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YANG–BAXTER OPERATORS IN SYMMETRIC CATEGORIES

JORGE A. GUCCIONE, JUAN J. GUCCIONE, AND LEANDRO VENDRAMIN

Abstract. We introduce non-degenerate solutions of the Yang–Baxter equa-
tion in the setting of symmetric monoidal categories. Our theory includes non-
degenerate set-theoretical solutions as basic examples. However, infinite fam-
ilies of non-degenerate solutions (that are not of set-theoretical type) appear.
As in the classical theory of Etingof, Schedler and Soloviev, non-degenerate
solutions are classified in terms of invertible 1-cocycles. Braces and matched
pairs of cocommutative Hopf algebras (or braiding operators) are also gener-
alized to the context of symmetric monoidal categories and turn out to be
equivalent to invertible 1-cocycles.
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Introduction

The celebrated Yang–Baxter equation was first established by Yang [20] in 1967
and then by Baxter [2] in 1972. Since then, more solutions of various forms of the
Yang–Baxter equation have been constructed by physicists and mathematicians.
In the past three decades this equation has been widely studied from different
perspectives and attracted the attention of a wide range of mathematicians because
of the applications to knot theory, representations of braid groups, Hopf algebras
and quantum groups, operator theory, etc.

Let V be a vector space and let R : V ⊗ V → V ⊗ V be a linear isomorphism.
We say that R satisfies the Yang-Baxter equation on V if

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12 in End(V ⊗ V ⊗ V ),

where Rij means R acting in the i-th and j-th components. It is easy to check that
this occurs if and only if r := τ ◦ R, where τ : V ⊗ V → V ⊗ V denotes the flip,
satisfies the braid equation

r12 ◦ r23 ◦ r12 = r23 ◦ r12 ◦ r23. (0.1)
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2 JORGE A. GUCCIONE, JUAN J. GUCCIONE, AND LEANDRO VENDRAMIN

The importance of this equation in mathematics and physics led Drinfeld [5] to
ask for the simplest family of solutions, the so-called set-theoretical (or combinato-
rial) solutions, i.e. pairs (X, r), where X is a set and r : X × X → X × X is an
invertible map satisfying (0.1). Each one of these solutions yields in an evident way
a linear solution on the vector space with basis X .

This approach was first considered by Etingof, Schedler and Soloviev [7] and
Gateva-Ivanova and Van den Bergh [9] for involutive solutions and by Lu, Yan
and Zhu [13], and Soloviev [18] for non-involutive solutions. Now it is known that
there are several connections between solutions and bijective 1-cocycles, Biberbach
groups and groups of I-type, Garside structures, biracks, cyclic sets, braces, Hopf
algebras, left symmetric algebras, etc.; see for example [1, 3, 4, 8, 12, 16, 17, 18].

In this paper we study the set-type solutions of the braid equation in the context
of symmetric tensor categories. The underlying idea is simple: to use cocommuta-
tive coalgebras in symmetric tensor categories to generalize sets. This basic idea
leads us to infinite families of new examples and several new theoretical develop-
ments. Despite we are mainly interested in solutions lying in the category of vector
spaces, we work in the most general setting of symmetric categories. This is free of
cost and has many potential applications.

In order to carry out this task we must translate to categorical language the
notion of non-degenerate map. Although we follow the ideas of the proofs given
in [7], [13] and [18], our arguments are not always the ones given in those papers.
For instance one cannot adapt the arguments of Proposition 1.8 of [13] to prove our
Proposition 5.3, which is its categorical version.

Our solutions turn out to be classified in terms of invertible 1-cocycles. This
construction is similar to that of Lu, Yan and Zhu and has many different equivalent
formulations including braces and matched pairs of coalgebras.

The paper is organized as follows. In Section 1 we review the basic notions
needed to deal with the universal construction of a solution. In Section 2 we define
the concept of non-degenerate solution and study their main properties. Although
we are working in an arbitrary symmetric monoidal category C , we call a pair
(X, r) consisting of a cocommutative coalgebra in C and a non-degenerate solution,
a non-degenerate braided set. Section 3 is devoted to studying racks in arbitrary
tensor categories; we prove that non-degenerate solutions produce racks and study
the representations of the braid group induced by each one of these solutions and
its rack. In Section 4 we introduce the categories of braces, braided operators and
invertible cocycles, and in Theorem 4.14 we prove that they are equivalent. In
Section 5, Theorem 5.8, we prove our main result: the existence of the universal
solutions. Finally, in Section 6 we study solutions over k⊕ V , where k is a field, V
is the vector space of primitive elements and 1 ∈ k is the unique group-like element.

1 Preliminaries

Notations

Throughout this paper C = (C,⊗,1, α, λ, ̺, c) is a symmetric monoidal category.
Given an objectX ∈ C, we letXn denote the n-fold tensor product ofX . We assume
that the reader is familiar with the notions of algebra, coalgebra, bialgebra and Hopf
algebra in C , and we use the well known graphic calculus for symmetric monoidal
categories. As usual the morphisms are composed from top to bottom and the
tensor product of two morphisms will be represented by horizontal concatenation.
The identity morphism of an object will be represented by a vertical line and the
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symmetry isomorphism c, by the diagram . For each algebra A the diagrams

and

stand for the multiplication and the unit, respectively, and for each coalgebra X ,
the diagrams

and

stand for the comultiplication and the counit. Furthermore, each coalgebra mor-
phism f : X → Y , each coalgebra morphism R : X2 → X2 and each candidate
r : X2 → X2 to be a solution of the braid equation will be represent by the dia-
grams

f , R and r ,

respectively (note that we use different diagrams to represent R and r in spite of
both are endomorphisms of X2). Moreover, the first and second coordinate maps
σ and τ of r (see Definition 1.1), and their inverses σ−1 and τ−1 (when r is non-
degenerate), will be represented by

, , and ,

respectively. However, in Section 4, when we deal with braces and braiding op-
erators, the maps σ and τ will be named λ and ρ, and they will be represented
by

λ and ρ .

Finally, the diagram
⊲ .

stands for the action ⊲ of a rack (X, ⊲).

General constructions

For each coalgebra X and each n ∈ N0, we let ∆n : X → Xn+1 denote the map
recursively defined by

- ∆0 = id,

- ∆i+1 := (∆ ⊗X i) ◦ ∆i.

Definition 1.1. Let Y,X1, . . . , Xn be coalgebras in C and let f : Y −→ X1⊗· · ·⊗Xn

be a morphism. The coordinate maps of f are the maps fi : Y → Xi, defined by

fi := (ǫi−1 ⊗Xi ⊗ ǫn−i−1) ◦ f (1 ≤ i ≤ n).

Proposition 1.2. Let Y,X1, . . . , Xn be cocommutative coalgebras in C . If

f : Y −→ X1 ⊗ · · · ⊗Xn

is a coalgebra morphism, then the coordinate maps fi : Y → Xi, of f , are coalgebra
morphisms. Morevover, f = (f1 ⊗ · · · ⊗ fn) ◦ ∆n−1. Conversely, given coalgebra
morphisms fi : Y → Xi, the map f := (f1 ⊗· · ·⊗fn)◦∆n−1is a coalgebra morphism.
So, the categorical product of a finite number of cocommutative coalgebras is their
tensor product.

Corollary 1.3. Let Y,X1, . . . , Xn be cocommutative coalgebras in C and let

f, g : Y −→ X1 ⊗ · · · ⊗Xn

be maps. If f and g are coalgebra morphisms, then f = g if and only if fi = gi for
each i.
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Let C be a coalgebra and let A be an algebra. The set HomC(C,A) is a monoid
via the convolution product

f ∗ g := mA ◦ (f ⊗ g) ◦ ∆C .

The unit of HomC(C,A) is ηA ◦ ǫC . If ψ : C′ → C and φ : A → A′ are morphisms
of coalgebras and algebras respectively, then the function

θψ,φ : HomC(C,A) −→ HomC(C′, A′),

defined by θψ,φ(f) := φ ◦ f ◦ ψ is a morphism of monoids.

We will use that if A is a Hopf algebra with antipode S and f : C → A is a
coalgebra morphism, then f is convolution invertible with inverse S ◦ f .

Next we recall without proof some well known results that we will need in Sec-
tion 5. In the rest of this section we assume that C has countable colimits and that
these colimits commute with the tensor product.

Remark 1.4. If an arrow π : X → X̃ is the coequalizer of a family (fi : Z → X)i∈I
of arrows, then π ⊗ π : X2 → X̃2 is the colimit of the diagram made out by the
maps fi ⊗X and X ⊗ fi, with i running on I.

For each Z in C the tensor algebra T (Z) is by definition

T (Z) :=
∐

i≥0

Zi,

where (Zi)i≥0 is recursively defined by Z0 := 1 and Zi+1 := Zi ⊗ Z. The prod-
uct on T (Z) is induced by the canonical isomorphisms Zi ⊗ Zj ≃ Zi+j . By the
coherence theorem of Mac Lane, T (Z) is an associative and unitary algebra. We
let ι : Z → T (Z) denote the canonical inclusion. The algebra T (Z) satisfies the
following universal property:

For each associative and unitary algebraA in C and each morphism
ϕ : Z → A in C , there is a unique algebra morphism ϕ : T (Z) → A

such that ϕ = ϕ ◦ ι.

If Z is a coalgebra in C , then T (Z) is a bialgebra in C via the comultiplication
and counit induced by the morphisms (ι⊗ ι) ◦ ∆Z and ǫ.

Clearly if Z is cocommutative, then so is T (Z). The bialgebra T (Z) satisfies the
following universal property:

For each bialgebra A in C and each morphism ϕ : Z → A of coal-
gebras, there is a unique bialgebra morphism ϕ : T (Z) → A such
that ϕ = ϕ ◦ ι.

Thus T (Z) is the free bialgebra on the coalgebra Z. Our next purpose is to describe
the free Hopf algebra on a cocommutative coalgebra Z endowed with a coalgebra
morphism S : Z → Z. Given an arbitrary bialgebra L in C we let Lop denotes
the bialgebra with the same underlying coalgebra structure as L and multiplication
mop := m ◦ c.

Proposition 1.5. Let (L,m, η) be an associative and unitary algebra in C and let

(fi : Z → L)i∈I be a finite family of morphisms in C . For each i let f̂i : L⊗Z⊗L →

L be the morphism defined by f̂i := m◦(m⊗L)◦(L⊗fi⊗L) and let π : L → L̃ be the

coequalizer of (f̂i)i∈I . There is a unique associative and unitary algebra structure

on L̃, such that π is a morphism of algebras.

The canonical map π : L → L̃ satisfies the following universal property:

For each associative and unitary algebra A in C and each algebra
morphism ϕ : L → A such that ϕ ◦ fi = ϕ ◦ fj for all i, j ∈ I, there

exists a unique algebra morphism ϕ̃ : L̃ → A such that ϕ = ϕ̃ ◦ π.
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Remark 1.6. Assume now that (L,m, η,∆, ǫ) is a bialgebra in C and that the fi’s

are coalgebra morphisms in C . Then there is a unique bialgebra structure on L̃

such that π is a morphism of bialgebras. Moreover π has the following universal
property:

For each bialgebraH in C and each bialgebra morphism ϕ : L → H

such that ϕ ◦ fi = ϕ ◦ fj for all i, j ∈ I, there exists a unique

bialgebra morphism ϕ̃ : L̃ → H such that ϕ = ϕ̃ ◦ π.

Corollary 1.7. If L is a Hopf algebra, then so is L̃.

Let Z be a cocommutative coalgebra, let SZ : Z → Z be a coalgebra morphism
and let L := T (Z). Let S : L → Lop be the bialgebra morphism induced by

Z
SZ−−→ Z

ι
−→ Lop,

where ι is the canonical inclusion. Let f1, f2, f3 : Z → L be the arrows defined by

f1 := η ◦ ǫZ , f2 := m ◦ (S ⊗ L) ◦ ∆ ◦ ι and f3 := m ◦ (L ⊗ S) ◦ ∆ ◦ ι,

and let π : L → L be the coequalizer of (f̂i)i∈{1,2,3}, where f̂i is as in Proposition 1.5.
Since L is cocommutative, f1, f2 and f3 are coalgebra morphisms. Consequently,
by Remark 1.6 there is a unique bialgebra structure on L such that π is a morphism
of bialgebras.

