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Summary

Mathematical models of real-world problems from physics, biology and chem-
istry have become very complex over the last three decades. Although increasing
computational power allows to solve even larger systems of differential equa-
tions, the number of differential equations is still a main limiting factor for
the complexity of models, e.g., in real-time applications. With the increasing
amount of data generated by computer simulations a challenge is to extract
valuable information from the models in order to help scientists and managers
in a decision-making process. Although the dynamics of these models might be
high-dimensional, the properties of interest are usually macroscopic and low-
dimensional in nature. Examples are numerous and not necessarily restricted
to computer models. For instance, the power output, energy consumption and
temperature of engines are interesting quantities for engineers, although the
models they base their design on are described for the gas mixture (a system
with many degrees-of-freedom) inside a combustion engine. Since good models
are often not available on the macroscopic scale the necessary information has
to be extracted from the microscopic, high-dimensional models.

The goal of this thesis is to investigate such high-dimensional multiscale models
and extract relevant low-dimensional information from them. Recently devel-
oped mathematical tools allow to reach this goal: a combination of so-called
equation-free methods with numerical bifurcation analysis is used and further
developed to gain insight into high-dimensional systems on a macroscopic level of
interest. Based on a switching-procedure between a detailed microscopic and a
coarse macroscopic level during simulations it is possible to obtain a closure-on-
demand for the macroscopic dynamics by only using short simulation bursts of
computationally-expensive complex models. Those information is subsequently
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used to construct bifurcation diagrams that show the parameter dependence of
solutions of the system.

The methods developed for this thesis have been applied to a wide range of
relevant problems. Applications include the learning behavior in the barn owl’s
auditory system, traffic jam formation in an optimal velocity model for circular
car traffic and oscillating behavior of pedestrian groups in a counter-flow through
a corridor with narrow door. The methods do not only quantify interesting
properties in these models (learning outcome, traffic jam density, oscillation
period), but also allow to investigate unstable solutions, which are important
information to determine basins of attraction of stable solutions and thereby
reveal information on the long-term behavior of an initial state.



Resumé

Matematiske modeller til at svare på spørgesmål fra fysik, biologi og kemi er ble-
vet meget komplekse gennem de sidste tre årtier. Selvom en øget beregningskraft
hjælper til at løse endnu større systemer af differentialligninger, er antallet af dif-
ferentialligninger stadig en limiterende faktor, hvis komplekse modeller skal lø-
ses, f.eks. i real-tids anvendelser. Med den større mængde af computer-genereret
data får vi derudover nye udfordringer med at ekstrahere vigtige oplysninger fra
modellerne til at hjælpe forskere og managere i beslutningsprocesser. Selvom
dynamikken i modellerne kan være højdimensional, plejer interessante egenska-
ber at være makroskopiske og lavdimensionale. Der findes mange eksempler,
som ikke nødvendigvis er begrænset til computersimuleringer. F.eks. er effekten
og temperaturen af motorer interessante værdier for ingeniører, selvom deres
modeller er baseret på beskrivelser af gasblandingen (et system med mange fri-
hedsgrader) i en forbrændningsmotor. Eftersom gode modeller ofte ikke er til
rådighed på en makroskopisk skala, må den nødvendige information udledes fra
mikroskopiske højdimensionale modeller.

Målet med denne afhandling er at undersøge disse højdimensionale multiska-
la modeller og ekstrahere relevante, lavdimensionale oplsyninger fra dem. Nye
værktøjer indenfor matematik gør det muligt at nå dette mål: en kombination
af såkaldte ligningsfrie metoder med numerisk bifurkationsanalyse bruges til at
få indsigt i højdimensionale systemer på det interessante makroskopiske niveau.
Baseret på en procedure der veksler mellem en detaljeret mikroskopisk og et
grovt makroskopisk niveau under simuleringer, er det muligt at få en closure-
on-demand for den makroskopiske dynamik gennem korte simuleringer, dvs.
simulation bursts, af beregninsintensive, komplekse modeller. Disse oplysninger
er bagefter brugt til at konstruere bifurkationsdiagrammer, som viser parame-
terafhængigheden af løsninger til systemet.
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Metoderne, som blev udviklet til denne afhandling, blev anvendt til mange for-
skellige slags problemer. Anvendelser omfatter læringsadfærd af det auditoriske
system hos sløruglen, dannelsen af trafikpropper i en optimal hastighedsmodel
for ringtrafik og oscillerende løsninger i fodgængergrupper i modstrøm gennem
en smal korridor. Metoderne ikke kun kvantificerer spændende egenskaber i mo-
dellerne (læringssuccess, trafikproptæthed, oscilleringsperiode), men finder også
ustabile løsninger, som supplerer med vigtige oplsyninger om attraktionsområ-
der af stabile løsninger og dermed bestemmer langtidsadfærd af en begyndelses-
tilstand.



Preface

The work on this PhD project started at the Department of Mathematics. It
has been continued at the Department of Applied Mathematics and Computer
Science after a restructering of the department structure at the Technical Uni-
versity of Denmark. The thesis is written in fullfilment of the requirements for
aquiring a PhD degree in Mathematics. Associate Professor Jens Starke, Techni-
cal University of Denmark, Department of Applied Mathematics and Computer
Science, has been the supervisor of this thesis.

The thesis deals with the macroscopic analysis of multiscale systems using
equation-free methods and diffusion map investigations. It builds up on very
successful techniques developed in dynamical systems theory. Namely, bifurca-
tion theory and later on numerical bifurcation analysis are the tools of choice to
analyze qualitative changes in system behavior. This theory is well-developed in
the context of low-dimensional dynamical systems. The reasoning behind these
considerations is based on the center manifold theorem, stating that the only
non-trivial dynamics happens on a (usually low-dimensional) center manifold.
Subsequently, the concepts of center manifold theory have been extended to
systems with a separation of time scales. The analog of the center manifold is a
slow manifold, where the interesting dynamics takes place on. In the case of a
normally attracting slow manifold the long term dynamics on the slow manifold
decides on the behavior of the system after initial (fast) transients have settled.
Here, the equation-free framework comes in and opens up for the possibility
of a macroscopic analysis of high-dimensional systems on this slow manifold.
Diffusion maps are another method to obtain a low-dimensional description of
a data set or trajectory of a dynamical system in diffusion map space where
Euclidean distances are replaced by a so-called diffusion distance.
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The thesis consists of an introductory part on dynamical systems with mul-
tiple time scales, a review on equation-free methods and diffusion maps and
a discussion of the main application areas investigated in this work. Follow-
ing this review the five scientific papers, written during the PhD project, have
been added in the appendix. The introductory part is meant as a short review
of existing work and to point out the connection between the state of the art
of equation-free methods and diffusion maps with the work presented in the
scientific papers in the appendix. The new results from this PhD project are
presented in the scientific papers in the appendix and are the main part for
judgement of the scientific achievements. Due to this way of presentation, I
hope to give a good overview about the field of equation-free methods while
avoiding unnecessary repetitions from the articles.

Christian Marschler
Lyngby, 31-July-2014



Acknowledgements

I would like to thank a number of people who helped and supported me through-
out the time as a PhD student at DTU. The importance of every single person
can not be quantified, since this thesis would not exist in this shape without
any of those. Therefore, I would like to thank my colleagues, friends and family
in a random order.

First, I would like to thank my supervisor Jens Starke for his support throughout
the last three years. He helped me getting a good start in Denmark and I will
certainly never forget the numerous discussions with him about science and more
specifically about our research. The relationship with Jens goes far beyond a
normal student-teacher interaction. I would also like to thank him for motivating
me to start running and for introducing me to new taste-experiences with his
expertise in food and cooking. Thank you very much for your time and effort!

I am also grateful to all my colleagues at DTU who made my time so enjoyable.
Morten Andersen, as my “mentor” and office mate, introduced me to everyone
at DTU Matematik on my first day. He also shared uncountable many cups
of coffee with me. This thesis would certainly look different without him! I
would also like to thank my part-time office mates, Michael Elmegård and Irene
Heilmann. The endless discussions with Michael about dynamical systems in
particular and science in general helped me through many hard times when one
was close to loosing faith in the modern definition of science. Michael is also a
great ambassador for Denmark and I learned so much about the country and
local habits from him. Irene always helped to add another point-of-view to our
discussions about dynamical systems and other unrelated topics. Sharing an
office with you was a great experience. You are all not only colleagues, but very



viii Acknowledgements

good friends to me!

Further, I would like to thank Øistein Wind-Willassen, Kristoffer Hoffmann,
Peter Nørtoft and Frank Vinther for our common time at DTU. You all helped
me incredibly much to settle in Denmark and understand the Danish society,
culture and language! Tusind tak skal I have.

More thanks go to all organizers and members of the numerous clubs at the
department, especially to Frank Schilder and Fernando Piñero. The social events
in the beer club, cake club and football club helped me to rest my brain from a
hard day of work together with great company.

Further, I would also like to thank all my collaborators Ioannis G. Kevrekidis,
Jan Sieber, J. Leo van Hemmen, Poul G. Hjorth, Rainer Berkemer, Atsushi
Kawamoto, Carmen Faust-Ellsässer and Ping Liu. I really enjoyed discussing
and working with you. I hope we can continue our work in the future. For the
financial support for my extended research stay at Princeton University and for
a conference participation I am grateful to Otto Mønsteds Fond.

Last, but definitely not least, I would like to thank my family for all their moral
support. As in every scientific work, there have been ups and many downs and
I would especially thank my fiancé Kathrin for not only standing me, but also
building me up when times were hard. You even moved to Denmark because
of me and I can only hope to be as good a support for you as you have been
for me. I am also very grateful to my parents, Brigitte and Andreas Marschler,
and my brother David. They always gave me a new perspective in times were a
strict focus on mathematics does not solve any problems. Thank you so much
for helping me staying down to earth.



To my family





Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

List of Symbols xiii

1 Introduction to
Dynamical Systems with Multiple Time Scales 1
1.1 Background from Dynamical Systems . . . . . . . . . . . . . . . 5
1.2 Bifurcation Analysis and Numerical Continuation . . . . . . . . . 9
1.3 Time Scale Separation . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Equation-Free Methods 23
2.1 The Equation-Free Idea . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Implicit Equation-Free Methods . . . . . . . . . . . . . . . . . . . 26
2.3 Higher-Level Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Coarse Projective Integration . . . . . . . . . . . . . . . . 29
2.3.2 Coarse Bifurcation Analysis . . . . . . . . . . . . . . . . . 30

2.4 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Constrained Runs Scheme . . . . . . . . . . . . . . . . . . 31
2.4.2 Gap-Tooth Scheme . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Matching the Restriction . . . . . . . . . . . . . . . . . . 34

2.5 Comparison to Other Methods and Critical Issues in Equation-
Free Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 34



xii

3 Diffusion Maps 39
3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Applications 45
4.1 Traffic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Pedestrian Models . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Neuronal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion 49

6 Future Research Directions 53

A Papers 57
I Implicit Methods for Equation-Free Analysis: Convergence Re-

sults and Analysis of Emergent Waves in Microscopic Traffic
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

II Equation-Free Analysis of Macroscopic Behavior in Traffic and
Pedestrian Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

III Bifurcation of Learning and Structure Formation
in Neuronal Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

IV Equation-Free Bifurcation Analysis of a Learning Process in a
Neuronal Network . . . . . . . . . . . . . . . . . . . . . . . . . . 120

V Coarse-grained particle model for pedestrian flow using diffusion
maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 161



List of Symbols

General

R real numbers

C,K constants

i, j indices

I identity matrix

rank rank of a matrix

Re, Im real and imaginary part of a complex number

Dynamical Systems

f, (fε) vector field (of slow-fast system with time scale separation ε)

φ, (φε) flow for the vector field f, (fε)

F macroscopic vector field

Φ macroscopic flow on the manifoldMε

Φ∗ correct flow onMε

x ∈ Rnf , nf fast variable in explicit slow-fast systems with dimension nf
y ∈ Rns , ns slow variable in explicit slow-fast systems with dimension ns
p ∈ Rm,m system parameters with dimension m

M0, (Mε) slow manifold for ε = 0 (ε > 0)

Es, Ec, Eu stable, center and unstable eigenspaces

W s
loc,W

c
loc,W

u
loc local stable, center and unstable manifolds

W s,W c,Wu stable, center and unstable manifolds



xiv

As, Ac, Au stable, center and unstable matrices

Bs, Bc, Bu stable, center and unstable nonlinearities

γ infinitesimal small perturbation

Df Jacobian of f

λi, vi eigenvalues and eigenvectors of linearized system

T period of periodic solutions

πε stable fiber projection

ψ test function

g, h graphs of the center/slow manifold

G extended continuation problem

ξ extended continuation variable (u, p)

η predictor in continuation problem

gj auxiliary conditions in numerical continuation

r, ∂r space variable and its partial derivative in PDE descriptions

Equation-Free

L lifting operator

R restriction operator

P lift-evolve-restrict scheme

u, v ∈ Rn microscopic variable with dimension n

U, V ∈ RN macroscopic variable with dimension N

s iterative step size for ZDP

Lm map for m-th ZDP

d highest derivative in the gap-tooth scheme

H discretization for spatial grid

Time

tskip healing time

δ time on the slow manifold

τ macroscopic time

t time, fast time scale in explicit slow-fast systems

ε time scale separation

∆t time step for projective integration
d
dt = ˙ , ( ddτ =′) derivative with respect to t, (τ)



xv

Diffusion Maps

xi, X data point and data set in diffusion map algorithm

wk weights in PCA

T = (tik) scores and score matrix in PCA

U,W orthogonal matrices in SVD

σi, Σ singular values and matrix of singular values

dij Euclidean norm of data points

Aij soft-thresholded distance matrix

Mij Markov matrix for diffusion map

Ψi diffusion map eigenvector



xvi



Chapter 1

Introduction to
Dynamical Systems with

Multiple Time Scales

“To doubt everything and to believe everything are two equally
convenient solutions; each saves us from thinking.”

H. Poincaré, Science and Hypothesis, 1905.

Recently-developed methods for the macroscopic analysis of multi-scale systems,
namely the equation-free framework and diffusion maps, are discussed, further
developed and applied in this thesis. The methods are based on the theory of
dynamical systems with multiple time scales, which is introduced in this chapter.

The study of differential equations has a long history and dates back to the
independent work of Newton [New87, Smi08] and Leibniz [Par89]. They devel-
oped the ideas about infinitesimal calculus and thereby built the foundation for
the study of differential equations. As the greatest mathematicians and philoso-
phers of their time they developed a plethora of techniques and methods, e.g.,
the notion of derivatives and integrals, which have been applied to numerous
problems ever since. In particular, the field of mechanics has been of great im-
portance for the development of differential equations (see the work of Lagrange
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[Lag88] and Hamilton [Ham34]). The very fruitful interaction between experi-
ments and theory is outstanding. Later on, the discovery of electromagnetism
and the mathematical formalization of fluid mechanics (see the work by Maxwell
[Max65], Rayleigh [SR79], Euler [Eul56] and Gauss [Gau30, Gau67]) resulted
naturally in a description by (partial) differential equations. In the 19th cen-
tury the ongoing research in the field of thermodynamics by Boltzmann [Bol71],
Maxwell [Max67] and others led to the description of high-dimensional dynam-
ical systems, i.e., gases, by low-dimensional quantities, e.g., temperature, free
energy and pressure, via statistical methods. Until then, most systems known
from physics were formulated using conservation laws. The most prominent
ones being the conservation of energy, mass and momentum. Emmy Noether
proved that these conservation laws are related to symmetries in the system
[Noe18]. In the beginning of the 20th century physics has been dealing with
the new field of quantum mechanics. Deep discussions between Einstein and
Bohr [Boh49], Heisenberg and Schrödinger [Hei25, Sch26] and Planck [Pla00]
shed light on the quantum nature of electrons and photons, that needed both a
description by classical mechanics and a statistical interpretation (wave-particle
duality). Despite the controversy of quantum mechanics, the theory was still
formulated in terms of Hamiltonians, i.e., energy-conserving systems. The ex-
istence of a Hamiltonian assures the possibility to apply tools from mechanics
and mathematics that have been developed over more than 300 years.

It was about the same time as quantum mechanics arose, when scientists started
thinking about general non-linear systems including studies of dissipative prob-
lems that go beyond classical friction problems, e.g., Coulomb friction and Stokes
law. Suddenly, all the techniques to solve conservative equations could not be
used to study these systems. Especially non-linear systems posed many open
questions for existence and uniqueness of solutions leading to the theorem of
Peano and the theorem of Picard-Lindelöf [Lin94, Mei07]. It was with the rise of
non-linear dissipative systems, that the field of dynamical systems was founded.
Instead of giving explicit analytical solutions to problems, dynamical systems
theory provides a qualitative analysis of extremely complicated systems, e.g., it
answers questions about the existence of fixed points, periodic orbits and chaotic
behavior. Henri Poincaré was the first one who studied dynamical systems with
qualitative methods and can be seen as the founder of modern dynamical sys-
tems theory. His famous idea to study periodic solutions as intersections with a
section in phase space is now known as the technique of Poincaré sections [Poi90].
Further on, dynamical systems theory has been developed by many scientists
from many different fields, e.g., mathematics [Sma67, HDS74, Fei78, AL88], ra-
dio transmission [vdP26], non-linear oscillations [Duf18], meteorology [Lor63],
and computer science [Man83] to only name a few. It is the contribution by
so many different fields and researchers, that make dynamical systems theory a
very fruitful theory that is useful for applications, since almost all theory has
been developed alongside real-world applications.
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A milestone in the analysis of dynamical systems is bifurcation theory. Bi-
furcation analysis deals with the qualitative change of system behavior when
parameters are changed. Bifurcation analysis reduces the high complexity of
systems to diagrams showing the qualitative parameter dependence of the sys-
tems, i.e., bifurcation diagrams. The success of bifurcation analysis became
more established with computers which allow one to perform numerical bifurca-
tion analysis. Nowadays, a lot of software packages are available for numerical
continuation of solutions and bifurcation analysis, e.g., AUTO [DK86], CoCo
[DS13]. Despite its success, bifurcation analysis is limited to relatively low-
dimensional systems or more specifically to systems with a low-dimensional
center manifold. A rather complete classification of bifurcations can only be
found for generic two-dimensional systems. Usually, this restriction is not cru-
cial, since the interesting dynamics often happens on low-dimensional manifolds
(see the center manifold theorem in Sec. 1.1). Nevertheless, it has shown to be
difficult to analyze high-dimensional systems with respect to their bifurcation
structure if the intrinsic dimension of the center manifold is large. The main
focus of this thesis is to gain insight into the intrinsic low-dimensional dynamics
of high-dimensional systems using equation-free methods.

Throughout the thesis we use the terms high-dimensional system, microscopic
system and fine-scale dynamics synonymously. On the other hand, the terms
low-dimensional system, macroscopic system and coarse dynamics are used
equivalently. The notation does not specifically refer to any physical interpre-
tation of the variables, e.g., macroscopic variables are not necessarily derived
from microscopic dynamics as statistical quantities. In particular, dimensional-
ity always denotes the dimension of the dynamical systems, such that a PDE
would be an infinite-dimensional system. If solutions to PDEs are denoted as
macroscopic solutions, e.g., density of a pedestrian crowd, opposed to micro-
scopic solutions, e.g., positions of pedestrians, this is clearly denoted to avoid
confusion.

To begin with, it is worth noticing that many high-dimensional systems behave
essentially low-dimensional. Examples reach from molecular dynamics [AW59]
to reaction kinetics [MM13] and modes in mechanical systems extracted from a
finite element analysis [ZM71]. After initialization of the system at an arbitrary
point in phase space the dynamics quickly approaches a low-dimensional object,
the so-called slow manifold. The dynamics on the slow manifold has a time
scale of O(ε) compared to the dynamics off the slow manifold, i.e., there exists a
spectral gap. Furthermore, we assume that the manifold is normally attracting
as it is usually the case in dissipative systems. The slow manifold plays the
same role as the center manifold in the sense, that all the long-term behavior
happens on this manifold. Nevertheless, the dynamics on the slow manifold
can be arbitrarily complex depending on the dimension of the manifold. Often
observed cases are the convergence to a fixed point, periodic orbits or even
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chaotic motion.

It is observed in many experiments that high-dimensional or microscopic systems
with many degrees-of-freedom behave essentially low-dimensional or macro-
scopic after transients have settled. Often, these transients are not important
and the high-dimensional dynamics is not the focus of research. A good example
for such a reduction of dimensionality can be found in the thermodynamics of an
ideal gas. While one is interested in the temperature and pressure of the gas, sin-
gle trajectories of molecules are not of any significance. Therefore, it is enough
for (equilibrium) thermodynamics to investigate low-order moments of particle
distributions. The advantage of this statistical approach is, that it is versa-
tile and can be applied to various systems without re-defining the macroscopic
variables for the interesting dynamical features in every single application.

A different approach is taken by recently developed multi-scale methods. A
prominent one is the so-called equation-free approach (see Chap. 2 for a detailed
introduction) for studying the not directly accessible macroscopic dynamics. In
the equation-free framework, it is assumed that a microscopic description or
simulation of the system is available. These simulators typically depend on
some system parameters, whose influence on the solutions should be studied.
Additionally, two operators are required: the restriction operator, defining the
macroscopic variables of interest, and the lifting operator, constructing a mi-
croscopic state from a macroscopic one. Using the framework, the interesting
macroscopic dynamics can be extracted from the microscopic system and tools
from numerical bifurcation analysis can be used to analyze these systems on a
macroscopic level without deriving the coarse equations.

Equation-free methods have been applied to many different problems reaching
from chemistry and physics ([ZVG+12, KS09]) over social sciences (Paper I,
Paper II and [AHS14]) to biology (Paper III and Paper IV and [Ell08]). Common
classes of dynamical systems suitable for equation-free computations are many-
particle or agent-based systems. In general, equation-free methods prove useful
for systems with a mesoscopic dimension: low-dimensional systems can usually
be handled directly and in the case of infinitely many particles or equations a
continuum limit formulation or averaging and homogenization methods can be
applied instead.

In this thesis, focus is put on the mathematically clear formulation of implicit
equation-free methods introduced in Chap. 2 and Paper I that are applied to
an optimal velocity model for traffic jams on a ring road. Paper II gives a
non-mathematical overview of equation-free methods and investigates the ap-
plicability both in traffic models and pedestrian flow. Furthermore, it is investi-
gated how equation-free methods can be applied to weakly-stochastic systems,
i.e., systems with a noisy microscopic dynamics that show deterministic macro-
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scopic behavior. An example is the neuronal network model that is presented
and analyzed in Paper III and Paper IV. Furthermore, the diffusion map al-
gorithm described in Chap. 3 is investigated with respect to its application to
pedestrian problems in Paper V. The combination of diffusion maps with the
equation-free framework is a possibility to perform a fully automatic equation-
free bifurcation analysis in future work (see the discussion in Sections 2 and 3
for details). We start our discussion with a review on dynamical systems theory
in Sec. 1.1 and present a short introduction to bifurcation theory in Sec. 1.2 and
dynamical systems with time scale separation in Sec. 1.3.

1.1 Background from Dynamical Systems

In this section a short introduction to the theory of dynamical systems is given
in order to set the scene for the recent developments in equation-free compu-
tations presented in Chap. 2. This section will also form the basis for Sec. 1.2
on bifurcation theory and for Sec. 1.3 on dynamical systems with time scale
separation. Since the purpose of this section is to introduce notation the re-
sults are presented without rigorous mathematical proof. Instead, references to
standard textbooks are given wherever necessary. Furthermore, only concepts
that will be used in the research articles in Appendix A are introduced. Hence,
this section is not an exhaustive overview of the field of dynamical systems and
the interested reader is rather referred to well-established textbooks (see e.g.,
[GH83, Wig03, Mei07]) for a detailed introduction to dynamical systems.

The field of dynamical systems deals with the analysis of differential equations.
Here, we define a dynamical system as

u̇ :=
d

dt
u = f(u, p), u ∈ Rn, p ∈ Rm, f : Rn × Rm → Rn, (1.1)

where u is the dependent variable, i.e., the state of the system, p are possible
parameters and t ∈ R is the independent variable, i.e., the time. Further, the
vector field f is assumed to be sufficiently smooth. Here, we only deal with
autonomous dynamical systems where the right-hand side f does not explicitly
depend on time t. Note, that often the parameter dependence is suppressed
for notational convenience, i.e., we write f(u) for f(u, p), if the parameters are
fixed. In order to have existence and uniqueness of solutions for the initial value
problem

u̇ = f(u), u(t0) = u0 (1.2)

in a neighborhood U ⊂ Rn containing u0, i.e., u0 ∈ U , and time interval [t0 −
τ ; t0 + τ ], f has to be at least Lipschitz-continuous. Usually, we will assume
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that f is C1. In general, system (1.1) is solved by the flow φ(t;u) defined as

d

dt
φ(t;u) = f(φ(t;u)).

The flow constitutes a group with group properties i) φ(0; ·) = I and ii) φ(t +
s; ·) = φ(t; ·) ◦ φ(s; ·) where I denotes the n × n identity matrix. In particular,
the flow gives a solution to the initial value problem (1.2) as u(t) = φ(t;u0).

In many applications, the long-term behavior of the system, i.e., the ω-limit set,
is of big relevance. Here, two types of solutions are most important:

u(t) = ũ ∀t, fixed points, (1.3)
u(t) = u(t+ T ) ∀t, T > 0 fixed, periodic solutions. (1.4)

A fixed point ũ is also called equilibrium and T ∈ R+ is the period of the solu-
tion (1.4), if it is the smallest number with this property. Fixed points are the
simplest solutions of dynamical systems and are usually the starting point for
a more detailed analysis. More complicated solutions are usually obtained by
studying bifurcation diagrams and especially the points where solutions bifur-
cate from a branch of equilibria (see Sec. 1.2). Periodic solutions are of particular
interest in periodically forced systems, where periodic solutions naturally arise.
Nevertheless, periodic solutions can also be found in unforced systems, e.g., van
der Pol oscillator [vdP26] and predator-prey cycles [Lot10], and usually emerge
in a Hopf bifurcation (see (1.13) in Sec. 1.2).

Not only the type of solution is important but also its stability. The concept
of stability can be understood intuitively: a fixed point or periodic solution
is stable, if solutions that are initially close stay close as time proceeds. The
mathematical formulation of stability is a little more involved (see for example
the definition for Lyapunov stability in [Kuz04]). Since we are interested in
Appendix A in the stability of fixed points against perturbations we introduce
the notion of stability of the linearized system. Assume, γ(t) is a small per-
turbation to the solution u(t). Further assume, that u(t) = ũ is a fixed point,
i.e., u̇ = f(ũ) = 0. A Taylor expansion of the perturbed solution u(t) + γ(t) to
second order yields

d

dt
(u(t) + γ(t)) = u̇(t) + γ̇(t) = f(ũ+ γ) = f(ũ) +Df(ũ)γ +O(γ2), (1.5)

where Df(ũ) is the Jacobian of f evaluated at ũ. Using the assumptions and
neglecting higher-order terms of O(γ2) results in the linearized system

γ̇(t) = Df(ũ)γ. (1.6)

This system is solved by an exponential function and the eigenvalues λ1, . . . , λn
of Df(ũ) give information about the decaying, neutral or growing eigendirect-
ions v1, . . . , vn. Note, that the eigenvalues are assumed to be non-degenerate,
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i.e., λi 6= λj for i 6= j. Otherwise, we would have to deal with generalized eigen-
vectors, which would complicate the clear presentation but not pose serious
mathematical problems. We say an eigendirection vi is (asymptotically) stable,
if the corresponding real part of eigenvalue Reλi < 0 and unstable for Reλi > 0.
Eigendirections vi with Reλi = 0 constitute a special case, where higher-order
terms in the Taylor expansion (1.5) are needed to make a statement about
the stability. Furthermore, these eigenvalues are connected to bifurcations (see
Sec. 1.2). Fixed points ũ with Reλi < 0 ∀i are called stable or sinks. All other
fixed points are called unstable. In general, if both positive and negative real
parts of eigenvalues exist, ũ is called a saddle. In the case of only positive real
parts of eigenvalues, ũ is called source. Similar classifications can be found for
periodic solutions by studying Poincaré sections. Since we are not using these
methods in the papers, the reader is referred to standard textbooks (see e.g.,
[GH83, Mei07]) for an introduction to stability analysis of periodic solutions.
Note, that an unstable solution cannot be observed in real-world applications
without further ado.

For the linearized system (1.6), we define several subspaces

Es = span{vi ∈ Rn | Df(ũ)vi = λivi, Reλi < 0},
Eu = span{vi ∈ Rn | Df(ũ)vi = λivi, Reλi > 0},
Ec = span{vi ∈ Rn | Df(ũ)vi = λivi, Reλi = 0},

where Es and Eu denote the stable and unstable eigenspaces, respectively. Ec is
called the center eigenspace. If Ec = ∅ the fixed point ũ is called hyperbolic. Oth-
erwise, it is non-hyperbolic. The interesting set in terms of the dynamics is the
center eigenspace. While perturbations in the stable and unstable eigenspaces
approach or leave the fixed point exponentially in time, the linear stability ana-
lysis reveals no information about the behavior of perturbations in the center
directions. In the fully non-linear case the eigenspaces Es, Eu, Ec have non-
linear analogs. Locally, we define the two invariant sets in a neighborhood U of
ũ:

W s
loc(ũ) = {u ∈ U ⊂ Rn | φ(t;u)→ ũ for t→∞, φ(t;u) ∈ U ∀ t ≥ 0},

Wu
loc(ũ) = {u ∈ U ⊂ Rn | φ(t;u)→ ũ for t→ −∞, φ(t;u) ∈ U ∀ t ≤ 0}.

W s
loc and Wu

loc are the local stable and unstable manifolds, respectively. The
global manifolds W s and Wu can be constructed by following the flow of the
local sets and compute the union as

W s =
⋃

t≤0
φ(t;W s

loc(ũ)), Wu =
⋃

t≥0
φ(t;Wu

loc(ũ)).

The stable manifold theorem assures the existence of local stable and unstable
manifolds for a hyperbolic fixed point ũ. The manifolds are as smooth as f and
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have the same dimensions as the corresponding linear subspaces. Additionally,
W s
loc and Wu

loc are tangent at ũ to Es and Eu, respectively (see e.g., Theorem
1.3.2 in [GH83]).

In the case of a hyperbolic fixed point ũ, the dynamics in a suitable neighborhood
of ũ can be completely understood by its linearization. This is the statement
of the theorem by Hartman-Grobman (see e.g., Theorem 4.13 in [Mei07]). From
that point of view the only interesting case is a non-hyperbolic fixed point, i.e.,
dim(Ec) 6= 0, where linearization fails to describe the dynamics close to this
fixed point. In the non-hyperbolic case, the center manifold theorem assures
the existence of an invariant center manifold W c that is tangent to Ec at the
fixed point ũ but in general is not unique (see e.g., Figure 3.2.1 in [GH83] for an
example). Furthermore, the smoothness of the center manifold is Cr−1 for a Cr
vector field f . Since the dynamics away from the invariant center manifold W c

is known and W c can be locally described as a graph over Ec it is possible to
reduce the high-dimensional problem to the dynamics on the center manifold.
Consider a transformation in the neighborhood of a fixed point of the general
system (1.1) to

ẋ = Acx+Bc(x, y, z),

ẏ = Asy +Bs(x, y, z),

ż = Auz +Bu(x, y, z),

(1.7)

where As and Au are stable and unstable matrices, respectively, i.e., all eigenval-
ues of As (Au) have real part smaller (larger) than zero, and Ac is the center ma-
trix with eigenvalues with real part zero. The functions Bc, Bs, and Bu denote
the non-linear parts with Bi(0, 0, 0) = 0 and DBi(0, 0, 0) = 0 for i ∈ {s, u, c},
i.e., the origin is a fixed point and linear stability is determined by As, Ac, and
Au. We now define two maps g : Ec → Es and h : Ec → Eu such that on W c

we have y = g(x) and z = h(x). The center manifold is thus given as

W c = {(x, g(x), h(x))}.

The non-hyperbolic Hartman-Grobman theorem now states (see [Mei07]), that
the dynamics close to the fixed point 0 is topologically conjugate to the system

ẋ = Acx+Bc(x, g(x), h(x)),

ẏ = Asy,

ż = Auz.

(1.8)

Note, that the dynamics in the y- and z-component is trivial and that we only
have to study the dynamics in x, which is decoupled from the rest. This is
the key insight of the center manifold reduction, which reduces the dynamics
of the system close to a non-hyperbolic fixed point to the dynamics in a low-
dimensional space (usually dim(Ec) � n). The center manifold reduction is
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very useful in the study of high-dimensional systems close to non-hyperbolic
fixed points. A similar reasoning is the basis for the slow manifold reduction
used in systems with time scale separation (see Sec. 1.3). The existence of at
least one eigenvalue of the linearization with real part zero also opens up for
the field of bifurcation theory, which studies the influence of system parameters
on the dynamics of the system. Intuitively, it is clear that non-hyperbolic fixed
points are not persistent, since small perturbations move the eigenvalue away
from the imaginary axis. The essentials of bifurcation theory will be reviewed
in the next section.

1.2 Bifurcation Analysis and Numerical Contin-
uation

Bifurcation analysis deals with the qualitative change of system behavior under
parameter changes. It is one of the most successful subfields of dynamical sys-
tems theory and has attracted much attention not only from mathematicians
but also from applied scientists and engineers. The reason is that bifurcation
analysis allows predicting system behavior and helps to determine boundaries
between basins of attraction for different solutions. As such, it helps to design a
good set of working parameters for devices and gives valuable information about
the robustness of systems to parameter perturbations. In this section some ba-
sic concepts from bifurcation theory will be reviewed. The focus lies on local
bifurcations of fixed points in low-dimensional systems. Those bifurcations are
important as they are the main focus of the research papers on equation-free
methods in Appendix A. Further, the theory is quite well-developed in the one-
and two-dimensional case. Global bifurcations, e.g., heteroclinic and homoclinic
bifurcations, are not considered here. For a detailed introduction to bifurcation
theory the reader is referred to standard textbooks, see e.g., [HK91, Kuz04].

The outcome of every bifurcation analysis is a bifurcation diagram that shows the
parameter dependence of solutions of the underlying system (1.1), e.g., in (u, p)-
or (‖u‖ , p)-space. Local bifurcations are classified by the way how the eigenval-
ues of the linearized system cross the imaginary axis with parameter changes.
Since bifurcations describe a fundamental change in system dynamics they can
not happen at hyperbolic fixed points. An infinitesimally small perturbation
in the parameters from p to p+ δp cannot shift eigenvalues over the imaginary
axis and hence the corresponding flows will be topologically equivalent, i.e., there
exists a homeomorphism h and a map τ , monotonically-increasing with t, such
that h(φp+δp(τ(u, t);u)) = φp(t;h(u)). Topologically equivalent systems have
the same qualitative dynamics. Consequently, local bifurcations can only hap-
pen on center manifolds and the center manifold reduction (1.8) justifies the
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investigation of low-dimensional systems, i.e., the linear system (1.6) typically
possesses one or two eigenvalues on the imaginary axis.

First, we consider the case of a single real eigenvalue crossing zero with all other
eigenvalues having non-vanishing real part. The center manifold reduction leads
us to the study of a one-dimensional system.

One-dimensional systems For the simplest case of fixed points ũ in a one-
dimensional system with f(ũ, p) = 0 the bifurcation diagram shows the equi-
libria in dependence on the parameter p (cf. Fig. 1.1). Therefore, the bifur-
cation diagram is the union of all points (u, p) for which f(u, p) = 0. Further,
we restrict ourselves to local bifurcations, i.e., bifurcations that can be under-
stood by investigating the vicinity of equilibria in phase space. The connected
components in the bifurcation diagram are called branches, which are divided
into stable and unstable branches depending on the stability properties of the
linearized system (1.6). Before studying what happens when bifurcations are
present, we would first like to understand the behavior when bifurcations are
absent. Assume we have already found a solution (ũ, p̃) such that f(ũ, p̃) = 0.
If ∂f/∂u|(ũ,p̃) 6= 0 the implicit function theorem tells us that there exists a
unique function u(p) for some interval around p̃ such that f(u(p), p) = 0 and
u(p̃) = ũ. Consequently, there can be no local bifurcation close to p̃ and a nec-
essary condition for the existence of a bifurcation is that the system is singular,
i.e., ∂f/∂u|(ũ,p̃) = 0. Note, that this is equivalent to our assumption, that a
real eigenvalue crosses zero. We also remark that the argumentation with the
implicit function theorem is not sufficient in higher dimensions: in the case of a
Hopf bifurcation (see (1.13)) the implicit function theorem guarentees the exis-
tence of a unique curve of fixed points although a bifurcation, i.e., the birth of
a limit cycle, happens.

In the following, the presentation is restricted to the description of codimension
one bifurcations, i.e., one parameter has to be changed in order to observe
the bifurcation. Codimension one bifurcations are usually observed in real-
world applications and correspond to the crossing of the imaginary axis of a
real eigenvalue or a pair of complex eigenvalues. For bifurcations with higher
codimension, e.g., cusp bifurcation, the reader is referred to [HK91, Kuz04]. In
order to begin the classification of some bifurcations, we recall, that bifurcations
happen at critical or bifurcation points where the linear flow is singular. Hence,
all bifurcation points (ũ, p̃) have the singularity conditions

f(ũ, p̃) = 0 and ∂f/∂u|(ũ,p̃) = 0. (1.9)

Consequently, the classification is done via higher-order derivatives, i.e., via the
type of nonlinearity. The simplest case of a nondegeneracy condition is that the
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Figure 1.1: Bifurcation diagrams. Full (dashed) lines correspond to stable
(unstable) branches.

quadratic term in the Taylor expansion (1.5) is non-vanishing, i.e.,

∂2f/∂u2|(ũ,p̃) 6= 0. (1.10)

Further, assume the transversality condition

∂f/∂p|(ũ,p̃) 6= 0 (1.11)

is fulfilled. Then, the system undergoes a saddle-node or fold bifurcation at
(ũ, p̃). The saddle-node bifurcation is shown in Fig. 1.1(a) and connects a sta-
ble with an unstable branch. Note, that the implicit function theorem can be
applied to obtain a function p(u) due to condition (1.11). It is easiest to un-
derstand bifurcations in their corresponding normal form, which is the simplest
vector field giving rise to the respective bifurcation. The normal form for the
saddle-node bifurcation is

u̇ = p− u2 saddle-node.

It is easily seen that the number of fixed points depends on the parameter p,
such that there are no fixed points for p < 0, one (degenerate) fixed point for
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p = 0 and two fixed points for p > 0. At the bifurcation point (ũ, p̃) = (0, 0) the
singularity conditions (1.9) are fulfilled. Furthermore, ∂2f/∂u2|(ũ,p̃) = −2 6= 0
and ∂f/∂p|(ũ,p̃) = 1 6= 0 supplement the sufficient conditions (1.10) and (1.11)
for a saddle-node bifurcation.

If the vector field has certain symmetries or certain special properties there
are more codimension one bifurcations that occur frequently. These dynamical
systems are usually encountered in models from physics. The most common
additional bifurcations are the transcritical bifurcation with conditions

f(ũ, p̃) = 0
∂f/∂u|(ũ,p̃) = 0
∂f/∂p|(ũ,p̃) = 0



 (singularity),

∂2f/∂u2|(ũ,p̃) 6= 0, (nondegeneracy),

∂2f/∂u∂p|(ũ,p̃) 6= 0, (transversality),

and the pitchfork bifurcation with conditions

f(ũ, p̃) = 0
∂f/∂u|(ũ,p̃) = 0
∂f/∂p|(ũ,p̃) = 0

∂2f/∂u2|(ũ,p̃) = 0





(singularity),

∂3f/∂u3|(ũ,p̃) 6= 0, (nondegeneracy),

∂2f/∂u∂p|(ũ,p̃) 6= 0, (transversality).

The transcritical bifurcation has the special property that u = 0 is a fixed
point for all values of the parameter p with symmetry f(−u,−p) = f(u, p).
The transcritical bifurcation is also known as an exchange of stability, since the
branches continue in the same direction with a mere exchange of stability (see
Fig. 1.1(b)). The pitchfork bifurcation is a special bifurcation in systems with
symmetry f(−u, p) = −f(u, p), see Fig. 1.1(c). The pitchfork is further classified
as supercritical for ∂3f/∂u3|(ũ,p̃) < 0 and subcritical for ∂3f/∂u3|(ũ,p̃) > 0. The
normal forms are given as

u̇ = u(p− u) transcritical

u̇ = u(p− u2) pitchfork
(1.12)

and it is easily checked that the conditions for the respective bifurcation are
fulfilled at the bifurcation point (ũ, p̃) = (0, 0). The study of bifurcations in
dynamical systems with symmetry is a whole field on its own and would go
far beyond the scope of this short review (see e.g., [GSS88, WR02] for further
reading). Note, that both the transcritical and the pitchfork bifurcation are
structurally unstable as they perturb to ordinary saddle-node bifurcations un-
der general perturbations of the vector field f (cf. Fig. 1.1(e) and Fig. 1.1(f)
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where a constant has been added to the vector fields in (1.12)). On the other
hand, the saddle-node bifurcation is structurally stable, e.g., adding a constant
merely translates the bifurcation point, and is therefore often encountered in
applications.

Two-dimensional systems So far, the presented bifurcations were codimen-
sion one with a one-dimensional state variable. Another very important bifurca-
tion in applications is the Hopf or Andronov-Hopf bifurcation (see Fig. 1.1(d)).
In contrast to the other bifurcations, where a real eigenvalue crosses zero at the
bifurcation, the Hopf bifurcation requires a pair of complex eigenvalues crossing
the imaginary axis. Hence, in order to observe a Hopf bifurcation, the phase
space has to be at least two-dimensional. The importance of the (supercritical)
Hopf bifurcation stems from the fact that a stable equilibrium loses stability
and gives rise to a stable limit cycle. This behavior can be observed in many
physical systems and is therefore studied in great detail. Before presenting the
general theorem for existence of a Hopf bifurcation, it is instructive to consider
the system

ẋ = −y + x(p+ a(x2 + y2)),

ẏ = x+ y(p+ a(x2 + y2)),
(1.13)

where we write u = (x, y) ∈ R2. At the bifurcation point (ũ, p̃) = ((0, 0), 0) it is
easily verified that f(ũ, p̃) = 0 and

Duf |(ũ,p̃) =

(
p+ 3ax2 + ay2 −1 + 2axy

1 + 2axy p+ ax2 + 3ay2

)∣∣∣∣
(ũ,p̃)

=

(
0 −1
1 0

)
. (1.14)

The eigenvalues of (1.14) are λ± = ±i and purely imaginary. The implicit func-
tion theorem guarentees the existence of a smooth curve of equilibria u(p) going
through the origin and the eigenvalues λ±(p) vary smoothly with p. Moreover,
we compute

d

dp
(Reλ±(p))

∣∣∣∣
(ũ,p̃)

= 1 6= 0, (1.15)

such that the eigenvalues cross the imaginary axis transversally. The conditions
(1.14) and (1.15) add the sufficient conditions for a Hopf bifurcation: assume
we have an equilibrium (ũ, p̃) for which Duf |(ũ,p̃) has a simple pair of imaginary
eigenvalues and no other eigenvalues with real part zero. Further assume, that
the pair of imaginary eigenvalues fulfills the condition (1.15). Then, the Hopf
theorem implies that the dynamical system undergoes a Hopf bifurcation at
(ũ, p̃). Additionally, the bifurcation is supercritical for a < 0 and subcritical for
a > 0 in (1.13).

Knowledge of bifurcation diagrams gives valuable information about the behav-
ior of the system for different parameter values. The computation of bifurcation



14 Introduction to Dynamical Systems

diagrams is complicated by the fact that, in general, branches cannot be com-
puted analytically. For this case, numerical continuation is the method of choice
to obtain a discrete approximation of branches in bifurcation diagrams. In the
remainder of this section, the concepts of numerical continuation that have been
used in the papers in Appendix A will be introduced. For a broader introduc-
tion to numerical continuation and bifurcation analysis the interested reader is
referred to e.g., [Kuz04, DS13].

The main ingredient in numerical continuation is the implicit function theo-
rem. The strategy in a numerical continuation scheme is to use the existence
of smooth branches in order to find connected components where the linearized
system is not singular. At singular points the continuation process would ideally
classify the type of bifurcation and continue all branches emanating from this
bifurcation point. Additionally, the stability of branches should be determined
during the continuation process. If we restrict ourselves to find bifurcation dia-
grams for equilibria the outcome of a numerical continuation would be the zero
set {(u, p) | f(u, p) = 0}. Note, that a continuation method only finds connected
components. In order to detect disconnected branches, the continuation process
has to be initialized on another branch.

Basically all continuation schemes are composed of two steps: a predictor and a
corrector step (we neglect issues concerning step size control). In the predictor
step a potentially new equilibrium (û, p̂) is predicted from a previous one. The
prediction typically introduces an error, because (û, p̂) is not exactly on the
branch. This error is corrected in the corrector step by solving f(u, p) = 0 in
a suitable subspace. For this purpose, one usually uses Newton iterations, but
the corrector step can also be formulated as a bisection or false position method
(see, e.g., [CHS12] and Paper IV).

