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Abstract

This paper introduces a novel method to select groups of variables in
sparse regression and classification settings. The groups are formed based
on the correlations between covariates and ensure that for example spatial
or spectral relations are preserved without explicitly coding for these. The
preservation of relations gives increased interpretability. The method is
based on the elastic net and adaptively selects highly correlated groups of
variables and does therefore not waste time in grouping irrelevant variables
for the problem at hand. The method is illustrated on a simulated data set
and on regression of moisture content in multispectral images of sand. In
both cases, the predictions were better or similar to existing regression and
classification algorithms and the interpretation was enhanced using the
grouping method. On top of that, the grouping method more consistently
selects the important variables.

I. Introduction

Highly correlated covariates are common in for example image analysis where
correlations exist both spatially and spectrally. The correlations arise naturally
since the measurements are taken from an underlying continuous process. The
two facts: that data come from an underlying continuous process and that
there are many similar (highly correlated) variables in the high-dimensional
data, were described by Donoho (2000) as blessings of dimensionality. This
implies two things. One, that the underlying structure of the data often is
simple, i.e. that data lie on a low-dimensional manifold in the high-dimensional
sampling space. Two, that we can average over the highly correlated variables
and thereby obtain more robust estimates by averaging out noise in data.

This paper exploits these blessings of dimensionality to obtain better predic-
tions and better interpretation when we have highly-correlated variables which
are to be used in either regression or classification. We take a starting point in
the sparse regression approach called the elastic net (Zou and T.Hastie, 2005).
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The elastic net regularizes the ordinary least squares solution with both an L1-
and an L2-norm constraint on the parameter estimates. The elastic net combines
the good convergence rate of the L1-norm and the small error estimates from the
L2-norm (Jin et al., 2009). Firstly, the sparseness induced by the L1-norm helps
finding a low-dimensional manifold on which data can be represented. Secondly,
the L2-norm shrinks the parameter estimates and thereby averages over highly
correlated variables to obtain more generalizable results. However, the elastic
net does not provide a framework to include the highly correlated variables into
the model. This paper proposes a way to include highly correlated groups of
variables into the elastic net model and thereby obtain better interpretation and
prediction.

Previously, most work on grouping variables together aims at making the
groups of covariates in one step and then making a prediction model in a second
step using for example varimax rotated principal components or in other ways
predefining the groups before applying classification or regression techniques
(Yuan and Lin, 2006; Wei and Huang, 2010). The proposed method adaptively
makes a group in each iteration of the least angle regression selection (LARS,
Efron et al. (2004)), which the elastic net algorithm builds on. This way, we
don’t waste time in grouping variables that are irrelevant to the task at hand (the
relevant predictions), but concentrate on grouping variables that are relevant
for the low-dimensional manifold we are seeking. Reccently, similar approaches
have been taken in Bondell and Reich (2008), Shen and Huang (2010), and
Shara et al. (2013).

The Grouping pursuit by Shen and Huang (2010) involves a penalty involving
pairwise comparisons of all parameter estimates βj−βj′ . The Grouping pursuit
does not include variable selection into the model and thus differs from the
proposed method in sparsity and in a grouping based on the parameter estimates
rather than the correlations between the variables. Looking only at a subset
of selected variables makes the grouping more time-efficient in particular for
problems with a high number of variables where we expect only a subset of
these to be of importance for the problem at hand.

The OSCAR (Octogonal Shrinkage and Clustering Algorithm for Regres-
sion) method by Bondell and Reich (2008) adds an L1- and a pairwise L∞-norm
penalty to the parameters. The pairwise infinity norm encourages every pair
of parameters to be of equal size. The OSCAR method encourages sparseness
like the proposed method, but differs in that the grouping based on the param-
eter estimates rather than the correlations between the variables. We here note
that the grouping property of giving parameter estimates equal size when the
variables are correlated arise from the L2-norm and thus we would not expect
the approaches to be equivalent as no L2-norm is added to the OSCAR model.
This algorithms work well for low-dimensional problems (p ' 20), but are not
applicable for high-dimensional problems. The more recent PACS (Pairwise
Absolute Clustering and Sparisty) method by Bondell and Reich (2008) groups
variables by penalizing the L1-norm of both the absolute differences and sums of
the parameter estimates. Additionally, the L1-norm of the paraeter estimates is
added to obtain varaible selection. PACS includes a discussion of only including
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pairs of variables with correaltions above some threshold. They also comment
that ”We notice that the PACS approaches do not perform as well in prediction
and selection as the existing selection approaches and that the elastic-net ap-
proaches perform the best in terms of prediction and selection”. For this reason
we will limit our comparison to the elastic net.