Proposition 1.8. There is a unique bialgebra morphism S : L → L
op

such that
S ◦π = πop ◦S, where π : L → L and πop : Lop → L

op
are the canonical morphisms.

Moreover L is a cocommutative Hopf algebra with antipode S.

Let j : Z → L be the morphism defined by j := π ◦ ι, where ι : Z → L is the
canonical inclusion. The cocommutative Hopf algebra L has the following universal
property:

For each Hopf algebraH in C and each coalgebra morphism ϕ : Z → H

in C such that SH ◦ ϕ = ϕ ◦ SZ , there exists a unique morphism
of Hopf algebras ϕ : L → H such that ϕ ◦ j = ϕ.

Remark 1.9. Assume that Z = X
∐
SX , where X and SX are coalgebras and that

there is a coalgebra isomorphism S : X → SX such that SZ is the map induced
by S and S−1 (thus, S2

Z = id). Let ιX : X → Z be the canonical arrow. From the
above universal property it follows that:

For each Hopf algebraH in C and each coalgebra morphism ϕ : X → H

in C , there exists a unique morphism of Hopf algebras ϕ : L → H

such that ϕ ◦  = ϕ , where  := j ◦ ιX = ϕ.

So,  : X → L is the free Hopf algebra over the coalgebra X .

2 Braided and symmetric coalgebras

In this section we introduce the notion of non-degenerate braided set in C and we
begin the study of its properties. In the sequel X is a cocommutative coalgebra
in C and r is a coalgebra automorphism of X2.

Recall from Definition 1.1 that the first and second coordinate maps of r are the
coalgebra maps σ := (X ⊗ ǫ) ◦ r and τ := (ǫ⊗X) ◦ r, respectively.

Remark 2.1. From the fact that r is compatible with the comultiplication map of
X2 it follows immediately that

(1) (r ⊗ τ) ◦ ∆X2 = (X ⊗ ∆) ◦ r,

(2) (τ ⊗ r) ◦ ∆X2 = (c⊗X) ◦ (X ⊗ ∆) ◦ r,
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(3) (σ ⊗ r) ◦ ∆X2 = (∆ ⊗X) ◦ r,

(4) (r ⊗ σ) ◦ ∆X2 = (X ⊗ c) ◦ (∆ ⊗X) ◦ r.

Definition 2.2. We will say that (X, r) is a braided set if r satisfies the braid
equation

r12 ◦ r23 ◦ r12 = r23 ◦ r12 ◦ r23, (2.1)

where r12 := r ⊗X and r23 := X ⊗ r; we will say that it is involutive if

r2 = id, (2.2)

that is, if r is an involutive arrow; and we will say that it is non-degenerate if there
exist maps σ−1 : X2 → X and τ−1 : X2 → X such that

σ−1 ◦ (X ⊗ σ) ◦ (∆ ⊗X) = σ ◦ (X ⊗ σ−1) ◦ (∆ ⊗X) = ǫ⊗X (2.3)

and

τ−1 ◦ (τ ⊗X) ◦ (X ⊗ ∆) = τ ◦ (τ−1 ⊗X) ◦ (X ⊗ ∆) = X ⊗ ǫ. (2.4)

If (X, r) is a non-degenerate pair, then we will say that r is non-degenerate.

Proposition 2.3. The isomorphism r is non-degenerate if and only if the maps
(X ⊗ σ) ◦ (∆ ⊗ X) and (τ ⊗ X) ◦ (X ⊗ ∆) are isomorphisms. Moreover, their
compositional inverses are the maps (X ⊗σ−1) ◦ (∆ ⊗X) and (τ−1 ⊗X) ◦ (X⊗ ∆),
respectively.

Proof. If there exists σ−1, then

= = idX2 and = = idX2 .

Conversely, if (X ⊗ σ) ◦ (∆ ⊗X) is invertible with inverse Inv, then

Inv
= ǫ⊗X and

Inv
=

Inv

= ǫ⊗X ,

since Inv is left colinear. For τ the proof is similar. �

Corollary 2.4. If r is non-degenerate, then σ−1 and τ−1 are the unique maps
satisfying conditions (2.3) and (2.4) and they are morphisms of coalgebras.

Proof. It follows since σ−1 and τ−1 are coordinate maps of the inverse maps of the
coalgebra isomorphisms (X⊗σ) ◦ (∆ ⊗X) and (τ ⊗X) ◦ (X⊗ ∆), respectively. �

Remark 2.5. If (X, r) is involutive, then

τ ◦ r = ǫ⊗X and σ ◦ r = X ⊗ ǫ.

On the other hand, from Corollary 1.3 one obtains immediately that (X, r) is
braided if and only if

(τ ⊗X) ◦ (X ⊗ r) ◦ (r ⊗X) = r ◦ (τ ⊗X) ◦ (X ⊗ r),

(σ ⊗X) ◦ (X ⊗ r) ◦ (r ⊗X) = (X ⊗ τ) ◦ (r ⊗X) ◦ (X ⊗ r)

and

(X ⊗ σ) ◦ (r ⊗X) ◦ (X ⊗ r) = r ◦ (X ⊗ σ) ◦ (r ⊗X),
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and that this occurs if and only if

τ ◦ (τ ⊗X) = τ ◦ (τ ⊗X) ◦ (X ⊗ r),

σ ◦ (X ⊗ σ) = σ ◦ (X ⊗ σ) ◦ (r ⊗X)

and

τ ◦ (X ⊗ σ) ◦ (r ⊗X) = σ ◦ (τ ⊗X) ◦ (X ⊗ r) (linking relation).

The last three conditions are geometrically represented by the diagrams

=

r

, =

r

and

r

=

r

.

Definition 2.6. Let r′ be a coalgebra automorphism of X ′2. A coalgebra map
φ : X → X ′ is a homomorphism from r to r′ if r′ ◦ (φ⊗ φ) = (φ⊗ φ) ◦ r.

Let n > 1. Recall that the braid group Bn is the group generated by elements
b1, . . . bn−1 subject to the relations

bibj = bjbi if |i− j| > 1 and bibi+1bi = bi+1bibi+1 for i < n− 1.

Recall also that the symmetric group Sn is the quotient of Bn by the relations b2
i =

1.

Remark 2.7. The pair (X, r) is a braided set if and only if the assignment bi 7→ ri,i+1

extends to an action of Bn on Xn, and it is an involutive braided set if and only if
the assignment bi 7→ ri,i+1 extends to an action of Sn on Xn.

Definition 2.8. The R-matrix of a map r is the map R := c ◦ r.

Proposition 2.9. The pair (X, r) is a braided set if and only if R satisfies the
quantum Yang-Baxter equation

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12, (2.5)

and (X, r) is an involutive braided set if, in addition to (2.5), R satisfies the unitary
condition R21 ◦R = idX2 , where R21 := c ◦R ◦ c = r ◦ c.

Proof. This is clear. �

Remark 2.10. An easy calculation shows that R = (τ ⊗ σ) ◦ ∆X2 .

Proposition 2.11. If (X, r) is a non-degenerate pair, then

(σ−1 ⊗ τ−1) ◦ (X ⊗ r ⊗X) ◦ (∆ ⊗ ∆) = c.

Proof. We have

r = = = c,

as desired. �

Definition 2.12. Assume that (X, r) is a non-degenerate pair. The transpositions
of R and R21 in the first and second variables are the maps Rt1 , Rt2 , Rt121 and Rt221,
defined by requiring that

Rt1 ◦ (τ ⊗X) ◦ (X ⊗ ∆) = (X ⊗ σ) ◦ (∆ ⊗X),

Rt2 ◦ (X ⊗ σ) ◦ (∆ ⊗X) = (τ ⊗X) ◦ (X ⊗ ∆),

Rt121 ◦ (σ ⊗X) ◦ (X ⊗ c) ◦ (∆ ⊗X) = (X ⊗ τ) ◦ (c⊗ X) ◦ (X ⊗ ∆)
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and

Rt221 ◦ (X ⊗ τ) ◦ (c⊗X) ◦ (X ⊗ ∆) = (σ ⊗X) ◦ (X ⊗ c) ◦ (∆ ⊗X).

Example 2.13. Let C be the category of sets and functions. Let (X, r) be a non-
degenerate set-theoretical solution. Assume that r(x, y) = (σx(y), τy(x)). Then
Rt1(τy(x), y) = (x, σx(y)) and Rt2(x, σx(y)) = (τy(x), y). These maps were consid-
ered in [7, Proposition 1.3] and in [13, Lemma 7].

Remark 2.14. Note that

Rt1 ◦Rt2 = Rt2 ◦Rt1 = Rt121 ◦Rt221 = Rt221 ◦Rt121 = idX2 .

Thus, Rt1 , Rt2 , Rt121 and Rt221 are isomorphisms.

Proposition 2.15. Let r be as in Definition 2.12. If (X, r) is an involutive pair,
then Rt1 ◦Rt121 = Rt2 ◦Rt221 = idX2 .

Proof. By Remark 2.14 it suffices to prove that Rt121 = Rt2 and Rt221 = Rt1 . We only
treat with the first equality, because the second one is similar. Since

id = r ◦ r = (σ ⊗ τ) ◦ ∆X2 ◦ r = (σ ⊗ τ) ◦ (r ⊗ r) ◦ ∆X2 ,

we have

=
r r

=

r r

r
=

r
=

r

,

where we had used the fact that σ ◦ r is a coalgebra homomorphism and Re-
mark 2.1(4). On the other hand, from the definition of Rt121 it follows immediately
that

Rt121 ◦ (σ ⊗X) ◦ (X ⊗ c) ◦ (∆ ⊗X) = (X ⊗ τ) ◦ (c⊗ X) ◦ (X ⊗ ∆).

Combining this with the previous equality and Remark 2.1(2), we obtain

R
t1
21

=

r

R
t1
21

=

r

=
r

.

Therefore, we are reduced to prove that

(X ⊗ τ) ◦ (τ ⊗ r) ◦ ∆X2 = (τ ⊗X) ◦ (X ⊗ ∆).

But this follows immediately applying X ⊗ ǫ⊗X to the equality

(τ ⊗ r2) ◦ ∆X2 = (τ ⊗X2) ◦ ∆X2 ,

since (ǫ⊗X) ◦ r = τ . �
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3 Derived solutions

In this section we study the relation between non-degenerate braided sets and left
racks. It is evident that each definition and result has a symmetric right hand one.
Since we will do not mention these ones explicitly, we will write rack and derived
map instead use the most correct terminology left rack and left derived map. In
the case of set-theoretical solutions derived solutions were first considered in [18].
Racks in categories were studied in [11].

Definition 3.1. A left rack in C is a cocommutative coalgebra X in C endowed
with a coalgebra map ⊲ : X2 → X that satisfies:

(1) ⊲ ◦ (X ⊗ ⊲) = ⊲ ◦ (⊲⊗ ⊲) ◦ (X ⊗ c⊗X) ◦ (∆ ⊗X ⊗X),

(2) there exists a map ⊲̄ : X2 → X such that

⊲̄ ◦ (X ⊗ ⊲) ◦ (∆ ⊗X) = ⊲ ◦ (X ⊗ ⊲̄) ◦ (∆ ⊗X) = ǫ⊗X. (3.1)

Example 3.2. Each coalgebra X in C is a rack, named rack trivial on X, via the
trivial rack ⊲ := ǫ⊗X.

Remark 3.3. Arguing as in Proposition 2.3 and Corollary 2.4 it is easy to see that
⊲̄ is the unique map satisfying condition (3.1), that (X ⊗ ⊲) ◦ (∆ ⊗X) is invertible
with inverse (X ⊗ ⊲̄) ◦ (∆ ⊗X) and that ⊲̄ is a coalgebra homomorphism.

