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Summary (English)

The goal of the thesis is to develop flexible mathematical methods for quanti-
tative interpretation of image content. Problems from research areas as diverse
as evolutionary biology, remote sensing and materials science have motivated
the methodological development. The solutions are inspired by classical math-
ematical image analysis techniques, information theory, probabilistic graphical
models and manifold learning.

Specifically, the thesis revolves around describing three major components of
images, namely intensity, texture and geometry. Intensity distribution mod-
elling is important for obtaining useful global representations of the raw image
data. Texture description provides a local representation of the image content,
useful for descriptive and discriminative scenarios. Geometrical knowledge of
the image content is leveraged within the framework of Markov random fields.
Mathematical models are developed around these three topics and constitute
building blocks useful for engineering image-based solutions to a wide range of
problems.

The contributions include automated quantification of frog patterning from
field imagery, statistical methods for estimating the genetic basis of quanti-
fied mimicry phenotypes, estimation of the atomic structure of graphene from
low-contrast transmission electron microscopy images and patch-based crop clas-
sification from synthetic aperture radar data. Further, an information theoretic
approach to two-set image decomposition is presented, representing a purely
methodological contribution.

This thesis makes statistical image analysis available to fellow researchers with
domain specific problems, and provides new methodology relevant for the field
itself.
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Resumé

Målet for denne afhandling er at udvikle fleksible matematiske metoder til kvan-
titativ fortolkning af billedindhold. Metodeudviklingen er inspireret af proble-
mer fra s̊a forskellige forskningsomr̊ader som evolutionærbiologi, remote sensing
og materialevidenskab. Løsningerne er inspireret af klassisk matematisk billeda-
nalyse, informationsteori, probabilistiske grafiske modeller og manifold learning.

Specifikt omhandler denne afhandling beskrivelse af tre hovedkomponenter i
billeder, nemlig intensitet, tekstur og geometri. Modellering af intensitetsforde-
linger er vigtig for at opn̊a nyttige globale repræsentationer af de r̊a billeddata.
Ved hjælp af teksturbeskrivelse kan en lokal repræsentation af billedindholdet
opn̊as, hvilket er nyttigt for deskriptive og diskriminative scenarier. Geometrisk
viden om billedindholdet udnyttes gennem Markov random fields formuleringer.
Matematiske modeller er udviklet omkring disse tre emner og udgør byggesten,
der er nyttige til at konstruere billedbaserede løsninger til et vidt spænd af
problemer.

Bidragene inkluderer automatisk kvantifikation af frømønstre fra billeder opta-
get i felten, statistiske metoder til at estimere den genetiske basis for kvanti-
ficerede mimicry-fænotyper, estimering af den atomare struktur af grafen fra
transmissions-elektronmikroskopibilleder med lav kontrast, samt patch-baseret
afgrødsklassifikation fra syntetisk apertur-radar data. Derudover præsenteres et
rent metodisk bidrag i form en informationsteoretisk tilgang til to-sæt billed-
dekomposition.

Denne afhandling gør statistisk billedanalyse tilgængelig for øvrige forskere med
domænespecifikke problemer og bidrager med metodik relevant for feltet i sig
selv.



iv



Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfillment of the re-
quirements for acquiring a PhD in Applied Mathematics with an emphasis on
Mathematical Image Analysis. The thesis was prepared with funding solely from
the Technical University of Denmark with professor Rasmus Larsen as main su-
pervisor and associate professor Allan Aasbjerg Nielsen as co-supervisor.

The thesis deals with general methods for modelling variability in images, both
in the input space and in relevant feature spaces.

The thesis consists of a methodological part, introducing existing state-of-the-art
methodology and a part emphasizing the scientific contributions of the thesis.

Lyngby, 31 August2014

Jacob Schack Vestergaard
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Chapter 1

Introduction

Statistical image analysis, as a field, is increasingly relevant for numerous appli-
cations. An ever-growing amount of image data are being collected to replace,
supplement or improve manual measurements of physical systems. A diverse
toolbox of methods is needed to accommodate the analysis of these data in a
statistically meaningful way; these methods need to be flexible since it is unfor-
tunately rare that a method developed for one problem, generalize completely
to a different problem.

This thesis deals with four cornerstones of image analysis: intensity distribu-
tions, extraction of local image information, modelling of geometric structure in
images and representation of these in a meaningful feature space. The problems
treated in this context are mostly from scenarios where only limited reference
data are available, no more data will become available, and manual labelling
is extremely tedious or even impossible. In such cases, a mathematical model
needs to enforce the known constraints and use the image information in the
light of this prior knowledge. In other words, all available information should
be used to solve the problem.



2 Introduction

1.1 Motivating examples

The work in this thesis is largely motivated by collaborations. Especially collab-
orations with fellow researchers in other disciplines trying to answer questions in
their respective domains. Often they lack the ability to quantitatively interpret
the images they have at hand. These problems have spurred the development of
the statistically sound methodology for image analysis around which this thesis
revolves. Some motivating examples will be presented below.

1.1.1 Intensity distributions

The distribution of image intensities is a statistical description of the contents
of an image. It does not readily model any spatial properties, but merely sum-
marizes the numeric content. This makes it a fundamental tool for checking
assumptions about the data, e.g., are they normally distributed, are they bi-
modal, etc.

Different image modalities exhibit different distributions, which always needs to
be considered and in some cases can be exploited. An example of this can be seen
in Figure 1.1, where the distributions of weather radar reflectances and three
satellite (near) infra-red bands over the same geographical region and acquired
at the same time are shown. Clearly the distributions differ. This is due to the
different aspects that are captured by these modalities. These differences need
to be considered when comparing or combining data from different modalities.
For instance, it does not make sense to do direct numerical comparisons between
the distributions in Figure 1.1 even though the underlying physical phenomenon
is the same.

Summary statistics of distributions can be very useful for interpretation and
numerical optimization. For instance, it is a lot less tedious to talk about a
normal distribution in terms of its mean µ = 1 and variance σ2 = 1.5, than
in terms of the full distribution. For optimization purposes, the optimality
condition is often given in terms of the extremum of a suitable summary statistic,
e.g., variance for the purpose of principal components analysis. To uncover
associations between different distributions, measures such as correlation and
mutual information will prove useful. This is the type of problem around which
Paper A revolves.

Describing images in terms of their intensity distributions are very relevant for
the purpose of image decomposition, which will be motivated in Section 1.1.4.
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Figure 1.1: Distributions of weather radar reflectances (measured in dBZ) and
weather satellite brightness temperatures for three (near) infra-
red bands. The shown distributions are kernel density estimates
using the maximal smoothing principle for bandwidth estimation
(see Section 2.1.2). The images underlying these distributions are
shown in Figure 1.5.

1.1.2 Capturing texture variability using descriptors

The intensity distribution described above is a global description, i.e., it summa-
rizes the entirety of the signal. Often it is desirable to describe local information,
which can be achieved by individual distributions of spatially confined regions.
This is the underlying principle of many image descriptors.

The relevant information to extract from an image depends on the purpose
of the analysis. Thus in many cases, the ability to capture different aspects of
the variability in images becomes necessary. Images are at least two-dimensional
and, depending on the image formation process, the scale of the relevant objects
in the image varies. Further, images are inherently large-scale, since even a small
image of size 256×256 pixels yields 65,536 observations. These are all conditions
that the image data extraction needs to take into account.

Several examples can be given of the relevance of capturing image variability
with local texture descriptors. For instance, detecting neural progenitor cells
in phase contrast microscopy images (Figure 1.2) by segmenting the image into
cell/not-cell areas can be a difficult task, when the contrast is low. In that case
it might be useful to use an entire image patch as the local description of the
image, rather than a single pixel, to encode spatial context. This is used in
Vestergaard et al. (2013a) and Vestergaard et al. (2013b). A similar example is
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the motivation for Paper G, where the task is to classify a polarimetric synthetic
aperture radar (SAR) image into different types of crops.

(a) Neural progenitor cells. (b) HEp-2 cells.

Figure 1.2: Examples of different types of interesting image information. For
neural progenitor cells, the cell somas are of main interest, while
for HEp-2 cells the texture signature is more important.

The problem of classifying different types of cells yields a major problem in
histopathology, since a manual annotation is tedious and subject to large inter-
and intra-observer variances. This motivates the need for automatic classifi-
cation methods. It is important that such classification methods describe the
relevant variability, where it is common to extract a surplus of image features
and use a training/validation data scheme to tune the importance weighting
of each feature. As such it is useful if the image features separate well, i.e.,
they describe a controllable limited aspect of the image. The papers Larsen
et al. (2014) and Veta et al. (2014) leverage this to achieve high performance
classification.

A different motivation is from biology, where the aposematic frog Ranitomeya
imitator in one end of a transect mimics one dendrobatid species, while in the
other end it mimics another. The mimicry is a color pattern polymorphism,
which needs to be quantified objectively. In this case the images are JPEG
compressed field photographs, the lighting is sub-optimal, and the frogs are in
different poses. Under these circumstances, how is the pattern and color best
quantified as a basis for answering important evolutionary hypotheses? See
Figure 1.3 for some examples.
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Figure 1.3: For these colorful poison dart frogs of the species Ranitomey im-
itator, the nature of the pattern, e.g., the directionality of the
stripes, is interesting to quantify.

1.1.3 Inferring geometry

Recent years’ reduction of cost for high-resolution microscopes for research pur-
poses has brought an increased need for image analysis in materials science.
An interesting problem is that of identifying the microscopic structure of the
up-and-coming material graphene from high-resolution transmission electron mi-
croscopic (HRTEM) images. The interest in the microscopic structure is spurred
by the coupling between the microscopic structure and the macroscopic prop-
erties, such as conductivity and strength. Due to the image formation process,
the hexagonal structure of the carbon atoms are not directly visible, but need
to be inferred from what little contrast is present. Luckily, there is a strong
prior knowledge about how atoms can form in such lattices. Examples of such
a HRTEM image can be seen in Figure 1.4.

Incorporating this knowledge in an applicable algorithm was the underlying
motivation of the initial work in Kling et al. (2013) and the solution proposed
in Papers E and F.

1.1.4 Descriptive subspaces

Having quantified the image variability important for a given problem, what is
the best space to represent this data? The answer to this question depends on
the hypothesis of interest. E.g., for visualization purposes, the best embedding
might be in a subspace defined by the first few principal components, while
for discriminative purposes, the best embedding might be one maximizing class
separability. Learning an appropriate subspace, manifold or embedding of a set
of features is motivated by and used in multiple cases.
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5 nm

Figure 1.4: High-resolution transmission electron microscopy image of a
graphene sample with an induced hole. A region is magnified
to better see the contrast properties in the image. The dark spots
are not carbon atoms, but rather the space in the middle of the
carbon hexagons.

A first example is detection of extreme rain from satellite imagery. In the paper
Vestergaard and Nielsen (2012) we found that canonical correlation analysis
(CCA) could successfully find a linear decomposition of the original eight infra-
red bands of satellite imagery to enhance the contrast between extreme rain
and uninteresting cloud coverage in a one-dimensional embedding. However, it
required a very elaborate geometrical and temporal alignment of the radar and
satellite imagery prior to this decomposition. See Figure 1.5 for an example
of the non-informative CCA solution without the geometrical alignment, which
spurred the need for a different approach. The motivation for Paper A is to
leverage the information theoretical concepts of entropy and mutual information
to provide a decomposition taking the distribution of the two very different
image modalities into account. This is useful not only for these two modalities
in particular, but decomposition of any two (non-Gaussian) sets of variables can
benefit from such a method.

Returning to the example with the aposematic frog Ranitomeya imitator from
above. Having quantified the color and pattern of these frogs, it must be deter-
mined to what extent the different aspects of this phenotype relates to mimicry.
This is an example of having a surplus of image features extracted to avoid
inducing subjective biases (e.g., only measure what is thought to be impor-
tant) and thus having an overcomplete representation. The reduction to a low-
dimensional manifold must be carried out in conjunction with the biological
problem statement. This is of relevance to Papers B, C and D.
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(a) Radar data. (b) Satellite data (CCA).

Figure 1.5: Two image modalities covering the same area at the same time. (a)
The single weather radar data band showing reflectances. (b) Lin-
ear combination of the eight infra-red bands of satellite data that
maximizes correlation with the radar data, found using canonical
correlation analysis (CCA). The marked rectangular area would
ideally exhibit high contrast between rain and no-rain areas.

1.2 Thesis objectives

The main objectives of this thesis are:

• Develop or improve existing state-of-the-art methodology in applied image
analysis.

• Engineer flexible image-based solutions to cross-disciplinary research prob-
lems.

• Investigate the generalizability and flexibility of methods to model image
variability in the input space, in terms of intensity, texture and geometry.
And choosing appropriate feature spaces for given design criteria.

These objectives have been sought accomplished mainly through collaborations
on a selection of interesting problems in the life sciences and materials science.
Isolated methodological development has also been performed, in which case
applicability has been illustrated through use of relevant examples.
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1.3 Reading guidelines

The present thesis consists of two parts: A part on methodology and a part on
scientific contributions employing and extending this methodology. Conclusions
on the thesis are provided, before the included papers are appended.

Methodology The methodology part (Part I) is not self-contained. It
contains the prerequisites for understanding the context of the scientific
contributions. As such, the scientific contributions contain new and exten-
sions of existing methodology useful for solving specific problems in various
domains. Appendices are included with methodology that is relevant, but
not a major part of the thesis.

Scientific contributions Part II summarizes the scientific contributions
by topic. This means that several papers are summarized together, when
they share both methodology and application. The summaries provide a
general motivation for solving the treated problems and give an overview of
the solutions presented in the papers. The main results and contributions
are highlighted. Papers included as part of the thesis are appended as
Papers A–G.

Reading flow The intention with the thesis structure is that the reader
can either read from the beginning to the end, or read a summary of
a scientific contribution of interest and refer to Part I and the relevant
papers for detail.

Notation While most notation should be clear from context, a nomencla-
ture is provided in the preface, which should aid in interpreting notation
and abbreviations that are less obvious. Note that common biological no-
tation has been adopted such that genus names will be abbreviated on
subsequent mentions.

Code I provide publicly available Matlab or Python 3.x implementa-
tions of the methods used, for most of the published papers, at https:

//github.com/schackv.

https://github.com/schackv
https://github.com/schackv


Part I

Methodology
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Introduction to methodology

Observation of physical phenomena by image acquisition is often a sensible
choice, since the data can be stored and analyzed later. However, images can
often be challenging to analyze. Data volume, imaging device, scale, contrast,
spatial context and the limited amount of manually annotated data are all prop-
erties that must be taken into consideration. One single method for analysis of
the image data is not enough; rather a multitude of building blocks for image
processing pipelines are necessary to successfully tackle real-world image anal-
ysis problems. The methodology presented in Chapter 2 considers how three
major aspects of image data can be modelled, namely intensity, texture and ge-
ometry. In Chapter 3 the focus will be on methods for learning an appropriate
feature space for investigating a given hypothesis.
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Chapter 2

Intensity, texture and
geometry

This chapter describes some fundamental components of image analysis, in the
image input space, namely intensity, texture and geometry.

Intensities, i.e., the pixel values, are the basic data entity in images. Commonly,
images come in either gray-scale or RGB, providing one or three channels as a
representation of a scene, while in fields such as remote sensing, it is common to
analyze imagery from multi- or hyperspectral sensors. The statistical distribu-
tion of the intensities often needs to be modelled, either to perform hypothesis
testing, do visualization or to choose a statistically meaningful subspace for
further analysis.

Texture is a common term for the distribution of intensities in a spatially con-
fined neighborhood of an image. Rather than attempting to model the particular
instance of the region, the texture of an image region says something about the
nature of the variation. Texture may vary in an image, depending on the scale
in which it is observed. Image descriptors and image patches are two of the
common ways of extracting texture information from images.

When fitting a spatial model to an image, the geometry of this model often
needs to be constrained, i.e., the prior information (or assumption) about the
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model needs to be leveraged. This model could be a binary segmentation of a
gray-scale image, fitting a shape model of a face to a portrait photo or fitting
a grid structure to an observed instance. In all cases, models are more or less
based on our prior knowledge: pixels of value 0 should probably be close to each
other; the nose should probably be between the mouth and the eyes, and the
grid structure should not fold on top of itself. These spatial constraints can be
modelled in the framework of Markov random fields, which will be described in
Section 2.3.

2.1 Image intensity distributions

Different image modalities exhibit different distributions of intensities. For in-
stance, optical images can often be assumed to be normally distributed in each
band. In medical image modalities such as magnetic resonance imaging (MRI),
computed tomography (CT) or positron emitting tomography (PET) the dis-
tributions are known to be non-normal (Rician (Gudbjartsson and Patz, 1995)
and Poisson (Buzug, 2008) respectively). Various Earth observation modalities
are also known to be inherently non-normal in nature: for instance LiDAR that
measures distances, weather radar data measuring reflectance properties or po-
larimetric synthetic aperture radar (SAR), where complex covariance matrices
in each pixel follows a complex Wishart distribution (Conradsen et al., 2003).

2.1.1 Histogram

The histogram is the most common representation of a distribution of intensities.
It is a discrete representation of samples {xi}Ni=1 from a continuous or discrete
distribution. It consists of B bins with heights {bj}Bj=1 and edges {ek}B+1

k=1 . The
height of each bin is the number of samples where ei ≤ xi < ei+1. Normalizing

such that
∑B
j=1 bj = 1 ensures that the histogram can be seen as a probability

density function (pdf).

The domain and the number of bins must be chosen when fitting the histogram,
either manually or by some heuristic, e.g. Scott’s rule (Scott, 1979). Too few
bins might hide important aspects of the distribution, while too many bins will
overfit to the sample rather than represent the underlying distribution. An
example of how subtle changes in binning can change the appearance of the
histogram, and thus the estimate of the pdf, drastically can be seen in Figure
2.1.
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(a) Histogram.
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(b) Histogram, bins shifted.

Figure 2.1: Impact of binning choice differences. The N = 100 samples are
shown as ticks and the true underlying distribution is the filled
gray area.

The histogram can approximate a continuous pdf, since for B bins of equal
width ∆ covering the domain of X

lim
∆→0

B∑
j=1

bj∆→
∫

Ω

p(x)dx . (2.1)

However, only a finite number of samples from the true pdf is available, where-
fore a non-infinitisemal bin width is necessary, thus rendering the histogram an
approximation only. The normalization of a histogram representing a continu-
ous distribution factors in the bin width such that

∑
j=1 bj∆ = 1 to ensure that∫

p(x)dx = 1 in the limit (Bishop, 2007).

2.1.2 Kernel density estimation

The histogram is a simple non-parametric density estimator. However, as seen
above the estimated histogram is not smooth and it depends on the bin end
points and width. By using kernel density estimators (KDE) (Rosenblatt, 1956,
Parzen, 1962, Silverman, 1986) where we center a kernel on each observation,
we may obtain smoother histograms that do not depend on bin end points. The
kernel density estimator (Parzen windows estimator) for the pdf of X at value
t is

p̂(X = t|x) =
1

Nσ

N∑
i=1

ϕ

(
t− xi
σ

)
(2.2)

where ϕ(z) is the kernel and σ is a smoothing parameter referred to as the
bandwidth. Theˆindicates that this is an estimator of the distribution. Often
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the Gaussian kernel

ϕ(z) =
1√
2π

exp

(
−1

2
z2

)
(2.3)

is chosen. The width of the Gaussian, i.e., the standard deviation is thus equiv-
alent to the bandwidth σ.

4 2 0 2 4 6 8 10
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0.05

0.10

0.15

0.20
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0.30

Scott (σ=0.86)

Silverman (σ=0.91)

MSP (σ=0.98)

Cross validation (σ=0.49)

Figure 2.2: Kernel density estimates of distribution with different bandwidth
estimators with the bandwidth σ indicated. The N = 100 samples
are shown as ticks and the true underlying distribution filled in
gray.

Estimation of the bandwidth is an example of the bias-variance trade-off: a
too narrow kernel causes too large variation in the density estimate and a too
wide kernel oversmooths the estimated distribution (Jones and Marron, 1996).
In Figure 2.2 some of the well-known bandwidth estimators are used to fit a
KDE with a Gaussian kernel to the same data as in Figure 2.1. The Scott
and Silverman estimators are so-called rule-of-thumb estimators (Scott, 1979,
Silverman, 1986), while the maximal smoothing principle (MSP) is based on the
interquartile range of the sample (Terrell, 1990). The cross validation approach
exploits the fact that given a set of parameters, the probability of observing a
set of points can be interpreted as a likelihood of the parameters. Here a 20
fold cross validation scheme is used, where one twentieth of the samples are left
out successively and used to get likelihood estimates of 30 equidistantly spaced
bandwidths in the range of [0.01, 2].

Botev et al. (2010) point out certain shortcomings with several of the existing
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kernel density bandwidth estimators. For instance, the popular Sheather-Jones
plug-in estimator (Sheather and Jones, 1991) relies on an inital assumption of
Gaussianity, which is conceptually unsatisfactory even though it often works well
in practice. Further, the Gaussian kernel density estimator lacks local adaptiv-
ity, due to its smoothing properties. Other estimators do not yield genuine pdfs,
either due to violating the non-negativity constraints or not integrating to one.
Botev et al. (2010) present a KDE based on linear diffusion processes, which
shows promising performance, but was found too sensitive to small changes for
the work presented in Paper A.

2.1.3 Statistics

Various statistics can be used to summarize a distribution from its samples
{xi}Ni=1 or measure the association between two random variables. For instance,
the sample variance

σ̂2(X) =
1

N − 1

N∑
i=1

(xi − x̄)2 where x̄ =
1

N

N∑
i=1

xi (2.4)

is an unbiased estimator of the population variance.

The variance is particularly interesting for normally distributed data and de-
scribes completely the spread of such data, while other statistics are relevant
to describe, e.g., the degree of information content of a distribution. Spatial
properties of an image are also interesting, which will be treated in Section 2.2.

Covariance and correlation are two useful measures of association between two
variables X and Y . With N observations from the two variables, the sample
covariance is

ĉov(X,Y ) =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (2.5)

or 1
N−1xTy for zero-mean vectors. Correlation is the covariance normalized by

the spread of the two variables

ĉorr(X,Y ) =
ĉov(X,Y )√
σ̂2(X)σ̂2(Y )

. (2.6)
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2.1.3.1 Entropy

Entropy was introduced in information theory for discrete variables by Shannon
(1948) as a measure of a signal’s information content and thus the needed bits
to encode the information: a high entropy meaning high information content
and thus more bits needed, and a low entropy meaning low information content
and thus less bits needed. We will here distinguish between discrete entropy
H(X) and differential (or continuous) entropy h(X) and start by introducing
discrete entropy.

Definition 2.1 (Discrete entropy). Discrete marginal entropy of a discrete
random variable X is defined from the expectation expectation E[− ln(P (X =
x))] as

H(X) = −
∑
x

P (X = x) lnP (X = x) . (2.7)

Discrete joint entropy of two discrete random variables X and Y is defined as

H(X,Y ) = −
∑
x

∑
y

P (X = x, Y = y) lnP (X = x, Y = y) . (2.8)

Properties of discrete entropy include:

H(X) ≥ 0

H(X,Y ) ≥ max(H(X), H(Y )) ≥ 0

H(X,X) = H(X)

H(X,Y ) ≤ H(X) +H(Y ) (Equal iff X and Y are independent) .

The unit of discrete entropy dependes on the logarithm used, e.g., bits when
using log2 and nats when using the natural logarithm. N

Entropy as a measure of the distribution of a continuous random variable is
termed differential entropy. Differential entropy is defined in Definition 2.2. As
opposed to discrete entropy, differential entropy is not necessarily non-negative
since it is possible that p(x) > 1.

Definition 2.2 (Differential entropy). Differential marginal entropy of a
continuous random variable X : Ω 7→ R with pdf p(x) is defined from the
expectation E[− ln(p(x))] and can be estimated from the pdf as

h(X) = −
∫

Ω

p(x) ln p(x)dx , (2.9)

or as a sample estimate ĥ(X) = − 1
N

∑N
i=1 ln(p(xi)) from the N samples {xi}Ni=1.

Differential joint entropy of two discrete random variables X : ΩX 7→ R and



2.1 Image intensity distributions 19

Y : ΩY 7→ R is defined as

h(X,Y ) = −
∫

ΩX

∫
ΩY

p(x, y) ln p(x, y)dydx . (2.10)

Properties of differential entropy include:

h(X,X) = h(X)

h(X,Y ) ≤ h(X) + h(Y ) (Equal iff X and Y are independent) .

N

The distribution with maximum entropy is thus the uniform distribution, since
every value within the domain is equally likely to appear. In relation to in-
formation theory, this also means that the least compression can be achieved.
Specifically the differential entropy of a random variable X distributed evenly
on the interval [a, b], i.e., with density p(x) = 1

b−a is

h(X) =

∫ b

a

1

b− a ln
1

b− adx = ln(b− a) . (2.11)

This also illustrates that entropy can be negative: if b−a < 1 then h(X) < 0. For
a given mean and variance, the normal distribution is the continuous distribution
with maximum entropy (Bishop, 2007, Cover and Thomas, 2006).

The differential entropy can be estimated using a kernel density estimator pϕ(x)
with kernel ϕ(z) and scale σ for the pdf such that

hϕ(X) = −
N∑
i=1

pϕ(xi) ln pϕ(xi)

pϕ(xi) =
1

Nσ

N∑
i=1

ϕ

(
xj − xi
σ

)
.

Differential entropy is not the limit of quantized entropy A peculiar
relation exists between differential and discrete entropy, namely that the dis-
crete entropy of a pdf divided into infinitesimally small bins does not yield the
differential entropy in the limit. This result is also stated and described by
Cover and Thomas (2006).

Consider a continuous pdf p(x) quantized in N bins of width ∆. The mean
value theorem tells us that there exists an xi such that

p(xi)∆ =

∫ (i+1)∆

i∆

p(x)dx . (2.12)
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Thus the probability that X falls in the ith bin is pi = p(x)∆. The discrete
entropy of this quantized pdf is

H∆(X) = −
N∑
i=1

p(xi)∆ ln(p(xi)∆) = −
N∑
i=1

p∆(xi)∆ ln p∆(xi)− ln ∆ (2.13)

since
∑N
i=1 p(xi)∆ = 1. Consider now the discretization of differential entropy

in bins of width ∆

−
∫

Ω

p(x) ln p(x)dx ≈ −
N∑
i=1

∆p(x) ln p(x) . (2.14)

We see how this differs from Eq. (2.13) by − ln ∆. In general this shows that

lim
∆→0

H∆(X)→ h(X)− ln ∆ . (2.15)

The same result can be derived for joint entropy in which case

lim
∆X ,∆Y→0

H∆X ,∆Y
(X,Y )→ h(X,Y )− ln ∆X∆Y . (2.16)

where ∆X and ∆Y are bin widths in each direction.

2.1.3.2 Kullback-Leibler divergence and mutual information

The Kullback-Leibler divergence (or relative entropy)

DKL(p||q) =

∫
p(x) ln

p(x)

q(x)
dx (2.17)

is a measure of association between two pdfs p(x) and q(x). DKL is always
non-negative and zero only if p and q are independent. Due to lack of symmetry
(DKL(p||q) 6= DKL(q||p)) this is not a true distance measure (Cover and Thomas,
2006).

Mutual information (MI) describes the association between two random vari-
ables X and Y in terms of “shared information”. MI is defined as the relative
entropy between the joint distribution p(x, y) and product of marginals p(x)p(y)
such that

I(X,Y ) =

∫
x

∫
y

p(x, y) ln
p(x, y)

p(x)p(y)
dydx . (2.18)

The motivation is that if the product of the marginals completely describes the
joint distribution then the two distributions are independent and the mutual
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information is zero. This expression can be expanded to

I(X,Y ) =

∫
x

∫
y

p(x, y) ln
p(x, y)

p(x)p(y)
dydx

=

∫
x

∫
y

p(x, y) (ln p(x, y)− ln p(x)− ln p(y)) dydx

=

∫
x

∫
y

p(x, y) ln p(x, y)dydx−
∫
x

∫
y

p(x, y) ln p(x)dydx

−
∫
x

∫
y

p(x, y) ln p(y)dydx

= −
∫
x

p(x) ln p(x)dx−
∫
y

p(y) ln p(y)dy

+

∫
x

∫
y

p(x, y) ln p(x, y)dydx

= h(X) + h(Y )− h(X,Y ) (2.19)

which gives us the preferred form of mutual information. A variety of normaliza-
tions have been proposed (see e.g., Astola, 1982, Yao, 2003, Witten and Frank,
2005, Vinh et al., 2010); some examples are

In(X,Y ) = 2
I(X,Y )

h(X) + h(Y )
(2.20)

In(X,Y ) =
I(X,Y )

h(X,Y )
(2.21)

In(X,Y ) =
I(X,Y )√
h(X)h(Y )

. (2.22)

Care should be taken when normalizing mutual information based on quantized
entropy estimates of the differential entropy. While substituting the differential
entropy for a quantized estimate (Eqs. (2.15) and (2.16)) into Eq. (2.19) yields

I∆(X,Y ) = h(X)− ln ∆X + h(Y )− ln ∆Y − h(X,Y ) + ln ∆X∆Y

= h(X) + h(Y )− h(X,Y ) = I(X,Y )

where it is seen that the discrepancies cancel out, i.e., the quantized entropy
can be used as direct substitute for the differential entropy when calculating
mutual information. However, plugging into for instance the normalization in
Eq. (2.21) yields

In∆(X,Y ) =
I(X,Y )

h(X,Y )− ln ∆X∆Y

and is seen to provide a different normalization than expected.
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2.2 Image texture descriptors

Image descriptors is a common name for a class of local image models. Descrip-
tors are typically designed to extract some sort of feature at or around a given
point. This feature is usually very basic and could be shape, color or texture
related. Feature extraction is useful in diverse scenarios, such as object recog-
nition (Lowe, 1999, Mikolajczyk and Schmid, 2005, Bay et al., 2006, Tola et al.,
2010), structure from motion (Harris, 1993, Lowe, 2004), where features are ex-
tracted in successive images and point correspondances are determined to infer
the three dimensional structure, and in (supervised) predictive contexts (Lin
et al., 2011, Larsen et al., 2014, Veta et al., 2014), where different descriptors
are used to capture different aspects of the observed image and their importance
for the prediction is learned from training data. Larsen (2012) provides a neat
introduction to local image descriptors and Mikolajczyk and Schmid (2005) pro-
vides a performance comparison of local descriptors in the context of object and
scene recognition.

[f1, f2, . . . , fp1 ]T

[f1, f2, . . . , fp2 ]T

[f1, f2, . . . , fp2 ]T

D1

D2

D2

Figure 2.3: Extraction of image features using two descriptors D1 and D2,
each giving features of dimensionality p1 and p2 respectively.

In general, image descriptors are tools for capturing image variability, i.e., go-
ing from the image domain to a feature space. This is sketched in Figure 2.3.
An image descriptor D maps from a point x = (x, y) in the (q-variate) im-
age I ∈ Rm×n×q to a feature space and can be univariate D : I(x) 7→ R or
multivariate D : I(x) 7→ Rp. When extracting multiple descriptors these are
simply concatenated and thus extending the dimensionality of the feature space
. In descriptive and predictive contexts a single descriptor will be a too limited
model of the variability, while too many descriptors increase the dimensionality
p of the feature space and thus increase the risk of overfitting, i.e., in the choice
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of descriptor suite lies an example of the bias-variance trade-off (Hastie et al.,
2003). In a supervised scenario with plenty of data (large N) insignificant de-
scriptors can easily be learned to weigh less on predictions, while unsupervised
descriptive scenarios are inherently harder to handle.

Common for most image descriptors is that they are extracted at some scale
of the original image. Here we briefly review gradient orientation histograms
and shape index histograms in a scale-space setting (Lindeberg, 1996) with
notation fom the locally orderless images (LOI) (Koenderink and Doorn, 1999)
framework.

2.2.1 Scale-space and locally orderless images

Lindeberg (1993) motivates the need for a scale-space nicely:

Why should one represent a signal at multiple scales when all in-
formation is anyway in the original data? A major reason for this
is to explicitly represent the multi-scale aspect of real-world data.
Another aim is to suppress and remove unnecessary and disturbing
details, such that later stage processing tasks can be simplified.

The scale-space representation of the image I(x) is defined as

L(x, σ) = (G ∗ I)(x;σ) (2.23)

where x = [x, y] and σ is the scale. (G ∗ I) is a convolution of the image with
a Gaussian kernel with standard deviation σ. The Gaussian kernel is unique
for generating a scale space (Koenderink, 1984, Lindeberg, 1996) since it is the
solution to the diffusion equation

∂σ =
1

2
(∂xx + ∂yy)L s.t. L(·; 0) = I .

This also implies that the original image can be seen as an initial heat distri-
bution evolving over time (scales) in homogeneous medium, thus providing a
natural dissolution of fine details. Examples of scale-space representations can
be seen in Figure 2.4

The image derivatives can be calculated in this scale space formulation, where
Lx and Ly denote the gradient in the x- and y-direction respectively and the
Hessian matrix

∇2L =

[
Lxx Lxy
Lyx Lyy

]
(2.24)
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(a) σ = 2.5 (b) σ = 10

Figure 2.4: Scale-space representations of a 768× 1024 example image.

describes the local curvature. We omit x from the left hand side of the definitions
below for brevity.

The framework of locally orderless images (LOI) was introduced by Koenderink
and Doorn (1999) in which the spatial order of pixels within a region-of-interest
(ROI) around a probed point is disregarded and the texture reduced to a form
summarizable by histograms. Three notions of scale are in play when working
with LOI: the inner scale, outer scale and tonal range. The scale space intro-
duced above lets us probe the image at different inner scales (or resolutions).
The outer scale (or aperture width) α defines the ROI by weighing contribu-
tions from nearby pixels with their distance to the probed point; the weighting
is analogous to a Parzen window density estimate introduced in Section 2.1.2.
The tonal range β defines the third relevant scale, namely a soft weighting sim-
ilar to a bin width; say the histogram captures the intensity of pixels, then a
small β would resemble narrow bins and thus a lot of bins would be needed.
Here the LOI framework is used to capture local characteristics of image first
and second order derivatives.

2.2.2 Gradient orientations and the shape index

Gradient orientations have been widely popular in computer vision to capture
local geometry (Lowe, 1999, Dalal and Triggs, 2005, Mikolajczyk and Schmid,
2005, Avidan, 2006, Bosch et al., 2007). Part of the popularity is due to the
invariance of local derivatives towards global illumination changes.
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Gradient magnitude m and orientation θ can be derived from Lx and Ly as

m =
√
L2
x + L2

y , θ = atan2(Lx, Ly) . (2.25)

The gradient orientation is circular on the interval ] − π, π]. To quantify the
amount of first order change in a given orientation, the gradients are quantized
in q bins centered at bi, i = 1, . . . , q in this interval.

At a given scale σ, for bin b the gradient orientation descriptor is defined as

goh(b;σ) = m(x;σ)
exp

(
β−2 cos (θ(x;σ)− b)

)
2πI0(β−2)

(2.26)

Due to the cyclic nature of the gradient orientations the von Mises aperture is
used, where I0() is the modified Bessel function of order 0 and β is the tonal
range. See Koenderink and Doorn (1999), Larsen et al. (2014) for more details.
Note that the gradient orientation contribution is weighted by its magnitude m,
which ensures that well defined gradients count more than spurious ones.

2.2.2.1 Shape index

The shape index is a second order image descriptor used to describe local cur-
vature (Koenderink and van Doorn, 1992) and is derived from an eigendecom-
position of the local Hessian. The eigenvectors capture the orientation of the
curvature, while the eigenvalues capture the nature of the curvature (cup, cap,
saddle, etc.). For the shape index definition, the orientation is omitted and thus
enforcing rotation invariance.

The shape index s is defined as

s =
2

π
atan

 −Lxx − Lyy√
4L2

xy + (Lxx − Lyy)2

 , s ∈ [−1, 1] (2.27)

with curvature c ∈ R+

c =
1

2

√
L2
xx + 2L2

xy + L2
yy . (2.28)

The binning of the shape index into a histogram is similar to that of the gradient
orientation histograms. However, the range of the shape index is not cyclic
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wherefore a standard Gaussian aperture function can be used. The shape index
histogram descriptor for bin b at scale σ is

sih(b;σ) =
c(x)

2πβ2
exp

(
− (s(x)− b)2

2β2

)
. (2.29)

Examples of the gradient orientation and shape index reponse for a few different
parameters can seen in Figure 2.5. The gradient orientation can be seen to high-
light horizontal lines in the image, since the chosen bin b = 3

2π is perpendicular
to this. The shape index is seen to capture both ridge-like curvatures for bins
at b = 0.4 and cup-like responses for b = −0.8. The scale space dependence is
apparent from these examples.

 

 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) σ = 5, α = 1, b = 3
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(d) σ = 5, α = 10, b = −0.8.

Figure 2.5: (a)–(b): Gradient orientation histogram bin values for bin centered
at b = 3

2π with a tonal range β = 0.62. (c)–(d): Shape index
histogram values for bins centered at b = 0.4 and b = −0.8 with
tonal range β = 0.26.

Rather than the image descriptors above, a slightly different way of representing
an images can be achieved using image patches. While the basic concept of
localized information is similar, image patches are often more useful in the
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context of reconstructing an image. This is different than above, where we
primarily seek a descriptive representation and not so much a generative. Image
patches as local descriptors will therefore be a subject of some separate attention
now.

2.2.3 Patch based methods

Image patches are small, usually quadratic, excerpts of an image. As such an
image patch captures local texture and intensity distribution. The distribution
of patches extracted from an image can therefore be used as a representation of
said image. Furthermore, patches extracted from multiple images collectively
represent these images. However, a large number of patches might be neces-
sary to represent all the characteristics found in a collection of images; how
do we extract ’the useful’ ones? Or put in other terms: How to select a sub-
set of features (patches) that best represent, reconstruct or discriminate in a
specific instance? Enter compressed sensing/sparse coding/dictionary learning
(Donoho, 2006, Elad, 2010, Mairal et al., 2008b).

In dictionary learning the goal is to represent a set of signals X = [x1, . . . ,xN ]T ,
xi ∈ Rp by an overcomplete dictionary D ∈ Rp×k, k > p and a sparse weighting
for each observation A = [a1, . . . ,aN ]T ,ai ∈ Rk. In a patch-based context the
signals xi are vectorized patches, illustrated in Figure 2.6. Sparsity is usually
induced on the ai’s by an `1-norm penalty, since the “`0-norm” is not convex
(and thus not a real norm) and thus requires more involved algorithms (Mairal
et al., 2007, 2008a). The introduction of the Lasso by Tibshirani (1996) and
least angle regression (LARS) by Efron et al. (2004) brought fast algorithms for
solving `1-norm regularized problems for fixed D. Mairal et al. (2008b) solves
Eq. (2.30) jointly for D and A,

arg min
A,D

N∑
i=1

‖xi −Dai‖22 + λ‖ai‖1, (2.30)

where λ is a sparsity inducing regularization parameter due to it acting on the
`1-norm. Mairal et al. (2010) furthers this with an online learning algorithm
that scales well with large data sets.

Mairal et al. (2008a) use dictionaries for supervised classification and incorpo-
rates the dictionary’s discriminative ability into the optimization, i.e., ensures
that a dictionary good for representing one class is simultaneously bad at other
classes. Dahl and Larsen (2011) approaches this problem by modelling a dictio-
nary in two linked spaces; one in the observed image space and one in the label
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Figure 2.6: Extraction of patches of size
√
p×√p from an image. Each patch

is stacked to a feature vector of length p. Note the similarity to
Figure 2.3.

space. Optimization of the dictionary proceeds to move dictionary atoms fur-
ther away based on the distances in label space rather than intensity space. It
should be noted that Dahl’s approach is based on each patch being represented
by a single atom (cluster), i.e., ‖ai‖0 = 1 which can be seen as the ultimate spar-
sity. This reduces the implementation to a modified iterated 1-nearest neighbor
algorithm. Mairal et al. (2012) presents a general formulation of supervised dic-
tionary learning, algorithms for solving the yielded optimization problem, and
how to adapt the formulation to a wide variety of tasks.

The reconstructive ability of learned dictionaries have also proven useful for con-
structing super resolution images (Yang and Wright, 2010, Wang et al., 2012).
Image patches are also the basic component for observations in many computer
vision tasks (see e.g., Cristinacce and Cootes, 2008, Cherian et al., 2014) and
in deep learning of image structure (Hinton et al., 2006, Jarrett et al., 2009,
Salakhutdinov and Hinton, 2012). Patches are particular popular in the latter
case, as deep learning of image features requires large amounts of training data,
which is not always available; however, a multitude of patches in various orien-
tations, scales, etc. can be extracted from a single image thus augmenting the
data set.

We will now turn to probabilistic modelling with graphical models. This is
useful for the above mentioned disciplines, where a patch is observed with some
probability or the probability distribution of a set of features need to be learned.
Further, these models can be used to jointly model observed data in conjunction
with the prior expectation of the (geometric) structure.
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2.3 Modelling geometry

Markov random fields (MRFs) were introduced in the 1980s (e.g., Hassner and
Sklansky, 1980, Geman and Geman, 1984, Ripley, 1991) as a class of stochastic
processes to model both the prior and posterior distribution of an image. The
work related to this thesis is mostly concerned with Gaussian MRFs for fitting
geometric models to images. First, MRFs in general will be introduced here
with the primary sources being Geman and Geman (1984), Carstensen (1992),
Bishop (2007), Li and Kanade (2009).

Consider a graph with nodes (or sites) s = {s1, . . . , sn}. A neighborhood system
N = {Ni, si ∈ S} is a collection of subsets of the n sites for which si /∈ Ni and
sj ∈ Ni ⇔ si ∈ Nj , where Ni are the neighbors of si. As such the neighborhood
system defines the edges of the graph. A clique is a subset of sites in which every
pair of sites are neighbors and a maximal clique is a subset of nodes that are
fully connected. The notation i ∼ j means that sites si and sj are neighbors.
Examples of such a configurations can be seen in Figure 2.7.

s1

s2

s3

s4

s5

s6

s7

s8

s9

(a) s1 s2

s3

s4

s5

s6

(b)

Figure 2.7: (a) A regular MRF, e.g., a pixel grid with the neighborhood de-
fined as the horizontal and vertical neighbors. (b) An irregular
neighborhood structure. One-cliques are the same as the nodes,
two-cliques are every pair of nodes connected and three-cliques
(the maximal cliques for this graph) are marked in dashed lines.
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Each site in an MRF is associated with a random variable Xs with values xs ∈ Ω.
The sample space Ω depends on the problem, e.g., in a binary labelling problem
x ∈ {0, 1} and Ω is the set of all 2n possible configurations. The random variable
associated with site s can also be referred to as Xs with value xs.

Definition 2.3 (Markov random field). A random field X is a Markov
random field with respect to N = {Ni, si ∈ S} if and only if

1. P (X = x) > 0 ∀ x ∈ Ω

2. P (Xi = xi|Xj = xj , i 6= j) = P (Xi = xi|Xj = xj , sj ∈ Ni) ∀ i ∈
{1, . . . , N} .

N

2.3.1 MRFs are undirected graphical models

Probabilistic graphical models let the nodes in a graph represent variables and
the edges specify dependence properties such that the entire graph specify the
joint distribution p(x) = p(x1, . . . , xn), x ∈ Ω. There are two main classes of
probabilistic graphical models: directed and undirected.

Directed graphical models specify a factorization of the joint distribution p(x)
over the set of variables x = {s1, . . . , sp} into a product of local conditional
distributions

p(x) =
n∏
i=1

p(xi|pai) (2.31)

where pai is the set of parents of the i’th node in a graphical model representing
the joint distribution (Bishop, 2007), see Figure 2.8 for an example. In contrast,
MRFs are undirected probabilistic graphical models which factorize the joint
distribution into a product over the maximal cliques of the graph

p(x) =
1

Z

∏
C∈Cm

VC(xC) (2.32)

where Cm is the set of maximal cliques in the graph, xC the set of variables in
a clique C and Z =

∑
x

∏
C∈Cm VC(xC) is the partition function, ensuring that

the probability over the variables sums to one. We can write this factorization
in terms of the maximal cliques without loss of generality, since cliques must be
subsets of the maximal cliques. The function VC depends only on the neighbors
NC and is called a potential or potential function.
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x1

x3

x2

x4

Figure 2.8: A directed graph representing the joint distribution
p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x3).

Comparing with directed graphical models, there is not the same equivalence
between the local dependence properties and conditional independence. How-
ever, by considering only non-negative potential functions (and thus ensuring
p(x) ≥ 0) the Hammersley-Clifford theorem (Hammersley and Clifford, 1971)
establishes an equivalence between distributions factorizable into cliques as in
Eq. (2.32) with distributions with conditional independences that can be es-
tablished from a graph (Bishop, 2007), i.e., a connection between the local
property (Markovianity) of MRFs with the global property of Gibbs random
fields (GRFs) (Li and Kanade, 2009). This relation allows us to specify MRFs
in terms of potentials, which is much easier than trying to specify local charac-
teristics for a global configuration (Li and Kanade, 2009). The non-negativity
VC(s) ≥ 0 makes it convenient to formulate potential functions as Boltzmann
distributions

VC(xC) = exp(−U(xC)) (2.33)

where U : Ω 7→ R is the energy function. The joint distribution is obtained from
Eq. (2.32) as

p(x) =
1

Z

∏
C∈C

exp(−U(xC)) =
1

Z
exp

(
−
∑
C∈C

U(xC)

)
(2.34)

where the factorization over cliques conveniently reduces to a sum over energies.
With the inclusion of a temperature T

p(x) =
1

Z
exp

(
− 1

T

∑
C∈C

U(xC)

)
(2.35)

this is equivalent to the Gibbs distribution introduced to express the probability
of a (physical) system being in a state with a certain energy (Carstensen, 1992).
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2.3.2 Ising, Potts and Gaussian auto-models

The simplest MRF model is the binary (two-state) Ising model (Ising, 1925).
Introduced in 1925 in statistical physics by Ising, treated in statistics in the
1960s and in image analysis in the 1980s it has become the binary segmenta-
tion model of choice with the publicly available graph-cut algorithm by Boykov
and Kolmogorov (2004). The graph-cut algorithm exploits the min-cut/max-
flow equivalence from graph theory and ensures fast, global convergence to a
minimum energy state. See Section 2.3.3 for more about energy minimization.

The general form of the energy function is

U(x) =
∑
s∈S

u1(xs) +
∑
s∈S

∑
r∈Ns

u2(xs, xr) (2.36)

where u1(·) and u2(·, ·) are energy functions over one- and two-cliques respec-
tively. The Ising model is the special case in which x is binary, i.e., Ω = {0, 1}
and

U(x) = α
∑
s∈S

xs + β
∑
s∼r

xsxr . (2.37)

for parameters α and β, where β controls the neighborhood (or bonding) strength.

The Potts (Potts, 1952, Wu, 1982) model extends the Ising model to more than
two states and is usually optimized using the alpha-expansion heuristic (Boykov
et al., 2001), which cannot ensure a global optimum. An exception of this is
for ordered labels, in which case the multistate problem can be solved exact (Li
and Kanade, 2009). The energy function can be written as the energy of site s
having state k conditional on the value of the neighbors of s as

U(xs = k|Ns) = αk + βkus(k) (2.38)

where us(k) is the number of neighbors of s having value k. Other variations of
the Potts model exists, see e.g. Carstensen (1992) for examples.

The above models are also referred to as auto-models, since they are formulated
in terms of pair-wise interactions. When the number of possible states are the
real values and the joint distribution is a multivariate normal an auto-model
is called a Gaussian MRF (GMRF). The energy for a site s conditional on its
neighbors is

U(xs|Ns) = − 1

2σ2

(
xs − µs −

∑
r∼s

βs,r(xr − µr)
)2

(2.39)

with known partition function Z = 1√
2πσ2

.
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2.3.3 MCMC sampling for energy minimization

Determining the parameters for minimum energy in an MRF, i.e. maximize the
posterior distribution of the parameters G, is non-trivial in most cases due to the
state space often being prohibitively large. E.g., for an image of size 128× 128
with three possible labels the number of possible configurations (the size of Ω)
is 1286 ≈ 4.4 · 1012.

Further, GMRFs cannot be solved to a global optimum using, e.g., the graph-cut
algorithm, but need to be solved using a sampling approach. GMRFs are of par-
ticular interest in Section 2.3.4 where the spatial position of a node is assumed
to be at an approximate distance from its neighbors. Therefore Markov Chain
Monte Carlov (MCMC) sampling methods will be introduced here following
that of Bishop (2007).