Before explaining details about continuation techniques, we note that it is useful
to consider the one-parameter continuation problem in the form

G(ξ) = 0, G : Rn+1 → Rn

where ξ = (u, p). The level set G(ξ) = f(u, p) = 0 defines the parameter-
dependent equilibria and the implicit function theorem guarentees the existence
of a smooth curve for a regular system, i.e., rankDG = n. The goal is to trace
branches in the bifurcation diagram by finding a sequence of subsequent points
ξ1, ξ2, . . . starting from an initial solution ξ0. The initial solution can either be
known analytically or it can be obtained by an initial guess with subsequent
Newton corrections. The starting point of each continuation step is the choice
of a good candidate for ξj+1 from previous states ξj , ξj−1, . . . , ξ0. A popular
choice is the tangent predictor

ξ̂j+1 = ξj + hjηj , (1.16)
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Figure 1.2: Numerical continuation scheme. (a) Sketch for different predictor
steps. The secant predictor (red) uses information from the two
previous points ξj−1 and ξj , while the tangent predictor (blue)
only uses local information at ξj . (b) Predictor-corrector method.
The blue box shows the comparison between natural continuation
(fixed parameter value, green arrow) and pseudo-arclength con-
tinuation (orthogonal to prediction, yellow arrow). The red box
shows a second corrector step that visualizes how pseudo-arclength
continuation is able to continue branches around fold points.

where hj is the step size and ηj the normalized tangent vector to the branch at
ξj (see Fig. 1.2(a)). The tangent is found by solving

DG|ξ=ξj · ηj = 0. (1.17)

Another choice is the secant predictor that uses two previous points on the
branch to find the predicted point ξ̂j+1. Here, the same equation (1.16) is used
with

ηj =
ξj − ξj−1
‖ξj − ξj−1‖

.

This has the advantage that it is not necessary to solve (1.17), which can be
computationally expensive for large systems.

Since G(ξ̂j+1) 6= 0 in general, the subsequent correction step uses Newton itera-
tions to solve G(ξj+1) = 0 starting from the predicted point ξ̂j+1. Since Newton
iterations require the system to have square Jacobian, i.e., as many equations as
unknowns, we have to choose another scalar condition gj(ξ) = 0 for the correc-
tor step. Natural continuation seeks an equilibrium for a fixed parameter value
p. Denoting ξ̂j+1 = (ûj+1, p̂j+1), natural continuation uses

gj(ξ) = p− p̂j+1 (1.18)
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as auxiliary condition. Consequently, the Newton iteration solves the system

G(ξj+1) = 0

g(ξj+1) = 0
⇒ f(uj+1, pj+1) = 0

pj+1 − p̂j+1 = 0

in n + 1 unknowns (u, p) and n + 1 equations (n for G and 1 for g) in a sub-
space orthogonal to the parameter axis (see green arrow in Fig. 1.2(b)). The
biggest disadvantage of natural continuation is, that it is incapable of continu-
ing branches around fold points. A prediction beyond the fold point prevents
the Newton iteration to converge. Therefore, a frequently-used technique is
pseudo-arclength continuation. The only difference to natural continuation is
the choice of the auxiliary scalar equation or geometrically-speaking the choice
of the suitable subspace. Instead of (1.18) we use

gj(ξ) = 〈ξ − ξ̂j+1, ηj〉,

where 〈·〉 is the inner product (in Rn+1). Effectively, the system G(ξ) = 0 is
solved in a subspace orthogonal to the predictor (see yellow arrow in Fig. 1.2(b)).
Therefore, it is possible for pseudo-arclength continuation to continue branches
around folds. Note that the stability of the branches can be extracted as a
by-product of the Newton iterations at the converged point ξj+1. Further, stan-
dard criteria from Newton iterations can be used to check for convergence, e.g.,
convergence of the residual.

Another important ingredient in numerical continuation is the numerical detec-
tion of bifurcations in the continuation process. This is usually accomplished
with test functions ψ: scalar-valued functions that cross zero at the bifurcation
point. In the case of a saddle-node bifurcation one way to construct a test
function is

ψ(u, p) =

n∏

i=1

λi(u, p), (1.19)

where λi(u, p) are the eigenvalues of the linear dynamics at the point (u, p) on
the branch. At a regular fold point exactly one eigenvalue changes stability, i.e.,
crosses zero, and therefore a fold is detected along the branch if

ψ(ξj)ψ(ξj+1) < 0.

It can be tedious in applications to compute all eigenvalues for the linearized
flow and instead of (1.19), one often uses the test function

ψ(u, p) = det

(
∂f(u, p)

∂u

)
. (1.20)

In general, one has to be careful when using test functions. For example, if
two real eigenvalues cross zero the same time, i.e., a non-generic fold, the test
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functions (1.19) and (1.20) would not detect the fold. Similar test functions also
exist for other bifurcations, e.g., Hopf bifurcations (see [Kuz04] for details).

We stop the introduction to bifurcation analysis and numerical continuation at
this point since we have presented all the results necessary to understand the
relevant parts in the research papers in Appendix A. This short presentation
only scratches the surface of (numerical) bifurcation analysis. Much more has
to be said about continuation of periodic orbits with methods such as (multiple)
shooting and collocation. Further, continuation of bifurcations and in general
continuation in more than one parameter has to be discussed as well. Also,
methods for branch switching at certain bifurcation points, e.g., Hopf bifurca-
tions and pitch-fork bifurcations, have not been discussed here. This list is not
at all complete and we would like to conclude this section with a brief remark on
available software packages for numerical continuation and bifurcation analysis.

Many different packages are available as open source projects and their ca-
pabilities differ substantially. Powerful packages are AUTO [DK86] (written
in Fortran), MatCont [DGK03] (written in Matlab) and CoCo [DS13]
(written in Matlab). Furthermore, there exists also software for specialized
applications. DDE-Biftool [ELS01] focusses on the bifurcation analysis of
delay-differential equations and Sympercon [Sym] analyzes symmetric systems.
HomCont [DCF+98] is specialized in continuation of homoclinic and hetero-
clinic orbits.

In the next section, special dynamical systems with time scale separation are
discussed. This constitutes the foundation for the analysis of such systems with
the equation-free framework (cf. Chap. 2).

1.3 Time Scale Separation

The importance of systems with time scale separation has been elaborated on
in the introduction. Time scale separation is also observed in applications in
the Appendix A, e.g., speed of pedestrians vs. oscillation period (Paper II and
Paper V), car speed vs. speed of traffic jams (Paper I and Paper II) and neuron
dynamics vs. map formation time scale (Paper III and Paper IV). Here, we
like to give a short overview of the existing mathematical theory and concepts.
Details can be found in the research papers in Appendix A, in particular in
Paper I. This section follows the ideas of Fenichel’s geometric singular pertur-
bation theory [Fen79, Wig94] in its general form. Along the general discussion,
we also give the results for explicit slow-fast systems (based on the lecture notes
by Christopher Jones [Jon95]) in order to visualize the concepts and build up
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intuition. It is assumed that the reader is familiar with dynamical systems the-
ory and concepts from geometry, e.g., manifolds, graphs, and we use common
meanings without strict definition.

Assume we have a dynamical system

u̇ = fε(u), u ∈ Rn, fε : Rn → Rn, (1.21)

with time scale separation ε and flow φε for the smooth right-hand side fε.
Assume further, that ε is a singular perturbation parameter, i.e., for ε = 0 there
exists an invariant critical slow manifold M0 such that the flow φ0(t;u) = u
for all u ∈ M0 and t ∈ R. This means, that M0 solely consists of fixed points
and f0(u) = 0 for all u ∈ M0. To simplify the discussion, we assume further
that M0 is compact. Although the time scale separation in applications can
often not be influenced directly it is of theoretical interest to study the limit
ε→ 0. The strategy is to establish results for the case ε = 0 and then study how
they persist for ε > 0. To build up intuition, it is beneficial to study explicit
slow-fast systems. Although an explicit splitting into slow and fast variables is
unnecessary for Fenichel’s results, it helps to better understand the theorems.

An explicit slow-fast system is given as

ẋ = f(x, y, ε),

ẏ = εg(x, y, ε),
(1.22)

where ˙ = d/dt denotes the time-derivative with respect to the fast time t and
x ∈ Rnf and y ∈ Rns are the fast and slow variables, respectively. f and g are
smooth in U × I, where U ⊂ Rn = Rnf × Rns and I is an interval containing
zero. For ε 6= 0, the fast system (1.22) can be transformed into the equivalent
slow system

εx′ = f(x, y, ε),

y′ = g(x, y, ε).
(1.23)

Here, ′ = d/dτ is the time-derivative with respect to the slow time τ = εt. In the
case of infinite time scale separation, i.e., ε = 0, the slow and fast systems are no
longer equivalent but have both their interesting properties. We first consider
the slow system (1.23), that is turned into a differential algebraic equation

0 = f(x, y, 0),

y′ = g(x, y, 0),
(1.24)

which is only defined on 0 = f(x, y, 0). This constraint can be used in the
implicit function theorem, assuming non-degeneracy, to find a function x = h(y)
such that f(h(y), y, 0) = 0. Therefore, h defines (at least locally) a graph

M0 = {(x, y) ∈ Rn | x = h(y)},
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which is the critical manifold. On M0 the dynamics is given by

y′ = g(h(y), y, 0)

and describes the slow dynamics. This constitutes a dimensionality reduction
from n = nf + ns to ns dimensions. A disadvantage of system (1.24) is, that
the dynamics is not defined off M0.

Looking at the singular case for system (1.22) results in

ẋ = f(x, y, 0), (1.25a)
ẏ = 0. (1.25b)

This ODE also defines a flow away from M0, but the dynamics on M0 is trivial
as all points on M0 are fixed points of (1.25a) (note, that f(x, y, 0) = 0 on M0).
Comparing with the general approach in (1.21), M0 is the critical manifold that
has been stated to exist in singular perturbed systems. It is the goal of geometric
singular perturbation theory to study those systems for a small but finite time
scale separation ε 6= 0.

Before discussing Fenichel’s results, we investigate the linearized flow Df0 on
M0 for the general system (1.21). Df0 has at least ns zero eigenvalues, since
(1.25b) is identically zero and therefore all directions tangential toM0 have zero
eigenvalue. The best we can hope for is that M0 is normally hyperbolic, i.e., the
linearized flow on M0 has exactly ns eigenvalues zero and all the remaining
nf eigenvalues are non-vanishing. In the remaining part of this section we will
assume that M0 is normally hyperbolic.

Since M0 contains fixed points, it is natural to define the invariant stable and
unstable manifolds to those fixed points u0 ∈M0 in the usual manner

W s
0 (u0) = {u ∈ Rn | lim

t→∞
φ0(t;u) = u0},

Wu
0 (u0) = {u ∈ Rn | lim

t→−∞
φ0(t;u) = u0}.

In this context,W s
0 (u0) andWu

0 (u0) are also called the stable and unstable fibers
for the basepoint u0. The union of the stable and unstable fibers build the stable
and unstable manifolds for M0, respectively, i.e.,

W s
0 (M0) =

⋃

u0∈M0

W s
0 (u0),

Wu
0 (M0) =

⋃

u0∈M0

Wu
0 (u0).

In equation-free computations, we assume that the slow manifolds are normally
attracting, i.e., dim(Wu

0 (M0)) = 0. Then, the stable fiber projection π0 : U →



20 Introduction to Dynamical Systems

M0

W s(u0)

u0

Mε

(a) Persistence of the slow manifold.

Mεt
u∗

W s
ε (u∗)

φε(t;u
∗)

W s
ε (φε(t;u

∗))

(b) Invariance as a family.

Figure 1.3: Visualizations of the main results of Fenichel’s theory. (a) The
critical manifold M0 (gray) of fixed points persists for ε > 0. The
flow on the slow manifold Mε (black) is different from the flow on
M0 which consists solely of fixed points (gray dots). (b) Fibers
persist as a family according to Fenichel’s third theorem (cf. also
(1.26)).

M0, π0(u) = u0 assigns to each u ∈ U in a neighborhood of M0 its basepoint u0.
The natural question to ask is: what happens to the manifolds M0, W

s/u
0 (u0)

and W s/u
0 (M0) if ε is non-zero but small? The answer is given by Fenichel and

we will briefly discuss his main theorems in the remainder of this section.

We consider now the system (1.21) for ε > 0. Fenichel’s first theorem states
that under the conditions of smooth fε and a normally hyperbolic, compact M0

there exists a slow manifold Mε, also compact, that is i) locally invariant under
fε, ii) diffeomorphic to M0 and iii) O(ε)-close to M0. Note that, although Mε

is diffeomorphic to M0, the dynamics are fundamentally different. Usually, Mε

does not consist of fixed points only (see Fig. 1.3(a)) and the dynamics on Mε

can be as complicated as in any other dynamical system. The persistence of the
slow manifold forms the basis for equation-free computations (see Chap. 2). It
is also the reason, why pattern formation is observed in many physical systems
(see also the slaving principle [Hak83]).

Additionally, Fenichel’s second theorem states that also the stable and unstable
manifolds persist: there exists stable/unstable manifolds W s/u

ε (Mε) that are i)
locally invariant under fε, ii) diffeomorphic to W s/u

0 (M0) and iii) O(ε)-close to
W

s/u
0 (M0). At first sight it seems counter-intuitive to talk about the stable and

unstable manifolds W s/u
ε (Mε), sinceMε does not consist of fixed points. It is in

a similar manner as in Fenichel’s first theorem: the dynamics on the manifold
W

s/u
ε (Mε) is changed, but the approach to the slow manifold Mε happens with

an exponential rate for points in the stable and unstable manifolds W s/u
ε (Mε)
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in positive and negative time, respectively (see, e.g., [Jon95] for the estimates).

Furthermore, it is intuitively clear, that individual fibers W s/u
0 (u0) cannot per-

sist as such, since the basepoint u0 on the manifold, which is fixed in the case
ε = 0 is moving on Mε. Nevertheless, Fenichel’s third theorem states the
persistence of the fibers in a certain way: for all u∗ ∈ Mε there exist mani-
folds W s/u

ε (u∗) which are i) invariant as a family under fε, ii) diffeomorphic to
W

s/u
0 (u∗) and iii) O(ε)-close to W s/u

0 (u∗). Invariant as a family means, that
after a time t the fibers for the basepoint u∗ are a subset of the fibers of the
basepoint u∗ after time t, i.e.,

φε(t;W
s/u
ε (u∗)) ⊂W s/u

ε (φε(t;u
∗)). (1.26)

This is visualized in Fig. 1.3(b).

The results of Fenichel provide the mathematical basis for the development
of equation-free methods. In equation-free methods, a dynamical system is
assumed to possess a normally-attracting slow manifold. The dynamics on this
manifold decides about the long-term behavior of the system and is therefore of
interest for applications. Usually, the equations of motion on the slow manifold
are not given in closed form and a splitting into slow and fast variables is also
not available in an obvious manner. We will introduce equation-free methods
in the next section.
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Chapter 2

Equation-Free Methods

“Someone told me that each equation I included in the book would
halve the sales.”

S. Hawking, A brief history of time, 1988.

We introduced the notion of dynamical systems with time scale separation
in Chap. 1. These systems are frequently observed in nature, e.g., in quasi-
geostrophic flow [Lor86] in meteorology; in the van der Pol oscillator [vdP20]
and celestial mechanics [Hol90] in physics; and in Michaelis-Menten kinetics
[MM13] (see [JG11] for a translation into English) in chemistry and biology. The
time scale separation often results in pattern formation, see e.g., the Belousov-
Zhabotinsky reaction [Bel59, Zha64, FN74]. This list of applications is far from
being complete and all the examples are interesting in their own right. There-
fore, there is a strong demand to understand the relevant coarse dynamics of
systems with time scale separation.

In this chapter the so-called equation-free approach, proposed and analyzed by
Kevrekidis and coworkers, is discussed (see [KGH+03, KGH04] and [KS09] for a
recent review on equation-free methods). First, a short overview on the method-
ology of equation-free analysis is presented in Sec. 2.1, followed by an introduc-
tion of the newly-developed implicit equation-free methods in Sec. 2.2 (cf. also
[MSB+14] and Paper I). Afterwards, important higher-level tasks, e.g., coarse-
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projective integration and coarse bifurcation analysis, employing the equation-
free methodology are introduced in Sec. 2.3. Furthermore, existing methods
and applications based on these higher-level tasks are presented in Sec. 2.4.
The chapter concludes with a discussion about critical issues in equation-free
computations in Sec. 2.5.

2.1 The Equation-Free Idea

One main idea behind the analysis of multi-scale systems originating in physics
is that the long-term evolution of these systems happens on a low-dimensional
slow manifold Mε which is normally attracting. For singularly perturbed sys-
tems in explicit slow-fast form the critical slow manifold M0 can be explic-
itly constructed as a graph in the case of infinite time scale separation, i.e.,
ε = 0. Fenichel’s theory [Fen79] guarantees the persistence of this manifold
Mε for small ε > 0 (cf. Sec. 1.3 for details). In the normally attracting case
after a (short) initial transient the dynamics are well-described by the flow φε
reduced toMε. Usually, the dimension ofMε is much smaller than the dimen-
sion of the full phase space, making the coarse analysis of multi-scale systems
tractable. In real-world problems, it is not always possible to derive the dynam-
ics on this slow manifold, although many phenomena are known to be inherently
low-dimensional, e.g., pattern formation. This is due to a modeling that often
takes place on a microscopic level and consequently equations of motion for the
interesting macroscopic scale are not available in closed form. A method to gain
insight into the dynamics onMε without deriving explicit evolution equations
is therefore very desirable. Here, the equation-free idea comes into play.

Assume, that a microscopic model for our problem is available. In general, these
models are high-dimensional systems, e.g., ordinary, partial or stochastic differ-
ential equations. For the sake of simplicity, we assume the microscopic model
to be an autonomous ordinary differential equation with sufficiently smooth
right-hand side

u̇ = fε(u, p), u ∈ Rn, fε : Rn+m → Rn. (2.1)

Usually, the problem depends on a set of (real) parameters p ∈ Rm. The
subscript ε denotes the time scale separation which is not necessarily known
in applications. Note, that (2.1) is not required to be in the explicit form for
slow-fast systems, i.e., the splitting into slow and fast variables can be unknown.
The solution of (2.1) after time t for initial condition u(t0) is determined by

u(t0 + t) = φε(t;u(t0)), (2.2)
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where φε is the flow of (2.1). In the numerical implementation of equation-
free methods a discretized-in-time version of φε is called the microscopic time
stepper.

Further, the equations of motion on the slow manifold Mε are known to exist
but might be unknown. Formally, we define the macroscopic dynamics to be
described by

U̇ = F (U, p), U ∈ RN , F : RN+m → RN . (2.3)

Here, F is the macroscopic vector field and U denotes the macroscopic, low-
dimensional variables (typically N � n). Again, we formally assume that a
solution to (2.3) exists and is given by the macroscopic flow Φ:

U(t0 + t) = Φ(t;U(t0)). (2.4)

The idea is now to approximate the macroscopic flow Φ in order to gain in-
formation on the macroscopic scale. Since the flow φε can usually only be
approximated by simulation, we have to limit our investigations to the numeri-
cal approximation of Φ, i.e., the macroscopic time stepper. In order to construct
Φ we use two operators

R : Rn → RN , (restriction)

L : RN → Rn, (lifting)
(2.5)

to communicate between the microscopic (Rn) and macroscopic (RN ) levels.
The restriction operator R maps a full state of the system to a low-dimensional
reduced state; the lifting operator L initializes a high-dimensional full state from
a low-dimensional state. Usually, the construction of a restriction operator is
simple in the sense, that it is known from physical intuition of the system at
hand; it defines the macroscopic quantities of interest, e.g., moments of a dis-
tribution or order parameters. On the other hand, the construction of a lifting
operator is much more involved, since one has to compute a high-dimensional
state from a low-dimensional one, e.g., construct a full distribution from only
knowing the mean and variance. This is a one-to-many operation and the def-
inition of the lifting is consequently not unique. In a continuation setup for
numerical bifurcation analysis it is often possible to use information from previ-
ous continuation steps in the construction of L (see e.g., Paper I and Paper IV).

Finally, the construction of the macroscopic time-stepper proceeds in three steps:
lift – evolve – restrict (see also Fig. 2.1). Precisely, the three-step scheme P is
defined as

P (t; ·) = R(φε(t;L(·))). (2.6)
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(micro) Rn

(macro) RN U(t0)

u(t0) u(t0 + t)

U(t0 + t)

lifting L

φε(t; ·)

R restriction

Φ(t; ·) = R(φε(t;L(·)))

Figure 2.1: Sketch of the lift–evolve–restrict scheme (2.6) as proposed by
[KGH+03] and used for the explicit macroscopic time stepper.

This is the original explicit approach by Kevrekidis and co-workers, where the
macroscopic time stepper is given as Φ = P [KS09]. Note, that this is only an
approximation of the flow Φ on the slow manifold, since the lifting operator is
in general not initializing on the slow manifold (lifting error). In order to assure
a good lifting operator it is often required that

R ◦ L = I (2.7)

is fulfilled and then the flow onMε is supposedly well-approximated by Φ = P
[KS09, AHS14]. A closer investigation of (2.7) reveals, that it is merely a state-
ment of consistency of the restriction and lifting step: performing a restriction
immediately after a lifting without time integration in between should return the
original state. However, this constraint makes no statement about the closeness
of the lifted point to the slow manifold. In the implicit equation-free methods
(cf. Sec. 2.2) the constraint is relaxed, which makes the choice of lifting operators
more robust. Another way to circumvent (2.7) is to use the constrained-runs
scheme based on the zero-derivative principle (see [ZGKK09, VKR09, ZVG+12]
and Sec. 2.4.1) to initialize the system on the slow manifold and compute the
dynamics from there. We will present the implicit equation-free approach in the
next section.

2.2 Implicit Equation-Free Methods

A major disadvantage of classical equation-free methods (cf. Sec. 2.1) is the
crucial dependence on the lifting operator. It is supposed to initialize the system
close to the unknown slow manifold which justifies the approximation of the
flow on the slow manifold by the explicit macroscopic time stepper, i.e., Φ ≈ P .
Even the check R ◦ L = I is not a sufficient condition for the lifting operator
to initialize the system close to the slow manifold. It is only an approximation
for the correct constraint R ◦ πε ◦ L = I, where πε denotes the stable fiber
projection (see the discussion in Paper I and the end of Sec. 2.1 for details).
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Figure 2.2: Sketch of the implicit equation-free scheme (2.8).

Different schemes have been investigated for initializing the system on the slow
manifold, which can be rather complicated and numerically hard to solve in
real-world applications (see e.g., Sec. 2.4.1 for the constrained runs scheme).
An elegant alternative that can be easily implemented is the implicit equation-
free method. The aim is the approximation of the flow Φ on the slow manifold
based on the map P (cf. (2.6)) without the need to explicitly initialize the
system close to the slow manifold. Instead, we utilize the fast attraction to the
normally hyperbolic invariant manifold in order to obtain the flow on it.

The remainder of the section deals with the derivation of Φ which is sketched
in Fig. 2.2. An important observation is, that Φ has to be defined implicitly.
Assume, that the time-δ map on the slow manifold maps a macroscopic state U
to another macroscopic state V . This V is yet unknown, since Φ is not available.
We employ P in order to find V . Starting at U , we apply the lifting L, evolve
for a time tskip + δ and restrict R. The time tskip is short compared to the
characteristic time scale on the slow manifold and brings the system back to the
slow manifold. It is called the healing time, since it “heals” the lifting error. The
additional time δ is the time step on the slow manifold. Finally, the restriction
R brings the state back to the macroscopic level. The whole path is described
by P (tskip + δ;U) = U∗ (see (2.6) for the definition of P ). Since we know by
assumption, that V is the result of a time step δ of U on the slow manifold, we
reach the same point U∗ by applying P (tskip;V ) just for the healing time tskip.
Consequently, we can solve for the implicitly-defined V :

P (tskip + δ;U) = P (tskip;V )

and set Φ(δ;U) := V.
(2.8)
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A Newton iteration is usually used to compute the implicitly-defined V . This
concludes the definition of the slow flow Φ. It is shown in Paper I that this flow
is exponentially close to the exact flow Φ∗ on the slow manifold. The estimate

‖Φ(δ, U)− Φ∗(δ, U)‖ ≤ C exp(−Ktskip), (2.9)

with constants C,K > 0 makes this statement precise. Note, that a longer
healing time tskip gives a smaller error. By using the flow Φ on the slow manifold,
it is possible to formulate an ODE in healed variables Uhealed = P (tskip;U), i.e.,
an ODE describing the dynamics on the slow manifold, by

d

dt
R(φε(tskip;L(U))) =

∂

∂δ
R(φε(tskip + δ;L(U)))

∣∣∣∣
δ=0

. (2.10)

The left-hand side is the time-derivative of the healed macroscopic quantity and
the right-hand side describes the dynamics on the slow manifold projected to
the macroscopic variables (see also Fig. 2.2). Note, that in contrast to previ-
ous approaches with a healing time, the healing is applied to both sides of the
equation instead of just to the right-hand side (see, e.g., [GKT02]). Equation
(2.10) can be used in higher-level tasks for coarse projective integration and
coarse bifurcation analysis (cf. Sec. 2.3). The assumptions and proofs for the
statements made above are discussed in detail in Paper I and are not repeated
here. The main ideas are based on Fenichel’s theory (cf. Sec. 1.3). The con-
vergence proof makes use of the persistence of the slow manifold, the stable
fiber projections and the existence of a slow flow on the manifold to obtain the
exponential estimates.

To conclude this section, we note that implicit equation-free methods can be
applied to the same problems as explicit equation-free methods. They put
equation-free computations in an elegant and rigorous mathematical formula-
tion and prevent the lifting errors, which are difficult to deal with otherwise.
Note, that the implicit equation-free method computes the correct dynamics on
the slow manifold but at points different from the user-provided points. This is
due to the healing step that changes the value of the macroscopic variables. For
numerical continuation and bifurcation analysis the dynamics at a user-defined
point on the slow manifold is not required (see Paper I). If a point on the slow
manifold with a certain value of the macroscopic quantity is needed anyway the
method of “matching the restriction” can be used (see Sec. 2.4.3).

2.3 Higher-Level Tasks

After having defined a macroscopic time stepper it is possible to perform so-
called higher-level tasks. These tasks perform computations known from low-
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dimensional systems on the coarse level utilizing the equation-free methods and
the macroscopic time stepper in particular. We are mainly interested in coarse
projective integration and coarse bifurcation analysis.

2.3.1 Coarse Projective Integration

The goal of coarse projective integration is to find the macroscopic state U(t0 +
∆t) from the initial condition U(t0) for a time ∆t that is long compared to
the slow time scale. This task could be done by the given macroscopic time
stepper (2.4), but it would require a very long integration time, since we are
interested in the slow dynamics. Instead, we can use short simulation bursts
to gain information about the right-hand side F of the macroscopic dynamics.
Using a Taylor approximation to linear order and the explicit (2.6) or implicit
(2.10) formulation of equation-free methods, we obtain

expl.: U(t+ ∆t) = U(t) + F (U(t))∆t,

impl.: R(φε(tskip;L(U(t+ ∆t)))) = R(φε(tskip;L(U(t)))) + F (U(t))∆t.

The macroscopic right-hand side is approximated as

expl.: F (U(t)) =
R(φε(δ;L(U(t))))− U(t)

δ
,

impl.: F (U(t)) =
R(φε(tskip + δ;L(U(t))))−R(φε(tskip;L(U(t))))

δ
.

(2.11)

This method is called coarse projective integration, since it projects the coarse
dynamics from a short scale (δ) into the future (∆t > δ). Coarse projective
integration is simply the well-known Euler iteration for the (unknown) macro-
scopic dynamics. It can be beneficially applied for saving computational time
(in the case ∆t � δ) or for coarse backward integration, i.e., ∆t < 0 (see also
[GK04] and Paper I). A coarse projective integration with negative time step
converges to sinks of the macroscopic dynamics and can therefore be used to
gain information about otherwise inaccessible solutions. In order to save overall
computation time, the computation of lifting and restriction operators has to
be fast compared to the computation of a long macroscopic trajectory. Note,
that the implicit formulation of equation-free methods turns for tskip = 0 and
R◦L = I into the explicit formulation. Therefore, implicit equation-free meth-
ods could be viewed as a generalization of the explicit equation-free framework.
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2.3.2 Coarse Bifurcation Analysis

Bifurcation analysis is probably the biggest achievement in the field of dynam-
ical systems. Despite its success bifurcation analysis is still limited to low-
dimensional systems. Even for three-dimensional dynamical systems there is no
complete list of generic bifurcations available yet. One of the major advantages
of equation-free methods is the ability to perform bifurcation analysis on the
macroscopic level of interest. Thereby, systems with high-dimensional phase
space can be analyzed on the coarse level. All methods known from bifurcation
theory (cf. Sec. 1.2) can be directly applied to equation-free computations by
taking advantage of the macroscopic time stepper. The right-hand side F of the
macroscopic system is obtained numerically (see (2.11)) and bifurcation analy-
sis is applied to this function. Consequently, all evaluations of functions and
Jacobians are performed by short simulation bursts of the microscopic model
combined with the lifting and restriction operators.

In order to compare results of an implicit equation-free bifurcation analysis
with experimential data or data obtained by direct numerical simulation of the
system, one should use healed quantities. The Newton iterations in numerical
continuation of equilibria converge to the root of (2.11) and a macroscopic value
U is obtained. This state is in general not on the slow manifold. Therefore, one
has to heal the state U , i.e., Uhealed = P (tskip;U) = R(φε(tskip;L(U))), in order
to obtain a state on the slow manifold. Note, that in explicit equation-free
computations there is no systematic way to compute healed quantities and the
quality of the results depends crucially on a good choice of a lifting operator.
Healed quantities and a comparison between explicit and implicit methods are
discussed in detail in Paper I.

2.4 Existing Methods

Many algorithms and methods have been developed in the same spirit of
equation-free methods in order to gain insight into the long-term behavior and
the slow manifolds of dynamical systems. This section provides an overview
about existing methods with sight on the relation to equation-free methods. The
presented methods are restricted to those that have already been used in the
context of equation-free methods. Other methods for multi-scale problems that
solve special problems are not discussed in detail. Among those are methods for
determining slow manifolds such as Quasi Steady-State Approximation (QSSA,
[BH25]), Computational Singular Perturbation (CSP, [LG88, LG94]), Intrin-
sic Low-Dimensional Manifold (ILDM, [MP92]), Method of Invariant Manifolds
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(MIM, [GK92, GK03]) and Straigthening Out Method (SO, [Mac04, KBS14]).
In this section, we present the constrained runs scheme (in Sec. 2.4.1), the gap-
tooth scheme (in Sec. 2.4.2) and the method of matching the restriction (in
Sec. 2.4.3).

2.4.1 Constrained Runs Scheme

The constrained runs scheme (CRS) has been introduced and developed in
[GK05, GKKZ05, ZGKK09, ZVG+12] as a method to numerically find slow
manifolds. CRS has first been studied in the context of explicit slow-fast sys-
tems (cf. [GKKZ05, ZGKK09]) where the splitting into slow and fast variables
is known. Afterwards, the method has been generalized to systems with mixed
variables, i.e., both slow and fast, where it is known that a parametrization of
the slow manifold by observables is available [ZVG+12].

The starting point for CRS is a general ODE system

ẋ = f(x, y), x ∈ Rnf ,

ẏ = g(x, y), y ∈ Rns ,

where f : Rnf × Rns → Rnf , g : Rnf × Rns → Rns are smooth functions and ˙
denotes the derivative w.r.t. time t. It is not necessary that x is fast and y is
slow, but rather that the observables y parametrize the slow manifold, i.e., the
slow manifold can at least locally be written as a graph x = h(y).

The key insight for the constrained runs scheme is the zero derivative principle
(ZDP) introduced by [Kre79] and independently by [Lor80]. The m-th ZDP
algorithm approximates the slow manifold to increasingly higher order by solving
the m+ 1-st zero derivative condition

(
dm+1x

dtm+1

)∣∣∣∣
(x,y∗)

= 0 (2.12)

for x keeping the observable y∗ fixed. We denote the approximated graph of
order m as h̄m. Note, that for m = 0 one recovers the quasi steady-state
assumption (QSSA, [BH25]) ẋ = 0. Already from the QSSA it is clear that the
obtained point is not exactly on the slow manifold since ẋ = 0 does not have
to be fulfilled everywhere. Nevertheless, the accuracy for the approximation by
ZDP is increasing with the order m as

∥∥h̄m(·)− h(·)
∥∥ = O(εm+1)

for an explicit slow-fast system with time scale separation ε.
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The m-th constrained runs algorithm is definded by the map

Lm(x) = x− (−s)m+1

(
dm+1x

dtm+1

)∣∣∣∣
(x,y∗)

, (2.13)

where s is the iterative step size. It is easy to see that a fixed point x# of the
map Lm solves (2.12). It is shown in [ZVG+12], that under some conditions the
functional iteration of (2.13) is stable, i.e., the eigenvalues of the linearization of
Lm at x# lie in the unit disk. In the case of an unstable fixed point, the authors
of [ZVG+12] suggest the use of a Newton method instead. It is further explained
in [ZGKK09], that a recursive projection method (RPM, [SK93]) or a Newton
Krylov Generalized Minimal Residual Method (NK-GMRES, [Kel95, VKR09])
could be used to stabilize the algorithm or to speed up computations for only
weakly stable algorithms.

In conclusion, CRS is a very useful algorithm to find points on the slow manifold
while keeping an observable y∗ fixed. The algorithm is reminiscent of the lifting
operator in equation-free computations; given a macroscopic state y∗ find a
corresponding high-dimensional state (x, y∗) on the slow manifold. Therefore,
CRS seems to be a good candidate to provide an otherwise hard-to-construct
lifting operator. However, there are some drawbacks, which effectively prevent
the use of CRS in an equation-free setup. First, the macroscopic variables in
equation-free computations are not necessarily given by some of the variables in
the ODE system. They are rather functions of many or all of the variables. In
some cases a coordinate transformation of the ODE system could overcome this
issue, but the computations can be very complicated in high-dimensional non-
linear systems. This is exactly what we wanted to avoid with the use of equation-
free methods in the first place. Another limiting factor lies in the heart of the
constrained runs scheme itself; the zero derivative principle. Typically, time
derivatives have to be computed numerically in the equation-free framework. In
particular in noisy systems this task can be difficult and becomes increasingly
complicated for largerm in (2.12). The good numerical approximation of higher-
order derivatives is a field in its own and the best algorithm depends on the
problem at hand. These problems make the application of CRS very difficult in
a real-world equation-free computation. Nevertheless, future research might find
a way to beneficially apply CRS in the lifting step of equation-free computations.

2.4.2 Gap-Tooth Scheme

The gap-tooth scheme is the analog of coarse projective integration in the space
domain. The method has been introduced in [KGH+03] and has been further
developed in [SRK05, KS09]. The algorithm is briefly presented in this section.
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We would like to study a microscopic model

du

dt
= f(u), or ∂tu = f(u, ∂ru, . . . , ∂

d
ru, x), (2.14)

where u ∈ Rn, n � 1 is the microscopic variable, t denotes time, r denotes
the space variable with highest-order derivative d, and f is the vector field.
In both cases, we would like to solve the system in a large domain by running
simulations only in small boxes. In the ODE case, spatial dependence is obtained
by interpolation in space. We assume that a microscopic time stepper, i.e., a
simulation, for (2.14) is available. We further assume, that the macroscopic
model is given by a (one-dimensional) PDE for the macroscopic variable U of
the form

∂tU(t, r) = F (r, U, ∂rU, . . . , ∂
d
rU). (2.15)

Also lifting and restriction operators are assumed to be available. In the first
step, we would like to solve (2.15) for short times on a large domain. Since
the interesting domain size is usually much bigger than the computationally
accessible domain and the right-hand side F of (2.15) is not available, we would
like to use the microscopic model (2.14) in small domains to gain information
about the large domain.

The space is discretized as rj = jH with the large grid size H and we denote the
macroscopic time t = iτ with macroscopic time scale τ . In a finite-difference
scheme, we are interested in the gridded solution {U ij} at grid nodes U ij =
U(iτ, jH). Our goal is to simulate the model in small boxes h� H centered at
the grid points, i.e., we solve (2.14) in the teeth [rj − h/2, rj + h/2]. Then, we
compute the solution in the gaps of size H − h in between the teeth. The steps
of the gap-tooth scheme are as follows:

1. Construct boundary conditions for the teeth using {U ij}.

2. Lift the coarse representation {U ij} to initial data for each tooth.

3. Evolve (2.14) for time t ∈ [0, τ ] in the teeth.

4. Restrict to find the coarse solution at t = τ .

In the restriction step, the coarse variables have to be determined on the bigger
boxes of size H by interpolation. This can be a linear interpolation between
nodes as in coarse projective integration. But it can also be an interpolation by
higher-order polynomials or splines in order to arrive at a certain smoothness
that is determined by the specific problem.

This method allows one to obtain a macroscopic solution for large domains
and short time using simulations for small domains and short time. Combining
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the gap-tooth scheme with coarse projective integration enables one to solve
for large domains and long time using simulations for small domains and short
times. The combination of both is called patch dynamics (cf. [KS09, SRK09]
for details).

2.4.3 Matching the Restriction

In equation-free computations it can be useful to find a microscopic state u
on the slow manifold which has a certain macroscopic value U defined by the
restriction operator R(u) = U (cf. [GKKZ05, ZVG+12] and Sec. 2.2). The
goal of this method is reminiscent of the constrained runs scheme with the
difference that U does not have to be a variable of the original dynamical system.
The problem of finding u has been studied in [VSM+11, MSB+14]. Employing
implicit equation-free methods (cf. Sec. 2.2 and Paper I) we solve

R(φε(tskip;L(Ũ))) = U (2.16)

for Ũ and afterwards set u = φε(tskip;L(Ũ)). The solution u is close to the slow
manifold with error ∼ exp(−Ktskip), where K > 0 is a constant.

2.5 Comparison to Other Methods and Critical
Issues in Equation-Free Computations

The previous sections have shown that the equation-free framework is a useful
tool to gain insight into otherwise inaccessible phenomena. The main advantages
are 1) the computation of macroscopic solutions over macroscopic time scales
(coarse projective integration); and 2) large spatial domains (gap-tooth scheme)
by using microscopic simulations; and 3) the possibility for a macroscopic bi-
furcation analysis. Even for relatively simple systems where the computational
cost is low, the conceptual advantage of a macroscopic bifurcation analysis is
convincing. Nevertheless, it is worth mentioning that equation-free methods are
not the only framework for performing multi-scale computations.

First, there are a number of classical approaches for obtaining coarse informa-
tion of certain microscopic systems. Among the most successful approaches are
the homogenization method [SP80, PBL78]; averaging and mean-field methods
[Sta87]; and renormalization methods [Wil75]. These methods aim at deriving
macroscopic equations from certain classes of fine-scale models in a systematic
way. Due to the problems described in Chap. 2 this is not always possible
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or the coarse model can only be constructed in certain cases. Therefore, it is
worth studying a general framework. This general framework is provided by
techniques that establish a so-called closure-on-demand, i.e., they provide the
necessary information on the macroscopic level as it is needed by running mi-
croscopic models. The advantage is that detailed models, which are expensive
to solve numerically, can be used in short time and small spatial domains in
order to gain insight into the macroscopic domain. This multi-scale approach
is maintained by a separation of time scales or spatial scales. The equation-free
framework obtains this closure-on-demand by switching between levels using re-
striction and lifting operators allowing for the construction of the macroscopic
time stepper (2.4). In equation-free methods, the macroscopic equations or even
its properties are generally unknown. Attempts to decide on the nature of the
macroscopic equations are formulated in the baby-bathwater scheme [LKGK03],
which aims at finding the highest spatial order of the derivatives in a coarse PDE
problem.

Another approach for multi-scale computations, that has been developed along
the same ideas as the equation-free approach is the heterogeneous multi-scale
method (HMM) [EE03, EEL+07]. The closure-on-demand is obtained by so-
called compression and reconstruction operators that are the exact equivalents
of the restriction and lifting operators in the equation-free context. Where
equation-free methods focus on a general way to solve an unknown macroscopic
equation, HMM takes a different point of view. The “heterogeneous” in HMM
stems from the fact that different physical models are intended to be used on
different scales. For example, the macroscopic level might be described by a
PDE, which is assumed to be solvable by a numerical scheme. Nevertheless, a
detailed description of a microscopic system might be needed in small domains
to resolve the correct physical behavior. An example is crack formation, where
the system dynamics can be described by a known coarse model but has to be
defined on a fine scale close to the crack [EEH03]. HMM couples these two levels
with different descriptions to an overall system. Examples are shown in [EE03]
and called “dynamic homogenization”.

Other methods that focus on the improvement of computation speed and stabi-
lization of Newton iterations converging to unstable macroscopic states are the
extended multigrid method [Bra02] and the recursive projection method [SK93],
respectively. Both methods also map between macroscopic and microscopic lev-
els, extrapolate microscopic computations in time and interpolate spatial scales
to solve the macroscopic systems. All frameworks are developed in the same
spirit of multi-scale systems and combining ideas from all methods could be
very beneficial. Among other contributions, the HMM-FE method is an impor-
tant application to engineering problems. It incorporates finite-element compu-
tations into the HMM framework (see [EEH03, EEL+07] for details). On the
other hand, equation-free methods have been developed with a view on bifurca-
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tion analysis [TQK00, RTK02], which is to some extent missing in HMM.

Due to the similarity of the described methods, there are problems that have to
be solved in all the existing frameworks. The biggest problem is to construct
good operators to initialize the microscopic system at a desired state. The
situation has been significantly improved by the implicit equation-free methods
(see Paper I) and the reduction of the lifting error. Another problem that goes
along with bifurcation analysis is the determination of Jacobians needed in the
corrector step of the continuation scheme. These Jacobians can be difficult to
obtain for noisy systems (see Paper IV) and a lot of work has to be done to
construct them reliably. It is important to notice that this problem does not
only occur in stochastic systems, but also in deterministic systems that employ
stochastic initialization of the microscopic state in order to compute ensemble
averages, e.g., in molecular dynamics.

The ultimate goal in equation-free computations is the automatic determination
of bifurcation diagrams without any choices left for the user except for adjust-
ing parameters for the algorithm. This would push equation-free methods to a
completely new level and would make them immediately applicable to realistic
problems in industry. It would also allow one to develop a general purpose tool-
box for equation-free computations that automatically runs bifurcation analysis
for a given microscopic system on a macroscopic level. To achieve this goal,
many attempts have been made in the recent past. The main missing ingredi-
ents for such an automatic algorithm are the automatic determination of lifting
and restriction operators. Lifting operators can be constructed in some appli-
cations in a semi-automatic fashion by using combinations of reference states
from previous microscopic simulations [SSGK10]. This is especially useful when
performing pseudo-arclength continuation, where the microscopic states can be
assumed to be close to the last one on the branch. A combination with implicit
methods could obtain a reasonably stable algorithm to initialize a microscopic
system consistent with the macroscopic scale in an automatic fashion. Never-
theless, these methods are far from being well-studied and a lot of research is
needed to improve the applicability.

The other direction of defining an automatic restriction operator can be per-
formed by manifold learning techniques that are able to determine the most
relevant directions in phase space, thereby separating the directions on the slow
manifold from the ones orthogonal to it. Since the slow manifold can be ge-
ometrically very complex, it is necessary to use non-linear manifold learning
techniques. One very promising approach are diffusion maps [CLL+05, CL06],
that approximate the distance of two points in Euclidean space by the corre-
sponding distance determined by a “diffusion process”. Diffusion maps effec-
tively determine a low-dimensional description of the relevant dynamics in the
high-dimensional phase space of the systems. In the terms of the equation-free
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framework, diffusion maps describe a restriction operator. This is another brick
in the puzzle to construct an automatic equation-free method. Due to their
potential as restriction operators in equation-free computations, diffusion maps
have been studied as part of this thesis and will be discussed in the next chapter.
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Chapter 3

Diffusion Maps

“I have had my results for a long time: but I do not yet know how
I am to arrive at them.”

C. F. Gauss, in: The Mind and the Eye by A. Arber, 1954.

The challenge in big data sets is to extract relevant information from an over-
whelming amount of data. A data set

X = {xi ∈ Rn | i = 1, . . . , N} (3.1)

containsN data points xi in n-dimensional space. These data points can be mea-
surements of an experiment, e.g., N measurements of temperature and pressure
of a gas (n = 2), or trajectories of a dynamical system (1.1) where N plays the
role of time (cf. Paper V for this interpretation). For big data sets, i.e., either
N � 1 or n � 1 or both N,n � 1, it is often difficult to extract the structure
of the data in order to formulate and proof a scientific hypothesis. For simple
data sets, e.g., n = 2, the data points can be visualized on a two-dimensional
plot to study the structure and to fit functions to the data. In general, data can
lie on a manifold that can be complicated to analyze. A standard example from
manifold learning is the so-called swiss roll where N data points are sampled
from the surface

(θ cos θ, y, θ sin θ) ∈ R3, y ∈ [−1, 1], θ ∈ [0, 4π], (3.2)
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embedded in three-dimensional space (see Fig. 3.1). Nevertheless, it is possible
to find a two-dimensional representation of each point by using the angle θ and
height y as coordinates. But, due to the non-linearity of the manifold, all linear
projections to a low-dimensional space would result in a mixing of points.

