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Abstract. The paper presents an analysis of the aeroelastic loads on a wind turbine in normal
operation. The characteristic of the loads causing the highest fatigue damage are identified,
so to provide indications to the development of active load alleviation systems for smart-
rotor applications. Fatigue analysis is performed using rain-flow counting and Palmgren-Miner
linear damage assumption; the contribution to life-time fatigue damage from deterministic
load variations is quantified, as well as the contributions from operation at different mean
wind speeds. A method is proposed to retrieve an estimation of the load frequencies yielding
the highest fatigue contributions from the bending moment spectra. The results are in good
agreement with rain-flow counting analysis on filtered time series, and, for the blade loads,
show dominant contributions from frequencies close to the rotational one; negligible fatigue
contributions are reported for loads with frequencies above 2 Hz.

1. Introduction
The size of modern utility-scaled horizontal-axis wind turbines shows a continuously increasing
trend. As the rotor size increases, so do the loads that act on the turbine. Recent studies have
proposed smart-rotor concepts, where the wind turbine actively alleviates the loads it would have
to withstand; several solutions have been investigated, using either conventional pitch actuators
[1, 2], or active aerodynamic devices distributed along the blade span, such as micro-tabs [3], or
trailing-edge flaps [4, 5].

In most cases, the primary objective of the smart-rotor is to reduce the fatigue loads that the
turbine experiences during normal production. The aim of this paper is to contribute to smart-
rotor research by identifying the characteristics of the aeroelastic loads that are responsible for
the largest fatigue contributions. The loads yielding the higher fatigue contributions are the
ones the active alleviation system should focus on; therefore, their characteristics will provide
useful indications for the design of a smart-rotor system.

The loads are characterized in terms of: stochastic and deterministic components, fatigue
damage equivalent loads (DEL) contribution from rain-flow counting analysis, and spectral
content; a particular focus is given to the estimation of the frequency characteristics of the
loads causing the highest contribution to the fatigue damage. The four points determine the
structure of the paper, and each of them is dealt with in a separate section.

The analysis builds on simulations of loads time series for the NREL 5-MW reference wind
turbine [6] in its on-shore configuration. The response of the turbine is simulated using the
aeroelastic code HAWC2 [7], which includes a multi-body structural model, and a BEM-based



aerodynamic model; modeling the unsteady effects of the airfoils aerodynamic forces has proved
necessary to avoid biased estimations of the fatigue loads [8], hence the aerodynamic model by
Hansen et al. [9] is adopted. The turbine has variable speed regulation below rated power, and
collective pitch-to-feather control above rated; the standard controller by Jonkman et al. [6] is
applied.

As most of the fatigue loads originate during normal operation, simulation conditions are set
according to the design load case (DLC) 1.1 in the IEC standard [10]. A turbulent wind field
is generated according to class IIb specifications, including the effects of tower shadow, and the
terrain shear, as prescribed in the standard [10]; six turbulent series of ten minutes each are
simulated for every mean wind speed.

2. Deterministic and stochastic characterization
The fatigue damage on the wind turbine structure originates from the load variations and,
in a first approximation, it does not depend on the mean load level. In this study, the load
variations at the blade root are classified as deterministic, or stochastic. It is chosen to define as
deterministic the load variations that present themselves in regular cycles, where the cycle period
corresponds to the period of one rotor revolution; the remaining load variations are defined as
non-deterministic, or stochastic.

The blade root bending moment from the simulated time series are plotted as function of the
blade azimuthal position, green dots in figure 1. The variation of the loads around the mean level
directly relates to the fatigue damage, and is here described as three-times the loads standard
deviation, red lines in figure 1. The deterministic contribution is assumed to be responsible for
the underlying trend in the load variation, and is thus estimated as the mean load value for each
azimuthal position (black line in figure 1). The remaining load variations, once the deterministic
ones are filtered out, are considered stochastic contribution (blue lines in figure 1).

The deterministic loads are related to variations in the wind field which are constant
throughout the simulated one hour series; in this case, they represent the effects of terrain
shear and rotor tilt as sampled by the rotating blade, as well as the tower shadow effect, which
gives the clearly marked notch after the tower passage at 0 deg azimuth. Different estimations of
the deterministic contribution would result from different choices in the definition: for instance,
adopting a shorter averaging time window to identify the deterministic variation would classify
as deterministic contribution also the effects of large scale turbulence, thus returning an higher
contribution.