The method of iterated conditional modes (ICM) (Kittler and Föglein, 1984) is
the simplest way to minimize the energy in an MRF. It can be seen as a element-
wise steepest descend algorithm, i.e., each site s is visited in order keeping all
other sites fixed at their value. The value xs is then changed in direction of
maximum energy loss, i.e., the steepest descend direction. This is guaranteed
to minimize the global energy or leave it unchanged. This is repeated until
convergence. The danger of ICM is obviously that it is likely to converge to a
local rather than the global minimum.

Markov Chain Monte Carlo (MCMC) is a family of methods that scales better
with high dimensions. Similar to other sampling methods a proposal distribution
q(x) is used for assessment of newly drawn samples. However, for MCMC
methods the proposal distribution is dependent on the current state x? and the
sequence of samples x1,x2, . . . forms a Markov Chain.

2.3.3.1 Markov chains

A first order Markov chain is defined such that the conditional independence
holds

q(xl|x1, . . . ,xl−1) = q(xl|xl−1) , (2.40)

i.e., such that a state is only dependent on the previous state. The Markov
chain can be specified by the pdf of an initial state q(x0) together with transition
probabilities specifying the conditional probabilities for subsequent samples

Tl(xl,xl+1) ≡ q(xl+1|xl) . (2.41)
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If the transition probabilities are the same for all l the Markov chain is called
homogeneous. Detailed balance of the transition probabilities is defined as

q(x)T (x′,x) = q(x′)T (x′,x) (2.42)

and ensures invariance of q. A Markov chain with transition probabilities that
respect detailed balance is said to be reversible.

A Markov chain set up such that the sampled distribution is invariant ensures
that we sample from this distribution. However, the property of ergodicity must
also hold, meaning that as l →∞ the distribution q(xl)→ p(x) irrespective of
the choice of inital state x0 (Bishop, 2007).

2.3.3.2 Metropolis-Hastings

The Metropolis-Hastings algorithm is an MCMC sampling method where a sam-
ple x? is accepted with probability

paccept(x
?,xl) = min

(
1,
p̃(x?)q(xl|x?)
p̃(xl)q(x?|xl)

)
. (2.43)

when the current state is xl and we consider probability density functions of the
form p(x) = 1

Z p̃(x), i.e., we explicitly do not consider the partition function.
This can be shown to satisfy detailed balance by

p(x)q(x|x′)paccept(x
′,x) = min (p(x)q(x|x′), p(x′)q(x′|x))

= p(x′)q(x′|x)paccept(x,x
′)

Thus the Markov chain specified by the Metropolis-Hastings transition probabil-
ity specifies an invariant distribution p(x). For q(x′|x) = q(x|x′) this reduces to
the standard Metropolis sampling method, which therefore also satisfies detailed
balance (Bishop, 2007).

2.3.3.3 Gibbs sampling

Gibbs sampling was introduced in the seminal paper by Geman and Geman
(1984) and can be seen as a special case of the Metropolis-Hastings algorithm
(Bishop, 2007). This sampling method exploits that it can be easier to sample
the value for a single site conditional on all the rest p(xli|zl−1

j , j 6= i), rather

than sample p(xl) directly. Theoretically, when sampling for infinity the Gibbs
sampler will eventually sample from the true distribution.
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A problem with Gibbs sampling is the autocorrelation of subsequent samples.
Simulated annealing also introduced by Geman and Geman (1984) is one ap-
proach to alleviate this. In a simulated annealing scheme, the temperature T in
Eq. (2.35) is lowered from some initial temperature T0 towards 0 according to
a temperature scheme, e.g., T (l) = cT (l − 1). For high temperatures, changes
that increase the energy are more likely to get accepted than for low tempera-
tures. I.e., larger, more improbable, steps are allowed in the beginning of such
a scheme which can avoid converging to local minima. When the temperature
is low, only energy-lowering moves are accepted.

2.3.3.4 Coding schemes for practical sampling

The naive approach to suggesting new states in an MCMC sampling scenarion
would be to visit every site one-by-one in random order, while keeping values
at all other sites fixed. In practice a coding scheme is usually employed, where
the sites are divided into colors such that no neighboring sites can be of the
same color. Due to the Markovian property sites of the same color can then be
updated simultaneously, rather than choosing a single site at a time.

An optimal coloring uses the minimum possible number of colors called the
chromatic number. In many cases, the neighborhood structure is simple and
the coding scheme is known in advance. However, for less simple neighborhood
structures, the problem of determining the coding scheme is known as the graph
coloring problem. While determining the chromatic number is an NP-complete
problem and thus infeasible to determine, the Welsh-Powell algorithm (Welsh
and Powell, 1967, Kubale, 2004) can be useful for obtaining a sub-optimal solu-
tion: 1) Order the vertices in the graph according to degree, 2) visit each vertex
sequentially according to this ordering and 3) assign the smallest color number
not in use by any of the vertex neighbors. This simple, but practical, algorithm
has been used for the work in Papers E and F.

2.3.4 Decoupling observation and geometry

The models considered above integrate some prior knowledge p(s) about the
structure modelled and relates it to the observed image through an observation
model p(x|s) by Bayes rule, usually written in terms of the unnormalized joint
posterior

p(s|x) ∝ p(x|s)p(s) . (2.44)

The most common models define the prior p(s) on the same lattice as the ob-
served image (Carstensen, 1996), such that there is one-to-one correspondence
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between sites and pixels. Geman and Geman (1984) introduced the line pro-
cess as a way to decouple the prior from the image lattice and thus potentially
making it smoother. The models considered here are primarily motivated by
Carstensen (1996) and Hartelius and Carstensen (2003) and are similar to de-
formable template models (Amit and Kong, 1996, Jain and Lakshmanan, 1996,
Güdükbay et al., 1997, Jain et al., 1998), which are strongly related to active
shape and appearance models (Cootes et al., 1995, 2001, Cristinacce and Cootes,
2008).

Here we will consider the problem of fitting a regular lattice to an image, where
the lattice geometry is specified by the prior, separately from the pixel grid, and
the likelihood of the lattice will be specified through an observation model. The
problem of fitting a grid structure to an image is concerned with determining
the node positions si = {xi, yi}, i = 1, . . . , N of N nodes. A graphical model
of a regular triangular lattice in such a scenario is sketched in Figure 2.9. Note
the directed arrows towards the observed image, indicating the conditional de-
pendence of p(x|s) on s, and the undirected connections in the grid structure.
The undirected graphical model for the geometric prior is a good way of spec-
ifying grid priors, since grids are often repetitive patterns of local models. In
these cases it also means that there is a Markov property in the grid prior as
introduced previously.

Figure 2.9: Decoupling of the geometric structure from the image lattice is
illustrated with a triangular lattice. The probability of the struc-
ture s given the image x can be written as p(s|x) ∝ p(x|s)p(s)
according to this graphical model.
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Consider a regular grid with a template node distance t. The distance dij from
a node si to its neighbors sj , i ∼ j is then expected to be

dij = t+ ε , ε ∼ N (0, σ2
t ) (2.45)

where σt is a parameter controlling the slack of the position. This is illustrated
in Figure 2.10 for various grids.

Consider now a template node distance tij defined locally, i.e., the distance dij
is expected to be the approximately the same as the lengths of the neighboring
Nij edges dk`, k` ∼ ij:

dij = tij + ε (2.46)

where

tij =
1

Nij

∑
ij∼k`

dk` . (2.47)

This requires definition of an edge neighborhood, e.g., all edges connected to
the same vertex are considered neighbors or a directionality dependent scheme
as suggested by Hartelius and Carstensen (2003).

Having a model for the distance allows us to set up an energy function for a
node position, given the position of its neighbors as

Ugrid(si|Ni) =
1

2σ2
t

∑
i∼j

(‖si − sj‖2 − dij)2
, (2.48)

which is seen to be a GMRF. The energy in such a GMRF can be minimized by
alternating between determining dij and taking steps in s using, e.g., Metropolis-
Hastings. This is the basic model used for fine adjusting grid structures for the
papers in Chapter 6.

The observation model is very flexible, in that it simply needs to map the given
position of a node to an observation energy. The energy field could be the
result of an image filtering operation, e.g., edge enhancement or blob detection,
a probability map from a segmentation procedure or anything else where low
energy is proportional to the likelihood of the position. More general energy
functions, edge priors and observation models can be found in Hartelius and
Carstensen (2003).
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(a) Rectangular (b) Triangular

(c) Hexagonal

Figure 2.10: Various regular lattices, where all edges in a noise free lattice
have the same length. Note that the triangular and hexagonal
lattice are each others dual lattices. The dashed lines indicate the
modelling of uncertainty of a node position given its neighboring
nodes.



Chapter 3

Manifold learning

3.1 Linear decomposition

A common task when dealing with multivariate images is decomposition of the
image into its “interesting” signals. This could be for visual inspection or as a
pre-processing step for further analysis; it could be for a single image (one set of
variables), two images (two-set) or multiple images (multi-set). The definition
of “interesting” depends on the decomposition method. A brief summary of
some standard one-set image decomposition methods will be given here. We
will mainly be concerned with methods not using a fixed set of basis functions,
in contrast to, e.g., Fourier transforms or wavelets (Gershenfeld, 1999).

In linear decomposition the model for an observed set of signals X = [x1, . . . ,xp]
is

X = ZA + ε, (3.1)

where Z = [z1, . . . , zq] are the true underlying signals, A ∈ Rq×p is a projection
matrix and ε is noise. The projection matrix is also referred to as the mixing
or basis change matrix. The goal is usually to simultaneously determine A and
Z subject to some measure of optimality.

Linear single-set image decomposition is in very general terms defined in Defi-
nition 3.1.
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Definition 3.1 (Image decomposition). Image decomposition seeks the
linear combination ai ∈ Rp of the image data matrix X ∈ RN×p, where N = mn,
as the solution to

arg max
ai

g(Xai)

subject to some condition on the independence between ai and aj , j = 1, . . . , i−1
for i > 1. The q found components are sorted such that g(Xai) > g(Xai−1)
for i > 1. Here g : RN 7→ R is an arbitrary function, which will vary between
different image decomposition methods. Note that this definition is only useful
in the simple cases of non-regularized and non-constrained methods. N

This definition can encompass some of the classical image decomposition meth-
ods: principal components analysis (PCA) can be formulated with g(·) ≡ var(·)
and maximum autocorrelation factor (MAF) analysis uses

g(X(x)ai) ≡ corr (X(x)ai,X(x + ∆)ai)

where ∆ is a spatial displacement (Switzer and Green, 1984). MAF analysis is
a special case of the minimum noise fraction (MNF) analysis which maximizes
the signal-to-noise ratio g(Xai) ≡ aiSSai

aiSNai
using a noise model to estimate the

noise and signal covariance matrices SN and SS (Green et al., 1988, Nielsen,
2011). These are all examples of variance preserving decompositions, where the
condition mentioned in Definition 3.1 is orthogonality. Further they all assume
approximately Gaussian distributed data (or noise).

We distinguish between orthogonal and oblique decomposition methods. The
first type of methods yields an orthogonal A, and thus q ≤ p and for q = p
the matrix A specifies a rotation of the original space. Oblique decomposition
methods can yield an arbitrary number of projection directions. Embedding a
new observation xnew into a subspace is simply

znew = Axnew . (3.2)

However, as noted by Shen and Huang (2008) care should be taken when calcu-
lating, e.g., the variance contained in a q-dimensional non-orthogonal subspace.
For an orthogonal subspace of dimension p the variance can be calculated as a
sum of the variance in each projection direction as var(ZA) =

∑p
i=1 var(ZaTi ).

When the projections are not orthogonal, there may be overlap in informa-
tion between the projection directions and the variance for the data in the
q-dimensional subspace defined by Aq needs to be calculated using the principle
of an oblique projection as

var(ZAq) = tr(XT
q Xq)

where

Xq = XAq(A
T
q Aq)

−1AT
q .
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This is important for, e.g., sparse principal component analysis and was not
noted in the original paper by Zou et al. (2006).

For many image decomposition methods it is common to assume that the vari-
ables are normally distributed; this is in many cases a fair assumption, e.g.,
when dealing with optical images as mentioned in Section 2.1. Assuming Gaus-
sianity makes it sufficient to consider second-order moments of the distribution
thus simplifying optimization.

3.1.1 Information theoretical

In Section 2.1.3 entropy was introduced as an information theoretical measure
useful for quantifying the amount of “surprise” or information content in a dis-
tribution. Entropy has its origin in thermodynamics, and we saw in Section
2.3.1 how the Gibbs distribution is important in the context of MRFs. Nat-
urally, methods for optimizing measures from statistical thermodynamics and
information theory exist.

Independent component analysis (ICA) constitutes a class of methods searching
for latent non-Gaussian variables in the data. Non-Gaussianity is claimed to be
a better measure for “signal” in many real-world scenarios (Hyvärinen et al.,
2001). The most common variant of ICA is Infomax by Bell and Sejnowski
(1995), where non-Gaussianity is enforced by assuming a particular heavy-tailed
distribution of the latent variables under the model z = g(u),u = Ax + a0,
where A is the mixing matrix and x the observed data. This is usually accom-
plished by introducing a sigmoidal transfer function g(u) = 1

1+exp(−u) . Since

the introduction of ICA, a variety of models and solutions have emerged (see
e.g. Hyvärinen et al., 2001, Shwartz et al., 2005), some of which are formulated
in terms of probabilistic graphical models and thus probabilistic in nature (e.g.,
Hinton et al., 2001, Chan et al., 2003, Bishop, 2007).

The information theoretical measure mutual information was introduced in Sec-
tion 2.1.3.2 and is the foundation for the two-set decomposition method de-
veloped in Paper A. Two-set decomposition will be introduced here and the
contribution of Paper A will be summarized in Chapter 4.

3.1.2 Two-set decomposition

Two-set decomposition can be defined as in Definition 3.2.
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Definition 3.2 (Two-set image decomposition). For the two sets of vari-
ables X ∈ RN×p and Y ∈ RN×q, q ≤ p two-set decomposition seeks pairs of
linear combinations (ai,bi) as the solution to

arg max
ai,bi

g(Xai,Ybi)

subject to some condition on the independence between ai and aj , j = 1, . . . , i−1
for i > 1 and between bi and bj , j = 1, . . . , i−1 for i > 1. Here g : (RN ,RN ) 7→
R defines a measure of association, which will vary between decomposition meth-
ods. N

Canonical correlation analysis (CCA) by Hotelling (1936) is the best-known
two-set decomposition method and is described in various textbooks (see e.g.,
Anderson, 1984, Wackernagel, 1995).

As suggested by the name CCA maximizes the correlation ρ between linear
combinations of these two sets of variables (X and Y):

ρ = corr
{
aTX,bTY

}
=

aT Σ12 b√
aT Σ11 a

√
bT Σ22 b

(3.3)

where Σ12 = cov (X,Y ). This can be done by solving the generalized eigenvalue
problem

ρ2 =
aT Σ12 Σ−1

22 Σ21 a

aT Σ11 a
=

bT Σ21 Σ−1
11 Σ12 b

bT Σ22 b
(3.4)

where the eigenvectors a1, . . . ,aq with corresponding eigenvalues ρ2
1 ≥ . . . ≥ ρ2

q

are the desired projection directions for X. For more details, see Hotelling
(1936), Nielsen (2002). Two-set decomposition is of interest in relation to Paper
A.

3.2 Locality-based embedding

Locality-based manifold learning is motivated by a desire to have the manifold
tend towards a certain structure, e.g., that near-by points in input space are
also near-by in the learned feature space. Here we will consider methods using
a weighted graph, where the presence/abscence of an edge and its weight reg-
ularizes the solution towards the desired structure. Isomap (Tenenbaum et al.,
2000), locally linear embedding (LLE) (Roweis and Saul, 2000), locality preserv-
ing projections (LPP) (He and Niyogi, 2003) and Laplacian eigenmaps (Belkin
and Niyogi, 2003) are different algorithms proposed to solve this problem. Yan
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et al. (2007) proposed a unified framework based on a general graph formu-
lation, where all of these methods can be seen as special cases with different
criteria for setting up the graph. This graph embedding framework not only
encapsulates these methods (and others, such as PCA and LDA), but it does
so linearly and thus does not suffer from the same weakness as Isomap, LLE
and Laplacian eigenmaps, namely that they are only defined in terms of the
training points and embedding of new test is not well defined (Yan et al., 2007,
Cai et al., 2007b).

Define a graph G with N vertices, one for each data point xi, i = 1, . . . , N , a
symmetric matrix W with Wij the weight of the edge joining xi and xj and the
graph Laplacian L = D−W, where D is a diagonal matrix with the degree of
each vertex, i.e., Dii =

∑
jWij . The “graph-preserving criterion” for the linear

embedding x 7→ z is then

arg min
a

s.t. aTXTBXa=d

∑
i6=j

‖aTxi − aTxj‖2Wij = arg min
aTXTLXa

aTXTBXa
(3.5)

where d ∈ R and B ∈ RN×N is a constraint matrix such that aTXTBXa = d
either serves the purpose of avoding trivial solutions, normalizes the solution
or guides the solution by defining separate graph weights penalizing proximity,
instead of encouraging proximity as in W. Yan et al. (2007) provides graph ver-
sions of the aforementioned methods, as well as linearization and kernelization
techniques for generalizing the found solution to new samples.

The notion of locality preserving embeddings proves useful for semi-supervised
methods. Semi-supervised methods are concerned with situations where a part
of the data set (usually the minority) is labelled, while a – potentially significant
– amount of data is unlabeled. While the unlabeled data are not useful for the
supervised part of the task, e.g., discriminant analysis, the resulting manifold
should still learn something from them. This could for instance be that the
manifold honors a locality criterion as above. Cai et al. (2007a) and Song et al.
(2008) simultaneously proposed semi-supervised discriminant analysis in this
context with the optimization problem posed as

arg max
a

aTSBa

aSTa + αJ(a)
(3.6)

where SB and ST are the between classes scatter and the total covariance, α
is a regularization parameter and J(a) =

∑
ij(a

Txi − aTxj)Sij with S being
the edge matrix linking nearby observations, e.g., with a binary link to the k
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nearest neighbors. Defining the block diagonal matrix

W =


W1

. . .

Wc

0


where Wj is a matrix with all elements equal to 1/Nj where Nj is the number
of observations in the j’th class. Further we define

Ĩ =

[
I 0
0 0

]
(3.7)

where I is an N` × N` identity matrix and N` =
∑c
j=1Nj . The optimization

problem from Eq. (3.6) can then rephrased as

arg max
a

aTXTWXa

aTXT (Ĩ + αL)Xa
, (3.8)

where the observations must be sorted according to class id, with the unlabeled
observations in the end, to align with W above. L = D − S is the graph
Laplacian as before with S defining the local structure. Note how the between
classes scatter is only influenced by labelled observations, while the penalty
term in the denominator incorporates all observations. This is seen to fit into
the framework from Eq. (3.5).

Interesting work is also being carried out for learning embeddings using neural
networks, based solely on neighborhood relationships (see e.g., Hadsell et al.,
2006).

3.3 Non-linearity via kernel methods

Kernel methods in machine learning and pattern analysis were introduced as
a canonical framework for modelling unknown non-linear relations in data. A
naive approach to expanding a basis to include non-linear relations is to expand a
set of variables X = {x1, . . . ,xp} with for instance quadratic relations such that

X̃ = {x1,x
2
1, . . . ,xp,x

2
p}. In case any of the variables are better represented

squared this could be a better basis for pattern analysis. However, how do
we know whether to include quadratic relations and not cubic, square roots
or something even more exotic? Kernel methods can be seen as a framework
to introduce more general non-linearities than a manual basis expansion can
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provide. This introduction to kernel methods will follow that of Abrahamsen
(2009) and Shawe-Taylor and Cristianini (2004).

Kernel methods consist of two stages: First, a mapping from the input space X
to a potentially non-linear feature space H. Secondly, some linear pattern anal-
ysis method is applied in this feature space. This is sketched for a discriminative
scenario in Figure 3.1.

X

φ

H

Figure 3.1: Idealized sketch of the principle of kernel embedding for a discrimi-
native task. While a non-linear decision boundary is optimal in the
input space, for some non-linear embedding φ the optimal bound-
ary is linear. Similar to sketches by, e.g., Abrahamsen (2009) and
Shawe-Taylor and Cristianini (2004).

The feature space will be defined by a kernel function

κ(x,x′) = 〈φ(x), φ(x′)〉 (3.9)

defined on X × X where 〈·, ·〉 is the inner product and φ : X 7→ H is a (poten-
tially non-linear) function mapping from the input space to a reproducing kernel
Hilbert space (RKHS). Thus the kernel function implicitly defines the feature
space (or RKHS) by the inner products of the data embedded into H by φ. This
direct representation of inner products in H, without explicitly embedding the
data points in H by φ is known as the kernel trick. The kernel trick also implies
that for N � p problems, i.e., where the dimensionality p of X is much larger
than the number of observations N , it can be advantageous to work with inner
products between observations.

Definition 3.3 (Kernel matrix). The matrix of all inner products between
all N observations in X = [x1, . . . ,xN ]T is called the kernel matrix

K =

κ(x1,x1) · · · κ(x1,xN )
...

. . .
...

κ(xN ,x1) · · · κ(xN ,xN )

 ,

also known as the Gram matrix. N
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Mercer’s theorem states which functions are valid as kernel functions (Mercer,
1909, Shawe-Taylor and Cristianini, 2004).

Theorem 3.1 (Mercer’s theorem). A symmetric kernel function κ(·, ·) defined
on X × X can be defined as an inner product

κ(x,x′) = 〈φ(x), φ(x′)〉
for some φ : X 7→ H iff

κ(x,x′) =

∫
X×X

κ(x,x′)f(x)f(x′)dxdx′ ≥ 0 ∀L2(X )

or, equivalent that the kernel matrix K is positive semidefinite for all sets
{xi}Ni=1.

The symmetry and positive semidefinitenesss of the kernel function ensures that
a φ : X 7→ H exists and the feature space H is a RKHS. Some popular kernel
functions are listed in Table 3.1.

Kernel Definition κ(x,x′) Parameters

Gaussian exp
(
−γ‖x− x′‖2

)
Scale γ ∈ R+

Polynomial (〈x,x′〉+ c)
d

Degree d ∈ N+, c ∈ R+

Sigmoid tanh (γ〈x,x′〉+ c) γ, c ∈ R+

Histogram intersection
∑p
i=1 min{xi, x′i}

Chi-square 1−∑p
i=1

(xi−x′
i)

2

1
2 (xi+x′

i)

Table 3.1: Some common kernel functions. The Gaussian kernel is the most
common, the sigmoid kernel is known from neural networks and
the histogram and chi-square kernels are well-suited for histogram
feature spaces.

The Gaussian kernel is by far the most popular kernel. In theory it has infinite
support, creating infinite dimensional feature spaces. However, the representer
theorem (Schölkopf and Smola, 2002) tells us that even though the space H is
infinite-dimensional, the solution to a minimization problem

arg min
f∈H

R((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) + g(||f ||) ,

where R(·) is a risk function defined on the set of training samples (xi, yi)
with minimizers f(xi) and regularizing function g(·), can be written as a linear
combination w ∈ RN of the kernels of each of the N observations

f(x′) =
N∑
i=1

wiκ(xi,x
′) ∀i ∈ {1, . . . , N} (3.10)
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and thus be maximum N -dimensional. This effectively reduces the search for a
minimizer from potentially infinite-dimensional to N -dimensional (Abrahamsen,
2009). The relationship between the Gaussian kernel and the Parzen window
estimator is used by Jenssen (2010) to derive kernel entropy component analysis.

Kernels need to be centered in kernel space rather than in the input space. Typ-
ically, it is most meaningful to center a set of Ntest test observations using the
set of N training samples. Say that the test observations have been kernelized
into the matrix K ∈ RN×Ntest . The centered kernel can then be written as

K̃ = K− µtrain1TNtest
− 1NµTtest + µ (3.11)

where µtrain is theN -vector of row-means, µtest theNtest-vector of column means
and µ the global training mean. In other words, the rows are centered, the
columns are centered and the global mean is re-added. In the case of centering
a training kernel, i.e., the observations have been kernelized with themselves,
computation time can be saved by exploiting the symmetry of K and realizing
that the row and column means are equivalent.

3.3.1 Kernel discriminant analysis

Discriminant analysis refers to the task of classifying previously unseen multi-
variate observations into a discrete number of classes. This is typically done in
a supervised setting, by training a discriminant function on a limited number
of observations with known class assignments.

Linear discriminant analysis (LDA) will here be introduced to ease the intro-
duction of kernel discriminant analysis (KDA) in Section 3.3.1.2.

3.3.1.1 Linear and regularized discriminant analysis

The classical Fisher’s linear discriminant (also known as canonical discriminant
analysis) is a supervised method for classification of multivariate observations
(Fisher, 1936).

For a two-class discrimination problem, observe the multivariate data set X =
X1 ∪X2 where X1 = [x1

1,x
1
2, . . . ,x

1
`1

]T and X2 = [x2
1,x

2
2, . . . ,x

2
`2

]T are samples
from two different classes with a total of N = `1 + `2.

The aim of disciminant analysis is to find the linear combination Xa,a ∈ Rp
that maximizes the variation between classes, while minimizing variation within
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classes. This is found by maximizing the objective

J(a) =
aTSBa

aTSWa
(3.12)

where

SB = (m1 −m2)(m1 −m2)T (3.13)

SW =
∑
i=1,2

∑
x∈Xi

(x−mi)(x−mi)
T (3.14)

are the between-class covariance matrix and within-class covariance matrix.
mi = 1

`i

∑`i
j=1 xij is the class mean vector. This coefficient can be maximized

by solving it as a generalized eigenvalue problem.

The mapping of an unseen observation xnew ∈ Rp onto this discriminating direc-
tion z = xTnewa yields a scalar z, where negative values classifies the observation
into one class and positive values into the other class. For a well defined dis-
criminating manifold, this value can also be interpreted as relative distances to
each class.

Oftentimes, it is necessary to regularize the optimization problem by adding a
positive definite matrix Ω to the within-class covariance matrix (Hastie et al.,
1995, Clemmensen et al., 2011). This is especially true for p > N problems,
where ΣW is not necessarily full rank. Often Ω = λI is chosen, where I is the
identity matrix. In that event, the optimization problem in Eq. (3.12) takes the
form

J(a) =
aTSBa

aT (SW + λI)a
, λ ≥ 0 . (3.15)

For λ = 0 this reduces to the non-regularized discriminant analysis. A two-class
classification problem with the LDA solution can be seen in Figure 3.2.

3.3.1.2 Kernel discriminant analysis

Discriminant analysis has been extended to a kernelized version, similar to
other multivariate methods, such as principal component analysis (Jolliffe, 2002,
Schölkopf et al., 1998). Fisher discriminant analysis with kernels is described
well by Mika and Ratsch (1999) and in the context of graph embedding (see
Section 3.2) by Cai et al. (2007a).

Here we will jump right into defining the between-class covariance matrix M
in kernel space and the within-class covariance matrix N. These are defined in
terms of the kernel function κ(·, ·). First the mean vector for class i in kernel
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Figure 3.2: Linear discriminant analysis for two classes. The decision bound-
ary separates the domain into two classes. The projected values
are shown as histograms and have maximum separation between
the two classes.

space is defined as:

(mi)j =
1

`i

`i∑
k=1

κ(xj ,x
i
k) (3.16)

and then

M = (m2 −m1)(m2 −m1)T (3.17)

N = KKT −
∑
i=1,2

`imim
T
i (3.18)

where

Kjk = κ(xj ,xk) (3.19)

Note that M and N are here N ×N matrices.

For the same numerical reasons as before, and the additional need to “capacity
control” the feature space, since it can be very non-linear due to the flexibility
of the model, it is a must to regularize the within-class covariance.

Similarly to Eq. (3.15) a regularized objective function takes the form as

J(w) =
wTMw

wT (N + λI)w
λ ≥ 0. (3.20)
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This can be solved either as a generalized eigenvalue problem, or, if one is
only interested in the direction of the projection vector w, it can be found as
w = (N + λI)−1(m2 −m1) (Muller et al., 2001).

It has also been argued that some fraction of the kernel matrix, rather than the
identity matrix, could be added for regularization (Nielsen, 2011). This would
correspond to penalizing the 2-norm of the projection vector in the original
space (Mika et al., 1999). Note once again that w = [w1, w2, . . . , wN ]T is an N -
vector, rather than a p-vector as before. Thus a subspace of the feature space
is represented in terms of the N observations used to train the discriminant
function.

The projection of a new data point using the kernel discriminant function is less
trivial than for the linear method. Due to the fact that the kernel method is
formulated in terms of individual-similarities (or inner products), the projection
of xnew takes the form

z =
N∑
j=1

wjκ(xj ,xnew) . (3.21)

This can be read as a kernelization of the new observation with each of the train-
ing data observations, projected using the discriminating direction w, which of
course is a realization of the representer theorem from Eq. (3.10). This implies
that the training data set needs to be stored for the testing/classification phase.

For an application of the kernel formulation of discriminant analysis, the reader
is referred to papers B and C. This concludes the methodological overview
needed to put the scientific contributions into context. Now summaries of the
scientific contributions will follow.



Part II

Summary of scientific
contributions





Chapter 4

Canonical information analysis

Paper A is motivated by the need for a two-set decomposition method, based
on information theoretical measures. Specifically we aim to maximize mutual
information between linear combinations of two sets of variables X ∈ RN×p and
Y ∈ RN×q:

arg max
a,b

I(u,v) where u = Xa,v = Yb (4.1)

where I(u,v) = h(u) + h(v) − h(u,v) is the mutual information of the linear
combinations. The reason for using mutual information as an optimization
criterion is that it accounts for the full probability distribution, rather than,
e.g., second order moments only as does canonical correlation analysis (CCA).
A motivating toy example is to consider that for two signals, say y1(x) = x
and y2(x) = x2 the correlation is close to one when x ∈ [0, 1]. However, when
x ∈ [−1, 1] the correlation is exactly zero. In both cases the mutual information
is maximum, since the two signals contain the same information. The absence
of such method in literature was noted and schematized by De Bie and De Moor
(2002) as:
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based on second
order statistics

based on
mutual information

one
signal
space

PCA ICA

more than
one signal

space
CCA ?

algorithms use
orthogonal projections

algorithms use
oblique projetions

Principal components analysis (PCA), independent component analysis (ICA)
and CCA were both described in Chapter 3. Only a few attempts towards
two- or multi-set information theoretical decomposition have been attempted,
though. Noteworthy is the work by Yin (2004), where the same actual opti-
mization problem is being solved by a maximum likelihood estimation with the
linear combinations as parameters. However, the method scales poorly with the
number of sample points and is as such not well-suited for large-sample prob-
lems, such as in image decomposition. Karasuyama and Sugiyama (2012) also
propose a solution by directly optimizing the density ratios in the Kullback-
Leibler divergence (Eq. (2.18)) by using a basis function representation of the
data. However, the presented simulation studies are small-sample and running
times are inferior to those of Yin (2004), and thus also not suited for image
decomposition problems.

Methodology

The included paper presents “Canonical information analysis” (CIA) as a so-
lution to this problem. The method poses the optimization problem as a gen-
eral one and focuses on providing a fast approximation of mutual information,
given two projection directions. Mutual information estimation can be obtained
through marginal and joint entropy estimations. Shwartz et al. (2005) provides
an approximate marginal entropy estimator based on quantization and convo-
lution. We have for the purpose of CIA extended this estimator to approximate
joint entropy, such that we can obtain an approximate mutual information es-
timate given the projection directions. This opens the problem up to standard
optimization algorithms with many function evaluations, such as simulated an-
nealing or a genetic algorithm, as well as fast, local optimization algorithms,
such as the Nelder-Mead downhill simplex algorithm (Nelder and Mead, 1965).
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Main results

The main results from the application of canonical information analysis to spe-
cific problems are: uncovering of the latent signals in a two-dimensional, two-
set toy example is improved, which can be verified visually and numerically. A
one-dimensional visualization of eight infrared bands from a weather satellite
is visually more pleasing when using CIA to determine the linear combination,
compared to a CCA based solution. A change-detection example using two sets
of temporally close aerial photos of cars on a highway shows that a potentially
more useful difference image is obtained, when jointly determining the linear
combinations of the two sets using CIA rather than CCA.

Contributions

Paper A: Canonical information analysis holds the following contributions and
main results:

• An algorithm for uncovering mutual information maximizing projections
of two sets of multivariate data.

• Fast approximate joint entropy estimation.

• Simulation studies for various sample sizes, where it is evident that the
proposed method is at least 20 times faster than the method proposed by
Yin (2004) for a sample size of 5000, which is a very moderate sample size
in image analysis.

• Case studies of remote sensing data of different modalities, illustrating the
usefulness of the method.

Several points of future work could be interesting: a kernelized version of CIA,
perhaps leveraging the approach by Jenssen (2010), where the Gaussian kernel is
used both as the kernel to define the inner products and as the kernel for density
estimation to minimize the computational burden. Secondly, application of the
method to different data modalities to further emphasize the usefulness of the
approach. Finally, the major hurdle to overcome in this approach is the fact that
maximization of mutual information is a non-convex optimization problem. Any
means to alleviate this would be interesting, especially relaxation of the problem
to ensure convergence even for hyperspectral data.
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Chapter 5

Quantitative phenotyping of
the aposematic frog
Ranitomeya imitator

In Papers B, C and D methods are presented for image-based phenotyping
of color patterns on poison dart frogs. Paper B details the image analysis
methodology, how it is used to quantify a mimicry trait and provides a likelihood
model for estimating the number of genes underlying such a trait. In Paper C
the methodology is used to quantify the pattern aspects of the phenotype to
support the hypothesis that mimicry can be a driver of reproductive isolation.
Paper D uses the principles introduced in Paper B to quantify two separate
phenotypes from imagery and presents a likelihood model to estimate whether
these phenotypes are controlled by the same or separate sets of genes.

The poison dart frog Ranitomeya imitator exhibits a complex color pattern as
part of its mimicry trait. Different morphs can look very different, despite their
genetic similarity (see Figure 5.1). Quantifying this trait is of interest to answer
various questions of relevance to evolutionary biologists, and the contributions
here are within the field of “quantitative image-based phenotyping”. Previously
and currently, manual measurement techniques dominate the field of biological
quantification of traits. There is an interest in using automated image analysis
of field photography to alleviate some common problems associated with manual
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measurement techniques: automation is less time consuming for the biologist,
the results can be reproduced, and the biases associated with measuring are
shifted from subjective, perhaps unkown, biases to the choice of method and
parameters.

(a) Sauce (b) Chipesa

(c) Achinamisa (d) Varadero Forest

Figure 5.1: Individuals of the R. imitator species from four different sampling
locations in the north-central Peruvian rain forest. Note the re-
markable color pattern differences. Also note the variations in
pose and illumination.

The mimicry of R. imitator has resulted in so-called hybrid zones, where frogs at
one of the transect are mimetic with one model species and mimetic with another
model species at the other end of this transect. Between these extremes a hybrid
zone forms, where intermediate color pattern morphs are found. Quantification
of the mimicry trait in such zones can be used to answer the question of, whether
mimicry can drive speciation. This is treated in Paper C. Paper B and D exploits
that the hybrid zone allows for estimating an admixture proportion for each
individual using genetic data (see Appendix J for a data-driven approach for
admixture proportion estimation). Such an admixture proportion can be used
for biological systems, where it is not convenient to make controlled crosses
in the laboratory. Specifically, the admixture proportion is used in connection
with the automated quantification of phenotypes to setup likelihood models to
answer the questions of 1) “How many genes underly a quantified phenotype?”
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and 2) “Are two, separately quantifed, phenotypes controlled by one or separate
sets of genes?”.

Methodology

The first step in the presented approach to quantitative image-based pheno-
typing is to bring the individuals into a common reference frame. Manual an-
notation of 22 anatomical landmarks was followed by a generalized Procrustes
analysis (Gower, 1975), warping the individuals into the average shape. This
ensures an anatomically meaningful pixel-to-pixel correspondence which signif-
icantly eases further analysis.

A descriptor-based approach is chosen to represent the relevant variation from
the images. Specifically, gradient orientation and shape index histograms were
used to capture first and second order image information, and a simple bi-
nary segmentation was used to separate striped regions from non-striped region.
These techniques are described in Section 2.2. To incorporate prior knowledge
into this description, it was chosen to spatially average contributions from these
descriptors over anatomically meaningful areas; each leg, lower back and head
separately. It would be preferable to learn this automatically from the data,
but given the fairly small sample size, the complexity of the phenotype and the
variability in pose and illumination it was found necessary to explicitly model
this.


...

...
...

f1 f2 · · · fp
...

...
...


Phenotypic description

N × p


z1

z2

...
zN


Mimicry phenotype

N × 1

Figure 5.2: Illustrates the process of quantitative image-based phenotyping us-
ing image descriptors: A collection of p descriptors are extracted
from N images into a N×p matrix, i.e., a feature matrix describing
the phenotype captured by the descriptors. The p dimensions are
then reduced to a single dimension, i.e., one scalar per individual,
representing the mimicry-aspect of the phenotype. This illustra-
tion is also presented in the electronic supplementary material for
Paper B.
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The extracted phenotypic values are collected in an N × p data matrix, where
N is the number of individuals and p the number of descriptors. This includes
members of the two model species. To establish a form of “mimicry index”,
i.e., how much does an individual resemble each of the model species, the p
dimensions need to reduced to a single dimension in a meaningful way. This is
illustrated in Figure 5.2. An obvious choice would be to use the first principal
axis from a principal components analysis (PCA) of these data (Jolliffe, 2002).
However, the first principal axis merely points in the direction of maximum
variance, wherefore such a choice will only be meaningful in situations where
the mimicry-related aspects of the phenotype constitutes the majority of the
variance, which is not necessarily the case. Therefore, in the contributions
presented here, variations of Fisher’s discriminant analysis (Fisher, 1936) have
been used to learn the one-dimensional manifold representing mimicry in this
p-dimensional space. The features extracted for the model species were used as
training data and the manifold learned as the direction of maximum separation
of these two classes. Thus the differences in model species are used to define the
manifold of separation. The unlabeled data, i.e., the R. imitator individuals, are
only used to ensure a smooth manifold. In this context, a smooth manifold is one
that does not “collapse” while also ensuring minimum intra-location variance.
This is based on the assumption that individuals from the same locations are
similar in phenotypic expression.

G1 · · · GK

z1 z2 · · · zN

f1 f2 · · · fN

(a) Model for estimating the number
of genotypes K underlying the ob-
served N phenotypes {zi}Ni=1 and
admixture proportions {fi}Ni=1.

f

G

z1 z2

f

G1 G2

z1 z2

(b) Models for testing the hypothe-
sis of whether two phenotypes z1
and z2 are dependent on one or
two genotypes, given the admix-
ture proportions f .

Figure 5.3: Graphical models for the likelihood models in Papers B and D.

The quantified mimicry-related phenotype and the estimated admixture propor-
tions are key ingredients of the likelihood models presented in Papers B and D.
Paper B presents a model useful for estimating the number of genes underlying a
quantitative trait in a hybrid zone. This amounts to fitting the proposed model
to the observed phenotypes and admixture proportions, with for a varying num-
ber of genes and selecting the one with maximum likelihood. Paper D presents
a similar model that can be used to identify whether two different quantified
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traits are controlled by the same or separate sets of genes. Again, this requires
fitting the model to the data and selecting the one with maximum likelihood.
This is valid since the models are constructed such that they have the same
parameters. Both papers are extensively supported by simulation studies and
uncertainty in the estimates are accounted for by a bootstrapping approach.
Graphical models of the proposed likelihood models are shown in Figure 5.3.

Main results

Several interesting results are contained in the included papers. These will be
summarized for each paper here:

Paper B: Number of genes controlling a quantitative trait in a hybrid
zone of the aposematic frog Ranitomeya imitator This paper analyzes a
hybrid zone containing 317 individuals, stretching from Sauce along the
Huallaga river to Micaela Bastidas. In this zone, the two model species
are R. summersi and R. variabilis. Using a 60-dimensional description of
pattern, which is reduced to a scalar mimicry-related phenotypic quantity
per individual, it is found most likely that the mimicry is controlled by
one, two or at most three genes of major effect.

Paper C: Reproductive isolation related to mimetic divergence in the poi-
son frog Ranitomeya imitator This paper contains several analyses sup-
porting the hypothesis of reproductive isolation. This includes mate choice
experiments, bioacoustical analysis, landscape genetics, and color pattern
analysis, the first three being unrelated to the contributions of this thesis.
The employed pattern analysis methodology is similar to that of Paper
B, but is here used to analyze another transition zone with R. fantas-
tica and R. variabilis being the two model species. For this paper, it
was relevant to quantify the mimicry-related phenotype separately for the
legs and the body of the frog as divergent selection may act differently
on different phenotypes. Based on spectroscopic measurements a similar
measure for arm, leg, head and body color was derived. Collectively, these
quantifications serve as the foundation for statistical analyses showing the
presence of a narrow phenotypic transition zone. Combined with neutral
genetic divergence and assortative mating, shown by the other analyses,
this supports that mimicry-driven speciation is in an early stage for this
vertebrate system.

Paper D: Identifying pleiotropic control of adaptive phenotypes This pa-
per uses the same hybrid zone as in Paper B and sets up four specific
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cases to analyze, namely whether the phenotype pairs of dorsal saggital
vs. transversal stripes, dorsal pattern vs. dorsal coloration, dorsal pattern
vs. leg pattern and dorsal coloration vs. leg coloration are controlled by
one or separate sets of genes. The first case is included as a very simple
example of a quantifiable phenotype; the remaining phenotypes are quan-
tified as in Paper B. The proposed likelihood model is fitted to these pairs
of phenotypes and it is found for the first three cases that the pairs are
most likely controlled by the same set of genes. There is no evidence for
this in the case of dorsal vs. leg coloration.

To make this result conceivable, a reaction-diffusion model for pattern
formation is derived. This model is capable of generating patterns that
loosely resemble those found in the transition zone, changing only a single
parameter to go from saggital stripes to transversal stripes and dots for an
intermediate value. See Appendix K for more detail on reaction-diffusion
models.

Contributions

The main contributions from the work related to quantitative phenotyping of
mimicking frogs in a hybrid zone are:

• Automated extraction of useful features related to the pattern phenotype
from field imagery, i.e., varying light, pose and camera position.

• Estimation of a “mimicry index” from these extracted features using man-
ifold learning.

• Derivation of likelihood models for testing two different hypotheses rele-
vant to evolutionary biologists: how many genes underly a quantitative
trait, and are two separately quantified phenotypes controlled by the same
or separate sets of genes?

• Practical implementations and simulations documenting the precision and
accuracy of these methods.

• Reaction-diffusion models and simulations for pattern generation.

• Estimation of admixture proportions from microsatellite data using kernel
discriminant analysis and a kernel employing a genetic distance measure.

• Application of the developed methodology to three different hybrid zones
with a total of 588 individuals.
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Interesting points to continue work in this direction on would be a generative
model for the pattern description. This could be modelled in various ways,
e.g., in a patch-based deep-learning architecture, where the low-dimensional
representation is ensured to be able to generate the observed images. Another
point of potential improvement would be the reduction from a multivariate
phenotypic representation to a one-dimensional mimicry-related manifold. The
determination of the manifold could be attempted using variations of, e.g., lo-
gistic regression or, perhaps more interesting, an approach directly modelling
group membership probabilities, such as (sparse) mixture discriminant analysis
(Hastie and Tibshirani, 1996, Clemmensen et al., 2011).
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Chapter 6

Structure identification in
graphene

In Paper F: Pattern recognition approach to quantify the atomic structure of
graphene we motivate the usefulness of an automatic method for determining
the structure from low contrast HRTEM images. In Paper E: Structure identifi-
cation in high-resolution transmission electron microscopy images: an example
on graphene we describe the methodology constituting the pipeline.

Graphene is a two-dimensional material as it is only one atom thick. The layer
of atoms is arranged in a hexagonal structure, a honey-comb lattice. In an
unaltered, pristine, graphene sheet, this structure is completely regular. How-
ever, the really interesting semi-conducting properties of graphene only emerge
when the sheet is altered by puncturing periodic holes. The atomic structure
surrounding such holes are less stable, i.e., they change continuously and the
sheet may even bend or buckle due to the stress. While simple methods, such
as extrema detection followed by a triangulation, could be used for determining
the structure of a pristine graphene sample, the altered graphene poses different
challenges. In Appendix H an image registration inspired approach is described,
which was found sufficient for a large part of the samples (Kling et al., 2013).
However, the method was slow and not in a framework capable of handling local
adjustments. Instead, the method was matured by employing a Markov ran-
dom field model inspired by Hartelius and Carstensen (2003). We distinguish
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ourselves from the work by Hartelius and Carstensen (2003) in that we do not
fit a prior known grid to an image. Rather, a set of points are detected in the
image that are known to originate from a known grid structure. This has the
conceptual advantage of not having to specify the grid instance in advance, and
the computational tractability of reducing the problem to a set of well initialized
points.

Figure 6.1: Example of an imaged graphene sheet and an excerpt. The full
image is 2048×2048 pixels (24.48 nm × 24.48 nm). Note that the
dark spots are the hexagonal centers and thus form the dual trian-
gular lattice when connected. The irregular areas are amorphous
graphene, a side-effect from the manufacturing process.

The presented pipeline for determining the atomic structure consists of four
steps:

1. Determine the approximate lattice scale: This is done by leveraging the 2D
Fourier response of the lattice in which the periodicity can be determined
and converted to lattice properties.

2. Local minima detection: The local minima found – and what will be
referred to as the sites – are the centers of the hexagons in the lattice,
seen as dark spots in Figure 6.1. The centers of the hexagonal lattice form
the dual lattice, which is triangular. The scale found in the first step is
used to guide the minima detection.

3. The neighborhood structure of the detected centers needs to be inferred.
For MRFs this is assumed known in advance, which is not the case here
since the lattice is initialized in the observed image rather than laid on top
of it. An iterative heuristic is used to infer this neighborhood structure:
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First an initial neighborhood is constructed using a Delaunay triangula-
tion, secondly improbable connections are removed based on knowing that
the mesh should consist of approximately equilateral triangles, where the
side length is approximately known from the Fourier analysis. Thirdly,
points with very little observation power (weak minima) are removed.
The process is repeated until the mesh does not change anymore. In
the second step, triangles and points are removed by setting up an Ising
model inducing spatial homogeneity. While this is a heuristic for deter-
mining neighborhood structure, it was found to work robustly for all cases
treated.

4. Having determined a neighborhood structure, a posterior model combin-
ing the geometric prior and the observation model (as described in Section
2.3.4) is formulated. The minimum energy configuration is found by gen-
erating moves in the random walk using the Metropolis spin-flip algorithm
and simulated annealing.

The last three of these steps are illustrated in Figure 6.2, where the final honey
comb lattice is also shown.

The microscopic structure is of interest for material scientists, e.g., carbon-
carbon bond lengths or other properties that can be inferred from the estimated
lattice. Therefore it is of interest which carbon-carbon bond lengths are unex-
pectedly short and provide a visualization of this. We leverage the framework of
false discovery rate large-scale simultaneous hypothesis (FDR-LSSHT) testing
by Efron (2004) to provide a statistically sound interpretation of this. FDR-
LSSHT allows for multiple testing of a large number of hypotheses, while setting
a maximum for the proportion of false positive tests and thus alleviates the con-
servatism of normal multiple comparison methods, e.g., Bonferroni adjustment,
which in high-dimensional problems tend to lead to too few significant variables.

Main results

The main results from this work is that we can extract parameters of the micro-
scopic structure in graphene sheets produced under various conditions. In the
two papers included, we show that the distributions of estimated carbon-carbon
bond lengths differ between a pristine graphene sheet and an altered graphene
sheet with an induced hole. For easier comparison, we here re-present the his-
togram comparison, representing the main result from the two papers in Figure
6.3, as cumulative distribution functions as a supplement to the histograms pre-
sented in the papers. The shown distributions represent ten exposures of the
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(a) Detected minima. (b) Inferred neighborhood.

(c) Adjusted positions. (d) Inferred graphene structure.