The general problem of finding low-dimensional embeddings for n > 3 is even
harder since an intuitive visualization of the manifold in three-dimensional space
is lacking. One way to approach this problem is to investigate projections of
the data onto suitable subspaces. Historically, the first step in this direction
is formulated in Principal Component Analysis (PCA) [Pea01]. The principal
components are the eigenvectors of a covariance matrix for the data. Hence, the
first principal component points into the direction of the highest covariance of
the point cloud and the second principal component in the direction of highest
covariance orthogonal to the direction of the first principal component and so on.
Let us be more specific and assume that the data is given as an N×n matrix X,
where each row of X contains a measurement xi ∈ Rn and the column mean is
zero, i.e., without loss of generality the data is clustered around the origin. Note,
that we use the same symbol X for the data set (3.1) and the data matrix, but
the usage should always be clear from context. The corresponding symmetric
covariance matrixXTX can be diagonalized and in the case of mutually different
eigenvalues the first eigenvector w1, i.e., the eigenvector corresponding to the
largest eigenvalue, points into the direction of highest variance. Since XTX is
symmetric, the eigenvectors can be chosen to be orthogonal to each other, even
in the case of degeneracy. The score

tik = 〈xi, wk〉, i = 1, . . . , N, k = 1, . . . , n

defined by the inner product 〈·, ·〉 of the data point xi and unit eigenvector
wk (also called weights) gives the component of xi in the direction of wk in
the eigenbasis of XTX. The transformation of the whole data set X into the
new basis yields the N × n matrix T = (tik) that represents the data in the
transformed basis. Instead of using an eigendecomposition of the covariance
matrix, more efficient algorithms exist to perform a singular value decomposition
(SVD) of X such that

X = UΣWT , (3.3)

where U and W are the N × N and n × n orthogonal matrices of the left
and right singular vectors, respectively. Σ is the N × n rectangular diagonal
matrix of the singular values σi. Using (3.3), the orthogonality of U and that
ΣTΣ = Σ2 = diag(σ2

1 , . . . , σ
2
n) is the n × n diagonal matrix with the squared

singular values on the diagonal, one obtains

XTX = WΣTUTUΣWT = WΣ2WT .

Therefore, the singular value decomposition yields the matrix of eigenvectorsW
and the eigenvalues λi = σ2

i of the covariance matrix. In particular for large data
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matricesX, it can be computationally and numerically beneficial to use the SVD
instead of constructing XTX explicitly and perform an eigendecomposition,
since the covariance matrix XTX might have a bad condition number. Using
(3.3) the score matrix is obtained by

T = XW = UΣ

where each row contains the representation of a measurement in the PCA eigen-
basis. Despite the success of PCA in many applications over the last century, it
is not able to extract non-linear information from the data set. In general, a k-
dimensional manifold is at least locally diffeomorphic to Rk. Therefore, in order
to obtain a dimension reduction, the first k PCA components corresponding to
the k largest eigenvalues of XTX should be sufficient to describe the manifold.
Since PCA uses linear projections it cannot unroll the swiss roll as we will see
in the example in Sec. 3.1. Here, non-linear manifold learning techniques are
necessary to obtain low-dimensional non-linear embeddings and to gain infor-
mation about the closeness of points, i.e., the geodesic distance of points along
the unknown manifold.

Many attempts have been made recently to obtain low-dimensional embeddings
of non-linear manifolds (see e.g., Isomap [TSL00, Iso], Local-linear embedding
[RS00] and Laplacian Eigenmaps [BN02]). We will focus on diffusion maps
[CLL+05, CL06] following the idea, that it might be advantageous in certain
applications to use the so-called diffusion distance Dt between data points in-
stead of the commonly used Euclidean distance. The diffusion distance is small,
if the transition probability between the data points in a random walk defined
by a Markov matrix is high (see Paper V for a detailed definition of Dt). The
goal of the diffusion map algorithm is to find a non-linear transformation of the
data into diffusion space Ψ1, . . . ,Ψn such that the diffusion distance Dt on the
data set equals the Euclidean distance in the transformed space of the Ψi. In
order to compute the diffusion map transformation, the N ×N distance matrix
d with elements

dij = ‖xi − xj‖
is rescaled with a soft-thresholding of characteristic length ε, i.e., with a Gaus-
sian kernel, to yield

Aij = exp

(
−
d2ij
ε2

)
.

Note, that large distances dij are mapped to small positive values in Aij . The
Markov transition matrix M with elements

Mij =




N∑

j=1

Aij



−1

Aij
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defines a random walk, i.e., a diffusion process, on the data set X. Here,∑N
j=1Aij is a normalization constant such thatMij describes the probability to

make a transition i → j in one time step. Consequently, the rows are normal-
ized, i.e.,

∑N
j=1Mij = 1 for all i, such that M is a stochastic matrix. It is used

to compute the eigenvalues {λ0, . . . , λN−1} and eigenvectors {Ψ0, . . . ,ΨN−1}

MΨj = λjΨj .

Since M is a stochastic matrix, the eigenvalues λj are non-negative and the
biggest eigenvalue is λ0 = 1 due to the normalization of M . Without loss of
generality, we assume that the eigenvalues are ordered, i.e., λi ≥ λj for i < j.
The transformation of the data to the k-dimensional embedding is then given
as

xi 7→ yi = [λt1Ψ1,i, . . . λ
t
kΨk,i],

where t is the diffusion time. It is shown in [CLL+05] that the diffusion distance
is given by the Euclidean distance

D2
t (xi, xj) = ‖yi − yj‖2 , (3.4)

which is in general only an approximation if a low-dimensional embedding is
used, i.e., k < N − 1. In comparison to PCA, which has no parameters to
choose, diffusion maps has the characteristic scale ε and the diffusion time t
as free parameters. A detailed description of the algorithm and possibilities to
choose ε and t are given in Paper V and [MSLK14].

3.1 Examples

We now apply principal component analysis and diffusion maps to two edu-
cational test cases: 1) the initially introduced example of the two-dimensional
swiss roll data set and 2) a one-dimensional spiral curve, both embedded into
three-dimensional space. We compare the two algorithms with each other and
show that diffusion maps are able to extract the low-dimensional data from
non-linear manifolds in these examples, while PCA fails because of the linear
projections.

We generate a swiss roll data set with N = 2000 data points using (3.2) and a
spiral curve

(sin θ cos(2θ), sin(2θ), cos θ), θ ∈ [0, 2π] (3.5)

with N = 500 data points (see Fig. 3.1, top row). In a preparation step the
data is centered, such that it has zero mean (see also the discussion about PCA
above). Both manifolds are non-linear and as a consequence PCA fails to embed
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the data set into low-dimensional space. In the case of the swiss roll the order
of points is mixed and in the spiral curve an artificial intersection is observed in
two-dimensional space (see Fig. 3.1, middle row). In contrast, diffusion maps are
able to embed both data sets into low-dimensional space (see Fig. 3.1, bottom
row). The swiss roll is ’unrolled’ in diffusion map space and the spiral curve is
transformed to a circle.

In conclusion, diffusion maps are advantageous over principal component ana-
lysis in detection of non-linear structures and extraction of relevant information
from non-linear manifolds. Therefore, diffusion maps are capable of extract-
ing relevant information from a big data set where intuitive insight about the
macroscopically interesting quantities is missing. This is particularly interesting
in applications for dynamical systems with time scale separation. Typically, an
analysis of macroscopic quantities is necessary to obtain the relevant dynamics
on the coarse level (see also the discussion on equation-free methods in Chap. 2).
These low-dimensional quantities are often tailored to fulfill a specific purpose
in the modeling procedure. Diffusion maps provide a more general and user-
independent approach to obtain these coarse variables (see [MSLK14]). As such,
diffusion maps might be used in an automatic equation-free framework to pro-
vide a canonical restriction operator (see also Chap. 6 for a discussion on future
work) that is purely defined on the observed data and not on individual choices
of the user. If future research provides a way to construct a lifting operator in
the same user-independent spirit, it will be possible to extract coarse bifurcation
diagrams from simulations and experiments without making any specific choices
for the coarse variables. Before proceeding to the next section, we would like
to remark, that the diffusion map algorithm is sensitive to the scaling of the
variables, i.e., they should have numerical values of about the same magnitude,
and to the sampling of the manifold, i.e., data should be available in the same
amount from all parts of the manifold. These limitations have to be taken into
account when working with diffusion maps. The problem of variables with dif-
ferent magnitude can usually be solved by a rescaling (see Paper V) and the
problem of non-uniform distribution of data points can be tackled with methods
developed in [CLL+05].
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Figure 3.1: Embedding of the swiss roll data set (3.2) (N = 2000 data points,
left column) and the spiral curve data set (3.5) (N = 500 data
points, right column) in two-dimensional space using principal
component analysis (middle row) and diffusion maps (bottom
row). PCA is parameter-free and the parameters ε = 0.17, and
t = 3 have been used for diffusion maps.



Chapter 4

Applications

“Practical application is found by not looking for it, and one can
say that the whole progress of civilization rests on that principle.”

J. Hadamard, in: Mathematical Circles Squared by H. Eves, 1972.

Equation-free methods have been developed with the idea to apply them to
problems in physics and chemistry. Consequently, the first applications of the
methods were lattice Boltzmann dynamics, kinetic Monte Carlo simulations and
molecular dynamics (see [TQK00, KGH+03] for the first papers on equation-free
methods). Since their introduction, equation-free methods have been further
developed and applied to a huge variety of problems in multi-scale analysis
of dynamical systems. Applications to traffic models (Paper I and Paper II),
pedestrian dynamics (Paper V) and neural networks (Paper III and Paper IV)
have been studied as part of this PhD thesis and the main results are discussed
briefly in this section (see the corresponding papers in Appendix A for a detailed
description).
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4.1 Traffic Models

To understand and control traffic phenomena becomes increasingly important
in our inter-connected world of the 21st century. In particular, traffic jams and
safety are major topics with the goal to improve traffic for all traffic participants.
Here, we focus on the discussion of traffic jams.

Traffic phenomena typically involve at least two scales. On the one hand, macro-
scopic descriptions are necessary in order to extract relevant information from
detailed traffic models. Since traffic jams are large-scale phenomena, the posi-
tions and velocities of individual cars are less important for measuring traffic
jams than densities of cars and the car flux on the road. On the other hand,
the behavior of individual drivers on the microscopic scale might influence the
formation and persistence of traffic jams. Numerous detailed models are avail-
able and in use to model individual car dynamics. On the other side of the
scale, coarse descriptions by PDEs are used to model the dynamics of densities
(not to be confused with the coarse, low-dimensional dynamics in equation-free
methods). The goal of an equation-free analysis of traffic is to bridge this gap
between the two scales; namely to gain insight into regimes where the derivation
of macroscopic equations from detailed microscopic models is too difficult due
to their complexity.

The studies in Paper I and Paper II use an optimal velocity model [OKW05,
OWS10] for drivers on a ring road [BHN+95, SFK+08, TKF+13] to show how
the new implicit equation-free method can be applied to traffic problems. The
model is a compromise between a full-scale realistic model and an oversimplified
model. It inherits several modeling assumptions: i) all drivers behave in the
same way and have the same parameters, ii) there is only one-lane traffic and
iii) there are no stochastic effects. These assumptions are used to provide a clear
presentation of the implicit equation-free methods and to speed up simulations.
All assumptions could be altered for future studies. One could for example
study the influence of different preferred driving speeds or two-lane traffic.

In Paper I we present a two-parameter bifurcation analysis in the two param-
eters maximal velocity v0 and headway h. Implicit equation-free methods are
introduced for the first time and shown to significantly reduce the lifting error.
It is argued that healed quantities, i.e., points after a transient that are close to
the slow manifold, should be used for comparison with data obtained in mea-
surements or from direct microscopic simulations. The main convergence result
guarantees an exponentially small error in the difference between approximated
and correct flow on the slow manifold. Furthermore, we compute relevant infor-
mation for real-world applications: i) dependence of traffic jams on parameters,
e.g., speed-limits, ii) unstable solution branches that act as boundaries between
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basins of attraction for free flow and traffic jams and iii) coexistence of solutions,
i.e., jams and free flow coexist.

4.2 Pedestrian Models

The same motivational arguments as in traffic models apply to the modeling of
pedestrian behavior and pedestrian flow. Again, coarse quantities, e.g., density
in crowds, indicate whether a crowd is close to a dangerous or undesired situa-
tion. Especially in emergency and evacuation scenarios, the control of pedestrian
flow is of big importance for the security of people. Here, one typically wants
to optimize evacuation times from certain areas and therefore maximize the
pedestrian flux through exits. Another application to non-emergency situations
is the pedestrian flow in canteens or shopping malls with the objective to either
minimize or maximize the time a pedestrian spends in certain areas.

A widely used model for pedestrian dynamics is the social force model by Helbing
and Molnár [HM95, Hel01], which models pedestrians as self-propelled particles
interacting with each other via so-called social forces. The geometry of a building
or room enters via repelling interactions with walls. For the situation of two
pedestrian crowds in counter flow in a corridor with door in the middle the
social force model has been applied in [CHS12] to study the onset of macroscopic
oscillations with equation-free methods. The door width was used as the main
bifurcation parameter giving rise to oscillations from a blocked state in a Hopf
bifurcation. The same model as in [CHS12] is used in Paper V to study the
emergent oscillations with diffusion maps (cf. Chap. 3). The paper has two
main results: 1) the macroscopic bifurcation has been verified with diffusion
maps showing that the main information could be extracted in an automatic,
user-independent way and 2) a dimension reduction from 800 to 3 dimensions
was performed using the diffusion map embedding.

4.3 Neuronal Networks

Besides particle-type models, equation-free methods can also be applied to
weakly-stochastic systems that obtain a deterministic macroscopic dynamics.
Neuronal networks, which are inherently stochastic, gained much attention over
the past years. A widely-used class are artificial neural networks that had a
huge significance as a model class for the development of learning algorithms.

We investigated a fairly well-studied biological model for learning in the neuronal
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network of the barn owl’s auditory system [KGvH99, KLWvH01, LKvH01] with
equation-free methods in Paper III and Paper IV. The main results are 1) the
coarse bifurcation analysis for the influence of the learning window using im-
plicit equation-free methods (see also Paper I) and 2) the observation of traveling
waves in the synaptic connectivity matrix. The analysis of the coarse bifurcation
was made possible by equation-free methods defining a suitable periodicity mea-
sure for the connectivity matrix. This slowly-varying one-dimensional quantity
was used as a macroscopic variable in a numerical continuation procedure which
would be impossible to perform in the 8400-dimensional stochastic dynamical
system for the synaptic strengths. The main obstacle here is the noise on the
synaptic level which makes it almost impossible for classical continuation soft-
ware to continue stationary solutions with direct microscopic simulation and to
extract coarse bifurcation diagrams in a post-processing step. Since the dynam-
ics behaves nearly deterministic on the macroscopic scale equation-free methods
could be used to track solution branches up to the accuracy determined by the
noise. The observation of traveling waves in the microscopic model was possible
by long-term simulations. Their prediction is the outcome of a detailed study
of the model and has to be verified by other groups in experimental studies.



Chapter 5

Conclusion

“If I have seen further it is by standing on the shoulders of giants.”
I. Newton, 1676.

In Chap. 1 an introduction to dynamical systems with separation of time scales
has been presented. The key results from Fenichel’s theory [Fen79] have been
reviewed in order to establish notation and to introduce the theoretical basis
for the analysis in the following chapters. Chap. 2 presented the main topic
of the thesis: the equation-free framework introduced by Kevrekidis and co-
workers [KGH+03]. The fundamental ideas of equation-free computations and
the state-of-the-art of existing methods have been reviewed in order to distin-
guish previous work from the contributions on implicit equation-free methods
developed in this PhD thesis. Furthermore, important concepts of equation-free
computations have been introduced in order to give the reader an easy entrance
to the applications following in the articles about the optimal velocity model
(Paper I and Paper II) and the barn owl’s auditory system (Paper III and Pa-
per IV) in Appendix A. Chap. 3 reviewed methods on dimensionality reduction
and manifold learning. In particular, the linear method of principal component
analysis has been compared with the non-linear manifold learning technique of
diffusion maps. The presented examples on the swiss roll and spiral curve data
sets demonstrated the ability of diffusion maps to extract the geometry of non-
linear manifolds and prepared for the more complicated analysis of pedestrian
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dynamics in Paper V. Following the general discussion about the equation-free
framework and the diffusion map algorithm, the main results on the applications
in the papers have been discussed in Chap. 4. This was meant to give the big
picture of the application-wise research performed during the work for the PhD
thesis without going into too much detail. These details are supplemented in
the research papers in Appendix A, which form the main part for assessment of
the research outcome of the PhD studies.

In conclusion, the equation-free framework has shown to be very versatile and
furthermore, that it can be applied to many different areas to gain a quali-
tative and quantitative understanding of the system behavior. The work has
shown that implicit equation-free methods [MSB+14] have a lot of potential
in multi-scale modeling, especially in systems which are difficult to study with
conventional methods. The original equation-free idea has been extended by
applying the lift-evolve-restrict scheme (2.6) to both sides of the macroscopic
equation, consequently making all integration methods implicit. This greatly
improved the applicability to real-world problems as the lifting error was sig-
nificantly reduced by estimating the dynamics on the slow manifold (cf. Figure
6.2 in Paper I). For the cases of finding equilibria and finding a lifted state on
the slow manifold corresponding to a certain restricted state, implicit methods
have already been used in [VSM+11] (called InitMan, see also the discussion
in Paper I). The implicit methods presented in [MSB+14] extend these methods
by defining the flow implicitly in general and giving convergence results. The
obtained bifurcation diagrams (see Figure 6.1 in Paper I) agree perfectly with
the results from direct numerical simulations and continuation of the full micro-
scopic optimal velocity model and are to great extent independent of the lifting
operator.

In many applications, the possibility to compute coarse bifurcation diagrams
is of particular interest as they give information about the long-term behavior
and stability regions for the underlying system. In this work, the other main
advantage of equation-free computations for applications, namely the speed-up
of computations using coarse projective integration, has not been discussed in
detail. This was mainly because we focussed on the theoretical basis of equation-
free methods and we investigated microscopic models that have been reasonably
low-dimensional (8400 dimensions in the case of the barn owl’s auditory system,
120 dimensions in the optimal velocity model) such that simulations could be
performed on time scales, that are accessible by direct simulations. This would
not be the case in large-scale simulations, e.g., industrial finite-element models,
and here, coarse projective integration is a way to keep computation time short.

The study of diffusion maps has been included to make a first step into the
direction of a user-independent formulation of the equation-free framework. As
stated in detail in Chap. 3 and in the discussion about future research directions



51

in Chap. 6, diffusion maps could be used as a canonical restriction operator.
Nevertheless, the missing and more complicated part in the development of a
general equation-free formulation is a generic lifting operator. Ideas on how to
construct such a generic lifting procedure are discussed in the next chapter.
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Chapter 6

Future Research Directions

“Science is built up with facts, as a house is with stones. But a
collection of facts is no more a science than a heap of stones is a
house.”

H. Poincaré, Hypotheses in Nature, 1913.

Before closing the thesis I would like to give an outlook on possible future
research directions. This overview is definitely not exhaustive and is only meant
to give an idea. As equation-free methods are still a young research field, there
are many possibilities for future research.

Methods The main part of the thesis deals with equation-free methods. It
is pointed out in Chap. 2 that problems arise in equation-free methods in the
definition of lifting and restriction operators. These operators are not pre-
defined in the framework and have to be supplemented by each user. Therefore,
they are highly subjective and the finding of suitable operators usually takes time
and makes an application as a toolbox for engineering purposes complicated.
An option for providing a generic restriction operator, i.e., an automatic way to
construct macroscopic variables from a microscopic state, could be provided by
diffusion maps (cf. Chap. 3). Diffusion maps are certainly not the only manifold
learning method and many different methods for dimension reduction (see the
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discussion in Chap. 3) can be used as a generic restriction. Since basically
all algorithms for non-linear manifold learning depend on parameters, e.g., the
characteristic length scale ε in the diffusion map algorithm, this only consititutes
a semi-automatic restriction. The combination of diffusion maps with equation-
free techniques and the detailed study of diffusion maps as restriction operators
would be one direction of future research.

Even more difficult is the construction of an automatic lifting as it is inher-
ently underdetermined (one-to-many operation). Here, knowledge from previous
states in a numerical continuation scheme might be used to construct physically-
relevant microscopic states. Little has been done in that direction so far (see
[SSGK10] for an approximation of an “inverse diffusion map”) and much more
research is needed in finding generic lifting operators. Another promising can-
didate for a generic lifting operator could be the constrained runs scheme (see
Sec. 2.4.1). This would conclude all the necessary ingredients for a first study
on a fully-automatic equation-free method.

Another methodological improvement is necessary in the case of stochastic sys-
tems. Here, Barkley, Kevrekidis and Stuart [BKS06] have already done some
research that resulted in the formulation of moment maps. Avitabile, Hoyle and
Samaey [AHS14] used this method to study an agent-based model for consumer
lock-in. The idea is to choose low-order moments of a probability distribution as
macroscopic variables for stochastic systems. This method could be combined
with implicit equation-free methods (see Paper I) to improve the applicability
to more complicated models.

Applications There is a broad spectrum of possible future applications for
equation-free methods. The introduced implicit equation-free methods could
be used to further investigate the already introduced models with respect to
different aspects. This could be changing the behavior of cars in the optimal
velocity model (see Paper I and Paper II) such that drivers have an individual
preferred driving speed drawn from some probability distribution. The influence
of the changes on the bifurcation diagrams and therefore the jam formation
would be the main focus of these investigations.

For the pedestrians model, other room layouts and geometries could be stud-
ied. This is especially important for evacuation scenarios, where buildings have
to be evacuated as quickly as possible in case of emergency. The equation-
free methods can help to extract relevant macroscopic dynamics and this could
be combined with optimization methods to adjust room layouts such that the
evacuation time is minimized. Furthermore, pedestrian and traffic models could
be coupled to improve the applicability to real-world networks and to model
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realistic scenarios for cities.

There is also the possibility to further investigate neuronal networks. One fur-
ther application is the olfactory system. It is shown in [Ell08] that odor dis-
crimination is basically a macroscopic process and the corresponding bifurcation
diagrams could help in designing artificial noses, that could be used for instance
in the detection of drugs and explosives at airports.

Experiments Another interesting challenge is to apply equation-free methods
to experiments. In [BSS+13] a beam pendulum with impacts has already been
studied in an equation-free fashion. Nevertheless, much work has to be done in
order to obtain reliable numerical methods that can handle the noise present in
all real-world systems. Equation-free experiments are in general an interesting
class to investigate. From an abstract point of view, the restriction operator
plainly constitutes the measured quantity and the lifting operator is related
to a certain control of the system. In order to perform an on-line equation-
free bifurcation analysis in experiments, a feedback mechanism to the system is
needed to be able to implement a Newton-like algorithm for finding branches.
Especially the detection of unstable branches poses many challenges.

These experimental techniques could be applied to pedestrian problems, e.g.,
room evacuation with obstacle in front of the exit. Pre-studies have shown
that a clever placement of a triangular obstacle in front of emergency exits
could improve the flow. Further, hysteresis states are also observed in numerical
simulations that are related to group effects (see [SSM+14, STS+14]) which have
to be verified in pedestrian experiments. Furthermore, existing models could be
analyzed equation-free and subsequently be compared to existing experimental
data, e.g., to the geometry of an annulus and pedestrian counter-flow presented
in [MGM+12, JARLP12].
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Appendix A

Papers

“I have tried to avoid long numerical computations, thereby fol-
lowing Riemann’s postulate that proofs should be given through ideas
and not voluminous computations.”

D. Hilbert, Report on Number Theory, 1897.

This appendix includes the scientific publications that have been written during
the course of the PhD studies. They are attached to give the evaluation com-
mittee and other readers a complete overview about the scientific outcome and
enable them to judge the studies. All papers are referenced in the main text
and are supposed to supplement the thesis with detailed information. Where the
main text is meant as an overview and introduction into the field of equation-
free methods and multi-scale analysis in general, the papers provide the reader
with detailed results and proofs.

With this layout of main text plus papers in the appendix, I hope to give
the reader a good introduction to the field while at the same time keeping
unnecessary repetition of text and results at a minimum. For the convenience of
the reader, the papers are included in the style of the journal they are published
in or submitted to. Each paper is preceded by a short resumé, putting it into
the context of the thesis and highlighting the main results.
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I Implicit Methods for Equation-Free Analysis:
Convergence Results and Analysis of Emergent
Waves in Microscopic Traffic Models

The paper on implicit equation-free methods [MSB+14] contains the main math-
ematical result of the thesis. It introduces a general implicit formulation for the
macroscopic time stepper into the framework of equation-free methods and gives
error estimates for the approximated flow on the slow manifold. This formu-
lation results in a reduction of the lifting error by estimating the macroscopic
dynamics on the slow manifold. The presented formalism eases the application of
equation-free methods, since no additional algorithms, e.g., the zero-derivative
principle, are necessary to initialize the system on the slow manifold. The arti-
cle also puts the healing step, often implemented in equation-free methods as a
workaround to obtain reasonable results, on a mathematically rigorous founda-
tion.

The theoretical results are applied to circular traffic flow modeled with an op-
timal velocity model. A detailed coarse bifurcation analysis, first in one and
than in two parameters, for the formation of traffic jams is presented and adds
a macroscopic interpretation to the study of traffic problems. The research pre-
sented in the paper opens up for further developments, both theoretical and
in applications (see also Chap. 6). Theoretical considerations include the con-
struction of an automatic equation-free method (cf. the discussion in Sec. 2.5
and Chap. 6). On the application side, the extension of the algorithms to more
complex traffic networks and the combination of car and pedestrian traffic pose
new challenges.

At the hand-in date of the thesis the paper has been accepted for publication
in the SIAM Journal on Applied Dynamical Systems.



Implicit Methods for Equation-Free Analysis: Convergence Results and Analysis
of Emergent Waves in Microscopic Traffic Models

Christian Marschler∗, Jan Sieber†, Rainer Berkemer‡, Atsushi Kawamoto§, and Jens Starke¶

Abstract. We introduce a general formulation for an implicit equation-free method in the setting of slow-fast
systems. First, we give a rigorous convergence result for equation-free analysis showing that the
implicitly defined coarse-level time stepper converges to the true dynamics on the slow manifold
within an error that is exponentially small with respect to the small parameter measuring time
scale separation. Second, we apply this result to the idealized traffic modeling problem of phantom
jams generated by cars with uniform behavior on a circular road. The traffic jams are waves that
travel slowly against the direction of traffic. Equation-free analysis enables us to investigate the
behavior of the microscopic traffic model on a macroscopic level. The standard deviation of cars’
headways is chosen as the macroscopic measure of the underlying dynamics such that traveling wave
solutions correspond to equilibria on the macroscopic level in the equation-free setup. The collapse
of the traffic jam to the free flow then corresponds to a saddle-node bifurcation of this macroscopic
equilibrium. We continue this bifurcation in two parameters using equation-free analysis.

Key words. equation-free methods, implicit methods, lifting, traffic modeling, optimal velocity model, traveling
waves, stability of traffic jams

AMS subject classifications. 65P30, 37M20, 37Mxx, 34E13

1. Introduction. When one studies systems with many degrees of freedom, for example,
systems with a large number of particles or interacting agents, one is often interested not
so much in the trajectories at the microscopic level (that is, of individual particles), but in
the behavior on the macroscopic scale (of the overall distribution of particles). The classical
example is the motion of molecules of a gas, resulting in the laws of thermodynamics. In this
classical case the macroscopic description is derived in statistical mechanics from knowledge
about the microscopic behavior through time scale separation. Other important examples are
emerging patterns in physical, chemical, and biological systems, e.g., Rayleigh-Bénard convec-
tion rolls [32], the Belousov-Zhabotinsky reaction [3, 44], and stripes on zebra skin or patterns
on butterfly wings [41]. A common approach in the physics literature to deriving macroscopic
descriptions are the so-called adiabatic elimination or the slaving principle [15, 16]. These con-
cepts are related to the theorems in the mathematical literature about reductions to center
manifolds or slow manifolds [7, 20, 40].

For systems where no explicit macroscopic description can be derived from microscopic
models, Kevrekidis and coworkers proposed that, if the number of particles is moderate, then
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Figure 1.1. Sketch of the macroscopic time stepper Φ(t; ·). The macroscopic state x(t0) is mapped to
a microscopic state u(t0) by using the lifting operator L. The available microscopic time stepper is used to
evolve the system to the microscopic state u(t0 + t), which is mapped to a macroscopic state x(t0 + t) using the
restriction operator R. This procedure constitutes the coarse-level time stepper Φ(t; ·).

it is sometimes possible to skip the derivation of a macroscopic description by performing the
analysis of the dynamics in the macroscopic scale directly. This approach relies on evaluating
short bursts of appropriately initialized simulations of the microscopic model (see, for example,
[22, 23, 24] for recent reviews). It is called equation-free because it assumes that the macro-
scopic model exists but is not available as an explicit formula. Equation-free methods are
particularly appealing if either explicit macroscopic descriptions are unavailable, or one wants
to study the underlying system near the boundary of validity of its macroscopic description
(for example, as one decreases the number of particles, finite size effects may start to appear
as small corrections to the macroscopic model). Equation-free analysis has been applied for a
large class of multiscale models that roughly fit the description of singularly perturbed systems
[9] in a broad sense (see motivation in [24]), such as stochastic systems [28, 37], agent-based
models [5, 6, 14], molecular dynamics [4] or neural dynamics [26, 33], to perform high-level
tasks such as bifurcation analysis, optimization or control design [8, 36].

The basic building block of equation-free analysis is an approximate coarse-level time
stepper Φ(t; ·) for short times t (compared to the slow time scale) in the phase space of
macroscopic variables (say, Rd). This coarse-level time stepper is typically composed of three
steps: lift (operator L), evolve, and restrict (operator R), as shown in Figure 1.1. To compute
the map Φ(t;x) on a given macroscopic state x ∈ Rd, one has to apply a lifting operator L
to map x to a microscopic state u ∈ RD (typically, D � d); then one runs the microscopic
simulation for the time t; and finally one maps the end state of the microscopic simulation
back into Rd using a restriction operator R. A proof of any claim that this would be a good
approximation of the true dynamics of the macroscopic variable x for a given example will have
to invoke the following sequence of arguments. Initially assume that the microscopic system
is a slow-fast system with a transversally stable slow manifold, for which the macroscopic
quantity x is a coordinate. The first question is then: does the approximate coarse-level time
stepper Φ converge to the true dynamics on the slow manifold in the limit ε→ 0, where ε is
the parameter measuring the time scale separation? In addition to the case discussed here,
equation-free analysis is also applied to high-dimensional, stochastic (or chaotic) systems
showing macroscopic behavior because the dynamics of the microscopic degrees of freedom
averages out rapidly [2, 38, 34]. In these cases another question must be addressed: in which
sense is the averaging process approximating a classical slow-fast system?
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1.1. An implicit coarse-level time stepper. Before equation-free analysis can be per-
formed, one must find the restriction and lifting operators R and L. Figure 1.1 suggests the
relation Φ(t; ·) = R◦ evolve◦L. However, this will not approximate the true macroscopic flow
in general. Why? Let us assume that the microscopic system is slow-fast and the macroscopic
system corresponds to the slow flow on the slow manifold in the coordinate x. Then an ar-
bitrary choice of L and R does not lead to a coarse time-stepper Φ which approximates the
slow flow in any way, even in the limit of infinite time scale separation (ε → 0). The source
of the error is an initialization of the microscopic system away from the slow manifold. One
relies on the separation of time scales in a so-called healing step to reduce this error. However,
in most reviews this healing is applied inconsistently [22, 23, 24]. That is, healing would not
lead to Φ converging to the true slow flow in the limit of infinite time scale separation, even
in the ideal case of a slow-fast system. A consistent way to perform healing are so-called
constrained-runs corrections after lifting, developed in [12, 42, 43]. These papers developed
schemes of increasing complexity to compensate for this error source.

An alternative, explained in Section 2, is to use an implicitly defined coarse-level time
stepper Φ, where the slow flow is not measured at predetermined points in space but rather
at healed points. In the special case of computation of equilibria, the use of the implicit time
stepper reduces to the formula introduced as the “third method” by Vandekerckhove et al [39].
In Section 3, we give a detailed proof of the convergence of the implicitly defined coarse-level
time stepper Φ to the flow on the slow manifold, answering the question of convergence for the
implicit time stepper. The approximation error of Φ (under some transversality conditions)
is exponentially small in the parameter ε measuring the time scale separation. Our theorem
does not require that the time scale separation parameter ε approach zero, merely that it
be sufficiently small. The precise statement is then that the error is of order exp(−Ktskip),
where K is the rate of attraction transversal to the slow manifold and tskip is the healing time.
In Section 4 we discuss the assumptions and consequences of the convergence theorem and
compare it to other results in the literature.

1.2. Macroscopic behavior of a microscopic traffic model. In Section 5 and Section
6 we apply the implicit coarse time stepper to a traffic modeling problem that fits into the
framework of equation-free analysis: a large number of cars (the microscopic particles) on a
circular road that interact with each other, resulting in so-called phantom jams moving slowly
along the road against the direction of traffic, i.e., forming a traveling wave at the microscopic
level.

The mathematical modeling and analysis of traffic flow dynamics has a considerable history
(see, e.g., [17, 29, 31] for reviews). Macroscopic traffic models use partial differential equations,
such as Burger’s equation [29], for modeling the flow. They model the density of cars as a
continuous quantity to directly formulate macroscopic equations for density and flux along
the road. In contrast, microscopic particle models (deterministic [1] or stochastic [19, 35]) can
be used to describe the behavior of individual cars or drivers. An advantage of microscopic
models is that parameters can be assigned directly to the individual drivers’ behavior (for
example, aggressiveness, inertia, or reaction delay) such that these parameters’ influence and
the trajectories of individual cars can be investigated. Another use of microscopic models is
to test the effects of new devices for individual cars, for example, cruise control, on the overall
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traffic prior to their implementation in real traffic. In this paper we use the optimal velocity
model [1] as an example of an underlying microscopic model. The optimal velocity model
results in a set of coupled ordinary differential equations, but despite its simplicity it can
reproduce the phenomenon of phantom traffic jams. An advantage of choosing the optimal
velocity model is that we have guidance from the results of direct bifurcation analysis of the
full microscopic system when only a few cars are involved [11, 30] as well as from perturbation
analysis based on the discrete modified Korteweg–de Vries equation [10]. Direct bifurcation
analysis of the microscopic system becomes infeasible when the number of cars gets large.
Furthermore, it is difficult to analyze macroscopic quantities for which typically no equations
are explicitly given such as the mean and standard deviation of headways or densities of cars.
In Section 6 we show how this difficulty can be tackled by using equation-free methods for
the bifurcation analysis on a macroscopic level.

In Section 7 we summarize the obtained results and give an overview of open problems.

2. Nontechnical description of general equation-free analysis with implicit lifting.
Equation-free analysis as described by [23] is motivated by ideas from the analysis of slow-fast
systems: one assumes that on a long time scale the dynamics is determined by only a few state
variables and the other state variables are slaved. Mathematically this means that the flow of
a high-dimensional system under study converges rapidly onto a low-dimensional manifold on
which the system is governed by an ordinary differential equation (ODE). In many practical
applications convergence is achieved only in the sense of statistical mechanics (the effects of
many particles averaging out; see [2, 6]). We give our description and subsequent convergence
proofs of equation-free analysis using the terminology of slow-fast systems with transversally
stable slow manifolds following the notation of [9]. The traffic problem discussed in Section 5
and 6 does not require the notion of weak (averaged) convergence.

2.1. The notion of a slow-fast system. Let

u̇ = fε(u) (2.1)

be a smooth dynamical system defined for u ∈ RD, where fε depends smoothly on the param-
eter ε. We assume that ε is a singular perturbation parameter. This means that the flow Mε

generated by (2.1),

Mε : R× RD → RD, (t;u) 7→Mε(t;u)

has a whole smooth d-dimensional submanifold C0 of equilibria for ε = 0: if u ∈ C0, then
M0(t;u) = u (and, thus, f0(u) = 0) for all t. The dimension d is the number of slow variables.
In the notation of singular perturbation theory, t measures the time on the fast time scale. We
assume that this manifold C0 is transversally uniformly exponentially stable for ε = 0, which
corresponds to the stable case of Fenichel’s geometric singular perturbation theory [9]. For
this case we know that the flow Mε(t; ·) has a transversally stable invariant manifold Cε for
small nonzero ε, too. This manifold Cε is called the slow manifold, and the flow Mε, restricted
to Cε, is called the slow flow. For the traffic problem the time scale separation is present as
demonstrated numerically later in Section 5.2.
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2.2. Lifting, restriction, and time stepping. The equation-free approach to coarse grain-
ing [23] does not require direct access to the right-hand side fε of the microscopic system (2.1)
but merely the ability to evaluate Mε(t;u) for finite positive times t (typically t� 1/ε in the
fast time scale t) and arbitrary u. It also relies on two smooth maps that have to be chosen
beforehand:

R : RD → Rd the restriction operator,

L : Rd → RD the lifting operator.

In the optimal velocity model discussed in Section 6, R is chosen as a mapping from headway
profiles to the standard deviation σ and L constructs a headway profile by using σ (cf. (6.3)
and (6.4)).

The basic idea underlying [23] is that one can analyze the dynamics of (2.1) on the slow
manifold Cε by studying a map in the space of restricted variables x in the domain of L (called
domL ⊂ Rd) of the form (cf. Figure 1.1)

Lift → Evolve → Restrict,
or, to be precise, the map

Pε(t; ·) : x 7→ R(Mε(t;L(x))) = [R ◦Mε(t; ·) ◦ L](x) (2.2)

for selected times t � 1/ε. The central question is: how can one compose a macroscopic
time stepper, that is, an approximate time-δ map Φ(δ, ·) : Rd → Rd, using coordinates in the
domain of L for the flow Mε restricted to Cε? One important observation is that this map Φ
must be defined implicitly. Figure 2.1 shows how one can define a good approximate time-δ
map Φ(δ; ·). It contains an additional parameter tskip, called the healing time in [23]. This
healing time must be applied to both the argument x and the result y of Φ. Thus, Φ(δ; ·) is
given implicitly by solving

Pε(tskip; y) =Pε(tskip + δ;x), that is,

R(Mε(tskip;L(y))) =R(Mε(tskip + δ;L(x)))
(2.3)

for y, and setting Φ(δ;x) := y. Under some genericity conditions on R, L, and Mε the order
of approximation for Φ is exponentially accurate for increasing tskip if we assume that εtskip
and ε(tskip + δ) are bounded:

‖Φ(δ;x)− Φ∗(δ;x)‖ ≤ C exp(−K tskip). (2.4)

In this estimate K > 0 and C > 0 are constants that depend only on a uniform upper bound
Tup for εtskip and ε(tskip+δ). The flow Φ∗ is the exact flow Mε, restricted to the slow manifold
Cε, in a suitable coordinate representation in domL. The same estimate holds also for the
derivatives of Φ with respect to the initial value up to a fixed order (with more restrictive
conditions on ε). So,

‖∂j2Φ(δ;x)− ∂j2Φ∗(δ;x)‖ ≤ C exp(−Ktskip)

(possibly with other constants C) for derivative orders j less than a given k (the subscript of
∂ji refers to the argument of Φ with respect to which the jth derivative is taken). The degree
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(a) implicit scheme

(b) explicit scheme

Figure 2.1. (a) Sketch showing a typical geometry of the implicit scheme in a slow-fast system with a slow
manifold Cε and an arbitrary lifting L and restriction R. The healing Mε(tskip; ·) is applied to all points in the
domain of L. Note that domL and rgR can be different, but must have the same dimension. (rgR)t refers to
an arbitrary transversal complement of rgR. (b) The explicit scheme is shown for comparison.

of achievable differentiability is determined by the time scale separation: the smaller ε is, the
smoother the slow manifold Cε is, and, thus, the higher we can choose the maximal derivative
order k.

Based on the implicitly defined approximate flow map Φ, one can now perform higher-level
tasks in equation-free analysis.

2.3. Bifurcation analysis of macroscopic equilibria. Bifurcation analysis for equilibria
boils down to finding fixed points and their stability and bifurcations for Φ(δ; ·) with some
small, arbitrary δ (that is, δ � 1/ε in our notation). In terms of R and L, the equation
Φ(δ;x0) = x0, defining the equilibrium x0, reads (cf. Figure 2.1)

R(Mε(tskip + δ;L(x0))) = R(Mε(tskip;L(x0))). (2.5)
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This equation has been proposed and studied already in [39]. In applications, (2.5) is solved
using a Newton iteration (cf. (6.9) in the optimal velocity model). Since the time stepper is
defined implicitly, one finds the stability and bifurcations of an equilibrium x0 by studying
the generalized eigenvalue problem

[
∂

∂x
[R(Mε(tskip + δ;L(x)))]

∣∣∣
x=x0

]
x = λ

[
∂

∂x
[R(Mε(tskip;L(x)))]

∣∣∣
x=x0

]
x. (2.6)

This eigenvalue problem will give the eigenvalues of the implicitly-known flow Φ(δ; ·), linearized
with respect to its second argument x in the equilibrium x0 such that bifurcations occur when
λ is on the unit circle.

2.4. Projective integration. In projective integration one approximates the ODE for the
flow on the slow manifold Cε in the coordinate x ∈ Rd. The ODE for the true flow Φ∗ on the
slow manifold is an implicit ODE with the solution x(t), which will be derived in detail in
Section 3. Its approximation based on Φ is

d

dt
R(Mε(tskip;L(x))) =

∂

∂δ
R(Mε(tskip + δ;L(x)))

∣∣∣
δ=0

. (2.7)

For fixed tskip the left-hand side is a function of x ∈ Rd such that the time-derivative of this
function defines (implicitly) the time-derivative of x. The term inside the partial derivative
on the right-hand side is a function of two arguments, δ and x, for which one takes the partial
derivative with respect to its first argument δ in δ = 0, making also the right-hand side a
function of x only. Consequently, every integration scheme becomes implicit. For example, if
one wants to perform an explicit Euler step of stepsize ∆t starting from xj at time tj , this
becomes an implicit scheme (defining xj+1 as the new value at time tj+1 = tj + ∆t):

1

∆t
[Pε(tskip;xj+1)− Pε(tskip;xj)] =

1

δ
[Pε(tskip + δ;xj)− Pε(tskip;xj)] , (2.8)

or, in terms of restricting and lifting,

R(Mε(tskip;L(xj+1)))−R(Mε(tskip;L(xj)))

=
∆t

δ
[R(Mε(tskip + δ;L(xj)))−R(Mε(tskip;L(xj)))]

Projective integration becomes attractive if either one can choose ∆t much larger than tskip
and δ, or one can set ∆t negative, enabling integration backward in time on the slow manifold
(cf. (6.14) and Figure 6.1), even though the original system is very stiff in RD forward in
time (and thus, strongly expanding backward in time). For positive ∆t the restriction on the
size of ∆t is given by standard consistency and stability requirements of the coarse-grained
integration method restricted to the slow flow (in general the restriction is ε∆t � 1, which
makes the maximal stepsize independent of the time-scale separation). Note that during
computation of residuals and Jacobian matrices one can evaluate Pε(tskip;x) as a by-product
of the evaluation of Pε(tskip + δ;x), assuming that the restriction R is of comparatively low
computational cost.
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2.5. Matching the restriction. Sometimes it is of interest to find a microscopic state
u ∈ RD on the slow manifold Cε that has a particular x ∈ Rd as its restriction (R(u) = x); see
[12, 42, 43]. This state u is defined implicitly and can be found by solving the d-dimensional
nonlinear equation

R(Mε(tskip;L(x̃))) = x (2.9)

for x̃, and then setting u = Mε(tskip;L(x̃)). This solution u is close to the true slow manifold
Cε with an error of order exp(−Ktskip), where the decay rate K > 0 and the possible constant
in front of the exponential are independent of ε and tskip. This implies that, if we choose
tskip = O(ε−1) with p ∈ (0, 1), the distance of u to Cε is small beyond all orders of ε (see
Section 3 for the precise conditions). Equation (2.9) was also proposed and studied in [39]
(called InitMan in [39]), although without the general error estimate.

3. Convergence of equation-free analysis. This section gives a detailed discussion of the
convergence results of the methods sketched in Section 2. Sections 5 and 6 study the optimal
velocity model for traffic flow as an application of implicit equation-free analysis.

We formulate all assumptions on R, L, and Mε for the singular perturbation parameter ε
at ε = 0, even though it is typically difficult to vary ε in complex model simulations. However,
stating the conditions at ε = 0 ensures that they are uniformly satisfied for all sufficiently
small ε, which is the range of parameters for which the statements of this section are valid (cf.
[9]). Throughout this section various constants will appear in front of exponentially growing
or decaying quantities. As the concrete values of these constants do not play a role, we will
use the same variable name C on all occasions without meaning them to be the same. We will
state which quantities the constant C depends on whenever we use exponential estimates.

