

Measures for diffusion of solar PV are aligned in technology action plans for 6 countries in the African region

Nygaard, Ivan

Publication date: 2014

Link back to DTU Orbit

Citation (APA):

Nygaard, I. (2014). Measures for diffusion of solar PV are aligned in technology action plans for 6 countries in the African region [Sound/Visual production (digital)]. 1st Africa Photovoltaic Solar Energy Conference and Exhibition, Durban, South Africa, 27/03/2014

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Measures for diffusion of solar PV are aligned in technology action plans for 6 countries in the African region

Ivan Nygaard, Senior researcher, PhD UNEP Risø Centre, The Technical University of Denmark www.uneprisoe.dk

> AFRICA PVSEC Africa Photovoltaic Solar Energy Conference and Exhibition 2014 27-29 March 2014, Durban, South Africa

Outline of Presentation

- The TNA project approach
- Markets for PV

Technical University

of Denmark

- Three examples of PV diffusion
- Commonly identified barriers
- Proposed measures
- Concluding remarks

Technology needs assessment Project (TNA)

Funded by the GEF, and executed as part of the Strategic program for technology transfer agreed upon at COP14 in Poznan

Objective:

To identify and facilitate transfer and diffusion of technologies for climate change mitigation and adaptation though development of technology actions plans in non - annex 1 countries

AFRICA: Morocco, Senegal, Mali, Cote D'Ivoire, (Ghana), Sudan, (Ethiopia), Kenya, Rwanda, Zambia, Mauritius

Technology Action Plans (TAP)

Markets, products and owners of PV

Market segment

- Grid connected
- Mini-grids
- Institutions
- Waterpumping
- Individual houses
- Lighting and charging mobiles

Product and size

- Large scale 1-50 MWp
- Roof top
 1-10 KWp
- Hybrid 5 kW-1 MWp
- Large SHS 50-500 Wp
- PV pumps 50-500 Wp
- SHS 10
 - Lanterns
- 10-100 Wp 1-10 Wp

Owners

- IPPs, Utilities
- Firms, private household
- Utilities, Coops, ESCO
- Governm/ municip/ESCO
- Municip/CBOs/ESCO
- Private, ESCOs
- Private

Alternatives, competition and measures to diffuse PV on all markets are different

Prioritized mitigation technologies

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

UNEP

Technology group	Cote d'Ivoire	Kenya	Mali	Mauritius	Morocco	Rwanda	Senegal	Sudan	Zambia	Grand Total
Grand Total	6	4	7	2	4	5	9	5	10	52
			-							
Forest and agriculture			3						3	6
Transport						1		1		2
Waste	2	1								3
Energy	4	3	4	2	4	4	9	4	7	41

Specific technologies	Cote d'Ivoire	Kenya	Mali	Morocco	Rwanda	Senegal		<mark>Grand Total</mark>
Photovoltaic solar energy			1			1		2
Large Grid Connected PV			*		1	*		1
Solar Home Systems (SHS)	1	1	*			*		2
PV driven water pumping	1							1
PV lanterns						1		1
Concentrated PV for power plants				1				1
Molten salt for thermal solar plants				1				1
Solar Power	2	1	1	2	1	2		9

Technology group	Cote d'Ivoire	Kenya	Mali	Mauritius	Morocco	Rwanda	Senegal	Sudan	Zambia	Grand Total
Energy	4	3	4	2	4	4	9	4	7	41
2nd Gen Biofuels			1							1
Advanced Coal Technology								1		1
Biodiesel									3	3
Biogas								1		1
Biomass gasification									1	1
Biomass power							1			1
CFL's								1		1
Combined cycle power plant										
Combined heat and power						1	1			2
Efficient Lighting Systems							1			1
Efficient stoves			1					1	2	4
Geothermal Power						1			1	2
Hydro power	1		1			1				3
Less energy intensive products							2			2
Methane gas utilisation		1								1
Residential energy efficiency					1					1
Solar Heating/drying		1					1			2
Solar power	2	1	1		2	1	2			9
Tidal power					1					1
Waste Heat Recovery				1						1
Wind power				1			1			2
Briquetting	1									1

(*) means that it is included in the general PV category in first line

3

UNEP RISØ CENTRE

PV market development in Kenya

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Solar PV Technology	Estimated installed capacity	Estimated capacity installed/year (2008)	Estimated financial volume ² (€/Year/2008)	Degree of competition
Off-grid HH Electrification and Small Scale Commercial	> 6-8 MWp	> 700 kW	> 5 million Euros	Extremely competitive – many players
Off-Grid Community Systems (including institutional and pumping systems)	> 1.5 MWp	> 250 kW	> 2.5 million Euros	Dominated by wholesaler/agent partnerships
Telecom	> 100 kWp	100 kWp	N/A	Emergent – few players
Tourism	> 50 kWp	N/A	N/A	Emergent

Ubbink (a Dutch subsidiary of the German group Centrotec) set up the first solar module manufacturing company in East Africa, located in Naivasha, Kenya.