Figure 6.2: The steps of the algorithm illustrated on a small excerpt of the
graphene sheet in Figure 6.1. Note how one of the detected minima
is not connected due to its unexpected position in the grid. In this
case, carbon atoms are still placed around the missing hexagon
center, due to its neighboring centers.
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pristine sample (red) and twenty exposures of the altered sample (blue); all lat-
tices are fitted using the same set of parameters for the algorithm. The bond
length distributions for the altered sample show a heavy left tail indicating an
abundance of shorter bond lengths, which in turn can be interpreted by mate-
rial scientists as either bending/buckling of the sheet or an actual shortening of
bond lengths. Together with visualizations of the FDR-LSSHT interpretation
presented in the papers, this provides a statistically meaningful foundation for
further hypothesis confirmation or generation. Note that the two distributions
compared in Paper F are two of the individual exposures shown here and in
Paper E.
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Figure 6.3: Bond length distributions estimated for ten exposures of a pris-
tine graphene sample (red) and twenty exposures of an altered
graphene sample (blue). The distributions are shown as cumu-
lative distribution functions. The distributions are based on ap-
proximately 16100 estimated bond lenghts for the pristine sample
and approximately 11800 bond lengths for the altered sample.

Contributions

The main contributions of the work related to structure identifcation in graphene
are:

• Automated extraction of graphene sample parameters from frequency anal-
ysis of an HRTEM image.
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• Derivation of the needed mathematical models for fitting a triangular grid
to the main image evidence, and inferring the atomic structure from this
fit.

• Practical implementations of these methods with proofs of concepts.

• Extraction of relevant parameters, visualization and statistical treatment
of these using the framework of LSSHT.

• Application of these methods to multiple exposures of two graphene sam-
ples.

Two specific extensions of this method would be interesting. Determining the
neigborhood structure by the alternating graph cut approach could be replaced
by a soft weighting with the probability of two nodes being neighbors. This
could make the optimization of the nodes less deterministic and perhaps pro-
vide a richer result for further analysis. However, it would require a maximum
aposteriori estimate of the final grid structure, that in fact honors the geome-
try, to provide a visualization of carbon atoms placement. The second extension
would be an expanding grid, i.e., an expansion of the parameter space while opti-
mizing the node placements. This is less trivial in that it requires a mechanism
for expanding the grid that is geometrically meaningful and satisifies detail-
balance. The latter is non-trivial, but a starting point would be the literature
on reversible jumps, introduced by Green (1995).



Chapter 7

Classification of polarimetric
SAR data using dictionary

learning

In Paper G: Classification of Polarimetric SAR Data Using Dictionary Learning
an image patch-based classification is used for a multi-class crop classification
problem.

Polarimetric synthetic aperture data (SAR) provides rich reflectance data in
that it transmits horizontally (H) and vertically (V) signals and receives them
horizontally and vertically as well. This provides the four polarizations HH,
HV, VH and VV. Due to symmetry these signales are collected in a three-
vector k = [SHH , SHV , SV V ]T and a 3 × 3 multilook covariance matrix is set
up as Z = 1

n

∑n
i=1 k(i)k(i)T where n is the number of looks (Skriver, 2012).

“Multilook” simply means spatial averaging and could also be referred to as
gridding. Previous methods have relied on statistical assumptions or geometric
knowledge of the SAR signal, (see e.g. Cloude and Pottier, 1997, Hoekman and
Vissers, 2003).

The presented paper poses the crop classification problem as a supervised classi-
fication problem and leverages the patch-based discriminative clustering method
by Dahl and Larsen (2011). This involves expanding the covariance matrix in
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each pixel to a nine-vector given by three diagonal elements of Z plus real and
imaginary parts of the three unique off-diagonal elements. The feature space is
extended spatially, due to patches, and temporally, due to multiple acquisition
points. The discriminative clustering is therefore carried out in a feature space
with a dimensionality dependent on the polarization mode, the patch size and
the number of temporal acquisitions. Training of the model is done by dividing
the image into a training region and a testing region; this division makes only
approximately 32% of the image available as training data to create a challeng-
ing scenario for the algorithm.

Main results

The obtained classification is evaluated in terms of classification error percentage
for various choices of image patch size. Single (HH and VV separately), dual
(HHVV) and full polarization modes are used as input data. We compare the
classification results to a maximum likelihood classifier described by Skriver
(2012) and find that the patch-based classification is superior in all cases in
terms of misclassification rate. The maximum likelihood classifier, however,
shows comparable performance for fully polarimetric data when including three
or four acquisition points.

Contributions

The main contributions from this work are:

• Demonstrating the usefulness of clustering algorithms in the context of
polarimetric SAR data.

• Extension of existing methodology for patch-based clustering to incorpo-
rate time series information.

• A scheme for spatial division of data into training and test sets allowing
for cross-validatied error estimates.

• Comparison of the proposed patch-based classifier and an existing pixel-
based maximum likelihood classifier.

An obvious improvement of this clustering based classification technique would
be to leverage the known statistical properties of multilook polarimetric SAR
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data studied by Conradsen et al. (2003). This could readily be done by using
the derived test statistic for equality of two complex Wishart matrices as the
distance measure used for clustering the observations.
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Conclusions

This thesis provides an overview of methodology relevant to quantitatively de-
scribe image content in terms of intensity, texture and geometry, and how to
choose an appropriate representation of said contents. The methodological de-
scription and approach is general, while the application of these methods is
adapted specifically to the problem at hand.

The main problems treated in this thesis have been the cases of quantifying
the atomic structure of graphene from high-resolution transmission electron mi-
croscopy images (HRTEM), quantitative phenotyping of the aposematic frog
Ranitomeya imitator from field imagery, identification of crops from polarimet-
ric synthetic aperture radar (SAR) data, and mutual information based two-set
decomposition of multivariate imagery.

In the case of determining the atomic structure of graphene, the main contribu-
tions have been: devlopment of a pipeline of methods capable of estimating the
hexagonal grid structure of carbon atoms from a single HRTEM image, extrac-
tion of relevant parameters from a fitted grid, and visualizing extracted param-
eters in a statistically meaningful way. The pipeline leverages classical image
analysis, two-dimensional Fourier analysis and probabilistic graphical models to
solve the problem robustly, while honoring prior available information.

Quantitative and reproducible description of the color pattern polymorphism
of R. imitator is a relevant problem for evolutionary biologists. The main con-
tributions within this topic are automated extraction of features relevant to a
specific phenotype from field imagery, quantifying the aspects of the extracted
features relevant for mimicry, and development of likelihood models capable of
answering fundamental questions in evolutionary biology. Collectively, these
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contributions also serve the purpose of making image analysis available to bi-
ologists, by illustrating the usefulness of using methods that are reproducible.
Further, this approach move the bias from the subtle subjectivity of the biologist
to the more apparent parameter choices relevant for the method.

A compressed representation of the polarimetric SAR imagery is shown useful
for classification of crops. While compressed sensing is a well-known concept
in the field of image analysis, it had not previously been used in a polarimetric
SAR classification context. Through a cross validation scheme a classification
algorithm is trained to classify image patches into six different classes. The
approach is shown to be superior to the existing state-of-the-art maximum like-
lihood, pixel-based, classification method.

Mutual information based two-set decomposition of multivariate imagery is a
case of pure methodological development. The contribution from this work is
that it fills a gap in the availability of two-set decomposition methods, namely
that of an information theoretical approach maximizing mutual information.
While previous attempts exist in literature, these are not well-suited for large-
sample problems such as images. Through fast convolution-based approxima-
tions of the entropy estimates, canonical information analysis is presented as a
viable solution to the problem.

The objectives of the thesis have been met through development of general,
flexible, methods for describing image intensity, texture and geometry in the
input space, and representing this information in an appropriate feature space.
Through collaboration- and problem-driven development of the necessary method-
ology, interesting questions have been answered in research domains as diverse
as evolutionary biology and materials science. This thesis makes statistical im-
age analysis available to fellow researchers with domain specific problems, and
provides new methodology relevant for the field itself.
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Abstract

Canonical correlation analysis is an established multivariate statistical method in which correlation between linear
combinations of multivariate sets of variables is maximized. In canonical information analysis introduced here, linear
correlation as a measure of association between variables is replaced by the information theoretical, entropy based
measure mutual information, which is a much more general measure of association. We make canonical information
analysis feasible for large sample problems, including for example multispectral images, due to the use of a fast kernel
density estimator for entropy estimation. Canonical information analysis is applied successfully to 1) simple simulated
data to illustrate the basic idea and evaluate performance, 2) fusion of weather radar and optical geostationary satellite
data in a situation with heavy precipitation, and 3) change detection in optical airborne data. The simulation study
shows that canonical information analysis is as accurate as and much faster than algorithms presented in previous
work, especially for large sample sizes.
URL: http://www.imm.dtu.dk/pubdb/p.php?6270

Keywords: Information theory, probability density function estimation, Parzen windows, entropy, mutual
information maximization, canonical mutual information analysis, CIA, approximate entropy

1. Introduction

In canonical correlation analysis (CCA) first published by Hotelling in 1936 (Hotelling, 1936) linear combinations
U = aT X and V = bT Y of two sets of stochastic variables, k-dimensional X and `-dimensional Y, which maximize
correlation between U and V are found. Correlation considers second order statistics of the involved variables only and
as such it is ideal for Gaussian data. In this paper we investigate replacement of correlation with mutual information
(Hyvärinen et al., 2001; Mackay, 2003; Bishop, 2007; Canty, 2010) which is a more general, information theoretical,
entropy based measure of association between variables. Entropy and mutual information (MI) depend on the actual
probability density functions of the involved variables and thus on higher order statistics. The resulting method is
termed canonical mutual information analysis, or in short canonical information analysis (CIA).

Since multi-source data, which is typically of different genesis, often follow very different (non-Gaussian) dis-
tributions, the application of MI facilitates analysis of such data. In one of our examples we apply the method to a
joint analysis of radar and optical data (which follow very different distributions thus rendering CCA non-optimal).
Other areas where the method could potentially be very useful include data of different modalities, for example SAR,
LiDAR, optical and medical data. In general, this type of analysis has a strong potential for application in data fusion
and other fields of data integration, see also (Ehlers, 1991; Pohl and Van Genderen, 1998; Conese and Maselli, 1993).

Mutual information as a measure of association has previously proven useful in the context of image registration.
Studholme et al. (1999) proposed a normalized variant of MI for registration of medical images, which Suri and
Reinartz (2010) employ for automatic registration of SAR and optical images. For the purpose of change detection,
Erten et al. (2012) derive an analytical expression for the mutual information between temporal multichannel SAR
images.
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Other dependence measures have been considered in the literature, such as kernel canonical correlation analysis
(kCCA) (Lai and Fyfe, 2000; Bach and Jordan, 2002). However, while kernel methods do indeed provide an implicit
nonlinear transformation of the data maximizing some dependence measure, they do not possess the same qualities as
linear methods in terms of interpretation. Specifically, a linear method, such as CIA, finds the actual functional relation
between the original variables, where a kernel method, such as kCCA, would find a hidden/intrinsic transformation
which makes the relation between CVs linear. This property of the linear solution immediately eases interpretation of
the result.

The idea of maximizing MI between two sets of variables is mentioned by de Bie and de Moor (2002). However,
the authors only propose solutions to this problem based on independent component analysis in the individual spaces
of the variables and they do not provide a truly canonical approach. Yin (2004) and Karasuyama and Sugiyama (2012)
solve the problem of maximizing MI of linear combinations of variables in a manner which makes its application to
small sample problems feasible. In practical terms the solutions offered are not applicable to large sample problems
including for example image data. Our fast grid-based entropy estimator (Section 5) facilitates the use of CIA to large
sample problems. Both Yin (2004) and Karasuyama and Sugiyama (2012) request orthogonality between solutions (as
in CCA), whereas we allow for oblique solutions (Section 2) via a structure removal procedure inspired by Friedman’s
Projection Pursuit (Friedman, 1987). The well known difficulties in estimating and optimizing entropy measures, will
be addressed in Sections 4, 5 and 6.

Below, Section 2 describes the concept of canonical information analysis and motivates the following sections.
Section 3 describes the information theoretical concepts entropy of a univariate stochastic variable, joint entropy of
two stochastic variables, relative entropy, and mutual information. Section 4 briefly describes the estimation of one-
and two-dimensional probability density functions, Section 5 describes approximate entropy estimation, and Section 6
describes the maximization of mutual information of two linear combinations of stochastic variables. Section 7 gives
1) a simple, illustrative toy example, 2) a case study with weather radar data and optical data from a meteorological
satellite, and 3) a case with change detection in optical airborne data. Section 8 concludes. An appendix is included,
motivating some of the implementation choices made. Supplementary material is provided with additional simulation
studies and results from the two case studies plus an extra application of CIA for change detection.

2. Canonical Information Analysis

Inspired by canonical correlation analysis (Hotelling, 1936) we propose a method for maximizing mutual infor-
mation between the linear combinations U = aT X and V = bT Y of two sets of stochastic variables, k-dimensional X
and `-dimensional Y.

The goal of CIA can be stated as

a?,b? = arg max
a,b

I(U,V) (1)

where I(U,V) is the mutual information between the two linear combinations U and V which can be defined as

I(U,V) = h(U) + h(V) − h(U,V) (2)

where h(U) and h(V) are the marginal entropies and h(U,V) the joint entropy. This will be detailed further in Sections
3, 4 and 5.

Maximization of mutual information is known to be a non-convex optimization problem (Modersitzki, 2004;
Haber and Modersitzki, 2007) wherefore we have conducted experiments with local as well as global optimization
methods, see Section 6. The inherent lack of certainty of finding a global optimum will be elucidated by application
of the method to different real world multispectral decomposition problems, see Section 7.

In canonical correlation analysis k and ` linear combinations (components) are determined with the criterion that
the i’th component maximizes correlation between U and V while being orthogonal to the first i − 1 components.
Friedman (1987) introduced in projection pursuit ’structure removal’ as the solution to avoid re-finding a previously
found direction in space. Structure removal works by histogram equalization of the projected data to a Gaussian
distribution and transforming back to the original space. In CIA we choose to adopt this principle of structure removal
with the modification that the projected data U and V are substituted with uniformly distributed white noise. This
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modification is necessary since, in contrast to projection pursuit, CIA does not maximize non-Gaussianity of one
projection, but rather it maximizes statistical dependence between two projections. This structure removal replaces
the orthogonality requested by Yin (2004) and Karasuyama and Sugiyama (2012).

3. Basic Information Theory

In 1948 Shannon (Shannon, 1948) published his now classical work on information theory. Below, we describe
the information theoretical concepts entropy and mutual information for discrete and continuous stochastic variables,
see also (Hyvärinen et al., 2001; Mackay, 2003; Bishop, 2007; Canty, 2010).

3.1. Discrete variables
Consider a discrete stochastic variable X with probability density function (pdf) p(X = xi), i = 1, . . . ,N. The

information content is defined as − ln(p(X = xi)). The expectation H(X) of the information content is termed the
entropy of the stochastic variable X

H(X) = −
N∑

i=1

p(X = xi) ln(p(X = xi)). (3)

For the joint entropy of two discrete stochastic variables X and Y we get

H(X,Y) = (4)

−
∑

i, j

p(X = xi,Y = y j) ln(p(X = xi,Y = y j)).

3.2. Continuous variables
Probability density functions, information content and entropy may be defined for continuous variables also. This

is necessary to represent linear combinations of sampled data. In this case the entropy

h(X) = −
∫

p(x) ln(p(x))dx (5)

is termed differential entropy. Since p(x) here may be greater than 1, h(X) in the continuous case may be negative (or
infinite).

Empirical entropy ĥ(X) is an estimator of h(X) in (5). The estimator is defined as

ĥ(X) = − 1
N

N∑

i=1

ln(p(X = xi)) (6)

and as such it is defined over a finite sample {xi}Ni=1 of X, where N is the number of samples. As opposed to (3) and
(4) this estimator is not based on any binning of the data.

Empirical entropy has previously proven useful for manipulating entropy measures (Viola, 1995). We have expe-
rienced this experimentally (not shown here) and find this estimator useful for canonical information analysis.

The extent to which two continuous stochastic variables X and Y are not independent, which is a measure of their
mutual information content, may be expressed as the relative entropy or the Kullback-Leibler divergence between the
two-dimensional pdf p(x,y) and the product of the one-dimensional marginal pdfs p(x)p(y), i.e.,

DKL(p(x,y), p(x)p(y)) = (7)∫ ∫
p(x,y) ln

p(x,y)
p(x)p(y)

dxdy.

This sum defines the mutual information I(X,Y) = DKL(p(x,y), p(x)p(y)) of the stochastic variables X and Y . Mutual
information equals the sum of the two marginal entropies minus the joint entropy

I(X,Y) = h(x) + h(y) − h(x,y). (8)
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Unlike the general Kullback-Leibler divergence this measure is symmetric. Mutual information is always nonnegative,
it is zero for independent stochastic variables only.

We need to estimate marginal as well as joint pdfs to obtain the mutual information estimate in (8). Karasuyama
and Sugiyama (2012) estimate the ratio in (7) directly. We employ kernel density estimation, which uses N data
samples to estimate these pdfs. Mutual information is subsequently estimated using the same N data points. This is
possible in practice only due to our very fast estimation of pdfs which will be described in Section 5. Note, that this
is in contrast to Viola (1997) where the sample is divided into smaller portions in order to lessen the computational
burden and to Yin (2004) where an explicit estimation is used that does not scale well to image analysis problems and
other large sample problems.

4. Density Estimation

The histogram is a simple non-parametric density estimator. However, the estimated histogram is not smooth and
it depends on the end points of bins and the width of bins. By using kernel density estimators (Rosenblatt, 1956;
Parzen, 1962; Silverman, 1986) where we center a kernel on each observation, we may obtain smoother histograms
that do not depend on bin end points. The kernel density estimator (Parzen windows estimator) for the pdf of X at
value t is

p̂(X = t|x) =
1

Nσ

N∑

i=1

ϕ
( t − xi

σ

)
(9)

where x = {xi}N1 is a vector of realizations of X, ϕ(z) is the kernel and σ a smoothing parameter referred to as the
bandwidth. Often we choose the Gaussian kernel

ϕ(z) =
1√
2π

exp
(
−1

2
z2

)
. (10)

The width of the Gaussian, i.e., the standard deviation is thus equivalent to the bandwidth σ.
The kernel density estimator assumes continuous distributions, thus we estimate continuous variants of the in-

formation theoretic measures mentioned in Section 1. Since only two one-dimensional projections of the data are
considered, the known problems with kernel density estimators in higher dimensions (Beirlant et al., 1997; Kraskov
et al., 2004) are found to be negligible for canonical information analysis.

In two dimensions the bivariate Gaussian is often chosen to have a diagonal covariance matrix leaving two pa-
rameters to be estimated, namely the bandwidth in each direction. Estimation of the bandwidth is an example of the
bias-variance trade-off: a too narrow kernel causes too large variation in the density estimate and a too wide kernel
oversmooths the estimated distribution (Jones and Marron, 1996).

Here we use a data-driven bandwidth selection method based on the maximal smoothing principle (Terrell, 1990).
This method is known to be conservative (oversmoothing) by nature (Jones and Marron, 1996; Terrell, 1990), but this
is outweighed by fulfilling two – in this context – more important properties: the bandwidth estimate is stable, i.e., it
varies smoothly for small changes in projection direction of the data. Experiments (see Appendix A) have shown that
this is not the case for, e.g., neither the linear diffusion process based method by Botev et al. (2010) nor for Sheather-
Jones (Sheather and Jones, 1991). The second property is computational speed, where it outperforms the commonly
preferred “solve-the-equation plug-in” method (Sheather and Jones, 1991). Speed is of practical importance as the
density estimation will be part of calculating the objective value for a non-convex optimization problem, wherefore
the bandwidth will be estimated repeatedly. This is especially true for large problems, e.g., image processing.

5. Approximate Entropy Estimation

Estimation of marginal and joint entropies is the main bottleneck in maximization of mutual information. Parzen
window density estimation, in the explicit form presented above, has previously been used for this purpose, see e.g.
Yin (2004). However, since it is based on pairwise distances, it has a computational complexity in the order of O(N2).
Shwartz et al. (2005) proposed a fast approximate marginal (1D) entropy estimator with a complexity in the order of
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O(N log N). For the purpose of canonical information analysis we generalize this approximate entropy estimator to
joint entropy (2D). This is described below and illustrated in Figure 1.

Approximate entropy estimation is a convolution based modification of Parzen window density estimation. Con-
volution of the samples with the kernel in (10) is equivalent to the density estimation in (9). Convolutions can run in
the order of O(N log N) on a regular grid. The estimation procedure therefore 1) quantizes the irregular samples to
a regular grid, 2) convolves with a Gaussian kernel on this grid, and 3) interpolates back onto the samples’ original
positions to get an estimate of the empirical entropy in (6).

xi

ry

rx

k, ` k + 1, `

k, `+ 1 k + 1, `+ 1

Figure 1: Quantization Illustration of bilinear quantization of samples to a regular grid to enable fast approximate joint entropy estimation. The
gray dots are examples of irregular samples and the red dot is used to exemplify the bilinear weights. The black rectangles indicate the bins and the
indices of the four bins influenced by the red dot are shown.

Quantization requires choosing a discretization, i.e., a number of bins B2 and a domain [xa, xb] × [ya, yb] over
which to discretize. The (m,n)’th bin in this regular grid is positioned at (x,y)m,n = (xa + m∆x, xb + n∆y) where
m,n ∈ {0, . . . ,B − 1},∆x = xb−xa

B−1 and ∆x =
yb−ya
B−1 . The i’th sample point falls into a cell spanned by the four bin centers

with indices (mi, ni), (mi + 1, ni), (mi, ni + 1), (mi + 1, ni + 1) where mi = fl
[

xi−xa
∆x

]
and ni = fl

[
yi−ya

∆y

]
and fl[·] is the floor

operation. The weights for each of these four bin centers are given by a bilinear interpolation scheme:

wi(mi,ni) = (1 − rx)(1 − ry)
wi(mi + 1,ni) = rx(1 − ry)
wi(mi,ni + 1) = (1 − rx)ry

wi(mi + 1,ni + 1) = rxry

where rx = xi−xa
∆x − mi and ry =

yi−ya
∆y − ni, i.e., the fraction removed by the floor operation. The quantized value Qm,n

at a given bin is thus a weighted count of samples in the proximity of the bin. The quantization is collected in a B× B
image-like matrix Q. This bilinear weighting is the 2D analogue of the linear weighting suggested by Shwartz et al.
(2005).

Convolution of the quantized signal on the regular grid with the kernel ϕ from (10)

Q̂ = ϕ ∗Q

can be performed in the order ofO(B2 log B2), i.e., dependent on the number of bins rather than the number of samples.
The resulting (m,n)’th element of Q̂ is an estimate of the density at the (m,n)’th bin. Distributing this estimate back
onto the original sample positions is done using the same weights as earlier, such that

p̂(xi) = Qmi,ni wi(mi,ni) + Qmi+1,ni wi(mi + 1,ni) + Qmi,ni+1wi(mi,ni + 1) + Qmi+1,ni+1wi(mi + 1,ni + 1) .

5



This is an approximation of (9) and can be plugged directly into (6). The complexity of the quantization is linear in the
number of samples, thus the complexity of the estimation is O(N + B2 log B2). Unlike estimates of discrete entropy,
the estimate of empirical entropy is not dependent on the choice of B2, since the summation over probabilities is
carried out over the sample positions, rather than the bins. The choice does, however, influence the accuracy of the
approximation.

Shwartz et al. (2005) also provides a gradient of the marginal entropy estimate, which we have generalized to
joint entropy. The marginal entropy gradient is given with respect to the samples ∂H

∂(aT X) . For the purpose of canonical
information analysis the gradient with respect to the linear weighting a is needed. The chain rule yields

∂hx

∂a
=

∂hx

∂(aT X)
∂(aT X)
∂a

=
∂hx

∂(aT X)
XT .

This is completely analogous for joint entropy estimation and the reader is referred to Shwartz et al. (2005) for further
details.

The computational complexity of the approximate gradient estimation is of the order O(B2 log B2 + NNdim) where
Ndim is the dimensionality of the linear weighting, i.e., either k or `. In comparison, explicit calculation of the entropy
gradient is of complexity O(NdimN2 + N) (Shwartz et al., 2005).

6. Maximization of Mutual Information

The kernel density estimates of one- and two-dimensional pdfs by means of the method sketched in Section 4
are independent of additive and multiplicative transformations of each of the original variables. Therefore the maxi-
mization of the mutual information between the two linear combinations can be carried out without constraints. This
means that very many optimization schemes may be applied.

Maximization of mutual information is inherently non-convex. For problems where it is not crucial to converge
to the global optimum we suggest to use a local solver, e.g., either the downhill simplex method (Nelder and Mead,
1965) or Newton’s method with the BFGS update (Fletcher, 1970), depending on whether one wishes to rely purely
on function values or leverage the gradient introduced above. For problems where convergence to the global optimum
is important, we propose to use a genetic algorithm at the cost of significantly more function evaluations. Results
shown below are obtained using the genetic algorithm implemented in Matlab with a population size of 5(k + `)2.

The choice of starting point is crucial when using local methods for global optimization. We have experimented
with two different sets of starting points for each case, one being the optimum determined by canonical correlation
analysis. The second set of starting points is constructed by letting a0 and b0 be unit vectors of length k and `
respectively, with an equal weighting on all variables, such that

a0 =
1√
k

1k, b0 =
1√
`

1` (11)

where 1n is an n-vector of ones. For some problems, several candidate starting points may exist in which case we
suggest to employ an optimization strategy where multiple local solvers start from individual starting points.

7. Case Studies

Here we give an illustrative toy example, an example which fuses weather radar and optical geostationary satellite
data for a situation with heavy precipitation, and an example of using canonical information analysis for change
detection in optical airborne data. These examples will be referred to as toy, weather and cars respectively for brevity.

The results are summarized in Table 2. Higher order components for these data sets were found to be trivial,
wherefore only the leading component is shown.
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7.1. Toy Example
In a simple, illustrative example consider the functions f (x) = x and g(x) = x2. The correlation between the

functions over the interval [0,1] is
√

15/16 = 0.9682, close to one. The correlation between the two over the interval
[–1,1] is zero and yet of course the two variables are still closely associated.

Consider now this numeric example with a variable x1 sampled equidistantly on the interval [0,1]. Let another
variable x2 be random Gaussian noise with mean zero and standard deviation one. Let y1 be x2

1 with random Gaussian
noise with mean zero and standard deviation one tenth added. Let y2 be random Gaussian noise with mean zero and
standard deviation one. For all variables we have 1000 samples. Let the first set of variables consist of x1 and x2,
and the second set consist of y1 and y2. In this case the leading canonical correlation is 0.9166 and (after sphering the
input) the leading eigenvector for the first set is [1.0000 0.0064] and for the second set [1.0000 0.0143]. So in this
case canonical correlation analysis makes sense: we get a high canonical correlation and eigenvectors that isolate the
signal in x1 and y1. Maximal mutual information is 0.7867 and the leading projection vectors are [1.0000 0.0075] and
[1.0000 − 0.0043] respectively.

Let us now redo the analysis with x1 sampled equidistantly on the interval [–1,1]. In this case the leading canon-
ical correlation is 0.0532 and the leading eigenvector for the first set is [0.0391 0.9992] and for the second set
[−0.8955 0.4450]. In this case canonical correlation analysis makes no sense: we get a very low canonical corre-
lation and eigenvectors that do not isolate the signal in x1 and y1. Here maximal mutual information is 0.5856 and the
leading projection vectors are [1.0000 − 0.0082] and [1.0000 − 0.0086] respectively.

For the latter case (x1 sampled equidistantly on the interval [–1,1]), three-dimensional contour and scatter plots
of the leading canonical variates are shown in Figures 2a (correlation based) and 2b (mutual information based).
Figure 2a reveals no structure but in Figure 2b we clearly recognize the noisy parabola originally in variables x1 and
y1. Unlike maximization of correlation of linear combinations of the two sets of variables, maximization of mutual
information gives meaningful results in both cases.

We compare CIA to the ’explicit’ (e.g., Yin (2004)) estimation of maximal mutual information projections perfor-
mance in terms of accuracy and computation time. The accuracy is evaluated in terms of the geometric mean

µ =
√
|ρ1||ρ2| (12)

of the absolute correlations ρ1 = corr(x1,U) and ρ2 = corr(y1,V). E.g., the correct a? = b? = [1,0]T would yield
ρ1 = ρ2 = µ = 1. Figure 3a shows the difference in geometric mean µCIA − µexplicit for three different sample sizes
N = {500,1000,5000} and for ten values of the standard deviation σ for the noise added to x2

1 to form y1. We see
that in low-noise cases (σ < 0.6) the difference in geometric mean is negligible, while both estimation procedures
have difficulties for larger noise levels and sample sizes < 5000. Figure 3b shows the computation times as a ratio
(’explicit’/CIA) of the time it has taken the genetic algorithm to converge. Note that the y-axis is in logarithmic units.
For a sample size of N = 500 the speed is comparable, slightly in favor of the explicit estimation, for N = 1000
CIA is 1.4 times faster and for N = 5000 it is approximately 20 times faster. To put the computation time ratio into
perspective, we note that for, e.g., σ = 0.89 and N = 5000 the explicit estimation takes 194.5 minutes to converge,
while CIA takes 3.8 minutes to converge to an equally good solution with an average of 18.37 seconds and 0.36
seconds per function evaluation respectively. In the supplementary material we supply similar comparison plots for
three other simulation scenarios suggested by Yin (2004).

7.2. Weather Radar and Meteosat Data
This data set consists of satellite and radar imagery from 20 August 2007, where extreme downpour intensities

(53 millimeter in 10 minutes) were recorded in some regions of Denmark.
The satellite imagery is a set of k = 8 infrared bands from the Spinning Enhanced Visible and Infrared Imager

(SEVIRI) onboard the Meteosat Second Generation (MSG-2) weather satellite. The spectral region of the infrared
bands are from approximately 3.9µm to 13.4µm, and these bands monitor cloud top reflectance properties. The radar
data are recorded three minutes before the satellite image using the Danish Meteorological Institute (DMI) weather
radars and consists of a single (` = 1) image of radar reflectance. The two image sources are gridded as images
of 400 × 500 pixels with a ground sampling distance of 2 km × 2 km prior to analysis to establish pixel-to-pixel
correspondence. The analysis includes the N = 7,577 observations in the radar imagery exhibiting reflectance from
precipitation.
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(a) Canonical correlation analysis

(b) Canonical information analysis

Figure 2: Toy example a) Correlation based canonical variates and b) mutual information based canonical variates for toy example with variables
sampled equidistantly on the interval [–1,1].
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Figure 3: Simulation studies Comparison of accuracy and speed for CIA and ’explicit’ estimation. σ is the noise level, µCIA and µexplicit are
defined as in Eq. (12) Values above 0 indicate a higher correlation between the found components and the true components (a better solution) for
CIA, while values below 0 indicate a better solution yielded by the explicit estimation. Speed is shown as

Texplicit
TCIA

on a logarithmic scale, thus CIA
is slower for values below 1 and faster for values above 1. The three colored lines represent results obtained with N = {500,1000,5000} simulated
observations.

This case has also been treated by Vestergaard and Nielsen (2012), where an elaborate geometric and temporal
alignment was needed to ameliorate the CCA solution. As will be shown below, this is entirely unnecessary when
using the method suggested here.

The motivation for fusion of these two data sources is twofold: First, weather radars have a limited coverage of
approximately 240 kilometers from their position while satellites cover almost the entire planet. A fusion of these two
could be a way of using satellite data as a proxy for radar data. Second, the two types of data come from very different
types of sensors, wherefore the distributions of the data are very different. Therefore this is an illustrative example of
using an information theoretic approach rather than a method based on assumptions of distributions.

The first mutual information canonical variate (MICV) is shown in Figure 4b where the eight infrared bands from
the satellite data are projected onto the projection direction a determined by canonical information analysis. As the
second set of variables consists of only a single variable, b = b = 1. Therefore only the MICV related to the satellite
data is shown. For comparison, the solution to the same problem determined by canonical correlation analysis is
shown in Figure 4a. An area has been marked with a dashed red rectangle in both figures; extreme precipitation is
known to occur in the dark region inside the rectangle in Figure 4b. A viable solution would therefore accentuate the
cloud tops in this particular area. It is seen that this is the case for canonical information analysis, where a contrast
with the surroundings is evident, while the correlation based result shows less contrast.

A correlation of 0.344 and 0.303 between the leading pair of canonical variates was obtained using CCA and CIA
respectively. Mutual information between the two mutual information based canonical variates is 0.101 while it is
0.088 between the two correlation based variates.

Quantitative comparison of correlation based and mutual information based analysis can, for example, be done
by calculating spatial autocorrelation over the marked region in Figures 4a and 4b. We have chosen to calculate the
autocorrelation over spatial lags of [0 1], [1 1], [1 0] and [−1 1] to capture spatial correspondences in all directions.
For both analysis methods these values are shown in Table 1.

The average value for the mutual information based analysis is 0.950 compared to 0.897 for the correlation based
analysis. These values confirm the subjective evaluation that the spatial coherence is larger in the mutual information
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(a) Canonical correlation analysis

59° N

57° N

55° N

6° E 9° E 12° E 15° E 18° E

(b) Canonical information analysis

Figure 4: Weather The first CV determined by canonical correlation analysis and canonical information analysis for the weather data set. The
marked rectangular area is known – from radar imagery – to exhibit extreme rain at this particular point in time. The display range of the intensity
values is within ± three standard deviations of the mean. The dashed white line marks the extent of the radar coverage.
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Table 1: Results for the weather data set evaluated in terms of spatial autocorrelation in the region of interest.

Method → ↘ ↓ ↙ Average

CIA 0.973 0.932 0.950 0.943 0.950
CCA 0.952 0.859 0.892 0.886 0.897

based solution compared to the correlation based analysis.

7.3. DLR 3K Data
The images used in this example were recorded with the airborne DLR 3K camera system (Kurz et al., 2007a,b)

from the German Aerospace Center, DLR. This system consists of three commercially available 16 megapixel cameras
arranged on a mount and a navigation unit with which it is possible to record time series of images covering large
areas at frequencies up to 3 Hz. The 1000 rows by 1000 columns example images acquired 0.7s apart cover a busy
motorway. These data have previously been treated by Nielsen and Canty (2009); Nielsen (2011) and Nielsen (2007)
where the original RGB images can be seen. The data at the two time points were orthoprojected using global
positioning system/inertial measurement unit (GPS/IMU) measurements and a digital elevation model (DEM). For
flat terrain like here one pixel accuracy was obtained. In these data, the change occurring between the two time points
will be dominated by the movement of the cars on the motorway. Undesired, apparent change will occur due to the
movement of the aircraft and the different viewing positions at the two time points.

Figure 5b shows the difference image between the first set of MICVs whereby canonical information analysis acts
as a tool for change detection. Previously, a method for change detection based on canonical correlation analysis
has been proposed (Nielsen et al., 1998). Comparing with the solution obtained by canonical correlation analysis
in Figure 5a it is evident that a much larger amount of change information is gained by using CIA: the background
is much smoother and clearly distinguishable from the areas of change (the cars) and the extreme values are only
present where change has actually occurred. The difference image between the second set of MICVs is included in
the supplementary material. Since relevant changes are due to the moving cars on the motor way only, higher order
CVs in this case do not contain further information.

To quantify the different quality of the solutions, a region in the difference image has been selected. This region
is known not to change between the two acquisition times and is assumed to be constant over the region in an ideal
difference image. The variance in this region will therefore represent the unwanted noise in the difference image and
is denoted var(N) below. The ratio R between the signal-to-noise ratios for the two solutions is defined as

R =
SNRCIA

SNRCCA
=

var(S )
var(NCIA)

var(S )
var(NCCA)

=
var(NCCA)
var(NCIA)

(13)

and is independent of the signal variance, when assuming that the true signal S is equal in the two solutions. The
variance in this region for the solution produced by CIA is 0.265, while it is 0.878 for the correlation based solution,
i.e., R = 3.319. This verifies the subjective evaluation that a more homogeneous no-change background is obtained
using the proposed mutual information based method.

A correlation of 0.982 and 0.945 between the leading pair of canonical variates was obtained using CCA and
CIA respectively, which demonstrates that a high correlation is not always the best measure for similarity. A mutual
information of 1.034 and 1.335 between the leading pair of canonical variates was obtained using CCA and CIA
respectively.

7.4. Summary
Table 2 summarizes the results for all three cases using canonical information analysis. Co-inspection of table and

Figures 2, 4 and 5 clearly shows that the solution with the largest mutual information is superior to that with the largest
correlation. Second order MICVs, MI between input bands and MICVs and a matrix of MI between pairs of MICVs
are included as supplementary material for the weather and cars cases. Additional simulation studies suggested by
Yin (2004) are detailed in the supplementary material, where the geometric mean using CIA, explicit estimation or
CIA are shown.
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(a) Canonical correlation analysis

(b) Canonical information analysis

Figure 5: Cars Difference image of the first set of MICVs for the cars data set using a) canonical correlation analysis and b) canonical information
analysis respectively. The display range of the intensity values is within ± three standard deviations of the mean. The marked region is used to
quantify the no-change noise variance.
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In the weather case all 7,577 observations having a value in the radar data were used, while a random sample of
10,000 observations were used in the cars case were used for the optimization of mutual information. The determined
linear transformations were applied to all observations in the two sets of variables. Each computation was done on a
64-bit Linux system with 2 X5650 6-Core processors, 2.66GHz, 48GB RAM.

Table 2: Summary of results for each of the three cases: toy is the toy example from Section 7.1, weather is the satellite/radar case from Section 7.2
and cars is the DLR 3K change-detection case from Section 7.3. I is mutual information as in Eq. (8), ρ is correlation, # is the number of function
evaluations needed and sec. is the time in seconds..

I ρ # sec.

toyexample CIA 0.127 0.010 4160 669
(k,`) = (2, 2) CCA 0.018 0.016 < 1 < 1

cars CIA 1.335 0.945 9360 1165
(k,`) = (3, 3) CCA 1.034 0.982 < 1 < 1

weather CIA 0.101 -0.303 21060 1672
(k,`) = (8, 1) CCA 0.088 0.344 < 1 < 1

In all three cases visual inspection of the resulting scatter plots and imagery clearly show the superior behavior
of the mutual information based canonical analysis: the solution to the toy example illustrates that the CIA solution
recovers the latent signal (the noisy parabola), while the CCA solution fails to do the same. The solution for the
weather satellite data provides a representation of these data, which carry the most similar information to the weather
radar data. This can be useful for, e.g., visualization purposes for meteorologists, or providing pseudo-radar coverage
outside of the radar’s range. In the change detection case, the background noise in the CCA solution looks almost
similar to the signal, i.e., the cars. This is not the case for the CIA solution, where the noise in the difference image is
suppresed and the cars stand out. This is clearly beneficial for any kind of application of these data.

8. Conclusions and Future Work

In this paper mutual information successfully replaces correlation to find canonical variates for two sets of mul-
tivariate observations. Unlike correlation which allows for second order statistics only, mutual information allows
for the actual density of the variables at hand. An illustrative toy example with zero correlation between strongly
associated variables proves the usefulness of the idea. Optical satellite data and weather radar data are successfully
fused using the proposed method to accentuate precipitating clouds in the satellite data. This illustrates the benefit
of mutual information when working with data sets of different modalities. Optical airborne (DLR 3K) data from
two acquisition times 0.7s apart are included to illustrate the use of the proposed method in the context of change
detection.

Canonical information analysis employs approximate marginal and joint entropy estimation. A simulation study
shows that this approximation is as accurate as and much faster than previously presented algorithms, making the
method feasible for image analysis problems and other large sample problems. Small sample applications (N ≤ 500)
do not benefit from this approach.

Matlab software will be made available on the first author’s homepage.
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Figure A.6: Comparison of entropy estimates based on kernel density estimates using three different bandwidth estimators: A diffusion based
estimator, the “solve-the-equation plug-in” estimator by Sheather-Jones and the maximal smoothing principle.

Appendix A. Comparison of bandwidth estimators

Here we motivate the choice of the maximal smoothing principle (Terrell, 1990) for kernel bandwidth estima-
tion by comparing its properties with the Sheather-Jones estimator (Sheather and Jones, 1991) and a diffusion based
estimator (Botev et al., 2010).

The desirable properties of the maximal smoothing principle for kernel bandwidth estimation can best be illus-
trated by an example. For illustration purposes we consider a single set of a two-dimensional stochastic variable X.
We wish to estimate the entropy of the linear combination U = aT X using a kernel density estimator. The entropy
becomes a function of the bandwidth estimate H(σ̂X(a|X)). The bandwidth is estimated based only on the linear
combination U and is thereby a function of the projection direction a given the data X.

We let a be a vector on the unit circle and it can thus be fully described in spherical coordinates as a(θ) = (1, θ) by
the angle θ. In the following experiment we vary the angle over the range θ ∈ [0, 2π] and estimate the bandwidth σ̂X

for each value of θ. This bandwidth is used for calculating the entropy.
Figure A.6 shows the entropy H(U) as a function of the projection direction angle θ for three different bandwidth

estimators. It is immediately seen that the entropy estimate is smoother and avoids local minima when using the
maximal smoothing principle, while the Sheather-Jones estimator and the diffusion based estimator fluctuate much
more. The average computation times over 500 estimations of the bandwidth is 0.09, 72.03 and 0.04 seconds for the
diffusion based based estimator, the Sheather-Jones and the maximial smoothing prinicpal, respectively.

Based on these observations, we find the maximal smoothing principle best suited for estimation of bandwidth
in the context of optimizing mutual information of linear combinations. Though this behavior is illustrated in two-
dimensional data only, we employ this principle for higher dimensional data as well.
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(a) Geometric mean for CIA, explicit estimation and CCA.
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(b) Geometric mean differences.
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(c) Time comparison.

Distributions of simulated variables

x1 ∼ U(−1,1) y1 = x2
1 + σε

x2 ∼ N(0,0.12) y2 ∼ N(0,0.12)
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Example 2
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(a) Geometric mean for CIA, explicit estimation and CCA.
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(b) Geometric mean differences.
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Distributions of simulated variables

x1 ∼ U(0,1) y1 = x2 + 2x3 + 2x4 + σε1
x2 = 1 + x2

1 + 0.02ε y2 ∼ t(5)
x3 ∼ N(0,1) y3 ∼ N(0,1)
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(a) Geometric mean for CIA, explicit estimation and CCA.
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(b) Geometric mean differences.
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(c) Time comparison.

Distributions of simulated variables

x1 ∼ t(6) y1 = (x2 + 3x3 + 2x4)
2 + σε

x2 ∼ χ2(7) y2 ∼ t(13)
x3 ∼ N(0,1) y3 ∼ χ2(13)
x4 ∼ t(8) ε ∼ N(0,1)
x5 ∼ F (3,12)
x6 ∼ χ2(3)
x7 ∼ Gam(1,4)
x8 ∼ N(0,1)
x9 ∼ t(5)
x10 ∼ U(0,1)
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(a) Geometric mean for CIA, explicit estimation and CCA.
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Distributions of simulated variables

x1 ∼ χ2(7) y1 = σ(x2 + 3x3 + 2x4)
2ε
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Weather
Two MICVs are shown for the weather case. Note that the second MICV is merely a noisy version of the first MICV.
This is due to the main information at this point in time of the weather data is the extreme rain captured by the
first component. The bar plots show MI between the input variables and the found components, e.g., MI(xi,U1) in
Figure (c) and MI(yi,V1) in Figure (d). The very similar distribution of MI across the input variables for the two
MICVs also suggests that the two MICVs are very similar in nature. Note that due to the non-negativity of MI, these
association plots are unfortunately less informative than correlation plots usually used for CCA.

Table (b) shows the MI and correlation ρ for the first set of CVs. Table (c) shows the MI between all pairs of
CVs. We see that MI(U1,V1) > MI(U2,V2) meaning that the MICVs are automatically sorted properly due to the
employed search strategy

The radar data used as the second set of variables are in fact one dimensional. This has the implications that

1) CCA cannot determine a second component, since it requires orthogonality, and 2) V1 = V2 = y1, which is also

apparent in Table (c).
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(a) CCA CV 1

MI ρ

CCA 0.088 0.344
CIA 0.101 0.303

(b) MI and correlation for first CV.

U1 U2 V1 V2

U1 1.879 0.182 0.101 0.101
U2 0.182 1.786 0.028 0.028
V1 0.101 0.028 1.479 1.479
V2 0.101 0.028 1.479 1.479

(c) MI matrix
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Cars
Two MICVs are shown for the cars case. Since relevant changes are due to the moving cars on the motor way only,
higher order CVs in this case do not contain further information The bar plots show MI between the input variables
and the found components, e.g., MI(xi,U1 and MI(yi,V1) in Figure (c). It is seen that the MI between x1,x2,y1,y2
and the found components are strong in the first component and less so in the second component. Note that due
to the non-negativity of MI, these association plots are unfortunately less informative than correlation plots usually
used for CCA.

Table (b) shows the MI and correlation ρ for the first set of CVs. Table (c) shows the MI between all pairs of

CVs. We see that MI(U1,V1) > MI(U2,V2) meaning that the MICVs are automatically sorted properly due to the

employed search strategy.
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(a) Differences of CCA CV 1

MI ρ

CCA 1.034 0.982
CIA 1.335 0.945

(b) MI and correlation for first CV.

U1 U2 V1 V2

U1 1.804 0.529 1.335 0.503
U2 0.529 1.418 0.495 1.080
V1 1.335 0.495 1.809 0.545
V2 0.503 1.080 0.545 1.434

(c) MI matrix
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Abstract

The number of genes controlling mimetic traits has been a topic of much research and discussion. In this paper
we examine a mimetic, dendrobatid frog Ranitomeya imitator, which harbors extensive phenotypic variation with
multiple mimetic morphs, not unlike the celebrated Heliconius system. However, the genetic basis for this poly-
morphism is unknown, and not easy to determine using standard experimental approaches, for this hard-to-breed
species. To circumvent this problem, we first develop a new protocol for automatic quantification of complex color
pattern phenotypes from images. Using this method, which has the potential to be applied in many other systems,
we define a phenotype associated with differences in color pattern between different mimetic morphs. We then
proceed to develop a maximum likelihood method for estimating the number of genes affecting a quantitative trait
segregating in a hybrid zone. This method takes advantage of estimates of admixture proportions obtained using
genetic data, such as microsatellite markers, and is applicable to any other system where a phenotype has been
quantified in an admixture/introgression zone. We evaluate the method using extensive simulations and apply it
to the R. imitator system. We show that likely one or two, or at most three genes, control the mimetic phenotype
segregating in a R. imitator hybrid zone identified using image analyses.

Keywords: Ranitomeya imitator, hybridization, image analysis, quantitative phenotyping

1. Introduction

The analysis of phenotypic and genetic variation in geographic areas where two or more phenotypically distin-
guishable groups of organism meet and exchange genes has been of substantial interest to evolutionary biologists
(see e.g., Endler, 1977; Barton and Hewitt, 1985; Coyne and Orr, 2004). The evolutionary dynamics in these
zones, referred to as hybrid zones, introgression zones, or admixture zones depending on context, provide a basis
for studying processes relating to speciation and for understanding the genetic and ecological underpinnings of
adaptive traits, including mimetic and aposematic traits. Substantial work has been done on such systems, includ-
ing the now classical work on the Bombina bombina vs. B. variegata hybrid zone (e.g., Szymura and Barton, 1991,
1986) and the hybrid zones between various species of Heliconius butterflies (e.g., Turner, 1971; Mallet, 1986;
Jiggins et al., 2001). Of primary interest in these studies is to understand the genetic basis of the phenotypic traits,
how selection is affecting these traits, and to understand the relative role of population history, gene-flow and nat-
ural selection in determining the evolutionary dynamics of the hybrid zone. Furthermore, there has recently been
renewed interest in mapping the genetic variants associated with reproductive isolation or adaptive traits in the hy-
brid zone using so-called admixture mapping or mapping by admixture linkage disequilibrium (e.g., Chakraborty
and Weiss, 1988; Briscoe et al., 1994; Patterson et al., 2004; Gompert and Buerkle, 2009; Winkler et al., 2010;
Crawford and Nielsen, 2013). Of special interest to us is admixture zones, exemplified by the previously men-
tioned examples in Bombina and Heliconius, in which complex morphological traits such as color patterns are
segregating and are likely of adaptive significance.