The notation ∂jk refers to the jth derivative with respect to the kth argument. For example,

∂j2Mε refers to the jth-order partial derivative of the flow Mε with respect to its second
argument (the starting point), and the zeroth derivative refers to the value of flow Mε(t; ·)
itself.

3.1. Existence of transversally stable slow manifold. As introduced in Section 2.1, the
microscopic flow Mε(t;u0) is the solution of

u̇ = fε(u), u(t) ∈ RD, (3.1)

starting from initial condition u0 ∈ RD, which for ε = 0 has a d-dimensional manifold of
equilibria C0. That is, f0(u) = 0 if u ∈ C0. In order to avoid the discussion of what happens
when the flow Mε reaches certain boundaries or becomes large while following the slow dy-
namics, we assume that the manifold C0 of equilibria of M0 is compact. Our first assumption
guarantees transversal stability of C0.

Assumption 1 (Separation of time scales and transversal stability). There exists a constant
K0 > 0 such that for all points u ∈ C0 the Jacobian ∂f0(u) has D − d eigenvalues with real
part less than −K0.

This implies that the flow M0 approaches the slow manifold C0 with a rate faster than K0

from all initial conditions u in some neighborhood of C0. That is, for every u in an appropriate
open neighborhood U of the slow manifold C0 there exists a point p ∈ C0 such that

lim
t→∞

M0(t;u) = p
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Figure 3.1. Sketch of geometrical interpretation of transversality assumptions. Note that (rgR)t refers
to an arbitrary transversal complement of rgR. Panel (a) shows the geometry at ε = 0: The trajectory
starting at L(x) must converge to C0, and its limit is called g0(L(x)). The overall map R ◦ g0 ◦ L must be
a local diffeomorphism. This entails that the Jacobian ∂R must have full rank on the tangent space N0(u0)
in any u0 ∈ C0 (also shown in (a)), and that rgL intersects each fiber (the set of points u converging to
the same u0 ∈ C0) transversally. Shown in panel (b): gε and Cε are O(ε) perturbations of g0 and C0, and
Mε(tskip;L(x))−Mε(tskip; gε(L(x))) are exp(−Ktskip) close for tskip > 0.

(note that for ε = 0 all points on the slow manifold C0 are equilibria), and the distance can
be bounded via

‖M0(t;u)− p‖ ≤ C exp(−K0t)‖u− p‖, ‖∂j2M0(t;u)‖ ≤ C exp(−K0t)

for all t ≥ 0 and j ≥ 1, where the constant C depends only on the derivative order j.
Since the slow manifold C0 is compact, one can choose a uniform constant C for all u in

the neighborhood U . The above assumption implies the existence of a smooth map (called
the stable fiber projection),

g0 : U → C0, defined by g0(u) := p, (3.2)

assigning to each u its limit p ∈ C0 under the flow M0 (see Figure 3.1(a)).
We recall now two central persistence results of classical singular perturbation theory [9].

First, the slow manifold C0 persists for sufficiently small ε, deforming to a smooth nearby
manifold Cε (as shown in Figure 3.1(b)). This manifold Cε is also compact. Restricted to Cε,
the flow Mε is governed by a smooth ODE (the slow flow) with a right-hand side for which
all derivatives up to a given order k are proportional to ε (larger k requires smaller ε):

‖fε(u)‖ ≤ ε,
∥∥∂jfε(u)[v1, . . . , vj ]

∥∥ ≤ ε‖v1‖ · . . . · ‖vj‖ (3.3)
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for all j = {1, . . . , k}, u ∈ Cε and v1, . . . , vj ∈ Nε(u). (Here Nε(u) is the tangent space of Cε;
for ε = 0 it is the null space of the linearization of f0 in u on the slow manifold C0.) Note
that typically one has only ‖∂jfε(u)|Cε‖ ≤ Cε, but we can set the constant C equal to unity
without loss of generality by rescaling time or redefining the parameter ε. Thus, the flow
Mε(t; ·) is a global diffeomorphism on the slow manifold Cε which has growth bounds of order
ε forward and backward in time:

‖∂j2Mε(t; ·)|Cε‖ ≤ C exp(ε|t|), ‖∂j2M−1ε (t; ·)|Cε‖ ≤ C exp(ε|t|), (3.4)

for some constant C independent of t and ε and all derivative orders j up to a fixed order k.
Note that M−1ε (t; ·) = Mε(−t; ·) exists for all times t as long as one restricts the flow Mε to
the slow manifold Cε.

Second, the stable fiber projection map g0 persists for small ε, getting perturbed smoothly
to a map gε, defined for each u in the neighborhood U of the slow manifold C0 (and its
perturbation Cε). The map gε picks for every point u ∈ U the unique point gε(u) inside the
slow manifold Cε such that the trajectories starting from u and gε(u) converge to each other
forward in time with an exponential rate K of order 1 (that is, K is uniformly positive for all
sufficiently small ε and all u ∈ U):

‖∂j2Mε(t;u)− ∂j2Mε(t; gε(u))‖ ≤ C exp(−Kt)‖u− gε(u)‖ (3.5)

for all t ≥ 0, u ∈ U , and 0 ≤ j ≤ k, where the constant C is uniform for u ∈ U . In general,
the decay rate K has to be smaller than the rate K0 asserted to exist in Assumption 1 for
ε = 0. More precisely, for every rate K < K0 there exists a range (0, ε0) of ε for which (3.5)
holds. Choosing ε0 smaller permits one to choose K closer to K0. The stable fiber projection
map gε is an order-ε perturbation of g0:

‖∂jgε(u)− ∂jg0(u)‖ ≤ Cε (3.6)

for all j = {0, . . . , k} and a constant C that is uniform for all u ∈ U . The black curves
transversal to Cε in Figure 3.1(b) illustrate the fibers, that is, which points of U get mapped
onto the same point in Cε under gε. Note that the fibers are not trajectories for ε > 0; rather
they are (D − d)-dimensional manifolds.

3.2. Transversality conditions on restriction and lifting. One assumption on the restric-
tion R and the lifting L is that they are both smooth maps.

Furthermore, we assume that the lifting operator L maps some bounded open set domL ⊂
Rd into the basin of attraction U of C0 for ε = 0. We will make all convergence statements in
this section for x ∈ domL.

We formulate the transversality conditions on R and L with the help of the tangent space
N0(u) to the slow manifold C0 in a point u0 ∈ C0, which is given as

N0(u0) = ker ∂f0(u0). (3.7)

Remember that the stable fiber projection g0 maps all u ∈ U onto the slow manifold C0. The
tangent space Nε(u) to the perturbed slow manifold Cε in a point u ∈ Cε is a perturbation of
N0(u) of order ε.

Assumption 2 (Transversality of R and L).
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1. The map g0 ◦ L is a local diffeomorphism between domL ⊂ Rd and the slow manifold
C0 for every x ∈ domL.
Equivalently, the composition of the linearizations ∂g0(L(x)) ∈ RD×D and ∂L(x) ∈
RD×d has full rank for all x ∈ domL ⊂ Rd.

2. The map R : U → Rd, restricted to the slow manifold C0, is a local diffeomorphism
between C0 and Rd for every u in some relatively open subset domR∩ C0.
Equivalently, the dimension of the space ∂R(u)N0(u) equals d for every u ∈ domR∩C0.

3. The set domR∩C0 contains g0(L(domL)) as a subset, and the boundary of domR∩C0
has a positive distance from the boundary of g0(L(domL)).

Note that points 1 and 2 of Assumption 2 are generically satisfied in a given x ∈ Rd or
u0 ∈ C0. By convention we keep domL and domR such that the transversality conditions are
uniformly satisfied in domL and domR. The assumption that domR (the region whereR sat-
isfies Assumption 2) contains the set g0(L(domL)) guarantees that the map x 7→ R(g0(L(x)))
is locally invertible for all x ∈ domL and that its linearization is uniformly regular in domL.
All points of Assumption 2 and the invertibility of the slow flow, Mε(t; ·) restricted to the slow
manifold Cε, can be combined to ensure that the map

Rd ⊇ domL 3 x 7→ R(Mε(t; gε(L(x)))) ∈ Rd (3.8)

is locally invertible for all ε ∈ [0, ε0) and for all times t satisfying

|t| ≤ Tup/ε (3.9)

for some constant Tup. The constant Tup is independent of ε, t, and x ∈ domL. It is
determined by the distance between the boundaries of domR and gε(L(domL)). This distance
is positive because of point 3 in Assumption 2 and the fact that gε is a small perturbation of
g0. Then the time it takes a trajectory on Cε to reach the boundary of domR starting from
gε(L(domL)) is of order 1/ε such that we can introduce the constant Tup. All components
of the map (3.8) are locally invertible: gε ◦ L : domL → Cε by Point 1 of Assumption 2
(transversality of L); Mε(t; ·) is a diffeomorphism on Cε; and R, restricted to C0 (and, hence,
to Cε), is also locally invertible due to Point 2 of Assumption 2. For ε = 0 the map (3.8) is
independent of t. Moreover, the norm of the derivative of the map (3.8) and its inverse are
also uniformly bounded if |εt| ≤ Tup

3.3. Map of exact flow Mε into Rd. Next, we give a coordinate system and a constructive
procedure that maps the flow Mε, restricted to the slow manifold Cε, back to Rd. This kind of
map is called a “lifting” of the flow Mε on Cε to its cover Rd in, e.g., [9], but we do not use this
term here to avoid confusion with the lifting operation L, used in an equation-free context
(cf. for example [23]). For any fixed tskip the following map Xε : domL → Cε introduces
coordinates of (part of) Cε in domL:

Xε(x) = Mε(tskip; gε(L(x))).

This map is locally invertible because g0 ◦ L is a local diffeomorphism between domL and C0
(and, hence, gε ◦ L is a diffeomorphism between domL and Cε for small ε), and Mε(tskip; ·)
is a global diffeomorphism on Cε (see (3.4)). Moreover, if Mε(tskip; gε(L(x))) is in the interior
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of the domain of R, then one can find, for a given u = Xε(x) ∈ Cε, a preimage x̃ ≈ x of any
point ũ ∈ Cε close to u by solving

R(Xε(x̃)) = R(ũ) (3.10)

for x̃. This follows from Assumption 2 (transversality for R). In particular, point 3 of
Assumption 2 gives the bound on the range of tskip for which the linearization of (3.10) is
regular: the trajectory t 7→ Mε(t; gε(L(x))) should not leave domR for t ∈ [0, tskip], which
is guaranteed for tskip < Tup/ε. By requiring x̃ ≈ x, the preimage x̃ of ũ, defined by (3.10),
becomes unique.

Let x(δ) ∈ domL ⊂ Rd be a trajectory of the flow Mε on Cε in the coordinates defined
by Xε. By definition, x satisfies Xε(x(δ)) = Mε(δ;Xε(x(0))). As long as Xε(x(δ)) is in the
domain of R, we can apply R to this identity to obtain

R(Xε(x(δ))) = R(Mε(δ;Xε(x(0)))), that is,

R(Mε(tskip; gε(L(x(δ))))) = R(Mε(tskip + δ; gε(L(x(0)))))
(3.11)

(inserting the definition of Xε). Hence, the flow Mε on Cε, written in the coordinates x ∈
domL, satisfies the implicit ODE

d

dt
R(Mε(tskip; gε(L(x)))) =

∂

∂δ
R(Mε(tskip + δ; gε(L(x))))

∣∣∣
δ=0

(3.12)

as long as εtskip < Tup and ε(tskip + δ) < Tup such that the resulting trajectory x(δ) stays
in domL and Xε(x(δ)) = Mε(tskip; gε(L(x(δ)))) stays in domR. For different values of tskip
we get different coordinate representations of the same flow, all related to the representa-
tion with tskip = 0 via the global diffeomorphism Mε(tskip; ·) on Cε, which is a near-identity
transformation if tskip � 1/ε (see (3.4)).

Let us denote the flow corresponding to the trajectory x(δ) in (3.11) as Φ∗(δ; ·) : domL →
domL. The flow Φ∗ is generated by the ODE (3.12). If εtskip ≤ Tup and δ � 1/ε, this flow
map Φ∗(δ; ·) is defined implicitly by solving the following system for y∗,

R(Mε(tskip; gε(L(y∗)))) = R(Mε(tskip + δ; gε(L(x)))), (3.13)

and setting Φ∗(δ;x) := y∗. The local invertibility of Xε guarantees that there is a solution y∗
close to x and that the solution y∗ is unique in the vicinity of x. For larger δ, one breaks down
the flow into smaller time steps such that one can apply the local solvability at every step:

Φ∗(δ;x) = Φ∗(δ/m; ·)m[x] (3.14)

for sufficiently large integer m. This construction of Φ∗ achieves a representation of the exact
flow Mε restricted to Cε that is globally unique on domL for all δ with ε(tskip + δ) ≤ Tup.

3.4. Approximate flow map and its convergence. We now define the approximate flow
map y = Φ(δ;x). Its definition is similar to (3.13), in particular, it is also implicit. To
highlight where the difference between y and y∗ comes from, we put the defining equation for
y∗ = Φ∗(δ;x) directly below the implicit definition of y:

R(Mε(tskip;L(y))) = R(Mε(tskip + δ;L(x))),

R(Mε(tskip; gε(L(y∗)))) = R(Mε(tskip + δ; gε(L(x)))),
(3.15)

12



where the equation at the top defines y = Φ(δ;x). To check how the difference y−y∗ depends
on x, tskip, δ, and ε we use a regular perturbation argument by comparing solutions of the
two equations in (3.15). We rely on (3.5), which guarantees that the perturbations are small,
and the invertibility of the map (3.8), which guarantees that the linearization of the left-hand
side with respect to y and its inverse are uniformly bounded for ε(tskip + δ) ≤ Tup.

Theorem 3.1 (Convergence of approximate flow map). Let K ∈ (0,K0) be a given constant.
We assume that the assumptions on time scale separation (Assumption 1) and transversality
(Assumption 2) hold for L, Mε and R such that

x 7→ R(Mε(t; gε(L(x))))

is a local diffeomorphism if |εt| ≤ Tup with some Tup > 0 that is uniform for all ε and all
x ∈ domL.

Then there exist a lower bound t0 for tskip, an upper bound ε0 for ε, and a constant C > 0
such that y = Φ(δ;x) and y∗ = Φ∗(δ;x) are well defined by (3.15), and the estimate

‖∂j2Φ(δ;x)− ∂j2Φ∗(δ;x)‖ ≤ C exp(−Ktskip) (3.16)

holds for all orders j ∈ {0, . . . , k}, all x ∈ domL, ε ∈ (0, ε0), tskip ∈ (t0, Tup/ε], and δ ∈
[0, Tup/ε− tskip].

(Remember that k is defined above (3.3).) Note that the assumptions of Theorem 3.1
require that εtskip and ε(tskip+δ) be bounded by Tup. Hence, the theorem ensures convergence
of Φ(δ;x) to Φ∗(δ;x) only if tskip → ∞ and ε → 0 simultaneously. Since ε is usually fixed in
applications, this theorem is not enough to ensure convergence for tskip →∞ uniform for ε.

The proof of Theorem 3.1 splits the error Φ(δ;x)− Φ∗(δ;x) using the fiber projection gε.
The projection of the error onto Cε using gε is zero by construction, and the error transversal to
the manifold decays exponentially due to (3.5), giving a perturbation of order exp(−Ktskip).
This implies that we can apply the implicit function theorem if ε(tskip + δ) ≤ Tup, giving
an error of order exp(−Ktskip) for the difference y − y∗ and for the first- and higher-order
derivatives. The details of the proof are given in Appendix A.

4. Discussion of the general convergence statement and its assumptions. Theorem 3.1
is a local statement with respect to x, claiming convergence only in a region domL in which
the transversality conditions are uniformly satisfied. One has to restrict the times tskip and δ
such that the slow flow Mε(t; gε(x)) cannot leave the region gε(domR) for the times t = tskip
and t = tskip +δ. This is appropriate because in many cases, during continuation or projective
integration the maps R and L get adapted (for example, for the traffic problem investigated
in Section 6, L is varied along the curve of macroscopic equilibria).

4.1. Comparison to the explicit equation-free approach. The convergence theorem, The-
orem 3.1, implies that for smaller ε and a longer healing time tskip the deviation from the
true flow reduces as long as ε(tskip + δ) ≤ Tup and εtskip ≤ Tup. This is in contrast to
the approach proposed by [23], where the coarse flow map was defined in an explicit way:
Φexplicit(δ;x) = R(Mε(δ;L(x))) or Φexplicit(δ;x) = R(Mε(δ + tskip;L(x))) [28, 37, 5]. Follow-
ing this approach, one would analyze equilibria of the slow flow and their stability by studying
fixed points of the map

Φexplicit(t; ·) : x 7→ R(Mε(t;L(x))) (4.1)
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for x, where 0 < t � 1/ε is chosen such that it includes a healing time tskip (t > tskip).
(Compare (4.1) with definition (3.15): y = Φ(δ;x) if R(Mε(tskip;L(y))) = R(Mε(tskip +
δ;L(x))).) For 1 � t � 1/ε the map Φexplicit(t; ·) is a perturbation of order O(εt) � 1
of the map x 7→ R(g0(L(x))). Any flow map on the slow manifold must be a perturbation
of the identity of order εt for small εt. Thus, the explicit map Φexplicit(t; ·) can be a valid
approximation for the flow on the slow manifold in any coordinates only if R◦g0◦L equals the
identity on Rd. Often this requirement is approximated by R◦L = I, because g0 is in general
unknown [21, 26, 27, 33, 36]. Note that there is no ε- or t dependence in the limiting map
R◦ g0 ◦ L, resulting in the much more restrictive condition R◦ g0 ◦ L = I than transversality
Assumption 2 on R and L. Moreover, R ◦ g0 ◦ L = I is only a consistency condition, making
it possible for Φexplicit(t; ·) to resemble the map of a slow flow. If this consistency condition is
violated, then Φexplicit(t; ·) will show dynamics independent of the properties of the flow on the
slow manifold. For example, if the map R ◦ g0 ◦ L has a stable fixed point, then Φexplicit(t; ·)
will also have a stable fixed point independent of the slow flow Mε on Cε.

One way to ensure that the operator Φexplicit approximates the slow flow is to construct
a lifting operator that maps onto the slow manifold Cε. This has been achieved up to finite
order of ε through constrained-runs corrections to L [42, 43]. In our notation the first-order
version of this scheme would correspond to defining the lifting L : Rd 3 x 7→ u ∈ RD as
the (locally unique) u satisfying R(u) = x and d/dt(Rt(u)) = 0 (zero-derivative principle),
where Rt is an arbitrary operator satisfying RD = kerR ⊕ kerRt. Zagaris et al. [42, 43]
developed general mth-order versions of this scheme. Vandekerckhove et al. [39] compared
the constrained-runs schemes from [42, 43] to the results of the implicit expression (2.9)
(called InitMan in [39]) for various examples, finding (2.9) uniformly vastly superior in
terms of convergence and performance. Equation (2.9) also requires only the solution of a d-
dimensional, not a D-dimensional, system (usually d� D). Using (3.11) it is not necessary to
find a microscopic state u on the slow manifold matching a particular restriction x (Ru = x).
A usage of InitMan prefixed at each single step of an explicit equation-free scheme would do
so and is an alternative. Recognizing that the slow flow is given by an implicit ODE from the
beginning reduces the computational overhead, because matching the restriction is required
only at user-specified points.

4.2. Testing the transversality conditions and choosing the healing time and coarse
dimension. The conditions listed in Assumption 1 and Assumption 2 contain terms that are
unknown in practice. For example, the fiber projection g0 and the tangent space N0 to the
slow manifold are both inaccessible because in many cases one cannot vary the time scale
separation parameter ε. However, observing the minimal singular value of the linearization
∂2Pε(tskip;x) = ∂/∂x[R(Mε(tskip;L(x)))] with respect to x (a d-dimensional matrix) provides
an indicator: in points where the transversality condition is violated, the linearization becomes
singular.

Similarly, the condition number of the linearization ∂2Pε(tskip;x), cond ∂2Pε(tskip;x), guides
the choice of the optimal healing time tskip. All tasks involve solving nonlinear equations with
a Jacobian ∂2Pε(tskip;x). While the error due to finite time scale separation becomes smaller,
cond ∂2Pε(tskip;x) can grow with tskip such that other errors may become dominant when they
are amplified by cond ∂2Pε(tskip;x). In particular, when the microscopic system is a Monte
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Carlo simulation, a trajectory Mε(t;u) is determined via ensemble runs, and the accuracy of
the evaluation of Mε is only of the order of 1/

√
S, where S is the ensemble size.

The linearization ∂2Pε(tskip;x) also helps to reveal whether one has too many coarse
variables, that is, whether d is too large such that the flow Mε restricted to the assumed
slow manifold Cε is not sufficiently slow (still containing rapidly decaying components). Then
∂2Pε(tskip;x) becomes close to singular, too. Note that any solution found, for example, by
solving the fixed point equation (2.5) is still a correctly identified fixed point with correctly
identified stability. However, the linearization of (2.5) becomes close to singular.

4.3. Chaotic and stochastic systems. Barkley, Kevrekidis, and Stuart [2] analyzed how
the equation-free approach can be used to analyze moment maps of stochastic systems or high-
dimensional chaotic systems that converge in a statistical mechanics sense to low-dimensional
stochastic differential equations (SDEs). These moment maps play then the same role as the
macroscopic map Φ(δ; ·) in our case. The authors of [2] observe that the choice of δ strongly
influences the number and stability of fixed points. Also the inclusion of additional macro-
scopic variables (increasing d) changes the results of the equation-free analysis qualitatively.
It is unclear how the implicit scheme (2.3) behaves in the situations studied by [2]. While
[2] also invokes a separation-of-time-scales argument to study approximation quality for the
stochastic systems, their setting does not fit into the assumptions underlying Fenichel’s the-
orem but requires weaker notions of convergence based on averaging over a chaotic attractor
(see [13] for a review). An adaptation of the analysis in [2], and possibly further adaptation
of the implicit scheme (2.3), is the missing link between Theorem 3.1 establishing convergence
for the idealized situation, given in Section 3, and applications of equation-free analysis to
stochastic or chaotic systems.

5. Traffic Modeling — The Optimal Velocity Model. We now turn to the equation-free
analysis of a system that fits into the framework of implicit equation-free analysis. We will
perform some of the typical tasks listed in Section 2 and apply the implicit equation-free
analysis introduced in Sections 2 and 3.

We consider N cars driving around a ring road of length L. The individual drivers’
behavior is assumed to be uniform and deterministic, modeled by an optimal velocity model
[1] of the form

τ ẍn + ẋn = V (xn+1 − xn), n = 1, 2, . . . , N (5.1)

where xn is the position of car n, τ is the inertia of the driver and car, and V is an optimal
velocity function, prescribing the preferred speed of the driver depending on the distance to
the car in front (the headway). The ring road implies periodic boundary conditions in space

xn+N = xn + L. (5.2)

In order to do numerical bifurcation analysis, we rewrite the second-order ODE (5.1) as a
system of first-order ODEs:

ẋn = yn

ẏn = τ−1 [V (xn+1 − xn)− yn] .
(5.3)
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tanh(h)) is obtained for x → ∞. v0 acts as a scaling parameter for V . The inflection point of the optimal
velocity function V is at h.

Similar to [1, 10] we choose the function

V (∆xn) = v0(tanh(∆xn − h) + tanh(h)), (5.4)

shown in Figure 5.1, as the optimal velocity function. In (5.4), v0(1+tanh(h)) is the maximal
velocity, ∆xn := xn+1 − xn is the headway, and the inflection point h of V determines the
desired safety distance between cars. The reviews [17, 29, 31] put behavioral models based
on optimal velocity functions into the general context of traffic modeling and discuss possible
choices of optimal velocity functions. One conclusion from [31] is that the choice of V does
not affect the overall bifurcation diagram of a single jam qualitatively (some choices of V can
give rise to unphysical behavior such as cars briefly moving backwards, though). Depending
on parameters and initial conditions, the system either shows free-flow behavior, that is, all
cars move with the same velocity and headway, or it develops traffic jams, which means that
there coexist regions of uniformly small headways and low speeds, spatially alternating with
regions of free flow with uniformly large headways and large speeds. We focus on the dynamics
near the formation of a single jam. In equilibrium the single traffic jam moves along the ring
with nearly (due to a finite number of cars) constant shape and speed as a traveling wave
against the direction of traffic. In the full system (5.3) the single traffic jam is a traveling
wave perturbed by small periodic oscillations; see Figure 5.3(b) below.

5.1. Direct Simulations. The uniform flow, starting from initial condition

xn(0) = (n− 1)
L

N

yn(0) = V

(
L

N

)
,

(5.5)

is a solution of (5.3), where all cars move with the same velocity yn(t) = V ( LN ) and headway
∆xn(t) = L

N . We focus on two types of long-time behavior, the uniform flow and traveling wave
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final state (red = T = 5×104, green= T−500). (a) Free flow regime. (b) Traffic jam regime. Note the different
scales of ∆xn on the vertical axis.

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

6

7

8
x 10

−3

t

σ

(a) h = 1.2, v0 = 0.87

0 1 2 3 4 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

t

σ

4 4.002 4.004

x 10
4

−0.5

0

0.5

x 10
−10

(b) h = 1.2, v0 = 0.91

Figure 5.3. Time evolution of the macroscopic variable σ for the same parameters as in Figure 5.2. (a)
The decay to the stable free flow. (b) Using the same initial condition as in (a), the system converges to a
stable traffic jam. The inset in (b) shows the difference between the macroscopic variable σ and its long-term
average σ∗ over the last 10000 time steps of the simulation. One expects small oscillations of σ in time due to
the finite number of cars. However, these small oscillations are below the tolerance of the ODE solver.

solutions. To give a qualitative picture of these, we run two simulations, initializing system
(5.3) with initial conditions close to the uniform flow, or adding a periodic perturbation of
strength µ:

xn(0) = (n− 1)
L

N
+ µ sin

(
2π

N
n

)

yn(0) = V

(
L

N

)
.

(5.6)
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For all simulations, we use N = L = 60. The simulations were run for a time T = 5 ·104 using
the Matlab ode45-solver [18] with absolute and relative tolerance 10−8. All parameters for
the simulation can be found in table B.1 in Appendix B. For our one-parameter analysis, we
also fix the desired safety distance h = 1.2. Figures 5.2 and 5.3 show the long-time behavior
of the initial condition (5.6) for the velocity parameters v0 = 0.87 and v0 = 0.91, respectively.
In Figure 5.2, the headway is shown as a function of car number. It can be seen that the
initial perturbation decays to the uniform flow for the trajectory for v0 = 0.87 but converges
to a traveling wave solution for v0 = 0.91.

We choose the standard deviation σ for the headway as the macroscopic measure (called
x in sections 2 and 3) describing the traffic flow

σ =

√√√√ 1

N − 1

N∑

n=1

(∆xn − 〈∆x〉)2, where ∆xn = xn+1 − xn. (5.7)

Here, 〈∆x〉 = 1 is the mean of all headways. The free flow corresponds to σ = 0 and the
decay of σ to the free flow is shown in Figure 5.3(a). If v0 is chosen equal to 0.91, σ increases
until it settles to an equilibrium, where a traveling wave of fixed shape is observed. It can be
seen in the inset of Figure 5.3(b) that the macroscopic variable oscillates even in its steady
state. These small-scale oscillations are expected due to the finite number of cars, because
cars arrive at the rear and leave from the front of the jam at periodic intervals. However,
the oscillation amplitude is orders of magnitude smaller than the macroscopic dynamics, such
that the oscillations are obscured by discretization effects of the ODE solver (which shows
subtolerance oscillations even for systems with stable equilibria).

5.2. Time scale separation. In order to apply the theoretical results from Sections 2 and
3, we have to check the extent to which the assumption about separation of time scales is valid.
Initially, we use simulations to estimate the time scale separation, showing that the studied
one-jam solution forms a one-dimensional stable submanifold, which we will then study in
Section 6.

The simulation result shown in Figure 5.4 highlights that a one-dimensional slow manifold
exists corresponding to a single jam. For Figure 5.4 we perturbed an initial nonequilibrium
traffic jam (blue circles) by adding random numbers drawn from a uniform distribution in
[−0.5, 0.5]. This perturbed state (red circles) is then simulated using (5.3) for 1000 time
steps. The resulting state is observed to rapidly converge back to a single-jam solution (black
crosses). Note that the drift of the jams has been subtracted in order to center the profiles for
a better comparison. In Figure 5.4(a) the traffic jam at time t = 1000 is very slightly more
pronounced than the initial jam (which was in nonequilibrium position, though). The time
scale separation can be observed clearly in the time evolution of the macroscopic variable σ
(cf. Figure 5.4(b)). For a very short time (t ≈ 10), the macroscopic variable adjusts rapidly.
This corresponds to the fast scale (see inset in Figure 5.4(b)). Observing the system for a
much longer time of t = 1000, the slow drift in the macroscopic variable corresponds to the
slow time scale. A numerical inspection yields a time-scale separation of approximately four
orders of magnitude, i.e., ε ≈ 10−4, which appears to be different from 1/N (cf. also Figure
5.3 for visualizations of the slow dynamics).
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Figure 5.4. Visualization of the time scale separation for system (5.3). (a) An initial nonequilibrium traffic
jam (blue circles) is perturbed with uniformly distributed noise to yield a new profile (red circles). A microscopic
simulation of 1000 time steps brings the system back to a single traffic jam (black crosses), which is slightly
more pronounced than the initial jam. (b) The same simulation as in (a) shown in the macroscopic variable σ
(scaled with σref = 0.16). After a short time (t ≈ 10), the system relaxes to a one-jam solution. During this
process, σ is decreased drastically and settles on the fast time scale (see inset). Afterwards, σ increases again
on a four-orders-of-magnitude slower time scale.

The next section presents an equation-free bifurcation analysis for jam formation on the
macroscopic level.

6. Equation-Free Bifurcation Analysis. We choose a one-dimensional macroscopic de-
scription; that is, the standard deviation σ is the only macroscopic variable. The change of
the chosen macroscopic variable σ is studied with respect to system parameters. According
to the equation-free approach presented in Section 2 the macroscopic ODE has the implicit
form

d

dt
R(M(tskip,L(σ))) =

∂

∂δ
R(M(tskip + δ,L(σ)))

∣∣∣
δ=0

, (6.1)

where the derivative on the right-hand side is approximated by the finite-difference quotient
with finite δ

F (σ) =
RM(tskip + δ,L(σ))−RM(tskip,L(σ))

δ
, (6.2)

and tskip is the healing time, which should be chosen long enough for transients to decay
(cf. the discussion in Section 5.2).

As explained in Section 2 and 3, the equation-free setup avoids an analytical derivation
of a macroscopic ODE but uses (6.1) where (6.2) is evaluated by simulation bursts of length
tskip + δ. A good choice for the time δ depends on the slow dynamics. We used numerical
observations to obtain a good estimate for (6.2), see also Figure 5.4. Note that the left-
and right-hand sides in (6.1) depend also on the system parameters h and v0, which are not
expressly included in (6.1) and (6.2). We also drop the subscript ε of M because it enters our
system only indirectly. In order to find trajectories or equilibria of (6.1)–(6.2), it is necessary
to define a lifting operator L and a restriction operator R. In our case, the restriction operator
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R is given by the definition of the macroscopic measure in (5.7), i.e.,

R(u) =

√√√√ 1

N − 1

N∑

n=1

(∆xn − 〈∆x〉)2. (6.3)

Our lifting operator constructs initial conditions with the help of a reference state ũ = (x̃, ỹ) ∈
R2N , obtained during a previous microscopic simulation. We have to guaranteet hat the lifting
L initializes the system into the vicinity of the solution of interest, which we described in
Section 3 as L having to map into the attracting neighborhood U of the slow manifold.

The following description assumes that microscopic simulations start and end near a single-
pulse traffic jam. The components of the reference state ũ are the positions (x̃n)Nn=1 and the
velocities (ỹn)Nn=1 of the cars (cf. (5.3)). Let us denote the macroscopic state corresponding
to ũ by σ̃ = R(ũ). Given a real parameter p, whose meaning we shall explain in detail below,
and a reference state ũ, we define Lp,ũ(σ) to be

Lp,ũ(σ) = u = (x, y) = (xnew, ynew) ∈ RN × RN , where

∆xnew =
pσ

σ̃

(
∆x̃− 〈∆x̃〉

)
+ 〈∆x̃〉,

xnew,1 = 0, xnew,n =
n−1∑

i=1

∆xnew,i n = 2, . . . , N ,

ynew,n = V (∆xnew,n) n = 1, . . . , N .

(6.4)

V is the optimal velocity function (5.4), 〈·〉 refers to the average of a quantity, and ∆x̃ are the
headways of the reference state (∆x̃n = x̃n+1− x̃n). In (6.4) we compute the positions x ∈ RN
first and then initialize the velocities y ∈ RN by using the optimal velocity function for these
positions. The positions are initialized such that x1 = 0, resulting in a unique mapping from
headways to positions. The definition (6.4) of Lp,ũ contains an artificial parameter p, which
we keep equal to unity throughout, except for Figure 6.2 in Section 6.1 and the error estimates
in Section 6.2. A parameter value of p 6= 1 introduces a systematic bias into our lifting such
that we can vary p gradually to investigate how our results depend on our choice of lifting.
For p 6= 1, the lifting Lp,ũ violates the common assumption of equation-free computations,
where the identity R◦L = I is claimed to be necessary [33, 26, 21, 27, 36]. An application of
Lp,ũ and R without any time evolution in between, yields R(Lp,ũ(σ)) = p · σ.

In the following, we use an equation-free pseudoarclength continuation scheme to compute
bifurcation diagrams for the fixed point of (6.1)–(6.2); that is, we track a root curve (branch)
of

F (σ, v0) = 0 (6.5)

in the (σ, v0)-plane for the macroscopic right-hand side (6.2). The influence of speed limits
on traffic jam formation motivates the choice of the velocity parameter v0 as a bifurcation
parameter. In (6.5) we include the bifurcation parameter v0 explicitly as an argument of F .
The pseudoarclength continuation contains two steps. The first step is a predictor step, where
we use a secant predictor, assuming that we know two points on the branch already. Let
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(σ0, v00) and (σ1, v10) be those two points. We define the secant direction by

w = (σ1 − σ0, v10 − v00). (6.6)

The prediction (σ̂, v̂0) for the next point on the branch is then determined by the secant
predictor

(σ̂, v̂0) = (σ1, v10) + s
w

‖w‖ , (6.7)

where we keep the stepsize of the predictor uniformly at s = 10−3. The prediction is not
exactly on the branch and must be corrected in the following corrector step, which is chosen
to be perpendicular to the predictor direction (6.6). The corrector step solves the system

F (σ, v0) = 0

w(σ)(σ − σ̂) + w(v0)(v0 − v̂0) = 0,
(6.8)

where w(σ) and w(v0) are the components of w in the σ and v0 direction, respectively. Sys-
tem (6.8) can be solved with respect to σ and v0 by Newton’s method using

(σk+1, vk+1
0 )T = (σk, vk0 ) + νJ−1F (σk, vk0 ), (6.9)

where J is the Jacobian of the left-hand side of (6.8), given by

J =

(
Fσ Fv0
w(σ) w(v0)

)
, (6.10)

and ν is a relaxation parameter adjusting the length of a Newton step. For all computations
we used a full Newton step, that is, ν = 1. If the information on the Jacobian of the system is
poor, for example, in noisy or stochastic systems, it might be useful to use a damped Newton
method (ν < 1). The iteration is initialized with the predictor (6.7)

(σ0, v00) = (σ̂, v̂0). (6.11)

During the iteration the function F has to be evaluated according to its definition (6.2).
This means that we lift, run the simulation of the microscopic system and then restrict with
tskip = 300 and δ = 2000.

The Jacobian J is approximated via finite differences. Since w(σ) and w(v0) are known
from the predictor step, we only have to determine Fσ and Fv0 . We evaluated F at the points

(σ, v0), (σ + ∆σ, v0), (σ, v0 + ∆v0) (6.12)

and computed the one-sided derivatives

Fσ =
F (σ + ∆σ, v0)− F (σ, v0)

∆σ
, Fv0 =

F (σ, v0 + ∆v0)− F (σ, v0)

∆v0
. (6.13)

We started the one-parameter continuation of the traffic jam in the direction of decreasing
v0 from two profiles obtained by direct simulations at v0 = 0.91 and v0 = 0.9. The resulting
bifurcation diagram is shown in Figure 6.1.
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Figure 6.1. Bifurcation diagram obtained by equation-free pseudoarclength continuation for h = 1.2. The
traffic jam profiles are shown for selected points in the bifurcation diagram, marked with black circles. Note the
change in scale on the vertical axes on the profiles for better visibility (horizontal axes show the car number n,
vertical axes show headways). A fold point has been detected at (v0,R(M(tskip,Lσ))) ≈ (0.88, 0.125), where a
change in stability is observed. The blue dots mark stable states, while the red dots mark unstable states. It
is due to the equation-free continuation that unstable branches can be observed. For the lifting we use (5.6)
and (6.4) for continuation of the uniform flow and the traveling wave solution, respectively. Additionally,
the black crosses mark a backward trajectory computed by using (6.14). Starting from the stable branch, the
backward integration converges to the unstable branch (big cross). The black dot is the base point used for an
error estimate in Figure 6.4. Black diamonds denote the results of a direct continuation of the full microscopic
system on the macroscopic level. The data is in perfect agreement with results from implicit equation-free
methods.

The traffic jam, i.e., traveling wave, is stable for large values of v0. When following the
branch, a saddle-node bifurcation is detected at (R(M(tskip,Lσ))∗, v∗0) ≈ (0.88, 0.125), where
the traffic jam changes stability. A further decrease of v0 at that point would make the traffic
jam dissolve. But due to the equation-free pseudoarclength continuation of the continuous
branch, it is possible to follow the branch around the fold point and continue the unstable
branch for increasing v0. The traffic jam stays unstable until it reaches the uniform flow
at σ = 0 at a Hopf bifurcation point (cf. Section 6.3 and (6.24)). The microscopic states
corresponding to selected points along the branch are shown as insets in Figure 6.1. The
shape has sharp layers and a flat plateau on the stable branch, and becomes harmonic close
to the equilibrium value σ = 0. Additionally, the time steps of a backward integration are
shown for v0 = 0.884, showing the heteroclinic connection between stable and unstable jams.
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Figure 6.2. (a) Bifurcation diagram obtained from running the implicit equation-free continuation scheme
described in Section 6 for p = 0.95, 0.97, 0.99, 1.0, 1.02, 1.05. The black dots show the results from a direct
downsweep of the stable branch. Depending on the value of p, the results differ visibly from the direct simulation
data, which is usually used as an argument for finding a ’good’ lifting operator. (b) The healed version of the
bifurcation diagram; i.e., σhealed = RM(tskip,Lp,ũσ) for different p all collapse to the same curve, fitting the
direct numerical results perfectly. See also the main text in Section 2. (c) Analysis of the lifting error. The blue
data points show the distances between the equation-free solution v0(σ) and the restriction of the simulation
data using eq. (6.16) as a measure for the error. The results from a direct simulation of the stable branch
are used as a reference curve (cf. Figure 6.2(a)). For the ’normal’ equation-free data, i.e., using the unhealed
macroscopic quantities, it is observed that the error is minimal at p = 1.005, corresponding to a ’good’ lifting
operator. The green data points show the behavior of the healed version of the bifurcation branches (cf. Figure
6.2(b)). The error is uniformly small when using the healed data. h = 1.2 for all images.

The trajectory starts for t0 = 0 at the stable branch. The Euler scheme (2.8) is used for
computing the backward trajectory; that is,

RM(tskip,L(σj+1)) = RM(tskip,L(σj)) + F (σj)∆t, (6.14)

where σj is the solution at tj = j∆t, and ∆t = −5000 is chosen. The size of ∆t is determined
by the desired accuracy of the coarse projective integration.For the computation of F (σ) the
parameters from Table B.1 in Appendix B are chosen in (6.2). The backward integration
converges to the unstable branch.

6.1. The influence of the choice of lifting operator. Figure 6.2 shows how the results
depend on the artificial parameter p, which we introduced into the lifting operator Lp,ũ. In
both panels, the same bifurcation diagram is shown for several values of p and compared to
the restrictions of the stable fixed points of direct long-time simulations (T = 3 · 105, black
dots). The case where the usual equation-free identity R ◦ Lp,ũ = I is fulfilled corresponds
to p = 1. We observe that the preimages σ of the equilibria under the combination of lifting
operator and healing M(tskip;Lp,ũ(·)) depend visibly on p (panel (a) of Figure 6.2). Therefore,
we compare Figure 6.2(a) with the corresponding Figure 6.2(b) for the healed macroscopic
quantity

σhealed = R(M(tskip,Lp,ũσ)) (6.15)

for each macroscopic equilibrium σ along the branch of the bifurcation diagram. According
to Section 3 the map R(M(tskip,Lp,ũσ)) is a local diffeomorphism from Rd into Rd with
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d = 1. Plotting the bifurcation diagram in the (v0, σhealed)-plane in Figure 6.2(b), we obtain a
solution branch that is independent of the choice of the lifting operator, as one would expect
from Theorem 3.1.

For a more detailed analysis of the error, we compute the L2 norm between the interpolated
data sets v0(σ) (expressing the parameter as a function of the equilibrium location near the
fold) for the direct simulation data and the data for the stable branch of the equation-free
bifurcation diagram. For interpolation, the Matlab interp1 function [18] with the “spline”
option is used. We use the error measure

‖f − g‖2 =

∫ b

a
[f(σ)− g(σ)]2dσ (6.16)

to analyze the deviation between the restriction of the direct simulation data and equation-
free continuation data. Here, f and g are the interpolated data sets v0(σ) for the simulated
data and the equation-free data, respectively, in the range of σ between a = 0.125 and
b = 0.25. The unstable branches cannot be compared with direct integration of the system.
The deviation E using eq. (6.16)) with lifting parameter p is shown in Figure 6.2(c). The
blue data points correspond to the distance between the restriction of the simulation data and
the equation-free solutions (that is, the preimages of the equation-free microscopic solutions
under M(tskip;Lp,ũ(·)) in the domain of Lp,ũ) . The distance is small for values of p close to
1, where the usual identity R ◦ L = I is fulfilled. However, the distance for σhealed (green
data) is uniformly small, independent of the choice of p. Therefore, healed quantities should
be used when comparing equation-free results to restrictions of the direct simulation data.
The uniformly small errors in Figure 6.2(c) (in green) suggest that with implicit time steppers
the results are not sensitive to the choice of the lifting operator. This is in contrast to most
equation-free applications [23, 5, 21], which use explicit time steppers of the form Φ(δ;x) =
R(M(δ;L(x))).

6.2. Influence of the healing time tskip and comparison to explicit scheme. In this
section, we investigate the influence of tskip on the equation-free results, e.g., bifurcation
diagrams and stability analysis. First, we show that the bifurcation diagrams are rather
insensitive to the choice of tskip, while the information of the Jacobian depends more noticeably
on the value of tskip.

The bifurcation diagrams obtained for h = 1.2 and tskip = 10, 100, 300, 1000, 2000 are
shown in Figure 6.3. In Figure 6.3(a) it can be observed that the bifurcation diagrams are
similar for all choices of tskip; i.e., they show the same qualitative features. Although the bifur-
cation diagrams are quantitatively close to each other, the information about the derivatives,
i.e., the Jacobian ∂F/∂σ, does not appear to converge to a particular value for increasing
tskip. Note that the scale of the y-axis is 10−4 in this region of the bifurcation diagram, which
suggests that the slow time scale is of this order.

For all values of tskip, the fold point near σ = 0.12 is detected by a sign change in the
Jacobian (cf. Figure 6.3(b)). Close to the Hopf point (which would appear as a pitchfork
bifurcation in the macroscopic system (6.1)) the derivative ∂F/∂σ is not sufficiently accurate
to resolve the criticality of the Hopf (pitchfork) bifurcation, which appears to be close to
being degenerate. The Hopf bifurcation point cannot be studied using the operator R because
expression (6.3), defining R, is singular in the uniform flow.
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Figure 6.3. (a) Bifurcation diagrams for h = 1.2 and tskip = 10, 100, 300, 1000, 2000 in the healed quantities
of σ. The difference between the curves is very small. Insets show a zoom for the fold and the Hopf point. (b)
Comparison of the Jacobians for the different values of tskip along the curve. Close to the Hopf point the value
of the Jacobian does not converge for increasing tskip within the plotted range.
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Figure 6.4. Error analysis for the healing time tskip in the explicit scheme, showing the error eexplicit =
|Φexplicit −Φ∗| defined in (6.17). Colors indicate different values for δ. The inset shows the same computation
for a scaled lifting operator Lp,ũ with p = 0.8. Here, the explicit method has an error which is about two orders
of magnitude larger than that for a good lifting operator p = 1.0. Note that explicit equation-free computations
usually require R ◦ L = I, and the choice of p = 0.8 violates this assumption.

