

e As the only room in the instance is the dummy-room, the following substitution is made:
Ye,t = Teyrp,t-

This problem-setting makes a lot of constraints and variables redundant. The DHSTP instance
can therefore be written as follows (written as a maximization-problem by changing sign of a. ,.+):

DHSTP reduced problem (15.1)
maX ZDHSTPReduced = Z O rtTe,rt (15.1a)
e,r,t
s.t.
(one time/room) Z Terpt =1 Ve (15.1Db)
¢
(entity conf.) Z BeogTerpt <1 Ya,t # tp (15.1c)

€

Solving model (15.1) gives an objective zpusTPReduced; cOrresponding to the number of events
which are assigned a timeslot different from the dummy-timeslot. By the conversion scheme,
an event corresponds to a vertex in graph G and a timeslot corresponds to a color. Therefore
ZDHSTPReduced COrresponds to the number of vertices which is assigned a color. To answer
whether graph G is k-colorable, one can simply check if zpasTPReduced = |V| < k (corresponding
to solving the decision version of model (15.1)).

Any instance of GCP can thereby be converted into an instance of the decision version of
DHSTP. Therefore the decision version of DHSTP is NP-complete, so by Definition 6.7 of
(Wolsey, 1998, p. 88), DHSTP is N'P-hard.

15.2 Conversion to the XHSTT format

The XHSTT format (Post et al. (2012a)) is an XML-based format for (High) School Timetabling
problem instances. It was used for the International Timetabling Competition 2011 (Post et al.
(2012b)). Currently, 38 non-artificial datasets from 11 different countries are available.

In this section the problem instances of Lectio will be modeled in the XHSTT format. This
will allow us to easily publish our instances. However, some aspects of DHSTP cannot currently
be modeled with XHSTT, which is discussed in Section 15.2.2. It is assumed throughout this
section that the reader has in-depth knowledge of XHSTT.

Times

e TimeGroups: One day-TimeGroup is created for each day d € D. Furthermore, if the
instance is a two-week instance, a week-TimeGroup representing each week is also created.

229 15.2. Conversion to the XHSTT format

Furthermore a TimeGroup is created for each neighbor-day pair, as described in Section
7.2.2.3, which contain all times of the respective days.

e Time: One Time is created for each timeslot ¢t € T.

Resources

e ResourceTypes: Three ResourceTypes exist, namely Room, Student, Teacher. These
correspond analogously to the sets R and A (students and teachers).

e Resources: For each room r € R and each entity a € A, a Resource of corresponding
type is created.

Events

e EventGroups: For each class ¢ € C, a corresponding EventGroup is created. The members
of an EventGroup are the events where the class participates. Notice that this is very
similar to the definition of Courses, but since an event can contain more than one class,
we use EventGroups instead of Courses.

e Events: A conversion from DHSTP EventChains to XHSTT-Events is now described.
Events are either combined into the same event or linked together using constraints (i.e.
certain events should be placed in the same or immediately following timeslot as other
events).

— Denote the set of entities, the set of classes, and the set of eligible rooms for event e by
Ae, Ce and R, respectively. If for EventChain ec there exists two events eq, es € ec
for which the set of entities, classes, eligible rooms, or locked room are different, i.e. if
Aey # Ay, Cey # Cey, Rey # Rey, 08 LR, # LR,, ., then all events in EventChain
ec must be linked using constraints.

— If any event ¢ € ec should be placed alongside other events, i.e. S, # (), then all events
in EventChain ec must be linked using constraints.

— If none of the above applies, events are combined into one Event.

Figure 15.1 illustrates conversion of some EventChains to XHSTT Events.

€g
€ = €7
o €10—€11
1 1

€12=€13

€9 €9

e1 €3 — €4 — €5

Figure 15.1: Conversion from EventChains to XHSTT events. e; and e represent events which
are combined into one XHSTT-Event. The remaining events are linked together using con-
straints.

15.2.1 Constraints

In the following constraints of DHSTP is mapped to the XHSTT format. As in the MIP model
(2.4), all constraints have CostFunction = Sum.

Chapter 15. Paper J: Comparing Solution Approaches for a Complete Model of HST 230

15.2.1.1 One timeslot - AssignTime

Only a single AssignTime constraint is needed, which applies to all events. Weight is set equal
to 1, and Required equals true.

15.2.1.2 One room - AssignResource

A single AssignResource constraint is created, which applies to all events, and has Role = Room
and Required = true. The Weight is set equal to 1.

15.2.1.3 Do not split events - SplitEvent

No events should be split, so all events are grouped by their duration, and for each group a
single SplitEvent constraint is created, which applies to these Events, have Required = true,
Weight = 1000, MinimumDuration and MaximumDuration set accordingly, and MinimumAmount =
MaximumAmount = 1.

15.2.1.4 Teacher unavailable times - AvoidUnavailableTimes

The set of unavailable timeslots for a teacher is known (these partly defines parameter D).
Group teachers by this set of timeslots, and create a AvoidUnavailableTimes constraint which
applies to these teachers, and the respective set of timeslots. Further, Required = true, and
Weight = 1.