Mimetic traits in admixture zones, or otherwise, have often been hypothesized to be associated with so-called
’supergenes’ (Clarke et al., 1968). Supergenes are tightly linked clusters of genes that control a suite of traits that
will allow Mendelian, or close to, Mendelian behavior of the mimicry trait. The existence of such supergenes
could help explain the strong phenotypic correlation between many different phenotypes required to produce pure
mimetic forms. If many traits are needed to produce an adaptive mimetic phenotype, one would expect selection
to favor genetic variants that increase the correlation between these traits. Much discussion has ensued on the
existence of supergenes, particularly in relation to mimetic phenotypes in butterflies (e.g., Joron and Mallet, 1998).
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A recent paper by Kunte et al. (2014) show that a proposed supergene underlying memetic phenotypes in Papilio
butterflies in fact is a single Mendelian gene that serves as a genetic switch for the mimetic type. For both Papilio
and Heliconius it appears that the mimetic phenotypes are often controlled by one or a few genes or supergenes
that behave in a largely Mendelian fashion. However, the degree to which mimetic phenotypes have a similar
genetic basis in other systems is uncertain.
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Figure 1: Sketch of sampling locations along the Huallaga River (grey). The two model species (R. variabilis and R. summersi) are shown in
the upper left corner and examples of R. imitator are connected to their sampling localities.

The dendrobatid frog Ranitomeya imitator (Twomey et al., 2013a; Symula et al., 2001), provides a new ver-
tebrate model system that shares many features with the well-known Heliconius system. Phylogenetic and phy-
logeographic analyses (Symula et al., 2001, 2003; Brown et al., 2011) indicate that this species is a member of
a clade centered in southern Peru, but R. imitator is distributed in north-central Peru, in and around the province
of San Martin. In this region, there are four distinct color pattern morphs of R. imitator that occupy different
geographic regions (Yeager et al., 2012). In each of these regions, the color pattern of R. imitator clearly resem-
bles that of a co-occurring species of dendrobatid frog (Symula et al., 2001; Twomey et al., 2013b). Phylogenetic
analyses indicate that these co-occurring species generally diverged prior to the divergence between the divergent
populations of R. imitator (Symula et al., 2003; Brown et al., 2011). Evidence for rapid divergence under selec-
tion (Symula et al., 2001; Yeager et al., 2012), and the similarity of each R. imitator color pattern morph to the
more anciently diverged co-occurring species, indicates that R. imitator has undergone a mimetic radiation, in
which different populations have evolved to resemble distinct color patterns displayed by the local model species
(Symula et al., 2001; Yeager et al., 2012). In one case, R. imitator resembles two distinct color pattern morphs
of a single species (Ranitomeya variabilis) that vary between highland (spotted) and lowland (striped) forms.
In this case, it is not clear whether R. imitator adverged onto the color pattern of R. variabilis, or the reverse
(Chouteau et al., 2011). However, in general the evidence supports the hypothesis that R. imitator adverged onto
a co-occurring species, rather than the reverse (Symula et al., 2001, 2003; Yeager et al., 2012; Twomey et al.,
2013b). Recent analyses of color pattern variation, genetic structure and gene flow have identified multiple zones
of admixture where distinct color pattern morphs of R. imitator come into contact and interbreed (Twomey et al.,
2013b). These regions vary in terms of the width of the zone of admixture and the degree of genetic divergence
(in neutral markers) found across the zone, making this system useful for comparative analyses of divergence. In
one region, the zone of admixture is fairly broad (7km), and populations in the zone show high variability that
appears to include elements of both distinct color pattern morphs, see Figure 1. Hence interbreeding is likely to
have proceeded for multiple generations in this zone of admixture, providing an excellent opportunity for infer-
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ences concerning the genetic control of color pattern. Notice in Figure 1, that frogs at one end of the admixture
zone, where they are mimetic with R. summersi, tend to be banded with black and orange legs, while frogs on
the other end, where they are mimetic with R. variabilis, tend to be striped with a reticulated green and black
pattern on the legs. The genetic basis of this polymorphism is of primary interest, but given the large genome sizes
of dendrobatid frogs, lack of genetic resources, and difficulty of captive breeding, direct mapping of the genes
involved is a non-trivial task. An objective of this paper is instead to obtain more information about the genetic
basis of this polymorphism, solely using image analyses and limited microsatellite typing. In particular, we will
be interested in examining if the polymorphism is controlled by a single Mendelian gene, perhaps a supergene,
or by multiple genes. We will develop statistical methodologies for answering the question regarding the number
of genes controlling the mimetic phenotypes and we will apply these methods to the R. imitator to determine the
likelihood that the mimetic phenotypes in this system also are controlled by a supergene or a single Mendelian
gene.

In order to address this problem, we will first develop automated methods for describing complex color pattern
phenotypes based on images, that can be applied in this system and other systems. The advantage of such methods
is that they are not subject to the same biases that may occur when a researcher chooses which traits to measure
after having observed the images. In addition, such methods may have the potential for identifying important
biological features that were otherwise not readily identifiable.

We will then proceed to develop a method for estimating the number of genes affecting a phenotype in an
admixture/hybrid zone. For natural populations, in which controlled crosses are difficult or expensive to carry out,
and for which parent-offspring pairs cannot easily be sampled, there are no appropriate methods for determining
how many genes affect a trait. In other settings, there has been substantial previous work on this problem. The
well-known Castle-Wright estimator (Castle, 1921; Wright, 1968) is based on the amount of segregating variation
observed in the offspring of controlled crosses of inbred lines. The objective is to estimate the effective number
of loci controlling a quantitative trait, i.e. the number of loci required to explain the variance in the trait if all
loci have the same effect. There have been numerous extensions of the method including the incorporation of
linkage and variation in effects size (e.g., Zeng, 1992; Otto and Jones, 2000). Lande (1981) showed that the
assumption of complete homozygosity in the parental lines is not necessary and provided an estimator applicable
to natural populations, rather than controlled crosses. Building on the idea, dating back to Pearson (1904), that the
relationship between the variance in the offspring phenotypic values and midparent value depend on the number
of genes controlling the trait, Slatkin (2013) provided another estimator applicable to outbred populations.

We are interested in estimating the number of genes affecting a trait in a hybrid/admixture zone. This is a
problem that has been considered by Szymura and Barton (1991) who, based on theory developed in Barton (1983)
and Barton and Bengtsson (1986), estimated the number of genes contributing to selection against gene-flow in the
Bombina bombina vs. B. variegata hybrid zone using comparisons of the amount of linkage disequilibrium at the
center of a hybrid zone to the width of the cline. The method we will develop is in the spirit of the of the Castle-
Wright-Lande etimators, but is based on using a genetically inferred admixture proportion in each individual.
This method does not require data on controlled crosses. It also does also not rely on any assumptions regarding
selection models and processes shaping linkage disequilibrium. It is less ambitious in that it does attempt to
determine the number of genes affecting fitness, but the number of genes affecting an observable phenotype. There
is substantially less information regarding the number of loci when controlled crosses have not been performed.
However, as we will show, there is still sufficient information to distinguish between hypotheses regarding a few,
or many, genes affecting the trait.

We will apply these methods to images and genetic data from the aforementioned dendrobatid frog Ranito-
meya imitator. Dendrobatid frogs typically have very large genome sizes (e.g. up to GB, Camper et al. (1993)),
and genome sequencing and direct mapping using admixture or association mapping is difficult. Furthermore,
experimental crosses and captive breeding can be challenging to carry out for these species. However, using the
methods developed in this paper we can estimate the number of genes affecting the mimetic phenotype without
the use of experimental crosses or mapping approaches.

2. Image analysis / quantitative phenotyping

A common way to quantify variation in image analysis is to extract a number of so-called descriptors, combine
these into a vector of measurements for each individual and use statistical decomposition methods to condense
the collected information. Prior to analysis all individuals have been warped to a mean shape determined by
Procrustes analysis (Goodall, 1991). Manual annotation of 22 anatomical landmarks was used to establish point
correspondences.
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Descriptors are typically designed to capture elementary characteristics of an image, such as color or shape.
Individually, descriptors are usually too specific, but a well-chosen suite of descriptors can provide a rich basis for
further analysis.

In our study, we use three different phenotypic descriptors: color/non-color ratio, gradient orientation his-
tograms and shape index histograms (Koenderink and van Doorn, 1992), each of which is defined on the pixel-
level and described in detail in the electronic supplementary material ESM 1. These descriptors collect local 0th,
1st and 2nd order information about the image. In the current setting, these three standard descriptors can loosely
be thought of as measuring features relating to the proportion of colored area, the degree to which changes in
color occur along the anteroposterior axis or along the left-right axis (banded patterns versus striped patterns), and
the degree to which the pattern consists of stripes/bands as opposed to reticulation, respectively. The quantified
information is visualized in Figure 2 and in ESM 1.

All descriptors are extracted on a per-pixel basis and pooled together at four distinct interest points, namely
each of the frog’s legs, lower back (dorsum) and on the back of head. An interest point is defined in terms of its
coordinates xk = [xk, yk] and a radius rk > 0. Thus an average of each of the descriptors is accummulated for the
four regions shown in Figure 2c.

This pooling scheme serves the purpose of reducing the number of descriptors extracted, without compromis-
ing the phenotypic variation captured. The pooling function is defined in terms of the k’th interest point as the
circular average of a descriptor g(x)

P(Zk) =
1
|Zk |

∑

x′∈Zk

g(x′) (1)

whereZk is the set of pixels with coordinates x′ fulfilling ‖x′ − xk‖ ≤ rk.
The interest points and chosen radii are illustrated in Figure 2c.
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Figure 2: Examples of phenotypic descriptors and illustration of the spatial pooling scheme with four interest points.

2.1. Revealing a mimicry-related phenotype with sparse discriminant analysis

The collected phenotypic descriptors are here condensed into a single mimicry-related phenotype. This
amounts to determining the low-dimensional manifold, in the high-dimensional feature space, describing the phe-
notype. We have chosen to use sparse discriminant analysis (SDA) by Clemmensen et al. (2011) for this task.
More detail on this procedure can be found in electronic supplementary material ESM 1.

The composite phenotype is constructed as the linear combination β of the p descriptors D = [d1,d2, . . . ,dp]
that best describes the mimicry across the hybridization transect, i.e., the direction in the p-dimensional space that
maximizes the ratio of the between-group variance to the within-group variance under elastic net regularization
Zou and Hastie (2005).

We define the mimicry-related phenotype for the i’th individual as the projection onto the one-dimensional
subspace spanned by β

zi =

p∑

j=1

Di jβ j (2)

where Di j is the j’th descriptor value for the i’th individual. For all n individuals this is equivalent to z = Dβ.
Kernel discriminant analysis (KDA) (Mika and Ratsch, 1999) and Isomap (Tenenbaum et al., 2000) are in-

cluded as alternative, nonlinear, manifold learning methods. These are further described in the electronic supple-
mentary material ESM 1.
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3. A likelihood method for identifying the effective number of genes

We are interested in estimating the effective number of genes, K, affecting a trait, i.e., the number genes
required to explain the observed phenotypic variation assuming all genes have the same effect. We assume we
have a sample of n individuals from an admixture zone, each with some associated genetic data (e.g., microsatellite
data). We will take advantage of the fact that even limited genetic data can be used to infer an admixture fraction
for each individual, f = { fi}n1, under the assumption that pure forms exist at each end of the transect in the admixture
zone. f and 1− f then represents the proportion of an individuals genome that is identical to individuals in the right
and left end of the transect, respectively. The method we use for estimating the admixture fractions is described
in the electronic supplementary material ESM 1, and is based on the kernel discriminant analysis of Mika and
Ratsch (1999) with the kernel suggested by Martin (2011). Kernel discriminant analysis allows specification of
two known end groups and an explicit scoring of previously unseen individuals in relation to these groups and is
thus well suited for this purpose.

We will assume that the phenotypic values, z = {zi}n1, are normally distributed, given the underlying genotype,
and that each locus contributing to the phenotype has the same effect and dominance factors, and that the effects
are additive among loci. We will also assume that each locus is di-allelic and that the allele favoring the phenotype
in the right end of the transect has frequency 1 in the right extreme of the transect and frequency 0 in the left end of
the transect. We will also, without loss of generality, denote the alleles favoring the phenotype in the right and left
ends of the transect by a and A, respectively. An individual with admixture proportion f , assuming independence
among the parental contributions, then has genotype AA in any locus with probability (1 − f )2.

We consider the phenotype, z, of an individual to be a realization of the stochastic variable Z with the condi-
tional distribution

Z | g ∼ N(hTµ, σ2
e) (3)

where σ2
e is the environmental variance and g = {Gk}K1 is a vector of the K genotypes

Gk =



0 if AA, p(Gk = 0| f ) = (1 − f )2

1 if Aa, p(Gk = 1| f ) = 2 f (1 − f )
2 if aa, p(Gk = 2| f ) = f 2 .

(4)

Three averages are used for the conditional Gaussians µ = [µ0, µ1, µ2]T and

hk = [h0, h1, h2]T where hq =
1
K

K∑

k=1

I(Gk == q)

i.e., a vector containing fractions of the K genes having the genotypes AA, Aa and aa respectively.
So, for example, if K = 3, an individual with genotypes AA, AA and aa in the three loci, respectively, will

have mean phenotype 2µ0 + µ2.
Thus, in a noise free scenario a single gene would be able to explain a trait as a piecewise constant function

(of the admixture proportion) with three steps. K genes would be able to explain a trait attaining
(
K + 2

2

)
different

values. Here, a noise free scenario would mean no environmental variance in the phenotype and no noise caused
by the quantification of the phenotype.

To calculate the likelihood, all possible combinations of genotypes must be considered. The set of all possible
combinations will be denoted G(K) = {0, 1, 2}K , i.e., the K’th Cartesian power of possible genotypes, where a
single tuple from this set will be denoted g j = [G j1,G j2, . . . ,G jK]. This set consists of all possible combinations,
with replacement, where the order is significant. A total of 3K such combinations exists.

The probability of a certain combination of genotypes g j given the mixture proportion f is

p(g j| f ) =

K∏

k=1

p(G jk | f ) .

The likelihood of observing the phenotypic trait over the entire population, allowing K genes to contribute to the
expression of the trait, is modelled as

pK(z|f) =

n∏

i=1


∑

g j∈G(K)

p(zi|g j)p(g j| fi)
 . (5)
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However, the estimates of fi may be associated with statistical uncertainty. Ignoring this uncertainty could lead to
biased estimates. We therefore provide an alternative formulation that incorporates uncertainty in the estimates of
fi using a bootstrap approach, i.e. we assume that marker loci used for estimation of fi have been bootstrapped to
provide a bootstrap distribution { f b

i }Bb=1. The likelihood of observing the phenotypic trait over the entire population,
allowing K genes to contribute to the expression of the trait, is then modeled as

pK(z|f) =

n∏

i=1


∑

g j∈G(K)

p(zi|g j)
1
B

B∑

b=1

p(g j| f b
i )

 . (6)

For a fixed value of K, we maximize this function for µ0, µ1, µ2, and σ2
e using the BFGS algorithm (Fletcher,

1970). We then repeat this procedure for multiple values of K and choose the value of K that maximizes this
profile likelihood function as our maximum likelihood estimate of K. To increase the probability of converging to
a global maximum we use a scheme with multiple starting points, see electronic supplementary material ESM 2
for details.

We evaluate the performance of the method using simulations allowing for varying heritability and uncertainty
in the estimates of f . The heritability is defined as the fraction of the total phenotypic variance VP that can be
attributed to genetic variance

H2 =
VG

VP
=

VG

VG + σ2
e
. (7)

The average phenotypic value is z̄ =
∑NG

j=1 z j p j where z j is the phenotypic value determined by the genotype and
p j is the proportion of individuals with the j’th genotype.

The genetic variance is determined as

VG =

NG∑

j=1

(
z j − z̄

)2
p j . (8)

To simulate data for a phenotype determined by K genes, n mixture proportions f = { fi}n1 are drawn, e.g., from
a uniform distribution on the interval [0,1]. The genotype for each of the K loci are then drawn from a multinomial
distribution with probabilities as in Eq. (4). Phenotypes are then assigned by simulating from a normal distribution
as in Equation (3). In simulations with noise in the estimate of f we simulate B samples from a normal distribution
with standard deviation σ f around fi, such that mixture proportions used for inference f̂ b

i ∼ N
(

fi, σ2
f

)
.

4. Image and microsatellite data

We used published microsatellite data from two sources: Twomey et al. (2013a) (92 samples), Twomey et al.
(2014) (36 samples). In addition, we used 157 samples from an unpublished dataset (Twomey et al. in preparation).
The final dataset consisted of 285 R. imitator individuals from 16 localities in Peru: the 11 localities shown
in Figure 1 and 5 localities between Santa Rosa de Chipaota and Achinamisa (i.e., within the banded-striped
transition area). For the unpublished microsatellite data, amplification methods follow Twomey et al. (2013a).

We used JPEG compressed images of 6 R.summersi, 7 R. variabilis and 304 R. imitator individuals from the
11 localities shown in Figure 1. The images are 3888 × 2592 pixels of size captured with a Canon EOS Rebel XS
SLR. Both microsatellite data and image data were available for 179 of the R. imitator individuals.

5. Results

Phenotypic descriptors. The phenotypic descriptors described in Section 2 were automatically extracted from all
317 images. Different aspects of the patterns in the population are captured by this collection of descriptors, the
most dominant being the stripe directionality; for more detail the phenotypic variance captured by these descrip-
tors, see electronic supplementary material ESM 1.

For every individual, the suite of descriptors extracted for the four interest points (left leg, right leg, lower
back, upper back) are: Color/non-color ratios for each point of interest, gradient orientation histograms binned in
2 bins at scales σ = [2, 7] with tonal range β = 1 and shape index histograms in 5 bins at scales σ = [4, 8] with
tonal range β = 1.

This adds up to a total of p = 60 extracted phenotypic descriptors collected in D ∈ Rn×p. The columns of this
matrix are centered and normalized to unit variance prior to further analysis.
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5.1. Mimicry-related phenotype

We use sparse discriminant analysis (SDA) to identify the linear combination of phenotypic descriptors that
best captures the variation in mimetic phenotypes. Under the assumption that the mimetic phenotype has been
under selection to resemble the phenotypes of either R. variabilis in one end of the transect, or R. summersi in
the other, we use images of seven R. variabilis individuals to represent one group and six imaged R. summersi
the other group, as the training set. The R. imitator individuals only enter the analysis to influence the choice of
regularization parameter; see details in electronic supplementary material ESM 1.

In the supplementary material, we also provide results when instead using the most extreme R. imitator pop-
ulations, namely those sampled in Sauce and Micaela, to represent the end populations. There are disadvantages
and advantages of both of these approaches. Using the model species amounts to defining the mimicry-related
phenotype in terms of similarity to those species. This is desirable when the mimicry related phenotype is of
prime interest. However, it has the disadvantage that the two model species may differ in traits not mimicked by
R. imitator. Using the most extreme R. imitator populations has the disadvantage that some of the individuals
may not be pure mimetic forms. We obtained similar results using either of these approaches, or if we a pool of
both the most extreme R. imitator populations and the model species individuals (see suppl. information). In the
following, we will refer to the extreme groups as the mimicry defining groups, independently of how they were
defined. Combinations of these different ways of specifying the mimicry defining groups and the three manifold
learning methods used to quantify the phenotype are included as supplementary information in ESM 1.

The mimicry-related phenotypic value for each individual is obtained by projecting onto the direction β ac-
cording to Eq. (2) and will be denoted zi for the i’th individual. The values are scaled linearly such that the average
value for each of the model species is -1 and 1 respectively.

Grouping the individuals by location and ordering them along the transect from south to north (see Figure 1),
a boxplot summarizing the mimicry-related phenotypic values as a function of location can be seen in Figure 3.
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Figure 3: Composite mimicry-related phenotype. Locations are ordered left-to-right from south to north along the Huallaga river. The dot on
each box indicates the median, the edges of the box the 25th and 75th percentile and the whiskers extend 1.5 times the inter-quartile range
beyond these percentiles.
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Notice that the first half of the locations tend to have a value similar to R. summersi while the other half have
values closer to R. variabilis. Chipesa and Callanayacu have phenotypic values that are more intermediate and
with relative high variances. Note that the ordering of the locations on the x-axis does not correspond to the actual
geographic distances.

5.2. Estimating the number of genes with simulated data
We evaluated the accuracy of the method for determining the number of genes underlying a quantifiable

phenotype presented in Section 3 on simulated data for different values of the heritability (see Methods section).
The accuracy is evaluated under a variety of scenarios constructed by 1) varying the true number of genes K, 2)
sampling the admixture proportions from a uniform or a bimodal distibution, and 3) adding white noise to the
admixture proportions. The heritability was varied by simulating data for 1000 different values of σ2

e . The graphs
in Figure 4 show the proportion of runs in which the model assuming K = 1, 2, 3 or 4 genes has the highest
likelihood.

Generally, the chance of accurate estimation is reduced when 1) the true number of genes is high, 2) the
heritability decreases, or 3) the sample size decreases. A measure of confidence in the inference can be obtained
by bootstrapping individuals, using the likelihood ratios comparing different hypotheses as statistics. However,
if the estimates of f are very noisy, there tend to be a systematic bias towards a higher number of genes for
intermediate heritabilities. The effect of this can be seen in Figure 4(d). Using a bootstrap test, we find -6.63 and
0.30 as the 5th and 95th percentiles of the likelihood ratio associated with the null hypothesis of H0 : K = 3 versus
H1 : K = 4, for the scenario with a heritability of approx. 0.85, despite the fact that K = 3 is the true number of
underlying genes. Thus, sensitivity to estimation variance in the admixture proportion must be kept in mind when
applying this likelihood model.

5.3. Number of genes underlying the mimicry phenotype
The likelihood model described above was used to estimate the number of genes underlying the quantified

phenotype in R. imitator. We use 1000 bootstrap replicates to obtain a distribution of likelihood ratios between
different alternative models. The bootstrap is performed by sampling individuals with replacement. First a boot-
strap distribution of the mixture proportions for each individual is obtained using the available 285 samples. We
take into account uncertainty in the estimation of f , by, for each simulation, re-estimating f (see ESM 2) by also
bootstrapping microsatellite loci within each individual.

The maximum likelihood values of K, for K = {1, . . . , 5} was then determined for each replicate in a separate
bootstrap experiment using the 179 samples with genetic and phenotypic data available. Figure 5 shows (a)
a boxplot of the distribution of likelihood ratios associated with the hypothesis H0 : K = k for k = 1, 2, 3, 4, 5,
against the alternative hypothesis of HA : K = 1 and (b) the proportion of bootstrap replicates in which each model
obtained the highest likelihood value. This proportion can be interpreted as a measure of statistical confidence.
In electronic supplementary material ESM 4 the full distribution of likelihood ratios associated with the test of
H0 : K = 2 against HA : K = 1 can be seen.

The maximum log-likelihood values are numerically highest for K = 1 and in the vast majority of the runs
this model is selected as the most likely. The point estimates of the parameters for the hypothesis of K = 1 are
[µ0, µ1, µ2, σe] = [0.882, 0.071,−0.855, 0.274].

The p-value associated with different model comparisons are shown in Table 1.

Groups n+ p k=2
k=1

p k=3
k=2

p k=4
k=3

p k=5
k=4

models 13 0.401 0.030 0.011 0.000
imitator 33 0.989 0.136 0.000 0.025

both 28 0.964 0.158 0.014 0.015

Table 1: P-values for hypotheses of the number of genes, where different mimicry-defining groups are chosen. Regularization parameter
δ = 0.01 and number of non-zero loadings is indicated as n+. Sparse discriminant analysis is used to quantify the mimicry-related phenotype.
P-values below 0.05 are typeset in bold and p-values above 0.95 are typeset in italic.

Overall, a model with one (K = 1) or two genes (K = 2) seems to fit the data best, while three genes (K = 3)
cannot be rejected. The mimetic phenotype, as measured here is likely mostly influenced by one or two genes of
major effect. No combinations of the three different ways of defining the end-populations suggest more than three
genes. Using alternative, nonlinear, manifold learning algorithms to quantify the mimicry-related phenotype (see
electronic supplementary material ESM 1), only a single combination (KDA with the model species defining the
end groups) cannot reject H0 : K = 4 versus the alternative of H1 : K = 3 with a p-value below 0.05.
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Figure 4: Likelihood ratios as a function of the heritability H2 for simulated data. The graphs show median likelihood ratios (solid), 5th
and 95th percentiles (dashed) for K = {1, . . . , 5} versus the true K. The captions show the true parameters used to simulate the data for each
scenario. 1000 estimations were performed for each of the scenarios. All simulations show that there is never significant support for choosing
the wrong value of K, except when the estimation noise on f is high (Figure (d)) where the model is biased toward a higher number of genes
for intermediate values of H2.
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summarizes the distribution of maximum log-likelihood values for a model assuming K = {1, . . . , 5} genes. The bar plot shows the proportion
of runs where each K has the maximum log-likelihood.
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6. Discussion

We have here developed an automated procedure for characterizing complex phenotypes from images. We
believe that this method, or related methods, could be of use in many systems where images are available for
complex phenotypes. Automated extraction of phenotypic descriptors reduces the subjective biases that may
occur when measurements are taken manually and allows for reproducibility of results. While other biases may
be introduced through the choice of image capturing system, lighting conditions and/or choice of descriptors, we
believe these to be easier to identify and overcome. We notice that such image analyses open up the possibility for
a variety of statistical analyses of phenotypes, and their correlations, not pursued here. In this paper, we use the
image analyses to define a quantitative measure of the mimetic phenotype in a transition zone between morphs of
of R. imitator. Using a new method for estimating the effective number of genes affecting this phenotype, we show
that the phenotype we measure is likely to be controlled by one or two, or at most three, genes of major effect,
and is very unlikely to be affected by many major effect genes. However, there could be substantial phenotypic
variation controlled by other genes, but not captured by our quantitative measure of mimetic phenotype.

The fact that we have identified a measure of mimetic phenotype that is controlled by a few genes suggests that
future studies aimed at mapping this phenotype have relatively high probability of succeeding. It is substantially
easier to map the genes underlying a phenotype controlled by just one or a few genes, than a phenotype controlled
by many genes. The phenotype defined here would be useful for such mapping studies.

We can compare our results to Heliconius butterflies where the genetic basis of Müllerian mimicry is better un-
derstood. In Heliconius erato, the transition between the ’postman’ and the ’rayed’ morphs in the well-studied hy-
brid zone near Tarapoto, Peru is controlled by three loci of major effect, whereas in the co-mimetic H. melpomene,
the same mimetic shift (postman to rayed) is controlled by five loci (Mallet et al., 1990). In another example, the
polymorphism in H. cydno alithea in western Ecuador is controlled by two unlinked loci, one that controls color
(white/yellow) and one that controls pattern (presence/absence of melanin in a specific region of the forewing)
(Chamberlain et al., 2009). In poison frogs, the genetic basis of color variation is less understood. Early crossing
studies in Oophaga pumilio (Summers et al., 2004) suggested that pattern is likely controlled by a single locus with
a dominant melanin-producing allele, whereas color may be polygenic or controlled by a single locus with incom-
plete dominance. However, unlike O. pumilio, in which a major axis of variation in pattern is presence/absence
of melanin, all known populations of R. imitator possess melanin on the dorsum, legs, and venter. Thus, a more
relevant task in the R. imitator system would be identifying the gene or genes that influence the spatial distribution
of melanin rather than its presence or absence. Finally, in a field pedigree study (Richards-Zawacki et al., 2012),
it was suggested that the red/yellow polymorphism in a population of O. pumilio was controlled by a single locus
where red coloration was completely dominant over yellow. Thus, our estimates of 1–3 genes controlling the
mimetic phenotype of R. imitator are fairly comparable to other systems.

The method we have developed for identifying the number of genes controlling a phenotype obtains its infor-
mation from the degree of clustering of phenotypes and from the dependence of variance in the phenotype on the
admixture fraction. It can, as illustrated here, be used to distinguish between a few or many genes, but is not ex-
pected to perform well in estimating the exact number of genes, when many genes are involved. In the presence of
many genes, the information regarding clustering of phenotypes is lost. We note that the method can be sensitive to
the precision in the estimate of the admixture fraction, and results of the method should be interpreted accordingly.
Implementations of the presented methods are publicly available at https://github.com/schackv.
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ESM 1. Supplementary description of quantitative phenotyping

This supplementary material details important aspects of the methodology used in extracting pattern related
phenotypes from images and identifying the mimicry-related manifold in the high-dimensional phenotype space.
The general methodology is that a multitude of descriptors are extracted, such that we deliberately extract a surplus
of redundant information. In this rich multivariate information, the aspects of the phenotype relating to mimicry
will be identified and each individual is assigned a scalar mimicry-related phenotypic quantity. This process is
illustrated in Figure 1.
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Figure 1: Illustrates the process of image-based quantitative phenotyping in a hybrid zone. A suite of p descriptors are extracted from N
images into a N × p matrix. This matrix contains the entirety of the quantified phenotypic variation for the population. The p dimensions are
then reduced to a single dimension, i.e., one scalar per individual, representing the mimicry-related phenotype.

Here we will first elucidate how to extract pattern-related phenotypes from images and get an overview of the
phenotypic variation captured. Second, uncovering the relation between the extracted descriptors to the mimicry-
related phenotype is detailed. Finally, in section 1.5 we provide supplementary results when using alternative
multivariate decomposition methods to identify the mimicry-related phenotype.

1.1. Image-based extraction of pattern variation

The three types of extracted phenotypic descriptors are defined on the pixel-level and described in detail below.

Color/non-color ratio:. A simple descriptor for pattern is a binary value, indicating whether a given pixel is in the
black or the colored part of the pattern. To achieve this, the image surface is classified into colored and non-colored
(black) regions by stretching the image intensities between its mean ± three standard deviations and thresholding
using Otsu’s principle (Otsu, 1975).

The color/non-color ratio descriptor’s value at image coordinates x = [x, y] is defined as the value of this
binary image B(x) ∈ {0, 1}. Thus, a pooling of this feature will simply be an average of the binary image within
the region of the interest point.

Scale space:. The gradient orientation and shape index descriptors below are formulated in a scale space setting
(Lindeberg, 1996). This means that they can be extracted at different scales of an image according to the preference
of the analyst. Thus the same formulation can be used to extract phenotypic traits independently of the arbitrary
scale at which the organism’s image was captured.

The scale-space representation of the image I(x) is defined as

L(x, σ) = (G ∗ I)(x;σ)

where x = [x, y] and σ is the scale. (G ∗ I) is a convolution of the image with a Gaussian kernel with standard
deviation σ. The image derivatives can be calculated in this scale space formulation, where Lx and Ly denotes

the gradient in the x- and y-direction respectively and the Hessian matrix ∇2L =

[
Lxx Lxy

Lyx Lyy

]
describes the local

curvature. We omit x from the left hand side of the definitions below for brevity.
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Gradient orientation:. The gradient orientation descriptor aims to capture the articulation of stripes on the frog
in various orientations.

Gradient magnitude m and orientation θ can be derived from Lx and Ly as

m =

√
L2

x + L2
y , θ = atan2(Lx, Ly) .

The gradient orientation is circular on the interval ]− π, π]. To quantify the amount of first order change in a given
orientation, the gradients are quantized in q bins centered at bi, i = 1, . . . , q in this interval.

At a given scale σ, for bin b the gradient orientation descriptor is defined as

goh(b;σ) = m(x;σ)
exp

(
β−2 cos (θ(x;σ) − b)

)

2πI0(β−2)
(1)

Due to the cyclic nature of the gradient orientations the von Mises aperture is used, where I0() is the modified
Bessel function of order 0 and β is the tonal range. See Larsen (2012) for more details. Note that the gradient
orientation contribution is weighted by its magnitude m, which ensures that well defined gradients count more
than spurious ones.

Two examples of the signal captured are shown in Figures 2a and 2b, where horizontal and vertical gradients
are highlighted on a single scale.

Shape index:. The shape index is a second order image descriptor used to describe local curvature (Koenderink
and van Doorn, 1992) and is defined as

s =
2
π

atan


−Lxx − Lyy√

4L2
xy + (Lxx − Lyy)2


, s ∈ [−1, 1]

with curvature c ∈ R+

c =
1
2

√
L2

xx + 2L2
xy + L2

yy .

The binning of the shape index into a histogram is similar to that of the gradient orientation histograms.
However, the range of the shape index is not cyclic wherefore a standard Gaussian aperture function can be used.
The shape index histogram descriptor for bin b at scale σ is

sih(b;σ) =
c(x)
2πβ2 exp

(
− (s(x) − b)2

2β2

)
(2)

An example of the shape-index response for a single scale and a bin centered at b = −0.8 is shown in Figure
2c.
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2 .

 

 

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

(b) Gradient at b = {0, π}.

 

 

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(c) Shape index at b = −0.8. (d) Pooling of phenotypic descriptors.

Figure 2: Examples of phenotypic descriptors and illustration of the spatial pooling scheme with four interest points.
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1.2. Phenotypic variance captured

The phenotypic variance captured by the chosen descriptor suite is illustrated here using principal components
analysis (PCA) (Jolliffe, 2002). PCA is an eigenvalue decomposition of the correlation (or covariance) matrix
which decomposes the multivariate signal into a new coordinate system, where the axes are ordered according to
variance explained, i.e., the first principal axis is the axis of maximum variation in the data. The percentage of
variance explained by including a given number of principal components is shown in Figure 3. We see that two
principal components explains approximately 67% of the variance and that eight principal components collectively
explain more than 95% of the variance captured by the phenotypic descriptors. This illustrates that, as expected,
there is a significant amount of redundance in the chosen descriptors.
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Figure 3: The percentage of variance explained as a function of number of principal components.

To investigate which aspects of the phenotypic variation are captured by each principal component (PC) it is
necessary to inspect the loadings. The loadings are the found eigenvectors from the eigenvalue decomposition and
carry information on which variables are given weight in each principal component. Figure 4 shows the loadings
associated with the first two principal components. The loading vectors are normalized to unit length.

For PC1 all negative loadings are associated with the first two interest points, i.e., the leg patterning. Further
we see that the dorsal interest points have very similar loadings. This tells us that the majority of the pattern
variation on the two legs are heavily correlated and the same for the dorsal pattern variation. We most importantly
observe that not all loadings for the gradient orientation variables are the same; in fact a contrast is evident between
horizontal and vertical gradients. This contrast manifests itself in negative loadings for the legs for both vertical
and horizontal gradients and positive for the dorsal interest points, and a significant difference in the magnitude of
positive loadings for the dorsal interest points between horizontal and vertical gradients.

PC2 is inherently harder to interpret than PC1, since it is constrained to be orthogonal to PC1 which reduces
interpretability. However, a clear grouping is still evident: the dorsal interest points are all small or negative, while
the interest points for the legs all carry positive loadings. Further we see a difference in the magnitude of positivity
between the left and right legs, the left leg carrying the smallest magnitude.

A scatter plot in the coordinate system defined by the first two principal components can be seen in Figure 5.
Six individuals are shown as examples on how this principal component space represent the phenotypic variation.
Individuals are colored according to the sampling localities as indicated by the legend. Note how vertically banded
and horizontally striped frogs are separated along the first principal component. Further note how individuals
sampled at each location are loosely clustered along this component. The second principal component is harder
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(a) PC1 loadings.
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(b) PC2 loadings.

Figure 4: Variable loadings (eigenvectors) for the first and second principal component. From the left are color/non-color ratios, gradient
orientation histograms and shape index histograms. The numbers 1 to 4 indicate which interest point the descriptor covers, σ indicates the
scale at which the descriptor was extracted and b the bin center. Note how anatomically similar interest points exhibit similarities in these
loadings.
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to interpret from these examples, but by simultaneous inspection of the loadings it seems differences in left versus
right leg patterning and head versus dorsal patterning are accentuated along this axis.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

PC1

P
C

2

BelowVAchinamisa
Achinamisa
RicardoVPalma
Callanayacu
Chipesa
Malpaso
Curiyacu
SantaVRosaVdeVChipaota
Vaquero
MicaelaVBastidas
RanitomeyaVsummersi
RanitomeyaVvariabilis
Sauce

Sauce SantaVRosaVdeVChipaota RicardoVPalma

Curiyacu MicaelaVBastidas Callanayacu

Figure 5: Scatter plot of the first two principal components. Individuals are colored according to sampling location. Six individuals are shown
as examples of the phenotypic variation captured by these first two principal components.

We remind the reader that the first principal component account for approximately double the variance of
the second principal component. Combined with the orthogonality constraint this makes higher order components
inherently harder to interpret. Further, this is a two dimensional projection of a minimum eight dimensional space,
wherefore phenotypic characteristics clustering together in this projection, might be separated along higher order
components. Therefore such a visualization is mostly useful for identifying very strong signals, such as the stripe
directionality in this case.

The phenotypic variation captured by the overcomplete descriptor suite has now been illustrated by using prin-
cipal components analysis. The next section illustrates how the descriptors relate to the direction in the multivariate
descriptor space representing the mimicry-related aspects of this phenotype.
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1.3. Identifying mimicry-related variation
The multitude of extracted phenotypic descriptors collectively provide a high-dimensional description of the

pattern phenotype. In this high-dimensional space, we seek to identify the one-dimensional mimicry-related
manifold, i.e., a single scalar value per individual, representing the degree to which an individual mimic each of
the model species. One meaningful way to do this is to let the phenotypic differences of the model species define
this one-dimensional manifold, since mimicry-related phenotypic expressions are similar to one model species at
one extreme and the other model species at the other extreme. Discriminant analysis techniques are capable of
that and a variant called sparse discriminant analysis is the primary method used here (Clemmensen et al., 2011).
Other approaches are reviewed in ESM 1.5.

In a two-group scenario, with a total of nm individuals, SDA recasts the discrimination problem as an optimal
scoring problem

arg min
β,θ

‖Yθ − Dmβ‖22 + γ‖β‖22 + λ‖β‖1 (3)

s.t.
1

nm
θT YT Yθ = 1 (4)

where Y is an nm × 2 dummy matrix encoding the group membership with Yik = 1 if the i’th individual belongs to
the k’th group, θ = [θ1, θ2]T are the scores, Dm is the nm × p matrix of phenotypic descriptors for the individuals
belonging to either group and β = [β1, β2, . . . , βp]T is the loadings vector. The scoring vector θ is constrained to be
orthogonal to the trivial solution 1 and would in a two class problem, with no regularization, become proportional
to the class means. The parameter γ enforces shrinkage, while λ enforces sparsity. Tuning λ is analogous to
constraining the maximum number of contributing descriptors. Compared to, e.g., stepwise selection of variables,
this formulation takes into account groups of correlated descriptors. This makes SDA especially well suited when
the number of extracted descriptors is high compared to the number of individuals in each group.

1.4. Descriptor relation to mimicry
Identifying the extracted descriptors importance for the mimicry-related phenotype can serve the purpose of

better understanding the biological system. In the context of SDA, a compact representation of the phenotypic
descriptors is achieved by restricting to a maximum of k ≤ p non-zero loadings. Note however, that even though
only a limited number of descriptors contribute, this does not imply that the other descriptors are uncorrelated with
the identified linear combination. Therefore it is meaningful to inspect the correlations between the p original
variables and the mimicry-related phenotype, rather than the raw loadings in β. In Figure 6 these correlations are
shown as bars.

A number of the descriptors are strongly positively correlated with the mimicry-related phenotype and a few
are negatively correlated. These contrasts are interesting: All of the negative correlations are with descriptors
extracted on the legs (1 and 2). The larger of the two scales for the left leg (1) in particular, is negatively cor-
related. This indicates that the leg patterning exhibits a different type of change across the transect than the rest
of the patterning. Further, the gradient orientation descriptors for the dorsal interest points (3 and 4) have strong
correlations for horizontal stripes (b=1.57) compared to vertical stripes (b=0). This indicates that the degree of
horizontal versus vertical striping partially determines what value of the mimicry-related phenotype an individual
will have. The shape-index descriptors exhibit a high correlation with the elements of dorsal pattern, while low (or
negative) for leg patterning. The color/non-color ratios show a moderate negative correlation for the first interest
point, while the remainder are moderately positive.

Note how similar the correlations are to the loadings for the first principal component in Figure 4. This tells us
that the mimicry-related phenotype is similar to the strongest phenotypic signal captured by the chosen descriptor
suite.

1.5. Alternative manifold learning methods and groupings
Various methods exist for determining the low-dimensional manifold in the high-dimensional feature space

on which the mimicry-related phenotype lies. We have chosen to use sparse discriminant analysis (SDA) because
1) it uses information from the end-populations to determine “what descriptors relate to mimicry?” and 2) the
weighting of original components is sparse and thus easy to interpret. Isomap (Tenenbaum et al., 2000) is another
well-known method for manifold learning; nearby observations (in feature space) are used to construct a neigh-
borhood graph representing the possibly nonlinear manifold. Finally, a kernel discriminant analysis (KDA) could
be used, potentially revealing very nonlinear manifolds through the use of a kernel space formulation (Mika and
Ratsch, 1999). See also electronic supplementary material 2. However, with the number of observations available
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Figure 6: Correlation of phenotypic descriptors with the quantified mimicry-related phenotype. From the left are color/non-color ratios,
gradient orientation histograms and shape index histograms. The numbers 1 to 4 indicate which interest point the descriptor covers, σ
indicates the scale at which the descriptor was extracted and b the bin center.

for determining the low-dimensional manifold, we find that a linear method is the appropriate choice. It is possi-
ble, that with a larger number of samples a more complex manifold could be determined reliably, thus changing
these conclusions. Therefore we have included results where each of these alternative methods are used as well.

Parameters p k=2
k=1

p k=3
k=2

p k=4
k=3

p k=5
k=4

m
od

el
s SDA δ = 0.010, n+ = 13 0.4010 0.0300 0.0110 0.0000

KDA σ = 9.540, λ = 1.000 0.0880 0.0700 0.0330 0.0010
isomap k = 5 0.2880 0.0160 0.0000 0.0000

im
ita

to
r SDA δ = 0.010, n+ = 33 0.9890 0.1360 0.0000 0.0250

KDA σ = 13.110, λ = 1.000 0.5640 0.4990 0.0360 0.0200
isomap k = 4 0.2590 0.0160 0.0110 0.0000

bo
th

SDA δ = 0.010, n+ = 28 0.9640 0.1580 0.0140 0.0150
KDA σ = 12.430, λ = 1.000 0.5330 0.6940 0.0510 0.0210
isomap k = 5 0.3090 0.0170 0.0030 0.0000

Table 1: P-values for hypotheses of the number of genes, where different methods are used to estimate the low-dimensional manifold in the
high dimensional space, describing the mimicry-related phenotype. The leftmost column indicates the mimicry-defining groups. P-values
below 0.05 are typeset in bold and p-values above 0.95 are typeset in italic.

Table 1 shows the p-values p H0:K=k
H1:K=k−1

for rejecting the null hypothesis H0 of k genes versus the alternative of H1

k − 1 genes underlying the mimicry-related phenotype. Three different mimicry-defining group configurations are
used, namely using R. summersi and R. variabilis (models), using R. imitator from the two most extreme sampling
localities Sauce and Micaela (imitator) or pooling these populations to make up the groupings (both).

For each of the methods, the parameters involved were chosen to fulfil two criteria: a low intra-location vari-
ability of the quantified phenotype while still maintaining the proportion of individuals attaining a value between
the averages of the two mimicry defining groups. This heuristic is motivated by the fact, that we want to use an as
complex a model as possible without collapsing the manifold, i.e., overfitting to the mimicry-defining groups.

The following pages each represent a choice of manifold learning method and grouping, i.e., a row in Table
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1. For each configuration three plots are shown: a box plot of the quantified mimicry-related phenotype along the
transect, a box plot of log-likelihood ratios and two learning curves used to choose the regularization parameter
for the given method. Further, a table of p-values is shown for different combinations of null and alternative
hypotheses.
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Grouping: models, Manifold method: SDA
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [0.882, 0.071,−0.855, 0.274]
K = 2 : [0.958,−0.115,−0.999, 0.235]
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.401 0.170 0.066 0.028
H1 : K = 2 0.599 0.030 0.008 0.001
H1 : K = 3 0.830 0.970 0.011 0.000

Table 2: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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Grouping: models, Manifold method: KDA
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [−0.752, 0.380, 0.710, 0.211]
K = 2 : [−0.835, 0.244, 0.781, 0.170]
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(a) Quantified phenotype
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

σ

In
tr

a−
lo

ca
tio

n 
va

ria
nc

e

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rt

io
n 

co
nt

ai
ne

d

(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.088 0.024 0.012 0.003
H1 : K = 2 0.912 0.070 0.033 0.013
H1 : K = 3 0.976 0.930 0.033 0.007

Table 3: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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Grouping: models, Manifold method: isomap
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [14.074, 5.794,−11.269, 3.618]
K = 2 : [14.497,−6.107,−13.389, 3.226]
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.288 0.121 0.054 0.021
H1 : K = 2 0.712 0.016 0.003 0.000
H1 : K = 3 0.879 0.984 0.000 0.000

Table 4: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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Grouping: imitator, Manifold method: SDA
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [−0.970,−0.120, 0.790, 0.225]
K = 2 : [−1.017, 0.147, 0.965, 0.148]
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.989 0.916 0.746 0.601
H1 : K = 2 0.011 0.136 0.005 0.004
H1 : K = 3 0.084 0.864 0.000 0.000

Table 5: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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Grouping: imitator, Manifold method: KDA
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [0.977, 0.426,−0.808, 0.213]
K = 2 : [0.998,−0.329,−0.998, 0.161]
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.564 0.571 0.373 0.260
H1 : K = 2 0.436 0.499 0.117 0.027
H1 : K = 3 0.429 0.501 0.036 0.011

Table 6: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.

14



Grouping: imitator, Manifold method: isomap
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [−15.029,−6.009, 12.069, 3.732]
K = 2 : [−15.441, 6.673, 14.283, 3.343]
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.259 0.082 0.048 0.030
H1 : K = 2 0.741 0.016 0.002 0.000
H1 : K = 3 0.918 0.984 0.011 0.001

Table 7: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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Grouping: both, Manifold method: SDA
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [0.959, 0.150,−0.832, 0.232]
K = 2 : [1.018,−0.063,−0.997, 0.151]
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.964 0.871 0.637 0.474
H1 : K = 2 0.036 0.158 0.012 0.004
H1 : K = 3 0.129 0.842 0.014 0.001

Table 8: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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Grouping: both, Manifold method: KDA
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [−0.994,−0.492, 0.797, 0.216]
K = 2 : [−1.016, 0.257, 0.992, 0.160]
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(a) Quantified phenotype
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.533 0.614 0.418 0.252
H1 : K = 2 0.467 0.694 0.249 0.072
H1 : K = 3 0.386 0.306 0.051 0.018

Table 9: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different number
of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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Grouping: both, Manifold method: isomap
Point estimates [µ0, µ1, µ2, σe]:
K = 1 : [14.069, 5.761,−11.272, 3.616]
K = 2 : [14.488,−6.148,−13.387, 3.232]
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(b) Log-likelihood ratios for H0 : K = k versus
H1 : K = 1.
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(c) Intra-location variance and proportion sam-
ples contained between end group averages as a
function of parameter. Dashed red line indicates
chosen parameter.

H0 : K = 1 H0 : K = 2 H0 : K = 3 H0 : K = 4 H0 : K = 5

H1 : K = 1 0.309 0.135 0.068 0.032
H1 : K = 2 0.691 0.017 0.001 0.000
H1 : K = 3 0.865 0.983 0.003 0.000

Table 10: P-values using three different alternative hypotheses H1 : K = {1, 2, 3}. Null hypotheses are H0 : K = k for k being a different
number of genes than the alternative hypothesis. P-values below 0.05 are marked in bold.
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ESM 2. Supplementary method description

This supplementary material details aspects of the methodology used for optimizing parameters under the
proposed likelihood models and estimating admixture proportions from microsatellite data with a data-driven
approach.

2.1. Optimization of the likelihood model

Determining the parameters for the global optimum of the likelihood function is crucial in model selection.
However, the optimization landscape might be near-flat in some areas or contain local extrema causing the opti-
mization algorithm to converge to non-optimal parameters. To alleviate this, a scheme for choosing starting points
and a gradient for maximization of log-likelihood is described here. Both are useful aids in reaching the global
optimum rather than a local maximum.

2.1.1. Starting points
The success in finding the global optimum of the proposed log-likelihood function is dependent on the starting

point of the optimization algorithm. A scheme with multiple starting points is used here, where the model’s
conditioning on the genotype is leveraged to select meaningful starting points.

The four parameters [µ0, µ1, µ2, σ] are initialized based on simple statistics on the quantified phenotype z. The
three averages are initialized at six different points, namely at the following percentiles of z:

µ0 µ1 µ2

10 50 90
10 10 90
10 90 90
40 50 60
40 40 60
40 60 60

These are chosen based on the assumption that a heterozygotic phenotype has a value between the homozygotic
phenotypes.

The standard deviation is initialized to fractions of the standard deviation of z, namely [1, 1
3 ,

1
5 ,

1
7 ,

1
10 ,

1
15 ,

1
20 ].