To study the influence of tskip on the explicit scheme Φexplicit and the implicit scheme Φ in
more detail, we compare the results generated by the approximate macroscopic flow directly
to a pregenerated trajectory of the microscopic flow. To this end we perform a long-term
microscopic simulation of the traffic model from a reference point (Figure 6.1, black dot).
After a sufficiently long transient, the dynamics settle to the slow manifold. We denote the
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Figure 6.5. (a) Dependence of the error eimplicit given by (6.18). The error is shown in dependence on
tskip for δ = 1, 10, 100, 1000 (see color code in the legend); h = 1.2, v0 = 0.884, p = 0.8. (b) Evolution of the
system for perturbations in the directions of the leading Floquet vectors (cf. also Figure 6.6 for leading Floquet
exponents). These perturbations lead to oscillations in the macroscopic description. The inset shows the decay
rate over a time t2 − t1 = 600. While the perturbations in the first two Floquet eigenvectors decay with almost
the same rate, there is a gap to the next Floquet vector number 3.

point at the end of this transient as u(0) = ũ. The microscopic trajectory u(t) starting from
ũ is always close to the slow manifold. The macroscopic state corresponding to ũ is denoted
by σ̃ = R(ũ). The error of the explicit equation-free approach (scheme (4.1)) is then

eexplicit(tskip, δ;R(ũ)) = |Φexplicit(δ;R(ũ))−R(u(δ))|
= |R(M(tskip + δ;Lp,ũR(ũ)))−Ru(δ)|. (6.17)

Figure 6.4 shows this error for several fixed δ and varying tskip.
The error eexplicit is of order 10−3 to 10−5 for a good lifting operator, i.e., p = 1.0. The

downward peak around tskip ≈ 150 in Figure 6.4 in logarithmic scale corresponds to a sign
change of the scalar quantity R(M(tskip + δ;Lp,ũR(ũ))) − Ru(δ) in (6.17). For this healing
time tskip ≈ 150 the lifted state is mapped into the stable fiber corresponding to ũ; that is,
ũ = gε(M(tskip;Lp,ũ(R(ũ)))). Note that for a one-dimensional slow manifold the stable fibers
are codimension-one surfaces (called isochrones if the slow manifold is a periodic orbit) such
that we can expect to find the fiber for which the error goes to zero for δ →∞ by varying the
healing time tskip. However, this appropriate healing time may depend on the point ũ on the
slow manifold and is in general not known. The inset in Figure 6.4 shows the error eexplicit
for a nonoptimal lifting operator Lp,ũ, namely for p = 0.8. The error for the explicit method
is of order 10−1 to 10−2 uniformly for tskip and δ. Hence, for the explicit scheme varying tskip
can in general not compensate for errors introduced by the lifting operator.

When estimating the error eimplicit of the implicit scheme we have to first find the point σ
corresponding to σ̃ after healing. Hence, the error eimplicit is given as

eimplicit(tskip, δ;R(ũ)) =|R(M(tskip + δ;Lp,ũ(σ)))−R(u(δ))| where σ solves

R(ũ) =R(M(tskip;Lp,ũ(σ))).
(6.18)
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Figure 6.6. Floquet exponents (a) and leading Floquet vectors (b) of a single traffic jam (viewed as a
periodic orbit of the full system (5.3)). The orbit (shown in (b)) is also highlighted in Figure 6.1 (v0 = 0.884
on stable branch). In (a), we have included the spectrum of a comparable orbit for N = 30, L = 30. In (b)
we have added the Floquet vectors for the dominant Floquet exponents as a perturbation to the periodic orbit.
Vectors 3 and 5 are complex. (+): Vector 2 has been orthonormalized with respect to vector 1.

Figure 6.5(a) shows eimplicit for p = 0.8 (such that the lifting operator is expected to be at some
distance from the slow manifold initially), the same fixed integration times δ as in Figure 6.4,
and a range of tskip from 0 to 1000 (see inset in Figure 6.5(a)).

After an initial decay over a few orders of magnitude (see Figure 6.5(a) main graph)
the error starts to oscillate (see inset in Figure 6.5(a)) on a small scale compared to the
value of the macroscopic variable. These small-scale oscillations suggest that the assumptions
of Theorem 3.1 on large time scale separation are not satisfied for the traffic flow M . To
confirm this we compute the Floquet exponents for the stable stationary single-traffic-jam
solution (diamond at v0 = 0.884 at the end of the heteroclinic connection marked by crosses
in Figure 6.1). This is a periodic orbit of the microscopic system (5.3). Figure 6.6(a) shows the
leading Floquet exponents for this periodic orbit. It shows a dominant real Floquet exponent
very close to the origin next to the trivial Floquet exponent 0 (which corresponds to the flow
direction). This dominant real Floquet exponent corresponds to the slow time scale that the
equation-free analysis attempts to capture.

Figure 6.6(a) also shows that this dominant Floquet exponent is part of a band of complex
Floquet exponents that is parabola-shaped and bending toward the half-plane with negative
real part (see, for example, the band of full dots in Figure 6.6(a)). The spectra for the
two system sizes plotted in Figure 6.6(a) indicate that the spacing of the Floquet exponents’
frequency decreases with increasing N . The parabolic shape of the band then gives a gradually
increasing spectral gap for the low-frequency Floquet exponents until finite-size effects become
visible (to the right of the part of the complex plane shown in Figure 6.6(a)). The spectral
gap between the dominant and the following Floquet exponents gives an upper bound on the
time scale separation that is much more restrictive than the initial assessment in Figure 5.4
suggested.
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An explanation for the apparent discrepancy is the mode shape of the eigenvectors corre-
sponding to the low-frequency (slow-decay) Floquet exponents shown in Figure 6.6(b). Fig-
ure 6.6(b) illustrates how perturbations into the directions of the eigenvectors for the first five
Floquet exponents look (ordered by descending real parts of the exponent). The first Floquet
vector corresponds to the time derivative (the linearization of the time shift). The second
Floquet vector corresponds to the dominant real exponent, tangent to the slow manifold that
the equation-free approach tries to capture. Floquet vector 2 is shown orthonormalized with
respect to Floquet vector 1, because both Floquet vectors 1 and 2 are nearly linearly depen-
dent. While Floquet vector 2 corresponds to a change of amplitude of the shape of the jam,
the complex Floquet vectors correspond to spatial perturbations of the jam of low frequency
(the spatial frequency is increasing with increasing time frequency and decay rate). When
decomposing the perturbation given in Figure 5.4(a) into the eigenbasis, the contribution of
the space corresponding to the low-frequency, slow-decay Floquet vectors was small such that
one can observe only small-amplitude low-frequency oscillations after the initial rapid decay
of all high-frequency strong-decay directions (see inset in Figure 5.4(b)).

These results explain the oscillations observed in Figure 6.5(a). A perturbation of an
equilibrium traffic jam in the directions of the leading Floquet vectors is shown in Figure
6.5(b). Small-scale oscillations are visible in the macroscopic trajectories. These oscillations
lead to additional oscillations in Figure 6.5(a) after an initial rapid exponential decay of the
error. Consequently, Theorem 3.1 is, strictly-speaking, valid only up to a small residual, which
in our system is much smaller than the overall dynamics. Thus, the equation-free approach is
applicable (and implicit schemes have smaller error than explicit ones) even if the conditions
of Theorem 3.1 are not met.

6.3. Continuation of the fold in two parameters. A two-parameter scan, showing one-
parameter bifurcation diagrams in the velocity parameter v0 for different values of the safety
distance h, is presented in Figure 6.7(a). The curve of folds as a result of two-parameter
continuation in Figure 6.7(a) shows how the fold merges with another saddle-node point in a
cusp. The system of equations for continuation of the fold is [25]

F (σ, v0, h) = 0

Fσ(σ, v0, h) = 0

w(σ)(σ − σ̂) + w(v0)(v0 − v̂0) + w(h)(h− ĥ) = 0

(6.19)

with the Jacobian

J =



Fσ Fv0 Fh
Fσσ Fv0σ Fhσ
w(σ) w(v0) w(h)


 . (6.20)

Since derivatives of second order are needed, we apply an approximation of second-order
accuracy for the derivatives, i.e., centered differences for the parameter derivatives in v0 and
h and one-sided second-order schemes for derivatives in σ. We use the one-sided second-
order approximation for Fσ, because σ is nonnegative by definition. Details for the numerical
evaluation of the derivatives can be found in Appendix C.

During the two-parameter continuation the Newton iteration used full Newton steps (ν = 1
in (6.9)). Panel (b) of Figure 6.7 shows the results; they are in perfect agreement with the
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Figure 6.7. (a) Bifurcation diagrams for h ∈ [1.08, 1.25], where h increases from the left curve to the right
curve. (b) Two-parameter continuation of the fold point in the parameters v0 and h. The blue crosses mark
the points determined from the bifurcation diagrams of the one-parameter continuation, and the red circles are
the results from a two-parameter continuation. The black lines show analytical results for the Hopf bifurcation
at σ = 0 (cf. (6.24)). The numerical results for the Hopf bifurcation (zeros from bifurcation diagrams in the
left panel) are denoted as green dots; they are in perfect agreement with the analytical results. Note that in the
parameter plane projection, the difference between the Hopf and the fold point is barely visible, and the first
Hopf curve and the numerical data are obscured by the numerical data for the fold continuation.

data obtained by a one-parameter continuation. For comparison we have included the Hopf
bifurcation point of the full microscopic system at σ = 0. The Hopf bifurcation is a pitchfork
bifurcation at the macroscopic level. However, since the standard deviation as macroscopic
measure is nonnegative by definition, it shows only the nonnegative branches. The analytic
expression for the Hopf bifurcation parameter can be found by linearizing system (5.3) around
the uniform flow and using the ansatz (xn(t), yn(t)) = (xn(0) exp(iωt), yn(0) exp(iωt)). This
results in the system

iωxn = yn (6.21)

iωyn = τ−1
[
V ′
(
L

N

)
(xn+1 − xn)− yn

]
, (6.22)

where ω is the frequency and V ′( LN ) the first derivative of the optimal velocity function at
equilibrium. Eliminating xn and using the periodic boundary conditions results in

(
1− ω2τ

V ′
(
L
N

) +
iω

V ′
(
L
N

)
)N

= 1. (6.23)

This implicitly defines v0 as a function of h (through V ) and can be solved for our specific
choice of V (see (5.4)) to yield

v0 =
1− cos(2πj/N)

τ sin2 (2πj/N)
(
1− tanh2

(
h− L

N

)) , (6.24)
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where j = {1, 2, . . . N−1}. The Hopf curves for the first four spatial frequencies (j = 1, 2, 3, 4)
are shown in Figure 6.7(b). The analytical results for the first Hopf curve are in perfect
agreement with the numerical data. Note that the curves for the Hopf bifurcation point and
the fold point are close to each other in the parameter plane shown in Figure 6.7(b).

7. Conclusion and Outlook. In this paper we have derived an implicit method for equation-
free analysis and proved its convergence for slow-fast systems with transversally stable slow
manifolds. We gave a demonstration by performing an equation-free bifurcation analysis on
a one-dimensional macroscopic description emerging from a microscopic traffic model based
on a deterministic optimal velocity model for individual drivers. We demonstrated that the
obtained bifurcation diagrams are independent of the lifting operator and the healing time
in a suitable region. The bifurcation diagram shows a saddle-node bifurcation, which is
continued in a two-parameter equation-free pseudoarclength continuation. Since the Hopf bi-
furcation, i.e., the macroscopic pitch fork, is known analytically, this traffic model is an ideal
test case for comparison with new numerical methods. The stability in Figure 6.1 changes at
(v0, σ) = (0.887, 0), i.e., sign change of the eigenvalue, indicating a bifurcation. In general, a
sufficient characterization would require checking higher-order derivatives of the macroscopic
right-hand-side F , which can be numerically demanding in an equation-free computation. A
detailed study of the application of the presented implicit equation-free methods to study
pitch-fork bifurcations is a possible research direction for future work.

The proof of convergence for the implicit coarse-level time stepper assumes that the
slow manifold is transversally stable. The review [13] lists the senses in which a fast high-
dimensional chaotic or stochastic system converging in the mean can be viewed as a slow-fast
system converging to its slow manifold. In practical applications the result from Section 3.1
may be used as a plausibility check: the equation-free methodology of Kevrekidis et al ap-
peals to the notions of singular perturbation theory (cf. the illustrative example in [24]). For
any particular system under study, one can check whether this intuition is indeed justified by
testing whether the results for the implicit time stepper given by (2.3) are indeed independent
of the lifting L and the healing time tskip if one varies both gradually. For example, Barkley,
Kevrekidis and Stuart [2] show that moment maps for simple stochastic or chaotic systems
violate this principle in certain regions of their phase space.

For the traffic problems studied in our paper, one long-standing problem is the motion of
several phantom jams, i.e., multipulse solutions, relative to each other. For a large number of
cars (including the N = 60 cars we used) this motion is very slow and therefore near impossible
to observe in direct numerical simulations (a phenomenon that is called meta-stability). An
open question is whether one can derive a computable criterion that predicts, for a given
configuration of several jams and given driver parameters, which of those will collapse or
merge and when. This criterion might be based on the shape of the traveling wave. One
particularly appealing feature of equation-free analysis is that one can continue macroscopic
equilibria in N , the number of cars, using the microscopic model. The complexity of the
implicit scheme is independent of N . The increase of computational time is determined by
the cost of the microscopic simulation with increasing N , since each function evaluation will
be more costly (in our case, proportional to N). Hence, the computational complexity of the
overall scheme is proportional to N .
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Models closer to situations of practical interest, say with more realistic optimal velocity
functions, randomly assigned driver behavior parameters, an element of randomness in the
driver behavior, or multiple lanes, as discussed in the literature [17, 29, 31], are also amenable
to equation-free analysis. This should provide additional information to help match parame-
ters of macroscopic models to microscopic driver and road parameters.
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Appendix A. Proof of Theorem 3.1. For the proof of Theorem 3.1 we have to analyze
the two equations (for y and y∗, respectively)

R(Mε(tskip;L(y))) = R(Mε(tskip + δ;L(x))), (A.1)

R(Mε(tskip; gε(L(y∗)))) = R(Mε(tskip + δ; gε(L(x)))). (A.2)

In both equations x ∈ Rd enters as a parameter. For (A.2) we have established already in
Section 3 that there exists a solution y∗, and that it is locally unique. Equations (3.13) and
(3.14) gave a procedure for picking y∗ in a globally unique way by starting with y∗ = x for
δ = 0 and then extending the solution for varying δ until one reaches the desired value of δ.
This procedure achieves unique solvability for y∗ for all x ∈ domL and for tskip ∈ [t0, Tup/ε)
and δ ≥ 0 satisfying tskip + δ < Tup/ε. For equation (A.1) we have to prove the existence of
a solution y, and prove that it is close to y∗ (including all derivatives with respect to x up to
order k).

In order to do this, we need to make the consequences of Fenichel’s Theorem more explicit.
The Fenichel result (3.4) implies that the map (U is the neighborhood of C0, which also contains
Cε)

Fε : R× U 3 (τ, u) 7→Mε(τ/ε; gε(u))

is well defined and k times differentiable for all u ∈ U and all τ ∈ R. This map Fε is the flow
map when restricted to the slow manifold Cε, and projects all points in the neighborhood of
the slow manifold Cε along the stable fibers using gε. Note that τ is the time on the slow time
scale as we divide by ε in the evaluation of the map. The derivatives of Fε with respect to its
second argument u are uniformly bounded for all u ∈ U as long as as τ ∈ [0, Tup]:

‖∂j2Fε(τ ; ·)‖ ≤ C, (j = 0 . . . , k, and τ ∈ [0, Tup]). (A.3)

Correspondingly, the map

Aε(τ ; ·) = R(Fε(τ ;L(·)) : domL 3 x 7→ R(Mε(τ/ε; gε(L(x)))) (A.4)

is well defined for all τ ∈ R and locally invertible for all ε ∈ [0, ε0) and τ satisfying |τ | < Tup.
Note that the range of admissible ε includes ε = 0, because the limit of the right-hand side
of (A.4) for ε = 0 is well defined as the solution of a differential-algebraic equation on C0 on
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the slow time scale. The norms of the derivatives of Aε and its (locally unique) inverse can
be bounded by a uniform constant C independent of ε ∈ [0, ε0) and τ as long as |τ | ≤ Tup:

‖∂j2Aε(τ ; ·)‖ ≤ C, ‖∂j2A−1ε (τ ; ·)‖ ≤ C. (A.5)

Similarly, the motion transversal to the slow manifold Cε consists of a fast decay and a slow
tracking of the dynamics on Cε. Let K < K0 be a given contraction rate, and choose the upper
bound ε0 such that the contraction property (3.5) of the stable fiber projection gε holds for
all ε < ε0 and all u ∈ U . Then we can express the transversal component of the flow starting
from an arbitrary u ∈ U and t ≥ 0 in the form

Mε(t;u) = Mε(t; gε(u)) + exp(−Kt)M⊥ε (t;u) (A.6)

(this defines M⊥ε ). In the right-hand side of (A.6) the map M⊥ε is k times differentiable with
respect to its argument u for all ε ∈ [0, ε0) (including ε = 0), and the norms of M⊥ε (t;u) and
its partial derivatives ∂jM⊥ε (t;u) are uniformly bounded for all t ∈ [0,∞), ε ∈ [0, ε0) and
u ∈ U :

‖M⊥ε (t;x)‖ ≤ C, ‖∂j2M⊥ε (t;x)‖ ≤ C. (A.7)

The prefactor exp(−Kt) can also be extracted if the smooth restriction map R is applied to
both terms on the left-hand side of (A.6), and if we insert L(x) for u. Thus,

R(Mε(t;L(x)))−R(Mε(t; gε(L(x)))) (A.8)

=

∫ 1

0
∂R
(
Mε(t; gε(L(x))) + ρ[Mε(t;L(x))−Mε(t; gε(L(x)))]

)
dρ

× [Mε(t;L(x))−Mε(t; gε(L(x)))]

(A.9)

=

∫ 1

0
∂R
(
Fε(εt;L(x)) + ρ exp(−Kt)M⊥ε (t;L(x))

)
dρ exp(−Kt)M⊥ε (t;L(x)). (A.10)

We applied the mean-value theorem to equate (A.8) and (A.9). To get to the right-hand side
of (A.10), we inserted the representation (A.6) and used the definition of the map Fε. This
right-hand side in (A.10) has the form

right-hand side of (A.10) = exp(−Kt)rε(εt, t;x), (A.11)

where the first argument of rε refers to the time dependence of Aε in the argument of ∂R.
Note that we have introduced the slow time scale as an additional argument into rε. We will
consider rε(τ, t;x) for arbitrary τ ∈ [0, Tup] and t ∈ [0,∞) below, and later insert τ = εt as
a particular case. The map rε(τ, t;x) is k times continuously differentiable with respect to x.
The norm of rε and the norm of its derivatives with respect to x are uniformly bounded for
x ∈ domL, ε ∈ [0, ε0), τ ∈ [0, Tup], and t ∈ [0,∞) because all of its ingredients have bounded
derivatives (listed in (A.3), (A.7)):

‖rε(τ, t;x)‖ ≤ C, ‖∂j3rε(τ, t;x)‖ ≤ C (A.12)
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for j ∈ {1, . . . , k}. Let us define the times corresponding to tskip and δ on the slow time scale
as:

τskip = εtskip, ∆ = εδ. (A.13)

If τskip and τskip + ∆ are in [0, Tup], then the solution y∗ of the exact flow satisfies (using the
locally invertible map Aε defined in (A.4))

Aε(τskip; y∗) = Aε(τskip + ∆;x). (A.14)

Using rε and Aε, equation (A.1) can be rewritten as

Aε(τskip; y) + s1rε(τskip, t1; y) = Aε(τskip + ∆;x) + s2rε(τskip + ∆, t2;x), (A.15)

where

s1 = exp(−Ktskip), s2 = exp(−K(tskip + δ)),

t1 = tskip ≥ 0, t2 = tskip + δ ≥ 0.
(A.16)

We will first consider solvability of (A.15) with respect to y for general s1 and s2 close to 0,
and t1, t2 ∈ [0,∞). This solution y will depend on the parameters s1, s2, t1, and t2 (among
others). Whenever we subsequently insert the particular values from (A.13) and (A.16) for
τskip, ∆, s1, s2, t1, and t2, the solution y of (A.15) becomes also a solution of (A.1). For
each of the terms, Aε, A

−1
ε , and rε, we have uniform upper bounds ((A.5) and(A.12)) for

their norms and all derivatives up to order k for the entire range of arguments: x, y ∈ domL,
τskip ∈ [0, Tup], τskip + ∆ ∈ [0, Tup], t1, t2 ∈ [0,∞), and ε ∈ [0, ε0) (where ε0 is determined
by the choice of decay rate K as given by Fenichel’s Theorem). Thus, we can use (A.14) and
(A.15) to establish the existence of y and its distance to y∗ using the implicit function theorem
at the point s1 = s2 = 0.

The exact solution y∗ is a uniformly regular solution of (A.15) for s1 = s2 = 0, all
x ∈ domL, ε ∈ [0, ε0), τskip ∈ [0, Tup], and ∆ ∈ [−τskip, Tup − τskip]. Thus, for small s1 and
s2, equation (A.15) has a locally unique solution y ∈ domL which depends smoothly on all
parameters (we write y(x, s1, s2) to emphasize the dependence on (s1, s2) ∈ R2) such that

‖∂j1y(x, s1, s2)− ∂jy∗(x)‖∞ ≤ C‖(s1, s2)‖∞
(j ∈ {1, . . . , k}) for some constant C and all s1, s2 ∈ (−ρ, ρ) for some ρ > 0. Consequently, if
we choose t0 such that exp(−Kt0) < ρ and decrease ε0 such that t0 < Tup/ε0, then we have
for all ε ∈ (0, ε0), tskip ∈ [t0, Tup/ε], δ ∈ [0, Tup/ε− tskip], and x ∈ domL that

∥∥∥∂j1y
(
x, exp(−Ktskip), exp(−K(tskip + δ))

)
− ∂jy∗(x)

∥∥∥
∞

≤ C‖(exp(−Ktskip), exp(−K(tskip + δ)))‖∞
≤ C exp(−Ktskip)

for all j ∈ {1, . . . , k}. This establishes the convergence claim of Theorem 3.1 since y is the
solution of (A.1) if s1 = exp(−Kτskip/ε) = exp(−Ktskip), s2 = exp(−K(τskip + ∆)/ε) =
exp(−K(tskip + δ)), t1 = tskip, t2 = tskip + δ, τskip = εtskip, and ∆ = εδ.
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Parameter Value/range

τ−1 1.7
L 60
N 60
µ 0.1
s 0.001
δ 2000

∆t -5000
tskip 300
v∗0 0.8, . . . ,1.0
h∗ 1.0, . . . ,1.7

Table B.1
Parameters for numerical studies. The quantities marked with an asterisk (∗) are bifurcation parameters, where
the range used is noted

Appendix B. Parameters. The parameters used for the simulations are listed in Table
B.1.

Appendix C. Finite Differences. For the scheme (6.19), F is evaluated at the 17 points

1 : (σ, v0, h),

2 : (σ + ∆σ, v0, h), 3 : (σ + 2∆σ, v0, h),

4 : (σ + 3∆σ, v0, h), 5 : (σ + 4∆σ, v0, h),

6 : (σ, v0 −∆v0, h), 7 : (σ, v0 + ∆v0, h),

8 : (σ + ∆σ, v0 −∆v0, h), 9 : (σ + ∆σ, v0 + ∆v0, h),

10 : (σ + 2∆σ, v0 −∆v0, h), 11 : (σ + 2∆σ, v0 + ∆v0, h),

12 : (σ, v0, h−∆h), 13 : (σ, v0, h+ ∆h),

14 : (σ + ∆σ, v0, h−∆h), 15 : (σ + ∆σ, v0, h+ ∆h),

16 : (σ + 2∆σ, v0, h−∆h), 17 : (σ + 2∆σ, v0, h+ ∆h).

(C.1)

where ∆σ = ∆v0 = ∆h = 0.001 are offsets for the approximation. One can use the following
second-order accuracy scheme to compute the derivatives (for better readability, the points

34



are just referred to by their number, e.g., F7 = F (σ, v0 + ∆v0, h)):

Fσ =
−3F1 + 4F2 − F3

2∆σ

Fv0 =
F7 − F6

2∆v0

Fh =
F13 − F12

2∆h

Fσσ =
−3(−3F1 + 4F2 − F3) + 4(−3F2 + 4F3 − F4)− (−3F3 + 4F4 − F5)

4(∆σ)2

Fv0σ =
(−3F7 + 4F9 − F11)− (−3F6 + 4F8 − F10)

4∆σ∆v0

Fhσ =
(−3F13 + 4F15 − F17)− (−3F12 + 4F14 − F16)

4∆σ∆h
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II Equation-Free Analysis of Macroscopic Behav-
ior in Traffic and Pedestrian Flow

This paper is a proceedings article following up on the “Conference on Traffic
and Granular Flow 2013” held at the Forschungszentrum Jülich in Germany
[MSHS14]. The main results from Paper I have been presented from the point
of view of applications and highlight the benefits for the traffic community.
At the same conference, Jens Starke presented the results from [CHS12] about
equation-free modeling in pedestrian problems. Together with our collaborators
Jan Sieber (University of Exeter) and Poul G. Hjorth (Technical University of
Denmark), we wrote this proceedings article on equation-free modeling in traffic
and pedestrian flow.

The paper gives an overview about applications of implicit equation-free meth-
ods in the traffic community and demonstrates parallels in the analysis of traffic
and pedestrian problems. The presentation aims at an audience familiar with
modeling of car and pedestrian traffic, but not so familiar with multi-scale ana-
lysis. Further, the article focusses on a clear presentation of the topic, where
many mathematical details, e.g., proofs, are omitted. Thus, the article fills a
gap between the mathematics and traffic community and hopefully helps to en-
hance communication between these communities in order to combine knowledge
across the borders of the separate fields.

At the hand-in date of the thesis the paper has been accepted for publication
in “Traffic and Granular Flow’13” (Springer) with an expected publication in
November 2014.



Equation-Free Analysis of Macroscopic
Behavior in Traffic and Pedestrian Flow

Christian Marschler, Jan Sieber, Poul G. Hjorth and Jens Starke

Abstract Equation-free methods make possible an analysis of the evolution of a
few coarse-grained or macroscopic quantities for a detailed and realistic model with
a large number of fine-grained or microscopic variables, even though no equations
are explicitly given on the macroscopic level. This will facilitate a study of how the
model behavior depends on parameter values including an understanding of transi-
tions between different types of qualitative behavior. These methods are introduced
and explained for traffic jam formation and emergence of oscillatory pedestrian
counter flow in a corridor with a narrow door.

1 Introduction

The study of pedestrian and traffic dynamics leads naturally to a description by a few
macroscopic, e.g., averaged, quantities of the systems at hand. On the other hand,
so-called microscopic models, e.g., multiagent systems, inherit individual proper-
ties of the agents and can therefore be made very realistic. Among more successful
microscopic models are social force models for pedestrian dynamics [1, 2, 3] and
optimal velocity models in traffic dynamics [4, 5, 6, 7, 8]. Although computer simu-
lations of microscopic models for specific scenarios are straightforward to perform
it is often more relevant and useful to look at the systems on a coarse scale, e.g., to
investigate a few macroscopic quantities like first-order moments of distributions or
other macroscopic descriptions which are motivated by the application.
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College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF Ex-
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The analysis of the macroscopic behavior of microscopically defined models is
possible by the so-called equation-free or coarse analysis. This approach is moti-
vated and justified by the observation, that multi-scale systems, e.g., many-particle
systems, often exhibit low-dimensional behavior. This concept is well known in
physics as slaving of many degrees of freedom by a few slow variables, sometimes
refered to as “order parameters” (see e.g. [9, 10]) and is formalized mathematically
for slow-fast systems by Fenichel’s theory [11]. These methods aim for a description
of the system in terms of a small number of variables, which describe the interest-
ing dynamics. This results in a dimension reduction from many degrees of freedom
to a few degrees of freedom. For example, in pedestrian flows, we reduce the full
system of equations of motion with equations of motion for each single pedestrian
to a low-dimensional system for weighted mean position and velocity of the crowd.

A difficulty for such a macroscopic analysis is that governing equations for the
coarse variables, i.e., the order parameters, are often not known. Those equations
are often very hard or sometimes even impossible to derive from first principles
especially in models with a very complicated microscopic dynamics. To extract in-
formation about the macroscopic behavior from the microscopic models equation-
free methods [12, 13, 14, 15] can be used. This is done by using a special scheme
for switching between microscopic and macroscopic levels by restriction and lifting
operators and suitably initialized short microscopic simulation bursts in between.
Problems with the initialization of the microscopic dynamics, i.e., the so-called lift-
ing error, have been studied in [8]. An implicit equation-free method for simplifying
the lifting procedure has been introduced, allowing for avoiding lifting errors up to
an error which can be estimated for reliable results [8]. The equation-free method-
ology is most suitable in cases where governing equations for coarse variables are
either not known, or when one wants to study finite-size effects if the number of
particles is too large for investigation of the full system, but not large enough for
a continuum limit. It is even possible to apply equation-free and related techniques
in experiments, where the microscopic simulation is replaced by observations of an
experiment [16, 17, 18].

For pedestrian and for traffic problems, a particularly interesting case is a sys-
tematic study of the influence of parameters on solutions of the system. This leads
to equation-free bifurcation analysis. One obtains qualitative as well as quantitative
information about the solutions and their stability. Furthermore, it saves computa-
tional time and is therefore advantageous over a brute-force analysis or computation.
The knowledge of parameter dependence and the basin of attraction of solutions is
crucial for controling systems and ensuring their robustness. Changes of solutions
are summarized in bifurcation diagrams and solution branches are usually obtained
by means of numerical continuation. These techniques from numerical bifurcation
analysis can be combined with equation-free methods to gain insight into the macro-
scopic behavior in a semi-automatic fashion.

In the following, we apply equation-free bifurcation analysis to two selected
problems in traffic and pedestrian dynamics. Section 2 gives a short overview about
equation-free methods. The methods introduced in Section 2 are then applied to
study traffic jams in the optimal velocity model (cf. [4, 8]) in Section 3. Section 4
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Fig. 1 Fast convergence to a slow manifold (thick blue curve). Trajectories in many dynamical sys-
tems converge very quickly to a slow manifold, along which the long-time macroscopic behavior
takes place.

describes the macroscopic analysis of two pedestrian groups in counterflow through
a bottleneck (cf. [3]) and Section 5 concludes the paper with a brief discussion and
an outlook on future research directions.

2 Equation-Free Methods

Equation-free methods have been introduced (cf. [14, 15] for reviews) to study the
dynamics of multi-scale systems on a macroscopic level without the need for an
explicit derivation of macroscopic equations from the microscopic model. The nec-
essary information is obtained by suitably initialized short simulation bursts of the
microscopic system at hand. Equation-free methods assume that the system under
investigation can be usefully described on a coarse scale. Evolution equations on
the macroscopic level are not given explicitly. A big class of suitable systems are
slow-fast systems, which have a separation of time scales. Under quite general as-
sumptions (cf. [11]) these systems quickly converge to a low-dimensional object in
phase space, the so-called slow manifold (cf. Fig. 1). The long-term dynamics (i.e.,
the macroscopic behavior) happens on this slow manifold, which is usually of much
lower dimension than the overall phase space (of the microscopic system). The goal
of equation-free methods is to gain insight into the dynamics on this slow manifold.

In the following we discuss the equation-free methodology in detail. The con-
struction of a so-called macroscopic time stepper requires three ingredients to be
provided by the user: the lifting L and restriction R operators to communicate be-
tween the microscopic and macroscopic levels and vice versa, and the microscopic
time stepper M. Due to a separation of time scales, it is possible to construct the
macroscopic time stepper by a lift-evolve-restrict-scheme. This scheme is subse-
quently used to perform bifurcation analysis and numerical continuation.
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Microscopic time stepper M

To be specific, let us consider a microscopic model in the form of a high-dimensional
system of N differential equations

u̇ = f (u). (1)

This can be any model of traffic or pedestrian dynamics, possibly depending on a
set of parameters. We generally assume that the number of degrees of freedom and
thereby the dimension N of u is large. Note that a second-order model, e.g., the
social force model with forces fforce(x), can be written as a first-order model of the
type (1) by including the velocities ẋ = v into the equation. Then u has the form
u = (x,v), and the right-hand side is f (u) = f ((x,v)) = [v, fforce(x)]. We assume that
a microscopic time stepper M for model (1) is available. That is, we have a routine
M (usually a simulation or software package) with two inputs: the time t ∈ R by
which we want to evolve and the initial state u0 ∈ RN from which we start. The
output M(t,u0) ∈ RN is defined by the relation

u(t0 + t) = M(t,u(t0)). (2)

That is M(t,u0) is the state u of (1) after time t, starting from u0 at time t0.

Separation of time scales

We also assume that the dynamics on the macroscopic scale can be described by a
few macroscopic variables x ∈ Rn, where n is much smaller than the phase space
dimension N of the microscopic model. This assumption is typically true in many-
particle systems, e.g., pedestrian flow and traffic problems. The goal of equation-free
methods is then to construct a time stepper for x on the macroscopic level,

x(t0 + t) = Φ(t,x(t0)), (3)

based on repeated and appropriately initialized runs, i.e., simulation bursts, of the
microscopic time stepper M for u. In practice, a user of equation-free methods be-
gins with the identification of a map, the so-called restriction operator

R : RN → Rn,

which reduces a given microscopic state u ∈ RN to a value of the desired macro-
scopic variable x ∈Rn. The assumption about the variables x describing the dynam-
ics at the macroscopic scale has to be made more precise. We require that for all
relevant initial conditions u and a sufficiently long transient time tskip the result of
the microscopic time stepper (2) is (at least locally and up to a small error) uniquely
determined by its restriction, i.e., its macroscopic behavior. That is, if for two initial
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(micro) RN

(macro) Rn x(t0)

u(t0) u(t0 + t)

x(t0 + t)

lifting L

M(t, ·)

R restriction

Φ(t, ·) = R(M(t,L (·)))

Fig. 2 Scheme for construction of the macroscopic time stepper Φ using the lifting L and re-
striction operator R for switching between microscopic and macroscopic levels. M denotes the
microscopic time stepper.

conditions u0 and u1 the relation

RM(tskip;u0) = RM(tskip;u1) holds, then
|RM(tskip + t;u0)−RM(tskip + t;u1)|<C exp(εt− γ tskip)

(4)

for all t ≥ 0. In (4) the pre-factor C should be of order unity and independent of the
choice of t, u0 and u1. The growth rate ε is also assumed to be smaller than the decay
rate γ . This is what we refer to as separation of time scales between macroscopic
and microscopic dynamics. Requirement (4) makes the statement “the dynamics of
u on long time scales can be described by the macroscopic variable x = Ru” more
precise. We also see that the error in this description can be made as small as desired
by increasing the healing time tskip. In fact, requirement (4) determines what a good
choice of tskip is for a given problem.

In order to complete the construction of the macroscopic time stepper Φ , the user
has to provide a lifting operator

L : Rn→ RN ,

which reconstructs a microscopic state u from a given macroscopic state x. See [19,
20, 21] for proposals how to construct good lifting operators for explicit equation-
free methods (see Eq. (6) below). In the case of implicit equation-free methods the
choice of a lifting operator is not as delicate [8]. Also note that the choice of lifting
operator is not unique.

Macroscopic time stepper Φ

We can now assemble the approximate macroscopic time stepper Φ for x by ap-
plying the steps Lift-Evolve-Restrict, as illustrated in Fig. 2 in a judicious manner
(cf. Fig. 3 for a detailed construction): the time-t image y = Φ(t;x) of an initial
condition x ∈ Rn is defined as the solution y of the implicit equation

RM(tskip;L y) = RM(tskip + t;L x). (5)
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Rn

RN−n

slow manifold

L (x) L (y)
t sk

ip

healing

t sk
ip

t
M(tskip + t;L (x))
M(tskip;L (y))

x y

R

x∗Φ(t; ·)

Fig. 3 Visualization of the implicit scheme (5). The macroscopic time stepper Φ maps the macro-
scopic state x to the yet unknown macroscopic state y. The scheme lift-evolve-restrict is applied to
both states. Additionally to the healing step tskip the dynamics on the slow manifold are observed
for state x for an additional (long) time t. Both “paths” are compared at the macroscopic end point
x∗. Note, that this scheme defines y implicitly.

Note, that the macroscopic time stepper has originally been introduced as the ex-
plicit definition (cf. also Fig. 2)

Φ̃(t;x) = RM(t;L x). (6)

The explicit method (6) requires that the lifting operator maps onto (or very close to)
the slow manifold for every macroscopic point x. The implicit method (5) does not
have this requirement and should be the method of choice (cf. the discussion in Sec-
tion 3). The implementation of the explicit and implicit time stepper is further illus-
trated in Table 1 using pseudocode. Equation (5) is a nonlinear but in general regular
system of n equations for the n-dimensional variable y. Note that the construction
(5) does not require an explicit derivation of the right-hand side F : Rn→ Rn of the
assumed-to-exist macroscopic dynamical system

ẋ = F(x). (7)

However, it can be used to evaluate (approximately) the right-hand side F in desired
arguments x (see below). The convergence of the time stepper Φ to the correct time-
t map Φ∗ of the assumed-to-exist macroscopic equation (7) is proven in detail in
[8]. The error |Φ(t;x)−Φ∗(t;x)| is of order exp(εt− γtskip).
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required functions: lift, evolve, restrict (cf. main text)
solution at time t0: x

function res = Phi(t,x)
u1 = lift(x); u2 = evolve(t,u1); res = restrict(u2);
end

explicit scheme implicit scheme
y = Phi(t,x); choose dy, tol, y[0] = x, n = 0, err = 2*tol

function res = F(y)
res = Phi(tskip,y) - Phi(tskip+t,x);

end

while err > tol
Fy = F(y[n]);
dF = Jacobian(F,y[n],dy);
y[n+1] = y[n] - (dF)ˆ(-1)*(Fy);
err = abs(y[n+1] - y[n]);
n = n+1;

end
y = y[n];

Table 1 Pseudocode algorithm for computing the macroscopic solution y after time t using the
macroscopic time stepper for the solution x using the explicit (6) and implicit (5) scheme, re-
spectively. The implicit scheme uses a Newton iteration with a given tolerance tol to find y. For
one-dimensional y the Jacobian dF is given by (F(y[n]+dy)-F(y[n]))/dy. Note, that the
complexity of the implicit scheme stems mainly from the Newton iteration, which is not specific
for equation-free computations.

Advantages of equation-free methods

What additional benefits can the macroscopic time stepper Φ have beyond simu-
lation of the low-dimensional dynamics (which could have been accomplished by
running long-time simulations using M directly)?

• Finding locations of macroscopic equilibria regardless of their dynamical stabil-
ity: macroscopic equilibria x are given by solutions to the n-dimensional implicit
equation Φ(t0;x) = x, or, in terms of lifting and restriction:

RM(tskip + t0;L x) = RM(tskip;L x) (8)

for a suitably chosen time t0 (a good choice is of the same order of magnitude
as tskip). The stability of an equilibrium x, found by solving (8), is determined by
solving the generalized eigenvalue problem Ax = λBx with the Jacobian matrices

A =
∂
∂x

RM(tskip + t0;L x), B =
∂
∂x

RM(tskip;L x).
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Stability is determined by the modulus of the eigenvalues λ (where |λ |< 1 cor-
responds to stability).

• Projective integration of (7): one can integrate the macroscopic system (7) by
point-wise approximation of the right-hand side F and a standard numerical inte-
grator. For example, the explicit Euler scheme for (7) would determine the value
xk+1 ≈ x((k+1)∆ t) from xk ≈ x(k∆ t) implicitly by approximating

F(xk) =
1
δ
[
RM(tskip +δ ;L xk)−RM(tskip;L xk)

]

with a small time δ , and then solving the implicit equation

RM(tskip;L xk+1)−RM(tskip;L xk) = F(xk)

with respect to xk+1. Projective integration is useful if the macroscopic time step
∆ t can be chosen such that ∆ t � δ , or for negative ∆ t, enabling integration
backward in time for the macroscopic system (7).

• Matching the restriction: Sometimes it is useful to find a “realistic” microscopic
state u, corresponding to a given macroscopic value x. “Realistic” corresponds in
this context to “after rapid transients have settled”. This can be accomplished by
solving the nonlinear equation

RM(tskip;L y) = x (9)

for y and then setting u = M(tskip;L y).

The formulas (8) and (9) have already been presented and tested in [22], where they
were found to have vastly superior performance compared to alternative proposals
for consistent lifting (such as presented in [19, 20, 21]).

Bifurcation analysis and numerical continuation

Building on top of the basic uses of the macroscopic time stepper Φ , one can also
use advanced tools for the study of parameter-dependent systems. Suppose that the
microscopic time stepper M (and, thus, the macroscopic time stepper Φ) depends
on a system parameter p. We are interested in how macroscopic equilibria and their
stability change as we vary p. In the examples in Sections 3 and 4 the primary system
parameter is the target velocity (traffic) and door width (pedestrians), respectively.

When tracking equilibria in a parameter-dependent problem one may start at a
parameter value p0, where the desired equilibrium x0 (given by Φ(t0;x0, p0) = x0)
is stable so that it can be found by direct simulations. This achieves a good initial
guess, which is required to solve the nonlinear equations (8) reliably with a New-
ton iteration for near-by p close to p0. In the traffic system studied in Section 3 the
equilibrium corresponding to a single phantom jam undergoes a saddle-node bifur-
cation (also called fold, that is, the equilibrium turns back in the parameter changing
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Fig. 4 Pseudo-arclength continuation of a curve of fixed points {(p,x) : Φ(t0;x, p) = x} of the
macroscopic time stepper Φ . A new point (p̄, x̄) is computed along the secant through (p`−2,x`−2)
and (p`−1,x`−1) in a so-called predictor step. The following corrector step solves the equilibrium
condition (cf. (10)) in the perpendicular direction to find the next equilibrium (p`,x`) on the curve.

its stability, see Fig. 5(a) for an illustration). In order to track equilibria near folds
one needs to extend the nonlinear equation for the macroscopic equilibrium with a
so-called pseudo-arclength condition, and solve for the equilibrium x and the param-
eter p simultaneously [23, 24]. That is, suppose we have already found a sequence
(pk,xk), k = 1, . . . , `−1, of equilibria and parameter values. We then determine the
next pair (p`,x`) by solving the extended system for (p`,x`):

0 = Φ(t0;x`, p`)− x` equilibrium condition

s = p̄`(p`− p`−1)+ x̄T
` (x`− x`−1) pseudo-arclength condition.

(10)

The vector

(p̄`, x̄T
` ) =

(p`−1− p`−2,xT
`−1− xT

`−2)

|(p`−1− p`−2,xT
`−1− xT

`−2)|
(11)

is the secant through the previous two points, scaled to unit length, and s is the
approximate desired distance of the newly found point (p`,x`) from its predecessor
(p`−1,x`−1). The continuation method (10) permits one to track equilibria through
folds such as shown in Fig. 5(a) or Hopf bifurcations such as shown in Fig. 6(b)
(where the equilibrium becomes unstable and small-amplitude oscillations emerge).
For a more detailed review on methods for bifurcation analysis the reader is referred
to standard references, e.g., [23, 24].

3 Traffic Models

We apply the methods introduced in Section 2 to the optimal velocity (OV) model [4]
as an example of microscopic traffic models. The model captures the main features
of experiments of cars on a ring road [6]. We exploit equation-free numerical bifur-
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cation analysis to answer the following questions; 1) for which parameter values in
the OV model do we expect traffic jams and 2) how severe are they?

The equations of motion for car n in the OV model are

τ ẍn + ẋn =V (xn+1− xn), V (∆xn) = v0(tanh(∆xn−h)+ tanh(h)), (12)

where τ = 0.588 is the reaction time and V is the optimal velocity function depend-
ing on the velocity parameter v0 and inflection point h. Periodic boundary conditions
xn+N = xn +L are used for N = 60 cars on a ring road of length L = 60. Depending
on the choice of v0 and h one observes uniform flow, i.e., all cars have headway
∆xn = 1, or a traffic jam, i.e., a region of high density of cars. It is worth noting, that
bistable parameter regimes can exist, i.e., a stable uniform flow and a stable traffic
jam coexist and one or the other emerges, depending on initial conditions.

First, we fix h = 1.2 and study the bifurcation diagram in dependence of v0.
Before we are able to apply the algorithms presented in Section 2, we have to define
the lifting and restriction operators.

The restriction and lifting operators

The restriction operator R, used to compute the macroscopic variable to describe
phenomena of interest (here the deviation of the density profile from a uniform flow)
of the microscopic model on a coarse level, is chosen as the standard deviation of
the distribution of headway values

R(u) = σ =

√
1

N−1

N

∑
n=1

(∆xn−〈∆x〉)2, (13)

where 〈∆x〉 is the mean headway.
As the numerical continuation operates in a local neighborhood of the states,

the lifting operator can be based on a previously computed microscopic reference
state ũ = (x̃, ỹ) for positions x̃ and velocities ỹ and its macroscopic image under R,
σ̃ = Rũ. We use ũ and σ̃ to obtain a microscopic profile u for every σ ≈ σ̃ :

Lµ(ũ,σ) = u = (x,y) = (xnew,V (xnew)) , xnew =
µσ
σ̃

(∆ x̃−〈∆ x̃〉)+ 〈∆ x̃〉. (14)

We let the lifting Lµ depend on an artificial parameter µ . We will vary µ later to
demonstrate that the resulting bifurcation diagram is independent of the particular
choice of L .



Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow 11

0.88 0.885 v* 0.89
0

0.05

0.1

0.15

0.2

0.25

v
0

R
(M

(t
sk

ip
,L

σ)
) 1

1.5

1

1.5

0.9

1

1.1

(a) Bifurcation diagram, h = 1.2

0.88 0.885 0.89 0.895 0.9
0

0.05

0.1

0.15

0.2

0.25

v
0

σ

 

 

0.95
1.00
1.05
direct

(b) Unhealed bifurcation diagrams
µ = 0.95,1.00,1.05

jam

free flow

co
ex

ist
en

ce

1.1 1.15 1.2 1.25

0.86

0.87

0.88

0.89

0.9

0.91

h

v 0

(c) Two-parameter continuation

0.88 0.885 0.89 0.895 0.9
0

0.05

0.1

0.15

0.2

0.25

v
0

R
(M

(t
sk

ip
,L

σ)
)

 

 

0.95
1.00
1.05
direct

(d) Healed bifurcation diagrams
µ = 0.95,1.00,1.05

Fig. 5 Equation-free bifurcation analysis for the optimal velocity model (12). (a) Bifurcation di-
agram in healed quantities for h = 1.2. Headway profiles are shown for selected points (black
circles) along the branch. Blue and red dots denote stable and unstable solutions, respectively. (b)
and (d) show bifurcation diagrams for different lifting operators. Healed values in (d) lie exactly
on the same branch and recover the results from direct simulation (black dots). Thus, the choice
of lifting operator L does not affect the results if one reports the healed values (in contrast to (b),
reporting the solutions σ of (8)). (c) Two-parameter bifurcation diagram for continuation of the
fold point. Saddle-node (blue crosses) and Hopf points (green dots) from measurements in one-
dimensional diagrams are in perfect agreement with the continuation in two parameters h and v0
and the analytical curve (black line).

Numerical results

The results of the equation-free bifurcation analysis are shown in Fig. 5. The bifurca-
tion diagram for fixed h = 1.2 (cf. Fig. 5(a)) shows a stable traffic jam for parameter
values v0 > v∗ = 0.887. By continuation of the solution from a stable traffic jam
towards smaller values of v0 a saddle-node bifurcation is found at v0 = 0.88. The
traffic jam loses stability and an unstable solution exists for v0 ∈ [0.88,0.887]. Con-
tinuing further along the branch, a Hopf bifurcation, i.e., a macroscopic pitchfork
bifurcation, where traffic jams are born as small-amplitude time-periodic patterns,
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is found at v0 = 0.887. At this point, stable uniform flow solutions (σ = 0) change
their stability to unstable uniform flow solutions. For v0 ∈ [0.88,0.887] two stable
solutions coexist. In this one-dimensional system, the unstable solution separates
the stable and the unstable fixed point, acting as a barrier. Thus, the bifurcation di-
agram also informs us about the magnitude of the disturbance necessary to change
the behavior of the system from a stable traffic jam to a stable free flow. Headway
profiles are shown for selected points along the branch to illustrate the microscopic
solutions. In Fig. 5(b) and Fig. 5(d) the comparison of different lifting operators is
shown. While the unhealed values σ (cf. Fig. 5(b)) of the equilibrium depends on
the choice of µ , the healed values RM(tskip;L σ), used in the implicit equation-
free methods (cf. Fig. 5(d) and [8]) are in perfect agreement with results from direct
simulations (black dots).

In order to study the dependence on both parameters v0 and h simultaneously,
we use an extended set of equations to continue the saddle-node bifurcation point in
Fig. 5(c). Blue crosses and green dots denote measurements of the saddle-node and
Hopf points from one-parameter continuations, respectively. The two-parameters
continuation (red dots) is in perfect agreement with the measurements. As a check
of validity, the Hopf curve (black line below red dots) can be computed analytically
(cf. e.g., [8]) and is shown for comparison.

In conclusion, the analysis pinpoints the parameter values for the onset and col-
lapse of traffic jams. This information is of potential use to understand the role of
speed limits. The two-parameter bifurcation diagram in Fig. 5(c) shows a free flow
regime for small v0 and large h (bottom right part of the diagram). On the other hand,
a large velocity parameter v0 and a small safety distance h lead to traffic jams (top
left part). In between, a coexistence between free flow and traffic jams is found. The
final state depends on the initial condition. A speed limit lower than the saddle-node
values is necessary to assure a global convergence to the uniform free flow.

4 Pedestrian Models

For further demonstration of the equation-free bifurcation analysis, we also apply it
to a social force model describing pedestrian flow [1, 25]. A particular setup with
two crowds passing a corridor with bottleneck [26] from opposite sites (the crowd
marked blue moving to the right, the crowd marked red moving to the left) is an-
alyzed with respect to qualitative changes of the system behavior [3, 27]. To this
end, a coarse bifurcation analysis is used to determine which bifurcations occur and
thereby to understand which solutions are expected to exist. Details about the model
and the analysis of the bottleneck problem can be found in [3]. Here, we focus on
the coarse analysis of the problem.

Two parameters have been chosen as the main bifurcations parameters; the ratio
of desired velocities of the two crowds rv0 = vr

0/vb
0 and the width of the door w

acting as a bottleneck. Microscopic simulations of the model for two crowds of size
N = 100 reveal two fundamentally different regimes of the dynamics. One finds a
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blocked state and a state that is oscillating at the macroscopic level (cf. Fig. 6(a))
for small and large door widths, respectively. The question we would like to answer
is: how and where does the transition from a blocked to an oscillating state happen?
In mathematical terms the question is, where is the bifurcation point and what type
of bifurcation is observed at the transition?

The restriction and lifting operators

We define the macroscopic quantity m as

m =
mr +mb

2
, m(r,b) =

∑i∈(r,b) κ(xi)xi

∑i∈(r,b) κ(xi)
, (15)

where m(r,b) is a weighted average of the longitudinal component for the blue and red
pedestrian crowd, respectively. κ gives more weight to pedestrians close to the door
(see [3] for details). Since we expect oscillations from microscopic observations the
pair of variables (m, ṁ) is used as the macroscopic variable for the equation-free
methods. The transient from the initial condition to a limit cycle in the macroscopic
description is shown for w = 0.7 in Fig. 6(c). The restriction operator R = (m, ṁ)
is therefore defined by the macroscopic description (15) and its derivative.

The lifting operator L uses information about the distribution of the pedestri-
ans in front of the door to initialize a sensible microscopic state. The distribution of
positions of pedestrians along the corridor is known from numerical studies and is
observed to be well-approximated by a linear density distribution, i.e., the distribu-
tion is of the form p(|x|) = a|x|+ b, where |x| is the distance from the door along
the corridor axis. The slope a and interception b are determined by simulations for
all parameter values of interest. The lifting uses these distributions to map, i.e., lift
(m, ṁ) to a “physically correct” microscopic state. All velocities are initially set to
0, such that we lift to a microscopic state with ṁ = 0 (see [3] for details).

Numerical results

Using equation-free bifurcation analysis, the bifurcation diagram is computed for
the fixed ratio rv0 = 1. Fig. 6(d) shows the maximum and minimum of m(t) as a
function of w. The transition from a blocked state to an oscillating state is clearly
observed and the bifurcation point is found to be at w = 0.56. The transition is
analyzed in detail in [3] and the bifurcation point is identified as a Hopf bifurcation
point using Poincaré sections, i.e., a discretization of the recurrent dynamics in time.
This method is also implicit with a healing time tskip determined by the first crossing
of the Poincaré section. The Hopf bifurcation gives rise to macroscopic oscillations
for large door width w emerging from a stable blocked state for w small enough.
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ṁ

(c) Transient and limit cycle

0.5 0.55 0.6 0.65 0.7
−2

−1

0

1

2

w

 

 

max(m)
min(m)

(d) Bifurcation diagram

Fig. 6 Coarse analysis of the pedestrian dynamics in a corridor with bottleneck. (a) Snapshots of
a microscopic simulation show oscillating behavior for large enough door width w = 0.6. (b) Two-
parameter plane explains the dynamics of the system and the point for the Hopf bifurcation. (c)
Transient and limit cycle in the macroscopic description for w = 0.7. (d) The coarse bifurcation
diagram reveals a Hopf bifurcation at a critical door width w = 0.56.

Let us now study the influence of rv0 on the location of the bifurcation point. The
system for macroscopic continuation is analyzed by a predictor-corrector method
using a linear prediction and a subspace search for the correction in order to study
the two-parameter problem and to continue the Hopf point. The results are shown in
Fig. 6(b). Keeping the other model parameters fixed, this gives an overview of the
behavior of the system on a macroscopic level in two parameters.

The application of equation-free analysis is not limited to pedestrians in a bot-
tleneck scenario. One could also think of applications in evacuation scenarios (see,
e.g., [28, 29]), where parameter regimes with blocked states have to be avoided at
all cost. It is also possible to apply equation-free analysis to discrete models, e.g.,
cellular automaton models [30, 31]. This motivates further studies using equation-
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free methods in traffic and pedestrian flow in order to systematically investigate and
finally optimize the parameter dependencies of the macroscopic behavior of such
microscopic models.

5 Discussion and Conclusion

We have demonstrated, that equation-free methods can be useful to analyze the pa-
rameter dependent behavior in traffic and pedestrian problems. Implicit methods
allow us to improve the results further by reducing the lifting error. The comparison
between traffic and pedestrian dynamics shows that both problem classes can be
studied with the same mathematical tools. In particular, the use of coarse bifurca-
tion analysis reveals some information about the system that could not be obtained
by simpler means, e.g., direct simulations of a microscopic model, since they can-
not investigate unstable solutions. Nevertheless, unstable solutions are important in
order to understand the phase space and parameter dependence of the dynamics.
In particular, in the case of a one-dimensional macroscopic dynamics the unstable
solutions act as barriers between separate stable regimes defining reliable operating
ranges. The knowledge of their locations can be used to systematically push the sys-
tem over the barrier to switch to another more desirable solution, e.g., leading to a
transition from traffic jams to uniform flow. In the application to two-dimensional
macroscopic dynamics, we find the precise dividing line between oscillations and
blocking in two parameters.

Finally, let us constrast equation-free analysis to the most obvious alternative. A
common approach to determining the precise parameter value at which the onset of
oscillations occurs, is to run the simulation for sufficiently long time and observe
if the transient behavior vanishes. This approach suffers from two problems. First,
close to the loss of linear stability in the equilibrium (i.e. close to the bifurcation
point) the rate of approach to the stable orbit or fixed point is close to zero as the
Jacobi matrix becomes singular. This makes the transients extremely long, resulting
in unreliable numerics. Second, even eventually decaying transients may grow in-
termittently (the effect of non-normality) such that the criteria for the choice of the
transient time to observe are non-trivial. Equation-free computations working on the
macroscopic level in a neighborhood of the slow manifold do not suffer from these
long transients, as they are based on direct root-finding methods.

In conclusion coarse bifurcation analysis can be used in future research to im-
prove safety in traffic problems and evacuation scenarios of large buildings in case
of emergency. The main advantage is, that realistic models can be used and a qualita-
tive analysis of the macroscopic behavior is still possible. The method works almost
independent of the underlying microscopic model and has a significant potential for
helping traffic modellers to gain insight into previously inaccessible scenarios.

Acknowledgements The authors thank their collaborators R. Berkemer, A.
Kawamoto and O. Corradi. The research of J. Sieber is supported by EPSRC grant



16 Christian Marschler, Jan Sieber, Poul G. Hjorth and Jens Starke

EP/J010820/1. J. Starke was partially funded by the Danish Research Council under
09-065890/FTP and the Villum Fonden (VKR-Centre of Excellence “Ocean Life”).

References

1. D. Helbing, P. Molnár, Phys. Rev. E 51, 4282 (1995)
2. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)
3. O. Corradi, P. Hjorth, J. Starke, SIAM Journal on Applied Dynamical Systems 11(3), 1007

(2012)
4. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51(2), 1035

(1995)
5. I. Gasser, G. Sirito, B. Werner, Physica D: Nonlinear Phenomena 197, 222 (2004)
6. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.i. Tadaki,

S. Yukawa, New J. Phys. 10(3) (2008)
7. G. Orosz, B. Krauskopf, R. Wilson, Physica D: Nonlinear Phenomena 211, 277 (2005)
8. C. Marschler, J. Sieber, R. Berkemer, A. Kawamoto, J. Starke, ArXiv e-prints (2013)
9. H. Haken, Synergetics. An introduction. (Springer, Berlin, 1983)

10. H. Haken, Advanced synergetics. (Springer, Berlin, 1983)
11. N. Fenichel, Journal of Differential Equations 31, 53 (1979)
12. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, C. Theodoropoulos,

Communications in Mathematical Sciences 1, 715 (2003)
13. I.G. Kevrekidis, C.W. Gear, G. Hummer, AIChE Journal 50(7), 1346 (2004)
14. I.G. Kevrekidis, G. Samaey, Annual Review of Physical Chemistry 60(1), 321 (2009)
15. Y. Kevrekidis, G. Samaey, Scholarpedia 5(9), 4847 (2010)
16. J. Sieber, B. Krauskopf, Nonlinear Dynamics 51(3), 365 (2008)
17. E. Bureau, F. Schilder, I.F. Santos, J.J. Thomsen, J. Starke, Journal of Sound and Vibration

332(22), 5883 (2013)
18. D.A.W. Barton, J. Sieber, Phys. Rev. E 87, 052916 (2013)
19. C.W. Gear, T.J. Kaper, I.G. Kevrekidis, A. Zagaris, SIAM Journal on Applied Dynamical

Systems 4, 711 (2005)
20. A. Zagaris, C.W. Gear, T.J. Kaper, Y.G. Kevrekidis, ESAIM: Mathematical Modelling and

Numerical Analysis 43(04), 757 (2009)
21. A. Zagaris, C. Vandekerckhove, C.W. Gear, T.J. Kaper, I.G. Kevrekidis, Discrete and Contin-

uous Dynamical Systems - Series A 32(8), 2759 (2012)
22. C. Vandekerckhove, B. Sonday, A. Makeev, D. Roose, I.G. Kevrekidis, Computers & Chemi-

cal Engineering 35(10), 1949 (2011)
23. W.J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Y.A. Kuznetsov, B. Sandstede, in Hand-

book of Dynamical Systems, Handbook of Dynamical Systems, vol. 2, ed. by B. Fiedler (Else-
vier Science, 2002), pp. 149 – 219

24. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol.
112, 3rd edn. (Springer, New York, 2004)

25. A. Seyfried, B. Steffen, T. Lippert, Physica A: Statistical Mechanics and its Applications
368(1), 232 (2006)

26. J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, Journal of Statistical Mechanics: The-
ory and Experiment 2012(02), P02002 (2012)

27. C. Marschler, J. Starke, P. Liu, I.G. Kevrekidis, Phys. Rev. E 89, 013304 (2014)
28. D. Helbing, I.J. Farkas, P. Molnar, T. Vicsek, Pedestrian and evacuation dynamics 21, 21

(2002)
29. A.U.K. Wagoum, M. Chraibi, J. Mehlich, A. Seyfried, A. Schadschneider, Computer Anima-

tion and Virtual Worlds 23(1), 3 (2012)
30. C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Physica A: Statistical Mechanics and

its Applications 295(34), 507 (2001)
31. S. Nowak, A. Schadschneider, Phys. Rev. E 85, 066128 (2012)



113

III Bifurcation of Learning and Structure Forma-
tion in Neuronal Maps

This letter discusses the application of equation-free methods to the neuronal
network of the barn owl’s auditory system [MFESvH14]. The two main results
are the macroscopic bifurcation analysis of neuronal networks using equation-
free methods and the observation and investigation of slowly traveling waves
in the connectivity matrix of the neuronal network. Furthermore, the noisy
microscopic system is studied on a macroscopic level, which behaves almost
deterministically. As typical for a letter the highlights are described less-detailed
which complicates following all derivations. Therefore, a follow-up article has
been written to give all derivations for a full understanding of the system and
the coarse analysis (see Paper IV).

The letter describes the application of equation-free methods to a realistic neu-
ronal network model of the barn owl’s auditory system. It is meant to present
equation-free methods for a biophysics community and to point out new research
directions in these fields. The macroscopic, coarse-grained analysis of realistic
high-dimensional systems is still at its infancy and needs more detailed studies
of real-world applications in these areas. This article points out the benefit of a
coarse analysis and hopefully triggers new research in that direction.

At the hand-in date of the thesis the paper has been sent to Europhysics Letters
for review.
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Abstract – Most learning processes in neuronal networks happen on a much longer time scale
than that of the underlying neuronal dynamics. To explore a network’s learning ability, it is
therefore useful to analyze slowly-varying, macroscopic, order parameters. We study the synaptic
learning process giving rise to map formation in the laminar nucleus of the barn owl’s auditory
system. Using equation-free methods, we perform a bifurcation analysis of spatio-temporal struc-
ture formation in the associated synaptic-weight matrix. In so doing, we analyze learning as a
bifurcation process and follow the unstable states as well. A simple time translation of the learning
window function shifts the bifurcation point of structure formation and goes along with traveling
waves in the map, without changing the animal’s sound-localization performance.

Introduction. – If conceived cleverly and combined
with its gigantic dimension reduction, the notion of order
parameter has turned out to be extremely useful. One of
the oldest examples is the “magnetization” m of an Ising
ferromagnet, m ≡ N−1

∑N
i=1 Si with Si = ±1 correspond-

ing to spin up or down. It tells us whether the system is
in an up (m > 0) or down (m < 0) state below the crit-
ical temperature [1]. An order parameter such as m is
a macroscopic characterization of a microscopic state the
system is in, and varies slowly in time as compared to
its (very many) microscopic constituents. Here we focus
on an important additional advantage of a well-conceived
order parameter in that we can now pursue dynamically
unstable macroscopic states by employing recently devel-
oped multiscale methods (equation-free analysis, see e.g.,
[2]). One can therefore perform a complete bifurcation
analysis.

Biological physics has meanwhile provided a plethora
of systems that possess at least two different time scales,
a fast one and a slow one, but the accompanying order-
parameter choice has attracted hardly any attention and
its bifurcation analysis even less. As a generic example,
we analyze structure formation in the auditory system of
the barn owl [4] and the way in which a map of azimuthal

sound localization arises in the laminar nucleus. This is
the first station where phase-locked signals from left and
right ear come together so as to form a map as a conse-
quence of synaptic learning [3–7].

In the present context a map is a neuronal represen-
tation of the outside sensory world. What is actually
mapped here is the interaural time difference (ITD) cor-
responding to horizontal direction. Until now, all maps
were static. As we will see, under the high-dimensional
microscopic neuronal and synaptic dynamics a sound-
localization map arises that can be reduced to a bifurca-
tion of the corresponding low-dimensional order parame-
ter. The bifurcation analysis of the macroscopic dynamics
is made possible by equation-free methods [2, 10, 14, 19].
The surprise is in both the bifurcation and the ensuing
map that behaves as a slowly traveling wave.

In the auditory system of the barn owl, feeder axons
come from left and right ear (through the cochlear and
magnocellular nucleus) and pass along to the laminar nu-
cleus (NL), making a sharp turn when they enter it [8].
There they all have a practically uniform signal velocity
of about 4 m/s and touch the laminar neurons in an in-
tertwining manner. For our purpose, the latter can be
imagined as a row of neurons; cf. Fig. 1. The approxi-

p-1
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n

a

from right ear

from left ear

Fig. 1: Sketch of the structural setup of the barn owl’s laminar
nucleus (NL), an essential part of the auditory system. The
1 ≤ n ≤ N neurons in a row (5 gray circles, in reality and
in computations N = 30) are connected to 1 ≤ a ≤ A axonal
fibers (3 from right and 3 from left). Axons from left and right
ear are connected to laminar neurons through synapses (small
circles). Map formation needs a tuning of both the synapses
on each neuron through the firing of the neuron they are on [5]
and of the synapses on different neurons, which should “know”
what the others do so that a topographically ordered map can
emerge [6]. The latter tuning is performed by means of axon-
mediated spike-based learning (AMSL), here indicated by solid
circles connected to the same axon; cf. Eq. (6) below.

mately uniform velocity is essential to map formation, the
precise speed in the feeder axons is not.

Model of the barn owl’s auditory system. – We
adapt the NL model of Kempter et al. [6] with N = 30
neurons in a row connected to A = 280 axons, so that
the neurons receive input from 140 axons from each ear.
For each synapse there are two indices, the neurons 1 ≤
n ≤ N and the axons 1 ≤ a ≤ A it is connected to.
The distance between neurons is given by d = 27µm and
the propagation speed of the signals is taken [8] to be
c = 4 m/s. According to the finite propagation speed c of
the signals, the time delay between neighboring neurons
connected to the same axon is ∆̃ = d/c = 6.75µs. For all
numerical simulations, time has been discretized in steps
of ∆t = 5µs, with time delays given in units of ∆t. Due
to a pre-processing in the brain [8], input signals along
different axons arrive at the NL border at different times.
Accordingly, a uniform distribution of delays ∆a ∈ [0, 2T ]
has been chosen with

∆a =

{(
2T
A/2

)
a , 1 ≤ a ≤ A

2 (left ear)(
2T
A/2

)
(a− A

2 ) , A2 + 1 ≤ a ≤ A (right ear)
(1)

and T = A/4 is the period of the input cochlear signal, a
cochlear best frequency [8], covering two periods each ear.
Combining both delay types, Eq. (1) gives for synapse
(a, n) connected to left and right ear the total delay

∆an =

{
∆a + n∆̃ + tITD , 1 ≤ a ≤ A/2
∆a + (N + 1− n)∆̃ , A/2 + 1 ≤ a ≤ A (2)

with tITD as interaural time difference in units of ∆t.
The process of learning is modeled as spike-timing de-

pendent synaptic plasticity (STDP) [5, 7] and described

by the change of synaptic weights with time. Hence,
in order to study the learning behavior, we assign to
each synapse (a, n) a time-dependent synaptic weight
Jan(t) ∈ [Jmin, Jmax] = [0, 2]. The local synaptic weight
J loc
an changes on a slow time scale ξ = 10−3 � 1 in depen-

dence upon the arrival times ta of presynaptic spikes and
the firing times tn of the postsynaptic neuron n it is on
[5,6,9], while η ∈ [0, 1] is the important learning parameter
accompanying the learning window W,

d

dt
J loc
an (t) = ξ

[
winδ(t− ta) + woutδ(t− tn) + wunlearn

+p(t) (Jmax − Jan) + ηW(t)
]
. (3)

Here δ is a Dirac δ-function, win = 0.02 takes care of a
synaptic change on arrival of a spike at ta and so does
wout = −0.25 for tn, when the postsynaptic neuron fires,
while wunlearn = −3 · 10−4 describes a slow “forgetting”.
The p(t) term incorporates intrinsic noise uniformly dis-
tributed in [0, 10−4] to model fluctuations on the level of
the synaptic strength. Finally, the learning window

W(t)=
∑

tn

Wû(t−tn)δ(t−ta)+
∑

ta

Wû(ta−t)δ(t−tn) (4)

describes STDP with Wû as learning window shifted by
û = −1. Later on, û is used as additional parameter in
the study of traveling waves; see Fig. 5. With hindsight
[5], the underlying philosophy is simple. If we have an
excitatory synapse and ta − tn < 0 so that the arriving
spike instructs the neuron to fire and shortly thereafter it
does so, the synapse performs a good job. Accordingly, it
ought to be strengthened and hence Wû(ta − tn) > 0. If
on the other hand ta − tn > 0, the spike comes too late
and the synapse should be weakened: Wû(ta − tn) < 0.
The function Wû has already been specified in [6] as

Wû(s)=





2 exp( s−ûτ2 )− exp( s−ûτ0 ) , s < û

exp(− s−ûτ1 )
[
2
(

1 + (s− û) τ1+τ2τ1τ2

)

−
(

1 + (s− û) τ0+τ1τ0τ1

) ]
, s ≥ û.

(5)

The time constants are τ0 = 5, τ1 = 30 and τ2 = 50 (in
units of ∆t). Before proceeding, we need to give map for-
mation the finishing touch through axon-mediated spike-
based learning (AMSL); cf. Kempter et al. [6]. Let ρ = 0.1
be a small parameter accounting for contributions from
neighboring neurons in (6) and define for axon a at neu-
ron n the quantity San =

∑
k J̇

loc
ak . The sum over k can be

over nearest neighbors, or next nearest neighbors, or here
over all synapses connected to the same axon. Then, with
(3), the full synaptic dynamics is given by the differential
equation

d

dt
Jan ≡ J̇an = J̇ loc

an (t) + ρSan. (6)

Hebbian learning is in the style of “practice makes perfect”
and accordingly η is the important parameter. Once the
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barn owl’s head is full-grown, it takes two more weeks be-
fore the animal can perform azimuthal sound localization
or, equivalently, before the laminar map has been com-
pleted. Hence we can choose a time much longer than the
neuronal time scale (ms) and much shorter than the time
of map completion, say 10 minutes, so as to segregate the
two time scales of neuronal activity and map formation.

Equations (4) and (6) describe learning, i.e., map for-
mation processes in terms of developing synaptic strengths
and hence contain the neuronal dynamics explicitly
through spike times ta and tn, which are generated by a
neuronal dynamics, orders of magnitude faster [4] than the
synaptic one. The neuronal dynamics may well be taken
to be simple, viz., the integrate-and-fire model [12, 13],
governed by a membrane potential of the form

hn(t) =
A∑

a=1

∑

j:tfn<tan,j≤t

Jan(t)ε(t− tan,j) (7)

where tfn is the most recent firing time of neuron n, tan,j
is the j-th arrival spike at synapse (a, n), and

ε(t) =

{
(t/τ2) exp(−t/τ) t ≥ 0

0 t < 0
(8)

describes the excitatory postsynaptic response at the soma
with time constant τ = 20∆t. Despite its simplicity, the
model is nonlinear as hn is reset to 0, once hn passes a
threshold θ = 4.2 from below. The synaptic weights Jan
in (7) steer the dynamics of the neurons and, conversely, in
the long run the latter shape the way in which the former
develop.

Macroscopic bifurcation analysis. – To investi-
gate the map dynamics, we would like to average out the
neuronal dynamics and focus on the bifurcation behavior
of map formation in dependence upon the learning win-
dow’s amplitude η and the AMSL coupling strength ρ. In
fact, we expect the details of the neuronal dynamics to be
immaterial. It is here that equation-free bifurcation anal-
ysis proves to be quite helpful [2,10,14]. For the analysis,
we need to define a suitable macroscopic order parameter
X that should measure for the problem at hand how well
the map represents the sound-source direction. To get an
impression of what we can expect, we turn to Fig. 2. If
a map is random or awkward, we require X ≈ 0. On
the other hand, X ≈ 1 should signal a clearly organized
map representing the relative periodicity (cf. Fig. 2) of the
synaptic matrix J = (Jan). In view of these requirements
the choice below is quite natural,

X =
1

(A− 2T )N

∑

n



A/2−T∑

a=1

Jan +

A−T∑

a=A/2+1

Jan


(9)

Jan = (Jan − Ja+T/2,n) δ(Jan, J(a+T )n) Θ(Jan − J̃)

where X depends on the time t, J̃ = 1.3 is a significance
level for the synaptic weights (see below), and Θ is the
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Fig. 2: (a,b) Initial condition Jan(0) for synaptic strengths con-
nected to axons from left and right ear. (c,d) After a successful
learning session employing model Eq. (1) – Eq. (7), a striped
structure emerges in the synaptic weight matrix J , i.e., a map,
enabling the barn owl to azimuthally localize its prey. A gray
scale indicates the strength of the synapse from the minimum
weight (white) to the maximum weight (black). Synapses are
spatially arranged on parallel axons connected to left and right
ear (see Fig. 1). (e) According to (2) the delay for an incoming
signal depends not only on the axon a but also on the neuron
n. Plotting the delay ∆an for strong synapses (black stripes
in (c,d)) results in an overlap where signals arrive at the same
time (here at n = 20). A neuron being a threshold element, the
overlap of left and right white stripes in a delay plot practically
defines the map width. (f) During a simulation of 10000 time
steps with the fully-developed connectivity matrix the spiking
activity shows a maximum at neuron 20 encoding the angle of
prey.

Heaviside step function. The Kronecker δ(Jan, J(a+T )n)
assures a correct period across the axons and the prefactor
1/(A − 2T )N normalizes the sum. The Kronecker δ is
implemented with tolerance 0.01. If the period is T , a
synapse is weighted with the difference to the synapse half
a period in front. For a fully developed matrix J , this is
usually Ja+T/2,n − Jan = Jmax − Jmin = 2 with Jmin = 0.

Accordingly, a uniform matrix without stripe structure
results in a small positive value of X. Furthermore, the
Θ function in (9) takes only synaptic weights Jan > J̃
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into account. The point is that a synaptic weight matrix
with stripe structure but too small |Jan| values is not able
to let the neurons fire so that prey detection would be
impossible. We note that, due to the rectangularly shaped
spatial patterns across the axons, a Fourier representation
to check the periodicity is not useful [11].

We like to gain insight in the way in which the macro-
scopic order parameter X evolves in time in dependence
upon η. Hence we need a bifurcation analysis on a coarse
level and disregarding details of the underlying micro-
scopic dynamics of the neurons. Exactly here equation-
free analysis [2, 10] comes in and allows to investigate the
macroscopic behavior of the neuronal network as it leads
to a map. The number of synapses is 2 to 3 orders of mag-
nitude larger than that of the neurons and the dynamics
of the former is adiabatic w.r.t. the latter, i.e., at least 6
order of magnitude slower.

Equation-free methods. – In equation-free compu-
tations (see [2] for a review), a microscopic dynamical sys-
tem

ẋ(t) = f(x(t), η), x ∈ Rm, f : Rm × R→ Rm (10)

is described by a model function f depending on a param-
eter η ∈ R. Here the microscopic model (10) summarizes
the learning of the neuronal network defined in Eqs. (1)
– (7). By choosing a suitable order parameter X such as
the one in (9), the high-, i.e., m-dimensional dynamics in
(10) can be reduced to a coarse, say M -dimensional scale,

Ẋ(t) = F (X(t), η), X ∈ RM , F : RM × R→ RM (11)

where F describes the not explicitly but only implicitly
given macroscopic dynamics and M � m; here M = 1.
We can obtain the macroscopic dynamical properties of F
by running suitably chosen short simulation bursts, i.e.,
short simulations, of the microscopic system f and using
(see [2, 14])

X(t+ δt) = R[sk(L(X(t)), dt)] (12)

where s solves (10) numerically with time step dt where
δt = kdt, k ∈ N. To be able to perform the continuation
of the macroscopic quantity depending on the parameter
η, i.e., the amplitude of the learning window in (3), the
lifting operator L : RM → Rm and restriction operator
R : Rm → RM are used repeatedly to switch between mi-
croscopic and macroscopic level. This procedure is shown
in Fig. 3. In order to perform a macroscopic time step,
a macroscopic state X(t) is lifted with L (see also (15))
to a microscopic state x(t), which is then evolved in time
by the underlying model (Eq. (1) – Eq. (7)) with the time
stepper s. The resulting state x(t + δt) is subsequently
used to compute the macroscopic state X(t+ δt) at time
t + δt by applying the restriction operator R (defined by
(9)).

(micro) Rm

(macro) RM X(t)

x(t) x(t+ kdt) = x(t+ δt)

X(t+ δt)

lifting L

s(·, dt) s(·, dt)

R restriction

R(sk(t,L(·)))

k times

Fig. 3: Sketch of the macroscopic time stepper used in the
equation-free method. A macroscopic state X(t) is mapped
onto a microscopic state x(t) by using the lifting operator (15).
The available microscopic model represented by Eqs. (1) – (7)
constitutes the microscopic time stepper s that is applied for
k steps of size dt to yield a microscopic state x(t + kdt) at
time t + kdt. Finally, the microscopic state is mapped onto a
macroscopic state X(t + δt) through the restriction operator
(9). This procedure defines the macroscopic time stepper (12).

The unknown macroscopic right-hand side F is usually
approximated as

F (X) =
X(t+ δt)−X(t)

δt
. (13)

This explicit scheme makes it difficult to determine the
correct dynamics, since the lifting operator usually initial-
izes the microscopic state away from the slow manifold
where the macroscopic dynamics takes place (lifting er-
ror). Recently introduced implicit equation-free methods
[14] allow to determine the not explicitly given right-hand
side of Eq. (11) as

F (X) =
R[sk+kskip(L(X(t)), dt)]−R[skskip(L(X(t)), dt)]

δt
(14)

where tskip = kskipdt is the “healing” time. The implicit
scheme (14) circumvents these lifting errors [14].

To numerically compute bifurcation diagrams, the sta-
tionary states of the order parameter X defined by
F (X, η) = 0 are continued with respect to the parame-
ter η using a predictor-corrector method [15,16]. A linear
secant prediction and a Newton method as corrector are
used. The Jacobian is computed by means of a finite-
difference scheme.

The restriction operator R is determined by the defini-
tion of the macroscopic variable (9) and the lifting opera-
tor L(X) = J is chosen as

Jnew = Jold + rand(−ε, ε) + α bin(Jold > 1). (15)

The above computation adapts the previous state Jold of
the continuation using noise with amplitude ε = 0.005.
rand(−ε, ε) is a A×N uniformly distributed random ma-
trix in [−ε, ε] and bin(Jold > 1) is a binarization of the
connectivity matrix J . The binarization modifies strong
synapses that are relevant to the restriction operator R.
The random matrix with small elements is added to ob-
tain a small perturbation to the known state Jold. Note
that the definition of the lifting operator L is not unique.
The choice to modify known solutions through (15) on a
branch is a convenient way to utilize knowledge from pre-
vious solutions in order to construct such a lifting close
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Fig. 4: Macroscopic bifurcation diagram of order parameter
X as function of the learning window amplitude η. Using
equation-free bifurcation analysis, it is possible to continue
branches and to detect bifurcation points of the network learn-
ing. A stable branch is found for X > 0 using different meth-
ods, down-sweep (circles) and up-sweep (crosses) in direct sim-
ulations and implicit equation-free continuation (dots). The
bifurcation diagram shows a bifurcation reminiscent of a tran-
scritical bifurcation at η∗ = 0.16. The branch atX = 0 changes
stability and the unstable branch after the bifurcation is con-
tinued using one-sided Newton corrections (circles). The inset
shows a magnification of the bifurcation region. The three
small insets show microscopic states for comparison. See [17]
for a video of the learning process.

to the low-dimensional slow manifold (see e.g. [10] for a
description of different lifting operators). To initialize J
close to a desired macroscopic value X̂, the coefficient α
is adjusted so that R(Jnew) = X̂.

We start the continuation of the macroscopic stable
branch with the fully developed connectivity matrix for
η = 1 (cf. Fig. 2) corresponding to a macroscopic fixed
point of the system with X(η) = 0.8; see Fig. 4 where
the stable branch for η = 1 is found at the macroscopic
value of X = 0.8. Continuing this fixed point in η yields
a stable branch of solutions. In Fig. 4, the branch ob-
tained by implicit equation-free continuation (dots) coin-
cides with the results from direct simulations in an up-
(crosses) and down-sweep (circles), respectively. Here the
macroscopic solution X > 0 encodes the stripe structure,
i.e., the correct connectivity matrix for sound localization.
By investigating the eigenvalue of the (1 × 1) Jacobian
of the linearized system along the branch, a bifurcation
point is found at η∗ ≈ 0.16. For η < η∗, the solution
X = 0 corresponds to a non-structured connectivity ma-
trix, leading to a system that is not able to perform sound
localization. Choosing a microscopic state with X = 0 as
initial condition for an arbitrary η < η∗, it is possible with
the equation-free continuation techniques presented here
to find an unstable macroscopic solution at X = 0 even
for η > η∗. The detection of an unstable branch gives

1
70

140

0

5

x 10
6

0

1

2

at

J

(a) û = −1
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Fig. 5: Traveling waves in the synaptic weight matrix for dif-
ferent values of the shift û in the learning window; cf. (5).
(a) For û = −1, the stripes travel through the network at a
nonzero but slow speed. (b) The traveling waves turn into a
standing wave for û = −10. The temporal multiplication fac-
tor of 106 clearly indicates that synaptic dynamics leading to
map formation is adiabatic w.r.t. the neuronal one.

information about the underlying dynamics and is never
possible by direct simulations. By visual inspection of the
bifurcation diagram in Fig. 4, the bifurcation is reminis-
cent of a transcritical one, and not the usual pitchfork.

Strict detection of the bifurcation type is, however, com-
plicated by two factors. First, because of the very na-
ture of X, only the non-negative part of the bifurcation
(X ≥ 0) can be observed, thereby obscuring the branch
in the strictly negative domain. Second, inherent noise
in the macroscopic dynamics because of stochasticity in
the underlying microscopic model complicates determin-
ing higher-order derivatives and thereby the bifurcation
type. Additional analysis has shown that even though a
variation of the AMSL coupling strength ρ induces spa-
tial inhomogeneities, the periodicity measure X hardly
changes.

Traveling waves in the synaptic connectivity ma-
trix. – Besides the dependence upon η, the position of
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the bifurcation point also depends on the learning-window
shift û (see Eq. (4)) and corresponds to traveling waves in
the map. The maps found until now in previous work were
always stationary. It turns out that the striped structure,
although a fixed point of the macroscopic order parame-
ter X, is not a stationary state of the connectivity matrix
J . Instead, very slowly traveling waves are observed; see
Fig. 5. The traveling waves have the same speed on axons
from left and right ear, which is the reason why the func-
tion of the network does not change and prey detection
remains possible as the maximum activity of the network
stays at the same neuron; cf. Fig. 2. The speed of the trav-
eling waves depends on the shift û in the learning window.
By using a certain value (here û = −10) it is possible to
obtain standing waves, corresponding to a stationary state
also on a microscopic level. Surprising as they are, the
present findings are purely numerical but invite biological
interpretation and experimental verification, e.g., through
periodic waxing and waning of dendritic spines [18].

Conclusion. – In conclusion, the application of
equation-free methods in conjunction with a bifurcation
analysis to learning in neuronal networks opens up the
way to new insight into previously inaccessible phenomena
such as: 1) study of unstable solutions; 2) detection and
classification of macroscopic bifurcation points. Here we
exhibit a transcritical bifurcation replacing the well-known
pitchfork and identify the onset of structure formation in,
e.g., maps of synaptic connectivities; 3) significant reduc-
tion of computation time. A striking example is provided
by our finding traveling waves instead of a time-invariant
pattern in the sound-localization map of the barn owl, as
shown in Fig. 5.
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IV Equation-Free Bifurcation Analysis of a Learn-
ing Process in a Neuronal Network

This paper [MFEvHS14] is the follow-up of Paper III and gives all necessary
details to follow each step in the derivations. Therefore, it gives a self-contained
presentation of the application of equation-free methods to a coarse modeling
of neuronal networks. Furthermore, the paper studies not only a periodicity
measure for the connectivity matrix but also another macroscopic quantitiy, the
so-called vector strength. Both coarse quantities are shown to capture the same
qualitative results, showing the robustness of the analysis. Additionally, the
traveling waves that have been observed in Paper III are studied in more detail,
e.g., the wave speed with respect to the dependence on system parameters.

The detailed presentation of the paper is tailored for biologists and therefore
also presents algorithms, e.g., Newton’s root-finding algorithm, which would be
known to mathematicians. We hope to encourage discussions across borders of
research fields which could help to understand the complicated models of neu-
ronal networks and could open up for new ways, e.g., by equation-free methods,
to analyze the complicated dynamics on scales that are relevant for experiments.

At the hand-in date of the thesis the paper is a manuscript that will be submitted
to the Journal of Mathematical Biology.
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Abstract. Usually, learning processes of neuronal networks happen on a much
longer time scale than the neuron dynamics. Therefore, it seems natural to take
macroscopic, slowly-varying, quantities, i.e., order parameters, into account in
order to investigate the learning functionality of a neuronal network. We apply
equation-free methods to study pattern formation of stripe structures in the synap-
tic weight matrix in a learning process modeling the nucleus laminaris in the barn
owl’s auditory system. Learning is efficient only after a bifurcation to this stripe
structure and goes along with traveling waves in the patterns on a much slower
time scale. The dependence of wave speed and detailed bifurcation structure on
system parameters is investigated.

1. Introduction

The analysis of biological phenomena by means of mathematical methods
got much attention in recent years. In particular, the modeling of neu-
ronal networks using multiscale techniques from dynamical systems the-
ory is in the focus of concurrent research [Buckley and Nowotny (2011),
Laing (2006)]. The choice of the right mathematical tool depends on the
size of the system under investigation. Great progress has been made in
studying and understanding small systems with a few degrees of freedom.
The advantage is that many results from non-linear dynamical systems the-
ory can be applied [Meiss (2007),Arnold et al (1997)]. On the other hand,
large systems with many degrees of freedom can often be understood on a
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coarse level with methods from statistical physics, see e.g., the statistical
description of turbulence in fluid dynamics by the approach of Kolmogorov
[Frisch (1995)] or the slaving principle [Haken (1983)]. Several difficulties
arise when studying meso-scale systems, i.e., systems with an intermediate
number of degrees of freedom. If these systems have dynamics on different
time scales, it is often possible to gain insight using ideas from slow-fast
systems [Fenichel (1979)]: after a short transient, the dynamics of these
systems happen on a normally-attracting low-dimensional slow manifold.
The resulting dimension reduction is often so significant that these systems
can be analyzed in the same way as low-dimensional systems on this slow
manifold.

Here, we apply so-called equation-free methods [Kevrekidis et al (2003),
Kevrekidis and Samaey (2009)] for analyzing systems with multiple time
scales to the well-studied biological problem of the learning process in
the auditory system of the barn owl (see e.g., [Carr and Konishi (1988),
Gerstner et al (1993),Kempter et al (2001),van Hemmen (2002)]).

The barn owl’s auditory system is a suprisingly simple but never-
theless very efficient part of its brain (cf. Section 2 for the mathemat-
ical model). It is responsible for prey detection with an azimuthal ac-
curacy of 2◦ [Leibold et al (2001)] by using the time delay of an in-
coming signal between the two ears, i.e., the inter-aural time difference
(ITD). This enables the barn owl to hunt even in complete darkness just
by using sound cues. The input is processed in the nucleus laminaris
(NL), a linearly-ordered array of neurons, which evaluates the ITD by co-
incidence detection [Kempter et al (1998),Leibold and van Hemmen(2002),
van Hemmen (2002)]. Signals from the two ears arrive at the NL border
from opposite sides and travel in opposite directions along the NL, yielding
a maximal neuronal activity at the overlap. The idea goes back to Jeffress
[Jeffress (1948)], who proposed this model of coincidence detection already
in 1948.

Although the mature barn owl is a deadly predator, a newly-hatched owl
is not capable of this accurate prey detection. It has to go through a learning
process in which the connections, i.e., synapses, in the NL are adjusted.
This process can be described by spike-time dependent plasticity (STDP)
[Gerstner et al (1996)], an enhancement of the classical Hebbian learning
[Hebb (1949)], and leads to a map formation, i.e., a representation of the
outside world on a neuronal level [van Hemmen (2002)]. By the formation
of the map, ITDs are effectively mapped to neuron activity and a prey
detection becomes possible.

The dynamics of this learning process is well-known on the neuronal
level with many degress of freedom [Kempter et al (2001)], i.e., one degree
of freedom for each synapse. Nevertheless, the interesting dynamics hap-
pens on a coarse scale, i.e., the detection of prey by the one dimensional
angle. This macroscopic level is of interest for systematically studying the
influence of parameters on the learning outcome. Usually, the equations of
motion on this level are unknown and cannot easily be derived in closed
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form from the underlying microscopic model. So-called equation-free meth-
ods [Kevrekidis and Samaey (2009)] bridge the gap between microscopic
and macroscopic levels and allow to analyze systems with different time
scales, e.g., the learning behavior. By using two operators for communicat-
ing between different levels, called restriction and lifting in the equation-free
framework, it is possible to obtain information on the macroscopic level by
using short simulations of the microscopic model (cf. Section 3 for details).

In this article, we apply the equation-free methods to a model of the
NL of the barn owl in order to study map formation. In particular, we
investigate the influence of the learning window, introduced in Section 2, on
the learning outcome. This is achieved by computing bifurcation diagrams
both by direct simulations and by the use of equation-free methods. We
further use the equation-free methods to compute unstable branches, which
would otherwise be impossible to detect by direct simulations.

The paper is organized as follows. In Section 2, the NL model is reviewed.
The input model and neuron dynamics, i.e., high-dimensional dynamics, are
introduced and the learning process is described in terms of the learning
window. Section 3 shortly reviews the ideas of equation-free computations
and introduces the restriction and lifting operators in particular. We also in-
troduce equation-free versions of Newton’s algorithm and the false position
(regula falsi) method. Numerical results on the map formation, represented
by stripe pattern in the connectivity matrix, and the numerical bifurcation
analysis are presented in Section 4. The numerical investigations are further
extended by the analysis of traveling wave solutions of the stripe pattern
in Section 5. Finally, we discuss the results and give an outlook on open
questions in Section 6.