Let X be a cocommutative coalgebra in C . Given a map ⊲ : X2 → X , we let r⊲
denote the map defined by

r⊲ := (⊲⊗X) ◦ (X ⊗ c) ◦ (∆ ⊗X).

It is clear that r⊲ is a coalgebra homomorphism if and only if ⊲ is.

Proposition 3.4. The pair (X, r⊲) is a non-degenerate braided set if and only if
(X, ⊲) is a rack.

Proof. Assume that (X, r⊲) is a non-degenerate braided set. Then ⊲ is a coalgebra
homomorphism and there exists ⊲̄ satisfying (3.1), since ⊲ = σr⊲

. So, in order
to prove that (X, ⊲) is a rack we only must check that ⊲ fulfills condition (1) of
Definition 3.1. But this follows immediately applying X ⊗ ǫ⊗ ǫ to the equality

r⊲12
◦ r⊲23

◦ r⊲12
= r⊲23

◦ r⊲12
◦ r⊲23

.

Conversely, if (X, ⊲) is a rack, then r⊲ is a coalgebra homomorphism and the equal-
ities

⊲

⊲̄

=
⊲

⊲̄

=
⊲

⊲̄

=
⊲

⊲̄

= idX2

and

⊲̄

⊲

=
⊲̄

⊲

=
⊲̄

⊲

= ⊲

⊲̄

= idX2

show that r⊲ is invertible. It remains to check that r⊲ satisfies the braid equation.
But this follows easily from Corollary 1.3. �
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Definition 3.5. Let r be a coalgebra automorphism of X2. Assume that (X, r) is
non-degenerate. The derived map of r is the map s : X2 → X2 defined by

s := (τ ⊗X) ◦ (X ⊗ ∆) ◦ c ◦ (X ⊗ σ) ◦ (X ⊗ τ−1 ⊗X) ◦ (∆ ⊗ ∆).

If necessary we will write sr instead of s.

Lemma 3.6. The arrow

(X ⊗ σ) ◦ (X ⊗ τ−1 ⊗X) ◦ (∆ ⊗ ∆) (3.2)

is an isomorphism of coalgebras.

Proof. The equalities

= = = = R

show that the arrow (3.2) is invertible with inverse

(τ ⊗X) ◦ (X ⊗ ∆) ◦R−1.

Therefore it is also a morphisms of coalgebras, since R, τ and ∆ are. �

Proposition 3.7. The derived map of r is an isomorphism of coalgebras.

Proof. By Proposition 2.3 we know that (τ ⊗ X) ◦ (X ⊗ ∆) ◦ c is an isomorphism
of coalgebras. So, the proposition follows immediately from Lemma 3.6. �

Lemma 3.8. The map c ◦ s is a morphisms of left comodules (where X2 is consid-
ered as a left comodule via ∆ ⊗X).

Proof. Using that σ, τ and τ−1 are coalgebra maps it follows easily that

(X ⊗ ǫ) ◦ c ◦ s = (ǫ⊗X) ◦ s = X ⊗ ǫ.

Combining this with the fact that ŝ := c ◦ s is a coalgebra map, we obtain that

ŝ
=

ŝ

=
ŝ ŝ

=
ŝ

,

as desired. �

Proposition 3.9. The derived map s of r satisfies s = (⊲⊗X) ◦ (X⊗ c) ◦ (∆ ⊗X),
where ⊲ := (X ⊗ ǫ) ◦ s.

Proof. Since by Lemma 3.8

s
=

s

=
s

= s ,

we have

s = s =
s

=
s

=
⊲

,
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as desired. �

Remark 3.10. From Proposition 3.9 it follows that s = r⊲, where ⊲ := (X ⊗ ǫ) ◦ s.
In the following subsection we will see that (X, s) is a non-degenerate braided set.
By Proposition 3.4 this implies that (X, ⊲) is a rack.

3.1 The guitar map

We now define a remarkable map that allows us to study braid group representations
related to braidings. In the case of set-theoretical solutions, this map was considered
in [7, 12, 13, 15, 18].

In this subsection, for each i, j ∈ N with (i, j) 6= (1, 1) we set cij := cXi,Xj (we
keep the notation c, which we have been using so far, for cX,X).

Notations 3.11. Let r be a coalgebra automorphism of X2. In the sequel, for each
n ≥ 2, we let αn, Qn : Xn → Xn denote the maps recursively defined by

- α2 = Q2 := (τ ⊗X) ◦ (X ⊗ ∆),

- αn+1 := (τ ⊗Xn) ◦ (X ⊗ cn−1,1 ⊗X) ◦ (αn ⊗ ∆),

- Qn+1 := (τ ⊗Qn) ◦ (X ⊗ cn−1,1 ⊗X) ◦ (Xn ⊗ ∆).

Definition 3.12. For each n ∈ N, we define the map Jn : Xn → Xn recursively by:

- J1 := idX ,

- Jn+1 := (X ⊗ Jn) ◦ αn+1.

Remark 3.13. Let n ≥ 2. A direct computation proves that

(cn−1,1 ⊗X) ◦ (Xn−1 ⊗ ∆) = (X ⊗ c1,n−1) ◦ (∆ ⊗Xn−1) ◦ cn−1,1.

Using this fact it is easy to see that

- αn+1 = (X ⊗ c1,n−1) ◦ (α2 ⊗Xn−1) ◦ (X ⊗ cn−1,1) ◦ (αn ⊗X),
- Qn+1 = (X ⊗Qn) ◦ (X ⊗ c1,n−1) ◦ (Q2 ⊗Xn−1) ◦ (X ⊗ cn−1,1).

Thus if r is non-degenerate, then αn and Qn are invertible for all n. Consequently,
under this condition Jn is also.

Proposition 3.14. The equality Jn = Qn ◦ (Jn−1 ⊗X) holds for each n ≥ 2.

Proof. For n = 2 this is true by definition. Suppose that it is true for n. Then,

Jn+1 = (X ⊗ Jn) ◦ αn+1

= (X ⊗Qn) ◦ (X ⊗ Jn−1 ⊗X) ◦ αn+1

= (X ⊗Qn) ◦ (X ⊗ Jn−1 ⊗X) ◦ (τ ⊗Xn) ◦ (X ⊗ cn−1,1 ⊗X) ◦ (αn ⊗ ∆)

= (τ ⊗Qn) ◦ (X ⊗ cn−1,1 ⊗X) ◦ (Xn ⊗ ∆) ◦ (X ⊗ Jn−1 ⊗X) ◦ (αn ⊗X)

= (τ ⊗Qn) ◦ (X ⊗ cn−1,1 ⊗X) ◦ (Xn ⊗ ∆) ◦ (Jn ⊗X)

= Qn+1 ◦ (Jn ⊗X),

as desired. �

Proposition 3.15. Let (X, r) be a non-degenerate braided set and let ⊲ be as in
Remark 3.10. The following equality holds:

τ ◦ r = ⊲ ◦ (τ ⊗X) ◦ (X ⊗ ∆).
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Proof. Let R be the R-matrix of r. Since ⊲ = (X⊗ǫ)◦s (where s is the derived map
of r introduced in Definition 3.5), τ is a morphisms of coalgebras, ∆ is coassociative
and (X, r) is non-degenerate, we have

⊲

= = = =
R

=
r ,

as desired. �

Proposition 3.16. Let (X, r) and ⊲ be as in Proposition 3.15. Then

τ ◦ (⊲⊗X) = ⊲ ◦ (τ ⊗ τ) ◦ (X ⊗ c⊗X) ◦ (X2 ⊗ ∆).

Proof. By Remarks 2.5 and 2.1(1), the fact that (X, r) is a non-degenerate braided
set and Proposition 3.15, we have

⊲

=

r

⊲

=

r

⊲

=

r

r
=

r

r

=
r

=
⊲

.

Since (τ ⊗X) ◦ (X ⊗ ∆) is invertible, this finishes the proof. �

Proposition 3.17. Let (X, r) and ⊲ be as in Proposition 3.15. Then

τ̃2 ◦ (s⊗X) = s ◦ τ̃2.

where τ̃2 := (τ ⊗ τ) ◦ (X ⊗ c⊗ X) ◦ (X2 ⊗ ∆) and s is the derived map of r.

Proof. On one hand, by Proposition 3.16 and the fact that X is a cocommutative
coalgebra, we have

⊲
=

⊲

=

⊲

=

⊲

. (3.3)
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On the other hand,

⊲

=

⊲

=

⊲

=

⊲

. (3.4)

This finishes the proof, because the expression at the right hand of the last equality
in (3.3) equals to the expression at the left hand of the first equality in (3.4), since
τ is a coalgebra homomorphism. �

Lemma 3.18. If (X, r) is a braided set, then

αn ◦ ri,i+1 = ri,i+1 ◦ αn for all n > 2 and all 1 < i < n.

Proof. We first consider the case i = n − 1. Let τ2 : X3 → X be the map defined
by

τ2 := τ ◦ (τ ⊗X).

It is easy to see that

αn = (τ2 ⊗Xn−1) ◦ (X ⊗ cn−3,2 ⊗X2) ◦ (αn−2 ⊗ ∆X2 ).

By Remark 2.5 we know that τ2 ◦ r = τ2. Since, moreover r is a coalgebra homo-
morphism,

αn ◦ rn−1,n = (τ2 ⊗Xn−1) ◦ (X ⊗ cn−3,2 ⊗X2) ◦ (αn−2 ⊗ ∆X2 ) ◦ (Xn−2 ⊗ r)

= (τ2 ⊗Xn−1) ◦ (X ⊗ cn−3,2 ⊗X2) ◦ (αn−2 ⊗ r ⊗ r) ◦ (Xn−2 ⊗ ∆X2)

= (τ2 ⊗Xn−1) ◦ (X ⊗ cn−3,2 ⊗X2) ◦ (Xn−2 ⊗ r ⊗ r) ◦ (αn−2 ⊗ ∆X2)

= ((τ2 ◦ r) ⊗Xn−1) ◦ (X ⊗ cn−3,2 ⊗X2) ◦ (Xn ⊗ r) ◦ (αn−2 ⊗ ∆X2 )

= (Xn−2 ⊗ r) ◦ (τ2 ⊗Xn−1) ◦ (X ⊗ cn−3,2 ⊗X2) ◦ (αn−2 ⊗ ∆X2)

= rn−1,n ◦ αn.

We now proceed by induction on n. If n = 3, then necessarily i = 2 = n− 1, and so
in this case the lemma is true as we already have proven. Suppose now that n > 3
and the lemma is true for n − 1. For every m > i we will write rmi,i+1 in order to
indicate that the domain of ri,i+1 is Xm. We can assume that 1 < i < n − 1. By
inductive hypothesis, we have

αn ◦ rni,i+1 = (τ ⊗Xn−1) ◦ (X ⊗ cn−2,1 ⊗X) ◦ (αn−1 ⊗ ∆) ◦ rni,i+1

= (τ ⊗Xn−1) ◦ (X ⊗ cn−2,1 ⊗X) ◦ (αn−1 ⊗X2) ◦ (rn−1
i,i+1 ⊗ ∆)

= (τ ⊗Xn−1) ◦ (X ⊗ cn−2,1 ⊗X) ◦ (rn−1
i,i+1 ⊗ X2) ◦ (αn−1 ⊗ ∆)

= (τ ⊗Xn−1) ◦ (rni+1,i+2 ⊗X) ◦ (X ⊗ cn−2,1 ⊗X) ◦ (αn−1 ⊗ ∆)

= rni,i+1 ◦ (τ ⊗Xn−1) ◦ (X ⊗ cn−2,1 ⊗X) ◦ (αn−1 ⊗ ∆)

= rni,i+1 ◦ αn,

as desired. �

Theorem 3.19. If (X, r) is a non-degenerate braided set, then

Jn ◦ ri,i+1 = si,i+1 ◦ Jn for all n ≥ 2 and i < n,

where s is the derived map of r.
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Proof. We proceed by induction on n. Assume first that n = 2 and i = 1. By
Remark 2.1(1), the fact that ∆ is cocommutative and τ−1 is a coalgebra homomor-
phism, and Propositions 2.3 and 3.15, we have:

r

=
r

=

r

=

r

=

⊲

=

⊲

.