This yields a total of 42 starting points, ensuring that the optimization algorithm converges to the global optimum.

2.1.2. Gradient of log-likelihood
We seek the gradient of the log-likelihood with respect to the parameters.
Let LK(θ; z, f) denote the log-likelihood of the parameters θ = [µ1, µ2, µ3, σ] such that

LK(θ; z) =

n∑

i

log
∑

g j∈G(K)

p(zi|g j)p(g j| fi) . (1)

Each g j, j = {1, . . . ,M} is represented by the average λ j = hT
j µ.

The gradient with respect to each µt, t = {1, 2, 3} can be written in terms of the gradient of LK with respect to
λ = [λ1, λ2, . . . , λM]. There is one λ j for every g j.

The chain rule yields

∂LK

∂µ
=
∂LK

∂λ

∂λ

∂µ
. (2)

The gradient for fixed i, with respect to λk, will be derived first.

∂Li
K

∂λk
=

∂

∂λk

[
log p(zi| fi)]

=
1

p(zi| fi)
∂

∂λk
p(zi| fi) (3)

1



The genotype probabilities conditional on the admixture proportion can be considered a constant with respect to
λk:

∂

∂λk
p(zi| fi) =

M∑

j=1

p(g j| fi) ∂

∂λk
p(zi|g j) . (4)

The probability of a phenotype is modeled as a normal distribution with mean λ j and variance σ2. For a fixed k
the derivative with respect to λk is:

∂

∂λk
p(zi|g j) =

∂

∂λk

1√
2πσ

exp
{
− (zi − λ j)2

2σ2

}

= p(zi|g j)
∂

∂λk

[
− (zi − λ j)2

2σ2

]

=

{
0 j , k

p(zi|gk) zi−λk
σ2 j = k

Combined with Equations (3) and (4) this yields

∂LK

∂λk
=

n∑

i=1

p(zi|gk)p(gk | fi)
σ2 p(zi| fi) (zi − λk) .

Since ∂λ
∂µ = H where H = [h1,h2, . . . ,hM]T the gradient of LK with respect to µ is

∂LK

∂µ
=
∂LK

∂λ
H (5)

Derivation of the gradient with respect to σ is analogous up until Equation (4). Hereafter

∂

∂σ
p(zi|g j) =

∂

∂σ

[
1√
2πσ

exp
{
− (zi − λ j)2

2σ2

}]

= − 1√
2πσ2

exp
{
− (zi − λ j)2

2σ2

}

+ p(zi|g j)
∂

∂σ

[
− (zi − λ j)2

2σ2

]

= p(zi|g j)
(
− 1
σ

+
(zi − λ j)2

σ3

)
.

Combining as above yields

∂LK

∂σ
=

n∑

i=1

1
p(zi| fi)

M∑

j=1

p(zi|g j)p(g j| fi)
(
− 1
σ

+
(zi − λ j)2

σ3

)
(6)

= − n
σ

+
1
σ3

n∑

i=1

∑M
j=1 p(zi|g j)p(g j| fi)(zi − λ j)2

p(zi| fi) . (7)

Equation (5) gives the first three elements of ∂LK
θ and Equation (7) gives the last.

While the derived gradients can seem complicated, the ingredients p(zi|g j), p(g j| fi) are also needed for calcu-
lation of the log-likelihood function value (Equation (1)). This is useful for implementation purposes.
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2.2. Admixture proportion estimation using kernel discriminant analysis
The admixture proportions are estimated from microsatellite data using kernel discriminant analysis (KDA)

(Mika and Ratsch, 1999).
Microsatellite data for a single individual consist of the number of repeats of a given microsatellite at each

chromosome. As such, microsatellite data are multi-allelic. It is assumed that a given repeat number occurs as a
new mutation in the genome only once. Thus, if two individuals share the same repeat number they are assumed
to have inherited it from a common ancestor. If the number of repeats are not the same, the allele is not shared.

Formulating a similarity measure as the proportion of shared alleles opens up microsatellite data to kernel
space analysis methods (Martin, 2011).

A brief summary of kernel discriminant analysis is given here.
First, the between-class covariance matrix M and the within-class covariance N in kernel space are defined.

These are defined in terms of the kernel function K(·, ·). First the j’th element of the mean vector for class i in
kernel space is defined as:

(mi) j =
1
`i

`i∑

k=1

K(d j,di
k)

and then

M = (m2 −m1)(m2 −m1)T

N = KKT −
∑

i=1,2

`imimT
i

where
K jk = K(d j,dk)

Note that M and N are here n × n matrices and di refers to the i’th observation.
Due to the possibility of singularity and the additional need to “capacity control” the feature space, since it

can be very non-linear, it is a must to regularize the within-class covariance.
A regularized objective function takes the form as

J(w) =
wT Mw

wT (N + λI)w
λ ≥ 0.

This can be solved either as a generalized eigenvalue problem, or, if one is only interested in the direction of the
projection vector w, it can be found as w = N−1(m2 −m1) (Muller et al., 2001).

It has also been argued that some fraction of the kernel matrix, rather than the identity matrix, could be added
for regularization (Nielsen, 2011). This would correspond to penalizing the 2-norm of the projection vector in
the original space (Mika et al., 1999). Note once again that w = [w1,w2, . . . ,wn]T is an n-vector, rather than a
p-vector as before. Thus the feature space is defined in terms of the n observations used to train the discriminant
function.

The projection of a new data point using the kernel discriminant function is less trivial than for the linear
method. Due to the fact that the kernel method is formulated in terms of individual-similarities (or inner products),
the projection of dnew takes the form

f =

n∑

j=1

w jK(d j,dnew) . (8)

This can be read as a kernelization of the new observation with each of the the training data observation, pro-
jected using the discriminating direction w. This implies that the training data set need to be stored for the
testing/classification phase.

The value f is the admixture proportion in the context of KDA for microsatellite markers. The groups selected
for KDA are the populations of R. imitator at each end of the transect (Sauce and Micaela Bastidas). The admixture
proportions are linearly such that these two groups have mean 0 and 1 respectively.
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ESM 3. Supplementary simulations
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Figure 1: Likelihood ratios as a function of the heritability H2 for simulated data. The graphs show median likelihood ratios (solid), 5th
and 95th percentiles (dashed) for K = {1, . . . , 5} versus the true K. The captions show the true parameters used to simulate the data for each
scenario. 1000 estimations were performed for each of the scenarios. These simulations are supplements to the main text and include cases
where f is simulated as a bimodal distribution.
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ESM 4. Bootstrap distribution of log-likelihood ratio
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Figure 2: Bootstrap distribution. The histogram shows the distribution of log-likelihood ratios for the null hypothesis of selecting a model with
K = 2 genes against the alternative of selecting a model with K = 1 genes.
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ESM 5. Image data

This supplementary material shows all 317 individuals for which image data have been used. The individuals
are grouped and ordered according to sampling location as in Figure 3 of the main article.
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In a mimetic radiation—when a single species evolves to resemble different model species—

mimicry can drive within-species morphological diversification, and, potentially, speciation.

While mimetic radiations have occurred in a variety of taxa, their role in speciation remains

poorly understood. We study the Peruvian poison frog Ranitomeya imitator, a species that has

undergone a mimetic radiation into four distinct morphs. Using a combination of

colour–pattern analysis, landscape genetics and mate-choice experiments, we show that

a mimetic shift in R. imitator is associated with a narrow phenotypic transition zone, neutral

genetic divergence and assortative mating, suggesting that divergent selection to resemble

different model species has led to a breakdown in gene flow between these two populations.

These results extend the effects of mimicry on speciation into a vertebrate system and

characterize an early stage of speciation where reproductive isolation between mimetic

morphs is incomplete but evident.
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E
lucidating the factors that promote population divergence
and initiate speciation is key to understanding the evolution
of biodiversity. Several studies have identified cases where

divergent selection on ecologically relevant traits leads to partial
or complete reproductive isolation or speciation1–4. Speciation is
frequently studied by examining pairs of ‘good’ species and
identifying current reproductive barriers5. However, these
reproductive barriers may have arisen after speciation was
complete, whereas other, currently incomplete barriers may
have arisen earlier and been important during initial population
divergence6. With the goal of investigating initial divergence, one
can focus on the early stages of speciation, for example,
populations of a single species showing incipient reproductive
isolation.

Mimicry can drive phenotypic convergence between distantly
related species, but can also drive within-species diversification.
This has led to impressive morphological radiations in diverse
taxonomic groups such as catfish7, millipedes8, snakes9, bees10,
frogs11, moths12 and, most famously, Heliconius butterflies13. In
Heliconius, selection for Müllerian mimicry (mimicry between
unpalatable species) has led to intraspecific divergence in wing
patterns, as different populations radiate into distinct mimicry
rings13. These wing patterns are also used in mate choice, and
morph-based assortative mating can arise as a byproduct of
selection for wing mimicry14 if accompanied by evolution of
preferences. Studies of mimetic hybrid zones in Heliconius have
yielded a range of examples highlighting the continuous nature of
speciation. On one end of the continuum, hybrid zones can be
narrow and characterized by strong assortative mating, neutral
genetic divergence and infrequent hybridization15,16. On the
other end of the continuum, hybrid zones can be wide, with little
or no assortative mating, and with genetic divergence generally
restricted to genomic regions controlling colour–pattern
differences17. There are, however, few examples of
‘intermediate’ hybrid zones, where distinct mimetic morphs
show intermediate levels of genetic divergence and/or premating

isolation (but see ref. 18). By identifying cases where speciation
appears to have started, but is not yet complete, we can better
understand how freely interbreeding populations transition to
reproductively isolated species.

Neotropical poison frogs (Dendrobatidae) are diurnal, toxic
frogs known for their striking warning colours. A number of
species display remarkable intraspecific diversity in colour–
pattern19–22, although in most cases the source of divergent
selection among populations is unclear23–27. In Ranitomeya
imitator, intraspecific divergence in colour–pattern is associated
with selection for Müllerian mimicry28, which led to the
establishment of four distinct mimetic morphs of this species in
central Peru29. These morphs resemble three different model
species (one of the model species, R. variabilis, has two morphs
itself21, both mimicked by R. imitator), and occur in different
geographic regions, forming a ‘mosaic’ of mimetic morphs.
Where different morphs come into contact, narrow hybrid (or
‘transition’) zones are formed29, similar to what has been
observed in Heliconius butterflies. We have identified three
such transition zones, making this study system useful for
comparative analyses.

Here we show that a mimetic shift in R. imitator is likely
driving early-stage reproductive isolation among two of these
mimetic morphs. We focus on the narrowest transition zone,
which is found in the lowlands of north-central Peru and is
formed between the ‘varadero’ morph, which mimics
R. fantastica, and the ‘striped’ morph, which mimics the lowland
morph of R. variabilis30 (Fig. 1; Supplementary Fig. 1). Our
sampling along a transect crossing this transition zone reveals
that there is a shift in several aspects of colour–pattern in
R. imitator, including dorsal colour (yellow to orange), arm
colour (pale greenish-blue to orange), leg colour (pale greenish-
blue to navy blue) and dorsal pattern (uniform longitudinal
stripes to colouration concentrated around the head). These shifts
correspond to the colour–pattern of each model species (Fig. 1;
Supplementary Fig. 2), and are therefore likely involved in

R. variabilis

Model species

R. fantastica

R. imitator - transition zone

a b

d e

Striped morph

Varadero morph

Ranitomeya imitator

Striped morph

Transition zone

Varadero morph

Study area

c

Figure 1 | Mimetic divergence in R. imitator. In central Peru, the mimic poison frog R. imitator (a) exhibits two mimetic morphs corresponding to two

different model species (b). These morphs occupy distinct geographic areas (c), and form a narrow transition zone (grey box, c) characterized by

phenotypic intermediates (d). Scale bar, 3 km (c). (e) Map of Peru showing study area (scale bar, 500 km).
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mimicry. Analyses of colour–pattern clines show that the
transition zone is B1–2 km wide and composed of phenotypic
intermediates. Landscape genetic analyses indicate that neutral
genetic divergence between morphs is primarily associated with
divergence in mimetic colour–pattern, rather than geographic
distance, suggesting that mimetic divergence has reduced gene
flow between morphs. Using mate-choice experiments, we find
evidence for assortative mating in one of the mimetic morphs,
however, this mating preference is only present near the
transition zone, consistent with reproductive character
displacement (RCD). Taken together, these results suggest that
mimetic divergence in R. imitator has led to a breakdown in gene
flow between these two populations, potentially facilitated by
assortative mating.

Results
Colour–pattern clines. Selection for different mimetic morphs
across geographical areas should cause differentiation in mimetic
traits. At the interface between distinct mimetic morphs, traits
subject to divergent selection are expected to show a sigmoidal
pattern of variation across this zone of mixing31. To quantify
colour–pattern variation along the mimicry transect, we used a
combination of spectrometry and computer-automated feature
extraction to extract six colour–pattern variables in R. imitator.
Transect variation in three of these colour–pattern variables
(head colour, body colour and leg pattern) was best described by a
linear model (Fig. 2), suggesting gradual spatial change. However,

due to our sampling pattern, we cannot rule out the possibility of
a sigmoidal cline with a displaced centre for these colour–pattern
variables. The remaining three colour–pattern variables (arm
colour, leg colour and body pattern) were best described by a
sigmoidal model (Fig. 2), suggesting that these aspects of the
colour–pattern are under divergent selection. If multiple aspects
of the colour–pattern are involved in mimetic resemblance, then
shifts in traits should coincide geographically. We tested for cline
coincidence among arm colour, leg colour and body pattern by
comparing Akaike weights (wi) between two models: one where
cline centre is constrained to a single parameter shared across all
three data sets and one where centre is unshared. A common
centre was found for all three colour–pattern variables without a
significant reduction in model fit (wi shared centre
model¼ 0.841; wi unshared centre model¼ 0.159), indicating
coincidence among the three colour–pattern clines. The point
estimate for the shared centre parameter was 0.54 km (that is,
0.54 km N from the a priori-estimated centre), corresponding to
1.25 km N from the village of Varadero (Supplementary Fig. 1).
An alternative explanation for coincident clines is recent
secondary contact between divergent populations (see below for
discussion of primary versus secondary contact).

In a tension zone model31, where divergent selection is
opposed by dispersal, the width of the cline reflects a balance of
selection (which narrows a cline) and dispersal (which widens a
cline). Differences in cline widths among different traits may be
due to differences in the strength of selection on loci underlying
those traits. If different traits are controlled by the same number
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Figure 2 | Clines in colour–pattern, microsatellites, male mass and advertisement calls. In all panels, trait values for individual R. imitator (represented by

dots) are plotted along the geographic transect (x axis). (a–f) Colour–pattern variation (y axis: kernel discriminant score; values closer to þ 1 indicate closer

similarity to R. variabilis and closer to � 1 R. fantastica); (g) microsatellite variation (y axis: first major axis from factorial correspondence analysis (FCA));

(h) male mass (y axis: grams); and (i) advertisement call variation (y axis: linear discriminant score). The fit line for each variable represents the best-

supported model describing transect variation and parameter point estimates.
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of loci, those under stronger selection should show narrower
clines than those under weaker selection. We tested for a
common cline width (concordance) among all six colour–pattern
variables. A common width could not be found among all six
variables without a reduction in model fit (wi shared width
model¼ 0.273; wi unshared width model¼ 0.727), indicating that
some colour–pattern variables show non-concordant widths. This
was due to the inclusion of the three non-sigmoidal variables, as it
was possible to fit a common width of 2.27 km among the three
variables showing a sigmoidal pattern of variation (wi shared
width model¼ 0.747; wi unshared width model¼ 0.253). Cline
width should be primarily a function of selection strength
(assuming constant dispersal), so the evidence that these three
clines can be constrained to a common width suggests equivalent
strength of selection on arm colour, leg colour and body pattern.
This could also suggest a common genetic basis or linkage among
all three traits, although colour and pattern elements in
dendrobatids are likely controlled by different genes32.

Landscape genetics. Reduced gene flow between adaptively
diverged populations (isolation by adaptation; IBA) is a key
prediction of ecological speciation1. This results in a positive
correlation between adaptive ecological divergence and genetic
differentiation among populations after controlling for the effect
of isolation by distance (IBD)33. Results from the Structure
analysis (Fig. 3a) indicate the presence of three genetic groups
within the study area. One of these groups (Fig. 3b) is associated
with an allopatric population, while two of the groups (Fig. 3c,d)
form a sharp break at the mimetic transition zone. These latter
two groups still show some evidence of genetic exchange, as there
were a few individuals with a striped colour–pattern but a
varadero genotype, and vice-versa (Fig. 3). The narrow genetic
cline is also characterized by a peak in linkage disequilibrium
(Supplementary Fig. 3), further suggesting a barrier to gene flow
among the two mimetic morphs. The coincidence of genetic
clines and colour–pattern clines was supported by a factorial
correspondence analysis, where the cline centre on the first major
axis (0.31 km) is almost identical to the shared colour–pattern

cline centre (0.54 km), supporting the hypothesis that a shift in
mimicry has led to a breakdown in gene flow among mimetic
morphs. Using a causal modelling framework, the best-supported
hypothesis was one where colour–pattern distance (IBA), but not
geographic distance (IBD), was correlated with genetic distance
among populations. Multiple-matrix regression34 yielded similar
results, except that both colour–pattern distance (r2¼ 0.427,
P¼ 0.006) and geographic distance (r2¼ 0.230, P¼ 0.001) were
accounted as significant predictors of genetic distance. However,
the correlation coefficient for colour–pattern distance is nearly
twice that of geographic distance, indicating that IBA is a stronger
determinant of among-population genetic divergence than is IBD.
An alternative interpretation for these results is mimetic
divergence in allopatry followed by secondary contact. This
could explain the neutral genetic divergence among these two
populations, however, one would expect the microsatellite cline to
be wider than the observed 0.54 km unless contact happened very
recently (see below).

Mate-choice experiments. One potential mechanism for a
breakdown of gene flow between adaptively diverged populations
is morph-based assortative mating35. To address the role of
assortative mating, we conducted triad mate-choice experiments
in which we introduced two females (one of each morphs) into
the terrarium of a given male, and measured the amount of
courtship time between the male and female. This is equivalent to
a mutual choice test, which is appropriate here as R. imitator is
monogamous36, and therefore both sexes should be choosy. We
tested preferences in three populations: striped allopatric, striped
transition and varadero, allowing us to address two questions
(1) whether courtship preferences differ between the striped-
transition and varadero populations, and (2) whether courtship
preferences differ among the two populations of the striped
morph. Using generalized linear mixed models (GLMM), we
found an overall significant effect of male origin (w2

1,55¼ 16.518,
P¼ 0.00026), indicating that mate preferences were significantly
different across populations. A post hoc test revealed that the
preferences in the striped-allopatric and varadero populations

Striped morph Transition Varadero morph
4 51 14 3 6 7 8 9 10

Assignment
probability

<0.1

0.5

>0.9

a

b c d

Figure 3 | Genetic structure between mimetic morphs of R. imitator. (a) We used the software Structure 2.3.4 to analyse the multilocus microsatellite

data set and assign individuals of R. imitator to each of K populations. The optimal number of inferred populations was K¼ 3 (shown). Vertical bars indicate

membership fractions to inferred groups 1 (blue), 2 (green), and 3 (orange). Horizontal grey bars represent the morph (upper bar) and sampling localities

(lower bar). (b–d) Spatial genetic structure of each of the three genetic groups as inferred by Structure. We projected the Structure output to a map by

interpolating the average probability assignment score of each population to each inferred group using inverse-distance-weighted interpolation in ArcGIS.

(b) Probability assignment to group 1, (c) probability assignment to group 2 and (d) probability assignment to group 3.
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were not significantly different (w2
1,22¼ 3.096, false discovery rate

(FDR)-adjusted P¼ 0.078), with neither population showing a
significant preference (Fig. 4). However, preferences between the
striped-transition and varadero populations were significantly
different (w2

1,33¼ 11.986, FDR-adjusted P¼ 0.00161), mainly due
to the striped-transition population’s preference towards its own
morph (Fig. 4), which indicates that mating preferences have
diverged between these two populations across the transition
zone. Finally, preferences between the striped-allopatric and
striped-transition populations were significantly different
(w2

1,29¼ 9.748, FDR-adjusted P¼ 0.00269), suggesting that
mating preferences in the striped-transition population are
stronger at the mimetic transition zone.

Bioacoustics. During our sampling, there were apparent differ-
ences in the advertisement calls of the striped and varadero
morphs, which could represent a potential premating isolating
mechanism between the two morphs. To determine whether the
pattern of call variation coincided with the mimetic transition
zone, we recorded the calls of R. imitator across the sampling
transect. The call of R. imitator is a short, musical trill of 0.44–
1.07 s, with trills (or ‘notes’) repeated roughly every 4–20 s, and a
dominant frequency of 4,710–5,660 Hz. Each note is composed of
16–32 pulses, with an average pulse rate of 24–30 pulses
per second21. Note length was negatively correlated with
temperature (r2¼ 0.115, P¼ 0.006), and pulse rate was
positively correlated with temperature (r2¼ 0.259, Po0.001).
To account for this, we standardized each of the three bioacoustic
variables by calculating regression residuals against temperature.
After temperature standardization, two bioacoustic variables
showed a sigmoidal rather than linear pattern of variation
across the transect (note length: Akaike weight (wi) linear
model¼ 0.032, wi sigmoidal model¼ 0.967; dominant frequency:

wi linear model¼ 0.006; wi sigmoidal model¼ 0.992). The point
estimates of cline centre were similar (note length
centre¼ � 0.14 km; dominant frequency centre¼ � 0.41 km),
indicating that the shift in these two call parameters occurs in
roughly the same geographic location. Furthermore, the estimated
cline centres both occur very close to the estimated colour–
pattern and microsatellite cline centres (within o1 km),
indicating that the shift in call characteristics occurs in the
same place as the shift in colour–pattern and microsatellites. For
pulse rate, the linear model was favoured (wi linear
model¼ 0.830, wi sigmoidal model¼ 0.138), indicating a
smooth, rather than abrupt, transition across the putative
transition zone. To derive a single metric-describing call
variation, we used a linear discriminant analysis to derive a
discriminant score where the two groups for classification were
defined as the populations on the end points of the transect (that
is, populations 1 and 10 in Supplementary Table 1). Both note
length and dominant frequency contributed substantially to the
discriminant function, whereas pulse rate did not (standardized
canonical discriminant function coefficients: dominant
frequency¼ 1.343; note length¼ � 1.189; pulse rate¼ 0.162).
This metric showed a sigmoidal pattern of variation with similar
cline centre and width as observed in the colour–pattern metrics
(Fig. 2; Supplementary Table 2).

Discussion
Our mate-choice trials found that the preferences in the two
striped populations we studied were stronger in the striped-
transition zone population relative to the striped-allopatric
population, a pattern consistent with RCD. However, our
experimental design is limited in terms of inferring RCD given
that we only tested three populations, and therefore, assuming
that mating preferences vary among populations, there is a one in
three chance that the strongest preference will be in striped-
transition population. A much more robust test of RCD would
involve testing multiple populations to determine whether
contact among morphs explains variation in mating preferences.
Patterns of enhanced mating preferences in areas of contact have,
however, been observed in mimetic Heliconius butterflies. For
example, H. melpomene populations that are sympatric with
H. cydno display stronger mating preferences relative to allopatric
populations37. In another example, mating preferences in both
H. cydno and H. pachinus are much stronger in sympatry than
allopatry38. One explanation for this pattern is reinforcement,
where mate preferences are strengthened in zones of sympatry to
avoid producing unfit hybrids. However, several other processes
can result in a pattern of enhanced mate preferences in zones of
sympatry (for example, differential fusion hypothesis and ‘noisy
neighbour’ hypothesis; see ref. 6 for review). In this case, as non-
mimetic hybrids may suffer fitness costs if they experience higher
predation rates39, adaptations to avoid cross-morph matings are
expected to be favoured by selection.

In addition to a shift in colour–pattern and microsatellites at
the transition zone, we found a shift in body mass and certain
aspects of the advertisement call. Striped frogs south of the
transition zone tend to have a smaller body size and a shorter,
more highly pitched call compared with the varadero morph
north of the transition zone. For both body size and advertise-
ment calls, variation along the transect is best described by a
sigmoidal cline with centres coinciding with the colour–pattern
and genetic clines (Supplementary Table 4), further supporting
the existence of a transition zone. This also supports the
possibility for secondary contact, where clines are expected to
be congruent for multiple traits. One possible explanation for the
shift in body size is that R. variabilis, the model species of the
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Figure 4 | Courtship preferences in R. imitator. For display on the figure,

raw courtship times for each trial were converted to a ‘preference index’,

which was calculated by dividing the time a male spent courting the

varadero female by the time spent courting the varadero femaleþ time

spent courting the striped female (that is, dividing by total courtship time).

This index therefore ranges from 0 (all courtship with striped female) to 1

(all courtship with varadero female), with a value of 0.5 (indicated by the

dotted line) indicating no preference. Open circles show the mean

preference index for each population; error bars represent 95% confidence

intervals. Icons next to the error bars represent the morph of the male used

in the experiment. Asterisks indicate significant differences from the GLMM

(Po0.05) from the post hoc tests, following FDR adjustment for multiple

comparisons. Sample sizes are as follows: striped allopatric, N¼ 10; striped

transition, N¼ 19; varadero, N¼ 26.
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smaller, striped morph of R. imitator, is smaller than
R. fantastica, the model species of the varadero morph (R.
variabilis mass: �x ¼ 0:52 g, n¼ 3; R. fantastica mass: �x ¼ 0:68 g,
n¼ 4). Thus, size could represent a mimetic adaptation. As our
experiments did not address the specific cue used in mate choice,
the roles of colour–pattern, body size and advertisement calls in
mediating mate choice in this system should be investigated
further.

As we have mentioned above, secondary contact among
differentially adapted populations could give rise to many of
the observed cline patterns. One plausible scenario here would be
mimetic divergence in allopatry, followed by secondary contact.
Determining whether hybrid zones are the result of primary or
secondary contact without historical evidence is difficult31.
However, secondary contact with neutral diffusion is unlikely
given our dispersal estimate in R. imitator of 0.095 km per
generation (see Supplementary Methods for details on dispersal
calculations). The cline created by secondary contact with
subsequent neutral diffusion would exceed the observed overall
cline width (0.97 km, see Supplementary Table 4, model D) in
only 17 generations, or B11 years. Considering secondary
contact, a more likely scenario is that the cline is maintained by
some isolating barrier. In either case (primary or secondary
contact), the cline is associated with a shift in mimicry, and may
be maintained, at least in part, by assortative mating. Overall, the
existence of a narrow cline, as well as moderate genetic divergence
between morphs (FST between mimetic morphs is 0.065–0.077),
suggests that mimetic divergence may be playing a key role
driving early-stage speciation in a vertebrate system.

Methods
Data availability. Colour–pattern data, advertisement call data, mate-choice data
and the full microsatellite data set are available at Dryad (doi:10.5061/dryad.rd586).

Sample collection and transect description. For colour–pattern analyses, we
sampled a total of 127 R. imitator from 15 localities in the department of Loreto,
Peru. Ten of these localities (localities 1–10 in Fig. 1) lie on a rough north-south
transect 40 km in length, running from the village of Micaela Bastidas in the south
to 7 km N from the village of San Gabriel de Varadero in the north. We sampled an
additional five localities off the transect but still relevant for inferring the spatial
arrangement of the two focal morphs of R. imitator. For genetic analyses, we
sampled 136 R. imitator from 10 localities. Tissue samples for genetic analysis (toe
clips) were taken with sterile surgical scissors and preserved in 96% ethanol before
extraction. In most cases, both tissue samples and colour–pattern measurements
were taken from each frog, although there were some localities where only genetic
data were collected or only colour–pattern data were collected (see Supplementary
Table 1 for details). In addition, we took colour–pattern measurements from the
two putative model species: 7 R. variabilis from Pongo de Cainarachi (repre-
sentative of the typical lowland R. variabilis morph) and 7 R. fantastica collected
from San Gabriel de Varadero.

Because the transect is not perfectly linear, we calculated transect position as
straight-line distance from the putative transition zone centre, with localities south
of this point given a negative sign and localities north of this point given a positive
sign. The initial centre point (latitude/longitude: � 5.70653�, � 76.41427�) used in
these calculations was estimated from field observations where an apparent shift in
colour–pattern occurred. Therefore, instances where the estimated cline centre
from nonlinear regression was close to zero indicate a close fit to our field
observations. Cline centre estimates with a negative sign indicate the inferred cline
centre to be south of the initial centre point, whereas positive values indicate the
cline centre to be north of the initial centre point.

Colour and pattern quantification. To quantify frog colour, we measured the
spectral reflectance at specific points on the dorsal surfaces of the mimic species (R.
imitator) and both model species (R. variabilis and R. fantastica). Two measure-
ments were taken on the head (right and left sides), four on the body (right and left
sides of mid-body and rump) and two on the legs (dorsal surface of right and left
thighs). Reflectance measurements were taken using an Ocean Optics USB4000
spectrometer with an LS-1 tungsten–halogen light source and Ocean Optics
SpectraSuite software. A black plastic tip was used on the end of the probe so that
measurements were always taken at a distance of 3 mm from the skin and at a 45�
angle. White standards were measured for every other frog using an Ocean Optics
WS-1-SL white reflectance standard to account for lamp drift. Spectral data were

then processed in Avicol version 6 software40 using Endler’s segment model41

calculated between 450–700 nm. This model calculates brightness (Qt), chroma
(C), hue (H) and two Euclidean coordinates representing position in a two-
dimensional colour space: blue-yellow axis position (MS) and red-green axis
position (LM). Measurements within body regions (head, body and legs) were
averaged. In addition to the spectrometer measurements, we measured upper-arm
colouration using the colour-picker tool (set to a 5� 5 pixel average) in Adobe
Photoshop CS4 on dorsal photos of each frog, recording the average intensities of
red, green and blue channels on two points on each upper arm. Photos were taken
on a white background using a Canon Rebel XS DSLR with a Canon EF 100 mm
macro lens and the camera flash.

We quantified frog pattern by a collection of local image descriptors. The
descriptors were automatically extracted from images of every individual and
collected in a feature matrix. Three types of descriptors were extracted: a colour/
non-colour ratio, gradient-orientation histograms and shape-index histograms42–44.
Collectively, these capture zeroth-, first- and second-order image structure. A spatial
pooling scheme was used to separately collect information at four interest points:
left leg, right leg, lower and upper back. At each of these interest points, pattern
variation occurs on a distinct scale, wherefore the descriptors were extracted
according to a scale-space formulation45. Colour/non-colour ratios were extracted
for every interest point on a single scale; gradient-orientation histograms for every
interest point on two different scales and two orientation bins (horizontal and
vertical), and shape-index histograms were only extracted for the legs on two scales
in five bins equidistantly spaced between � p/2 and p/2. This summed up to a total
of 4 � (1þ 2 � 2þ 2 � 5)¼ 60 features per individual.

To reduce the multivariate colour and pattern data to a single descriptive metric
per body region, we used kernel discriminant analysis46, where the two model
species (R. variabilis and R. fantastica) represented the training groups used for
classification. This procedure assigns a discriminant score to each R. imitator
individual on the basis of their similarity to either model species, and thus can be
thought of as a ‘mimicry score’. The analysis can be constrained to include only
subsets of the variables to derive a metric for different body regions, for example,
leg colour variation in R. imitator. Kernel-based analysis is implicitly capable of
estimating nonlinear effects, making it more suitable for non-normally distributed
features, such as the colour metrics output from Avicol. Using this procedure, we
derived colour metrics for four body regions (head, body, legs and arm) and
pattern metrics for two body regions (dorsum and legs). For additional details on
kernel discriminant analysis, see Supplementary Methods, Supplementary Table 5,
and Supplementary Figs 4 and 5.

Cline analysis. To describe clinal variation in colour–pattern elements (as well as
average male mass, advertisement call and microsatellites; see Supplementary
Methods), and in particular to estimate cline width, we performed nonlinear
regression using a four-parameter sigmoid tanh function

y ¼ 1þ tanh 2x� c
w

� �

2 1
ymax � ymin

� � þ ymin ð1Þ

where c is the centre of the cline, w is the cline width and ymax and ymin are the
maximum and minimum trait values (that is, the trait values at the tails of the
cline). This uses the cline model of Szymura and Barton (ref. 47), except that the
minimum and maximum trait values are free to take on any value. Parameter
searches were done using the solver function in Excel using a least-squares
optimality criterion. Solver was run using the generalized reduced gradient (GRG)
nonlinear algorithm with the following settings: convergence¼ 0.0001; central
derivatives; multistart on; population size¼ 100.

To evaluate whether the data were adequately described by a ‘flat’ model
(constant trait value across the transect) or a linear model (smooth transition), we
fit these models, in addition to the sigmoid model, as candidate models. A flat
model consists of a single parameter (population mean) defined as the grand mean
of all individuals and is invariant across the transect. A linear model has two
parameters, slope and y intercept, and was fit with linear regression. To evaluate
which of the three models (one-parameter flat, two-parameter linear or four-
parameter sigmoid) was a better fit to the data, we calculated DAICc and Akaike
weights (wi) for each model (methods following ref. 48) using the residual sum of
squares divided by the sample size as the likelihood criterion.

Confidence intervals on parameter estimates were calculated using a Monte
Carlo resampling method using the software GraphPad Prism. Briefly, this
procedure involves the following steps: first, data are simulated for each observed x
value using best-fit parameters of the observed cline, with scatter added by drawing
data points randomly from a hypothetical normally distributed population with a
s.d. equal to the observed Sy.x (s.d. of the residuals). A cline is then fit to the
simulated data and best-fit values of each parameter are recorded. This process is
then repeated for a number of iterations, each time generating a new simulated
data set, fitting a cline to that data set and recording parameter estimates. By using
observed x values (that is, actual sampling locations) and observed residual
variation, we are essentially simulating the distribution of cline parameter estimates
that we might observe if we resampled the entire transect multiple times.
Simulations were run for 10,000 generations and 95% confidence intervals were
calculated on the simulation parameter estimates.
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We tested for common centre (coincidence) and common width (concordance)
among clines using global nonlinear regression. This method compares model fit
when certain parameters are shared versus unshared among different variables.
Under a scenario where all variables shift at the same position on the transect, a
common centre parameter can be fit across all measured variables without a
substantial reduction in model fit. This is expected, for example, in a scenario
where there is a shift in the selective regime for one mimetic colour–pattern in one
area versus another area along the transect. If the width of a cline on a phenotypic
trait is a function of the strength of selection on that trait, a global width parameter
may be expected when selection acts at similar strength on all traits; however, if
selection is strong on some traits and weak on others, this will cause different cline
widths and thus a common width parameter will not adequately fit all the data.
A common width may also be expected when linkage disequilibrium is high in the
centre of the hybrid zone, as is observed here (Supplementary Fig. 3). We evaluated
four models representing different combinations of shared and unshared
parameters (Supplementary Table 4): (a) no constraint (each variable with unique
centre and width), (b) centres constrained to be equal, width unconstrained,
(c) width constrained to be equal, centres unconstrained, and (d) centre
constrained to be equal and width constrained to be equal. Best-fit shared
parameter searches were done by fitting shared parameters to all data sets
simultaneously, while unshared parameters were free to take on unique values for
each data set. Goodness of fit was assessed by calculating DAICc for each model.

Mate-choice experimental design and analysis. To test for morph-based mating
preferences, we conducted triad mate-choice experiments in which we introduced
two females (one of each morph) into the terrarium of a given male for 1 h, and
measured the amount of courtship time between the male and the varadero female
versus the male and the striped female. For details on the populations we sampled,
as well as details on husbandry and experimental protocols, see Supplementary
Methods. In R. imitator, courtship is usually initiated when a calling male
approaches a female. The female may then either reciprocate by following the male
to a suitable oviposition site while the male continues calling, or show no interest49.
The conditions of our mate-choice experiments allowed these behaviours to take
place in that a male was free to initiate courtship with either female, and the female
was free to reciprocate interest or not. Male initiation of courtship is readily
observable in captivity as males (a) initiate a courtship call (shorter and more rapid
than an advertisement call) and/or (b) begin to move in a staccato-like walk, often
moving their rear legs erratically. Thus, when a male engaged in either of these
behaviours in the vicinity of a female, this marked the initiation of courtship.
Courtship was deemed to have ended under the following conditions: (a) the male,
having initiated courtship, moves away and the female does not pursue or (b) the
female moves away and the male does not pursue. A trial was excluded when one
or both females remained hidden in the gravel during the trial, thus precluding any
possibility for choice. Using these criteria, we measured in each trial the total
amount of courtship between the male and the varadero female versus the male
and the striped female.

Typically, in this kind of experimental setup, the two females to be introduced
to the male would be matched for mass to control for any confounding effects of
mass on preference. However, in this case, matching for mass was not feasible
because the varadero population is larger than either striped population (striped-
allopatric females �x ¼ 0:56 g, s.d.¼ 0.05 g, n¼ 43; striped-transition females
�x ¼ 0:56 g, s.d.¼ 0.04 g, n¼ 18; varadero females �x ¼ 0:56 g, s.d.¼ 0.05 g, n¼ 30),
severely limiting the number of potential female combinations (for example, only
the four heaviest striped-transition females would have qualified to be matched
with the six smallest varadero females). To control for differences between females,
we used a paired-samples’ experimental design whereby a given pair of females was
presented to a male of each morph. This design therefore addresses the question of
how changing male morph type alters courtship probabilities when female identity
is held constant.

To analyse mate-choice data, we used GLMM using the glmmADMB package50

in R version 3.0.2 (ref. 51) with an underlying beta-binomial error distribution to
test whether the time males spent courting each female morph was influenced by
male population origin. ‘Pair ID’ (that is, a unique identifier assigned to each
female pair) was used as a random effect to account for the paired-samples’
experimental design. Following a significant result of the overall GLMM, we
conducted post hoc tests to determine: (1) whether courtship preferences differ
among morphs (specifically, comparing striped allopatric with varadero, and
striped transition with varadero) and (2) whether courtship preferences differ
among populations of the same morph (comparing striped allopatric to striped
transition). Post hoc tests were run using the same GLMM procedure described
above, except that we restricted the analysis to the populations of interest. To
account for multiple comparisons, we adjusted P values using a FDR protocol52

accounting for the fact that we conducted three post hoc tests. The protocols we
used were approved by East Carolina University’s Institutional Animal Care and
Use Committee (AUP permit #D225a) before the start of this study.

Landscape genetics. We used a causal modelling framework33,53 to test specific
hypotheses of how geographic distance and colour–pattern differentiation between
populations are associated with genetic distance. In landscape genetics, causal
modelling uses Mantel tests and partial Mantel tests to evaluate alternative models

explaining genetic distance between populations. Each model carries a set of
statistical predictions; the model with all its predictions upheld is the one with the
strongest support. In an IBD scenario, a significant correlation is expected between
a geographic distance matrix (independent variable set) and a genetic distance
matrix (dependent variable set). By using partial Mantel tests, the correlation
between two dissimilarity matrices can be quantified while controlling for the effect
of a third covariant matrix. For example, a partial Mantel test between colour–
pattern distance and genetic distance with geographic distance as covariant matrix
tests for the correlation between colour–pattern distance and genetic distance after
the effects of geographic distance are removed. We used one measure of geographic
distance (Euclidean distance), one measure of genetic distance (Nei’s D) and one
measure of colour–pattern distance (difference in discriminant score, see below) to
test three models of genetic isolation. Details on each model and their associated
predictions are given in Supplementary Table 3.

Causal modelling is often used to test how various landscape factors influence
genetic isolation among populations53,54. This can be useful for species occupying
heterogeneous habitats, where straight-line distance between populations may not
be the most likely corridor of gene flow. However, in our case, all populations of
R. imitator are from a contiguous lowland rainforest habitat without any
geographic barriers separating populations. The only two substantial barriers in
this area, the Huallaga River and the Cordillera Escalera Mountains, are located to
the east and south, respectively, of all sampling sites. Therefore, for the geographic
distance matrix, we simply calculated pairwise straight-line distance between
populations. For the genetic distance matrix, we calculated Nei’s genetic distance
(D0) between all pairs of populations in GenAlEx version 6.5 (ref. 55). To generate a
colour–pattern distance matrix, we calculated pairwise differences in discriminant
score from the kernel discriminant function analysis. Thus, because this analysis
takes into account features of the model species, it can be thought of as a composite
difference in mimetic colour–pattern. In addition to causal modelling, we used a
multiple-matrix regression method34 to quantify the relative effects of geographic
distance and colour–pattern distance on genetic distance. This method is similar to
Mantel and partial Mantel tests but incorporates multiple regressions, such that the
relative effects of two or more predictor variables on genetic distance can be
quantified, as can the overall fit of the model. Multiple-matrix regression was run
with 10,000 permutations using the R script provided in ref. 34.

For details on microsatellite-genotyping protocols, Structure analyses and
factorial correspondence analyses, see Supplementary Methods and Supplementary
Table 6.

Bioacoustics. We recorded the advertisement calls of 58 R. imitator from eight
localities. These localities are all located on the colour–pattern/microsatellite
transect spanning the transition zone and thus can be used for cline analysis. Calls
were recorded on a Marantz PMD660 solid state recorder using a Sennheiser ME
66-K6 microphone and analysed in Raven Pro version 1.3 (ref. 56). We quantified
advertisement calls by measuring the following parameters: note length (measured
from the start of the first pulse to the end of the last pulse), pulse rate (defined as
pulse count divided by note time) and dominant frequency (the frequency at which
peak amplitude is registered). For each male, a recording generally consisted of
several notes. Measurements were always taken on at least three notes and then
averaged for each male. As temperature is known to have a strong influence on
certain aspects of amphibian calls19, we took temperature measurements alongside
each call recording in the same microhabitat as the calling male, which we then
used to standardize call parameters by calculating regression residuals against
temperature. We fit clines to each call parameter separately, plus a ‘composite’ call
score that we calculated using a linear discriminant analysis.
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Supplementary Information 

 

 

 

Supplementary Figure 1 – Sampling localities and variation in Ranitomeya imitator. 

Numbered boxes show R. imitator variation at a given locality (numbers correspond to localities 

in Supplementary Table 1). The colour of the dot indicates the putative morph: green dots 

indicate the striped morph (R. variabilis mimic), orange dots indicate the varadero morph (R. 

fantastica mimic) and grey dots indicate the transitional form between the two morphs. Model 

species are shown in middle-left box. Composite colour pattern score was calculated from the 

colour pattern data using a kernel discriminant function analysis, with the model species 

representing the training groups. Mean discriminant scores at each sampling locality were then 

interpolated for visualisation on the map using IDW interpolation in ArcGIS. Scale bar equals 10 

km. 
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Supplementary Figure 2 – Mimicry comparison between model species and R. imitator. In 

each panel the average discriminant scores (±1 s.e.m.) from the kernel discriminant analysis are 

compared among model species (R. variabilis, denoted R. v.; R. fantastica, denoted R. f.) and two 

populations of R. imitator (R. i. striped and R. i. varadero). The two R. imitator populations 

plotted here are Micaela Bastidas and Varadero Forest 1 (see Supplementary Table 1), which are 

representative of “pure” striped and varadero morphs, respectively.  
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Supplementary Figure 3 – Linkage disequilibrium and phenotypic covariance across the 

sampling transect. (a) Multilocus linkage disequilibrium (�̅d) and (b) covariance between arm 

colour and leg colour in each population was calculated plotted along the transect (x-axis). The 

dashed grey lines show the position of the colour pattern cline centre. For both linkage 

disequilibrium and phenotypic covariance, the peaks occur near the centre of the colour pattern 

cline, consistent with the predictions of a hybrid zone. 
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Supplementary Figure 4 – Mutual information plot for colour variables. See methods for 

details on how mutual information is calculated. In general, larger bars indicate greater variable 

contribution to the discriminant function. For panels (a–c), variables were derived from the 

Avicol analyses on the spectrometer data. Variable prefixes are as follows: Qt = brightness, MS = 

blue/yellow axis position, LM = red/green axis position, C = chrominance, H = hue. For panel 

(d), variables were derived from measuring the intensities of the red (R), green (G), and blue (B) 

channels in Photoshop. 
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Supplementary Figure 5 – Mutual information plot for pattern variables. Mutual information 

calculations are detailed in the methods. As in Supplementary Figure 4, larger bars indicate 

greater variable contribution to the discriminant function. Panels are split by body region: (a) 

body pattern and (b) leg pattern. Variables use the following naming convention: body region, 

metric, and associated parameters. For example, c3goh, sigma=2, b=0 indicates that the body 

region of interest was c3, the metric was goh (gradient orientation histogram), and the associated 

parameters for its extraction were sigma=2 and b=0. Body regions are as follows: c3=lower 

dorsum, c4=head, c1=right leg, c2=left leg. Extracted metrics are as follows: goh=gradient 

orientation histogram, sih=shape index histogram, bwratio=colour/non-colour ratio. 
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Supplementary Table 1 – Sampling localities and sample sizes for each kind of data collected 

for the study. Numbers in the first column correspond to localities shown on Supplementary 

Fig. 1. 

locality 
number on 

Suppl. Fig. 1 

position on transect 

(km from centre) 
latitude longitude 

colour 

pattern n 

microsatellites 

n 

male 

mass n 

advertisement 

call n 

Micaela Bastidas 1 -33.46 -5.9554 -76.2424 31 36 23 11 

Nuevo Arica 2 -22.63 -5.9107 -76.4280 6 — — — 

Varadero - South Bank 3 -1.25 -5.7177 -76.4163 8 22 13 13 

Varadero - Bridge 4 -0.92 -5.7142 -76.4178 6 6 4 4 

Varadero - Stream 5 -0.39 -5.7084 -76.4174 16 16 11 6 

Varadero - Transition 1 6 -0.16 -5.7073 -76.4161 5 5 3 4 

Varadero - Transition 2 7 0.64 -5.7009 -76.4128 4 4 2 — 

Varadero - Forest 1 8 2.72 -5.6821 -76.4171 25 36 22 17 

Varadero - Forest 2 9 3.92 -5.6710 -76.4137 3 3 — — 

Varadero - Forest 3 10 6.03 -5.6515 -76.4241 5 5 — 3 

Monte Cristo 11 not included in transect -5.4395 -76.6655 6 — — — 

Panan North 12 not included in transect -5.6067 -76.5361 3 — — — 

Panan South 13 not included in transect -5.6510 -76.5484 4 — — — 

Balsapuerto 14 not included in transect -5.8542 -76.5431 — 3 — — 

Bajo Huallaga 15 not included in transect -5.7618 -76.0780 5 — — — 
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Supplementary Table 2 – Model fit results for each of three candidate models describing 

transect variation in all six variables measured along the transect. In all cases, the best 

supported model (as indicated by AICc) is shown in bold. For cases where the sigmoid model 

was best supported, point estimates and 95% Monte Carlo confidence intervals on centre and 

width parameters are given. 

 

variable model AICc ∆AICc Akaike weight centre centre 95% CI width width 95% CI 

arm colour flat -89.5 134.0 0.000 ― ― ― ― 

  linear -150.2 73.3 0.000 ― ― ― ― 

  sigmoid -223.4 0.0 1.000 0.72 0.02 – 1.65 4.15 1.79 – 6.43 

body colour flat -181.8 15.9 0.000 ― ― ― ― 

  linear -197.7 0.0 0.969 ― ― ― ― 

  sigmoid -190.8 6.9 0.031 ― ― ― ― 

head colour flat -55.8 58.6 0.000 ― ― ― ― 

  linear -114.4 0.0 0.894 ― ― ― ― 

  sigmoid -110.1 4.3 0.106 ― ― ― ― 

leg colour flat 46.9 85.2 0.000 ― ― ― ― 

  linear 20.5 58.8 0.000 ― ― ― ― 

  sigmoid -38.3 0.0 1.000 0.77 0.04 – 1.93 2.38 0.03 – 4.86 

body pattern flat -191.6 44.0 0.000 ― ― ― ― 

  linear -203.3 32.4 0.000 ― ― ― ― 

  sigmoid -235.6 0.0 1.000 0.03 -0.17 – 1.82 0.10 0.00 – 4.75 

leg pattern flat 13.0 2.9 0.180 ― ― ― ― 

  linear 10.1 0.0 0.772 ― ― ― ― 

  sigmoid 15.6 5.6 0.048 ― ― ― ― 

microsatellites FCA axis 1 flat -138.8 145.6 0.000 ― ― ― ― 

  linear -164.8 119.6 0.000 ― ― ― ― 

  sigmoid -284.4 0.0 1.000 0.31 -0.15 – 0.63 0.64 0.01 – 1.54 

male mass flat -423.3 82.0 0.000 ― ― ― ― 

  linear -424.5 80.9 0.000 ― ― ― ― 

  sigmoid -505.3 0.0 1.000 -0.13 -0.15 – 0.63 0.07 0.00 – 1.50 

advertisement call flat 114.8 39.2 0.000 ― ― ― ― 

  linear 102.5 26.9 0.000 ― ― ― ― 

  sigmoid 75.6 0.0 1.000 -0.19 -0.5 – 1.91 0.40 0.00 – 5.41 
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Supplementary Table 3 – Causal modelling results of factors potentially influencing genetic 

distance and associated statistical predictions under each hypothesis. Results from the partial 

Mantel tests are given as a p-value and a yes/no indication of whether the prediction was 

supported. For each statistical prediction, a × separates the two dependent matrices, with the 

covariate matrix separated by a period. For example, Dist × Gen . Cp tests for the correlation 

between Dist (geographic distance) and Gen (genetic distance) controlling for the effect of Cp 

(colour pattern distance). 