Deterministic and stochastic contributions to the load variation are estimated at different
mean wind speeds for the blade root flapwise and edgewise bending moments. From the original
load time series, ‘stochastic-only’ time series are obtained by subtracting for each blade azimuthal
position the corresponding deterministic load variation. The stochastic-only load time series
would correspond to an ideal smart-rotor, with a cyclic control able to compensate for the
whole deterministic load variation. The processed time series will be considered in the following
sections in order to evaluate the fatigue contribution from the stochastic components of the
loads.

The load variation in the blade root flapwise bending moment increases with the mean wind
speed (red lines in figure 2). The main contribution originates from stochastic load variations
(blue lines); nevertheless, deterministic variations are also relevant (black lines), and increase
at higher wind speed, which is partly due to gravity contributions as the blade is pitched out
of the rotor plane. In case of yaw misalignment, the increase in the overall load variation is
mainly due to the deterministic component; a similar effect is also expected in case of partial
wake operation.

The load variations at different mean wind speed provide a convenient term of comparison to
estimate the load variation capability required to smart-rotor actuators. Furthermore, the load



Figure 1. Blade root flapwise bending moment variations versus blade azimuthal position.
Simulated time series (green dots), total variation of the simulated loads (red lines), deterministic
contribution (black), stochastic contribution (blue).
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Figure 2. Blade root flapwise bending moment variations as function of mean wind speed.
Simulated loads (red lines), deterministic load variation (black), stochastic load variation (blue).
A case with yaw misalignment is given for comparison, dashed lines.

variation due to the deterministic component gives an estimate of the gain in load alleviation
performances that could be achieved by including measured periodic disturbances in the smart-
rotor controller, see for instance van Wingerden et al. [11].

3. Rain-flow counting fatigue analysis
The fatigue Damage Equivalent Loads (DEL) are computed from the load time series by applying
a rain-flow counting (RFC) algorithm, and Palmgren-Miner rule for linear fatigue damage
accumulation [12]. The life-time fatigue DEL accounts for the amount of time the turbine



is expected to operate at each wind speed condition; the wind distribution follows a Rayleigh
distribution with average speed of 8.5 m/s, as prescribed by the IEC standard for a class II
turbine [10].

Figure 3 shows the fatigue DEL for the blade root flapwise bending moment at different
operating wind speed, and accounts for the amount of hours each wind speed is encountered
during the turbine life-time. High wind speeds are less frequent than the low ones, nevertheless,
operation at high wind still causes the largest contribution to the life-time fatigue damage. The
fatigue DEL computed with a lower material exponent (m = 8 instead of 10) shows nearly no
change below rated speed, while at high wind speeds, the DEL is lower than computed with the
exponent 10, thus indicating larger fatigue contributions from wide range load cycles.

The same RFC analysis is performed on the time series obtained by subtracting the
deterministic load variations (blue line with diamonds in figure 3). The fatigue DEL is lower,
especially at wind speeds above rated; the overall life-time DEL is 11% lower than the lifetime
fatigue load returned by the original time series. The fatigue reduction gives an estimate of the
upper-limit to the fatigue load alleviation achievable by a smart-rotor control that only addresses
cyclic load variations [13], and, at the same time, quantifies the importance of including periodic
disturbance rejection in a smart-rotor control system.
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Figure 3. Blade root flapwise moment, fatigue damage equivalent loads (DEL) for operation
at different mean wind speeds (weighted by the wind distribution). Results for simulated loads
(black line) and for series without deterministic load variations (blue lines).

A similar analysis is performed for the blade edgewise bending moment (figure 4). As the
fatigue damage is mainly gravity driven, the figure shows higher contributions for the wind speed
bins that occur more frequently; furthermore, since the gravity load variation is periodic, the
edgewise equivalent fatigue load for the time series without deterministic variation is less than
half the original one.

Fatigue DEL for the shaft tilting and yawing moments show higher contributions for wind
speeds at, and above rated (figure 5). The tower bottom flange fore-aft lifetime fatigue damage
is mainly affected by operation at, and below rated wind speed (figure 6); on the contrary, the
side-to-side moment receives most of the fatigue contribution from wind speed above rated.
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Figure 4. Blade root bending moments: flapwise (left), and edgewise (right). Relative
contributions to the total lifetime fatigue DEL from operation at different mean wind speed,
from rain-flow analysis (RFC) and spectral methods.
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Figure 5. Shaft tilt (left) and yaw (right) moments, fatigue damage contributions from
operation at different wind speed. Estimations from spectral and rain-flow counting methods.
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Figure 6. Tower bottom flange fore-aft (left) and side-to-side (right) bending moments, fatigue
damage contributions from operation at different wind speed. Estimations from spectral and
rain-flow counting methods.