Other methods dealing with the problem of uncertainty in the variable selec-
tion of high dimensional problems have been proposed, such as tilted correlation
screenign (TCS) and tilted correaltion screenign learning (TCSL) (Cho and Fry-
zlewicz, 2012; Lin and Pang, 2013). These methods deal with the uncertainty
in the correlation estimates when p� n, and focuses on a correct estimation of
the correlation between the predictors and the response by taking into accoutn
the correlations amongst the covariates. There is no grouping performed in
these studies, but for further researhc it would be of interest to consider tilted
correlations in the setting proposed here.

The rest of the paper is organized as follows. Section two reviews the elas-
tic net regression model and describes the shortcomings regarding selection of
highly correlated variables. Subsequently, we propose the group elastic net al-
gorithm, which rather than selecting single variables, selects groups of highly
correlated variables. Section three contains experimental results and a compar-
ison of the group elastic net and the elastic net on a synthetic data set, and one
example with image data. The discussion is in section three, and we conclude
in section 4.

II. Methodology

This section briefly explains the elastic net (Zou and T.Hastie, 2005), the least
angle regression selection (Efron et al., 2004) and the group lasso (Yuan and Lin,
2006), and then uncovers the problem of selecting highly correlated variables and
grouping these. Finally, an algorithm for adaptively grouping highly correlated
covariates is proposed.

I. Elastic net

Zou and Hastie proposed the elastic net in 2005 (Zou and T.Hastie, 2005). The
elastic net minimizes the sum of squared errors while penalizing the size of
the L1- and L2-norm of the parameter estimates. The model parameters are
obtained as

β̂ = argminβ{‖y −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22} , (1)

where X is an n × p matrix of n observations with p variables, y is an n × 1
vector of the measured output, and β is a p×1 vector of the parameter estimates.
Here, ‖β‖1 =

∑p
j=1 |βj |, | · | denoting the absolute value, and ‖β‖22 =

∑p
j=1 β

2
j .

Choosing λ1 = 0 yields ridge solutions (Hoerl and Kennard, 1970), and likewise
choosing λ2 = 0 yields lasso solutions (Tibshirani, 1996).
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The elastic net algorithm augments the data such that the L2 constraint
is fulfilled, and then using an algorithm called the least angle regression and
selection (LARS; Efron et al. (2004)) solves the L1-penalized problem. For
further details see Zou and T.Hastie (2005). The LARS algorithm works on
centered and standardized data, i.e.

n∑
i=1

yi = 0,

n∑
i=1

xij = 0,

n∑
i=1

x2ij = 1, j = 1, ..., p. (2)

This means that the inner product of the covariates, rlj = xT
l xj is the correlation

between the lth and the jth variable. In each step LARS takes a step along
the variable with maximum absolute correlation to the current residual. The
correlation of variable j and the residual is given by

cj = xT
j (y − µk) , (3)

where µk is the estimated prediction at step k. Early stopping in form of select-
ing k < p is used as equivalent to λ1 for obtaining sparseness. In the first step
LARS takes a step in the direction of the variable with the maximum correla-
tion C = max |cj |. It proceeds until another variable has an equal correlation
to the residual (or an equiangular angle) as those variables already included in
the model (also called the active set). LARS includes the variable with an equal
correlation and proceeds in the direction of the equiangular vector uA of the
active set A, given by:

uA = XAwA, (4)

where the covariates of the active set of variables is denoted as XA, and wA =
AAX