 

Factor(s) influencing genetic structure Statistical predictions Result (p-value) Prediction supported? 

Geographic distance Dist × Gen . Cp = sig. 0.434 no 

  Cp × Gen . Dist = n.s. 0.011 no 

Colour pattern Cp × Gen . Dist = sig. 0.011 yes 

  Dist × Gen . Cp = n.s. 0.111 yes 

Geographic distance and colour pattern Cp × Gen . Dist = sig. 0.010 yes 

  Dist × Gen . Cp = sig. 0.115 no 

 

 

 

Supplementary Table 4 – Global regression results for common centre and common width 

parameters for the six variables showing sigmoidal variation across the transect. Models were 

compared globally using AICc. The best supported model (shared centre) is shown in bold. 

 
    a) No constraints     b) Shared centre     c) Shared width     d) Shared centre and width 

  n centre width RSS   centre width RSS   centre width RSS   centre width RSS 

arm colour 108 0.72 -4.14 29.18   0.52 -3.68 29.24   0.00 -0.35 32.55   0.22 -0.97 31.09 

leg colour 108 0.77 -2.38 45.85   0.52 -1.86 45.94   0.66 -0.35 46.84   0.22 -0.97 47.26 

body pattern 108 0.03 -0.10 67.10   0.52 -0.10 67.11   0.21 -0.35 67.12   0.22 -0.97 67.56 

male mass 78 -0.12 -0.07 24.74   0.52 -0.10 24.89   0.07 -0.35 24.83   0.22 -0.97 26.46 

call 58 -0.22 -0.31 26.20   0.52 -4.15 27.28   -0.22 -0.35 26.21   0.22 -0.97 28.60 

microsatellites 133 0.31 -0.64 14.72   0.52 -0.27 14.76   0.48 -0.35 14.76   0.22 -0.97 14.94 

total RSS       207.79       209.23       212.31       215.92 

parameters       24       19       19       14 

AICc       -571.74       -578.44       -569.78       -570.38 

ΔAICc       6.70       0.00       8.66       8.06 
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Supplementary Table 5 – Parameters used in the kernel discriminant analysis. 

  Regularization Kernel width 

  λ γ 

head color 0.002 2.14 

body color 0.001 9.00 

leg color 0.310 6.30 

arm color 0.000 4.78 

leg pattern 0.010 10.00 

body pattern 0.001 22.90 

 

 

Supplementary Table 6 – Primer sequences for microsatellites. 

locus Forward primer sequence Reverse primer sequence 

RimiA06 CTTAATTGAGTAATTGTCAAG GCTTTTGGATAATCAGTATCG 

RimiA07 TTCTTAATTGAGTAATTGTC TCCTTAATATACCAGTTAAGC 

RimiB01 TAATTGTATTTGTCACTGAC ATTTTTGCGGGCATATTCGG 

RimiB02a TCGAGATTTTAGCAGTGTTTTATCC CATGAAAACCATATTTCGGACA 

RimiB07a CACCGTGCACTGGTTATCTATC GTTTCGCTCAACCCTAGTGC 

RimiB11 GTAAGTCCGTATATGTCGATG CCTGAGAGTGTAATGGATAGAC 

RimiC05a CGTTTCGCTCAACCCTAGTC ATGGAGGCAATCCACAAATC 

RvarD01 GAAAAAGCATTACAGCTCATCAA GCCGAAACATTGCCATAAAT 

RimiD04 CTCCAAAACACACCCCAAAC AGAGGTGCTGCCCTTTTGTA 

RimiE02a GCAGAGGGGATTAGGGACTC TGGGTAGCTGTGTTCCATGA 

RimiF06 TTGATATTCTGAGGTATG GTAGCTTATGGCAGCTACG 

 

 

Supplementary Methods 

 

Kernel discriminant analysis supplement. We regularized the kernel discriminant analysis 

solution with λ times the identity matrix and used a Gaussian kernel with width γ 

(Supplementary Table 5). These parameters were selected to minimize intra-location variance of 

the R. imitator discriminant scores while keeping them within the span of the two model species’ 
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discriminant scores. The formulation of kernel discriminant analysis unfortunately makes it 

impossible to inspect, e.g., the loadings as one would do in linear discriminant analysis to 

determine variable importance. However, the mutual information (MI) between each of the 

original variables {x1, …, xp} and the discriminant scores (metric) z can be inspected to elucidate 

which variables are relevant for discrimination between the model species. Mutual information is 

defined as  

 

����, �	 = ���	 + ���	 − ���, �	���	 + ���	  

(1) 

where H(x) and H(x,y) are marginal and joint entropies respectively. Parzen window estimates of 

MI between the variables used to define each of the six metrics, and the resulting metric can be 

seen in Supplementary Figures 4 and 5.  The values MI(xi, z) are normalized such that MI(xi, xi)= 

MI(z, z)=1. For colour data (Supplementary Fig. 4), we see that for head colour, red-green axis 

(LM), chroma (C), and hue (H) have relatively high MI, whereas for body colour blue-yellow axis 

(MS) and chroma have high MI. For leg colour, brightness (Qt) had the highest MI. For arm 

colour, blue channel intensity (B) had the highest MI. For pattern data (Supplementary Fig. 5), 

we see that for dorsal pattern, most variables associated with pattern variation on the lower 

dorsum (prefix c3) show high MI, whereas variables associated with pattern variation on the 

head (prefix c4) show lower MI. For leg pattern, both shape index histograms (sih) and gradient 

orientation histograms (goh) showed high MI on each leg (c1 and c2), although this depended 

mainly on the associated extraction parameters. 

 

Mate choice: Animal collection, husbandry, and protocols. We used Ranitomeya imitator from 

three populations for mate choice experiments (GPS points given in Supplementary Table 1): 

(1) Striped-allopatric (site 1; Supplementary Fig. 1) – Frogs from this population are mimics of 

R. variabilis, with yellow pinstripes along the dorsum and a pale greenish or bluish reticulum on 

the legs and venter. These frogs were collected from near Micaela Bastidas, a village 33 km to the 

southeast of the transition zone and represent the ‘striped-allopatric’ population in our analyses.  

(2) Striped-transition (sites 3, 4, and 5; Supplementary Fig. 1) – These frogs are also R. 

variabilis mimics, with yellowish-orange stripes on the dorsum and pale greenish legs. Due to the 

difficulty of collecting striped frogs in this area because of deforestation, we collected frogs from 
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three different sites. Two of these sites (Varadero Stream and Varadero Bridge on Supplementary 

Table 1) are on the north side of the Paranapura river and one site (Varadero South Bank) is on 

the south side. We treated these three collecting sites as a single population for mate choice trials 

because the Paranapura river is small (50-80 m across in most places) and appears to present no 

noticeable barrier to gene flow. For example, the genetic distance (Nei’s D′) between Varadero 

South Bank and Varadero Stream (same morph, opposite sides of river) is 0.226 over 1 km, 

whereas the genetic distance between Varadero Stream and Varadero Forest 1 (different morphs, 

same side of river) is 0.572 over 2.9 km. For comparison, this is roughly equivalent to the genetic 

distance between Varadero Stream and Micaela Bastidas (D′ = 0.580), two striped populations 

separated by 33.4 km airline distance. 

(3) Varadero (site 8; Supplementary Fig. 1) – This is the R. fantastica mimic morph, with 

orange dorsal colouration, orange upper arms, and navy blue reticulation on the legs and lower 

body. Frogs were collected from a single site 3.5 km north of the village of San Gabriel de 

Varadero. For consistency with previous studies1,2 we refer to this morph as the varadero morph, 

despite the fact that striped frogs can also be found near this village. 

Male and female Ranitomeya imitator were collected in the field and kept in captivity in 

Tarapoto, Peru. Sexual dimorphism in this species is subtle and mainly related to size3, so when 

possible frogs were sexed based on behavioural observations made while collecting (e.g., calling, 

territorial fighting, tadpole transport, courtship behaviour). Frogs were weighed to the nearest 

0.01 g, which was also useful for sex identification as females are generally heavier than males 

(across all known R. imitator populations, females: �̅ = 0.60 g, s.d. = 0.07 g, n = 130; males: �̅ = 

0.48 g, s.d. = 0.06 g, n = 176). Frogs were housed individually in glass terraria (dimensions in cm 

50 x 30 x 30). Terraria had roughly two inches of washed gravel as a substrate (primarily for 

temperature stability throughout the day), leaf litter, and were planted with two bromeliads 

(pineapple tops). Water and food (wild fruit flies) were both constantly available. For each of the 

three populations, we targeted a sample size of 20 responses to analyse mating preferences, as 

specified by the animal use protocol permit (AUP #225a).  

Mate choice trials were initiated by releasing two females simultaneously into the terrarium 

of a male. Trials were filmed for one hour. After the trial, the same females were then released 

into a terrarium of a male of the opposite morph of the first male, and again filmed for one hour. 

To account for any order effects, the morph of the male tested first was determined at random. In 

cases where the male or one or more females were unresponsive (typically by hiding in the 
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gravel), trials were re-run at a later date. Terraria were illuminated with a full-spectrum ZooMed 

AvianSun 5.0 UVB 26 watt compact fluorescent bulb. To allow the full spectrum of light to pass 

into the terrarium, we constructed a special terrarium cover out of UV-transparent acrylic that 

we used during trials.  

 

Population genetics. Genetic divergence between populations was assessed by genotyping 136 R. 

imitator individuals at 11 microsatellite loci. We amplified the following loci: RimiA06, RimiA07, 

RimiB01, RimiB02a, RimiB07a, RimiB11, RimiC05a, RvarD01, RimiD04, RimiE02a, and 

RimiF06 (see Supplementary Table 6 for primer sequences) following extraction and 

amplification protocols described in ref. 4, with the exception that 56°C was used as the 

annealing temperature for B07, C05a, and E02a and 54°C for D01. Forward primers were labelled 

with a fluorescent tag for visualisation (6-FAM, NED, PET, or VIC). Loci were amplified 

individually and multiplexed for sequencing. Sequencing was done on an ABI 3130 sequencer 

and fragment sizes were analysed using GeneMapper software (Applied Biosystems). We used 

Micro-Checker software version 2.2.3 (ref. 5) to check for presence of null alleles. Three out of 

the original eleven loci (A07, B07, E02) showed evidence for high null allele frequencies (mean 

across populations > 0.09), thus these loci were omitted from further analyses. 

 We used the program Structure version 2.3.4 (ref. 6) to investigate population genetic 

structure from the microsatellite data. This program employs a Bayesian clustering algorithm to 

assign individuals probabilistically to each of K populations, where K, the number of populations, 

is unknown. The program was run with a burn-in of 50,000 generations and 500,000 subsequent 

generations, from one to five genetic clusters (K = 1–5), with five replicates at each value of K. 

The program was run using the admixture model with allele frequencies correlated. No prior 

information on sampling location was used in the model. To determine the number of clusters 

that best describe the data, we used the method described in ref. 7, which is based on the second-

order rate of change of the log-likelihood. This method was implemented using Structure 

Harvester8. 

 To estimate cline shape for the microsatellite data, we used the first major axis from a 

factorial correspondence analysis (FCA), calculated using the software Genetix version 4.5 (ref. 

9). This method is conceptually similar to principal components analysis, except it takes into 

account features of genetic data such as heterozygosity and homozygosity. This analysis was run 
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using the eight microsatellite loci and the nine localities on the sampling transect for which we 

had genetic data. The program was run without any population information on the samples. 

 

Dispersal estimates. As individuals disperse into the centre of a hybrid zone, they carry with 

them the gene combinations characteristic of their parental populations10. This influx of parental 

genotypes into the hybrid zone creates linkage disequilibria among unlinked genetic loci, which 

are broken down through recombination in hybrids. Thus, strong linkage disequilibrium in a 

hybrid zone is evidence of reduced hybridization and increased reproductive isolation among 

parental types. Similarly, the influx of parental phenotypes into a hybrid zone will create 

covariance among independent phenotypic traits11. As with linkage disequilibrium, this 

phenotypic covariance should peak in the centre of the hybrid zone, and will be maximized when 

reproductive isolation is complete11. 

We used estimates of cline width, linkage disequilibrium, and phenotypic covariance to 

calculate the scale of dispersal (σ) in two different ways. First, we used the relationship (from ref. 

11) 

σ = ������
1 + �  

(2) 

where r is the recombination rate among loci (assumed to be 0.5 for unlinked loci), w is the width 

of the cline, and �� is the peak linkage disequilibrium among genetic loci in the centre of the 

hybrid zone. For cline width, we used a value of 0.97 km, which corresponds to the point 

estimate for cline width for the entire dataset (see Supplementary Table 4, model D). To calculate 

linkage disequilibrium, we used the software Multilocus version 1.3 (ref. 12) to calculate the 

multilocus linkage disequilibrium estimator �̅d which has a form similar to a correlation 

coefficient and can have a maximum value of 1. We found that, consistent with the predictions of 

a hybrid zone, linkage disequilibrium among the eight microsatellite loci peaked (�̅d  = 0.066) 

near the hybrid zone centre (Supplementary Fig. 3). Second, we used phenotypic covariance to 

estimate dispersal using the following relationship11,13 

 

σ =  � 2������1�����2�����1 + �	                  



 

14 
 

(3) 

where �1���� and �2���� are the maximal slopes (defined as 4/width) of the clines on traits z1 

and z2, respectively, ���� is the maximum covariance between traits z1 and z2, and r is the 

recombination rate (again assumed to be 0.5 for unlinked traits). We chose two phenotypic traits 

showing clear sigmoidal variation across the transect: arm colour and leg colour. These two traits 

have a maximum slope of 0.96 and 1.68, respectively, in the centre of the hybrid zone, and have a 

maximum covariance of 0.15, which occurs near the hybrid zone centre (Supplementary Fig. 3). 

Using linkage disequilibrium, we estimated the dispersal rate (σ) to be 0.095 km per generation. 

Using phenotypic covariance, we estimated σ = 0.248 km per generation. Although we have no 

direct survey data in R. imitator with which to compare these dispersal estimates, given the 

available field observations, these estimates seem reasonable. While adult R. imitator are highly 

territorial and occupy small home ranges (approximately 5–14 m2, ref. 14), these home ranges are 

centred around reproductive resources and tightly packed in space such that most reproductive 

resources in a given site will be monopolized by a breeding pair. Thus, a juvenile or an individual 

in search of a territory may be forced to disperse a large distance in search of suitable breeding 

habitat. For example, two transient adult R. imitator moved distances of 19 and 23 m during a 

field study14. Additionally, one juvenile moved across an entire study plot (a distance of 

approximately 40 m) over the course of about one week (J. Brown, pers. comm.). Finally, during 

the course of a separate study15, a male who was removed from his territory and released 160 m 

away was able to return to his territory in only five days (J. Tumulty, pers. comm.).  

 If the current hybrid zone reflects secondary contact with neutral diffusion, the width of the 

cline (w) can be predicted using the number of generations since contact (T) and the dispersal 

rate (σ), with the following equation16 

 

� = ��2�	 σ √  

(4) 

Using our lower estimate of dispersal (0.095 km per generation), a cline formed by secondary 

contact with neutral diffusion should exceed the overall observed cline width (0.97 km; see 

Supplementary Table 4 model D) in only 17 generations. Using the upper estimate of dispersal 

(0.248 km per generation), a neutral cline would only take three generations to exceed the 

observed cline width. Ranitomeya imitator has a generation time of roughly eight months, which 

means secondary contact (assuming neutral diffusion) would have occurred not more than 11.3 
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years ago. Therefore, if the current hybrid zone is due to secondary contact, it is likely 

maintained by some barrier to gene flow (possibly assortative mating, divergent selection, or 

selection against hybrids), otherwise the cline is too narrow to be reasonably described by a 

neutral diffusion model. 
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Abstract

The genetic basis of complex traits that are polymorphic in an admixture zone has been the subject of consider-
able research, but is often difficult to characterize in species that are not amenable to controlled laboratory crosses.
Here we develop a likelihood based approach to determine if two polymorphic phenotypes in an admixture zone
are controlled by the same or different sets of genes. After evaluating the method using extensive simulations, we
apply it to complex color pattern variation in the aposematic and mimetic frog Ranitomeya imitator. We show that
patterns of banding and stripes, body color, and patterning on the leg are most likely controlled by a single set
of genes. We also show that this can be efficiently produced using a simple Reaction-Diffusion model of pattern
formation.

1. Introduction

The genetic basis of adaptive traits has been a topic of intense research focus over the past decade (e.g.,
Counterman et al., 2010; Joron et al., 2011; Kunte et al., 2014; Martin et al., 2012; Nachman et al., 2003; Papa
et al., 2008), although the exact genetic basis has only been determined for a small number of traits (Martin and
Orgogozo, 2013). Much attention has been focused on traits associated with aposematism and/or mimicry, in
particular color pattern in the celebrated Heliconius system. In Heliconius butterflies color patterns on the wings
warn potential predators that the butterflies are unpalatable. In the highly polymorphic H. erato and H. melpomene
there are three components of the color pattern: the color of the forewing band (yellow or red), the presence or
absence of a red patch on the proximal portion of the forewing, and the presence or absence of red hindwing rays
(Sheppard et al., 1985; Papa et al., 2008). Although these elements are often reduced to two major phenotypes
(’postman’ and ’rayed’), there are in fact many different color forms and dozens of proposed subspecies of both
H. erato and H. melpomene. Substantial progress has been made on understanding the genetic basis of the system.
The red color variation is controlled by genes in a 400 KB region (Counterman et al., 2010; Baxter et al., 2010),
with most of the variation due to expression differences in a gene, optix, located within the region. In addition,
WntA contributes to pattern formation in forewing band shape (Martin et al., 2012). Identifying these loci is the
culmination of years of research involving a number of research groups. The first step in such a research program
is to identify and quantify phenotypes and to establish the genetic basis of these traits, in terms of number of loci
and covariance between different traits and different hypothesized loci. Most systems are still at a stage where this
is a major challenge, in particular in organisms that are not amenable to laboratory crosses. One such species is
the dendrobatid frog Ranitomeya imitator.

R. imitator forms a mimetic complex in northern Peru, where different populations have apparently evolved to
resemble distinct model species in different regions (Symula et al., 2001, 2003; Yeager et al., 2012; Twomey et al.,
2013). In one case, R. imitator and its putative model (or co-mimic), R. variabilis, appear to undergo geographic
change in color pattern in parallel, and it is unclear which species adverged on which (Chouteau et al., 2011),
but generally speaking phylogenetic analysis indicates that divergence in the putative model species is ancient
relative to more recent divergence in R. imitator, indicating that this species has undergone a mimetic radiation
and adverged in color pattern on distinct model species in different areas (Symula et al., 2001, 2003; Yeager et al.,
2012; Twomey et al., 2013). Across the range of R. imitator, a number of transition zones harbor intermediate
forms that indicate the interbreeding of distinct morphs (Figure 1) and the production of hybrid intermediate
forms (Twomey et al., 2013). These transition zones are quite broad (e.g. 7 km) in some cases, indicating that
interbreeding has been going on for long periods and is likely to contain multiple generations of color pattern
intermediates. This provides a valuable opportunity for an analysis of the genetic basis of the control of color
pattern, as the multiple intermediate forms produced across multiple generations of interbreeding provide the
variation necessary to infer patterns of control using statistical methods of inference based on expected patterns
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of co-inheritance for traits that are controlled by the same or different sets of genes. Ranitomeya imitator shows
various combinations of pattern on the dorsal and ventral regions, and the extremities (i.e. fore and hind-legs).
These include banding, striping, spotting, reticulation, as well as different combinations of color (brightness, hue
and saturation). Dorsal coloration ranges from green, to yellow, to orange. Leg and arm coloration, in most
populations, ranges from navy blue to greenish-blue. However, the banded population has distinctly orange legs.
Dorsal pattern takes on three principal forms: parallel longitudinal stripes (striped morph), parallel latitudinal
stripes (banded morph), and reticulated (spotted morph). Leg pattern in all populations, save one, is reticulated.
The exception is the banded morph, which possesses no such leg reticulation, but rather thin stripes running
lengthwise on the leg that appear to be extensions of the dorsal pattern. There are other subtle variations, for
example, in the varadero morph, the navy blue reticulation on the legs extends up onto the lower dorsum. This
morph also is unique in that it has less extensive melanization on the head, giving the appearance of a more
“colorful” head, and this coloration extends down onto the upper arms, giving the appearance of an orange arm
patch. While some covariation between these elements seems likely, a statistical approach is necessary to confirm
or reject this hypothesis.

Figure 1: Four different morphs of Ranitomeya imitator and the respective model species with which they engage in Müllerian mimicry. R.
imitator is on the left and the model species on the right.

We have previously devised methods for automatic quantification of phenotypes in this system have shown that
the major mimetic phenotype is controlled by only one or a few genes (Vestergaard et al., 2014). However, the R.
imitator phenotype is highly complex with many different components. A major question in this, and many other
systems, is the degree to which these different components are controlled by the same or different genes. This
question can be addressed by analyses of genetic crosses between different morphological forms. Unfortunately,
such crosses are not easily obtained in many organisms, including R. imitator. However, segregating variation in
hybrid zones (also called introgression or admixture zones depending on context) can be used in lieu of controlled
laboratory crosses. The major objective of this paper is to develop a new likelihood method for using individuals
sampled from a hybrid zone to test if two or more quantitative traits are controlled by the same or different loci.
After testing the new method and showing that it is statistically valid, we will then apply it to data from R. imitator,
and use it to show that the major phenotypes, except leg color, are all controlled by the same gene(s).

This then raises the question as to how a single gene can control all these different phenotypes. One obvious
explanation is a transcription factor, or other regulatory variant, that controls the activity of multiple downstream
genes. Another possibility is a ’supergene’ (Joron and Mallet, 1998; Kunte et al., 2014), a tightly linked group
of genes, perhaps fixed by an inversion, that together control the traits. A last possibility is that the phenotypes are
pleitropic, or mechanistically co-inherited, because they depend on the same events during development. We will
use a simple mathematical model of pattern formation in R. imitator to show that this latter explanation is a viable
possibility.

The model we will use is a reaction-diffusion model. Reaction-diffusion models can be used to model the
diffusion of proteins that control pattern formation during morphogenesis. They have previously been used exten-
sively to model patterns of skin pigmentation in animals (Meinhardt, 1982; Murray, 2002). These mechanistic
models can generate many possible patterns and have often been found to generate patterns similar to those ob-
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served in nature. Obviously, the similarity between the patterns generated by these models and those observed
in nature should not be interpreted as evidence that the mechanism generating the patterns in nature are the same
as those implemented in the mathematical models. Nonetheless, there are examples of mechanisms underlying
pattern formation that are adequately described by reaction-diffusion models, in particular pigmentation patterns
in the zebrafish (Shoji et al., 2002). We will here use reaction-diffusion models to show that the complex patterns
of pigmentation in R. imitator can all be generated by varying the rate of diffusion of a single protein during
development.

2. Quantifying phenotypes

Quantification of the phenotypes of interest is done in two steps: first, multiple features are extracted automat-
ically from images using a suite of image descriptors and collected in a data N × p matrix X = [x1, . . . , xp] where
p is the number of features, and secondly, the p-dimensional feature space in which these quantities reside are
reduced to a scalar zi for each individual, representing the degree of mimicry with respect to this phentype. This
dimensionality reduction will be described further below.

Phenotypes are extracted and reduced to a mimicry-related scalar for four separate case studies:

1. Dorsal saggital stripes vs. dorsal transversal stripes.
2. Dorsal pattern vs. dorsal coloration.
3. Dorsal pattern vs. leg pattern.
4. Dorsal coloration vs. leg coloration.

The first case is included as an example of a simple case, where we only use a single descriptor to quantify each of
the two phenotypes. The distribution of pixel values for each row is used to calculate the entropy for each row and
an average over these row entropies are used as a descriptor of saggital stripes; a minimum entropy is equivalent
to all pixels having the same value, i.e., it is a saggital stripe. Conversely column sum entropies are averaged to
obtain a descriptor directed at transversal stripes.

(a) R. summersi (b) R. variabilis

(c) R. imitator (Sauce) (d) R. imitator (Malpaso S. Side) (e) R. imitator (Micaela Bastidas)

Figure 2: Illustration the two model species R. summersi and R. variabilis and the mimic frog R. imitator. The regions extracted as represen-
tatives for legs and dorsum are illustrated in (a).

Quantification of each of the remaining four phenotypes (dorsal pattern, leg pattern, dorsal coloration and
leg coloration) are obtained using multivariate descriptors. Coloration is quantified by collecting all pixels in
regions of interest in a hue-saturation-value (HSV) colorspace representation, performing K-means clustering
with K = 2 and using the cluster center of the most populated cluster as a three-dimensional descriptor. Pattern is
quantified as in Vestergaard et al. (2014) yielding a ten dimensional descriptor of pattern in the region of interest.
The multivariate descriptors are reduced to one-dimensional mimicry-related phenotypic indices z = Xw, where
z ∈ RN and w ∈ Rp is determined using linear discriminant analysis (LDA) where the model species are used as
training observations. The regularization parameter λ for LDA is chosen automatically as the minimal value of 50
values of {λ}50

i equidistantly spaced in the log-domain between 1e − 5 and 1e4 for which the manifold was stable,
i.e., where the average squared change over all individuals’ phenotypic quantity when moving from λi−1 to λi was
below 1e − 5.
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In each of the four cases, two separate data matrices are collected and z1 ∈ RN and z2 ∈ RN refer to the two
quantified phenotypes for all N individuals.

3. Likelihood model

We will assume that we have samples from individuals from an admixture zone with a phenotype that is fixed
at each end of the admixture zone. We will also assume that we for each individual, i, have obtained an estimate
of the admixture fraction, fi, and measurements of each of two phenotypes, zi1 and zi2. The vectors of these
observations for multiple individuals are denoted by f, z1, and z2, and we wish to test if phenotype 1 and 2 are
controlled by the same or different genes. To test this, we establish two models that quantify phenotypes as either
conditionally independent given the genotype or completely independent as illustrated in Figure 3. The parameters
of the models are θ = [µ0

1, µ
1
1, µ

2
1, σ1, µ

0
2, µ

1
2, µ

2
2, σ2], where µ j

i is the mean phenotypic value for the jth genotype of
the ith phenotype. σi is the variance for phenoype i. These models can then be used to construct likelihood ratios
or Bayes factors.

f

G

z1 z2

(a) Model 1

f

G1 G2

z1 z2

(b) Model 2

Figure 3: The two likelihood scenarios modelled when observing the mixture proportions f and the phenotypes z1 and z2. Model 1 assumes
that a single genetic component generate the two phenotypes, while model 2 assumes two conditionally independent genetic components when
given the mixture proportions.

Assuming z1|G ∼ N(µG
1 , σ

2
1) and z2|G ∼ N(µG

2 , σ
2
2), the joint probability given the mixture proportions f =

{ fi}Ni=1 can take two different forms:

1. Same gene: p(z1, z2|f; θ) =

N∏

i

∑

j∈{0,1,2}
p(zi1|G = j)p(zi2|G = j)p(G = j| fi)

2. Different genes: p(z1, z2|f; θ) =

N∏

i


∑

j∈{0,1,2}
p(zi1|G = j)p(G = j| fi)



·


∑

j∈{0,1,2}
p(zi2|G = j)p(G = j| fi)



with genotype probabilities

p(G = 0| f ) = (1 − f )2 (1)
p(G = 1| f ) = 2 f (1 − f )

p(G = 2| f ) = f 2 .

Notice here that we have assumed that phenotypes are (conditionally) normal distributed with constant vari-
ance, and that there is a single di-allelic locus controlling the genotype. The genotype probabilities can be cal-
culated from f as above, because of the previously mentioned assumption that the trait is fixed at each end of the
admixture zone and is controlled by a single di-allelic locus. The models can be extended to allow for more than
one locus. For K loci, the set of possible multi-locus genotypes is denoted G(K) with a multi-locus genotype
denoted {gk}|G(K)|

k where gk = [g1, . . . , gK] with g j ∈ {0, 1, 2}. We now assume that

z1|gk ∼ N(hT
k µ1, σ

2
1) (2)

z2|gk ∼ N(hT
k µ2, σ

2
2)
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where µ1 = [µ0
1, µ

1
1, µ

2
1]T , similarly for µ2 and hk is a three element vector holding proportions of the multi-locus

genotype being either 0, 1 or 2, i.e., AA, Aa or aa. The likelihood models for either two traits controlled by the
same K genes or two independent sets of K genes are then:

1. Same genes: p(z1, z2|f; θ) =

N∏

i

∑

gk∈G(K)

p(zi1|G = gk)p(zi2|G = gk)p(G = gk | fi)

2. Different genes: p(z1, z2|f; θ) =

N∏

i


∑

gk∈G(K)

p(zi1|G = gk)p(G = gk | fi)


·


∑

gk∈G(K)

p(zi2|G = gk)p(G = gk | fi)


where p(G = gk | fi) =
∏K

j p(g j| fi).
We also provide an alternative formulation that incorporates uncertainty in the estimates of fi using a bootstrap

approach, i.e. we assume that marker loci used for estimation of fi have been bootstrapped to provide a bootstrap
distribution fi = { f b

i }Bb=1:

p(G = gk |fi) =
1
B

B∑

b=1

p(G = gk | f b
i ). (3)

The two models have the same number of parameters. The likelihood ratio obtained by comparing the models
can therefore be used directly as a measure of support for one model or another. No correction for degrees of
freedom is necessary. For the purpose of hypothesis testing, we suggest bootstrapping individuals to provide a
confidence region for the log likelihood ratio. If this region does not contain zero, one of the models can be
rejected with statistical confidence.

4. Reaction-diffusion mechanism

Turing (1952) introduced reaction-diffusion (R-D) equations as a model for pattern formation: in the abscence
of diffusion the concentrations of the two morphogens will stabilize, but under certain conditions diffusion driven
instability can make spatially inhomogeneous patterns emerge (Murray, 2002). Gierer and Meinhardt (1972)
have argued that local self-enhancement and long-range inhibition in the R-D system is the driving force of pattern
formation and models have been derived on that basis for a wide range of biological systems, (see e.g., Bard,
1981; Meinhardt, 1993; Koch and Meinhardt, 1994; Meinhardt, 1999; Shoji et al., 2003; Kondo and Miura,
2010; Allen et al., 2013).

Here we consider the model by Turk (1991)

∂Ax,y

∂t
= s(A0B0 − Ax,yBx,y) + Daα(θ)∇2Ax,y (4)

∂Bx,y

∂t
= s(Ax,yBx,y − Bx,y − βx,y) + Db∇2Bx,y , (5)

with anisotropic diffusion α(θ) as suggested by Shoji et al. (2003). The local diffusivity is governed by the
Laplacian ∇2, Ax,y and Bx,y are the concentrations of the two morphogens at time t at some position (x, y) in the
domain with Ax,y = A0, Bx,y = B0 ∀x, y at time t = 0, βx,y ∼ N(A0B0 − B0, σ

2
p) are small random perturbations, Da

and Db are diffusivity coefficients for each morphogen, where Da > Db, and s is a scaling factor. The anisotropic
diffusion weighting is defined as

α(θ) =
1√

1 − δa cos 2θ
(6)

with the anisotropy magnitude δa ∈] − 1, 1[ and θ the angle between the two locations being considered. For
δa → −1 prevalance is given to diffusion along the x-axis and along the y-axis for δa → 1.

To model the patterning of R. imitator in the studied transition zone we introduce a parameter κ(x, y) distributed
as a logistic function

κ(x, y) =
1

1 + e−γ(x−x0) , β > 0, κ(x, y) ∈ [0, 1] (7)
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of the transversal position on the frog domain, where the position of the transition from legs to dorsum is x0. β
controls the steepness of the transition near x = x0. Secondly, we model the magnitude of angular diffusion δa in
Eq. (4) as a convex combination of two functions of the mixture proportion f :

δa(x, y) = κ(x, y)δdorsal( f ) + (1 − κ(x, y))δlegs( f ) , f ∈ [0, 1]

where δdorsal( f ) = 0.9(2 f − 1) and δlegs( f ) = 0.9( f − 1). This expression for the anisotropy magnitude is used in
place of δa in Eq. (6). Hereby, we let the anisotropy magnitude vary spatially, with the spatial variation determined
by the mixture proportion f ; when f = 0 the anisotropy magnitude is δa(x, y) = −0.9, i.e., the same over the entire
domain, while at the other extreme f = 1 the anistropy magnitude δa(x, y) = 0.9κ(x, y), i.e., it varies according to
the transversal position.

The simulations shown later have been carried out in a frog-like domain on a triangular mesh with 658 vertices.
A sketch of the domain and the mapping functions defined above can be found in the supporting information S3
and x0 = 3 is marked on the resulting patterns in Figure 8. The parameters used were γ = 2,A0 = B0 = 4,
σp = 0.001, s = 0.025, Da = 0.175, Db = 0.035 and run for 1500 iterations.

5. Microsatellite data

We used published microsatellite data from two sources: Twomey et al. (2013) (92 samples), Twomey et al.
(2014) (36 samples). In addition, we used 157 samples from an unpublished dataset (E. Twomey, J. S. Vestergaard
and K. Summers, in preparation). The final microsatellite dataset consisted of 285 R. imitator individuals from 16
localities in Peru. For the unpublished microsatellite data, amplification methods follow Twomey et al. (2013).

We used JPEG compressed images of 6 R.summersi, 7 R. variabilis and 313 R. imitator individuals from 11
localities Both microsatellite data and image data were available for 179 of the R. imitator individuals.

6. Results

6.1. Simulations

We evaluate the performance of the method using simulations allowing for varying heritability and uncertainty
in the estimates of f . The heritability is modeled as in (Vestergaard et al., 2014). To simulate data for two
phenotypes determined by the same set of K genes, n mixture proportions f = { fi}n1 are drawn from a uniform dis-
tribution on the interval [0,1]. The genotype for each of the K loci are then drawn from a multinomial distribution
with probabilities as in Eq. (1). To simulate data for two phenotypes determined by two separate sets of genes, the
genotype for each of the K loci are drawn independently for the two phenotypes. Phenotypes are then assigned
by simulating from a normal distribution as in Equation (2). In simulations with noise in the estimate of f we
simulate B = 100 samples from a normal distribution with standard deviation σ f around fi, such that admixture
proportions used for inference are distributed as f̂ b

i ∼ N
(

fi, σ2
f

)
.

The simulation studies (Figure 4) show that the correct model is always identified when simulating data under
the same model used for inference. This is true both with and without noise in the estimate of f. However, when
the true model includes two separate sets of genes, fitting a model with K larger than the true number of genes
can lead to erroneous estimates (i.e. a likelihood ratio favoring a model with both phenotypes controlled by the
same loci). We also note that the opposite is not true. Assuming fewer loci than the true number of loci does not
lead to false inferences. In fact, in all simulations, assuming K = 1 leads to a likelihood ratio that always supports
the true model. Thus, we recommend fitting a model with K = 1 genes when doing inference under these models.
This choice is robust even when K > 1 . Additional simulation studies can be found in the supporting information
S1.

Figure 5 shows receiver-operator characteristic (ROC) curves for three different sample sizes N = {100, 250, 1000},
two heritability coefficients H2 = {0.5, 0.9} for simulated data under K = {1, 3} genes and three different noise
levels on the mixture proportions. 1000 simulations were used for each ROC curve, with 500 replicates assuming
each of two models being the true model. A true positive is characterized as correctly inferring model 1, while
a false positive is inferring model 1 when the true model is model 2 (as determined by the likelihood ratio). The
ROC curves show that for sample sizes N > 100 near-perfect inference is possible, while for small sample sizes
of N = 100 and heritability H2 = 0.5 a slight reduction in performance is observed.

6



0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

H2

ln
(H

0: T
w

o 
se

ts
) 

−
 ln

(H
1: O

ne
 s

et
)

 

 
Assume K = 1
Assume K = 2
Assume K = 3

(a) One set, K = 1, f ∼ U(0, 1)
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(b) Two sets, K = 1, f ∼ U(0, 1)
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(c) One set, K = 1, f ∼ U(0, 1) +N(0, 0.052)
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(d) Two sets, K = 1, f ∼ U(0, 1) +N(0, 0.052)
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(e) One set, K = 3, f ∼ U(0, 1) +N(0, 0.12)
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(f) Two sets, K = 3, f ∼ U(0, 1) +N(0, 0.12)

Figure 4: Log-likelihood ratios for simulation studies. The solid curves are medians based on 500 simulations smoothed with a Gaussian
kernel with standard deviation 0.05 and the dashed lines are 5 and 95 percentiles. The true parameters used to simulate the data are shown in
the captions.
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Figure 5: Receiver-operator characteristic (ROC) curves for N = {100, 250, 1000},K = {1, 3}, σ f = {0, 0.05, 0.1} and two heritabilities
H2 = {0.5, 0.9}. B = 100 are used in all simulations.
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6.2. Case studies

The quantified mimicry-related phenotypes are shown as scatter plots in Figure 6. Individuals are colored
according to location and to some extent locations cluster together in this two-dimensional space. Note for instance
the simple case in Figure ((a)) that R. imitator individuals from Sauce are found in the proximity of R. summersi
individuals, R. imitator individuals from Achinamisa are found in the proximity of R. variabilis individuals, and in
the middle are R. imitator individuals from Malpaso South Side and Curiyacu South Side. This means that, despite
the simplicity of the extracted phenotype, there is a lot of meaningful signal captured. Similar inspections can be
made from the other scatter plots, but the complexity of the extracted phenotypes and subsequent dimensionality
reduction makes the interpretation more difficult.
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Figure 6: Scatter plots of the two quantified phenotypes for the four cases.

The likelihood models presented above were fitted to each of these four cases. In each case, the mixture pro-
portions were bootstrapped B = 100 times and likelihood ratios were bootstrapped 500 times. The full bootstrap
distribution of likelihood ratios associated with the hypothesis of H0 : 2 genes against HA : 1 gene is shown in
Figure 7 for the four cases. Supporting information S2 contains similar plots when assuming K = 2 and K = 3.

The p-values associated with each case study, assuming one of K = {1, 2, 3} genes are shown in Table 1. Note
that we estimate that saggital stripes and transversal stripes are controlled by the same underlying gene, the same
goes for dorsal color and pattern, and for dorsal pattern and leg pattern. However, there is no evidence in favor of
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the hypothesis that leg color and dorsal color are controlled by the same underlying gene. These conclusions are
true for K = {1, 2, 3} genes, and do generally not seem to depend much on assumptions regarding K.
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(d) Leg vs. dorsal color

Figure 7: Bootstrap distribution of log-likelihood ratios for the null hypothesis of selecting a model with two separate sets of underlying genes
against the alternative of selecting a model with a single set of underlying genes. 500 bootstrap samples were used.

Phenotype 1 Phenotype 2 K = 1 K = 2 K = 3

Saggital stripes Transversal stripes 0.006 0.010 0.032
Body color Body pattern 0.002 0.002 0.000
Leg pattern Body pattern 0.000 0.000 0.000
Leg color Body color 0.188 0.280 0.164

Table 1: P-values for the null hypothesis of two independent sets of K genes versus the alternative of a single set of K genes underlying the
two phenotypes. P-values below 0.05 are marked in bold.

6.3. Reaction-diffusion simulations
To illustrate that a single gene can in fact control two phenotypes as complex as dorsal pattern and leg pattern,

the reaction-diffusion model described earlier was run for f = 0 corresponding to individuals mimicking R.
summersi, f = 0.4 corresponding to the individual in Figure 2(d) and f = 1 corresponding to an individual
mimicking R. variabilis. The results of these simulations can be seen in Figure 8 as a binary image with values
of 1 (red) being areas where A > A0 and 0 (blue) being areas where A ≤ A0 after convergence. While these
simulations do not perfectly replicate the complex patterns of R. imitator, they do serve as an illustration of what
a simple one-parameter mathematical model can achieve.
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x0

(a) f = 0 (b) f = 0.4 (c) f = 1

Figure 8: Patterns generated by the reaction-diffusion model. The parameter f controls the synthesized admixture proportion, where f = 0 or
f = 1 corresponds to the two model species respectively. The admixture proportion of f = 0.4 is equal to the estimated admixture proportion
for the R. imitator from Malpaso S. Side in Figure 2. x0 refers to the parameter in Eq. (7).

7. Discussion

We have developed a statistical approach to determine whether two phenotypes are controlled by the same set
of genes, or by multiple sets of genes, using individuals sampled from an admixture (or introgression) zone. While
this approach may be superfluous for organisms that can easily be bred in captivity, it should be useful for research
on species that do not easily lend themselves to captive breeding. We were able to show that a single causal gene
is a relatively conservative assumption that should not lead to false inferences, and therefore recommend the use
of this model for inferences. We applied the method to data from R. imitator and were able to show that all major
phenotypes could potentially be controlled by the same set of genes, with the exception of leg color which may be
controlled by a different set.

While it does indeed seem remarkable that a single set of genes could control this diversity of phenotypes,
the simplicity of the presented reaction-diffusion model illustrates that fairly simple mechanisms can generate
very diverse phenotypes, such as the patterns characteristic of of R. imitator morphs. Based on these results,
the manipulation of a single parameter in the reaction-diffusion model can reasonably account for three of the
four known mimetic morphs. For example, the banded morph, at least in the “pure” mimetic populations, has
two major crossbands on the dorsum, one small crossband on the nose, and one running transverse across the
dorsal surfaces of the legs, a pattern that is nearly perfectly recovered when the synthesized admixture proportion
is set equal to zero (Figure 8(a)). Increasing the admixture proportion, the spotted morph is reasonably well
approximated (Figure 8(b)), with irregular spots on the dorsum and reticulated legs. Finally, the striped morph is
loosely approximated (Figure 8(c)) by increasing the synthesized admixture proportion to one, with lengthwise
dorsal stripes and reticulated legs.

Further, the results are consistent with field observations. Based on our field work, there appear to be two
major axes of color variation: dorsal/head coloration (including ventral side of chin), and limb/ventral coloration.
Across all populations, dorsal/head coloration varies from green to yellow to orange, and leg/ventral coloration
varies from greenish blue to navy blue to orange in the banded population. Most permutations of the above dorsal
and leg colors seem possible. For example, we have observed striped-pattern and reticulated-pattern frogs with
green, yellow, or orange dorsal coloration, and a wide variety of leg coloration as well. The major exception is
the banded morph, in which the presence of latitudinal dorsal bands is invariably accompanied with orange dorsal
and leg coloration, and a lack of reticulation on the legs.

These results may provide insight into other systems that show similar combinations of color pattern across
distinct body regions. While aposematism and mimicry have attracted substantial interest and stimulated much
research in evolutionary biology, there have as yet been few overall syntheses that investigate correlations (or lack
thereof) in the mechanisms that underlie similarities and differences in color pattern between populations, species
and higher taxa. Hence the general question, “Do similar or diverse mechanisms underlie the development of
aposematic and mimetic coloration in different organisms across the tree of life?”, remains open. Our method
for estimating genetic control of color pattern will allow researchers to estimate this important feature of genetic
control in the many organisms where the production of extensive lab crosses is not feasible. Further, our reaction-
diffusion modeling approach may provide a heuristic tool with which researchers can get an initial sense of whether
distinct suites of color pattern across populations, species or higher taxa are likely to be controlled by similar
genetic factors and developmental rules.
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The statistical methodology developed in this paper allows researchers to determine if several phenotypic traits
are controlled by the same set, or by multiple different sets, of genes. This is an important approach for under-
standing the genetic basis of adaptive traits. However, it is also important in studies aimed at directly mapping
the genetic basis of the trait, for example using association mapping or divergence mapping. If multiple traits are
controlled by the same gene this significantly simplifies the mapping procedures that can combine measurements
from multiple phenotypes to provide a more accurate description of a composite phenotype (see e.g., Vestergaard
et al., 2014). It also reduces the multiple testing burden. The methodology described here should, therefore, find
general use in studies aimed at understanding the genetic basis of adaptive traits.

Publicly available implementations of the presented methods can be found at https://github.com/schackv.
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File S1 Additional simulation studies

Log-likelihood ratios for additional simulation studies. The solid curves are medians based on 500 simulations smoothed with a Gaussian

kernel with standard deviation 0.05 and the dashed lines are 5 and 95 percentiles. The true parameters used to simulate the data are shown in

the captions.
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(c) One set, K = 2, f ∼ U(0, 1)
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(d) Two sets, K = 2, f ∼ U(0, 1)
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(e) One set, K = 3, f ∼ U(0, 1)
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(f) Two sets, K = 3, f ∼ U(0, 1)
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(g) One set, K = 1, f ∼ U(0, 1) +N(0, 0.012)
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(h) Two sets, K = 1, f ∼ U(0, 1) +N(0, 0.012)
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(i) One set, K = 1, f ∼ U(0, 1) +N(0, 0.052)
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(j) Two sets, K = 1, f ∼ U(0, 1) +N(0, 0.052)
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(k) One set, K = 1, f ∼ U(0, 1) +N(0, 0.12)
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(l) Two sets, K = 1, f ∼ U(0, 1) +N(0, 0.12)
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(m) One set, K = 3, f ∼ U(0, 1) +N(0, 0.012)
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(n) Two sets, K = 3, f ∼ U(0, 1) +N(0, 0.012)
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(o) One set, K = 3, f ∼ U(0, 1) +N(0, 0.052)
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(p) Two sets, K = 3, f ∼ U(0, 1) +N(0, 0.052)
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(q) One set, K = 3, f ∼ U(0, 1) +N(0, 0.12)
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(r) Two sets, K = 3, f ∼ U(0, 1) +N(0, 0.12)
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File S2 Case studies — auxilliary plots

This supporting information provides auxilliary visualizations for each of the four cases treated in the main

text. Specifically, three extra plots and a table is provided for each case: first a two-dimensional scatter plot of the

two quantified phenotypes, where each observation is colored according to sample location. Secondly, bootstrap

distributions of the hypothesis of the same versus two sets of genes for K = 2 and K = 3 genes in each set. The

bootstrap p-values for rejecting the null hypothesis of two separate sets of genes are shown as plot titles. The

bootstrap distribution for this hypothesis where K = 1 can be found in the main text. The included table provides

the maximum likelihood point estimates of the parameters for K = {1, 2, 3} for each of the two hypotheses.

Each case is presented on a single of the next pages in the following order: Saggital vs. transversal stripes,

dorsal color vs. pattern, leg vs. dorsal pattern and leg vs. dorsal color.
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Saggital vs. transversal stripes
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Below Achinamisa
Achinamisa
Ricardo Palma
Callanayacu N side
Chipesa
Malpaso S side
Curiyacu S side
Santa Rosa de Chipaota
Vaquero
Micaela Bastidas
Ranitomeya summersi
Ranitomeya variabilis
Sauce

(a) Quantified phenotypes. Color codes correspond to locations shown in the legend.

−20 −15 −10 −5 0 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ll(H
0
: Two genes)−ll(H

1
: One gene)

P
ro

po
rt

io
n

Bootstrap (p−value = 0.010)

(b) Log-likelihood ratios p H0
H1

given K = 2.
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(c) Log-likelihood ratios p H0
H1

given K = 3.