By Proposition 3.9, this proves that J2 ◦ r = s ◦J2. Assume now that, by inductive
hypothesis, Jn ◦ r12 = s12 ◦ Jn. Let τ̃2 be as in Proposition 3.17. It is easy to see
that

Qn+1 = (τ̃2 ⊗Qn−1) ◦ (X2 ⊗ cn−2,1 ⊗X) ◦ (Xn ⊗ ∆).

Combining this with Propositions 3.14 and 3.17, we obtain

Jn+1 ◦ r12 = Qn+1 ◦ (Jn ⊗X) ◦ (r ⊗Xn−1)

= (τ̃2 ⊗Qn−1) ◦ (X2 ⊗ cn−2,1 ⊗X) ◦ (Xn ⊗ ∆) ◦ (Jn ⊗X) ◦ (r ⊗Xn−1)

= (τ̃2 ⊗Qn−1) ◦ (X2 ⊗ cn−2,1 ⊗X) ◦ (Xn ⊗ ∆) ◦ (s⊗Xn−1) ◦ (Jn ⊗X)

= (τ̃2 ⊗Qn−1) ◦ (s⊗ cn−2,1 ⊗X) ◦ (Xn ⊗ ∆) ◦ (Jn ⊗X)

= (s⊗Xn−1) ◦ (τ̃2 ⊗Qn−1) ◦ (X2 ⊗ cn−2,1 ⊗X) ◦ (Xn ⊗ ∆) ◦ (Jn ⊗X)

= (s⊗Xn−1) ◦Qn+1 ◦ (Jn ⊗X)

= s12 ◦ Jn+1,

Finally, assume that the result is true for n and that 1 < i ≤ n. As in the proof
of Lemma 3.18, for every m > j we will write rmj,j+1 in order to indicate that the
domain of rj,j+1 is Xm. By inductive hypothesis and Lemma 3.18,

Jn+1 ◦ rn+1
i,i+1 = (X ⊗ Jn) ◦ αn+1 ◦ rn+1

i,i+1

= (X ⊗ Jn) ◦ rn+1
i,i+1 ◦ αn+1

= (X ⊗ Jn) ◦ (X ⊗ rni−1,i) ◦ αn+1

= (X ⊗ rni−1,i) ◦ (X ⊗ Jn) ◦ αn+1

= rn+1
i,i+1 ◦ Jn+1,

as we want. �

Theorem 3.20. If (X, r) is a non-degenerate braided set, then so is (X, s).

Proof. By Theorem 3.19, we have

s12 ◦ s23 ◦ s12 = J3 ◦ r12 ◦ r23 ◦ r12 ◦ J−1
3 = J3 ◦ r23 ◦ r12 ◦ r23 ◦ J−1

3 = s23 ◦ s12 ◦ s23.

Thus s satisfies the braid equation. Moreover, by Proposition 3.7 and Lemma 3.8,
we know that s is invertible and that

(X ⊗ s−1) ◦ (X ⊗ c) ◦ (∆ ⊗X) = (∆ ⊗X) ◦ s−1 ◦ c.
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Using again Lemma 3.8 and this equality we obtain that

s

s̄

=

s

s̄

= ǫ⊗X and
s̄

s

=

s̄

s

= ǫ⊗X ,

where s̄ denotes s−1. Since (ǫ ⊗ X) ◦ s= X ⊗ ǫ this proves that (X, s) is a non-
degenerate pair. �

Remark 3.21. By Proposition 3.15, if (X, r) is a non-degenerate involutive braided
set, then ⊲ = ǫ ⊗ X or, equivalently, s = c. Conversely, if s = c, then from
Proposition 3.19 we obtain J2 ◦r2 ◦J−1

2 = c2 = id, which implies that r is involutive.

4 Braces, invertible cocycles and braiding operators

In this section we adapt the notions of brace, braiding operator and invertible
cocycle to the setting of symmetric monoidal category, and we prove that the ob-
tained categories are equivalent. In the diagrammatic proofs the map m◦ will be
represented by the symbol .

4.1 Braces

Braces were introduced by Rump in [16] to study involutive set-theoretical solutions.
Skew braces are generalizations useful for studying non-involutive set-theoretical
solutions [10].

Definition 4.1. A brace in C is a pair (A,m, η,∆, ǫ, S) and (A,m◦, η◦,∆, ǫ, T ),
of cocommutative Hopf algebras in C with the same comultiplication, such that

m◦ ◦ (A⊗m) = m ◦ (m◦ ⊗ λ) ◦ (A⊗ c⊗A) ◦ (∆ ⊗A2), (4.1)

where λ := m ◦ (S ⊗ m◦) ◦ (∆ ⊗ A). This brace will be denoted by (A,m,m◦). A
morphism of braces is a map in C that is a Hopf algebra morphism for both Hopf
algebra structures.

Remark 4.2. It is easy to see that in any brace in C one has η = η◦.

Fix a cocommutative Hopf algebra A = (A,m, η,∆, ǫ, S). We let Br(A) denote
the full subcategory of the category of braces in C with objects (A,m,m◦). Note
that here m is fixed, but m◦ is not.

Let H be a Hopf algebra in C and let A be an object in C. Recall that A is a
left H-module in C via a map λ : H ⊗A −→ A, named the left action of H on A,
if

λ ◦ (η ⊗A) = id and λ ◦ (m⊗A) = λ ◦ (H ⊗ λ).

Recall also that an algebra A in C is a left H-module algebra if it is a left H-module
such that

λ ◦ (H ⊗ η) = ǫ⊗ η and λ ◦ (H ⊗m) = m ◦ (λ⊗ λ) ◦ (H ⊗ c⊗A) ◦ (∆ ⊗A2),

where λ is the action, and that a coalgebra A in C is a left H-module coalgebra if
A is a left H-module such that

∆ ◦ λ = (λ⊗ λ) ◦ ∆H⊗C and ǫ ◦ λ = ǫ⊗ ǫ,

where λ is the action. Recall finally that A is a right H-module in C via a map
ρ : A ⊗ H −→ A, named the right action of H on A, if it is a left H-module in C
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via ρ◦ c. The notions of right H-module-algebra and right H-module coalgebra are
defined in the same way.

Proposition 4.3. If (A,m,m◦) is a brace in C , then the algebra (A,m) is a left
(A,m◦,∆)-module algebra and module coalgebra via λ := m ◦ (S ⊗m◦) ◦ (∆ ⊗A).

Proof. Since λ is a composition of coalgebra morphisms, it is a coalgebra morphism.
Moreover, it is easy to check that λ is unitary and that λ ◦ (A ⊗ η) = ǫ ⊗ η.
Consider Hom(A3, A) endowed with the convolution product associated with the
comultiplication ∆A3 and the multiplication m. Multiplying by S ⊗ ǫ2 on the left
the equality that appears in Definition 4.1 we obtain that λ is compatible with m.
Next we prove the associativity of the action. We claim that

m ◦ (S ◦m◦ ⊗A) ◦ (A⊗ c) ◦ (∆ ⊗A) = λ ◦ (A⊗ S). (4.2)

Consider Hom(A2, A) endowed with the convolution product associated with the
comultiplication ∆A2 and the multiplication m. Let

f := m ◦ (S ◦m◦ ⊗A) ◦ (A⊗ c) ◦ (∆ ⊗A) and g := λ ◦ (A⊗ S).

We must show that f = g. By equality (4.1) we have m0 ⋆ g = A⊗ ǫ. So

f = (S ◦m◦) ⋆ (A⊗ ǫ) = (S ◦m◦) ⋆ m◦ ⋆ g = g,

where the first equality is trivial and the third one follows from the fact that S◦m0 is
the convolution inverse of m◦ (because m◦ is a coalgebra morphism). This finishes
the proof of the claim. The associativity of the action follows now from the fact
that

λ
= S =

S
=

S S
= S

S

,

where the first equality holds by definition; the second one, since m◦ is a coalgebra
morphism; the third one, since S is the antipode of (A,m,∆); and the last one,
since c in natural, ∆ is coassociative and m is associative; and

λ

λ
=

S

S

=

S

S S =
S S

S
= S

S

,

where the first equality holds by definition; the second one, by (4.1); the third
one, since c in natural, ∆ is coassociative and m is associative; and the last one,
by (4.2). �

Remark 4.4. It follows from the definition that in any brace (A,m,m◦)

m◦ = m ◦ (A⊗ λ) ◦ (∆ ⊗A). (4.3)
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Using this formula and Proposition 4.3 one obtains that

m = m◦ ◦ (A⊗ λ) ◦ (A⊗ T ⊗A) ◦ (∆ ⊗A). (4.4)

Remark 4.5. In Proposition 4.3 we proved in particular that

λ ◦ (A⊗m) = m ◦ (λ⊗ λ) ◦ (A⊗ c⊗A) ◦ (∆ ⊗A2). (4.5)

Conversely, a pair (A,∆, ǫ,m, η, S) and (A,∆, ǫ,m◦, η◦, T ) of cocommutative Hopf
algebras with the same comultiplication, such that the map λ : A ⊗ A → A, given
by

λ := m ◦ (S ⊗m◦) ◦ (∆ ⊗A),

satisfies Equality (4.5), is a brace in C (consequently, η = η◦).

Proposition 4.6. If (A,m,m◦) is a brace in C , then A is a right (A,m◦)-module
via ρ := m◦ ◦ (T ⊗ A) ◦ (λ ⊗ m◦) ◦ ∆A2 . Furthermore ρ is a coalgebra morphism
such that ρ ◦ (η ⊗A) = η ⊗ ǫ.

Proof. A direct computation using Proposition 4.3 shows that

ρ ◦ (A⊗ η) = id and ρ ◦ (η ⊗A) = η ⊗ ǫ.

Moreover, ρ is a coalgebra morphism because it is a composition of coalgebra mor-
phisms. Since

m = m◦ ◦ (A⊗ λ) ◦ (A⊗ T ⊗A) ◦ (∆ ⊗A),

in order to prove that ρ is an action it suffices to note that

ρ

ρ
=

λ

T

λ

T

=

λ

T

λ

T

=

λ

T

λ

λ

T

=

λ

T

λ

λ

T

,

where the first equality holds by definition; the second one, since m◦ is a coalgebra
morphism and c is a natural isomorphism; the third one, since m◦ is associative
and λ is an action; and the fourth one, since T is a coalgebra and an algebra
antimorphism and c is a natural isomorphism; and that

ρ
= λ

T

=

λ

T

=
λ

λ

T

=

λ

λ

T

,
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where the first equality holds by definition; the second one, since m◦ is a coalgebra
morphism, c is a natural isomorphism and m◦ is associative; the third one, by Re-
mark 4.4; and the last one, since (A,m) is an (A,m◦,∆)-module algebra, ∆A2 is
coassociative and m◦ is a coalgebra morphism. �

Proposition 4.7. For each brace (A,m,m◦) in C the following equalities hold:

m◦ ◦ (ρ⊗T )◦ (A⊗∆) = m◦ ◦ (T ⊗A)◦ (λ⊗A)◦ (A⊗ c)◦ (∆⊗A) = T ◦m◦ (T ⊗A).

Proof. In fact, we have

ρ T = λ

T
T

=
λ

T

=

T

λ

T

T

=
T

T

,

where the first equality follows from the definition of ρ; the second one, since ∆ is
coassociative, m◦ is associative and T is the antipode of (A,m◦,∆); the third one,
since c is a natural isomorphism and T is an algebra and a coalgebra antihomomor-
phism; and the last one, from equality (4.4). �

4.2 Invertible cocycles

In [7, 18] set-theoretical solutions of the Yang–Baxter equations were classified in
terms of bijective 1-cocycles. In this subsection we adapt this concept to the setting
of symmetric categories.