(Tobias Gossen, GIZ, PV magazine 2013)

Source: Hankins et al. (2009) Kenya's Solar Energy market, GTZ

Grid connected systems (2013) (60 <u>kW</u>, 515 <u>kW</u> and 72 <u>kW</u>)

Total installed capacity in 2013: 20 MWpGovernment vision in 2030: 300 MWp

(Tobias Gossen, GIZ, PV magazine 2013)

Rural electrification in Morocco

Large scale grid connected projects are mainly CSP projects 2010: Mathar thermo-solar CC: 472/20 MW

Moroccan Integrated Solar Project: Aim: 2000 MWp by 2019 on five sites: 2015: Quarzazate 1 SCP: 160 MW 201?: Quarzazate 2 SCP: 300 MW

Source: EU parliament Library briefing (2013)

Small scale Grid connected PV (2008) Promasol: 2* 200 kWp.

Source: EU parliament Library briefing (2013)

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Slow development and paradigm shift in Rwanda

Mate

UNEP RISØ centre

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Solar P V technology	opportunity	installed/	year (2008)	NOLES				DEVI	ELOPMENT
Government administrative centres	>0.4 MWp	±15 kW		Good governme required	ent contacts]	Mainly d	onor driven	market,
Government clinics and schools	>1 MWp	±40 kW		World Bank, EU	J, Belgium		limited sj	pillover from	n
NGO & NGO health sector	>0.3 MWp	<±5 kWp		PEPFAR] 1	neighbor	ing Kenya	
Solar Home System	>4 MWp	N/A		Low rural spend	ling power				
TOTAL	>6 MWp	>50kWp	Type of solar	home systems	Size of system	Estimat	ed % of	Total number	Size of m
					(Wp)	househ	olds buying		(kWp)
			Ma Cristians		0	FF 00/		044.000	

Estimated kWn

Source: Hankins et al. (2009). Rwanda's Solar Energy Market, GTZ.

Technical University

of Denmark

ar DV technolo

Paradigm shift in 2012-13

World Bank, EU	limited spillover from						
PEPFAR	neighbori	ing Kenya					
Low rural spend	ling power						
Type of solar home systems	Size of system (Wp)	Estimated % of households buying	Total number	Size of market (kWp)			
No System	0	55.0%	944,690	-			
Micro Systems	2	35.0%	601,166	1,202			
One Light & Radio	10	7.3%	124,527	1,245			
Two light and radio system	20	2.0%	34,352	687			
Four light system or higher	50	0.5%	8,588	429			
Larger systems (inverter or hybrid)	150	0.3%	4,294	644			
TOTAL		100.0%	1,717,618	4,208 kWp			

Grid connected plants

250 kWp pilot plant in 20088.5 MWp plant in 2013 (contract signed)

International financing: Scatec, development banks

Source: PV-Magazin, 2013

Barriers for diffusion of PV

General barriers

- High upfront costs
 - Low volume, few suppliers, low competition
 - Imported equipment
 - VAT, import duties
- Low quality products and no or poorly enforced standards
- Low technical training level
- Low level of R&D

Solar Home Systems

- Low purchasing power
- Difficult access to capital
- Poor delivery and service network in rural areas

Large scale

- High production cost compared to alternatives
- Difficult access to soft loans, and venture capital
- No fixed selling prices (FIT)
- Few potential investors

Mini-grids

- Relatively few experiences with hybrid systems
- Rural electrification behind schedule
- Organisational and funding issues

Measures for diffusion of PV

General measures

- Support to local production
- Roadmap for incentives
 - Investment subsidies
 - Exemption from VAT, import duties
- Establishment and reinforcement of standards
- Support to technical training
- Support to R&D

Solar Home Systems

- Subsidies
- Soft loans, guaranties
- Increase security against theft

Large scale

- Feasibility study for large projects
- Standard PPAs
- Feed in Tariffs (FIT)

Mini-grids

 Support to up scaling of hybridsystems (SREP)

Concluding remarks

CENTRE ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

- From donors to markets
 - From being a niche for donor supported equipment PV is currently a viable or 'almost' viable alternative for consumers and private investors in all markets
- From projects to enabling frameworks
 - This means that donors and government officials need to move from 'project holders' to enabling framework specialists
 - The TNA project is strongly supporting this trajectory by its focus on enabling frameworks and analysis of markets and market actors.
- From import to local production
 - Upgrading in the global value chain in terms of local assembly of panels and local production of other system elements is an opportunity acknowledged by the TNA project participants.
 - The adequate and efficient support to this upgrading is a challenge, which are not only solved by the energy sector, but which needs expertise on learning in firms, technological innovation systems and niche development and involves a multi sectoral approach

ENERGY, CLIMATE

AND SUSTAINABLE DEVELOPMENT

Thanks for your attention !