2. The Model of the Neuronal Learning Process

In this section, the model for the NL of the barn owl is introduced. Af-
ter defining the structure of the NL, the input model and the neuron
dynamics are presented in Sections 2.1 and 2.2, respectively. The model
for the learning process in Section 2.3 is based on the model presented in
[Kempter et al (2001)] and extended with a global unlearning process and
noise on the synaptic strengths.

The idea for the NL model of the barn owl is inspired by Jeffress’ model
[Jeffress (1948)], which is the simplest way to map a time difference to a
place code. This mapping is achieved by a linearly-ordered array of co-
incidence detectors which are connected to signal lines from two sides(cf.
Figure 1). The coincidence detectors emit a signal (to a post-processing
unit), if two input signals arrive at the same time. A time delay, i.e., the
ITD in the case of the NL, between the two input lines shifts the maxi-
mal activity to one side, since the signals overlap away from the central
coincidence detector. Consequently, the time delay is mapped to a place.
This method is also frequently used in electronical applications, e.g., robots
[Huang et al (1997)], to determine the position of sound sources. The same
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NL neurons

from right ear

from left ear synapse

∆̃

∆a

Fig. 1. Scheme of the nucleus laminaris (NL) of the barn owl’s auditory system.
N neurons (5 black circles in the sketch) are connected to A axonal fibres (6 lines
in the sketch). The axonal fibers from the left and right ear are connected to the
neurons by synapses (small circles).

linearly-ordered array of neurons has been found in the barn owl’s auditory
system [Carr and Konishi (1988)] and is called nucleus laminaris (cf. Figure
1).

We adapt the model of [Kempter et al (2001)] of the NL with N =
30 neurons connected to A = 280 axons, i.e., 140 axons from each ear.
Throughout the paper, we will index neurons with n ∈ {1, . . . , N} and
axons with a ∈ {1, . . . , A}. Hence, a synapse is uniquely identified by the
tupe (a, n). The distance between neurons is d = 27µm and the propagation
speed of the signals is c = 4m/s. For all numerical simulations we discretize
time in steps of∆t = 5µs, i.e., time delays are given in units of∆t. According
to the finite propagation speed c of the signals, the time delay between
neighboring neurons connected to the same axon is ∆̃ = d/c = 1.35. Due
to a pre-processing in the brain the input signal arrives at different times
on each axon at the NL border. Therefore, a uniform distribution of axonal
delays ∆a ∈ [0, 2T ] is chosen, where

∆a =





(
2T
A/2

)
a , 1 ≤ a ≤ A/2 (left ear)(

2T
A/2

)
(a−A/2) , A/2 + 1 ≤ a ≤ A (right ear)

(1)

and T is the period of the input signal (cf. Section 2.1). Combining both
delay types, we can compute the total delay of synapse (a, n) to be

∆an =

{
∆a + n∆̃+ tITD , 1 ≤ a ≤ A/2 (left ear)

∆a + (N + 1− n)∆̃ , A/2 + 1 ≤ a ≤ A (right ear)
(2)

where tITD is the inter-aural time difference in units of ∆t.

2.1. Input Model

The learning process in the auditory system of the barn owl is influenced
by sounds received from prey. Input signals, e.g., sounds from mice, have
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Fig. 2. Left. Excitatory post-synaptic potential (EPSP) for τε = 20. Right.
Neuron potential h of neuron 24 for t = 103 timesteps. After the neuron potential
has reached the firing threshold θ = 4.2, it is reset to zero.

a natural frequency of ν = 3kHz, corresponding to a period of T = 70 (in
units of ∆t). Therefore, signals from the ears to the NL are emitted every T
timesteps. In order to model inaccuracies in the signal conduction process
a noise σ is introduced to the input signal. The noise σ is drawn uniformly
from [−∆t,∆t] for every incoming signal and is allowed to have different
values on different axonal lines a and neurons n. Hence, the jth arrival time
at synapse (a, n) is given by

tan,j = jT + σ +∆an + tITD,left ear . (3)

Here, tITD is added to the arrival times of the left ear by convention. To
mimick a natural learning process in which sound sources change position
a new tITD is uniformly chosen from the interval [−T/2, T/2] every 104

timesteps.
The arriving signal at the NL border is not solely determined by the

arrival time tan,j . It has a temporal structure modeled as an excitatory
post-synaptic potential (EPSP) with charateristic time τε given by

ε(t) =

{
t
τ2
ε

exp(− t
τε

) , t ≥ 0,

0 , t < 0.
(4)

The EPSP is modeled with τε = 20 (in units of ∆t) and shown in Figure 2,
left panel.

2.2. Neuron Dynamics

The NL neurons are modeled as integrate-and-fire units [Burkitt (2006)].
They receive input signals from the A axons in the form of EPSPs and
integrate over all incoming input signals. After the neuron potential hn of
neuron n reaches the firing threshold θ from below, the neuron emits a
signal, i.e., it spikes, and the neuron potential is reset to zero. The post-
processing of the emitted signal does not influence the learning process and
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is therefore not modeled in this paper. Precisely, the neuron potential hn(t)
of neuron n at time t is given as the sum over all incoming signals since the
last emmited spike

hn(t) =
A∑

a=1

∑

j:tfn<tan,j≤t

Jan(t)ε(t− tan,j), (5)

where tfn is the most recent firing time of neuron n and Jan is the time-
dependent synaptic weight matrix (see Section 2.3 for details about the time
dependence). The history of the firing times is important for the learning

process (cf. Section 2.3). It is indexed with i ∈ N such that tfn,i is the i-th
firing time of neuron n with

hn

(
tfn,i

)
> θ, (6)

where θ = 4.2 is the firing threshold. A typical spiking behavior of a neuron
in a fully-developed network can be seen in Figure 2, right panel. Note,
that the neuron potential hn is not a state variable in the dynamics but
an auxiliary quantitiy to compute firing times. At each time t it can be
computed from the state variables Jan, the most recent spiking time tfn,
and input signals tan,j .

2.3. Learning Dynamics

The process of learning is modeled as synaptic plasticity (see the discus-
sion in e.g., [van Hemmen (2001),Kempter et al (1999)]) and described by
the change of synaptic weights with time. Hence, in order to study the
learning behavior, each synapse (a, n) is assigned a time-dependent synap-
tic weight Jan(t) ∈ [Jmin, Jmax]. According to [Hebb (1949)], synapses at-
tached to neurons that (immediately) fire after receiving an incoming spike
will be strenghtened. This classical Hebbian learning has been extended by
[Gerstner et al (1996)] to incorporate a decrease in synaptic weights if the
timing is wrong, i.e., if a neuron fires before an input spike arrives. This
learning model is called spike-time dependent plasticity (STDP) and is a
prototype for a self-organized formation of a functioning network.

The process of STDP is modeled by the learning window W (s), that ad-
justs the synaptic weights Jan according to the time difference s of incoming
and outgoing spikes [Gerstner et al (1996)]. Here, we use the definition of a
learning window introduced in [Kempter et al (2001)] (cf. Figure 3)

W (s) =

{
2 exp( s−ûτ2 )− exp( s−ûτ0 ) , s < û,

exp(− s−ûτ1 )
[
2
(

1 + (s− û) τ1+τ2τ1τ2

)
−
(

1 + (s− û) τ0+τ1τ0τ1

)]
, s ≥ û.

(7)
The time constants are τ0 = 5, τ1 = 30 and τ2 = 50 (in units of ∆t). For the
analysis of map formation in Section 4 we fix û = −1. In Section 5 we vary
û which results in different wave speeds of the emergent traveling waves.
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Fig. 3. Learning window W (s) depending on time difference s for û = −1, see
also (7).

In addition to the learning window W which models STDP, further
contributions to the learning dynamics are introduced. Each time a spike
arrives at the synapse (a, n), its strength Jan(t) is increased by win = 0.02,
while each outgoing spike weakens the synapse by wout = −0.25. In a quies-
cent network where no input signals or outgoing spikes appear, the synaptic
weight decays constantly with wunlearn = −3 · 10−4. Finally, the last contri-
bution to the change in synaptic strength is a small noise p(t) ∈ [0, 10−4]
proportional to Jmax − Jan such that fully developed synapses experience
less noise. Here, p(t) is a random variable drawn from a uniform distribution
at each time step. Since the synaptic weight can not increase without bound
due to biological constraints, we choose Jmax = 2 as the maximal weight for
a synapse. Similarly, the minimum synaptic weight is chosen to be Jmin = 0.
Collecting all these contributions results in the local learning dynamics for
J loc
an which are later used to compute the global learning dynamics for Jan.

J̇ loc
an (t) = ξ

[∑

j

winδ(t− tan,j) +
∑

i

woutδ(t− tfn,i)

+ wunlearn + p(t) · (Jmax − Jan)

+ η
{∑

j

∑

i

W (t− tfn,i)δ(t− tan,j)

+
∑

j:tan,j≤t

∑

i

W (tan,j − t)δ(t− tfn,i)
}]
.

(8)

The constant ξ = 10−3 � 1 is the time scale for the learning process taking
into account that learning is a slow process and η is the amplitude of the
learning window W . The influence of the learning window is investigated in
Section 4 for η ∈ [0, 1].

It is shown in [Leibold et al (2001),Kempter et al (2001)] that map for-
mation, i.e., a correct prey detection, is obtained by an additional mech-
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anism. This process is the so-called axon-mediated spike-based learning
(AMSL). It allows changes in synaptic strength at synapse (a, n) to propa-
gate along the same axon a and therefore to influence the weights on other
synapses connected to the same axon. To model AMSL, we introduce the
total axonal change matrix

San =

N∑

k=1

J̇ locak , (9)

which sums all synaptic changes of all neurons connected to axon a. Hence,
the complete learning rule is given as

J̇an = J̇ loc
an + ρSan, (10)

where ρ = 0.1 is a coupling parameter for AMSL.

3. Equation-Free Analysis

Equation-free methods are designed for analyzing systems with a separa-
tion of (time) scales [Kevrekidis et al (2003)]. Often, system dynamics are
given on a more detailed level than relevant for applications. An example is
molecular dynamics, where the system is given on a molecular level, while
the interesting quantities are statistical moments, e.g., the temperature and
pressure of a gas. In many applications, the microscopic, high-dimensional
dynamics is fast, while the macroscopic, low-dimensional dynamics happens
on a slow time scale. Those slow-fast systems, also studied as singular per-
turbed systems [Fenichel (1979)], show a gap in their eigenvalue spectrum
(of the linearized flow around the slow manifold), denoting the directions
with eigenvalues |Reλ| � 0 as fast, while the others are slow. In the case
of an attracting slow manifold the fast dynamics converges quickly to that
manifold, such that after an initial transient, the system shows dynamics
on the slow manifold. The dynamics on this manifold often have orders of
magnitude fewer degrees-of-freedom than the full phase space. Although
equations of motion exist on this manifold, the explicit derivation of these
low-dimensional equations from the full dynamics is often complicated or
impossible. Equation-free techniques avoid the derivation of macroscopic
equations and obtain a so-called closure-on-demand, i.e., the necessary
macroscopic information is obtained by short simulation bursts. A review
on equation-free methods can be found in [Kevrekidis and Samaey (2009)].
Here, we briefly repeat the basic ideas to introduce notation for later refer-
ence.

We assume, that the microscopic, high-dimensional dynamical system is
given as a system of first-order differential equations

ẋ(t) = f(x(t)), x ∈ Rm, f : Rm → Rm. (11)

Instead of assuming f to be smooth we allow for a stochastic right-hand
side of (11) as long as the macroscopic behavior can be approximated by
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deterministic dynamics. Further, we assume that the microscopic time step-
per s solves (11) as the numerical equivalent of the flow. Given an initial
condition x(t) and a finite time step dt, the microscopic time stepper s can
be used to compute the state x(t+ dt) of the system at time t+ dt:

x(t+ dt) = s(x(t), dt). (12)

The equation-free analysis is independent of the specific implementation of
s. It is one of the major advantages, that equation-free methods can be
formulated as a wrapper, i.e., a super structure, around already existing
code. For a system with a normally-attracting slow manifold, the evolution
equations for the macroscopic quantities X can formally be denoted as

Ẋ(t) = F (X(t)), X ∈ RM , F : RM → RM , (13)

where F is a priori unknown. Usually M � m, yielding a large reduction of
dimensionality for the macroscopic system (13). Note, that typically both
f and F depend on parameters, e.g., η in the NL model. The dependence
is suppressed to ease notation.

The goal is to construct a macroscopic time stepper S for the macro-
scopic dynamics (13) with not explicitly given right-hand side F in or-
der to obtain numerical information of the low-dimensional dynamics. In
the equation-free setup, the microscopic time stepper s is used together
with so-called restriction R and lifting L operators to construct S. Here,
R and L map between the high- and low-dimensional spaces, respec-
tively. Thus, microscopic time steppers can perform system level tasks (cf.
[Kevrekidis et al (2003)]).

The restriction operator

R : Rm → RM (14)

maps a state in the high-dimensional space to the interesting low-
dimensional quantity. In physical problems, the concrete definition of R
is often known from experience and intuition. It is inspired by the choice
of interesting quantities, e.g., first moments of a distribution in statistical
mechanics or the center of mass in classical mechanics. The construction of
the lifting operator

L : RM → Rm (15)

is usually much more involved. It constructs a microscopic state correspond-
ing to the low-dimensional quantities and is therefore a one-to-many opera-
tor. The choice of the correct lifting operator is left to the user and requires
some experience. Special care has to be taken for the definition of L to ini-
tialize a state close to the slow manifold. A bad choice can result in large
excursions in the high-dimensional phase space or even change the basin of
attraction. The error caused by mapping to a state off the slow manifold
in this lifting operation is called lifting error. The difficulties in finding a
good lifting operator with a small lifting error can be relaxed when using



10 Christian Marschler et al.

X(t)

x(t) x(t+ kdt)

X(t+ δt)

L

dt dt

R

δt

Fig. 4. Graphical representation of the macroscopic time stepper S. A macro-
scopic state X(t) is lifted to a microscopic state x(t) using the lifting operator
L. Then, the microsopic time stepper s is applied k times to compute a macro-
scopic time step δt = kdt. Last, the macroscopic state X(t+ δt) is constructed by
applying the restriction operator R to the resulting microscopic state x(t+ kdt).

implicit equation-free methods [Marschler et al (2013)]. The specific choice
of R and L for analyzing the learning process in the barn owl’s auditory
system is presented in Section 4.

If the lifting and restriction operators are available, a macroscopic time
stepper can be constructed by

X(t+ δt) = S(X(t), δt) = R[sk(L(X(t)), dt)], (16)

where δt = kdt (cf. Figure 4) is a macroscopic time step. Note, that
other choices for the macroscopic time stepper S are possible (see e.g.,
[Vandekerckhove et al (2011),Marschler et al (2013)]). For our analysis, we
use (16) as the most common choice for a macroscopic time stepper (see
e.g., [Kevrekidis et al (2003),Kevrekidis and Samaey (2009)]).

The macroscopic time stepper S can be used to compute the macro-
scopic evolution X(t) without the knowledge of the underlying macro-
scopic equations of motion (13). Further higher-level tasks can be per-
formed, e.g., a numerical bifurcation analysis (cf. Section 4). It is also
possible to use the macroscopic time stepper for coarse projective integra-
tion, i.e., an Euler step in the macroscopic dynamics. Under some circum-
stances the time step in the coarse projective integration method can be
chosen much larger than the integration time δt. Therefore, a coarse projec-
tive integration can reduce the computing time for macroscopic trajectories
[Kevrekidis and Samaey (2009)].

In this paper, we will focus on the coarse numerical bifurcation analysis.
In Sections 3.1 and 3.2, we introduce equation-free versions of 1) Newton’s
method and the 2) false position method (regula falsi) as root finding algo-
rithms. Section 3.3 introduces recently developed 3) implicit equation-free
methods [Marschler et al (2014)]. These three methods can be used in the
corrector step of a pseudo-arclength continuation to correct a pre-liminary
prediction to the macroscopic stationary branch (cf. [Kuznetsov (2004)] for
an introduction to pseudo-arclength continuation).
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Fig. 5. Left. Newton’s algorithm to determine the root of a function F (red
line). A better approximation Xn+1 for the root of F is computed by (18) using
an initial guess Xn, the function value F (Xn) and the slope FX(Xn). This method
is iterated until a desired accuracy is achieved. Right. The false position method
finds an embraced root between two initial guesses Xl and Xr left and right from
the root, respectively. By a linear approximation through these two points, a new
root is obtained. For a next iteration step, one of the previous roots (cf. Xl

new

in the figure) is replaced according to the algorithm presented in Section 3.2. In
contrast to Newton’s method, no information about the first derivative is needed.

3.1. Newton Algorithm

In the following, we describe how the macroscopic time stepper can be used
to compute bifurcation diagrams. The analysis of the learning process in
the barn owl’s auditory system in Section 4 only requires a one-dimensional
coarse variable. Therefore, we focus on the one-dimensional case and the
computation of macroscopic fixed points of (13), which are defined as

Ẋ = 0 = F (X). (17)

Since F is not available in closed form and only accessible through the
macroscopic time stepper, numerical methods have to be used to find
its roots. The most common method for this task is Newton’s algo-
rithm for finding an approximate root close to an initial guess (see e.g.,
[Press et al (2007)]). First, an initial guess X0 for the root of F is chosen,
which is preferably close to the true root. Subsequent iterations are com-
puted by

Xn+1 = Xn − F−1X

∣∣
Xn

F (Xn), (18)

where n ∈ N0 and F−1X is the inverse of the Jacobian of F (cf. Figure 5,
left panel). In the one-dimensional case, FX is simply ∂F/∂X, i.e., the
first derivative of F . Note, that it can be computationally very expen-
sive to compute the inverse of the Jacobian in higher dimensions. Hence,
a variant of the Newton’s algorithm called Newton-Krylov method has
been developed, which substitutes the computation of the inverse of the
Jacobian by the computation of matrix-vector products (for details, see
[Vandekerckhove et al (2009),Knoll et al (2005)]).
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The unknown functions F and its Jacobian FX in equation (18) can be
approximated by using the macroscopic time stepper (16) as

F (X) =
X(t+ δt)−X(t)

δt
, FX(X) =

F (X +∆X)− F (X)

∆X
. (19)

The values of δt and ∆X are problem-specific and have to be chosen such
that the derivative approximation is reasonable, i.e., a behavior compatible
with the assumption of being in the linear regime. Note, that it is also possi-
ble to use symmetric derivatives, e.g., the central difference approximation

F (X) =
X(t+ δt)−X(t− δt)

2δt
(20)

or any other higher-order approximations, if the numerical determination
of the derivatives by a first order approximation is too inaccurate.

3.2. False Position Method

The application of Newton’s algorithm yields unreliable results for problems
with noisy data: noise complicates the numerical determination of F and
FX and the noise is amplified in higher-order derivatives [McDevitt (2012),
Kruttiventi et al (2010)]. To avoid this problem, it is convenient in one-
dimensional systems to use the false position method [Press et al (2007)]; a
combination of the secant and the bisection method.

The method works as follows (cf. Figure 5, right panel). Initially, two
points X l and Xr are chosen, such that a root is embraced by them, i.e.,
F l := F (X l) < 0 and F r := F (Xr) > 0 or vice versa. A better guess Xnew

is computed as the root of the line through these two points.

Xnew = XrF
r(Xr −X l)

F r − F l , F new = F (Xnew). (21)

If F new · F l > 0, i.e., Xnew is on the same side of the root as X l, replace
(X l, F l) with (Xnew, F new). Otherwise, replace (Xr, F r) instead. This pro-
cess is iterated until a desired error tolerance, i.e., either |F (X l)| or |F (Xr)|
are small, or the maximum number of iterations is reached.

The function F new in (21) is approximated with (19) as in the Newton
algorithm. Since the Jacobian is not needed for the false position method,
it is more robust against noise. The trade-off is, that it can only be used
in one-dimensional problems due to the embracing of the root between two
points. An advantage is, that the false position method is guarenteed to
converge to the root, if it is between the two initial guesses and if it is the
only root in between them.
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Fig. 6. Scheme of the pseudo-arclength continuation. In the predictor step (blue
line), a new guess is computed from the two previous stationary points (µ0, x0) and
(µ1, x1) (black dots to the right) by linear interpolation. The corrector step (red
line) finds a root (µ2, x2) (black dot) in an orthogonal subspace to the predictor.
Due to the correction in an orthogonal subspace, pseudo-arclength continuation
is able to continue branches around fold points (red dot).

3.3. Implicit Equation-Free Method

Another recently introduced method to obtain the dynamics on the slow
manifold is the implicit equation-free method that uses a healing time tskip.
The flow is applied to a lifted state L(X) over a time tskip in order to follow
the fast dynamics to the slow manifold. Therefore, one initializes the system
at a different microscopic state, i.e., the healed state on the slow manifold,
than intended. Consequently, all numerical iteration and continuation meth-
ods become implicit. A detailed derivation and discussion of the method can
be found in [Marschler et al (2013)] (see also [Marschler et al (2014)] for an
overview). For finding macroscopic fixed points, the function F (X) in (19)
is replaced by

F (X) =
R[sk+kskip(L(X(t)), dt)]−R[skskip(L(X(t)), dt)]

δt
, (22)

where δt = kdt and tskip = kskipdt. Like in (19), the values δt and tskip have
to be chosen problem-specific.

3.4. Pseudo-Arclength Continuation of Fixed Points

All methods presented in Sections 3.1, 3.2 and 3.3 can be used in the correc-
tor step of a pseudo-arclength continuation to continue stationary branches
in variable-parameter space (cf. Figure 6 for the scheme). A secant predictor
in pseudo-arclength continuation computes a new point on a secant through
two previous points on the branch.In the following corrector step, a root
finding algorithm, e.g., Newton’s method or false position method, is used
to find a root of F in the orthogonal subspace of the predictor. This step
is iterated until the root is found with a given pre-defined error tolerance
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defined by |F |. The result of the corrector step is accepted as a new point
on the branch and can be used in the next iteration of the pseudo-arclength
continuation.

One advantage of pseudo-arclength continuation is, that it can continue
branches around fold points, which is not possible with natural continuation,
i.e., a correction step with fixed parameter values. Hence, pseudo-arclength
continuation is typically chosen over natural continuation.

4. Map Formation and Coarse Bifurcation Analysis

We now show the numerical results for the model presented in Section 2.
In Section 4.1 the map formation and the correct function of the neu-
ronal network is presented. These results have already been discussed in
[Kempter et al (2001)] and are reproduced here as a basis for the new re-
sults in Section 4.2. Section 4.2 shows the coarse bifurcation analysis of the
learning process based on the equation-free methods introduced in Section
3. The influence of the amplitude η of the learning window is studied and
further discussed in Section 6.

4.1. Stripe Formation and Coincidence Detection

In order to study the learning process, i.e., the map formation, a random
synaptic weight matrix J(0) is initialized at the beginning of a simula-
tion, where the synaptic weights are drawn from a uniform distribution in
[0.7, 1.3] (remember, that Jmin = 0 and Jmax = 2). An initial matrix J(0)
is shown for the left and the right ear in Figure 7, top row. The history of
incoming and outgoing spikes is always initialized with an empty history,
such that the neurons first obtain a non-vanishing potential hn after the
first incoming signal. In order to test the correct behavior of the neuronal
network, η = 1.0 is chosen as the initial amplitude of the learning window.
After T = 5 ·105 time steps the learning rule (10) has formed a stripe struc-
ture in the matrix J(T ) (cf. Figure 7, bottom row). It is worth mentioning,
that these stripe structures are not stationary states of the microscopic sys-
tem. Although the stripes are conserved as a pattern, they move through
the weight matrix J as a traveling wave on a slow time scale (cf. Section 5).
The spike activity pattern is unchanged by the traveling wave. Hence, prey
detection is possible independent of the phase of the traveling wave.

Another interesting observation is, that the formation of a stripe struc-
ture after the learning process is independent of the initial condition, but
the shift between the left and right ear can be different. The shift is de-
termined by the different initial conditions and the random ITDs, which
change every 104 time steps. Since the shift is fixed after the initial learning
process prey detection is not influenced.

For the correct function of the auditory system it is also important, that
the maximal neuronal activity is at the neuron, where the overlap of the
signals is highest. We investigate this behavior by plotting the absolute delay
∆an for synapses with synaptic strength Jmax separately for left (red) and
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Fig. 7. Top. Initial synaptic weight matrix J(0). Weights are uniformly dis-
tributed in [0.7, 1.3]. The left (right) panel corresponds to the left (right) ear.
Bottom. After a learning session of 106 time steps, a map is formed and a stripe
structure is observed. The black stripes have the maximal weight Jmax, while the
white regions have minimum weight Jmin.

right (orange) ear for tITD = 0 (cf. Figure 8, left panel). A maximal overlap
is observed at neuron 20 (yellow region) meaning that signals arrive here at
the same time. This coincidence of the signal should lead to a maximum in
the neuron activity. The number of spikes for each neuron in a simulation
of 104 time steps of a fully developed synaptic weight matrix J for tITD = 0
can be seen in Figure 8, right panel. The maximum of the neuron activity is
exactly at the neuron with the maximal overlap of the stripes of the weight
matrix J . This is the verification of Jeffress’ model of coincidence detection
in the NL model.

Although the overlap position can be different for different initial condi-
tions J(0), it is important to note, that this different shift is not influencing
the ability to detect angles by ITD. Once a structure is built up in the
learning process, the shift between the stripes is fixed and the network can
be used to determine angles by ITDs. By running simulations for a fully de-
veloped synaptic weight matrix J for fixed ITDs in [−35, 35], it is observed
that the maximum of the activity shifts linearly with the ITD, yielding a
unique map from an ITD, i.e., an angle, to neuron activity (see Figure 9).
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Fig. 8. Left. Absolute delay against the neuron number for synapses with max-
imal weight Jmax. The overlapping region (bright yellow) denotes the neurons,
where input signals with tITD = 0 arrive at the same time. Right. Number of
emitted spikes of NL neurons during a simulation of a fully developed synaptic
weight matrix J over 104 time steps. The maximal activity is at the neuron, where
the overlap of the left and right ear is maximal (cf. left panel). This verifies the
correct function of the NL as a linearly-ordered array of coincidence detectors as
described by Jeffress’ model.
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Fig. 9. Location of the maximal neuronal activity as in Figure 8, right panel,
during a 104 time step simulation of a fully developed synaptic weight matrix.
It is shown, that the maximal activity shifts linearly with the ITD. Therefore, a
neuronal activity is uniquely mapped to an ITD, i.e., an angle.

4.2. Bifurcation Analysis of the Learning Process

The results presented in Section 4.1 showed a pattern formation in the
synaptic weight matrix enabling the barn owl to detect its prey. With the
model at hand, it is possible to study the influence of parameters on the
learning process. Since the learning window W is mainly responsible for a
successful learning (cf. [Kempter et al (2001)]), we study the influence of
the amplitude η on the map formation. In order to investigate this macro-
scopic phenomenon, we define a one-dimensional macroscopic variable V ,
also called order parameter, to distinguish between a synaptic weight ma-
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trix with stripe structure (see Figure 7, bottom row) and a random matrix
(see Figure 7, top row). To capture the salient features of J , we choose

V =
1

(A− 2T )N

∑

n

[
A/2−T∑

a=1

(Jan − Ja+T/2,n)δ(Jan, J(a+T )n)Θ(Jan − J̃)

+

A−T∑

a=A/2+1

(Jan − Ja+T/2,n)δ(Jan, J(a+T )n)Θ(Jan − J̃)

]

(23)
where J̃ = 1.3 is a lower bound for the synaptic weights, δ is the Kronecker-
δ and Θ is the Heaviside step function. T is the input period, which is also
the spatial period of the stripe structure (see Figure 7 and the discussion at
the end of this section). V measures the relative periodicity of the matrix
J : the Kronecker-δ assures a correct period across the axons. In the com-
putations, it is implemented with a tolerance, i.e., δ(Jan, J(a+T )n) = 1 if∣∣Jan − J(a+T )n

∣∣ < 0.01 and 0 otherwise, to take numerical inaccuracies and
noise into account. If the period is correct, the synapse is weighted with the
difference to the synapse half a period ahead. For a fully developed matrix
J this usually amounts to Jan − Ja+T/2,n = Jmax − Jmin = 2. By that
choice it is avoided, that a uniform matrix without stripe structure gets as-
signed a large positive value V . Further, the Θ-function takes only synaptic
weights Jan > J̃ into account. Since a synaptic weight matrix with stripe
structure but too small values in strength is not able to let the neurons fire
and therefore a prey detection would not be possible. Note, that a Fourier
representation of the spatial periodicity is not useful, since the hard limit
Jmax of the maximal synaptic weight leads to a rectangular-shaped spatial
pattern across axons.

In terms of equation-free nomenclature V defines the restriction operator
R. It maps the high-dimensional weight matrix J to a one-dimensional
variable V = R(J). Before the equation-free tools (cf. Section 3) can be
used, a lifting operator L has to be defined. Generally, it is difficult to find
L for the high-dimensional microscopic dynamics. A possible workaround
for equation-free bifurcation analysis is to use the results from previous
solutions, e.g., from long term simulations converging to a stable state.
Assuming, that a microscopic state Jold is known, a new synaptic weight
matrix can be initialized as

Jnew = Jold + rand(−ε, ε) + αbin(Jold > 1), (24)

where the old state Jold is perturbed by a small noise ε = 0.005. rand(−ε, ε)
denotes a A×N random matrix with entries uniformly distributed between
−ε and ε and bin(Jold > 1) is a binary representation of all matrix entries
over the certain threshold of 1, i.e., (bin(Jold > 1))an = 1 if Jold

an > 0
and 0 otherwise. Here, only large synaptic weights are used for the scaling,
since small values are not taken into account in the computation of V . To
initialize the microscopic system close to a desired macroscopic value V̂ ,
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Fig. 10. Left. Evolution of the macroscopic variable V during a learning session
of 106 time steps and η = 1. The initial simulation reaches a stationary state
V ∗ = 0.78 after about 6 · 105 time steps (blue curve). The resulting synaptic
weight matrix is used to lift V ∗ to a larger value V = 0.9. This new initial
condition is simulated again for 106 timesteps, yielding a convergence to the same
macroscopic stationary state V ∗ (red curve). Right. The macroscopic right-hand
side F (V ) of (13) is computed from the direct simulation in the left panel. The
function F is zero at the unstable and stable macroscopic fixed point V = 0 and
V ∗ = 0.78, respectively. Note, that the order-of-magnitude of F resembles the
slow time scale.

the coefficient α is adjusted such that R(Jnew) = V̂ . By this choice of L
microscopic states are initialized close to the known state Jold, i.e., close
to the slow manifold. Hence, the lifting operator is successfully defined in a
neighborhood of known solutions and is therefore good enough for equation-
free pseudo-arclength continuation. Furthermore, the so-called lifting error
is reduced (cf. Section 3), which is usually introduced into the system by
applying the lifting operator.

With the definition of the macroscopic variable V in (23) it is possible
to investigate its evolution during a learning session. The results are shown
in Figure 10. Starting with a random synaptic weight matrix J(0), corre-
sponding to V (J(0)) = 0, and η = 1 as in Figure 7, an increase of V is
observed (blue line). After about 6 · 105 time steps, V reaches a stationary
state at V ∗ ≈ 0.78. Using the final microscopic state of this simulation in
the lifting process to construct a starting configuration with V = 0.9 (red
line), V decreases and converges back to the same macroscopic stationary
state. Note that this macroscopic stationary state is not necessarily a fixed
point of the microscopic dynamics. In fact, traveling waves in the synaptic
weight matrix J can be observed, which leave the macroscopic variable V
unchanged (cf. also Section 5). It is worth mentioning, that the stationary
state is not exact in the sense that V̇ = 0. Due to the noise on the synapses
and the noise in the input, V is fluctuating around a deterministic stationary
state. The equilibrium is stationary in the sense that the long-term average

〈V 〉 = lim
t→∞

1

jmax

jmax∑

j=1

V (t+ j) (25)
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Fig. 11. Bifurcation diagram for the macroscopic variable V . Blue circles and
green diamonds denote direct simulations of an up and downsweep, respectively.
The red circles correspond to an unstable stationary branch obtained by the
equation-free method. Black crosses follow the stable branch with the false po-
sition method and yellow dots are used for the pseudo-arclength continuation
using implicit equation-free methods. All used methods show the same qualita-
tive results but the noise leads to different quantitative results on the scale of the
noise. An enlargement of the bifurcation region at η = 0.16 is shown in the inset.
Furthermore, corresponding microscopic states are shown for comparison.

is constant, where jmax is a suitable upper limit, large compared to the
characteristic time scale of the noise.

The macroscopic vector field F (V ) can be computed numerically from
the trajectories V (t) in Figure 10, left panel, using (19) with δt = 5 · 104. A
vanishing F (V ) shows, that V = 0 and V = V ∗ are two stationary points
(cf. Figure 10, right panel). Close to V ∗ the function F is noisy due to
the noise in the model (cf. Section 2), which is amplified in the derivative.
Without computing the first derivative FV = ∂F/∂V numerically, a visual
inspection of Figure 10, right panel, shows, that FV (0) > 0 and FV (V ∗) < 0.
Therefore, V = 0 is an unstable and V ∗ is a stable fixed point.

In order to investigate the change of system behavior with parameters,
the final state of the simulation for η = 1 is used as a starting point for
a downsweep to follow the stable stationary branch directly. ∆η = −0.02
is chosen as a step size in the parameter direction and the respective last
synaptic weight matrix is used as an initial condition for the next step.
Each initial condition is simulated for an additional learning period of 106

time steps. The direct simulations show (cf. Figure 11, blue circles), that
V = 0 is obtained for η < η∗ ≈ 0.16, indicating a qualitative change in
system behavior. This bifurcation from a pattern structure to some other
microscopic configuration destroys the ability of the barn owl to detect prey.
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Therefore, if the amplitude η of the learning window is too small, the barn
owl is unable to survive.

Before investigating the region around the bifurcation point in more
detail, we use the final microscopic state of the downsweep at η = 0.02
as a starting point for an upsweep with ∆η = 0.02. The same procedure
as in the downsweep is used. The simulation results show (cf. Figure 11,
green diamonds), that the upsweep exactly follows the downsweep. The
only visible difference stems from the noise of each specific simulation. Since
upsweep and downsweep follow the same stable branch, hysteresis behavior
can be ruled out.

In order to test the applicability of equation-free methods, pseudo-
arclength continuation (cf. Section 3.4) together with the false position
method (cf. Section 3.2) in the corrector step is used to continue the stable
branch from η = 1 downwards (cf. Figure 11, black crosses). The two final
states at η = 1.00 and η = 0.98 from the previous downsweep are chosen to
initialize the secant predictor. The length of the predictor step is chosen as
0.02 and the macroscopic right-hand side F is approximated with (19) and
δt = 2 ·105. The left and right values V l and V r in (21) are chosen orthogo-
nal to the predictor step and ds = 0.1 away from the prediction point. The
number of iterations in the correction step is fixed to kmax = 12 iterations,
independent of the actual error. A comparison with the downsweep data in
Figure 11 shows, that the equation-free false position method continuation
follows the stable branch exactly (up to noise-induced fluctuactions) until
the bifurcation point is reached. The equation-free approach gives the same
quantitative and qualitative results as the direct simulation. Hence, we are
assured that equation-free methods can be used to study the pattern for-
mation behavior of the neuronal network. Unfortunately, the noise-robust
false position method fails after the bifurcation point, i.e., for η < η∗. The
algorithm relies on the fact, that a root is in between two initial guesses.
Since V = 0 for η < η∗, one would have to obtain a negative guess. This is
not possible, since V is non-negative by definition.

In order to check whether implicit methods can be used for equation-
free pseudo-arclength continuation, we applied (22) in the corrector step
to continue the same stable branch as with the false-position method. A
healing time tskip = 104 and a time step δt = 105 is used together with
an error tolerence 5 · 10−4 of the residual as a convergence criterion for
the Newton iteration (18). Microscopic states from the previous downsweep
were used in the lifting process to obtain states close to the slow manifold.
To deal with the noise in the derivatives, the dynamics on the slow manifold
is assumed to be in a linear regime. Therefore, macroscopic trajectories can
be fitted with a function of the form V (t) = a+ b exp(−ct), where a, c > 0
and b ∈ [−1, 1]. By using this monotone function, the noise is removed and
a reasonable estimate for F and FV is possible. However, if the fit fails or
the confidence interval is too large, i.e., more than 100% deviation from the
predicted mean, the finite difference approximation (19) is used as a backup
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method. The implicit Newton method shows the same qualitative results as
the false position method (cf. Figure 11, yellow dots).

Since the false position method can not be applied for V = 0, we can
not use it to continue the unstable branch at V = 0 for η > η∗. Instead, we
use a one-sided Newton’s method (cf. Section 3.1) to continue the unstable
branch. Instead of using (19) like in the false position method, the central-
difference approximation (20) is used to approximate F . A long simulation
of 3 · 106 time steps has been run and F is approximated along this trajec-
tory with δt = 5 ·104. Note, that such a long integration time was necessary
since the divergence from the unstable stationary state is very slow close to
the bifurcation point η∗. ∆V = 0.01 has been chosen to approximate FV
along the trajectory. By using a long simulation for estimating F and FV
instead of many short ones, one can reduce the influence of the lifting error.
With the approximated functions F and FV , the root of F is determined by
Newton’s method(18). If the relative error tolerance is smaller than 10−3,
the iteration is aborted and the actual value is accepted as a root. If an
iteration in the algorithm yields an unphysical state V . 0, the algorithm
is aborted and V = 0 is accepted as the stationary point. The advantage
of the Newton method is, that the stability information is obtained along
with the algorithm, since FV has to be computed anyway. By using New-
ton’s method, the unstable branch at V = 0 is continued for η > η∗. At
η∗ = 0.16, Newton’s method converges to the stable branch, indicating the
closeness to the bifurcation point. Note, that it is not possible to determine
the bifurcation point with a higher accuracy than the noise level. There-
fore, the value for the bifurcation point can be determined only with an
uncertainty.

Nevertheless, it is possible to compute the derivatives of F in a neigh-
borhood of the expected bifurcation point, but one has to keep in mind,
that the results have to be interpreted together with the errors. For an ex-
planation of the used algorithm, two sample trajectories for η = 0.20 and
η = 0.24 are shown in Figure 12, left panel. Both simulations where initial-
ized with the same initial condition and the learning process was performed
for 5 · 106 time steps. The corresponding vector fields approximated by a
central-difference (20) and δt = 5 · 104 are shown in Figure 12, right panel
(blue and green curves). It is observed, that F is very noisy close to the
respective macroscopic stationary states. To smoothen the functions, we
discretize the function in V for δV = 0.01. The function value F (Ṽ ) at a
discrete point Ṽ is then computed as the mean over all function values in
[Ṽ − δV, Ṽ ]. The error bars are the standard deviation in the same interval.
Computing these discrete representations of F (cf. red and black error bars
in Figure 12, right panel) around the bifurcation point for the stable and
unstable branch, the functions F and FV can be evaluated at the stationary
branches for a range in η. The results with error bars are shown in Figure
13. It is verified within the error bars, that F is zero along the stationary
branches, verifying the existence of a stable and unstable stationary state.
Also, FV crosses zero as one approaches η∗ at V = 0. Since the Jacobian
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Fig. 13. Left. Vector field F evaluated at the stable (blue) and unstable branch
(red) using the discretized and averaged function shown in Figure 12 (red and
black curves). Within the error margins, the macroscopic right-hand side is zero,
confirming the existence of two stationary branches. Right. First macroscopic
derivative along the two branches. A transition from a stable to an unstable branch
is determined at η∗ ≈ 0.16.

is singular at η∗, it is shown, that a bifurcation occurs. To determine the
type of bifurcation in the sense of deterministic bifurcation theory, it would
be necessary to check higher-order derivatives. Since the data is too noisy
in the stochastic system, a useful determination of higher-order derivatives
is prohibited. A further analysis would require to analyze the system with
methods from random dynamical systems and bifurcation theory, which is
still at its infancy [Arnold et al (1997),Crauel and Flandoli (1994)].

In order to verify the bifurcation point, we show that the chosen macro-
scopic measure (23) can also be replaced by another measure and the bi-
furcation diagram still has the same characteristics. To that end, we choose
the vector strength [Goldberg and Brown (1969),Gerstner et al (1996)] as
another periodicity measure. First, we apply a binarization of the connec-
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tivity matrix: Jbin
an = 1 for Jan > J̃ and 0 otherwise. Further, we assign a

vector x = (a, n) to all Jbin
an = 1 and define the wave vector kT = (0, 2π/T )

for the input period T. After normalization of the synaptic weight matrix
Ĵan = Jan/J

max ∈ [0, 1] we define the vector strength

Vvs =

∣∣∣∣
1

AN

∑
Ĵan exp(ix · kT )

∣∣∣∣ (26)

as a convex sum over all non-zero elements of Jbin. Using the same mi-
croscopic states as in the downsweep in Figure 11, we apply (26) instead
of (23). A comparison is shown in Figure 14. Obviously, the values of the
vector strength are different from the other macroscopic variable but the
same bifurcation point is found and the branches show the same qualitative
behavior, i.e., they can be smoothly transformed into one another.

An additional check for the periodicity of the stripe structure can be
performed using the wave vector kT . Detuning the wave vector to another
period different from the input period T = 70, it is observed, that the vector
strength drops for detuned periods. Thus, the spatial period of the stripes
is indeed well-described by the input period.

5. Traveling Waves in Connectivity Matrix

As mentioned in Section 4, the synaptic weight matrix J does not converge
to a stationary state on the microscopic level. Instead, after the initial map
formation process, the resulting stripes travel through the synaptic weight
matrix (cf. Figure 15) along the axonal direction. The slowly traveling waves
are the verification for another separation of time scales. The formation of
the stripe structure happens on a much shorter time scale than the char-
acteristic time scale of the traveling waves, measured by the speed of the
stripe movement. As already noted in Section 4, the function of the net-
work is independent of this motion. Since the stripes move in parallel, the
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Fig. 15. Traveling wave solutions of the synaptic weight matrix shown for one
neuron connected to the left ear. Left. For û = −1 traveling waves with a finite
speed are observed. The wave speed and the width of the plateau depend on û.
Right. For û = −10, the speed of the traveling wave vanishes.

overlap position is invariant, i.e., the neuron with maximal activity is in-
variant. The process corresponds to a continuous learning/unlearning of the
synapses. A possible interpretation of this process is, that a static network
would be to vulnerable to external errors. Permanent learning keeps the
network functional and corrects errors.

A long simulation of the microscopic synaptic weight matrix J shows,
that the stripes travel through the matrix with a constant speed and shape.
Therefore, they can be described as traveling waves. In this Section, we fix
η = 1 and investigate the dependence of the wave speed on the shift û of
the learning window.

5.1. Dependence on û

Since the learning window is asymmetric, it can lead to an effective drift of
the structures through the matrix. The degree of asymmetry with respect to
the origin is described by the shift parameter û. In [Kempter et al (2001)],
it is chosen to be û = −1. The influence of û in the learning window on the
speed of the traveling waves is investigated in this section. Since the macro-
scopic measure V is constant for this kind of traveling wave, the microscopic
level has to be used to analyze the behavior. By varying û in [−15, 10] it is
observed, that the speed of the traveling waves goes to zero for û ≈ −10 (cf.
Figure 16, right panel). The wave speed has a big influence on the bifur-
cation diagrams. Numerical downsweeps have been performed for different
values of û starting from η = 1. The shape of the stable branch changes
significantly with û and the bifurcation point shifts drastically (cf. Figure
16, left panel).

For positive values of û the pattern formation breaks down even for
reasonable large values of η. In particular, for û = 10, the bifurcation point
is shifted to η ≈ 0.82 and the synaptic weights in J are very small (cf.
blue circles in Figure 16, left panel). Another interesting behavior can be
observed for negative values of û. Although the shape of the stable branch
is different for all values, the bifurcation point (V ∗, η∗) is the same for all
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Fig. 16. Left. Comparison of the bifurcation diagrams for different values of û.
The bifurcation point decreases with û and approaches a constant for û < −5.
Right. Speed of the traveling wave in dependence on the shift û of the learning
window. At a critical value û∗ the wave speed goes to zero, leading to a standing
wave. For û > û∗, the speed is well-described by the quadratic scaling c(û) =
α(û− û∗)2, where α = 10−6 (green line).

û < −5. The shape close to the bifurcation point is very similar and might
hint to a universal behavior.

6. Conclusion and Outlook

In this paper, we applied equation-free methods to analyze the learning
behavior of the auditory system of the barn owl on a macroscopic level.
Numerical investigations showed a strong influence of the learning window
on the pattern formation and hence prey detection. This preliminary study
motivated the choice of η as a bifurcation parameter. The learning window
suggested by [Kempter et al (2001)], i.e., η = 1 in this paper, leads to a
correct map formation. By using equation-free methods (cf. Sections 3 and
Section 4), macroscopic bifurcation diagrams have been obtained. The bi-
furcation diagram in Figure 11 shows a bifurcation at η∗. This bifurcation
has a big effect on the survival of the barn owl. Since the map formation is
prohibited for η < η∗, the barn owl would not be able to detect prey.