Unavailable times for students are skipped as these are usually artificial in the sense that
students are only marked as unavailable in certain timeslots by preference. I.e. for students it is
preferred that late timeslots on each day are only used if necessary.

15.2.1.5 Do not split EventChains over days - PreferTimes

Neither an event or an EventChain can be assigned timeslots such that it spans over several
days. For each event, identify its feasible timeslots by its EventChain. E.g. if an event has
events which must be placed in contigious positions, then it cannot be assigned the last timeslot
on a day.

Group events by their set of feasible timeslots. Create a PreferTimes constraint which apples
to the appropriate events and times, has Required = true and Weight = 1.

15.2.1.6 Eligible rooms - PreferResource

Each event must be constrained such that it is only assigned its eligible rooms. Identify a set
of Resources by parameter K. ,, and create an PreferResource constraint with Required —
true, Weight = 1000 and Role = Room. If several events have the same set of eligible rooms,
these PreferResource constraints can be grouped. Notice that the priority of rooms as defined

by eq. (7.37) is ignored.

15.2.1.7 Entity and Room conflicts - AvoidClashes

Only one AvoidClashes constraint is defined, which applies to all rooms, students and teachers.
The constraint has Required set to true and Weight = 1. The XHSTT format does not currently
allow us to restrict AvoidClashes constraint to only check for clashes in a subset of events, as
was done in eq. (7.3') and eq. (7.4’). Therefore instances might have inevitable violations of
hard constraints.

231 15.2. Conversion to the XHSTT format

15.2.1.8 Required days off - ClusterBusyTimes

Group teacher-entities by their number of required days off D, skipping those which require
no days off. For each of these groups, generate a ClusterBusyTimes constraint which applies
to these entities, with Minimum = 0, Maximum = |D| — D, Required = true, Weight = 1 and
TimeGroups equal to the set of timegroups representing days.

15.2.1.9 Days occupied penalty - ClusterBusyTimes

Create a ClusterBusyTimes constraint which applies to all teacher-entities, with Minimum =
Maximum = 0, Required = false, Weight as set by eq. (7.39), and
TimeGroups equal to the set of timegroups representing days.

15.2.1.10 Days off penalty - ClusterBusyTimes

Create a ClusterBusyTimes constraint which applies to all student-entities, with Minimum =
Maximum = |D|, Required — false, Weight as set by eq. (7.40), and TimeGroups equal to the
set of timegroups representing days.

15.2.1.11 Neighbor day conflicts - SpreadEvents

Define an SpreadEvents constraint which applies to all EventGroups representing classes, with
Weight as set by eg. (7.42) and Required — false. The TimeGroups section contains all
TimeGroups which define a neighbor-day pair, and all entries have Minimum = 0, Maximum = 1.
Notice that all neighborday conflicts are penalized for all classes, contrary to eq. (7.29).

15.2.1.12 Penalize idle slots - LimitIdleSlots

Two LimitIdleSlots constraints are created, which applies to all student-entities and all teacher-
entities, respectively. The Weight is set as by eq. (7.38), and both constraints have Required —
false, Minimum = Maximum = 0, and TimeGroups representing days.

15.2.1.13 Events in same timeslot - LinkEvents

Events which should be placed in the same timeslot as others can be specified using the LinkEvent
constraint. For each set of these events, create a LinkEvents constraint which applies to these
events, with Required = true, Weight = 1, and one EventGroup which represents all events.

15.2.1.14 Events in contiguous timeslots - OrderEvents

For events which should be placed in contiguous timeslots (’followers’), an OrderEvents con-
straints is created with Required = true and Weight = 1000. The constraint applies
to all pairs of events (er,es) where e; should follow immediately after e;. All pairs have
MinSeparation = MaxSeparation = 0.

15.2.1.15 Class day conflicts - SpreadEvent

A single SpreadEvents constraint is created, which applies to all EventGroups representing
classes, with Required = true and Weight = 1. The TimeGroups-section is set equal to the set
of timegroups representing days, with every entry having Minimum = 0 and Maximum = 1, Notice
that it is not possible to constrain the events for which this constraints is applied, as was done
in eq. (7.24). This may lead to hard constraint violations if classes are part of several events in

Chapter 15. Paper J: Comparing Solution Approaches for a Complete Model of HST 232

the same EventChain, and these events cannot be combined into the same Event, as described
in the Event-conversion scheme.

15.2.1.16 Daily workload - LimitBusyTimes

Group all teacher-entities by their maximum number of work-hours per day W,. For each of
these groups, create a LimitBusy constraint which applies to these teachers, with Minimum =
0,Maximum = W,, Required = true, Weight = 1, and timegroups representing days.

15.2.1.17 Week stability - LimitBusyTimes

The week stability constraint (7.35) cannot be modeled entirely as-is. Instead it is assumed that
all events of class ¢ is assigned a timeslot. This assumption seems fair in light of the applied
AssignTime constraint. Let d. = > _ J. . be the number of events containing class c¢. Now group
classes by d. and create a SpreadEvents constraint which applies to all EventGroups representing
these classes, have Cl}equired = false anC(li applies to two timegroups, each representing a week,

with Minimum = |%] and Maximum = [%]. Thereby a class with 5 event must have a week-

distribution of 2/3 or 3/2, and a class with 6 events must have the distribution 3/3.