T
AXA1A, with AA = (1T

AX
T
AXA1A)−1/2, and 1A is a vector of ones with

the size of the active set A. The length of each step is given by:

γ = min
j∈I

{
C − cj

AA − (XT
IuA)j

,
C + cj

AA + (XT
IuA)j

}
, (5)

where I = Ac is the set of inactive variables and complementary to the set
of active variables, and thus XI denotes the covariates for the inactive set of
variables. The update of the estimate is then

µk+1 = µk + γuA, (6)

and with the regression coefficients given as

βk+1 = γ(βAOLS − βk) + βk, (7)

where βAOLS = (XT
AXA)−1XT

Ay is the OLS solution based on the variables in
A.

In the original LARS algorithm one variable is added to A at each iteration,
and the number of iterations or non-zero elements can be used to control the
L1-norm penalty. The higher λ1 in (1), the lower the number of iterations,
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and likewise non-zero elements in the model. This is also referred to as early
stopping as there is in general no need to let the LARS algorithm include all
variables and converge to the ordinary least squares solution.

The elastic net can be used for classification by regressing on indicator
dummy variables of 0s and 1s for each of the classes. For a more thorough
way of obtaining a sparse classification based on the elastic net, the reader
is referred to sparse discriminant analysis (SDA) (Clemmensen et al., 2011).
SDA provides a low-dimensional subspace smaller than the number of classes.
In these settings (regression on indicator variables or SDA), the grouping can
also be implemented. The sparse discriminant analysis additionally expands to
nonlinear separation by use of Gaussian mixtures.

II. Predefined groups in lasso

A group lasso algorithm was developed in Yuan and Lin (2006) where predefined
groups were selected into the least angle regression selection (LARS) model.
This group lasso uses the mean value of the squared correlations between the
variables in each group and the current residual as an estimate of the most
correlated set. The current most correlated set is then given by

G = argmaxg‖XT
g (y − µA)‖22/pg, (8)

where pg is the number of variables in group g, and Xg is the set of covariates
in group g. In Winham et al. (2011) it is shown that selecting such prede-
fined groups of covariates rather than individual variables gives an increased
generalization power. However, in general we do not have predefined groups
available.

III. Adaptive grouping of variables

This section outlines the ideas behind using an adaptive grouping of variables.
The adaptive grouping algorithm based on the elastic net is given in the following
section.

III.1 Covariates with equivalent correlations with the current resid-
ual

First note that the correlation between the dependent variable y and an inde-
pendent variable xj is cj = xT

j y since y and xj are both centered and normalized
to unit length.

Zou and Hastie mention in their paper on the elastic net, that: The elastic
net has the ability to do grouped selection; (Zou and T.Hastie, 2005, p. 315).
They refer to the method assigning almost identical coefficients to strongly cor-
related variables. However, this assumes that the strongly correlated variables
are all selected into the model. Variables which are strongly correlated do not
get selected in one step in their algorithm. First one of the variables xj gets
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selected. In the following step, it is not likely that the strongly correlated vari-
able, xl will get selected. This results from the partial correlation between y
and xl conditioned on xj becoming smaller than the unconditioned correlation
when xj and xl are correlated

Corr[y,xl|xj ] ∝ Corr[y,xl]− Corr[y,xj ]Corr[xl,xj ] . (9)

This can likewise be seen by returning to the LARS algorithm and rewriting (3)
with only one variable in the active set to

cj = xT
j y − xT

j (γXA) . (10)

We note that correlation cj increases when variable j has a large correlation
with the output y, but decreases when variable j has a large correlation with
the active variable XA, again illustrating that highly correlated variables are
not favored in the least angle regression algorithm, nor the elastic net algorithm.

Therefore, we need to modify the algorithm to select groups of variables
rather than individual variables. Note, that once the highly correlated vari-
ables have entered into the model, the grouping is performed through the `2-
penalization assigning almost identical coefficients to the highly correlated vari-
ables. The fact that two or more variables are entered as a group in one iteration
is not of concern. The partial correlation between y and xl conditioned on xj

becomes larger than the unconditioned correlation when xj and xl are uncorre-
lated, cf. (9). Hence, as in the original algorithm, if xl is uncorrelated with the
variables already included in the model, but correlated with the output, then
xl will enter in the following iteration.