Definition 4.8. Let H and A be cocommutative Hopf algebras in C an let λ be a left
action of H on A. Assume that A is a left H-module algebra and a left H-module
coalgebra via λ. An invertible 1-cocycle is a coalgebra isomorphism π : H → A such
that

π ◦m = m ◦ (π ⊗ λ) ◦ (∆ ⊗ π). (4.6)

It is easy to see that this equality is equivalent to

λ ◦ (H ⊗ π) = m ◦ (S ⊗ π) ◦ (π ⊗m) ◦ (∆ ⊗H). (4.7)

A morphism from an invertible 1-cocycle π : H → A to an invertible 1-cocycle
ξ : K → B is a pair (f, g) of Hopf algebra morphism, f : H → K and g : A → B,
such that

ξ ◦ f = g ◦ π and g ◦ λ = λ ◦ (f ⊗ g),

where λ denotes the actions.

Fix a cocommutative Hopf algebra A in C . We let C(A) denote the full subcat-
egory of invertible 1-cocycles in C whose objects are the invertible 1-cocycles with
codomain A.

4.3 Braiding operators

In [13] Lu, Yan and Zhu introduced braiding operators to study non-degenerate
set-theoretical solutions. Takeuchi noticed that braiding operators are equivalent
to certain matched pairs of groups, see [19]. We now extend these ideas to our
general setting of non-degenerate solutions in symmetric categories.
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Definition 4.9. A braiding operator in C is a pair (A, r), where A is a cocommu-
tative Hopf algebra in C and r : A ⊗ A → A ⊗ A is a coalgebra isomorphism such
that the following equalities hold:

m ◦ r = m, (4.8)

r ◦ (m⊗A) = (A⊗m) ◦ (r ⊗A) ◦ (A⊗ r), (4.9)

r ◦ (A⊗m) = (m⊗A) ◦ (A⊗ r) ◦ (r ⊗A), (4.10)

r ◦ (η ⊗A) = A⊗ η, (4.11)

r ◦ (A⊗ η) = η ⊗A, (4.12)

where m is the multiplication map of A and η is the unit of A. A morphism from
a braiding operator (A, r) to a braiding operator (K, s) is Hopf algebra morphism
f : A → K such that (f ⊗ f) ◦ r = s ◦ (f ⊗ f).

Given a braiding operator (A, r) we will denote by λ and ρ the first and second
coordinates of r respectively.

Proposition 4.10. Let A be a Hopf algebra, let r : A2 → A2 be a coalgebra iso-
morphism and let λ and ρ be the first and second coordinates of r. Then, condi-
tions (4.9)–(4.11) are satisfied if and only if λ is a left action, ρ is a right action
and the following equalities hold:

(1) λ ◦ (A⊗ m) = m ◦ (A⊗ λ) ◦ (r ⊗A).

(2) ρ ◦ (m⊗A) = m ◦ (ρ⊗A) ◦ (A⊗ r).

(3) λ ◦ (A⊗ η) = η ◦ ǫ.

(4) ρ ◦ (η ⊗A) = η ◦ ǫ.

Proof. By Corollary 1.3. �

Fix a cocommutative Hopf algebra A in C . We let Op(A) denote the full sub-
category of braiding operators (A, r) with underlying Hopf algebra A.

The proof of the following theorem is based on [13, Theorem 1].

Theorem 4.11. If (A, r) is a braiding operator in C , then r is a solution of the
Yang–Baxter equation.

Proof. Since r12 ◦ r23 ◦ r12 and r23 ◦ r12 ◦ r23 are coalgebra morphisms, by Proposi-
tion 1.2 we can write

r12 ◦ r23 ◦ r12 = (f1 ⊗ f2 ⊗ f3) ◦ (∆A3 ⊗A3) ◦ ∆A3 (4.13)

and

r23 ◦ r12 ◦ r23 = (g1 ⊗ g2 ⊗ g3) ◦ (∆A3 ⊗A3) ◦ ∆A3 , (4.14)

where the fi and the gi are the coordinate maps of r12 ◦ r23 ◦ r12 and r23 ◦ r12 ◦ r23,
respectively. The following computation shows that f3 = g3:

r

r

r
=

r

r
= r =

r

r
=

r

r

r =

r

r

r
.

By symmetry, f1 = g1. Using Equalities (4.13) and (4.14), the associativity of m
and that m ◦ r = m, it is easy to check that

f1 ⋆ f2 ⋆ f3 = m ◦ (m⊗A) = f1 ⋆ g2 ⋆ f3,

where ⋆ denotes the convolution product in Hom(A3, A). Since f1 and f3 are
convolution invertible (because they are coalgebra morphisms), f2 = g2. �



20 JORGE A. GUCCIONE, JUAN J. GUCCIONE, AND LEANDRO VENDRAMIN

Proposition 4.12. For each braiding operator (A, r) in C , we have

(A⊗ r) ◦ (r ⊗A) ◦ (A⊗ S ⊗ id) ◦ (A⊗ ∆) = (S ⊗A2) ◦ (∆ ⊗A) ◦ r ◦ J−1
2

and

(r ⊗A) ◦ (A⊗ r) ◦ (A⊗ S ⊗A) ◦ (∆ ⊗A) = (A2 ⊗ S) ◦ (A⊗ ∆) ◦ r ◦K−1
2 ,

where J2 := (ρ⊗A) ◦ (A⊗ ∆) and K2 := (A ⊗ λ) ◦ (∆ ⊗A).

Proof. By symmetry it suffices to prove the first equality. Let

F := (A⊗ r) ◦ (r ⊗A) ◦ (A⊗ S ⊗ id) ◦ (A⊗ ∆) ◦ J2

and

G := (S ⊗A2) ◦ (∆ ⊗A) ◦ r.

We must prove that F = G. By Proposition 1.2 we know that

F = (f1 ⊗ f2 ⊗ f3) ◦ (∆A2 ⊗A) ◦ ∆A2 (4.15)

and

G = (g1 ⊗ g2 ⊗ g3) ◦ (∆A2 ⊗A) ◦ ∆A2 , (4.16)

where f1, f2 and f3 are the coordinate maps of F and g1, g2 and g3 are the
coordinate maps of G. A direct computation shows that f1 = g1 and f2 = g2.
On the other hand, using equalities (4.13) and (4.14), the associativity of m and
that m ◦ r = m we obtain that

f1 ⋆ f2 ⋆ f3 = (ǫ⊗A) ◦ r = g1 ⋆ g2 ⋆ g3,

where ⋆ denotes the convolution product in Hom(A2, A). Since f1 and f2 are
convolution invertible (because they are coalgebra morphisms), f3 = g3. Thus,
F = G by Corollary 1.3. �

Corollary 4.13. For each braiding operator (A, r) in C it is true that

r ◦ (S ⊗A) = (A⊗ S) ◦ c ◦Rt2 ,

r ◦ (A⊗ S) = (S ⊗A) ◦ c ◦Rt1

and

r ◦ (S ⊗ S) = (S ⊗ S) ◦ r−1.

Proof. Applying ǫ ⊗ ǫ ⊗ A to the second equality in Proposition 4.12 and using
Proposition 2.3 and the definition of Rt2 we obtain that

(ǫ⊗A) ◦ r ◦ (S ⊗A) = S ◦ ρ ◦ (A⊗ λ−1) ◦ (∆ ⊗A) = (ǫ⊗A) ◦ (A⊗ S) ◦ c ◦Rt2 .

On the other hand

(A⊗ ǫ) ◦ r ◦ (S ⊗A) = λ ◦ (S ⊗A) = λ−1 = (A⊗ ǫ) ◦ (A⊗ S) ◦ c ◦Rt2 ,

where the first equality holds by the definition of λ; the second one, because λ is an
action (see Lemma 4.10); the third one, because ǫ ◦ ρ = ǫ⊗ ǫ; and the last one, by
the definition of Rt2 . So, by Corollary 1.3 the first equality in the statement is true.
The second one can be proved in a similar way. The last equality follows easily
from the first two equalities and the fact that Rt1 is the compositional inverse of
Rt2 . �



YANG–BAXTER OPERATORS IN SYMMETRIC CATEGORIES 21

4.4 Braces, braiding operators and invertible cocycles

Throughout this subsection for each braiding operator (A, r) in C we will denote
by m◦ and T the multiplication map and the antipode of A, respectively.

Theorem 4.14. For each cocommutative Hopf algebra A in C , the categories
Br(A), C(A) and Op(A) are equivalent.

We shall need the following lemmas.

Lemma 4.15. Let (A, r) be a braiding operator in C . Set

m := m◦ ◦ (A⊗ λ) ◦ (A⊗ T ⊗A) ◦ (∆ ⊗A).

The following facts hold:

(1) λ and ρ are coalgebra morphisms.

(2) m◦ = m ◦ (A⊗ λ) ◦ (∆ ⊗A).

(3) ρ = m◦ ◦ (λ⊗A) ◦ (∆ ⊗m◦) ◦ ∆A2 .

(4) m◦ ◦ (ρ⊗ T ) ◦ (A⊗ ∆) = T ◦m ◦ (T ⊗A).

(5) Let (A, r′) be a braiding operator with underlying Hopf algebra A. If the
first coordinate maps of r and r′ coincide, then r = r′.

Proof. In order to prove that λ and ρ are coalgebra morphisms it suffices to note
that they are composition of coalgebra morphisms. The equalities

λ =

λ

T

λ

=
λT

λ
=

T

λ

= m◦,

prove that the equality in item (2) holds. Item (3) is true, since

ρ
=

λ ρ

T

= λ λ
ρ

T

= λ r

T
= λ

T

where the first equality follows using that λ is a coalgebra morphism and T is the
antipode of (A,m◦,∆); the second one, using again that λ is a coalgebra morphism;
the third one, using that ∆A2 is coassociative, m◦ is associative and Proposition 1.2;
and the last one holds since m◦r = m. Item (4) follows now mimicking the proof of
Proposition 4.7. Finally we prove item (5). By item (3) if the first coordinates of r
and r′ coincide, then the second coordinates of r and r′ also coincide. Consequently,
by Corollary 1.3, we have r′ = r. �

Theorem 4.16. For each braiding operator (A, r) in C , the tuple (A,m, η,∆, ǫ, S),
where m is as in Lemma 4.15, η := η◦ and S := λ ◦ (A⊗ T ) ◦ ∆, is a Hopf algebra.
Moreover (A,m,m◦) is a brace.
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Proof. By Proposition 4.10 we know that λ is an action. A direct computation
using this and that (A,∆,m◦, T ) is a Hopf algebra shows that m ◦ (η ⊗ A) = id,
while from Proposition 4.10(3) follows easily that m◦ (A⊗η) = id. Moreover, since
m is a composition of coalgebra morphisms, we have

∆ ◦m = (m⊗m) ◦ ∆A2 and ǫ ◦m = ǫ⊗ ǫ. (4.17)

It remains to prove that m is associative and S is the antipode of (A,∆,m). Using
the definition of m, Proposition 4.10(1), the associativity of m◦, Proposition 1.2,
that T is a coalgebra homomorphism, the coassociativity of ∆, that λ is an action,
Lemma 4.15(4) and the first equality in (4.17), we obtain that

=

T

λ

T

λ

=

T T

λr

λ

=

T T T

λ ρ

λ

= T

λ

= T

λ

= ,

which proves that m is associative. Let us check that S is the antipode of (A,m,∆).
By the definitions of m and S, the coassociativity of ∆ and the facts that λ is an
action and T is the antipode of (A,m◦,∆), we have

.

S =
S

T

λ

=
λ

TT

λ

= T T

λ

= T = η ◦ ǫ.