15.2.2 Summary

The following aspect of DHSTP are not modeled with the XHSTT format:

e Penalty for rooms with low priority for events, as defined in eq. (7.37). This is a minor
flaw, as few events will have second and third-priority rooms.

e Events can be assigned a room, but not a timeslot. This also clashes with a hard constraint
of DHSTP, however, it does not pose a major problem as such events could be filtered out
if we imagine solving the XHSTT instance in a practical setting.

e All neighbor-day conflicts are penalized. As the penalty given is small, this is a minor flaw.

e All room conflicts, entity conflicts and class day conflicts are penalized, which might give
inevitable violation of hard constraints.

e Constraints room stability ((7.22) and (7.21)) and days off week stability ((7.33)) cannot
currently be modeled with XHSTT. Both are small flaws, as these represent soft-constraints
with a small weight.

e The combining of students as described in the beginning of Section 7.2.2 is not taken into
account. This would be possible by introducing separate constraints for different groups of
students.

Even with these inconclusive aspects of XHSTT with respect to DHSTP, we still believe the
conversion of Lectio instances have significant contribution. All hard-constraints can be modeled
more or less accurate. The soft-constraints which are left out are not of very significant character.
Furthermore the resulting datasets are the first ones to use the OrderEvents constraint, and the
first ones to span multiple weeks.

233 Bibliography

Bibliography

T. Cooper and J. Kingston. The complexity of timetable construction problems. In E. Burke
and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture
Notes in Computer Science, pages 281-295. Springer Berlin / Heidelberg, 1996.

S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-commodity flow
problems. Foundations of Computer Science, Annual IEEE Symposium on, 0:184-193, 1975.
ISSN 0272-5428.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An
xml format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385-397, 2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

H. ten Eikelder and R. Willemen. Some complexity aspects of secondary school timetabling prob-
lems. In E. Burke and W. Erben, editors, Practice and Theory of Automated Timetabling III,
volume 2079 of Lecture Notes in Computer Science, pages 18-27. Springer Berlin / Heidelberg,
2001.

L. Wolsey. Integer programming. Wiley-Interscience publication, 1998.

	Abstract
	Resumé
	Preface
	Acknowledgments
	I Introduction
	Abbreviations
	Thesis Background
	Operations Research
	Thesis Reading Guide

	High School Timetabling
	The Generalized High School Timetabling Problem
	The Danish High School Timetabling Problem
	Two-Stage Decomposition
	International Timetabling Competition 2011

	The Generalized Meeting Planning Problem
	The Consultation Timetabling Problem

	Overview of Results
	Papers and Conferences
	Scientific Contributions
	Practical Applications

	Conclusion
	Future Research

	II Scientific Papers
	Paper A: Integer Programming for the Generalized (High) School Timetabling Problem
	Introduction
	Related Literature
	Problem Description and a Mixed Integer Programming Formulation
	Computational Results
	Conclusion

	Paper B: Integer Programming and Adaptive Large Neighborhood Search for Real-World Instances of High School Timetabling
	Introduction
	The Timetabling Problem at Danish high schools
	Adaptive Large Neighborhood Search
	Results
	Conclusion

	Paper C: A Two-Stage Decomposition of High School Timetabling applied to cases in Denmark
	Introduction
	Related work
	An Integer Programming Model for High School Timetabling
	Two-Stage Decomposition of the Integer Programming model
	Lectio High School Timetabling Problem
	Computational Results
	Conclusion

	Paper D: Decomposing the Generalized High School Timetabling Problem
	Introduction
	Related Literature
	Problem Description - The XHSTT format
	Two-Stage Decomposition
	Solution Method
	Computational Results
	Conclusion

	Paper E: A Matheuristic for High School Timetabling
	Introduction
	Related work
	Matheuristic
	Test Setup
	Computational Results
	Conclusion

	Paper F: The Consultation Timetabling Problem at Danish High Schools
	Introduction
	Consultation Timetabling Problem
	Integer Programming model
	Adaptive Large Neighborhood Search
	Parameter tuning
	Performance
	Final Remarks and Outlook

	Paper G: A Branch & Price Algorithm for the Generalized Meeting Planning Problem
	Introduction
	Previous Approaches
	A Mixed-Integer Programming model of the Generalized Meeting Planning problem
	Test Applications
	Computational Results
	Conclusion

	III Other Contributions
	Paper H: Elective Course Planning
	Problem Description
	Modeling of Elective Course Planning
	Solution algorithms
	Results
	Conclusion

	Paper I: International Timetabling Competition 2011: An Adaptive Large Neighborhood Search algorithm
	Introduction
	Adaptive Large Neighborhood Search
	Algorithm setup for ITC2011
	Final remarks

	Paper J: Comparing Solution Approaches for a Complete Model of High School Timetabling
	Complexity
	Conversion to the XHSTT format