We consider variables with roughly equal sized correlations with the depen-
dent variable to enter in one iteration. That is, for an observed (fixed) maximal
correlation size |ci|, we consider for the correlation cj and some small constant
δ that

if cj − δ ≤ ci ≤ cj + δ ⇒ cj ≡ ci , (11)

i.e. we accept that cj equals ci.

III.2 Correlations among covariates

We have now established how we can consider two covariates to have equiva-
lently sized correlations with our current residual. Then we turn to defining
concise groups of covariates within such covariates. We compute the correla-
tions between the covariates of consideration, usually a subset which is much
smaller than p. Only covariates with correlations higher than some threshold
rt are grouped together. In order to minimize the number of parameters in the
algorithm, and as δ and rt naturally are related, we choose to only have one
parameter and set δ = 1 − rt. The threshold depends on the data problem at
hand, but we have found values around rt ∈ [0.7, 0.95] to be suitable for the
types of problems we have considered where high correlations exist.
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IV. Proposed grouping algorithm

The algorithm proposed here is used within the elastic net framework, but could
easily be adapted to other sequential variable selection algorithms (sometimes
also called path algorithms). The adaptive grouping algorithm is

Algorithm 1 Group elastic net algorithm

1. Require X, y, and rt.

2. Ensure
∑

i yi = 0,
∑

i xij = 0,
∑

i x
2
ij = 1, ∀j.

3. Initialize A = ∅, I = {1, ..., p}, δ = 1− rt, k = 0 and µk = 0.

4. While early stopping criterion not met

(a) Compute the current correlations cj = xT
j (y − µk), j ∈ I, with

maximum corerlation C = max(abs(cj)) and corresponding index
M = arg maxj(abs(cj)).

(b) Identify the set of variables with correlations of equivalent size to C,
as P = find(abs(cj − C) ≤ δ) , j ∈ I \M.

(c) Compute the correlations between the variable with maximum cur-
rent correaltion and all variables in the identified set P, r = XT

MXP .
Find the the set of grouped covariates as the variables which have
suitable correlation sizes J = find(r > rt).

(d) Compute the step length γ and the equiangular direction uA using
(4) and (5), and update the current prediction µk+1 = µk + γuA,
and the set of active variables Ak+1 = Ak ∪M∪ J .

(e) End of iteration, k = k + 1.

5. Return the active set of variables and the predictions.

As early stopping we use the number of non-zero elements, i.e. we stop
when we pass a number of non-zero elements nz. nz substitutes the parameter
λ1 in (1) and can be chosen using cross-validation on the training data; similarly
the other parameters λ2, and rt can be chosen using cross-validation. For the
purpose of examining how the group elastic net performs we will in the following
illustrate the results for various values of rt.

III. Results

The proposed group elastic net is illustrated on two different data sets. The first
example consists of a simulated data set of four groups with 1000 variables and
a correlation structure with strong correlations between the covariates. Here,
elastic net regression on dummy variables was used and a linear discriminant
analysis (LDA) was applied to the fitted values. The second example considers
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(a) (b)

Figure 1: (a): The first 100 entries in the means of the four classes in the simu-
lation study. The remaining entries in the means are all zero. (b): Correlation
matrix of the first 100 variables in the simulation study. The remaining entries
in the correlation matrix are all 0.6 in the off-diagonal and 1 in the diagonal.

prediction of moisture content in sand used to make concrete. The 2016 variables
used for prediction were extracted from multispectral images of 59 sand samples
(Clemmensen et al., 2010). Here we use regression of the continuous output,
which is the measured reference moisture content.