So, S is a right inverse of idA respect to the convolution product constructed from
∆ and m. In order to finish the proof it is enough to show that S is right invertible
respect to the same convolution product. But this is true since

S ⋆ S2 = (id ⋆S) ◦ S = η ◦ ǫ ◦ S = η ◦ ǫ,

where the first and last equality follow from the fact that S is a coalgebra homo-
morphism. Finally equality (4.1) is true, because

=

T

λ
=

T

λ =

T

λ

λ
=

T

λ

= λ

where the first equality holds by the definition of m; the second one, by the associa-
tivity of m◦; the third, by Lemma 4.15(2); the fourth one, since m◦ is a coalgebra
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morphism and λ is an action; and the last one, since ∆ is coassociative, m◦ is
associative and T is the antipode of (A,m◦,∆). �

Proof of Theorem 4.14. We first prove the equivalence between Br(A) and C(A).
Let (A,m,m◦) be a brace in C . By Proposition 4.3, we know that (A,m) is a
left (A,m◦,∆)-module algebra and a left (A,m◦,∆)-module coalgebra via a same
action λ. Moreover, Equality (4.3) shows that id: (A,m◦) → (A,m) is an invertible
1-cocycle. Furthermore, if f is a morphism between braces over A in C , then (f, f)
is a morphism of invertible 1-cocycles, since f is a Hopf algebra morphism for both
structures. Clearly the correspondence F : Br(A) → C(A) given by F (A,m,m◦) :=

(A,m◦)
id
−→ (A,m) and F (f) := (f, f) is a functor. Conversely let π : H → A

be an invertible 1-cocycle. We define a new Hopf algebra structure over A with
multiplication

m◦ := π ◦m ◦ (π−1 ⊗ π−1),

and the same coalgebra structure as that of A. The antipode is

T := π ◦ SH ◦ π−1.

Clearly λA := λ◦ (π−1 ⊗A) turns A into a left (A,m◦,∆)-module algebra. Further-
more, using Equality (4.7) it is easy to check that

λA = m ◦ (S ⊗m◦) ◦ (∆ ⊗A).

So, by Remark 4.5 the tuple (A,m,m◦) is a brace in C . For a morphism (f, g) from
π : H → A to ξ : K → A, the calculation

g ◦m◦ = g ◦ π ◦mH ◦ (π−1 ⊗ π−1)

= ξ ◦ f ◦mH ◦ (π−1 ⊗ π−1)

= ξ ◦mK ◦ (f ⊗ f) ◦ (π−1 ⊗ π−1)

= ξ ◦mK ◦ (ξ−1 ⊗ ξ−1) ◦ (g ⊗ g)

= m◦ ◦ (g ⊗ g)

shows that g is brace morphism. Thus the correspondence G : C(A) → Br(A) given

by G(H
π
−→ A) := (A,m,m◦) and G(f, g) := g is a functor. Clearly G ◦F = idBr(A)

and F ◦G ≃ idC(A).

Now we prove the equivalence between Br(A) and Op(A). Let (A,m,m◦) be a
brace in C and let r : A⊗A → A⊗A be given by r := (λ⊗ ρ) ◦ ∆A2 , where λ and
ρ are the maps introduced in Propositions 4.3 and 4.6, respectively. Clearly r is a
coalgebra morphism. We claim that r is a braiding operator of (A,m◦, η,∆, ǫ, T ).
First note that

r =
λ ρ

=
λ

λ

T

=

λ λ

T

=
λ

T

(4.18)

where the first equality holds by the definition of r; the second one, by the definition
of ρ; the third one, since ∆A2 is coassociative; and the fourth one, since λ is a
coalgebra morphism. Combining this with the fact that m◦ is associative and T is
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the antipode of (A,m◦,∆), we obtain that m◦ ◦ r = m◦. Moreover

r =
λ

T

=
S

T

=

S

T

=

S

T

.

So, r is composition of three coalgebra isomorphisms, and then it is a coalgebra
isomorphism. Thus, by Proposition 4.10 in order to finish the proof of the claim it
suffices to check that λ is a left action, ρ is a right action and items (1)–(4) of that
lemma are fulfilled. By Propositions 4.3 and 4.6 we know that λ and ρ are actions
and items (3) and (4) hold. Item (1) also holds, since

r

λ =

r

λ

λ = λ

λ

= λ

λ

λ =
λ

λ

=
λ

,

where the first and last equalities follow from (4.3); the second one, since, by Corol-
lary 1.3,

(A⊗ λ) ◦ (∆ ⊗ λ) ◦ (r ⊗A) = (A⊗ λ) ◦ (λ⊗m◦ ⊗A) ◦ (∆A2 ⊗A);

and the third and fourth equalities follow from Proposition 4.3. Finally, item (2)
also holds, since

r

ρ =

λ

T

ρ

=

λ

λ

T

=
λ

T

= λ

T

=
ρ

,

where the first equality follows from (4.18); the secong one, from Proposition 4.7;
the third, using that c is natural, m◦ is associative and λ is an action; the fourth
one, using that m◦ is a coalgebra morphism; and the last one, by the definition
of ρ. This finishes the proof of the claim. An easy computation shows that for
each brace morphism f , the map f is a braiding operator morphism. Clearly the
correpondence U : Br(A) → Op(A), given by U(A,m,m◦) := (A, r) and U(f) := f ,
is a functor.

We now construct a functor V : Op(A) → Br(A). By Theorem 4.16, from a
braiding operator (A, r) we obtain a brace (A,m,m◦). Moreover it is clear that
each braiding operator morphism is a brace morphism. Thus the correspondence
V : Op(A) → Br(A), given by V (A, r) := (A,m,m◦) and V (f) := f , is a functor.

Using equality (4.3) of Remark 4.4 it is easy to check that,

(A⊗ ǫ) ◦ r = m ◦ (S ⊗m◦) ◦ (∆ ⊗A),

for each braiding operator (A, r). In other words, the left actions determined by
(A, r) and V (A, r) coincide. By Lemma 4.15(5), this implies that U ◦ V = id. On
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the other hand, by Equality (4.4), we have V ◦U(A,m,m◦) = (A,m,m◦), for each
brace (A,m,m◦) in C . Consequently V ◦ U = id. �

5 A universal construction

We now generalize the universal construction of [13, Theorem 9]. This construction
generalizes [7, Theorem 2.9]. We assume that C is a symmetric monoidal category
with countable colimits and that the tensor product commutes with colimits.

Let (X, r) be a non-degenerate pair in C and let Z = X
∐
SX , where SX = X .

Let S : Z → Z be the morphism induced by

X
=
−→ SX

ιSX−−→ Z and SX
=
−→ X

ιX−−→ Z,

where ιSX and ιX are the canonical morphism. Over Z there is a unique comultipli-
cation such that ιX is a coalgebra homomorphism and S is a coalgebra isomorphism.

Let re : Z ⊗ Z → Z ⊗ Z be the map induced by

r1 : X ⊗X −→ X ⊗X, r1 := r, (5.1)

r2 : X ⊗ SX −→ SX ⊗X, r2 := (S ⊗X) ◦ c ◦Rt1 ◦ (X ⊗ S) (5.2)

r3 : SX ⊗X −→ X ⊗ SX, r3 := (X ⊗ S) ◦ c ◦Rt2 ◦ (S ⊗X) (5.3)

r4 : SX ⊗ SX −→ SX ⊗ SX, r4 := (S ⊗ S) ◦ c ◦ r−1 ◦ c ◦ (S ⊗ S). (5.4)

Proposition 5.1. Let X be a cocommutative coalgebra in C , let r be a coalgebra
automorphism of X2 and let r̃ := c ◦ r−1 ◦ c. The following assertions hold:

(1) If (X, r) is a braided set, then so is (X, r̃).

(2) If (X, r) is a non-degenerate pair in C , then so is (X, r̃). Moreover the

maps R̃t1 and R̃t2 , defined as the maps Rt1 and Rt2 of r̃, satisfy R̃t1 = Rt2

and R̃t2 = Rt1 .

Proof. 1) A direct computation shows that

r̃12 ◦ r̃23 ◦ r̃12 = c12 ◦ c23 ◦ c12 ◦ r−1
23 ◦ r−1

12 ◦ r−1
23 ◦ c12 ◦ c23 ◦ c12

and

r̃23 ◦ r̃12 ◦ r̃23 = c23 ◦ c12 ◦ c23 ◦ r−1
12 ◦ r−1

23 ◦ r−1
12 ◦ c23 ◦ c12 ◦ c23.

From this it follows easily that (X, r̃) is a braided set.

2) In order to prove the first assertion in item (2) we must show that

(ǫ⊗X2) ◦ (r̃ ⊗X) ◦ (X ⊗ ∆) and (X2 ⊗ ǫ) ◦ (X ⊗ r̃) ◦ (∆ ⊗X) (5.5)

are isomorphism. Using items (2) and (4) of Remark 2.1, we obtain that

(X2 ⊗ ǫ) ◦ (X ⊗ r̃) ◦ (∆ ⊗X) ◦ c ◦ r = (τ ⊗X) ◦ (X ⊗ ∆) (5.6)

and

(ǫ⊗X2) ◦ (r̃ ⊗X) ◦ (X ⊗ ∆) ◦ c ◦ r = (X ⊗ σ) ◦ (∆ ⊗ X), (5.7)

which clearly imply that the arrows in (5.5) are isomorphisms. Finally the equalities

R̃t1 = Rt2 and R̃t2 = Rt1 follow easily using (5.6) and (5.7) �

Proposition 5.2. If (X, r) is a non-degenerate pair in C , then so is (Z, re).

Proof. By Proposition 2.3 we must prove that

(Z ⊗ σre
) ◦ (∆Z ⊗ Z) and (τre

⊗ Z) ◦ (Z ⊗ ∆Z)

are isomorphisms. Using that (X, r) and (X, r̃) are non-degenerate pairs and the
properties of S we can see that it suffices to prove that

(ǫ⊗X2) ◦ (c ◦Rti ⊗X) ◦ (X ⊗ ∆) and (X2 ⊗ ǫ) ◦ (X ⊗ c ◦Rti) ◦ (∆ ⊗X), (5.8)
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where i ∈ {1, 2}, are isomorphism. We prove that the arrows in (5.8) are isomor-
phisms when i = 1 and leave the case i = 2, which is similar, to the reader. Since,
by Definition 2.12

Rt1 = (τ−1 ⊗X) ◦ (X ⊗ ∆) ◦ (X ⊗ σ) ◦ (∆ ⊗X),

we have (ǫ⊗X) ◦Rt1 = τ−1 and (X ⊗ ǫ) ◦Rt1 = σ ◦ (τ−1 ⊗X) ◦ (X ⊗ ∆). Hence,
for i = 1, the arrows in (5.8) become

(τ−1 ⊗X) ◦ (X ⊗ ∆) and (X ⊗ σ) ◦ (X ⊗ τ−1 ⊗X) ◦ (∆ ⊗ ∆),

respectively. The first one is an isomorphism by Proposition 2.3, while the second
one also is by Lemma 3.6. �

Proposition 5.3. If (X, r) is a non-degenerate braided set in C , then so is (Z, re).

In order to prove this proposition we shall need the following two lemmas.

Lemma 5.4. If (X, r) is a non-degenerate braided set in C , then

(X ⊗ r) ◦ (c ◦Rt1 ⊗X) ◦ (X ⊗ c ◦Rt1) = (c ◦Rt1 ⊗X) ◦ (X ⊗ c ◦Rt1) ◦ (r ⊗X)

and

(r ⊗X) ◦ (X ⊗ c ◦Rt2 ) ◦ (c ◦Rt2 ⊗X) = (X ⊗ c ◦Rt2) ◦ (c ◦Rt2 ⊗X) ◦ (X ⊗ r).