4. Spectral load characterization: Power Spectral Density
The Power Spectral Density (PSD) of the load time series is computed using Welch’s method as
implemented in Matlab; the PSD obtained with different turbulence series for the same mean
wind speed are then averaged together. A similar procedure is applied to the blade root moment
time series where the deterministic variations of the load had been removed.

The blade root flapwise bending moment PSD (figure 7) is characterized by high energy
content around the rotational frequency (1P = 0.2 Hz), and, less, at its first harmonic. The
PSD rapidly decreases above 1-1.5 Hz, and its energy content is nearly insignificant above 2.5
Hz. The PSD of the series without deterministic loads variation shows, as expected, a marked
reduction of the peak at the rotational frequency 1P (blue lines in figure 7); nevertheless, the
peak at 1P still dominates the spectrum, thus implying that the stochastic component of the
loads accumulates spectral energy contributions that, for a rotating blade, are mainly located
around the rotational frequency.
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Figure 7. Blade root flapwise moment, Power Spectral Density (PSD) for the loads time series
with mean wind speed of 16 m/s. Results for simulated loads (black line) and for series without
deterministic load variations (blue lines).

5. Estimation of frequency contributions to fatigue damage
5.1. From PSD to fatigue damage ratio
Benasciutti and Tovo [14] propose a method to estimate the rain-flow fatigue damage from
the stress power spectral density (PSD). The method is based on the assumption of Gaussian
stationary process, and linear Palmgren-Miner rule for fatigue damage. The rain-flow fatigue
damage ratio (DRFC) is estimated as a weighted sum of the damage rate for a narrow-banded
process (DNB), and the range-mean counting damage (DRC) [14]:

DRFC = bwgtDNB + (1− bwgt)DRC . (1)

The range-mean counting damage is approximated as a function of the narrow-band damage
rate (DNB), the second bandwidth parameter α2, and the fatigue strength exponent m:

DRFC ≈ bwgtDNB + (1− bwgt)DNBα
m−1
2 =

(
bwgt + (1− bwgt)α

m−1
2

)
DNB . (2)



The expression for the narrow-band damage reads

DNB =
1

Sm
0

ν0

(√
2λ0

)m
Γ (1 + 0.5 m) , (3)

where Sm
0 is the critical stress level, ν0 is the rate of mean upcrossings, λi is the i-th spectral

moment of the one-sided spectrum W (ω), and α1 and α2 are bandwidth parameters, as in [14].
The factor bwgt in eq. (1) determines the weight between the narrow-banded fatigue damage
and the range-mean counting damage; Benasciutti and Tovo [14] suggest an expression derived
from empirical data fitting for the weight value, function of the first and second bandwidth
parameters α:

bwgt =
(α1 − α2)

[
1.112 (1 + α1α2 − α1 − α2) e

2.11 α2 + α1 − α2

]

(α2 − 1)2
. (4)

The method proposed by Benasciutti and Tovo is applied to the spectra of the bending
moments computed in the previous section. The equivalent fatigue damage rates obtained at
each mean wind speed are weighted by the wind distribution function, to obtain an indication
of the relative contribution that operations at different mean speeds yield to the total life-time
fatigue damage. The relative contributions obtained from the PSD method are compared to
results from the rain-flow counting analysis (figures 4 – 6); the relative contributions returned
under the narrow-banded process assumption (i.e. bwgt = 1) are also plotted (red lines with
squares).

In spite of fundamental differences between the two methods, the relative contributions
computed by the frequency-domain PSD method are in good agreement with the figures from the
time-domain RFC method. The strongest contributions to fatigue on the blade flapwise moment
originate at high winds (figure 4, left ), whereas the blade edgewise (figure 4, right), and the
shaft bending moments (figure 5), show higher contributions from wind speeds around rated,
which are more frequent. The narrow-banded (NB) approximation returns estimations very
close to the full model ones for the blade and shaft bending moments, while larger differences
are observed on the tower relative contributions (figure 6).

5.2. From PSD fatigue damage to frequency band contributions
The contribution to the total fatigue damage from a single frequency band dfj is estimated
by comparing the fatigue DEL computed on the full PSD, with the damage resulting from a
spectrum where the energy content at the frequency band dfj is set to zero. By repeating the
same procedure for different frequency bins throughout the spectrum, is possible to characterize
the frequency range of the loads that are responsible for the largest fatigue contributions.