I. Classification of simulated data

Consider a model with four Gaussian distributed classes ∼ N(µj ,Σ) of 1000
variables. The first 40 variables differ in mean for the four classes within groups
of 10 variables. Additionally, the four groups of ten variables are highly corre-
lated with a pair-wise correlation of 0.95. The remaining pair-wise correlations
between the 1000 variables are 0.6. The means of the four classes are illustrated
in Fig. 1(a) and the correlation matrix is illustrated in Fig. 1(b). Training
data was simulated with 100 samples in each class (a total of 400 samples), and
another 400 samples were simulated and used as test data. The simulations
were performed using mvnrnd in Matlab and were repeated 50 times.

Five-fold cross-validation on the training data set was used to set parame-
ters, and the separate test data set was used to estimate the classification rates.
The results are summarized in Table 1. The group elastic net performed better
with respect to classification rates and seems to overfit less than the elastic net
classification. For each discriminative direction in GEN, four groups of variables
were selected. The four groups selected by the group elastic net matched the
true groups of variables. For the elastic net, approximately half of the selected
variables were not the ones with true differences between the groups. In com-
parison, the group elastic net generally only selected the variables with true
differences. For the optimal rt = 0.7 the average number of non-zero variables
was 37 which is close to the true number (40).

8



Table 1: Summary of average error rates using the elastic net (EN) and group
elastic net (GEN) on the simulated data with a test set of 400 samples. The
values are mean and (standard deviation) over 50 simulations.

Method Training [%] Test [%] nz λ2 rt

EN 18.2 (3.7) 27.8 (4.3) 25.3 (14.4) 7800 (4000) -

GEN 22.5 (2.6) 26.1 (2.4) 27.8 (14.4) 3900 (4600) 0.9

GEN 23 (3) 26.2 (2.7) 30.7 (14.9) 2500 (4000) 0.8

GEN 23.3 (3.1) 25.7 (2.1) 37.3 (12.5) 1500 (3200) 0.7

GEN 23.5 (2.6) 25.8 (2.3) 30.4 (15.3) 1700 (3400) 0.6

Fig. 2 shows the frequency of selection for each of the 1000 variables in 500
bootstrap samples of data. The group elastic net more consistently selected the
true important variables (the first 40) than the elastic net.

(a) (b)

Figure 2: Selected variables for the elastic net with and without grouping over
500 bootstrappings of 100 samples each. Here, the stopping criterion used was
nz = 25 and nz = 37 non-zero elements, respectively, which is the average of
the optimal for (a): the elastic net, and (b): the group elastic net.

II. Predictions of moisture content based on multispectral images
of sand

This study consists of 59 multispectral images of sand samples with varying
moisture content (1-9% moisture). The multispectral images consist of nine
spectral bands ranging from the visual to the near infrared area (428-940nm).
2016 summary statistics, such as the mean, standard deviation or percentiles
of the intensities in a single spectral band or in pair-wise differences between
spectral bands, were extracted from each multispectral image. The variables
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represent both the spatial and the spectral information in each sample, for
more information see Clemmensen et al. (2010). The correlation matrix of the
covariates is illustrated in Fig. 3. High correlations exist among the covariates.

(a) (b)

Figure 3: (a): Example of the 9 spectral bands of one of the sand images. (b):
Correlation matrix of the variables extracted from the multispectral sand images
for the training set.

The samples were randomly split into a training set of 40 observations, and
a test set of 19 observations. Leave-one-out cross validation was used on the
training data set to select suitable parameters for the model, and then prediction
errors were estimated using these parameters on the test set. This procedure
was repeated 50 times. Table 2 summarizes the optimal parameter choices and
the average estimated prediction errors for the elastic net (EN) and the group
elastic net (GEN). Note, that it was optimal to include more variables in GEN
than it was in EN.

Examining one of the selected models, the group elastic net had four groups
of variables. In all four groups, the variables were close in index number. Close
index numbers are in general related to summary statistics like the 90th and the
95th percentile of one of the spectral bands. We thus also saw in the correlation
matrix (Fig. 3) blocks of variables next to each other with high correlations.