One set Two sets

K = 1, [−1.14, 0.35, 0.66, 0.61, 0.59, 0.55,−1.19, 0.49], [−1.19, 0.09, 0.76, 0.57, 0.66, 0.48,−1.18, 0.47]

K = 2, [−1.26, 0.45, 0.70, 0.63, 0.64, 0.80,−1.48, 0.36], [−1.26, 0.04, 0.82, 0.61, 0.67, 0.77,−1.47, 0.36]

K = 3 : [−1.26, 0.40, 0.73, 0.68, 0.65, 0.94,−1.61, 0.31], [−1.22,−0.11, 0.85, 0.66, 0.69, 0.91,−1.61, 0.31]

Table 1: Point estimates [µ0
1, µ

1
1, µ

2
1, σ1, µ

0
2, µ

1
2, µ

2
2, σ2]
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Dorsal color vs. pattern
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Below Achinamisa
Achinamisa
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Callanayacu N side
Chipesa
Malpaso S side
Curiyacu S side
Santa Rosa de Chipaota
Vaquero
Micaela Bastidas
Ranitomeya summersi
Ranitomeya variabilis
Sauce

(a) Quantified phenotypes. Color codes correspond to locations shown in the legend.
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(b) Log-likelihood ratios p H0
H1

given K = 2.
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(c) Log-likelihood ratios p H0
H1

given K = 3.

One set Two sets

K = 1, [−0.91, 0.50, 0.87, 0.45,−1.23,−0.89, 0.43, 0.40], [−0.96, 0.36, 0.95, 0.41,−1.17,−0.88, 0.44, 0.41]

K = 2, [−0.99, 0.64, 0.95, 0.42,−1.21,−1.05, 0.64, 0.37], [−1.02, 0.58, 1.01, 0.39,−1.16,−1.10, 0.65, 0.36]

K = 3 : [−1.04, 0.71, 0.98, 0.41,−1.20,−1.17, 0.69, 0.37], [−1.06, 0.69, 1.03, 0.38,−1.14,−1.27, 0.69, 0.36]

Table 2: Point estimates [µ0
1, µ

1
1, µ

2
1, σ1, µ

0
2, µ

1
2, µ

2
2, σ2]
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Leg vs. dorsal pattern
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Below Achinamisa
Achinamisa
Ricardo Palma
Callanayacu N side
Chipesa
Malpaso S side
Curiyacu S side
Santa Rosa de Chipaota
Vaquero
Micaela Bastidas
Ranitomeya summersi
Ranitomeya variabilis
Sauce

(a) Quantified phenotypes. Color codes correspond to locations shown in the legend.
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(b) Log-likelihood ratios p H0
H1

given K = 2.
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(c) Log-likelihood ratios p H0
H1

given K = 3.

One set Two sets

K = 1, [−2.65,−1.27, 0.44, 0.68,−1.16,−0.95, 0.41, 0.42], [−2.66,−1.26, 0.48, 0.65,−1.17,−0.88, 0.44, 0.41]

K = 2, [−2.82,−0.95, 0.65, 0.65,−1.16,−1.02, 0.63, 0.38], [−2.82,−1.07, 0.70, 0.62,−1.16,−1.11, 0.65, 0.36]

K = 3 : [−2.80,−1.32, 0.72, 0.68,−1.13,−1.27, 0.66, 0.37], [−2.84,−1.21, 0.76, 0.66,−1.14,−1.28, 0.69, 0.36]

Table 3: Point estimates [µ0
1, µ

1
1, µ

2
1, σ1, µ

0
2, µ

1
2, µ

2
2, σ2]
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Leg vs. dorsal color
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Below Achinamisa
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Chipesa
Malpaso S side
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Micaela Bastidas
Ranitomeya summersi
Ranitomeya variabilis
Sauce

(a) Quantified phenotypes. Color codes correspond to locations shown in the legend.
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(b) Log-likelihood ratios p H0
H1

given K = 2.
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(c) Log-likelihood ratios p H0
H1

given K = 3.

One set Two sets

K = 1, [−0.69,−0.00, 0.78, 0.21,−0.97, 0.11, 0.77, 0.53], [−0.75,−0.06, 0.77, 0.18,−0.95, 0.37, 0.96, 0.41]

K = 2, [−0.79, 0.59, 0.86, 0.16,−0.88, 0.31, 1.01, 0.54], [−0.81, 0.60, 0.84, 0.16,−1.03, 0.56, 0.99, 0.39]

K = 3 : [−0.78, 0.63, 0.86, 0.18,−0.93, 0.46, 1.00, 0.52], [−0.79, 0.62, 0.86, 0.17,−1.06, 0.68, 1.03, 0.38]

Table 4: Point estimates [µ0
1, µ

1
1, µ

2
1, σ1, µ

0
2, µ

1
2, µ

2
2, σ2]
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File S3 Reaction-diffusion model — illustrations

The presented reaction-diffusion model relies on a pre-defined spatial domain and two functions that vary

depending on the position in this domain. Here we show illustrations that may be useful to help under understand

the model presented in the main text. This includes the spatial domain in which the simulation is carried out, the

function distributing the preparatory parameter over this domain and the two linear functions depending on the

mixture proportion f .

This is a supplement for the main article and is thus not self-contained, i.e., the reaction-diffusion model is not

restated here but can be found in the main text.
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Figure 6: Spatial domain.
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Top: The domain used for reaction-diffusion simulations. Left: Distribution of preparatory parameter κ as a function of transversal position.

Right: Dorsal and leg potentials as a function of mixture proportion f .
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Abstract

A connection between microscopic structure and macroscopic properties is expected for almost all material systems.
High-resolution transmission electron microscopy is a technique offering insights into the atomic structure, but the
analysis of large image series can be time-consuming. The present work describes a method to automatically esti-
mate the atomic structure in two-dimensional materials. As an example graphene is chosen, in which the positions
of the carbon atoms are reconstructed. Lattice parameters are extracted in the frequency domain and an initial atom
positioning is estimated. Next, a plausible neighborhood structure is estimated. Finally, atom positions are adjusted
by simulation of a Markov random field model, integrating image evidence and the strong geometric prior. A pristine
sample with high regularity and a sample with an induced hole are analyzed. False discovery rate large-scale simul-
taneous hypothesis testing (FDR-LSSHT) is used as a statistical framework for interpretation of results. The first
sample yields, as expected, a homogeneous distribution of carbon-carbon bond lengths. The second sample exhibits
regions of shorter carbon-carbon bond lengths with a preferred orientation, suggesting either strain in the structure or
a buckling of the graphene sheet. The precision of the method is demonstrated on simulated model structures and by
its application to multiple exposures of the two graphene samples.

Keywords: graphene, structure identification, grid matching, Markov random fields, HRTEM, LSSHT

1. Introduction

Graphene has over the last 10 years received massive attention and been studied intensively due to its low mass,
high strength and electrical properties (Geim & Novoselov, 2007). These properties are related to the regular two-
dimensional honeycomb lattice in which carbon atoms arrange themselves in graphene. Investigations and theoretical
results (Girit et al., 2009; Wang et al., 2012) predict a connection between the microscopic structure of graphene and
its macroscopic properties. Therefore knowledge of the atomic structure of graphene is essential.

In this paper, a methodology for automatically determining variations in the atomic structure of a graphene sample
imaged using high-resolution transmission electron microscopy (HRTEM) is provided. HRTEM makes it possible to
image graphene at atomic level. However, imaging is challenging due to low mass-thickness and limited stability
under the electron beam (Meyer et al., 2008, 2012). As a consequence, the images mostly show low contrast and
makes it challenging to recognize the carbon atom positions precisely. The presented method aims for large-scale,
low-contrast, automated structure detection in graphene. In Kling et al. (2014) we motivate the need for this method
and demonstrate its use without further description of the methodology.

Manual or user guided annotations of the atomic structure have been used for various studies (e.g., Kotakoski
et al., 2011; Warner et al., 2012). Clearly this is laborious and constrains the work to small-scale studies. On a
larger scale, Nolen et al. (2010) segmented graphene samples into single-layer and bi-layer areas using automated
image processing, but without explicitly placing the atoms. Wang et al. (2014) suggest simple morphological image
operations to emphasize the grid structure, but without automatically determining the grid structure. Thus it is not
possible to extract reliable atomic positions based on this method. Eder et al. (2014) use a template matching approach
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to follow the transformation from graphene to glass under the electron beam and quantify structures different from
hexagons. Local C-C bond length changes are not taken into account.

The methodology presented in this work aims on extracting single atom positions on a larger scale in single
exposure low-contrast images of defect free hexagonal 2D structures. It is comprised of four steps: 1) Determination
of global lattice properties from 2D Fourier analysis, 2) point initialization from local minima, 3) neighborhood
estimation, and 4) fine adjustment of the grid using a Markov random field (MRF) formulation inspired by Hartelius
& Carstensen (2003). The prior information about the lattice geometry obtained in step 1 is honored in the following
three steps and incorporated in the MRF model in the final step.

We note that the simplest cases, such as a piece of pristine graphene, could easily be handled by less involved
methods, e.g., local minima detection and a Delaunay triangulation. However, when small irregularities are present
(e.g., due to stress, strain or imaging conditions), causing the material to differ from the expected structure, such a
method does not provide a framework for handling this. If all graphene samples could be considered to be perfectly
regular, there would be no need for analysis in the first place.

Since the seminal work by Geman & Geman (1984), Markov random fields have been extensively used to model
spatial dependencies in image analysis. With the publicly available min-cut/max-flow algorithm by Boykov & Kol-
mogorov (2004) a (very fast) global solution to the simplest MRF model, the Ising model (Ising, 1925), could be
obtained. Common for all of these MRF models are, that a priori knowledge of the neighborhood is needed. In fact,
the presence of a known neighborhood is usually why a given problem is modeled as an MRF. This knowledge is not
available in advance for the problem of graphene structure identification. The neighborhood needs to be estimated
before posing the grid alignment problem as an instance of a Markov random field. This adds to the difficulty of the
problem and is therefore part of this work.

The methodology is described in detail and applied to model cases and two experimental image series. A statistical
interpretation of the estimated structures from simulation studies and the two cases are given. Specifically, the carbon-
carbon bond lengths are treated under the principle of large-scale simultaneous hypothesis testing (Efron, 2004).

2. Data

In order to obtain the experimental data we imaged suspended single-layer graphene samples with a FEI Titan
environmental transmission electron microscope (ETEM). Samples are produced by either chemical vapor deposition
(Graphenea, San Sebastian, Spain) or exfoliated from graphite (Booth et al., 2008) and transferred to TEM grids.
The microscope is equipped with a monochromator at the gun and a spherical aberration (Cs)–corrector for the ob-
jective lens. All images are acquired with the microscope operated at 80kV and recorded on a US1000 CCD (Gatan,
Pleasanton, USA) with an exposure time of 1s. A resolution better than 1.2Å was obtained by optimizing the imaging
conditions.

HRTEM images are simulated using the software JEMS (Stadelmann, 2004). Multislice parameters were chosen
according to the used FEI Titan with an energy spread of 0.3eV, negative Cs and positive defocus. As noise the preset
“uniform noise” of the software was used with noise settings from 0 to 5%.

Two cases are considered. The first is a region of pristine graphene (Figure 1a) and the second is a region with
an induced hole in the graphene, formed under the influence of the electron beam (Figure 1b). Pristine graphene is
naturally the simplest case possible for any automated method and is included to have a baseline comparison for the
second case. The second case is much more challenging due to the irregularities arising around this alteration of the
structure. This will become apparent in Section 4.

Notice in Figure 1 that the graphene structure is nicely resolved, even though individual carbon atoms are not
obvious. Due to the present imaging conditions, meaning negative Cs and positive defocus, the carbon hexagons
appear bright, where the centers of the hexagons are dark. Knowledge of these microscope parameters are crucial,
as positive Cs or different defocus/z-height can lead to an inverse contrast in the image. This is important when
considering the lattice geometry next.

The only manual interaction during the process was discarding the area in the upper-left corner of the altered
graphene sample, where amorphous material is present. An automated segmentation step could easily have handled
this, but is not implemented here. Note that the hole in the middle was not manually discarded, but left to the image
processing pipeline to deal with.
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(a) Pristine graphene
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(b) Altered graphene

Figure 1: Two different graphene samples used as case studies throughout this work. a) Excerpt of a piece of pristine graphene. b) Excerpt of a
graphene sample with an induced hole-defect. The scale bar is 5 nm.
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3. Methodology

When estimating a complete lattice structure consisting of say 5000 separate atom positions, robustness is of the
essence. An image processing pipeline is created, progressing from global to local processing, carrying estimates of
global properties forward and letting local mechanisms handle fine adjustment. This ensures robustness while also
keeping the computational burden low.

The four steps of the image processing pipeline are presented below.
Parameters describing the global properties of the lattice are estimated first. The most important property estimated

is the scale. Next, a first guess at the hexagon center positions is obtained by classical image analysis techniques, i.e.
contrast enhancement and local extrema detection. Third, a plausible neighborhood structure is created. This lays the
ground for the fourth and final step, namely refining the positioning of the hexagon centers, while respecting both the
image evidence and the geometric prior.

In the first step, the lattice geometry in connection to its 2D Fourier representation will be presented.

3.1. Lattice parameters from Fourier analysis

We consider the observed image I ∈ Rm×m. It is assumed that this image primarily consists of a regular hexagonal
lattice with carbon-carbon (C-C) bond length as hexagonal side length t.

Figure 2: Excerpt of a 2D Fourier log-magnitude image. The red circles correspond to detected peaks from the first reflection with distances
ri, i = 1, . . . , 6.

2D Fourier analysis of the image yields a log-magnitude image, such as illustrated in Figure 2. The usefulness
of the 2D Fourier analysis in this context is well known, see for instance Meyer et al. (2008) or Zhang et al. (2009).
The spots represent the reciprocal lattice planes belonging to the {100} and {110} lattice planes of graphene with the
distance r for the {100}/{1-10} reflections.

The spots are detected in the Fourier magnitude image by local maxima detection and the points of detection are
represented in polar coordinates as pi = (φi, ri), i = {1, . . . , 6}. The smallest angle relative to horizontal is directly
translated into the rotation φ of the lattice. The average radius r̄ = 1

6
∑6

i=1 ri is transformed from Fourier space to pixel
distances and, by geometric relations, used to determine the hexagonal side length in pixels t:

t =
2m
3r̄

(1)
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1
2h = 3

4t

Figure 3: Hexagonal mesh with red lines representing the {100} lattice planes with distance h. The drawn triangle in black with height h = 3
2 t and

side length
√

3t illustrates the geometrical relationship between the hexagonal tessellation and its dual, the triangular.

where m is the width of the image in pixels.
The estimated hexagonal side length is used as a scale parameter to leverage knowledge about the lattice geometry

in the next steps.

3.2. Hexagon center detection
The primary (hexagonal) grid is not always evident from the image, wherefore a dual (triangular) lattice recon-

struction is aimed for. The triangular lattice can be seen as a graph with vertices being the hexagon centers and edges
connections between these.

First, standard blob enhancement techniques (Lindeberg, 1996) are used for enhancing circular areas with a scale
of 1

2 t. Next, the image contrast is enhanced using the top-hat contrast operator (Soille, 2003). A disc with radius 1
2 t is

used as structuring element. After the image referred to as I has undergone these operations, it will be referred to as
Y. Finally, local minima are detected in Y. These minima serve as a first guess on hexagon center positions.

3.3. Neighborhood
The problem of forming a meaningful graph from the candidate hexagon centers C = {ci, i = 1, . . . ,N} is consid-

ered. “A meaningful graph” is a graph where neighboring nodes are centers of actual neighboring hexagons. This
neighborhood is needed to eventually construct the dual lattice (the actual atom positions), but will also be necessary
for the fine adjustment step presented below (Section 3.4). The method described below takes spatial consistency into
account to avoid spurious holes in the mesh that might otherwise occur due to low contrast in the image.

Two elements are taken into consideration, namely the image intensities under each center point and the regularity
of the triangles. Both are instances of a problem where the range of each observation x is an interval [a1, a2] with
one of the endpoints being the optimal value. When observing intensities at the hexagon centers, the range will be
xc ∈ [0, 1] with an optimal value of xc = 0 in the image Y equivalent to black. When considering a triangle’s regularity,
the observed term is the triangle’s minimum angle in the range x4 ∈ [0, π3 ]. This should ideally be x4 = π

3 , i.e., the
observed triangle is equilateral. Note that subscript c is referring to intensities under the hexagon centers and subscript
4 to the minimum angle of a triangle.

A simple, yet effective, scheme achieving this is presented here.
The Delaunay triangulation is of great aid as it maximizes the minimum angle of all triangles in the triangulation.

However, the Delaunay triangulation cannot be used directly, since not all triangles are physically meaningful. To
overcome this an iterative scheme is implemented, consisting of the following steps:
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1. Delaunay triangulation of C
2. Remove improbable triangles
3. Remove improbable and unreferenced points from C
4. If points were removed, goto step 1

To remove the improbable triangles and points, an Ising model is formulated as a minimum cut problem (Boykov &
Kolmogorov, 2004). An illustration of the model can be seen in Figure 4. A tractable property of this model is spatial
smoothness and the possibility to obtain the optimal solution using the min-cut/max-flow algorithm.

3
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Figure 4: Graph representation of the Ising model. The numbered entities – the sites – are triangles and pixels for each of the two steps in the
iterative scheme.

The terminal weights si and ti are formulated from a simple convex combination of the Euclidean distance from
the observed value xi to the two interval end points a1, a2.

si = (1 − α)‖xi − a1‖2
ti = α ‖xi − a2‖2 .

The regularization term α controls the tolerance of the distance and we use a constant neighborhood term γ. Notice
that for α = 0.5 this is simply assigning values closest to a1 to the sink and values closest to a2 to the source. This
way of assigning terminal weights makes no assumptions on the distribution of the observed values.

Values of γ4 = 3 and γc = 2 were found to be a good choice for neighborhood terms and α = 0.85 a suitable
regularization parameter for both models.

An example of the procedure can be seen in Figure 5, where a triangulation is cleaned up to only represent
meaningful connections between nodes. For this simple example, only a single iteration was needed.

3.4. Fine adjustment by Bayesian grid matching

The iterative scheme presented above renders a meaningful neighborhood, but the hexagon centers are still placed
where the initialization in Section 3.2 placed them. These positions are good, but not optimal in the sense that they do
not consider the prior geometric knowledge. An undirected graphical model (an MRF) that takes this into account is
presented here.

Inspired by the Bayesian formulation of the grid matching problem in Hartelius & Carstensen (2003) a set of
node-sites S = {si, i = 1, . . . , n} in a graph is observed. The set L = {li j, i ∼ j, i ≤ j} represents the arcs in the graph,
where li j connects node-sites si and s j, also denoted by i ∼ j. The number of neighbors for node si is denoted as ni.
Locations of the grid nodes are contained in the list G = {gi, i = 1, . . . , n} where gi = [xi, yi]T is the location of node
si.
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(a) (b)

Figure 5: Example of the iterative procedure used to construct the initial neighborhood.

A neighborhood system for both nodes and arcs is defined in Figure 6. The node neighborhood is defined as
the one-clique in the triangular lattice. An arc’s neighborhood includes other arcs from the same simplices. i j ∼ kl
denotes that arc li j and lkl are neighbors and ni j denotes the number of arc neighbors for li j.

Coding scheme. In theory each node should be visited in random order. In practice a coding scheme is employed,
such that multiple nodes are visited simultaneously. To obey the Markov property, the coding scheme is constructed
such that two neighboring nodes are not altered simultaneously. Since the lattice is deduced from the local minimum,
the coding scheme cannot be explicitly constructed. Rather it is an instance of the graph coloring problem to which a
(sub-optimal) solution is obtained using the Welsh-Powell algorithm (Kubale, 2004; Welsh & Powell, 1967).

Geometric prior. Two suggestions for simple geometric priors are outlined here. The first is to model the expected
arc length as constant throughout the sample, i.e., the distance between two neighboring nodes is modeled as

‖gi − g j‖2 = r̄ + εi j (2)

where εi j ∈ N(0, σ2).
The second model is more flexible, where the distance between two neighboring nodes is modeled as

‖gi − g j‖2 = r̄ + ti j + εi j (3)

where εi j ∈ N(0, σ2) and

ti j =
1

ni j

∑

i j∼kl

‖gk − gl‖ − r̄ (4)

is the average deviation from the expected arc length r̄ in the neighborhood of arc li j. This allows for a smooth change
from the expected arc length over the lattice, while introducing a small anistropy favoring deviations parallel to the
three C-C bond orientations due to the chosen arc neighborhood. In a perfect triangular lattice ti j = 0. Throughout
this paper, the locally adaptive geometric prior in Equation (3) has been employed.

The joint distribution of G is given by

P(G) ∝ exp

−
1

2σ2

∑

li j

(
‖gi − g j‖2 − (r̄ + ti j)

)2

 . (5)
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Figure 6: Each node (marked in red) has six node neighbors (dots) and thus six arc neighbors (crosses). The arc (marked in red) has four arc
neighbors (crosses).

This is modeled as a Markov Random Field (MRF) and thus the probability of node position gi is only dependent on
its neighbors

P(gi|{g j, j , i}) = P(gi|g j, i ∼ j)

∝ exp

−
1

2σ2

∑

i∼ j

(
‖gi − g j‖2 − (r̄ + ti j)

)2
 . (6)

The Gibb’s representation of this geometric prior is P(G) ∝ exp {−U(G)}.
Aposteriori lattice estimation. The pre-processed image Y, introduced previously, is considered as the observed im-
age. The observation model P(Y|G) describes the probability of observing the image Y given the configuration G, i.e.,
the likelihood. For a single site si

P(Y|gi) ∝ exp {−Y(xi, yi)} = exp {−U(Y|gi)} .
The likelihood energy U(Y|gi) is simply the intensity value of Y at gi, thus a darker spot in Y corresponds to a lower
energy than a bright spot.

The posterior distribution of the model can then be written as

P(G|Y) = P(G)P(Y|G) (7)

where the observation model represents the faith in the observed data and the geometric prior enforces regularity in
the lattice.

Simulated annealing. The Gibb’s representation of the posterior distribution is

P(G|Y) ∝ 1
Z

exp
{
−U(G) + U(Y|G)

T

}

where Z is a normalizing constant and T the temperature of the system.
A simulated annealing scheme is employed to maximize Equation (7). The Metropolis spin-flip algorithm is used

to generate moves in the random walk, similar to Hartelius & Carstensen (2003):

9



1. Start with configuration G.
2. Choose a node si and take a step to obtain g′i .
3. Set configuration G′ equal to G with node si’s position set to g′i .
4. Replace G with G′ with probabilty

p = min(1, P(G′)/P(G))
= min(1, exp(−U(G′) + U(G)) (8)

5. if not stop, go to step 2.

The relation in (8) is of practical importance, since this allows us to work on energy differences rather than ratios
of probabilities.

Generating g′i in step 2 can be done in numerous ways. Here gi is chosen as one of the eight neighboring pixels.
The temperature scheme for the simulated annealing is chosen to start from T0 = 0.1 and decrease to Tend = 10−10

over niter = 1000 iterations. The temperature at iteration k is assigned according to Tk = c ·Tk−1, where c is determined
from the number of iterations and temperature end points. During each iteration, each node site is visited four times
before decreasing the temperature.

Atom placement. The dual lattice to the triangular forms the hexagonal lattice of C atoms. Therefore the atoms are
placed in the centers of the fitted triangles. Thus three hexagonal centers are used to position each atom.

A movie visualizing the optimization while running is included as Supplementary movie1.

4. Results and statistical interpretation

The two samples of graphene (one pristine and one altered) are processed using the described image processing
pipeline. The result of this pipeline is a set of hexagon center positions and a neighborhood, i.e., a graph. This graph
is used to derive the atom positions (the dual lattice) and their mutual distances, the carbon-carbon bond lengths.
These lengths are the primary derived measure and will be the subject of the analyses in this section. Such a result is
available at two stages of the pipeline, namely before and after fine adjusting the positions.

First, the effect of this fine adjustment will be quantified by simple statistics. Following this, the final positioning
will be analyzed using a statistically sound visualization allowing for objective interpretation.

Figure 7 summarizes graphically the effect of fine adjusting the hexagon center positions. The carbon-carbon bond
lengths are illustrated as box plots, summarizing simple statistics. A total of 5057 and 3589 atoms were positioned
with 14966 and 10452 bonds estimated respectively. The two left boxes concern the pristine graphene case and the
two right boxes concern the altered graphene case. The first box for each case summarizes the C-C bond lengths if
one had accepted the positions determined by the initial grid procedure in Section 3.2. The second box shows the
same statistics, but for the final result, i.e., after the hexagon centers have been fine adjusted using the procedure in
Section 3.4.

First off, an inter-case comparison suggests that much higher variability is present in the sample, where the struc-
ture has been altered. This says more about the physical properties of the samples, than the properties of the fine
adjustment procedure.

More interesting is it to consider the intra-case variability. It is evident that this has been greatly reduced in
both cases by the fine adjustment procedure. This can also be visually verified by inspecting a coloration of the C-
C bonds in Supplementary material 2. Numerically, the standard deviation has been reduced from 4.39·10−3nm to
2.11·10−3nm and 7.31·10−3nm to 3.31·10−3nm respectively. Both reductions are significant changes of variance with
p-values� 0.01 according to a Bartlett’s F-test with one degree of freedom.

In order to interpret the estimated atomic structure in a statistical setting, we use the framework of false discovery
rate controlled large-scale simultaneous hypothesis testing (FDR-LSSHT) proposed in Efron (2004). Specifically, the
structure is evaluated in terms of the distribution of carbon-carbon bond lengths.
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Figure 7: Box plots summarizing the distribution of estimated C-C bond lengths before and after fine adjustment of the hexagon centers. The edges
of the box gives the first and third quartile of the distribution, the horizontal line within the box represents the median. The whiskers are 1.5 times
the interquartile range of length.
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4.1. Large-scale simultaneous hypothesis testing

In statistical testing of small sample-large number of variables cases normal multiple comparison procedures (e.g.
Bonferroni adjustment) tend to be too conservative and leading to too few significant variables. FDR-LSSHT is a
framework for simultaneous evaluation of a large number of hypothesis tests while controlling the significance testing
by setting a maximum for the proportion of false positives.

In this setting we work on z-values, where

zi =
xi − µ
σ

, i ∈ {1, . . . ,N}.

Here, xi is the length of the i’th carbon-carbon bond and (µ, σ) are parameters for a normal distribution under the null
hypothesis. Histograms of xi for the two cases are shown in Figure 8.

Based on these z-values, FDR-LSSHT is a three-step process:

1. estimate the distribution of z-values f (z) as a smooth spline fitted to the sample histogram (green in Fig. 8),
2. find an empirical null hypothesis f0(z) (magenta in Fig. 8) and
3. calculate the false discovery rate f dr(z) = f0(z)/ f (z).

“Interesting” observations will then show up with a low false discovery rate (Efron suggests f dr(z) < 0.1). Here,
“interesting” means observations not following the dominant normal distribution f0(z).

A cubic spline with twenty evenly distributed knots is used, which is least-squares fitted to the square-root of the
sample histogram counts to represent f (z).

The empirical null hypothesis f0(z) is estimated as a GaussianN(µ0, σ
2
0) considering the width of the distribution at

half its maximum. However, care should be taken; inspection of the histogram in Figure 8b clearly shows a heavier tail
to the left. Therefore, the distance from the peak’s position µ0 to the z-value zhalf fulfilling f (zhalf) = 1

2 f (µ0), zhalf > µ0
is used to obtain

σ0 =
zhalf − µ0

1.17741
.

For further considerations on estimation of f0(z) the reader is referred to Efron (2004).

4.2. False discovery rate

The false discovery rates are overlaid their respective C-C bonds in Figure 9 according to a color scale. Observa-
tions with an FDR above 0.2 are colored white, as they are considered not interesting. This scale is chosen based on
Efron’s recommendation of considering FDRs below 0.1 interesting. Notice how this statistically sound visualization
translates nicely into a visualization of untypical areas in the graphene. For the pristine graphene in Figure 9a, a
homogeneous distribution is observed, as expected. Only few C-C bonds at the border of the image stand out and are
most likely related to artefacts.
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Figure 8: The empirical null hypothesis f0(z) and estimated distribution of z-values f (z) for both cases. Notice the heavy lower tail on f (z) in (b)
compared to the empirical null hypothesis.
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Figure 9: C-C bonds colored according to their false discovery rate. The color scale ranges from 0.0 to 0.2 where a low false discovery rate (blue)
indicates “interesting” observations, i.e., observations not following the empirical null hypothesis. Notice how areas above and below the induced
hole-defect are highlighted, while the pristine case shows no such pattern.
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The pristine areas around the induced hole in the second case reveal the same homogeneous distribution as in the
first case.

Most of the bonds having a low FDR are also short in length, as seen in the histogram before. These shorter bonds
reveal a preferred orientation, approximately in horizontal direction. Physically this could either show strain in the
graphene structure, or represent a 3D information. Suspended graphene is known to form out of plane ripples (Meyer
et al., 2007). Bond lengths appear shorter as the structure is buckled or folded, as only a projected bond length is
visible. Together with the preferred orientation, this would speak for a folding. Neither can these two possibilities be
discriminated, nor a combination of both excluded. Further investigations are ongoing.

4.3. Precision

To verify the reliability and precision of the method, HRTEM images of graphene model structures are simulated
(see Supplementary material 1). The structures vary in bond length, from ideal graphene to a strongly strained C-
C bond length. This does not have to be physical, but gives an indication of the reliability and precision of the
method. Furthermore, different noise levels are added to the images to resample less contrast in a real experiment.
The algorithm recognizes the structures precisely and extracts the C-C bond lengths. This even works for rather high
noise levels. Specifically the simulation studies show that C-C bond lengths can be estimated with a bias in the range
of 0.0001nm–0.0004nm depending on the simulated strain. A precision of less than 0.0010nm is achieved in noise
free cases and up to 0.0024nm for simulations with high noise.

Additionally, multiple exposures of each graphene sample are used. Ten exposures were available of the pristine
graphene sample and twenty exposures of the sample with an induced hole. The same region of interest and parameters
as above were used for all exposures.

The carbon-carbon bond lengths are extracted for each exposure. A spline with twenty knots is fitted to the bond
length histogram on the domain [0.122, 0.162]nm, similar to the FDR-LSSHT procedure above. Each spline represents
a distribution of carbon-carbon bond lengths. All of these distributions are shown in Figure 10. Blue lines represent
exposures of the sample with an induced hole. Red lines represent exposures of the pristine graphene sample.
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Figure 10: Splines with twenty knots fitted to the carbon-carbon bond length histograms for multiple exposures. Blue lines show distributions
estimated for twenty exposures of the graphene sample with an induced hole. Red lines show the same for ten exposures of the pristine graphene
sample.
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The bond length distributions for all exposures of the area with an induced hole have the characteristic heavy tail
of shorter bond lengths. This heavy tail is not present in the pristine sample.

Comparing the single exposures, the pristine case does not show a strong variation. This can be seen in the color
maps of the single exposures. The structures appear homogenous (see Supplementary material 2). For the sample
with the induced hole, the distributions look similar, but in the color maps a clear change can be seen. The orientation
of the shorter bonds remain the same, but the area of appearance slightly moves with exposures. Nevertheless, they
remain situated above and below the hole.

This observation can be correlated with an beam induced effect. Even though an accelerating voltage of 80kV is
low enough to preserve the pristine graphene structure, atoms at defects and edges possess a lower threshold to be
removed or rearranged (Kotakoski et al., 2012). This goes together with a deformation of the lattice. Furthermore, a
chemical etching at the edge can result in a rearrangement of the atoms and a deformation (Meyer et al., 2012). A run
test shows that no evidence can be found for a temporal trend in the average bond length (see Supplementary material
2 for details). The simulated images and the time sequences demonstrate that the method is sufficiently precise.

5. Discussion

The presented method is only applicable to materials forming a hexagonal lattice. However, it is possible to replace
one or more of the building blocks constituting the pipeline and make it useful for other geometries, e.g., by replacing
the Delaunay triangulation with something meaningful for the geometry at hand. The result for three dimensional
materials orientated in a zone axis would then not be single atom positions, but positions of the atom columns along
the viewing direction. We believe the approach of a rough initialization and subsequent fine adjusting of the structure
a general one.

We stress that this method is currently not capable of detecting defects, e.g., penta- and heptagonal carbon rings.
To incorporate this, the Markov random field formulation used for fine adjusting the grid would need to be extended,
e.g., by marginalizing out the different local geometries and their respective neighbor distances. Another possibility
would be to fit the best possible hexagonal lattice and in a subsequent step suggest new configurations, i.e., swap a
perfect part of the lattice for a defect, and choose the one with maximum likelihood. These extensions are left for
future work, but the locality of this model looks promising for making it possible.

6. Conclusions

A method to determine atomistic properties of periodic systems with low contrast in general has been presented.
Graphene is used as an example of such a material. The atomic structure and atomistic parameters of large-scale
graphene samples have been automatically estimated from high-resolution transmission electron microscopy images.

A pipeline consisting of four main steps for estimating carbon atom positions have been described: 1) Determina-
tion of global lattice properties from 2D Fourier analysis, 2) point initialization from local minima, 3) neighborhood
estimation, and 4) fine adjustment of the grid taking prior assumptions and observed data into account. Parameters for
the geometric priors are estimated in the first step and carried forward through the pipeline. It is shown that adjusting
the atom positions according to a Markov random field model significantly reduces the variation of carbon-carbon
bond length estimates.

Two distinct cases have been chosen to demonstrate the method’s capabilities, namely a piece of pristine graphene
and a piece of graphene with an induced hole. The framework of false discovery rate large-scale simultaneous hy-
pothesis testing (FDR-LSSHT) was employed to provide a statistically sound interpretation of the resulting estimates.
Specifically, the distribution of carbon-carbon bond lengths was analyzed.

It was found that the pristine graphene showed high regularity in the atom positions and thus the distribution of
C-C bond lengths were approximately normal distributed around a bond length of 0.142 nm. The graphene sample
with the induced hole was found to contain areas of significantly shorter bond lengths, manifesting themselves as a
heavy lower tail in the distribution of C-C bond lengths. Investigations into whether this is due to buckling of the
graphene sheet or stress in the configuration are still ongoing.

The precision of the proposed method was verified on simulated images and evaluated on real data by its applica-
tion to multiple exposures of each sample. Ten exposures of the pristine graphene and twenty exposures of the sample
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with an induced hole were analyzed. A single set of parameters was used for all 30 exposures and the within-sample
distributions were found to be very similar, which demonstrates the robustness of the method.

Future work includes applying the method in a high-throughput setting to test specific material hypotheses, such
as structural changes under external stimuli like temperature or current, and relate them to observed physical mea-
surements.
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ESM 2. Temporal development

The two graphene samples have been imaged ten and twenty times respectively. The exposure time for each
individual image is 1s. The structural changes in the graphene lattice over time is here analyzed by applying the
proposed method to each exposure separately and extracting the estimated C-C bond lengths. Section 2.1 contains
illustrations and descriptions for the ten exposures of the pristine graphene sample. Section 2.2 contains similar
information for the twenty exposures of the altered graphene sample.

The hypothesis of whether the material changes significantly during the time of the exposures have been tested
using a runs test. The null hypothesis of the average bond length changing randomly over time could not be rejected
in neither the pristine case (p = 0.81), nor in the altered case (p = 0.83). Thus there is no evidence for a temporal
trend in either case.

2.1. Pristine graphene

The ten exposures of the pristine graphene sample have undergone the analysis described in the main text. Figure
1 contains the cumulative distribution functions (CDFs) of the estimated C-C bond lengths for each exposure. The
histograms representing the same distributions can be seen in the main text. The distributions are colored according
to their number in the sequence, i.e., the first exposures are dark blue and the last exposures are bright green. It is
apparent that the estimated distributions are very similar.
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Figure 1: A cumulative distribution function (cdf) for each exposure. The color scale is such that the first exposure is dark blue and the last is bright
green.

The first and the last exposure in the sequence have been overlaid the estimated C-C bonds in Figures 2–3. The
C-C bonds are colored according to their length and clearly exhibit strong homogeneity over the extent of the image.
Exposures two through nine exhibit similar structures.

A runs test is used to test the hypothesis of a temporal trend in the average C-C bond length. A runs test tests
if the sequence of average bond lengths being above or below the overall average can be rejected to be random. As
mentioned above, the hypothesis of random ordering of the average C-C bond lengths could not be rejected according
to a runs test (p = 0.71). Thus, as expected from these visualizations, there is no evidence of a temporal trend.
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Figure 2: Exposure number 1. C-C bonds are colored according to length.
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Figure 3: Exposure number 10. C-C bonds are colored according to length.
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2.2. Altered graphene

The twenty exposures of the altered graphene sample have undergone the analysis described in the main text.
Figure 4 contains the cumulative distribution functions (CDFs) for each of the twenty exposures. Inspecting this
figure, there is certainly some variation between the exposures’ distributions. As mentioned previously, the hypothesis
of a random order of the average C-C bond lengths could not be rejected (p = 0.96), i.e., there is no evidence of a
temporal trend.

The variation in the estimates can be inspected in Figures 5–8, where the first, eighth, fourteenth and twentieth
exposures are overlaid the estimated structures as examples. It is seen that the areas to the left and the right of the hole
are estimated relatively consistent, while the areas above and below the hole change in appearance from exposure to
exposure. This local change is only evident in the overlay image and not in the distribution. Figures 6 and 7 show
areas, where the method fails to confidently estimate any structure in very low contrast regions. These structural
changes and the loss in contrast in some areas can be correlated to a beam induced effect as described in the main
manuscript. The reduced contrast can originate from an offset in height, which results in a change in focus. This lack
of estimated structure in some areas also adds to the observed variation.
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Figure 4: A cumulative distribution function (cdf) for each exposure. The color scale is such that the first exposure is dark blue and the last is bright
green.
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Figure 5: Exposure number 1. C-C bonds are colored according to length.
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Figure 6: Exposure number 8. C-C bonds are colored according to length.
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Figure 7: Exposure number 14. C-C bonds are colored according to length.
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Figure 8: Exposure number 20. C-C bonds are colored according to length.
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ESM 1. Simulation studies

Graphene structures with known C-C bond lengths are simulated to quantify the bias and precision of the presented
algorithm under various degrees of strain and noise levels. First the simulation method is described, next the evaluation
method and finally the bond length estimates are visualized and quantified.

HRTEM images are simulated using the software JEMS (Stadelmann, 2004). Multislice parameters were chosen
according to the used FEI Titan with an energy spread of 0.3eV, negative Cs and positive defocus. As noise the preset
“uniform noise” of the software was used with noise settings from 0 to 5%.

C

B

A C

B

A

s = 1

C

B

A C

B

A

s = 0.8

Figure 1: Illustration of the simulated strain by varying the scale parameter s. The lengths of the three pairs of parallel sides are denoted A, B and
C. (left) A perfect lattice with no strain and (right) a lattice squeezed to s = 0.8 its original height.

The strain is simulated by scaling the vertical height of the unit cell with a factor s, illustrated in Figure 1. The
lengths of each side will be referred to as A, B or C, i.e., the orientations according to this illustration. The lengths of
these three sides, dependent on the scaling factor s, are:

A = C =
1
2

t
√

3 + s2 (1)

B = st (2)

where t = 0.142nm is the side length for a perfect hexagon with s = 1. The true values can be extracted from the
simulation software and are listed in Table 1.

Simulation scenarios with four degrees of strain s = {1, 0.993, 0.986, 0.951} and noise levels {0, . . . , 5} are ana-
lyzed, i.e., a total of 24 scenarios. Figures 2–4 show simulated structures with noise levels 1, 3 and 5 for the perfect
lattice (s = 1). Figure 5 shows the most extreme straining with s = 0.951 and noise level 0. Note that the strain is not
easily observed manually even though it is extreme for the material.

1.1. Evaluation and results

The grid structures are estimated from each of the simulated images using the method described in the main article.
All parameters used for the grid structure estimation are equivalent to those in the main text.

The distributions of the estimated C-C bond lengths are illustrated using histograms and cumulative distribution
functions (CDFs) in Figures 6–9. The CDF is useful when comparing distributions and does not depend on binning like
the histogram. Each figure contains six plots: one histogram for each orientation and one CDF for each orientation.
All six noise levels are shown as different colored lines in each plot. The vertical red line marks the expected bond
length according to Eqs. (1) and (2). In all cases, it is noted that there is a high correspondence between the mode of
the distribution and the expected bond length. For the noise free scenarions (level 0) only little mass of the distribution
deviates from the expectation. For the most extreme case of strain (s = 0.951), the CDFs in Figures 9b, 9d and 9f
show that a significant mass of each distribution is to the right of the expected bond length in the noise free scenario.

Figures 10– 13 show the estimates by overlaying the estimated C-C bonds on the original image colored according
to length. For the three least degrees of strain, the estimate for noise level 3 is shown. The bond colors vary what seems
randomly over the image for this noise level. However, the CDFs above tell us that on average, the bond lengths with
similar orientations are also of similar length. This will also become evident from the numerical evaluation below.
For the highest amount of strain, the no-noise case is shown (Figure 13). This color overlay clearly shows, that the
strongest deviations from the expected bond lengths come from bonds at the image borders. There is an even more

1



Figure 2: Perfect lattice (s = 1) with noise level 1.

Figure 3: Perfect lattice (s = 1) with noise level 3.

2



Figure 4: Perfect lattice (s = 1) with noise level 5.

Figure 5: Lattice with simulated strain (s = 0.951) with no noise.

3



pronounced border effect, where bonds close the top and bottom image border are estimated to be longer than in the
middle part, and vice versa for the left and right edges. This is what causes the “bump” in the CDF in Figure 9d.

In Table 1 the robustness of the method under these conditions is evaluated numerically in terms of bias and
precision. Atrue, Btrue and Ctrue denote the known bond lengths under the given strain factor s according to Eqs. (1)
and (2). The columns Aerr, Berr and Cerr contain the bias ± the precision in nm. The bias and precision for bonds of
type A are calculated as

bias =
1

NA

NA∑

i=1

Âi − Atrue

precision =

√√√
1

NA

NA∑

i=1

(
Âi − Atrue

)2
,

where Âi is the estimate of the i’th C-C bond of NA total bonds of type A. This is analogous for bonds of type B and
C. ABCerr gives the bias and precision for all three orientations.

1.2. Conclusions

Based on inspection of the estimates of A, B and C in Table 1, the main conclusions to be drawn are:

1. The lengths of C-C bonds under moderate strain (s ∈ {1, 0.993, 0.986}) and varying noise levels are estimated
with low bias (≤ 0.0002nm) and a precision of ≤ 0.0020nm.

2. Under a simulation of heavy strain (s = 0.951) a maximum bias of 0.0004nm is obtained and a precision of
≤ 0.0025nm.

3. A bias of ≤ 0.0003nm and a precision of ≤ 0.0011 nm is achieved in simulations of noise free scenarios.
4. For a high amount of strain (s = 0.951) a border effect is apparent, yielding a non-homogeneous fit.

Considering the image resolution (≈ 0.0115nm/pixel), these results are very satisfactory. This sub-pixel precision
is possible due to the large statistics within the image.

A possible alleviation of the border effect observed for s = 0.951 could be different choices of parameters for
the grid structure estimation, e.g., a slower decrease of temperature in the simulated annealing scheme. Similarly,
parameters could probably be tuned to improve the precision in many of the simulated scenarios. However, it is more
meaningful to choose the same parameter settings for the simulation studies as for the real data in the main article.
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Figure 6: Histograms and cumulative distribution functions (CDFs) for s = 1. The distributions are colored according to the noise levels from 0–5.
65 equidistant bins in the range from 0.122 to 0.162 are used for the histograms. The vertical red line marks the known true bond length.
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Figure 7: Histograms and cumulative distribution functions (CDFs) for s = 0.993. The distributions are colored according to the noise levels from
0–5. 65 equidistant bins in the range from 0.122 to 0.162 are used for the histograms. The vertical red line marks the known true bond length.
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Figure 8: Histograms and cumulative distribution functions (CDFs) for s = 0.986. The distributions are colored according to the noise levels from
0–5. 65 equidistant bins in the range from 0.122 to 0.162 are used for the histograms. The vertical red line marks the known true bond length.
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Figure 9: Histograms and cumulative distribution functions (CDFs) for s = 0.951. The distributions are colored according to the noise levels from
0–5. 65 equidistant bins in the range from 0.122 to 0.162 are used for the histograms. The vertical red line marks the known true bond length.
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Figure 10: Estimated C-C bonds overlaid the simulated image with strain s = 1 and noise level 3. C-C bonds are colored according to length.

9



nm
0.137

0.142

0.147

Figure 11: Estimated C-C bonds overlaid the simulated image with strain s = 0.993 and noise level 3. C-C bonds are colored according to length.
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Figure 12: Estimated C-C bonds overlaid the simulated image with strain s = 0.986 and noise level 3. C-C bonds are colored according to length.
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Figure 13: Estimated C-C bonds overlaid the simulated image with strain s = 0.951 and no noise. C-C bonds are colored according to length.
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Strain factor s Atrue Btrue Ctrue Noise Aerr [nm] Berr [nm] Cerr [nm] ABCerr [nm]

1.000 0.1419 0.1420 0.1419

0 0.0002 +/- 0.0003 0.0001 +/- 0.0005 0.0002 +/- 0.0003 0.0001 +/- 0.0004
1 0.0002 +/- 0.0014 0.0001 +/- 0.0014 0.0002 +/- 0.0014 0.0001 +/- 0.0014
2 0.0002 +/- 0.0017 0.0002 +/- 0.0018 0.0002 +/- 0.0018 0.0002 +/- 0.0018
3 0.0002 +/- 0.0018 0.0001 +/- 0.0018 0.0002 +/- 0.0017 0.0002 +/- 0.0018
4 0.0002 +/- 0.0020 0.0001 +/- 0.0019 0.0002 +/- 0.0019 0.0002 +/- 0.0019
5 0.0002 +/- 0.0020 0.0001 +/- 0.0021 0.0002 +/- 0.0021 0.0001 +/- 0.0021

0.993 0.1418 0.1410 0.1418

0 0.0001 +/- 0.0003 0.0001 +/- 0.0006 0.0000 +/- 0.0003 0.0001 +/- 0.0004
1 0.0000 +/- 0.0015 0.0001 +/- 0.0015 0.0000 +/- 0.0014 0.0001 +/- 0.0015
2 0.0000 +/- 0.0017 0.0002 +/- 0.0017 0.0000 +/- 0.0017 0.0001 +/- 0.0017
3 0.0000 +/- 0.0018 0.0001 +/- 0.0018 0.0001 +/- 0.0017 0.0001 +/- 0.0018
4 0.0000 +/- 0.0018 0.0001 +/- 0.0019 0.0000 +/- 0.0020 0.0001 +/- 0.0019
5 0.0000 +/- 0.0020 0.0001 +/- 0.0020 0.0000 +/- 0.0020 0.0000 +/- 0.0020

0.986 0.1415 0.1400 0.1415

0 0.0000 +/- 0.0003 0.0001 +/- 0.0004 0.0000 +/- 0.0003 0.0000 +/- 0.0003
1 0.0000 +/- 0.0014 0.0002 +/- 0.0015 0.0000 +/- 0.0014 0.0001 +/- 0.0014
2 0.0000 +/- 0.0018 0.0002 +/- 0.0018 0.0000 +/- 0.0017 0.0001 +/- 0.0018
3 0.0000 +/- 0.0019 0.0002 +/- 0.0018 0.0000 +/- 0.0018 0.0001 +/- 0.0018
4 0.0000 +/- 0.0019 0.0002 +/- 0.0019 0.0001 +/- 0.0019 0.0001 +/- 0.0019
5 0.0000 +/- 0.0020 0.0002 +/- 0.0020 0.0000 +/- 0.0020 0.0000 +/- 0.0020

0.951 0.1403 0.1350 0.1403

0 -0.0002 +/- 0.0010 0.0003 +/- 0.0011 -0.0002 +/- 0.0010 0.0000 +/- 0.0011
1 -0.0001 +/- 0.0016 0.0002 +/- 0.0017 -0.0001 +/- 0.0016 0.0000 +/- 0.0017
2 -0.0001 +/- 0.0020 0.0003 +/- 0.0020 -0.0001 +/- 0.0019 0.0001 +/- 0.0020
3 -0.0001 +/- 0.0020 0.0003 +/- 0.0021 -0.0001 +/- 0.0021 0.0000 +/- 0.0021
4 -0.0001 +/- 0.0021 0.0004 +/- 0.0023 -0.0001 +/- 0.0021 0.0001 +/- 0.0021
5 -0.0002 +/- 0.0024 0.0004 +/- 0.0025 -0.0002 +/- 0.0024 0.0000 +/- 0.0024

Table 1: Numerical evaluation of simulation studies. Atrue, Btrue and Ctrue denote the known bond lengths under the given strain factor s. The columns Aerr, Berr and Cerr contain the bias ± the
precision in nm. The precision is the standard deviation of the estimates. ABCerr gives the bias and precision for all three orientations.