Proof. By symmetry we only must prove the first equality. Let F and G be the
endomorphisms of X3 defined by

F := (τ ⊗ τ ⊗X) ◦ (X ⊗ σ ⊗X ⊗ ∆) ◦ (X ⊗ ∆X2 )

and

G := (c⊗X) ◦ (X ⊗ c) ◦ (X2 ⊗ σ) ◦ (X3 ⊗ σ) ◦ (∆X2 ⊗X),

respectively. In order to prove the lemma it suffices to show that F is an invertible
map and that

(c ◦Rt1 ⊗X) ◦ (X ⊗ c ◦Rt1 ) ◦ F = G (5.9)

and

(c ◦Rt1 ⊗X) ◦ (X ⊗ c ◦Rt1 ) ◦ (r ⊗X) ◦ F = (X ⊗ r) ◦G. (5.10)

Since ∆ is coassociative and cocommutative, σ is a coalgebra homomorphism,

Rt1 ◦ (τ ⊗X) ◦ (X ⊗ ∆) = (X ⊗ σ) ◦ (∆ ⊗X), (5.11)

and c is a natural isomorphism, we have

Rt1

=

Rt1

=

Rt1

= = .
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Using this, equality (5.11) and that c is a natural morphism, we obtain

Rt1

Rt1

=

Rt1

=

Rt1

=

Rt1

= ,

which proves equality (5.9) and that F is invertible, since (c◦Rt1 ⊗X)◦(X⊗c◦Rt1)
and G are invertible morphisms. On the other hand, by the coassociativity of ∆
and Remark 2.5 we have

r

=
r

r

=

r

r
=

r

=

r

.

Using this, equality (5.9), that r is a coalgebra morphism, that c is natural and
Remark 2.5, we obtain

r

Rt1

Rt1

=

r

Rt1

Rt1

=

r

=

r r

=

r

,

which proves equality (5.10). �

Lemma 5.5. If (X, r) is a non-degenerate braided set in C , then

(c ◦Rt2 ⊗X) ◦ (X ⊗ r) ◦ (c ◦Rt1 ⊗X) = (X ⊗ c ◦Rt1) ◦ (r ⊗X) ◦ (X ⊗ c ◦Rt2 ).

Proof. Let G be the automorphism of X3 defined by

G := (τ ⊗X2) ◦ (X ⊗ ∆ ⊗X) ◦ (X2 ⊗ σ) ◦ (X ⊗ ∆ ⊗X).

In order to prove the lemma it suffices to show that

(c◦Rt2 ⊗X)◦ (X⊗ r)◦ (c◦Rt1 ⊗X)◦G = (X⊗ c◦Rt1)◦ (r⊗X)◦ (X⊗ c◦Rt2)◦G.

By equality (5.11) and the fact that c is natural, ∆ is coassociative and cocommu-
tative, and σ is a coalgebra morphism, we have

Rt1

r

= = = ,
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while by Remarks 2.5 and 2.1, the definition of Rt2 and the fact that σ is a coalgebra
morphism, we have

Rt2

=

r

Rt2

=

r

Rt2

=

r

=

r

=

r

.

Consequently,

Rt1

r

Rt2

= r =

r

=

r

,

where the second equality follows from Remark 2.5, and the third one, from the fact
that c is a natural isomorphism and ∆ is cocommutative. But, by the naturalness
of c and the fact that ∆ is cocommutative,

r =

r

=

r

= r ,

and therefore

Rt1

r

Rt2

=

r

=

r

= Rt2

r

Rt1

,

where the second equality holds by the coassociativity of ∆X3 and Remark 2.5, and
the last one equality follows from the first one by simmetry. �

Proof of Proposition 5.3. Using Remark 2.14 one proves that re is bijective. More-
over by Proposition 5.2 the pair (Z, re) is non-degenerate. Clearly re satisfies the
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braid equation on X ⊗X ⊗X , and from Proposition 5.1(1) it follows that re satis-
fies the braid equation on SX ⊗ SX ⊗ SX . Moreover, using Lemma 5.4 we obtain
that re satisfies the braid equation on X ⊗X ⊗ SX and SX ⊗X ⊗X , while using
Lemma 5.5 we obtain that re also satisfies the braid equation on X ⊗ SX ⊗ X .
Finally the cases SX ⊗ SX ⊗ X and X ⊗ X ⊗ SX follows applying Lemma 5.4,
with r replaced by r̃, and taking into account Proposition 5.1(2), while the case
SX⊗X ⊗SX is similar, but we must apply Lemma 5.5 instead of Lemma 5.4. �

Proposition 5.6. Let (X, r) be a non-degenerate braided set in C . There exists a
cocommutative Hopf algebra H and a morphism of coalgebras γ : X → H such that
mH ◦ (γ ⊗ γ) = mH ◦ (γ ⊗ γ) ◦ r, which satisfies the following universal property:
If K is a cocommutative Hopf algebra and f : X → K is a morphism of coalgebras
such that mK ◦ (f ⊗ f) = mK ◦ (f ⊗ f) ◦ r, then f factorizes univocally through γ.

Proof. Let  : X → L be the free Hopf algebra over the coalgebra X (see Proposi-
tion 1.8 and Remark 1.9) and let π : L → H be the coequalizer of

m ◦ (m⊗ L) ◦ (L⊗m ◦ (⊗ ) ◦ r ⊗ L) and m ◦ (m⊗ L) ◦ (L⊗m ◦ (⊗ ) ⊗ L),

where m denotes the multiplication map of L. By Remark 1.6 and Corollary 1.7,
the map γ := π ◦  satisfies the required conditions. �

Definition 5.7. Let (X, r) be a non-degenerate braided set in C . The pair (H, γ)
constructed in Proposition 5.6 is called the structure Hopf algebra of (X, r).

The following theorem is one of the main results of this paper.

Theorem 5.8. Let (X, r) be a non-degenerate braided set in C and let (H, γ) be
the structure Hopf algebra of (X, r). There is a unique braiding operator (H, rH)
such that

rH ◦ (γ ⊗ γ) = (γ ⊗ γ) ◦ r.

Furthermore, if (K, rk) is a braiding operator and f : (X, r) → (K, rK) is a mor-
phism of braided sets in C , then there is a unique braided operator morphism φ

from (H, rH) to (K, rK) such that f = φ ◦ γ.

In order to prove this theorem we shall need the following lemma.

Lemma 5.9. Let (X, r) be a non-degenerate braided set in C . The following equal-
ities hold:

(X ⊗ r2) ◦ (r ⊗ S) ◦ (X ⊗ ∆) = (X ⊗ S ⊗X) ◦ (∆ ◦ σ ⊗X) ◦ (X ⊗ c) ◦ (∆ ⊗X),

(r3 ⊗X) ◦ (S ⊗ r) ◦ (∆ ⊗X) = (X ⊗ S ⊗X) ◦ (X ⊗ ∆ ◦ τ) ◦ (c⊗X) ◦ (X ⊗ ∆),

(X ⊗ r) ◦ (r2 ⊗X) ◦ (X ⊗ S ⊗X) ◦ (X ⊗ ∆) = (S ⊗X2) ◦ (∆ ⊗X) ◦ r ◦ J−1
2 ,

(r ⊗X) ◦ (X ⊗ r3) ◦ (X ⊗ S ⊗X) ◦ (∆ ⊗X) = (X2 ⊗ S) ◦ (X ⊗ ∆) ◦ r ◦K−1
2 ,

where J2 := (τ ⊗X) ◦ (X ⊗ ∆) and K2 := (X ⊗ σ) ◦ (∆ ⊗X).

Proof. We will prove the first and third equalities, since the second and fourth one
are valid by symmetry. For the first one note that by the very definitions of r2

and Rt1 , and the fact that ∆ is coassociative and cocommutative, c is a natural
isomorphism and σ is a coalgebra homomorphism, we have:

r S

r2

=
Rt1

S

=

S

=

S

=

S

=

S

,
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as desired. Since J2 is an isomorphism, in order to prove the third one it suffices
to note that

S

r2

r

=
Rt1

rS

=

rS

=

S

=

S

=

r

S

,

by the definitions of the arrows r2 and Rt1 , and the facts that c is a natural iso-
morphism, ∆ is cocommutative, ∆ and ∆X2 are coassociative, and σ is a coalgebra
homomorphism. �

Proof of Theorem 5.8. Let L := T (Z) be the free bialgebra on Z (where Z is at the
beginning of this section) and let L be the free Hopf algebra over the coalgebra X
(see Proposition 1.8 and Remark 1.9). We define rL : L ⊗ L → L ⊗ L on Z0 ⊗ Zn

and on Zm ⊗ Z0 by c, and on Zm ⊗ Zn with m,n ≥ 1, by

rL := re(m,m+ n) ◦ re(m− 1,m+ n− 1) ◦ · · · ◦ re(2, n+ 2) ◦ re(1, n+ 1),

where re(i, k) := rei,i+1
◦ rei+1,i+2

◦ · · ·◦ rek−1,k
. It is easy to see that rL is a braiding

satisfying (4.9)–(4.12). We assert that rL induces a map r : L ⊗ L → L ⊗ L. Let
π : L → L be the canonical morphism and let f1, f2 and f3 be as at the discussion
below Corollary 1.7. By Remark 1.4 in order to check this it suffices to verify

that (π ⊗ π) ◦ rL coequalize the morphisms f̂1 ⊗ L, f̂2 ⊗ L and f̂3 ⊗ L, where

f̂i := m ◦ (m⊗L) ◦ (L⊗ fi ⊗L), and coequalize the morphisms L⊗ f̂1, L⊗ f̂2 and

L ⊗ f̂3. We leave this task to the reader (use Lemma 5.9). Clearly r is a braiding
satisfying (4.9)–(4.12). Let π : L → H be the canonical epimorphism and let m be
the multiplication map of L. Using the very definition of r and H it is easy to see
that π ◦m ◦ r = π ◦m. Hence

(π ⊗ π) ◦ r ◦ (m⊗ L) = (π ⊗ π) ◦ (L⊗m) ◦ (r ⊗ L) ◦ (L ⊗ r)

= (π ⊗ π) ◦ (L⊗m) ◦ (L⊗ r) ◦ (r ⊗ L) ◦ (L⊗ r)

= (π ⊗ π) ◦ (L⊗m) ◦ (r ⊗ L) ◦ (L ⊗ r) ◦ (r ⊗ L)

= (π ⊗ π) ◦ r ◦ (m⊗ L) ◦ (r ⊗ L),

and similarly

(π ⊗ π) ◦ r ◦ (L⊗m) = (π ⊗ π) ◦ r ◦ (L⊗m) ◦ (L⊗ r).

Consequently r induces a morphism rH : H ⊗ H → H ⊗ H , which is evidently a
braiding that satisfies (4.9)–(4.12). We claim that rH is a coalgebra isomorphism.
It is clear that rH is invertible. Let p : L → H be the canonical epimorphism
p := π ◦ π. In order to prove the claim we must show that

∆H2 ◦ rH ◦ (p⊗ p) = (rH ⊗ rH) ◦ ∆H2 ◦ (p⊗ p) (5.12)

on Zm ⊗ Zn for all m,n ∈ N0. Clearly this is true for m = 0 and n ∈ N0, for
m ∈ N0 and n = 0, and for m = n = 1. Assume that it is true for n = 1 and
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m ∈ N. Then

Zm+1 Z

p p

rH rH

=

Z Zm Z

p p p

rH rH

=

Z Zm Z

p p p

rH

rH

rH

rH

=

Z Zm Z

p p p

rH rH

rH rH

=

Z Zm Z

p p p

rH

rH .

So equality (5.12) holds for all m ∈ N and n = 1, and a similar inductive argument
proves now that (5.12) hold for all m,n ∈ N, which finishes the proof of the claim.

It is now evident that (H, rH) is a braiding operator.
By the very definition of rH and γ it is clear that (γ ⊗ γ) ◦ r = rH ◦ (γ ⊗ γ).
Let us prove the universal property. Since L is the universal cocommutative Hopf

algebra of X , the map f induces a Hopf algebra map f̂ : L → K. The equalities

f̂ ◦m ◦ r = mK ◦ (f̂ ⊗ f̂) ◦ r = mK ◦ rK ◦ (f̂ ⊗ f̂) = mK ◦ (f̂ ⊗ f̂) = f̂ ◦m

show that f̂ induces a Hopf algebra morphism φ : H → K. Clearly f = φ ◦ γ. It
remains to check that

(φ⊗ φ) ◦ rH = rK ◦ (φ ⊗ φ). (5.13)

But using Corollary 4.13 and the definition of rL it is easy to check that

(φ ◦ p⊗ φ ◦ p) ◦ rL = rK ◦ (φ ◦ p⊗ φ ◦ p),

from which Equality (5.13) follows immediately. �

6 Solutions on coalgebras of primitive elements

Let k be a field and let V be a k-vector space. Let X denote the coalgebra with
underlying k-vector space k⊕V , set of primitive elements V and group-like element
1 ∈ k. In this section we study solutions of the braid equation on X .