By continuing the stable branch with an equation-free pseudo-arclength
continuation using the false position method in the corrector step it is
shown, that equation-free methods can be successfully applied to ana-
lyze neuronal networks. The biggest disadvantage of the false position
method is its limitation to one-dimensional macroscopic variables. A gen-
eralization to higher-dimensional coarse variables could help to determine
high-dimensional stationary branches, where reliable information about the
macroscopic right-hand side FV is unavailable. These methods can be es-
pecially useful in equation-free continuation of experiments, where accurate
data on derivatives can be hard to obtain. In order to construct the unstable
branch, a one-sided Newton method has been applied in the corrector step
to find macroscopic fixed points. Another advantage of Newton’s method is
that it can be applied to higher-dimensional problems without any changes
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to the algorithm.The use of implicit equation-free methods yielded the same
results as the normal Newton and false position method. This shows, that
these implicit methods can be applied as well to analyze noisy neuronal
systems.

Although the existence of a macroscopic bifurcation at (V ∗, η∗) could
be shown by a root of the macroscopic right-hand side F (V ∗, η∗) = 0, the
type of the bifurcation remains unclear, due to the amplified noise in higher-
order derivatives. This problem has to be tackled in general in future work in
order to get reliable information about higher-order derivatives in equation-
free computations. Nevertheless, the shape of the bifurcation diagram hints
at a transcritical bifurcation, where the lower part is hidden due to the
non-negativity of V .

Motivated by numerical investigations of the barn owl model, another
time scale has been found. Very long direct simulations revealed traveling
waves in the synaptic connectivity matrix. The wave speed depends on the
choice of the shift û in the learning window. A detailed analysis of this effect
and a rigorous (equation-free) bifurcation analysis is an interesting direction
for further research.
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V Coarse-grained particle model for pedestrian
flow using diffusion maps

This paper [MSLK14] (C. Marschler, J. Starke, P. Liu and I. G. Kevrekidis,
Physical Review E, 89, 013304, 2014. “Copyright (2014) by the American Phys-
ical Society.”) is a step into the direction of a fully automatic equation-free
approach. The goal of an automatic macroscopic bifurcation analysis is dis-
cussed in Chap. 6. Diffusion maps could be used as a restriction operator to
construct the relevant macroscopic variables. This is one major ingredient to
make equation-free analysis more user-independent and thereby more applicable
in real-world problems, e.g., in engineering.

The main result of the paper is the automatic reduction of a model for pedestrian
flow (see [CHS12] for the model) from 800 dimensions to 3 dimensions. This
substantial dimension reduction is done automatically without choosing a good
coordinate system by hand. It is shown, that the same results as in [CHS12] are
obtained in an automatic fashion. Once algorithms for an automatic construc-
tion of lifting operators are available, diffusion maps can be combined with these
algorithms to study the possibility of an automatic coarse bifurcation analysis.

At the hand-in date of the thesis the paper has been published in Physical
Review E, 89, 013304 (2014).
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Interacting particle systems constitute the dynamic model of choice in a variety of application areas. A
prominent example is pedestrian dynamics, where good design of escape routes for large buildings and public
areas can improve evacuation in emergency situations, avoiding exit blocking and the ensuing panic. Here we
employ diffusion maps to study the coarse-grained dynamics of two pedestrian crowds trying to pass through a
door from opposite sides. These macroscopic variables and the associated smooth embeddings lead to a better
description and a clearer understanding of the nature of the transition to oscillatory dynamics. We also compare
the results to those obtained through intuitively chosen macroscopic variables.
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I. INTRODUCTION

Understanding the dynamics of interacting particle models
is desirable in many contexts, including the modeling of
pedestrian crowds, a subject of high social relevance. This type
of knowledge can be used for the design of emergency exits and
evacuation strategies, and to improve the flow of large crowds
of pedestrians in nonemergency situations, e.g., at airport
security, large conferences, or shopping malls. Pedestrians can
be usefully described as particles, interacting with each other
via so-called social forces as well as with the environment
(see Refs. [1,2] and [3–6] for further references on pedestrian
and many-particle models). This description naturally leads to
the study of systems of ordinary differential equations with
a large number of dimensions, i.e., four per particle (two
positions and two velocities on the plane). In Ref. [7], a typical
scenario where two pedestrian crowds try to pass through a
door from opposite sides [1] is studied: Using the door width
as a bifurcation parameter, a critical door width can be found,
at which the system undergoes an apparent macroscopic Hopf
bifurcation: the system transitions from a blocked state to an
oscillating state with pedestrians from the two sides alternating
in crossing through the door. One can simulate this system at
the level of interacting individuals, yet the dynamics exhibit an
inherent separation of time scales, suggesting the possibility to
successfully describe the system by coarse-graining methods.
The derivation of a successful collective motion model in terms
of good macroscopic variables has, however, proven to be
difficult [7].

In general, many dynamical systems (including interacting
particles, like our pedestrian model) are characterized by a

*chrms@dtu.dk
†jsta@dtu.dk
‡Present address: Department of Molecular, Cellular, and Devel-

opmental Biology, Yale University, New Haven, Connecticut 06520,
USA; ping.liu@yale.edu

§yannis@princeton.edu; also Program in Applied and Computa-
tional Mathematics.

separation of scales. In such cases, it is sometimes possible
to describe and understand the motion of large ensembles
of particles in a collective sense through the derivation of
explicit equations for the relevant leading statistics (e.g.,
moments). At intermediate system sizes, the infinite particle
limit assumptions that underpin such collective equations
become inaccurate, yet separation of time scales and the
associated convergence of the high-dimensional dynamics
to a low-dimensional, slow manifold (cf. Fenichel’s theory
[8], see also the slaving principle [9,10]) are still present. It
then becomes crucial to determine good sets of macroscopic
observables that parametrize this manifold; these are the
variables in terms of which collective equations can now be
formulated (closed). The same issue arises in equation-free
methods [11,12], where a so-called restriction operator maps
the high-dimensional variables to a useful low-dimensional
representation. Macroscopic observables that are good candi-
dates for low-dimensional descriptions may be known from
experience, e.g., low-order moments of a particle distribution,
yet for many new systems it is desirable to find such variables
in a systematic and algorithmic fashion based on simulation
or experimental data.

This links our particle modeling with machine learning
(and, in particular, with manifold learning techniques): given
observations of trajectories of our model we must determine
how many, and then which slow variables are sufficient to
describe the collective dynamics of pedestrian flow.

Classical linear approaches for gaining insight into large-
scale, complicated data structures include principal component
analysis (PCA) [13] and multidimensional scaling (MDS)
[14,15]. These methods have been successfully applied to
numerous problems in physics and chemistry (see, e.g., the
monograph [16] and references therein). PCA and MDS,
being linear methods by construction, since they employ linear
combinations of the data set, are not able to economically
recover complicated nonlinear structures in a data set. This has
led to the invention and development of nonlinear data-mining
techniques such as isomap [17], local linear embedding (LLE)
[18], and spectral methods [19,20].

1539-3755/2014/89(1)/013304(11) 013304-1 ©2014 American Physical Society
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TABLE I. Model parameters.

Number of pedestrians Np 200
Terminal velocity v0 1.5 m s−1

Reaction time τ 0.22 s
Pedestrian-pedestrian repulsion V 15 m2 s−2

Pedestrian-wall repulsion VB 10 m2 s−2

Pedestrian-pedestrian length scale σ 1 m
Pedestrian-wall length scale R 2 m
Corridor width Cw 5 m
Corridor length Cl 45 m

In this paper, the recently developed nonlinear manifold
learning method of diffusion maps [21,22] is used to analyze
pedestrian model data, focusing on the oscillatory regime, at
a macroscopic level. Systematically selecting a few leading
diffusion map components naturally leads to user-independent,
data-based dimension reduction; this is particularly helpful
in problems for which experience and empirical insight in
appropriate variable selection is lacking.

The remainder of the paper is structured as follows.
The pedestrian model and the diffusion map algorithm are
introduced in Secs. II and III, respectively. In Sec. IV the
diffusion map representation of the pedestrian model is
computed and the results are compared with those in Ref. [7].
Section V contains a brief discussion and an outlook for future
applications.

II. PEDESTRIAN MODEL

The particle model from Ref. [7] is used to study the
behavior of pedestrians in a long, narrow corridor, trying to
pass through a door, modeled as an opening in the middle
of the corridor, from opposite sides. The observed behavior
drastically depends on the door width w. A small door blocks
the corridor, while a larger door gives rise to oscillatory
behavior, with crossings from alternate sides, in an apparent
Hopf bifurcation. The model is a variation of the model
of Helbing and Molnár [1,2], who studied the behavior of
pedestrians affected by social forces, extended by noise in
order to avoid deadlock situations.

According to the social force model, the equations of
motion for a particle (a pedestrian) is given as

z̈i = F0
i +

∑
j

fij +
∑
B

fiB + ni , (1)

where zi ∈ R2 is the ith particle position i = {1, . . . ,Np},
and Np is the total number of particles. The four different
contributions in (1) are the direction force F0

i , the pedestrian-
pedestrian interaction fij , the pedestrian-wall interaction fiB ,
and the noise ni . They are described in more detail in
Appendix A. All model parameters can be found in Table I.
Throughout the paper, numerical values are given in units of
the characteristic length scale for the pedestrian interaction
σ [(A2)].

Since pedestrians interact with the environment via the wall
force fiB , the geometry of the corridor plays an important role.
In Ref. [7] a corridor of length Cl and width Cw with a door of
width w in the middle of the corridor is studied (Fig. 1). Two

t=0s

t=6s

t=11s

t=16s

t=21s

t=26s

t=31s

t=36s

t=41s

−20 −15 −10 −5 0 5 10 15 20

t=46s

FIG. 1. (Color online) Snapshots showing the oscillatory dy-
namics of the pedestrian motion for w = 0.6 > w∗ = 0.55. After
initialization, the pedestrians form two milling crowds one on each
side of the door (t = 6 s). At t = 11 s, the (red circle) crowd on the
right begins moving through the door, leading to a net flux to the left.
After some time, pressure from the right-hand side of the door has
decreased enough so that the (blue dot) crowd on the left can break
through (t = 21 s). At t = 36 s, the situation is reversed, and now
the red circle crowd can start moving through the door again. This
behavior repeats in a periodic fashion, analyzed in Ref. [7].

crowds of pedestrians try to pass the door from opposite sides
and the two crowds have the same population size Np/2. For
pedestrians starting on one side of the door, the target direction
e0
i is the center of the door. At the moment pedestrian i passes

the door, e0
i is updated to point to the end of the corridor,

i.e., e0
i is chosen parallel to the corridor longitudinal axis.

The number of pedestrians is conserved by applying periodic
boundary conditions.

In Ref. [7], a coarse equation-free bifurcation analysis was
presented using the macroscopic variables

m = 1

2
(mred + mblue) and ṁ = dm

dt
, (2)

where

mα =
∑

i∈α κ(xi)xi∑
i∈α κ(xi)

(3)

is a weighted average for pedestrian group α (red, blue)
using the weighting function κ(x), which gives more weight
to pedestrians close to the door. The particular choice of
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macroscopic variables was a compromise between filtering for
noise reduction and clarity of the ensuing macroscopic descrip-
tion. The more natural choice m = (mred − mblue)/2 and ṁ as
macroscopic variables gave rise to a noisy macroscopic signal.
Further analysis by tools from dynamical systems theory, e.g.,
bifurcation analysis, was hindered by this noise. Therefore, (2)
has been chosen to study the pedestrian behavior (see Ref. [7]
for a detailed discussion). An apparent Hopf bifurcation is
detected at a door width w∗. For w < w∗, the door is too
small for pedestrians to pass. They gather in front of the door
in what (neglecting small fluctuations of ni) corresponds to
a macroscopic equilibrium. For w > w∗, the door is large
enough to let pedestrians pass through, leading to macroscopic
oscillations (Fig. 1). Moreover, the fast time scale is observed
during the early stages of the transient after initialization
(t = 0). These transients decay over a time scale of ≈3 s,
while the oscillations have a longer time scale of 40 s. For
systems with a smaller gap between time scales, transients
take longer. Those systems can still be analyzed by means of
diffusion maps using longer simulations.

The selection of variables in Ref. [7] was intuitive and may
well depend on the authors. The purpose of the following is to
find macroscopic variables intrinsic to the problem data; we
also expect these variables to result in good noise filtering.

III. DIMENSION REDUCTION BY DIFFUSION MAPS

Diffusion maps were recently proposed (see Refs. [21–23])
as a nonlinear manifold learning/dimension reduction tech-
nique. The goal is to find a (nonlinear) coordinate trans-
formation (i.e., a diffusion map), between the data space
and a (low-dimensional) embedding space; the Euclidean
distance in the embedding space approximates the diffusion
distance (defined in Appendix B). Briefly, and qualitatively,
the diffusion distance between two data points is small if it
is easy to transition between them in a well-defined diffusion
process on a graph determined by the data (see Appendix B
for details).

If the high-dimensional data happen to lie on (close to) a
low-dimensional curved manifold, diffusion maps have been
used to extract a parametrization of this manifold and gain
insight into the geometric structure underlying the data (see,
e.g., Refs. [24–30]). Details of the procedure for diffusion map
computation, highlighting the dimension reduction aspect, are
presented in Appendix B; they are intended mainly to introduce
notation, and are not an extensive review on diffusion maps.

We focus on data resulting from dynamic simula-
tions/observations (possibly multiple ones) of dynamical sys-
tems (here, our particle-based pedestrian model); the diffusion
maps computation is a purely postprocessing step. We ignore
the temporal structure of the data (which also allows us
to merge different trajectories); for the exploitation of time
information in the form of delay reconstructions in a diffusion
map context see Ref. [31]. The ordering in time of data
points xi = x(ti), taken from a trajectory x(t) at discrete times
ti = i�t,i ∈ {1, . . . ,N}, will thus not influence the diffusion
map construction. The only quantities of interest are the
pairwise distances of the points in data space; it is thus possible
to analyze the structure of data when the underlying equations
of motion are unknown.

dij
Dij

ε̃

FIG. 2. (Color online) One-dimensional manifold embedded in
R2. The data points are created using (4). ε̃ is representative of
a characteristic distance between data points on the manifold [red
(dark gray) segment]. dij denotes the Euclidean distance between
two points i and j (dashed line). Although the Euclidean distance is
small between these points, the geodesic distance along the manifold,
denoted by Dij , is much larger [green (light gray) segment], making
it a much better measure of the actual closeness of the two points.

A standard toy illustration example is the swiss roll data set
in Fig. 2 (cf. [32]). An embedding into R2 is given by

(x1,x2) = (θ cos θ,θ sin θ ), (4)

where θ ∈ [0,4π ]. Assume that the two-dimensional data
points on this sampled manifold (black dots in Fig. 2) are
the result of experimental observations or of a dynamical
simulation. Although this manifold lies in two dimensions,
it is only one-dimensional, i.e., both coordinates are functions
of a single variable, θ , that parameterizes the curve. Clearly,
any linear dimension reduction method, e.g., PCA and MDS,
would fail to detect the one-dimensional structure of the
manifold: projection of the data in Fig. 2 on any line would mix
the order of data points on the manifold. Techniques such as
diffusion maps, as we briefly outline below, can successfully
perform this reduction.

To determine the intrinsic data geometry from such a data
set X, diffusion maps use Markov chains to describe a diffusion
process on the data set. Pairwise Euclidean distances dij are
computed for all data points, and weighted (soft-thresholded,
using the scaling parameter ε) through the diffusion kernel Aij

[(B3) in the Appendix B] to give pairwise affinities between
the points. The rows of the resulting affinity matrix A are
normalized to yield a Markov transition matrix M between
points in the data set [(B4)]. The time-t diffusion distance
Dt is defined in terms of this Markov matrix; it is small, if
the t-step transition probability in the Markov chain is high
[(B5)]. The transformation [(B10)] ensures that the Euclidean
distance in diffusion map space is (an approximation of) the
diffusion distance between the data points [(B7)].

For the procedure to yield informative results several (often
problem-dependent) considerations apply; if, for example, in
Fig. 2 the scaling parameter ε in (B3) is not comparable to some
characteristic distance ε̃ between the data, but even larger than
the dij shown, points will be identified as close neighbors that
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FIG. 3. (Color online) Determining appropriate ε values for ob-
servations over a range of door widths (w ∈ [0.5,0.7] with �w =
0.01 and 500 observations for each w). (a) The number L of elements
in the distance matrix d smaller than ε is plotted as a function of
ε. The limiting behavior (5) is shown as the dashed black lines.
In between these limits, L(ε) shows two scaling regimes, namely
[4 × 10−4, 2 × 10−3] and [2 × 10−2, 2 × 10−1]. To clarify this, the
sparsity pattern of the distance matrix d is inspected for two values
of ε, ε = 2 × 10−3 representing the blocked regime (w < w∗) and
ε = 0.03 representing the oscillating regime (w > w∗). (b) and
(c) show the parameter-ordered matrix elements (small w: top left,
large w: bottom right), which are smaller than ε (dots). For ε = 0.002
[(b)], the dots are all located in the upper left corner, denoting blocked
states. The oscillating regime is visible at ε = 0.03 [(c)]. Oscillating
state distances do not register in the left panel, since they are larger
than ε = 0.002.

intuitively should not be. Selection of an appropriate value
for ε in the kernel (B3) is also problem/data dependent; one
can arrive at such a value through investigation of the scaling
behavior of the pairwise distances dij . Let L(ε) be the number
of dij smaller than ε. For large ε all dij are smaller, while for
small enough ε only the diagonal dii is smaller (actually, zero):

lim
ε→∞ L(ε) = N2, lim

ε→0
L(ε) = N ; (5)

clearly, ε should be chosen between those limits. This behavior
is illustrated for the pedestrian flow example in Fig. 3, and will
be discussed in more detail below. From scaling arguments,
the dimension of the manifold can be estimated from the slope
of L(ε) on a logarithmic plot [33].

Another important consideration is the relative scaling of
the data coordinates so that the (weighted) Euclidean distance
in the numerator of the diffusion kernel is informative for the

problem considered; this would arise for example in chemical
composition data where different components are present at
proportions differing by orders of magnitude.

Diffusion map computation for large data sets can
be computationally expensive. Naive, nonsparse storage
of the Markov matrix grows like O(N2). The computation
of the k + 1 largest eigenvectors can be performed taking
advantage of the sparsity of the matrix d (cf. [31]). When
the diffusion map coordinates for a new data point xN+1 are
needed, adding the point to the data set and repeating all
diffusion map computations from scratch is not necessary.
Indeed, one can estimate the diffusion map coordinates of
this N + 1st out-of-sample point using the Nyström extension
[25,34]: Using (B10), the N + 1st coordinate of eigenvector
� i is approximated as

� i,N+1 = 1

λi

N∑
l=1

MN+1,l� i,l , (6)

for i = 1, . . . ,k. It is only necessary to compute a single new
row of M , thus saving computation time.

IV. RESULTS

We now turn to the application of the diffusion map
algorithm (Sec. III) to specific scenarios of pedestrian flow
(Sec. II). The section is structured as follows: First a metric
on the high-dimensional data space is introduced, in order to
construct the distance matrix in (B2). Then we use diffusion
maps to obtain a two-dimensional embedding of the dynamics
for fixed door width, w = 0.7 > w∗, and compare to the
results in Ref. [7]. Finally, a diffusion map embedding for
data points assembled for different values of w is computed.
This allows us to characterize the bifurcation and compare the
Hopf bifurcation points obtained from the two approaches.

A. Pedestrian model data

A data point xj , taken from a trajectory of (1), contains the
positions and velocities of all pedestrians

xj = [Z1, . . . ,ZNp
] ∈ Rn, (7)

where Zk = [zx,k,zy,k,żx,k,ży,k] for pedestrian k, and
n = 4Np. In a preprocessing step, the data points are trans-
formed componentwise to the interval [0,1] to make them
comparable. More precisely, let G = {x,y,vx,vy} denote the
set of positions and velocities and C = {red,blue} denote the
color (grayscale), i.e., crowd, of the pedestrian, respectively.
We choose the pedestrian labels such that Ired = {1, . . . ,Np/2}
and Iblue = {Np/2 + 1, . . . ,Np} denote the two index sets for
the red (circles) and blue (dots) pedestrians, respectively. In a
first transformation step, we shift the minimum to zero by

z̃g,i = zg,i − min
g,c

∀i ∈ Ic, g ∈ G, c ∈ C, (8)

where ming,c = mini∈Ic
zg,i for g ∈ G,c ∈ C. Afterwards, the

data is scaled with

˜̃zg,i = z̃g,i

maxg,c

∀i ∈ Ic, g ∈ G, c ∈ C, (9)
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where maxg,c = maxi∈Ic
z̃g,i �= 0 for g ∈ G,c ∈ C, onto the

interval [0,1]. We drop the tilde in the following for notational
convenience.

In the new data set X, the pedestrians are still labeled. Our
selection of a pairwise distance between configurations should
be invariant to particle label permutations. One could use, for
example, an earth-mover’s distance [35] for this purpose; we
choose instead a metric easier to compute, employing the mean
and centered moments of four features of the data set: red
circle/blue dot x,y positions and red circle/blue dot velocities.
A new data vector

x̃i = [〈Z〉g,c,m2(Z)g,c, . . . ,m100(Z)g,c] ∀g ∈ G, c ∈ C,

(10)

is constructed, where 〈·〉g,c and mi(Z)g,c is shorthand notation
for the mean and ith centered moment in a list of all
feature-color combinations, respectively. The resulting data
set is defined as in (B1)

X = {x̃i ∈ Rn|i = 1, . . . ,N}, (11)

where n = 800. Note, that the dimension of the data points
is conserved. This pre-processing step is only applied to
compute the distance between snapshots without labels of the
pedestrians. The distance between two observations x̃i ,x̃j ∈ X

can then be defined as

dij = ‖x̃i − x̃j‖. (12)

Diffusion maps will allow us to reduce this 800-dimensional
data set to a two-dimensional representation of the dynamics.

B. Length scale selection

Before the algorithm from Sec. III can be applied, an
estimate for the length scale ε is required. The function L(ε)
[(5)] is investigated for data points obtained over a range of
w values (Fig. 3). In this figure, the limiting behavior for
ε → ∞ and ε → 0 is clearly visible. Between the two limiting
plateaus, a third one exists for ε ∈ [2 × 10−3,3 × 10−2]. It
separates two scaling regimes. The scaling regime for smaller ε

is representative of blocked state dynamics, when the particles
simply jiggle on each side of the door, and their configurations
do not change appreciably. The larger ε regime is representa-
tive of the oscillatory dynamics, where appreciable variations
between successive data snapshots arise. This is echoed in the
size of the elements dij plotted in matrix format (bottom panel
in Fig. 3). In order to rationalize the different regimes, the
matrix elements of d are ordered by the door width parameter,
i.e., small w observations are found to the top left and large w

observations towards the bottom right of Fig. 3 (bottom panel),
respectively. The small distances [smaller than ε, marked in
red (dark gray)] between blocked state configurations originate
from model noise. Note that distances between blocked and
oscillating states are typically large [empty regions at the
top right and bottom left corner in Fig. 3 (bottom panel),
respectively]. After inspection of this figure, we chose the
fixed value ε = 0.03 for all subsequent computations.
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FIG. 4. (Color online) diffusion map embeddings for three tra-
jectories in the blocked regime (w = 0.4 < w∗), including transients.
The inset magnifies the region of the (noisy) final state. Color
(grayscale) indicates the different trajectories of the system.

C. Diffusion map embedding

We first analyze, using diffusion maps [and, in particular,
the one-step diffusion, i.e., t = 1 in (B5) and (B10) from
Appendix B], the blocked regime for small door widths
w < w∗. Here, the pedestrians congregate on both sides of the
door without being able to pass through it. Initial transients in
diffusion map coordinates for this regime are shown in Fig. 4
for 100 s and �t = 0.1 s. Figure 4 shows the two-dimensional
embedding from the blocked regime (w < w∗). The axis labels
follow the naming in previous literature, where �j on the axes
denotes the j th component of ŷ [(B10)], i.e., the component
in the direction corresponding to the j th largest eigenvalue
(after the trivial one at 1). It is clear in Fig. 4 that, after an
initial transient, the data points become randomly distributed
in diffusion map space; the spread of the ball in the inset is
indicative of the noise in the simulation.

The picture changes drastically when analyzing a trajectory
for, say, w = 0.7 > w∗, all other simulation parameters being
kept constant. Now, a particle simulation over 500 s with
�t = 0.1 s is used, resulting in 5000 observations. Initial
transients are ignored in the remainder by using the last 3500
data points only. The resulting two- and three-dimensional
diffusion map embeddings are shown in Fig. 5.

The third component can be written as a function
�3(�1,�2), and therefore a two-dimensional embedding is
sufficient to describe the long-term dynamics. These results
will later be compared to the original ones in Ref. [7] in
Sec. IV D.

Finally, the diffusion map embedding for data points taken
from trajectories over a range of door widths w ∈ [0.5,0.7]
(sampled with �w = 0.01) is computed. Each trajectory was
now computed for 5000 time steps and subsampled: every
third data point of the last 1500 time steps was used for the
embedding. Since the periodic orbits have a period of about
40 s, this covers approximately four periods and therefore
yields enough data for a good embedding. The resulting matrix
size (10500 × 10500) is close to the limit of what can be rou-
tinely handled by MATLAB on a workstation [36] without using
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FIG. 5. (Color online) diffusion map embedding of data in the
oscillating regime (w = 0.7 > w∗). The last 3500 data points of a
trajectory (sampled with �t = 0.1) are shown. A periodic orbit is
clearly visible in the �1−�2 plane. Big red (dark gray) dots denote
points in diffusion map space for which characteristic microscopic
states are included as surrounding insets in the figure. �3 in the
three-dimensional embedding can be written as a function of �1

and �2.

special algorithms for memory optimization. The resulting
embeddings are shown in Fig. 6. All possible two-dimensional
projections as well as the full three-dimensional embedding for
the first three eigenvectors are shown.

The color (grayscale) here encodes the corresponding door
width of the data points [blue (black and light gray): w = 0.5,
red (dark gray): w = 0.7]. It is clearly visible in the (�2,�3)
plane, that a transition from a blocked state [blue (black) points
at (0,0)] to an oscillating state occurs. The amplitude of the
oscillations increases with door width, in accordance with
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FIG. 6. (Color online) Diffusion map embeddings computed
from a data set containing points for different parameter values w.
The parameter range for the door width is 0.5 to 0.7 with �w = 0.01.
Every third data point from the last 1500 iterations for each parameter
value has been used, resulting in a data set with 10500 data points.
Various projections of the data set are shown in (a)–(d) in diffusion
map space. The color (grayscale) encodes the door width from
w = 0.5 [dark blue (black and light gray)] to w = 0.7 [red (dark
gray)]. The �1 coordinate roughly encodes the w regime. The increase
in oscillation amplitude is best visible in the (�2,�3) projection [(c)],
showing periodic solutions for several door widths. As in Ref. [7],
the amplitude of the oscillations grows with increasing w. The full
three-dimensional representation is shown in (d).
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FIG. 7. (Color online) Coarse phase portraits using (a) diffusion
maps, (b) the intuitive variables of Ref. [7] and (c), (d) principal
components. Data points along a limit cycle are shown for the last
400 time steps of a 5000 time step simulation. Color (grayscale)
indicates time (see text). There is a clear one-to-one correspondence
between (m,ṁ) and (�1,�2). The diffusion map embedding appears
to remove the corners in (b) [red (dark gray) and green (light gray)
dots]. Two-dimensional projections of phase portraits in terms of
leading PCA coefficients (c) and (d) are also included for comparison.
The two-dimensional diffusion map embedding has the smoothest
appearance.

the findings in Ref. [7]. One can argue, from inspection of
the different projections, that �1 encodes the parameter w,
distinguishing small door widths (small values of �1) from
large ones (large values of �1).

D. Comparison with other macroscopic representations

We now compare the macroscopic representation of
Ref. [7], which they denoted (m,ṁ), with the diffusion map
representation (�1,�2). The last 400 time steps of a 5000
time step simulation, covering one oscillation period for a
door width w = 0.7 are used for this comparison in Fig. 7.
Diffusion maps do not consider time labeling of the data
points, yet to assist the interpretation of these results (and
since, here, the data come from a single long trajectory, so that
the time labels are actually available) we use color (grayscale)
in these embeddings to encode time. Blue (black) data points
lie at the beginning of the trajectory, and the color (grayscale)
progresses over green (light gray) to red (dark gray).

There is a clear one-to-one correspondence between (m,ṁ)
(arrived at by the authors of Ref. [7] through a combination
of intuition and experience) and the diffusion map coordinates
(�1,�2) (which were arrived at automatically based on the
intrinsic geometry of the data). It is also interesting that
the diffusion map representation appears to give well-filtered
phase portraits, less sensitive to noise than the (m,ṁ) but also
the principal component-based ones; this actually enhances
the computational quantification of the underlying Hopf
bifurcation through Poincaré map sections.

One might consider as a shortcoming of the diffusion
map approach the fact that, as new particle simulation data
become available, one does not have explicit formulas for
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FIG. 8. (Color online) Phase space trajectories in diffusion map space (top), reconstructed through the Nyström extension [(6)] from new
data points, compared to those in terms of the variables in Ref. [7] (bottom); transients are shown for the blocked regime w = 0.53 (left), just
after the onset of oscillations for w = 0.58 (middle), and for w = 0.65 (right). For w = 0.53, the stationary state is stable and the trajectories
approach this stable equilibrium; for w = 0.58 and w = 0.65 the trajectories spiral away from the unstable equilibrium towards the coarse limit
cycle. Both embeddings exhibit the same qualitative behavior.

their embedding; in PCA, by contrast, new data on the same
low-dimensional linear subspace can be expressed in PCA
coordinates through a projection with a few simple inner
products. This can be overcome through the use of the Nyström
extension, as long as the new data points remain close to
(have a sufficient number of close neighbors on) the regions
of the low-dimensional manifold already sampled. Figure 8
illustrates this by presenting newly computed transients in
Nyström-reconstructed diffusion map space (top) [and their
counterparts in (m,ṁ) space, bottom] for w = 0.53 < w∗,
w = 0.58 > w∗ and w = 0.65 > w∗. All trajectories were
computed for 2000 time steps. The reference data set for the
Nyström extensions through (6) consists of the data collected
in the previous section over a range of door widths w. The plots
in the variables m and ṁ as well as the plots in �2 and �3

are clearly noisy; it appears that the Nyström extension, while
allowing us to embed the data in diffusion map space, gives
rise to trajectories comparably noisy to the m and ṁ ones.
Smoother trajectories could be obtained by using reference
embeddings computed for a fixed door width. Nevertheless,
both embeddings show the same qualitative behavior, namely
a convergence to a fixed point for w < w∗ and oscillatory
behavior for w > w∗.

E. Transition to oscillatory regime

In order to establish the Hopf nature of the bifurcation at
w∗ = 0.55 proposed in Ref. [7], the amplitude of �2 in Fig. 9 is
plotted against the bifurcation parameter w. The figure clearly
shows the gradual growth and subsequent saturation of the
oscillation amplitude as a function of the door width; there is

relatively little variation in the oscillation period (not shown).
A comparison with the results from a direct simulation in the
variables (m,ṁ) shows the same bifurcation point w∗ = 0.55.
A detailed bifurcation analysis is found in Ref. [7] and is not
the focus of this paper.

Careful inspection of the snapshots of the oscillatory
dynamics shows that the period of the oscillations is influenced
by the return, through the periodic boundary conditions, of
particles that passed through the door in the previous crossing
surge. Small amplitude oscillations (close to the onset of the
instability) correspond to fewer particles crossing in such a
single surge event. If the particles did not have the opportunity
to reenter, the problem would not be a stationary one—the
density of particles congregating at each side of the door
would gradually diminish after every surge, and this would
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FIG. 9. (Color online) Bifurcation diagrams in diffusion map
space (max �2, min �2) (left) and in the (max m, min m) variables
of Ref. [7] (right). Both diagrams are consistent with an apparent
Hopf bifurcation at a critical door width of w∗ = 0.55. The panel in
diffusion map space on the left appears slightly smoother.

013304-7



MARSCHLER, STARKE, LIU, AND KEVREKIDIS PHYSICAL REVIEW E 89, 013304 (2014)

t=180s

t=185s

t=190s

t=195s

t=200s

t=205s

t=210s

−4 −2 0 2 4
−20

0
20

V
(x

)

FIG. 10. (Color online) Potential V (x) over x below the cor-
responding microscopic configuration for different times of the
simulation with door width w = 0.7.

of course affect the switching times between crossings from
alternate sides of the door. To provide an intuitive physical
explanation of the mechanism underlying these switches, we
show, in Fig. 10, a number of snapshots distributed along the
oscillation; for each one of them we have calculated the force
exerted on a colorless test pedestrian positioned on the corridor
centerline by all the surrounding pedestrians. We then plot the
integral of this force as a function of the position along the
centerline, obtaining a sense of a pressure potential felt by
the particle; the gradient of this computed quantity influences
the particle motion. This potential is computed as follows: for
any given fixed snapshot, the test pedestrian is located in a
sequence of positions along the corridor axis, i.e., y = 0 and
x ∈ [−4,4] with �x = 0.05; the force in corridor direction
[(A2)] applied by the other pedestrians, Fx(x), is computed,
and the potential is then obtained as

V (x) = −
∫ x

−4
Fx(x ′)dx ′ (13)

using the gauge V (−4) = 0. Figure 10 interleaves the evolu-
tion of the detailed state and the evolution of the potential over
one oscillation period. We clearly see this pressure potential
building up on the blue left-hand side of the door during the

first couple of snapshots, and then reversing (as now the density
of red circle particles on the red right-hand side of the door is
larger). When, eventually, the blue dot particles that crossed
return through the periodic boundary conditions, the blue dot
particle density on the blue left-hand side of the door is roughly
restored, and the pressure potential repeats.

The interactions of the pedestrians in front of the door
clearly lead to surges through the door from alternate sides;
the occurrence of these surges depends (as we tried to argue
above) on the density of pedestrians in the neighborhood of
the door. The periodic boundary conditions and the return of
pedestrians through them back to the door is important in
replenishing the particle density close to the door, making
the behavior not just alternating, but regularly periodic and
making the instability appear like a Hopf bifurcation. Other
mechanisms of replenishing particle density, without periodic
boundary conditions, such as the random injection of particles
at some average rate, can also lead to regular periodic behavior
by balancing overall particle inflow and outflow. On the
other hand, keeping the densities close to the door effectively
constant (through idealized particle reservoirs) would make the
problem take a bistable switching aspect, with a noise-induced
distribution of switching times.

In all computations in this paper, the number of red circle
and blue dot particles, as well as their intrinsic properties,
were taken to be identical. This makes the oscillation have a
symmetric nature in time: evolving forward for half a period
(coarsely) commutes with reflecting the corridor around the
door (x = 0) and flipping particle colors (grayscales). Such a
symmetry (picturesquely called ponies on a merry-go-round
(POMs) [37,38]) has implications for the bifurcation scenarios
possible [39]. Breaking any of these symmetries would destroy
the POM nature of the limit cycles we observe.

V. CONCLUSION AND OUTLOOK

We have shown in this article that diffusion maps can be
successfully applied to assist the study of pedestrian dynamics.
The pedestrian model is used as a representative example of
a particle system with time-scale separation. Not only does
the use of diffusion maps avoid the need for user-specific
selection of good coarse variables, it also appears here to lead
to filtered, smoother coarse trajectories, which can be helpful
in coarse-grained bifurcation analysis. Our study confirms that
the use of diffusion maps is well suited for studying systems
where intuition about good coarse variables is lacking.

On the other side of the coin, the lack of physical interpreta-
tion of the diffusion map embedding is a nontrivial drawback.
There is clearly an upfront cost in the computation of diffusion
maps, involving the computation of (many) pairwise distances
and some large-scale linear algebra eigencomputations. As
we already mentioned, careful data structuring, fast nearest-
neighbor detection algorithms, and matrix sparsity can help
make this task easier, so that the methods become applicable
to very large data sets.

The automated discovery of good coarse variables is a
crucial enabling technology for multiscale computations, and,
in particular, for the application of equation-free techniques to
new problems. In such computations, the ability to routinely
transform from fine-scale (for us here, particle position and
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velocity) space to coarse-grained (here diffusion map) space
is an important component of the algorithms. And while, as
we discussed, tools like the Nyström extension help in one
direction of this transformation (the restriction to diffusion
map space), the converse transformation (the lifting) is non-
trivial and can involve sophisticated multiscale interpolation
and extrapolation techniques (see for example the discussion
in Ref. [40] and the techniques proposed there).

In our work we implicitly assumed that the appropriate
macroscopic description would be in terms of deterministic,
ordinary differential equations; indeed Figs. 4, 5, and 6 and
our discussion of the Hopf nature of the underlying bifurcation
support this assumption: our system is well modeled by a set
of ODEs (modulo a little noise).

In other problems, however, stochastic effects may well
be more pronounced, and the appropriate coarse description
might be in terms of effective SDEs or the associated effective
Fokker-Planck equations [41]; and while the estimation of
coarse right-hand sides would now include both effective drifts
and effective diffusivities, the role of diffusion maps remains
the same: detect the coarse variables in terms of which the
effective SDEs can be formulated.

It is worth noting that we have already mentioned a version
of our pedestrian problem where such an effective stochastic
reduction might be called for: the constant density case, where
one might expect noise-induced bistable switching to lead to
a distribution of surge times from alternate sides of the door.

While in this paper we reexamined, through a different
approach, phenomena whose existence we already knew, our
pedestrian model still possesses in its parameter space a wealth
of possible behaviors that will pose their own challenges to
data mining and coarse bifurcation computations. We know,
for example, that for large enough door widths lane formation
(the formation of striations in the pedestrian traffic pattern)
will take place. The spatiotemporal nature of this instability
will clearly need more and different coarse variables than the
ones that were sufficient here, and the nature of the underlying
coarse instability is yet to be explored.

Finally, as another interesting avenue of research, we
mention the possibility of using coarse graining in the study
of heterogeneous crowds. Here, we had blue dot and red
circle pedestrians, that were otherwise identical. If the intrinsic
properties of these particles (in the form of preferred target
velocities, different interactions with the walls, different
reaction times and/or perception distances, etc.) are not fixed,
but sampled from a distribution, the problem acquires a new
dimension. Recent developments involving mathematical tools
from uncertainty quantification hold promise towards effective
coarse graining in such heterogeneous problems [42,43].

ACKNOWLEDGMENTS

C.M. and J.S. would like to acknowledge the hospitality
of Princeton University during research visits. C.M. would
like to thank Otto Mønsted Fonden for financial support of
the research stay in Princeton. J.S. would also like to thank
the Danish Research Council FTP (09-065890/FTP) and the
Villum Fonden (VKR-Centre of Excellence Ocean Life) for
financial support. The work of I.G.K. and P.L. was partially

supported by the US Department of Energy (DE-SC0005176
and DE-SC0002097).

APPENDIX A: SOCIAL FORCES
AND MODEL PARAMETERS

The inherent driving force of a pedestrian i is given by its
target direction e0

i and velocity v0. The force F0
i tries to align

the trajectory of the pedestrian to its target direction with

F0
i = τ−1

[
v0e0

i − żi(t)
]
, (A1)

where żi(t) is the velocity of pedestrian i at time t and τ is the
reaction time.

The pedestrian interaction is modeled by the term

fij = f(V,σ,rij )

=
{−V [tan (g(‖rij‖)) − g(‖rij‖)] rij

‖rij ‖ , ‖rij‖ � σ

0, ‖rij‖ > σ.

(A2)

Here, rij is the vector from pedestrian i to j , ‖rij‖ is the
distance between pedestrians i and j , and V is the repulsion
strength. The cutoff length σ reflects the fact that largely
separated pedestrians do not influence each other. g(‖ · ‖) =
π
2 ( ‖·‖

σ
− 1) is introduced as a shorthand notation.

The third term describes the interaction of pedestrians with
walls. Since pedestrians try to avoid collisions with walls, a
repulsion force

fiB = f(VB,R,riB ) (A3)

is introduced. It has the same functional dependence as (A2),
but a different repulsion strength VB and different range
R > σ . The vector riB is the distance vector between pedes-
trian i and the closest point on boundary B.

The last term in (1) is the additive noise, which is introduced
to avoid deadlock situations. It also reflects that people tend to
avoid collisions with other persons by moving to one preferred
side (assuming the pedestrian live in the same country). Here,
we assume that the pedestrians tend to move to the right,
leading to a noise term as

ni = n
‖
i ei + n⊥

i e⊥
i = n

‖
i ei + n⊥

i

(
0 −1
1 0

)
ei , (A4)

where n
‖
i and n⊥

i are the noise components parallel and
perpendicular to the target direction ei , respectively. Both
components are normally distributed with

n
‖
i ∼ N (0,(s‖)2) and n⊥

i ∼ N (0.1s⊥,(s⊥)2) (A5)

where s‖ = 0.00158 and s⊥ = 0.0632. N (μ,s2) is a normal
distribution with mean μ and variance s2.

APPENDIX B: DIFFUSION MAP ALGORITHM

For convenience of the reader and definition of notation,
the diffusion map algorithm is summarized in the following,
see Refs. [21,22] for details. It has been successfully applied
to physical problems, e.g., the description of a driven interface
in an Ising variant model [26] or the study of the dynamics of
animal groups [28].
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Given a set of properly scaled observations

X = {xi ∈ Rn|i = 1, . . . ,N}, (B1)

where N is the number of observations and n is the dimension
of the data, we compute all pairwise distances and arrange
them in the distance matrix d:

dij = ‖xi − xj‖, i,j = 1, . . . ,N. (B2)

Usually, ‖ · ‖ is the Euclidean norm in Rn, but it can also be
chosen to be problem specific [cf. (12), where we use a norm
on moments]. The scaling parameter ε is used to compute the
affinity matrix A as

Aij = exp

(
−d2

ij

ε2

)
. (B3)

Note that large distances in d are being mapped to small
pairwise affinities in A. The rows of A are normalized to
obtain a Markov transition matrix

Mij =
⎛
⎝ N∑

j=1

Aij

⎞
⎠

−1

Aij , (B4)

where Mij is the one-step probability of transitioning from xi

to xj . M therefore defines a diffusion process, i.e., a Markov
chain, on X.

Using M , the time-t diffusion distance Dt between two
points xi ,xj ∈ X is defined as

Dt (xi ,xj )2 =
∑

k

∣∣Mt
ik − Mt

jk

∣∣2

φ0(k)
, (B5)

where

φ0(k) =
∑N

j=1 Akj∑N
i=1

∑N
j=1 Aij

(B6)

is the stationary distribution (cf. [44]). The diffusion distance
Dt measures the difference in probability for transitioning
from state i and j to state k, respectively. If the probabilities
are the same, state k is equally well connected to states i

and j by a diffusion process. (In a continuous analog, Dt

measures the overlap of the two distributions after time t

resulting from initializing with δ distributions centered at
xi and xj , respectively.) The terms are normalized by the
stationary distribution φ0(k), which represents the probability
to find the diffusion process in state k for t → ∞. We then
define a transformation from points xi ∈ X to points yi ∈ Y

such that the Euclidean distance in Y equals the diffusion
distance in X, i.e.,

‖yi − yj‖2 = Dt (xi ,xj )2. (B7)

A termwise comparison with (B5) using pt (xi ,xk) = Mt
ik/√

φ0(k) yields the transformed coordinates y:

yi = [pt (xi ,x1), . . . ,pt (xi ,xN )]T , (B8)

where pt (xi ,xj ) is the probability of transitioning from point xi

to xj in t steps. A useful approximation of this embedding can
be formulated in terms of the eigenvalues and eigenvectors
of M; if the data indeed lie on (or reasonably close to) a
low-dimensional manifold, only a few (say, the first k + 1)
leading eigenvalues/eigenvectors need to be computed

M� i = λi� i , i = 0, . . . ,k, (B9)

where λi > λj for i < j , assuming nondegeneracy of the
eigenvalues. Since M is a Markov matrix, λ0 = 1 and �0 is a
vector containing only entries of 1. The transformation from
data space to diffusion map space, with ŷi ∈ Rk , is given by

xi �→ [
λt

1�1,i , . . . ,λ
t
k�k,i

]T = ŷi , (B10)

where �u,v is the vth component of eigenvector �u. For
k � N this transformation constitutes a dimension reduction
scheme.

Note that for larger t (i.e., when using longer times in
the diffusion process) higher eigenvalues become increasingly
damped as we take their powers; fewer leading (slower)
components of ŷi will then suffice to approximate the data
to a given accuracy. This allows the structure of the data
manifold to be investigated at different scales [45]. This
approach, through its ability to parametrize curved, nonlinear,
manifolds can be more economical in the representation of
data possessing such structure than linear methods (such as
PCA or MDS).
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