Paper F

Pattern recognition approach
to quantify the atomic
structure of graphene



Letter to the Editor

Pattern recognition approach to quantify the atomic
structure of graphene

Jens Kling a,e,*, Jacob S. Vestergaard b, Anders B. Dahl b, Nicolas Stenger c,e,
Tim J. Booth d, Peter Bøggild d,e, Rasmus Larsen b, Jakob B. Wagner a,
Thomas W. Hansen a,e

a Center for Electron Nanoscopy (DTU Cen), Technical University of Denmark, Fysikvej 307, 2800 Kgs. Lyngby, Denmark
b Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, Matematiktorvet 303B,

2800 Kgs. Lyngby, Denmark
c Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, Ørsteds Plads 343, 2800 Kgs. Lyngby, Denmark
d Department of Micro- and Nanotechnology (DTU Nanotech), Technical University of Denmark, Ørsteds Plads 345E, 2800 Kgs. Lyngby,

Denmark
e Center for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345E, 2800 Kgs. Lyngby, Denmark

A R T I C L E I N F O

Article history:

Received 19 December 2013

Accepted 8 March 2014

Available online 15 March 2014

A B S T R A C T

We report a pattern recognition approach to detect the atomic structure in high-resolution

transmission electron microscopy images of graphene. The approach provides quantitative

information such as carbon–carbon bond lengths and bond length variations on a global

and local scale alike.

� 2014 Elsevier Ltd. All rights reserved.

Graphene is considered a key material for future electronic

applications with the possibility of very high performance

transistors [1], spintronics [2] and ballistic devices even at

room temperature [3]. The degree to which the actual perfor-

mance of graphene devices can live up to the theoretical

predictions depends critically on the presence of defects or

atomic configuration of edges. In essence, any deviations

from perfect lattice periodicity can be important, which for

instance is manifested in the sensitivity of electronic proper-

ties to strain [4].

Transmission electron microcopy (TEM) in general and

high-resolution TEM (HRTEM) in particular can provide infor-

mation about the atomic structure and defect landscape of

graphene [5]. While important parameters like the carbon–

carbon (CAC) bond length are possible to determine, this is

usually done manually in small areas [6], due to time-con-

suming work of manually analyzing the HRTEM images. Here

we describe a method for fast, automatic structure detection

in graphene in a large number of sequentially acquired

HRTEM images. The method enables quantitative information

such as CAC bond length or bond length variations to be

determined from images in a fast and reliable way, and can

be used on many images to allow access to this information

from a large area.

Suspended single-layer graphene synthesized by chemical

vapor deposition (CVD) (Graphenea, Spain) or by mechanical

http://dx.doi.org/10.1016/j.carbon.2014.03.013
0008-6223/� 2014 Elsevier Ltd. All rights reserved.
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exfoliation of graphite [7] and transferred to TEM grids have

been investigated using the automatic method. The graphene

is imaged using a FEI Titan 80–300 Environmental TEM (ETEM)

equipped with a monochromator at the electron gun and a

spherical aberration (CS)-corrector for the objective lens. All

images are acquired with the microscope operated at 80 kV,

which is below the knock-on threshold of carbon atoms in

pristine graphene [8]. In order to optimize the imaging condi-

tions and thereby the input for the structure detection, the

electron beam energy spread was reduced to below 0.3 eV

using the monochromator, while the CS corrector was aligned

to minimize the spherical aberration CS. These conditions re-

sult in a resolution better than 0.12 nm, allowing us to resolve

the 110-reflections of graphene and visualize the atomic

structure accurately. The images are recorded using a Gatan

US1000 CCD camera with an exposure time of 1 s.

The structure determination algorithm involves several

steps. Utilizing Fourier transformation and local maxima

detection, the mean graphene structure over the whole image

is detected and used as starting point. The basis is a triangu-

lar lattice (triangulation) with a side length of roughly

0.247 nm, connecting three hexagonal centers (nodes) of the

graphene structure. Hexagon center positions in the image

are recognized as contrast extremes, minima for negative CS

or maxima for positive CS. Nodes and triangles are removed

from the triangulation when the local contrast properties or

geometry deviate significantly from the expectations, and

consequently areas like holes or amorphous material can be

automatically omitted. In a final step, the node positions are

adjusted by grid matching [9]. These steps enable a full recon-

struction of the atomic structure of the observed graphene

area in most cases. A more detailed description of the algo-

rithm will be published elsewhere.

Figs. 1a and 2a show HRTEM images of two different areas

of graphene. The hexagonal honeycomb lattice is easily rec-

ognized. Using negative CS imaging, the carbon atoms are

bright spots, with the centers of the hexagons appearing dark.

In Fig. 1a, a hole in the graphene, formed under the influence

of the electron beam is observed. Due to the inherent small

signal-to-noise (S/N) ratio in the graphene image [5], as well

as the continuous beam induced changes of the atomic struc-

ture at the edge [10], the termination of the hole cannot be

completely resolved. Nevertheless, a predominant zigzag ter-

mination is assumed, which is in agreement with previous

findings [11]. In Figs. 1b and 2b, the reconstructed graphene

structure determined from the algorithm is overlaid, showing

the actual hexagonal lattice of the graphene. The color coding

represents the CAC bond lengths. As the absolute value

retrieved from the images is dependent on the imaging condi-

tions and the calibration, only the relative change within an

image is considered. Fig. 1b, representing a pristine area, gives

the impression of a homogenous distribution of bond lengths.

This is reflected in the bond length histogram (Fig. 3 red)

which exhibits a normal distribution.

For the case of a defective structure, as in Fig. 2, the algo-

rithm detects nearly all graphene hexagons. The only excep-

tions are structures close to the hole and the edge

termination itself, which most likely is due to insufficient

imaging conditions, as mentioned above. The area of amor-

phous carbon from the transfer process or synthesis (top left)

was disregarded manually, but the area of the hole is detected

by the algorithm and automatically left out in the analysis. A

homogenous distribution of bond lengths is observed to the

left and right of the hole. For the areas above and below the

hole, significantly shorter bond lengths are detected. This is

obvious in the histogram as well (Fig. 3 blue), where a tail to-

wards shorter bond length is visible. Suspended graphene is

known to form out-of-plane ripples [12], which are expected

to have a lateral size of 2–20 nm and a height of 0.2–1 nm,

with an inclination of �5� from the horizontal flat sheet. In

this case, the projection of the bond length is measured from

the image, making the lengths appear shorter. The shortest

Fig. 1 – Pristine graphene. (a) HRTEM image, (b) image

overlaid with the detected and reconstructed graphene

structure. The color coding represents the CAC bond

lengths. A homogenous distribution of bond lengths is

observed.
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observed bond lengths above and below the hole have a pre-

ferred orientation, almost horizontal in this image. This may

be explained by the graphene sheet being slightly folded, as

this should lead to a change in z-height as well as elastic

deformation and strain mainly in the direction perpendicular

to the fold, as we observe in the image. For an almost flat

sheet, these bond lengths would represent a strain of about

7–8%; a pure inclination without bond length change would

give an angle of about 22� between the two adjacent carbon

atoms and an offset in height of about 0.05 nm. The rear-

rangement and knock-out of carbon atoms under the electron

beam at the edge of the hole [10] can lead to structural defor-

mation as well. A combination of both, a real shorting of the

bond length and an artificial shortening due to projection in

the image, is the most realistic explanation of our finding. It

is important to notice, that even though the shorter bond

lengths are represented in the global histogram, the local

information, where these bonds actually appear in the struc-

ture, is only available in the image itself. The acquired local

information in the bond length indicates a possible correla-

tion between measured short bond lengths and folding of

graphene. The nature of the bond length shortening will be

clarified in a future study.

The automated structure detection for quantitative infor-

mation extraction from high-resolution TEM images is possi-

ble for a large amount of images at relatively low time–cost

and minimum manual interaction, making it easier and more

feasible to follow structural changes in a series of images.

Incremental and time dependent structural changes caused

by either electron beam induced effects and/or external stim-

uli like temperature, current etc. can be monitored and quan-

tified in future investigations in greater depths than standard

image analysis procedures allow.
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ABSTRACT

This contribution deals with classification of multilook fully polarimetric synthetic aperture radar (SAR) data
by learning a dictionary of crop types present in the Foulum test site. The Foulum test site contains a large
number of agricultural fields, as well as lakes, wooded areas, natural vegetation, grasslands and urban areas,
which makes it ideally suited for evaluation of classification algorithms.

Dictionary learning centers around building a collection of image patches typical for the classification problem
at hand. This requires initial manual labeling of the classes present in the data and is thus a method for supervised
classification. The methods aims to maintain a proficient number of typical patches and associated labels. Data
is consecutively classified by a nearest neighbor search of the dictionary elements and labeled with probabilities
of each class.

Each dictionary element consists of one or more features, such as spectral measurements, in a neighborhood
around each pixel. For polarimetric SAR data these features are the elements of the complex covariance matrix
for each pixel. We quantitatively compare the effect of using different representations of the covariance matrix
as the dictionary element features. Furthermore, we compare the method of dictionary learning, in the context
of classifying polarimetric SAR data, with standard classification methods based on single-pixel measurements.

Keywords: Discriminative dictionary learning, polarimetric SAR, multitemporal classification, Foulum

1. INTRODUCTION

Classification of crops using polarimetric SAR data is desirable due to the SAR’s ability to operate under all
weather conditions. The SAR measures dieletric and roughness properties of the target. A polarimetric SAR
transmits and receives both horizontally and vertically polarized signals. From this different scattering properties
of the target can be inferred. Classification of crops using these data relies on a difference in scattering properties
between different types of crops.

Most previous work explicitly models the distribution of the scattering matrix or backscatter coefficients.
This especially revolves around the complex Wishart distribution1,2 and the Beta distribution.3 No underlying
distribution is assumed in the work presented here, similar to, e.g., entropy based approaches.4

While the application of multitemporal acquisitions has previously shown improved results over single-data
acquisitions in classification crops,5 due to the large interseasonal variations, the inclusion of a spatial context
in the classification algorithms is not common in the literature. We quantitatively compare a spatially aware
classification method with a standard maximum likelihood approach based on single-pixel measurements.

Dictionary learning for supervised image classification gathers a collection of typical patches for each class
and ensures that these patches are separated in feature space. Thereby a sparse basis adapted to the problem at
hand is built. This approach has previously shown success in texture classification,6 biological7 and geophysical
applications.8 The method will be further described in Section 3.
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We apply this method to L-band single-polarimetric, dual polarimetry and full polarimetry SAR data from a
subset of the Foulum data set5,9 described in Section 2. The L-band data have previously been shown to be useful
for classification of crops.10 A quantitative comparison, varying the number of included temporal acquisitions
and the size of the spatial neighborhood will be given in Section 4.

2. DATA

The data analyzed are multilook L-band fully polarimetric SAR data recorded over the Foulum test site. Polari-
metric SAR data are acquired at four linear polarizations, HH, HV, VH, and VV, forming a scattering vector
for the reciprocal case

k = [SHH SHV SV V ]T (1)

where the subscripts denote receiving polarization before transmitting polarization. The data are multilooked
for speckle reduction and represented in a covariance matrix

Z =
1

n

n∑

i=1

kik
∗T
i =



〈|SHH |2〉 〈SHHS

∗
HV 〉 〈SHHS

∗
V V 〉

〈SHV S
∗
HH〉 〈|SHV |2〉 〈SHV S

∗
V V 〉

〈SV V S
∗
HH〉 〈SV V S

∗
HV 〉 〈|SV V |2〉


 (2)

where spatial averaging is denoted by 〈〉. The elements of this covariance matrix can be described by nine
independent real numbers,3 namely the three real numbers on the diagonal and the real and imaginary parts of
the three complex numbers above the diagonal. Thus a nine-vector xij represents the full polarimetric information
for the (i, j)’th pixel in the acquired image

xij =




xij(1)
xij(2)
xij(3)
xij(4)
xij(5)
xij(6)
xij(7)
xij(8)
xij(9)




=




〈|SHH |2〉
〈|SHV |2〉
〈|SV V |2〉

Re[〈SHHS
∗
HV 〉]

Im[〈SHHS
∗
HV 〉]

Re[〈SHV S
∗
V V 〉]

Im[〈SHV S
∗
V V 〉]

Re[〈SHHS
∗
V V 〉]

Im[〈SHHS
∗
V V 〉]




. (3)

Four different polarimetric modes are simulated by extracting different combinations of elements from this
intensity vector. The number of elements in each mode is denoted p. Single-polarization in the horizontal
direction consists of only the first element 〈|SHH |2〉 and similarly the vertical direction is represented by the
third element, i.e., p = 1 for both. These modes are referred to as HH and VV respectively. Dual-copolarization
(HHVV) is transmitting in both directions and receiving in both, though not acquiring the cross polarizations.
Thus it consists of the p = 4 corner elements of the covariance matrix, corresponding to the first, third, eighth
and ninth element of the intensity vector. The final mode is full polarimetry using all elements (p = 9) of the
intensity vector for each pixel.

Figure 1a shows a pseudo-RGB image of the area analyzed, where red, green and blue are represented by the
linearly stretched logarithmic values of the second, first and third element of the intensity vector in Eq. (3).

The Foulum test site contains 35 fields, where the grown crops are known, surrounded by a large area of
unknown vegetation, lakes, grasslands and urban areas. The 35 fields are categorized into six classes of crops:
rye, grass, winter wheat, spring barley, peas and winter barley. Figure 1b shows the ground reference data and
the division into training and test set, which will be used in Section 4.

The full image is 1024 × 1024 pixels, where the first 700 columns are devoted to testing and the remainder
for training. A few simple statistics on the training and test set can be seen in Table 1. It is worth noting that
(1) the classes are not represented by an equal proportion of their occurrence in the test set, e.g., “grass” and
“spring barley” are under represented in the training data, and (2) the total number of observations in each class
is far from equal. Four temporally separate acquisitions covering this area are considered in Section 4.
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(a)

 

 

Test
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Rye

Grass

W. wheat

S. barley

Peas

W. barley

(b)

Figure 1: a) Pseudo-RGB image of the fully polarimetric SAR data. Red, green and blue represents the second,
first and third element of the intensity vector in Eq. (3). b) Ground reference data for the Foulum test site
consist of six known classes of crops and a large area of unknown background.

Class # of fields Nm Nm/N
total N train

m /Nm N test
m /Nm

Rye 4 61583 0.23 0.43 0.57
Grass 6 56836 0.21 0.2 0.8
W. wheat 8 57685 0.22 0.18 0.82
S. barley 7 39481 0.15 0.14 0.86
Peas 8 42846 0.16 0.36 0.64
W. barley 2 9622 0.04 0.62 0.38

Table 1: Simple statistics on the division of classes into training and test sets. Nm is the number of observations
in the m’th class. The division is illustrated in Figure 1b.
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3. METHODS

We propose using a learned discriminative dictionary of polarimetric SAR data patches and extend these to
include multiple temporal acquisitions. This method will be described below. A Bayesian maximum likelihood
classifier is used for comparison and will be described in Section 3.2.

3.1 Discriminative dictionary learning

Often texture contains important information for image segmentation. This is utilised in the segmentation
approach based on discriminative image patches.6 The segmentation is done in small image patches of

√
n×
√
n

pixels using a learned intensity dictionary D ∈ Rn×m. Each image patch is concatenated to form a vector of
size n and the dictionary contains m of these vectors. In addition to the intensity dictionary a label dictionary
L ∈ Rnl×m is given where the i’th column vector in L correspond to the i’th column vector in the intensity
dictionary D. The label dictionary vectors are concatenated from image patches of

√
n ×
√
n × l pixels with a

channel for each l class labels. The pixel values of the label patches correspond to the probability of a given
label.

Segmentation is performed using a nearest neighbour classification among the column vectors of the intensity
dictionary. For the image to be segmented a patch x of

√
n×
√
n pixels is chosen. The nearest neighbour dj is

found by

dj = arg min
D
||di − x||, i ∈ {1, ...,m}. (4)

The corresponding label vector lj contains the probabilities for the label classes, and choosing the most probable
label for each pixel will provide a segmentation for that image patch. Segmenting the entire image is done by
densely sampling overlapping image patches of

√
n×
√
n and averaging the overlapping regions. Hereby an image

containing label probabilities is obtained.

The segmentation procedure is supervised and need training samples to build the dictionaries. Given a set of
training image patches and corresponding label patches the dictionary is constructed using a weighted k-means
clustering approach. The weights are obtained from the label patches in such a way that image patches in a
cluster has similar label patches. Details on building the dictionary can be found in Dahl and Larsen.6

3.1.1 Multitemporal dictionary atoms

For the purposes here we extend the dictionary atoms to include multitemporal acquisitions of polarimetric SAR
scatter information. This is done by concatenating all information to a vector for each pixel, as illustrated in
Figure 2. For a dictionary atom of spatial extent

√
n×
√
n pixels, p unique elements from the intensity vector in

Eq. (3) and ∆t temporal acquisitions, the number of features – and thereby the dimensionality of the intensity
dictionary – is n · p ·∆t.

The dimensions of the dictionary thus rapidly grows when including a larger spatial context, working in a
more complex polarimetric mode or including more temporal acquisitions.

3.2 Maximum likelihood classification

The classification results obtained by employing discriminative dictionary learning are compared with the stan-
dard Bayesian Maximum Likelihood (ML) classifier. For multilook single-polarimetric SAR data it is assumed
that the backscatter coefficients follow a Gaussian distributions, when the number of looks is large enough. We
make this assumption here.

The negative log-likelihood Lm(f) for the feature vector f belonging to the m’th class with covariance Σm

and mean µm is

Lm(f) =
1

2
(f − µm)

T
Σ−1

m (f − µm) +
1

2
log |Σm| − log πm (5)

according to the ML classifier. Here πm denotes the prior probability of the m’th class. We assume equal prior
probabilities for all classes. The feature vector f is of length ∆t · p with the same definitions as previously.
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√
n

√
n
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∆t

=

1

p
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n · p ·∆t

Figure 2: Illustrating concatenation of multitemporal (here three) acquisitions of spatially extending polarimetric
scattering information into vector form.

√
n is the width of the dictionary atom, p the number of included

elements from the vector in Eq. (3) and ∆t is the number of temporal acquisitions included.

Similarly, the dual-copolarimetric and fully polarimetric SAR data are assumed to follow a complex Wishart
distribution.1,5 For these modes the ML classifier takes the form

Lm(x) = n
[
Tr(Σ̄

−1
m x) + log |Σ̄m|

]
− log πm (6)

where x is the covariance matrix for the observation to be classified, n is the number of looks, and Σ̄m is
the average covariance matrix for all observations belonging to class m. For dual-copolarization data this is a
complex matrix of size 2× 2 and for fully polarimetric data it is of size 3× 3. In the multitemporal case, this is
calculated independently for each acquisition and summed for each class.

4. RESULTS

Results are obtained by training each method on the training part of the image illustrated in Figure 1b. For the
dictionary learning method the training amounts to building the dictionary given an atom size

√
n, a number of

temporal acquisitions (time points) ∆t to include and the polarimetric mode, implicitly defining p. Training the
ML classifier for a given ∆t and polarimetric mode corresponds to estimating the class covariances and means,
such that Eq. (5) and (6) can be evaluated for a new observation.

The classification results are shown numerically in Table 2, where the best performing representation/parameter
combination is shown in bold. The numbers are classification errors, i.e., the percentage of misclassified observa-
tions in each class. The results are divided into polarimetric modes by row and number of temporal acquisitions
∆t by column. The width of the dictionary atoms and the single-pixel ML classifier are included as sub-columns.

∆t 1 2 3 4√
n 3 5 7 ML 3 5 7 ML 3 5 7 ML 3 5 7 ML

HH 0.55 0.52 0.51 0.88 0.42 0.41 0.44 0.76 0.36 0.35 0.35 0.72 0.39 0.39 0.39 0.70
VV 0.61 0.59 0.58 0.84 0.41 0.42 0.46 0.65 0.37 0.33 0.38 0.51 0.29 0.28 0.29 0.56
HHVV 0.45 0.45 0.43 0.69 0.27 0.27 0.30 0.44 0.26 0.25 0.25 0.35 0.24 0.24 0.27 0.30
Full 0.42 0.43 0.41 0.71 0.27 0.29 0.33 0.50 0.26 0.27 0.27 0.37 0.22 0.23 0.25 0.32

Table 2: Classification errors. Polarimetric mode is by row, number of temporal acquisitions by column and
dictionary size by sub-column together with the single-pixel ML classifier. The minimum error for each classifier
is marked in bold.

It is seen that the classification errors for the dictionary learning approach ranges from 22% to 61%, while the
ML classifier has a minimum of 30% and maximum of 88%. For both classifiers the maximum classification error
is obtained using single-polarization (HH or VV) and a single acquisition. The best classification is obtained
by use of dual-copolarimetry for the ML classifier and full polarimetry for the dictionary classifier. Both prefer
using all four temporal acquisitions.
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It should be noted that while the classification errors are much lower for the dictionary approach, the compu-
tation times are much higher. They vary from approximately 20 seconds to 7.5 minutes, while the ML classifier
maximally spends 7.4 seconds. This is primarily due to the high dimensional space in which the nearest neighbor
search is performed.

Figures 3a–b also show the classification error for the four polarimetric modes using dictionary learning with
three different atom sizes

√
n = {3, 5, 7} in black and the ML classifier (red dots). All error plots are classification

errors as a function of ∆t.

The superior method for classification of this data set is clearly the dictionary learning approach. In all
cases this method has a lower classification error than the ML classifier. Collectively from the results it can be
inferred that the inclusion of multiple temporal acquisitions (up to at least three) improves the crop classification,
which is consistent with other studies.5 It is also apparent that the HHVV and fully polarimetric modes bring
significant information to both classification methods.

The dictionary atom’s spatial extent does not seem to be a parameter for classification of this particular
data set as very similar results are obtained for the three sizes tested, though it seems that the largest atom of
7× 7 almost never outperforms the others. Based on this, the atom should be chosen to be 3× 3 to reduce the
computational load.

The best classification result for the dictionary learning method was obtained using the full polarimetric
information and parameters ∆t = 4,

√
n = 3. The classified image using these parameters can be seen in Figure

4a. The lowest classification error for the ML classifier was obtained using the dual-copolarization (HHVV)
polarimetric mode and ∆t = 4. The classified image using these parameters can be seen in Figure 4b.

Comparing the two classified images it is apparent that the spatially aware dictionary method yields a spatially
more coherent classification, compared to the spatially fluctuating result of the single-pixel measurement based
ML classifier.

Confusion matrices for the two classification results are shown in Tables 3a–b. Both methods show large
amounts of winter barley and grass classified as rye. However, the classification of grass is superior by use of
the ML classifier by approximately 14%. Interestingly, rye is misclassified as winter barley and/or winter wheat,
depending on the method. Inspection of Figures 4a–b reveals that it is approximately the same region in the
center rye field that is difficult for the methods to classify. More interesting is perhaps the large amount of
confusion into winter barley for the ML classifier, which may be attributed to the small number of training
samples for this class. The classification of rye and winter wheat suffer from the ML classifier’s confusion, both
being reduced approximately 20%.
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(a) Dictionary learning
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Rye 66 21 11
Grass 15 80
W. wheat 22 43 30
S. barley 88
Peas 9 86
W. barley 50 7 12 29

(b) Maximum likelihood classification

Table 3: Confusion matrices belonging to the classification shown in Figures 4a–b for classification of the six
classes. Numbers are percent of the row-class classified as the column-class. Errors below 5% are omitted.

A few points are worth mentioning: The large overall difference between the two methods’ performances might
be due to the significant difference between (1) not assuming any distribution and doing a nearest neighbor look-
up, and (2) assuming a distribution and modelling each class separately. This is, however, the original forms of
the two classification methods. It should be noted that the dictionary method excels in modelling the transition
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(a) Single-polarization HH
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(b) Single-polarization VV
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(c) Dual-copolarization HHVV
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(d) Full polarimetry

Figure 3: Classification errors as a function of the number of time points included. Dictionary learning classi-
fication errors are shown in black with square markers and separate dash styles for each atom size. Maximum
likelihood classification errors are shown in red with circular markers. Each plot represents one polarimetric
acquisition mode.
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Figure 4: a) Dictionary learning for minimal classification error of 26% with polarimetric mode = Full, ∆t =
4,
√
n = 3. b) Maximum likelihood classification for 30% error with polarimetric mode = HHVV, ∆t = 4.

between classes, which is not exploited fully here, due to the nature of the data set (all fields are separated
by at least one pixel). Furthermore, it could be argued that the deterministic partition of the image data
into training and test set could have an influence on the performance. While the performance in general is
significantly different, the best classification for both methods is only 8% apart. Whether this is due to this
particular data set, or similar performances can in fact be achieved in general for crop classification by careful
choice of polarimetric mode and parameters, must be investigated in a larger scale study.

5. CONCLUSIONS

A discriminative dictionary of SAR image patches has been trained and used for classification of crops at the
Foulum test site. It was found that full polarimetry SAR and inclusion of multitemporal acquisitions gave
the best classification results for this method, namely a classification error of 22%. The standard maximum
likelihood classifier, assuming a complex Wishart distribution for the dual-copolarimetric SAR data, achieved a
classification error of 30%.

We have shown that this general approach to classification, considering contextual information and making
no assumptions on distribution of the data, has a potential for crop classification in polarimetric SAR data. We
have verified that inclusion of multitemporal acquisitions reduces the classification error for the classification
methods evaluated here.
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Appendix H

B-spline registration of points
to image

The reference image is denoted R and image values at coordinate xi = [xi, yi]
as R(xi). The set of N points x = {xi}Ni=1 represents the grid node locations.

We model the deformation using a set of tensor B-splines. The tensor B-splines
are created from separable one-dimensional splines. The set of knots ξx is the
basis for the splines {Bxj }mx

j=1 along the x-axis and similarly the set of knots ξy
for the splines {Byj }

my

j=1 along the y-axis.
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H.1 The Q matrix

First, we define the matrices Qx and Qy as

Qx =

 B1(x1; ξx) B1(x2; ξx) . . . B1(xn; ξx)
...

. . .
...

Bmx
(x1; ξx) Bmx

(x2; ξx) . . . Bmx
(xn; ξx)

 (H.1)

Qy =

 B1(y1; ξy) B1(y2; ξy) . . . B1(yn; ξy)
...

. . .
...

Bmy
(y1; ξy) Bmy

(y2; ξy) . . . Bmy
(yn; ξy)

 (H.2)

such that the (i, j)’th element of Qx is the value in the j’th point of the i’th
spline along the x-axis Bxi (xj ; ξx).

The N ×mxmy matrix Q′ holds the values for each N points, of each tensor
spline. Since the B-splines are separable, this matrix can be written in terms of
the Khatri-Rao product � of Qx and Qy:

Q′ = (Qx �Qy)T . (H.3)

This Khatri-Rao product effectively multiplies all elements in i’th column of Qx

with all elements in the same column of Qy. Thus the matrix Q′ has values for
a single tensor spline per column, while observations are per row. The matrix
referred to as Q in the following is defined as Q = I2 ⊕Q′.

A function for setting up Q′ is outlined in pseudo code in Algorithm 1.

Algorithm 1 Set up matrix Q′ of B-spline values for a set of points

Require: x is set of points, ξx is knot sequence along x-axis, ξy is knot sequence
along y-axis.

1: function getQ(x, ξx, ξy)
2: Qxij ← Bxi (xj ; ξx) ∀i ∈ [1, N ], j ∈ [1,mx] . Eq. (H.1)
3: Qyij ← Byi (yj ; ξy) ∀i ∈ [1, N ], j ∈ [1,my] . Eq. (H.2)

4: Q′ ← (Qx ⊗Qy)T . Eq. (H.3)
5: return Q′

H.2 Objective function

To optimize the grid points’ correspondence with the reference image, an ob-
jective function is formulated. The objective function J (w) to be minimized



H.2 Objective function 259

under the two-norm is

J (w) = ‖R(x + Qw)‖2 . (H.4)

Here w is the weight vector to be determined. Consequently the i’th element
wi holds the weight of the i’th tensor spline.

Linearization of Eq. (H.4) under the norm yields:

J (w + ∆w) = ‖R(x + Q(w + ∆w))‖2

= ‖R(x + Qw + Q∆w))‖2

≈ ‖R(x + Qw) +∇R(x + Qw)Q∆w))‖2

= ‖R(y) +∇R(y)Q∆w))‖2 where y = x + Qw

= R(y)TR(y) +R(y)T (∇R(y)Q∆w)+

(∇R(y)Q∆w)T (R(y) +∇R(y)Q∆w) (H.5)

where ∇R(y) is the spatial gradient arranged as

∇R(y) =
(
Gx Gy

)
, Gx = diag

(
∂R(y1)

∂x
, . . . ,

∂R(yN )

∂x

)
. (H.6)

Differentiating with respect to the change in weights ∆w:

∂J
∂∆w

= (∇R(y)Q)T [R(y) +R(y) + 2∇R(y)Q∆w]

= 2 (∇R(y)Q)
T

[R(y) +∇R(y)Q∆w] . (H.7)

Defining the Jacobian A = ∇R(y)Q and setting the derivative equal to zero
yields:

∂J
∂∆w

= 0 = 2AT (R(y) + A∆w)⇒

0 = ATR(y) + ATA∆w⇔
ATA∆w = −ATR(y) . (H.8)

Also useful is the gradient in the current point w which is obtained by differen-
tiation of Eq. (H.4):

∂J
∂w

= 2(∇R(y)Q)TR(y) = 2ATR(y) . (H.9)
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Adding regularization Redefining the objective function to include regular-
ization of the weights with parameter α, such that it reads

J (w) = ‖R(x + Qw)‖2 + αwT Iw (H.10)

with gradient

∂J
∂w

= 2(∇R(y)Q)TR(y) + 2αw = 2(ATR(y) + αw) . (H.11)

Linearization under the norm and differentiation of this objective function yields:

∂J
∂∆w

= 2
(
AT [R(y) + Aw] + α(w + ∆w)

)
(H.12)

Setting this derivative equal to zero yields the linear system of equations:

∂J
∂∆w

= 0 = 2
(
AT [R(y) + A∆w] + α(w + ∆w)

)
⇒

0 = ATR(y) + ATA∆w + αw + α∆w⇔(
ATA + αI

)
∆w = −AR(y)− αw . (H.13)

Letting observations contribute individually We now allow each obser-
vation to contribute with an individual weight to the objective function. The
weights are collected in a diagonal matrix C with elements Cii = ci, i ∈ [1, N ]
where ci ∈ [0, 1]. The objective function now reads

J (w) = ‖CR(x + Qw)‖2 + αwT Iw (H.14)

with gradient
∂J
∂w

= 2(ATCTCR(y) + αw) . (H.15)

Linearization under the norm and differentiation yields:

∂J
∂∆w

= 2
[
ATCTC (R(y) + A∆w) + α(w + ∆w)

]
. (H.16)

Setting this derivative equal to zero results in the linear system of equations to
solve for ∆w:

∂J
∂∆w

= 0 = ATCTCR(y) + ATCTCA∆w + α(w + ∆w)

= BTCR(y) + BTB∆w + αw + α∆w⇔
BTB∆w + α∆w = −

(
BTCR(y) + αw

)
⇔

(BTB + α)∆w = −
(
BTCR(y) + αw

)
(H.17)

where B = CA.
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Diffusion type regularization Defining a diffusion type regularizer S(u) as

S(u) =
∑
xi∈x

(
∂u

∂x

)2

+

(
∂u

∂y

)2

(H.18)

where xi = [xi, yi] are the points to be registered and u = Qw is the deforma-
tion, i.e., defined for each xi. The deformation of a single point can be written
in terms of the basis functions and the weights

u(xi) =

mx∑
j=1

my∑
k=1

Bj(xi)Bk(yi)wij . (H.19)

Thus we can write the elements of the diffusion equation in terms of the B-spline
derivatives

∂u(xi)

∂x
=

mx∑
j=1

my∑
k=1

B′j(xi)Bk(yi)wij

∂u(xi)

∂y
=

mx∑
j=1

my∑
k=1

Bj(xi)B
′
k(yi)wij (H.20)

where b′j(xi) is the derivative of the j’th B-spline along the x-axis in xi. We
arrange these derivatives in a matrix of same form as in Eqs. (H.1) and (H.2)

Q′x =

 B′1(x1; ξx) B′1(x2; ξx) . . . B′1(xn; ξx)
...

. . .
...

B′mx
(x1; ξx) B′mx

(x2; ξx) . . . B′mx
(xn; ξx)

 (H.21)

Q′y =

 B′1(y1; ξy) B′1(y2; ξy) . . . B′1(yn; ξy)
...

. . .
...

B′my
(y1; ξy) B′my

(y2; ξy) . . . B′my
(yn; ξy)

 . (H.22)

The interactions from Eqs. (H.20) can now be collected in N ×mxmy matrices
as

Dx = (Q′x �Qy)T (H.23)

Dy = (Qx �Q′y)T (H.24)

and the derivative of the deformation in each point is collected in two N -vectors

∂u(x)

∂x
= Dxw

∂u(x)

∂y
= Dyw . (H.25)
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Finally the regularizer from Eq. (H.18) can be written in terms of these as

S(u) =
∑
xi∈x

(
∂u

∂x

)2

+

(
∂u

∂y

)2

= (Dxw)T (Dxw) + (Dyw)T (Dyw)

= wTDT
xDxw + wTDT

y Dyw

= wT (DT
xDx + DT

y Dy)w

= wTDw (H.26)

where we have defined D = DT
xDx + DT

y Dy.

Rewriting the objective function in terms of this diffusion regularizer yields

J (w) = ‖CR(x + Qw)‖2 + α(‖Dxw‖2 + ‖Dyw‖2) . (H.27)

The gradient is
∂J
∂w

= 2(ATCTCR(y) + αDw) . (H.28)

The linear system of equations to be solved for the change in weights ∆w is

(ATCTCA + αD)∆w = −
(
ATCTCR(y) + αDw

)
. (H.29)

Optimization of the objective functions in Eqs. (H.4), (H.10), (H.14) and (H.27)
can be formulated in a Gauss-Newton type algorithm, as in Algorithm 2. A back-
tracking line search algorithm is implemented as described in Vester-Christensen
et al. (2008).

H.3 Expanding grid algorithm

Locating all spots (hexagon centers) in an image starts from a given seed point
and a bounding box, constraining the final extent of the grid nodes. From the
seed point, the grid is grown outwards. Algorithm 3 summarizes the strategy,
namely alternating between adding and aligning points.
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Algorithm 2 Align grid of points to reference image using B-spline deforma-
tions

Require: x is a set of points, R is the reference image, α is a regularization
parameter on the deformation field, w is initial weight vector.

1: function AlignGrid(R,x,Q′,w, α)
2: Q ← I2 ⊗Q′

3: while !stop do
4: y ← x + Qw
5: A ← ∇R(y)Q

6: ∆w ←
(
ATA + αI

)−1
(−ATR(y)− αw)

7: β ← linesearch(∆w)
8: w ← w + β∆w

9: return w,y

Algorithm 3 Find hexagon centers by alternating between expanding and
aligning grid. The function ExpandGrid simply adds a line of hexagon centers
to the left, right, top or bottom of the existing grid. The direction of expansion
depends on k.

Require: x is set of initial points, R is reference image, α is regularization
parameter, bb specifies a bounding box for the grid.

1: function FindSpots(R,x, bb)
2: w ← 0, k← 0
3: while #added ¿ 0 do
4: k++

5: xnew ← ExpandGrid(k,bb) . xnew: Points added.
6: Q′new ← getQ(xnew, ξx, ξy)

7: Q′ ←
[

Q′

Q′new

]
, x←

[
x

xnew

]
8: w,y ← AlignGrid(R,x,Q′,w, α)
9: #added ← |xnew| . | · |: Cardinality of set

10: return y
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Appendix I

Quadratic surface fitting

A quadratic surface can be parameterized as

z(x, y) = ax2 + by2 + cxy + dx+ ey + f . (I.1)

Fitting a quadratic surface in an n × n window amounts to estimating the
parameters a, b, . . . , f from the n2 values. Centering the patch on (x0, y0) the x
and y-coordinates are in relation to this center.

Observing a patch Z of size 5× 5 with values

Z =


z1,1 z1,2 z1,3 z1,4 z1,5

z2,1 z2,2 z2,3 z2,4 z2,5

z3,1 z3,2 z3,3 z3,4 z3,5

z4,1 z4,2 z4,3 z4,4 z4,5

z5,1 z5,2 z5,3 z5,4 z5,5

 =


z1 z6 z11 z16 z21

z2 z7 z12 z17 z22

z3 z8 z13 z18 z23

z4 z9 z14 z19 z24

z5 z10 z15 z20 z25


where two-element subscripts denote row/column indices and one-element sub-
scripts denote linear indices.
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For such a patch, the x and y-coordinates are:

x̄ = (x−x0) =


−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2

 ȳ = (y−y0) =


−2 −2 −2 −2 −2
−1 −1 −1 −1 −1
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

 .

The parameters are estimated by, e.g., the Least Squares solution to the linear
system of equations


z1

z1

...
zn2

 =


x̄2

1 ȳ2
1 x̄1ȳ1 x̄1 ȳ1 1

x̄2
2 ȳ2

2 x̄2ȳ2 x̄2 ȳ2 1
...

...
...

...
...

...
x̄2
n2 ȳ2

n2 x̄n2 ȳn2 x̄n2 ȳn2 1



a
b
c
d
e
f

+ ε . (I.2)

Having obtained the parameters a, b, . . . , f , its extremum (x?, y?) can be found
by differentiating (I.1) and setting equal to zero:

∂z

∂x
= 0 ∧ ∂z

∂y
= 0⇔

2ax? + cy? + d = 0 ∧ 2by? + cx? + e = 0

This can be formulated as a linear system of equations, which can be solved for
(x?, y?): [

2a c
c 2b

] [
x?

y?

]
=

[
−d
−e

]
(I.3)



Appendix J

Microsatelite analysis in
kernel space

Microsatellite data for a single individual consist of the number of repeats of a
given microsatellite at each chromosome. As such, microsatellite data are multi-
allelic. The microsatellite occurs as a molecular marker at – ideally – the same
locus across individuals. It is assumed that a given repeat number occurs as a
new mutation in the genome only once. Thus, if two individuals share the same
repeat number they are assumed to have inherited it from a common ancestor.
If the number of repeats are not the same, the allele is not shared.

Microsatellites differ from single-nucleotide polymorphisms (SNPs) in that three
or more repeat number alleles can occur at each locus, where SNPs are binary
markers.

The multi-allelic nature of the microsat data complicates the use of standard
data analysis tools (Hansen et al., 2001). Let A be a given number of repeats and
B 6= A another number of repeats of a given microsat. At a bi-allelic locus, an
individual can have one of the following configurations {A,A}, {A,B}, {B,B}.
{B,A} is not included, as the configuration needs to be seen as an unordered
set and is thus the same as {A,B}.
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J.1 A Mercer kernel for microsatellite data

Here a kernel function, valid according to Mercer (1909), is derived. Martin
(2011) made a similar derivation, where the distance measure used here is re-
ferred to as the Nei-Li distance.

A simple, yet accepted (Murray, 1996), distancemeasure between two individu-
als’ microsatellite responses is the average number of differing alleles. The set
of alleles for the i’th individual Si is an unordered set. Thus a listing of possible
distances d(S1,S2) are:

d({A,A}, {A,A}) = 0

d({A,B}, {A,B}) = 0

d({A,A}, {A,B}) = 0.5

d({A,A}, {B,A}) = 0.5

d({A,A}, {B,B}) = 1 .

A similarity measure exactly fulfilling this is the cardinality of the intersection
of the two sets divided by the average cardinality of each set. Thus a distance
between the two sets can be written as

d(Si,Sj) = 1− 2|Si ∩ Sj |
|Si|+ |Sj |

. (J.1)

The similarity measure incorporated here is also known as Sørensen’s coefficient
or Dice’s coefficient (Dice, 1945). It is widely used in, e.g., image analysis to
quantify amount of overlap between two segmentation results.

The distance measure immediately extends to multiple microsatellites per indi-
vidual as an average over all microsats.

Claim 1. The function

d(Si,Sj) = 1− 2|Si ∩ Sj |
|Si|+ |Sj |

of two sets Si and Sj with |S̄| ≡ |Si| = |Sj | is a valid distance metric and the
symmetric matrix K ∈ Rm×m with elements Kij = d(Si,Sj) i, j ∈ [1,m] is
thus a positive semi-definite matrix.

Proof. The function d need to fulfil the four conditions

1. Non-negativity: d(Si,Sj) ≥ 0.
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• Since |Si ∩ Sj | ≤ min (|Si|, |Sj |) then
2|Si∩Sj |
|Si|+|Sj | ≤ 1 and the condition

is thus fulfilled.

2. Coincidence: d(Si,Sj) = 0 iff Si = Sj

• Since |Si ∩ Sj | = min (|Si|, |Sj |) = |S̄| if and only if Si = Sj the
condition is fulfilled. This holds due to the equal cardinality of the
two sets.

3. Symmetry: d(Si,Sj) = d(Sj ,Si).

• Trivially fulfilled from the definition.

4. Triangle inequality: d(Si,Sj) ≤ d(Si,Sk) + d(Sj ,Sk).

• The following must hold:

2− 2|Si ∩ Sk|
|Si|+ |Sk|

− 2|Sj ∩ Sk|
|Sj |+ |Sk|

≥ 1− 2|Si ∩ Sj |
|Si|+ |Sj |

⇔

|Si ∩ Sk|+ |Sj ∩ Sk| ≤ |S̄|+ |Si ∩ Sj | (J.2)

. Decomposing into disjoint sets

|Si ∩ Sk|+ |Sj ∩ Sk| = |Si ∩ Sj ∩ Sk|+ |Sj ∩ Sk|+ | (Si \ (Si ∩ Sj)) ∩ Sk|

and since |Si ∩Sj ∩Sk| ≤ |Si ∩Sj | and |Sj ∩Sk|+ | (Si \ (Si ∩ Sj))∩
Sk| ≤ |S̄| this implies that (J.2) is fulfilled.

The semi-positive definiteness of K follows directly from the fact that it
is symmetric and non-negative.

A set of conditions formulated by Mercer (1909) ensure that the kernel space
V is a reproducing kernel Hilbert space (RKHS). The validity of Claim 1 also
implies that a kernel with entries according to the distance measure in Eq. (J.1)
is a valid Mercer-kernel (Mercer, 1909).
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Appendix K

Reaction-diffusion
mechanisms

The reaction-diffusion (R-D) equation for a one chemical system is

∂a

∂t
= f(a) +D∇2a , (K.1)

where a = [a1, . . . , aN ]T is the vector of concentrations of the chemical (or mor-
phogen) in each N cells at some time t, f(·) describes the element wise reaction,
D is the diffusion coefficient and ∇2a the Laplacian incorporating the spatial
characteristics of the diffusivity, i.e., accounting for nearby contributions to the
concentration of ai due to diffusion. Two chemical systems can be modelled as

∂a

∂t
= f(a,b) +Da∇2a (K.2)

∂b

∂t
= g(a,b) +Db∇2b (K.3)

where b is concentration for the second chemical (Murray, 2002). Turing (1952)
argued that this set of equations can be used to drive pattern formation: in
the abscence of diffusion (Da = Db = 0) the concentrations will stabilize, but
when Da 6= Db and other certain conditions are fulfilled spatially inhomogeneous
patterns can emerge due to diffusion driven instability (Murray, 2002). Gierer
and Meinhardt (1972) has shown that local self-enhancement and long-range
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inhibition in the R-D system is the driving force of pattern formation and models
have been derived on that basis for a wide range of biological systems, (see e.g.,
Bard, 1981, Meinhardt, 1993, Koch and Meinhardt, 1994, Meinhardt, 1999, Shoji
et al., 2003, Kondo and Miura, 2010, Allen et al., 2013). Turk (1991) coins the
requirements for pattern formation:

The key to pattern formation based on reaction-diffusion is that an
initial small amount of variation in the chemical concentrations can
cause the system to be unstable initially and to be driven to a stable
state in which the concentrations of a and b vary across the surface.

Let us consider the reaction equations proposed by Turk (1991):

f(ai, bi) = s(16− aibi) (K.4)

g(ai, bi) = s(aibi − bi − βi) , (K.5)

where βi ∼ N (aibi−bi, σ2
p) is a slight random perturbation to the initial concen-

trations, s is a scaling factor related to the size of the domain. Turk proposes the
discrete approximation of the Laplacian in 1D by∇2xi = xi+1+xi−1−2ai where
x ∈ RN and on a 2D regular grid by ∇2Xij = Xi+1,j+Xi−1,j+Xi,j+1+Xi,j−1−
4Xij where X ∈ RM×N . This discretization is conveniently implementable as
a convolution and assuming periodic boundary conditions, i.e., xN+1 = x1,
reduces the boundary artefacts.

Figure K.1 shows simulation results in a 1D domain for N = 120 cells at differ-
ent t and different scaling factors. It is seen how the scaling factor influences
the periodicity of the pattern and how a less localized mechanism (small scal-
ing factor) converges much slower than a very localized (large scaling factor)
mechanism. This is due to the diffusion “trickles off” faster in the latter case.

Similarly a 2D simulation can be seen in Figure K.2, where chemical a is spread
over a domain of size M×N = 120×120. The concentration is shown on a false
color scale and the binary image show areas in red where a > a0. Chemical b
is not shown as the pattern is similar in nature, though complimentary like in
the 1D case.

The diffusivity of each chemical can influence the final patterning in remarkable
ways. In Figures K.3a–K.3d two different values of Db have been used, creating
either maze-like or dotty patterns. In Figures K.3e–K.3f the value ofDb has been
mapped linearly between these two values as a function of the y-axis position.
This elucidates one of the ways of making controllable patterns, namely by
spatial variation of one or more of the parameters. Another way would be
to introduce so-called prepatterning (see e.g., Meinhardt and Meinhardt, 1982,
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Figure K.1: One-dimensional reaction-diffusion simulations for a two-chemical
system with N = 120 cells, initial values a0 = b0 = 4, diffusion
coefficients Da = Da = 0.25, Db = 0.0625 and initial perturbation
σp = 0.05. Scaling factors s = {0.0078125, 0.03125} are used and
the simulation is stopped after t = {500, 3000, 10000} time steps.
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Figure K.2: Two-dimensional reaction-diffusion simulations for a two-
chemical system with 120 × 120 cells in a grid, initial values
a0 = b0 = 4, diffusion coefficients Da = 0.25, Db = 0.0625, ini-
tial perturbation σp = 0.001, scaling factor s = 0.03125 are used
and the simulation is stopped after t = {100, 900} time steps.
The left column shows concentrations of a and the right column
shows a > 0.
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Turk, 1991, Kondo and Miura, 2010), where the pattern is laid out in a series of
consecutive simulations, freezing parts of the domain along the way. Yet another
way would be implementation of specific boundaries or specialized domains, or
as suggested by Shoji et al. (2003) anisotropic diffusion.

Anisotropic diffusion modulates the diffusion by introducing an anisotropy mag-
nitude δa ∈] − 1, 1[ for one of the chemicals. The R-D equations in Eqs. (K.2)
and (K.3) now includes an anisotropy function α(·) such that

∂a

∂t
= f(a,b) +Daα(θ)∇2a (K.6)

∂b

∂t
= g(a,b) +Db∇2b , (K.7)

where

α(θ) =
1√

1− δa cos 2θ
(K.8)

and θ is the angle to the neighboring cell currently considered. For a grid where
diffusion is approximated by using only the horizontal and vertical neighbors

θ = {0, π
2
} respectively. Here we have chosen to maintain Da as a separate term

to make it easier to compare with previous experiments. It is seen how δa = 0
reduces the model to the original in Eqs. (K.2)–(K.3) and thus corresponds
to no anisotropy, δa → −1 results in strong diffusivity along the x-axis and
δa → 1 results in strong diffusivity along the y-axis. This is confirmed by the
simulations shown in Figure K.4.
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Figure K.3: (a)–(d) Two-dimensional reaction-diffusion simulations for a two-
chemical system with same parameters as in Figure K.2, except
the diffusivity Db is different between the two simulations and
5000 time steps have been simulated. (e)–(f) Diffusivity coeffi-
cient Db is stretched linearly between 0.0125 and 0.5 from top
to bottom. Here a scaling factor of s = 0.015625 was used and
10000 time steps were simulated.
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Figure K.4: Concentration of chemical b after 10000 time steps. Two different
values for the anisotropic diffusion magnitude δa are used.
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