To assess the validity of the spectral fatigue method, the results are compared with frequency
contribution estimations based on RFC analysis of filtered time series. The series are filtered
with a Butterworth low pass filter, and the RFC equivalent fatigue loads are computed for
increasing cutoff frequency fc,LPF (figure 8(a), top); as the cutoff frequency is raised, the fatigue
loads converge to the ones of the original unfiltered time series.

The gradient of the curve gives an indication of the contribution brought to the total fatigue
damage by loads in the specific frequency range (figure 8(a), bottom), and provides a term of
comparison for the frequency fatigue contribution computed with the spectral method, figure
8(b) top. The agreement between the two methods is rather good; in both cases the highest
fatigue contributions are characterized by loads with frequencies close to 1P, whereas very
low fatigue contributions are reported for frequencies above 2 Hz. In the series where the
deterministic variations of the loads have been removed (lighter colored lines), the contribution
from frequencies around 1P is lower, but still remains the dominant one in the spectrum. A good



agreement between the RFC results and the ones based on spectral analysis is also reported for
the edgewise, the shaft, and the tower bottom bending moments.

5.3. Fatigue damage spectrograms
Frequency contributions to the life-time fatigue DEL are organized in ‘spectrogram-like’ plots,
where the load frequency is on the abscissa, and the mean wind speed on the ordinate. The
surface color gives a qualitative indication of the contribution to the overall fatigue damage:
dark red colors indicate ‘harmful’ loads, heavily contributing to the fatigue damage; blue colors
indicate ‘harmless’ loads. The dashed white lines highlight the 1P and 3P rotational frequencies.

Fatigue on the blade root flapwise bending moment (figure 8(b)) is characterized by strong
damage contributions from operations at high wind speed, and from loads with frequencies close
to 1P; loads with frequencies above 2 Hz are found to be nearly ‘harmless’.

The shaft fatigue damage (figure 9(a)) shows marked contributions close to 3P, and at the
lower frequency range; the highest contributions to the life-time fatigue damage are reported
from wind speed close to the rated one.

The spectrogram for the tower bottom fore-aft bending moment (figure 9(b)) also displays
clear fatigue contributions from loads with frequency of 3P; in addition, the contribution of
frequencies close to the first tower mode (0.3 Hz) are also well marked. It is worth noticing the
considerable fatigue damage contribution at low wind speeds, where the 3P rotational frequency
approaches the tower natural frequency.

6. Conclusion
The paper presents an analysis of the aeroelastic loads acting on a wind turbine during normal
operation, and highlights the characteristics of the loads that are responsible for the strongest
contributions to the fatigue damage.

The fatigue damage caused by deterministic load variations is estimated to be 11% of the
total life-time damage, for the specific turbine model. The figure indicates the potential benefit
of including deterministic (periodic) disturbance rejection in a smart-rotor control system. At
the same time, it fixes an upper limit to the load alleviation achieved by purely cyclic control
actions; information on the stochastic variations of the loads have to be included in the control
algorithm to overcome this threshold.

The contribution to the blade root flapwise life-time fatigue damage from wind speeds above
rated was found significantly higher than below rated conditions. It should be thus consider to
exploit the control potentiality of a smart-rotor for different objectives below rated power, as,
for instance, to increase the energy capture [15].

A method to characterize the load frequencies that cause the highest fatigue contributions is
proposed, and proved consistent with rain-flow counting fatigue analysis. The results show that
the loads inflicting the strongest fatigue damage on the blades are characterized by frequencies
close to the rotational one, both in the case of deterministic, and stochastic load components.
Accordingly, fatigue loads on fixed frames, as the shaft bearings or the tower bottom flange,
show marked contributions from the 3P frequency; the fatigue damage on the tower receives
important contributions also from loads with frequencies close to the structural one. In all
cases, only minor contributions are received from loads with frequencies above 2 Hz, thus giving
an indication on the bandwidth requirements for the active load alleviation system.

The paper identifies the loads that most heavily contribute to the structure fatigue damage.
Active alleviation of these loads would return a direct benefit on the overall design requirements;
the loads characteristics highlighted by the study can therefore provide useful indications for
the future design of a smart-rotor with active load alleviation.
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Figure 8. Blade root flapwise moment, frequency contribution to the total fatigue damage.
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Figure 9. Spectrograms of the estimation of the frequency fatigue contribution.
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