For the sand data we see that there is no statistical significant difference
between the group elastic net and the elastic net in terms of test error, but the
test error and its standard deviation were lower for the best group elastic net.
Fig. 4 illustrates the frequency of selection for each of the 2016 variables for
1000 bootstrap samples of the sand data. There are differences in the selected
variables, but it is hard to make any conclusions based on these, most likely due
to the generally high correlations between most covariates.
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Table 2: Summary of average prediction errors using elastic net (EN) and group
elastic net (GEN) on the sand data. Resampling was performed 50 times; using
40 observations for training which included a leave-one-out cross validation, and
19 observations for testing.

Method MSE Train MSE Test nz λ2 rt

EN 0.14 (0.15) 1.82 (2.1) 39.7 (27.1) 0.027 (0.035) -

GEN 0.16 (0.14) 1.82 (1.57) 42.8 (27.8) 0.028 (0.033) 0.99

GEN 0.16 (0.12) 1.8 (2.39) 43.8 (26.2) 0.028 (0.033) 0.98

GEN 0.19 (0.16) 1.76 (1.2) 54.7 (27.4) 0.029 (0.034) 0.95

GEN 0.22 (0.14) 1.94 (1.36) 68.2 (26.6) 0.04 (0.039) 0.9

GEN 0.26 (0.19) 2.03 (1.52) 72.7 (29.9) 0.046 (0.037) 0.85

GEN 0.32 (0.26) 1.93 (1.4) 75.6 (29.8) 0.056 (0.039) 0.8

GEN 0.31 (0.2) 1.99 (1.47) 79.3 (26.5) 0.06 (0.038) 0.75

(a) EN (b) GEN

Figure 4: Selected variables for elastic net with and without grouping over
1000 bootstrapping samples of data; each of same size as the trainig set (40
observations). The stopping criteria used were the average values selected using
cross validation; (a): nz = 40 non-zero elements for the elastic net, and (b):
nz = 55 non-zero elements for the group elastic net with rt = 0.95.

IV. Discussion

The experiments showed an increased generalization power of the group elastic
net over the elastic net. The generalization comes from the ability to select
groups of highly correlated covariates that are of importance for the prediction
at hand. The highly correlated variables are practically averaged over using the
L2-norm shrinkage of the parameter estimates in the model, and hereby noise
is averaged out. We have the assumption that it is less likely to have a group
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of highly correlated variables, which by chance (due to noise) correlates to the
output, than it is likely to have a single variable, which by chance correlates
to the output. Both looking at estimated prediction errors for test sets and
looking at the selection frequency over bootstrapped samples of data confirmed
this behavior. As a result, the group elastic net ensured less overfitting and
the chance of selecting the irrelevant variables decreased whereas the chance of
selecting the relevant variables increased. The increased consistency and the
grouping of variables give good interpretation. The consistency makes selected
variables trustworthy, i.e. there are fewer falsely detected variables and more
correctly detected variables. The grouping gives results, which are easier inter-
preted for example because of preservation of spatial coherence in images. Such
groups of variables would also be an advantage in for example genetic studies
where the groups of up or down regulated genes may be found. Taking into ac-
count the information from all important covariates seems to be a strong point
here. Unfortunately, many of the existing variable selection methods focus on
being as sparse as possible, see e.g. (Donoho, 2006), and thereby disregards the
information which is present in data with highly correlated covariates. With
the proposed method we have one way of more fully exploiting the informa-
tion present in high-dimensional data sets with naturally mutual correlations
amongst covariates. Such data are often seen in image analysis, but also in
many other fields, such as for example biostatistics.

V. Conclusion

An algorithm for adaptively grouping highly correlated covariates for prediction
was proposed. The algorithm benefits from the grouping ability already present
in the elastic net model and simply adds a procedure for selecting groups of co-
variates into the model using the least angle regression selection algorithm. The
algorithm was tested on two data sets and compared to the elastic net model
without grouping. The experiments showed an increased consistency in which
variables were selected when bootstrapped samples of data were used. Addi-
tionally, the group elastic net showed an increased or equivalent generalization
power for the test sets. Finally, the groups give enhanced interpretation.
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