Proposition 6.1. A k-linear map r : X2 → X2 is a non-degenerate coalgebra
automorphism if and only if r(1 ⊗ 1) = 1 ⊗ 1 and there exist k-linear maps

g : V → V, h : V → V, σV : V 2 → V and τV : V 2 → V

such that

(1) r(1 ⊗ v) = g(v) ⊗ 1 and r(v ⊗ 1) = 1 ⊗ h(v) for all v ∈ V ,

(2) r(v ⊗ w) = 1 ⊗ τV (v ⊗ w) + g(w) ⊗ h(v) + σV (v ⊗ w) ⊗ 1 for all v, w ∈ V ,

(3) the maps g and h are bijective.

Moreover, under these conditions we have

σ(1 ⊗ 1) = τ(1 ⊗ 1) = σ−1(1 ⊗ 1) = τ−1(1 ⊗ 1) = 1,

and

σ(1 ⊗ v) = g(v), σ(v ⊗ 1) = 0, σ(v ⊗ w) = σV (v ⊗ w),

τ(v ⊗ 1) = h(v), τ(1 ⊗ v) = 0, τ(v ⊗ w) = τV (v ⊗ w),

σ−1(1 ⊗ v) = g−1(v), σ−1(v ⊗ 1) = 0, σ−1(v ⊗ w) = −g−1(σV (v ⊗ g−1(w))),

τ−1(v ⊗ 1) = h−1(v), τ−1(1 ⊗ v) = 0, τ−1(v ⊗ w) = −h−1(τV (h−1(v) ⊗ w)).
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for all v, w ∈ V .

Proof. Assume first that r is a non-degenerate coalgebra automorphism. Then
we have r(1 ⊗ 1) = 1 ⊗ 1, because 1 ⊗ 1 is the unique group-like element in X2.
Consequently,

σ(1 ⊗ 1) = τ(1 ⊗ 1) = σ−1(1 ⊗ 1) = τ−1(1 ⊗ 1) = 1, (6.1)

as desired. Moreover, the equality (ǫ⊗ ǫ) ◦ r = ǫ⊗ ǫ implies that

W := (k ⊗ V ) ⊕ (V ⊗ V ) ⊕ (V ⊗ k)

is an invariant vector subspace of X2, and so

σ(W ) ⊆ V and τ(W ) ⊆ V. (6.2)

Let v ∈ V arbitrary and let σ := (X ⊗ ǫ) ◦ r and τ := (ǫ⊗X) ◦ r. By (6.1),

r(1 ⊗ v) = (σ ⊗ τ) ◦ ∆X2 (1 ⊗ v)

= (σ ⊗ τ)(1 ⊗ 1 ⊗ 1 ⊗ v + 1 ⊗ v ⊗ 1 ⊗ 1)

= 1 ⊗ τ(1 ⊗ v) + σ(1 ⊗ v) ⊗ 1

and, similarly,
r(v ⊗ 1) = 1 ⊗ τ(v ⊗ 1) + σ(v ⊗ 1) ⊗ 1.

So, by (6.2) there exist f, g, h, i ∈ Endk(V ) such that

r(1 ⊗ v) = 1 ⊗ f(v) + g(v) ⊗ 1 and r(v ⊗ 1) = 1 ⊗ h(v) + i(v) ⊗ 1. (6.3)

Thus,

σ(1⊗v) = g(v), σ(v⊗1) = i(v), τ(1⊗v) = f(v) and τ(v⊗1) = h(v). (6.4)

We next prove that g and h are bijective maps and

σ−1(1 ⊗ v) = g−1(v) and τ−1(v ⊗ 1) = h−1(v).

In fact by symmetry it suffices to prove this for g, which follows easily using that

v = (ǫ⊗X)(1 ⊗ v) = σ ◦ (X ⊗ σ−1) ◦ (∆ ⊗X)(1 ⊗ v) = σ(1 ⊗ σ−1(1 ⊗ v))

and

v = (ǫ⊗X)(1 ⊗ v) = σ−1 ◦ (X ⊗ σ) ◦ (∆ ⊗X)(1 ⊗ v) = σ−1(1 ⊗ g(v)).

We claim now that i = 0. In fact, using that

∆X2(v ⊗ w) = 1 ⊗ 1 ⊗ v ⊗ w + 1 ⊗ w ⊗ v ⊗ 1 + v ⊗ 1 ⊗ 1 ⊗ w + v ⊗ w ⊗ 1 ⊗ 1,

we obtain

(σ ⊗ σ) ◦ ∆X2 (v ⊗ w) = 1 ⊗ σ(v ⊗ w) + g(w) ⊗ i(v) + i(v) ⊗ g(w) + σ(v ⊗ w) ⊗ 1.

Consequently, since

∆ ◦ σ(v ⊗ w) = 1 ⊗ σ(v ⊗ w) + σ(v ⊗ w) ⊗ 1,

σ is a coalgebra morphism and g is bijective, we have

w ⊗ i(v) + i(v) ⊗ w = 0 for all v, w ∈ V ,

which implies i = 0 as desired. A similar computation using that h is bijective and
τ is a coalgebra automorphism proves that f = 0. Hence, by (6.3) statement (1)
is satisfied. Let σV : V 2 → V and τV : V 2 → V be the maps induced by σ and τ ,
respectively. Using that r = (σ ⊗ τ) ◦ ∆X2 and equalities (6.1) and (6.4) we obtain
statement (2). Moreover

σ−1(v ⊗ 1) = 0 and τ−1(1 ⊗ v) = 0 for all v ∈ V .

In fact

0 = (ǫ⊗X)(v ⊗ 1) = σ−1 ◦ (X ⊗ σ) ◦ (∆ ⊗X)(v ⊗ 1) = σ−1(v ⊗ 1),
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and the equality for τ is similar. In order to finish this part of the proof only
remains to see that

σ−1(v⊗w) = −g−1(σV (v⊗ g−1(w))) and τ−1(v⊗w) = −h−1(τV (h−1(v) ⊗w)).

But the first equality follows from the fact that

v ⊗ w = (X ⊗ σ−1) ◦ (∆ ⊗X) ◦ (X ⊗ σ) ◦ (∆ ⊗X)(v ⊗ w)

= (X ⊗ σ−1) ◦ (∆ ⊗X) ◦ (X ⊗ σ)(1 ⊗ v ⊗ w + v ⊗ 1 ⊗ w)

= (X ⊗ σ−1) ◦ (∆ ⊗X)(1 ⊗ σV (v ⊗ w) + v ⊗ g(w))

= (X ⊗ σ−1)(1 ⊗ 1 ⊗ σV (v ⊗ w) + 1 ⊗ v ⊗ g(w) + v ⊗ 1 ⊗ g(w))

= 1 ⊗ g−1(σV (v ⊗ w)) + σ−1(v ⊗ g(w)) + v ⊗ w

and the second one is similar.

Conversely, a direct computation shows that if r(1 ⊗ 1) = 1 ⊗ 1 and there are
maps

g : V → V, h : V → V, σV : V 2 → V and τV : V 2 → V,

such that statements (1)–(3) are satisfied, then r is a non-degenerate coalgebra
automorphism. �

Theorem 6.2. Let r : X2 → X2 be a non-degenerate coalgebra automorphism of X2

and let g, h, σV and τV be as in Proposition 6.1. Then r is a solution of the braid
equation if and only if the following conditions are fulfilled:

(1) h ◦ g = g ◦ h,

(2) σV ◦ (g ⊗ g) = g ◦ σV ,

(3) τV ◦ (g ⊗ g) = g ◦ τV ,

(4) σV ◦ (h⊗ h) = h ◦ σV ,

(5) τV ◦ (h⊗ h) = h ◦ τV ,

(6) σV ◦ (V ⊗ g) = g ◦ σV ◦ (h⊗ V ),

(7) τV ◦ (h⊗ V ) = h ◦ τV ◦ (V ⊗ g),

(8) For all u, v, w ∈ V ,

τV (τV (u⊗ v) ⊗ w) = τV (h(u) ⊗ τV (v ⊗ w))

+ h(τV (u ⊗ σV (v ⊗ w))) + τV (τV (u⊗ g(w)) ⊗ h(v)),

σV (u ⊗ σV (v ⊗ w)) = σV (σV (u⊗ v) ⊗ g(w))

+ g(σV (τV (u⊗ v) ⊗ w)) + σV (g(v) ⊗ σV (h(u) ⊗ w))

and

τV (σV (u ⊗ v)⊗ g(w)) + τV (g(v) ⊗ σV (h(u) ⊗ w))

= σV (h(u) ⊗ τV (v ⊗ w))+ σV (τV (u⊗ g(w)) ⊗ h(v)).

Proof. It is easy to check that r satisfies the braid equation on k3, k2 ⊗ V and
V ⊗ k2; that r satisfies the braid equation on k ⊗ V ⊗ k if and only if g ◦ h = h ◦ g;
and that r satisfies the braid equation on V ⊗ k ⊗ V if and only if conditions (6)
and (7) are fulfilled. Moreover a direct computation proves that if g ◦ h = h ◦ g,
then r satisfies the braid equation on k⊗V 2 if and only if conditions (2) and (3) are
fulfilled, and that r satisfies the braid equation on V 2⊗k if and only if conditions (4)
and (5) are fulfilled. Finally, a number of obvious direct calculations proves that if
conditions (1)–(7) are fulfilled, then r satisfies the braid equation on V 3 if and only
if condition (8) holds. �
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Remark 6.3. Under Conditions (2) and (6), items (5) and (7) are equivalent to

σV ◦ (g−1 ⊗ V ) = σV ◦ (h⊗ V ) and τV ◦ (V ⊗ h−1) = τV ◦ (V ⊗ g),

respectively.

Let ς : V 2 → V be a linear map. Following a common terminology in linear
algebra, we call the vector subspaces

radL(ς) := {v ∈ V : ς(v ⊗ w) = 0 for all w ∈ V }

and

radR(ς) := {w ∈ V : ς(v ⊗ w) = 0 for all v ∈ V },

of V 2, the left and the right radicals of ς, respectively.

Remark 6.4. Let r : X2 → X2 be a non-degenerate solution of the braid equation.
From items (2)–(5) of Theorem 6.2 it follows that

f(radL(ς)) = radL(ς) and f(radR(ς)) = radR(ς),

for all f ∈ {g, h} and ς ∈ {σV , τV }. Moreover, by Remark 6.3

Im(g − h−1) ⊆ radR(τV ) ∩ radL(σV ).

Consequently, if radR(τV ) ∩ radL(σV ) = 0, then g = h−1. Finally, by the first and
second equalities in Theorem 6.2(8), if v ∈ radL(σV ) ∩ radR(τV ), then σV (− ⊗ v)
and τV (v ⊗ −) take their values in radL(σV ) ∩ radR(τ). So, r induces a solution

r̄ : X
2

→ X
2
, where X := k ⊕ V

radR(τV )∩radL(σV ) .

Example 6.5. If h = g = idV and σV is an associative multiplication map, then
the map r : X2 → X2 defined by

- r(1 ⊗ 1) = 1 ⊗ 1,

- r(1 ⊗ v) = v ⊗ 1 and r(v ⊗ 1) = 1 ⊗ v for all v ∈ V ,

- r(v ⊗ w) = −1 ⊗ σV (w ⊗ v) + w ⊗ v + σV (v ⊗ w) ⊗ 1 for all v, w ∈ V ,

is a non-degenerate solution of the braid equation. Compare with [6].

Example 6.6. Let X, r, g, h, σV and τV be as in Proposition 6.1. From that
proposition and Theorem 6.2 it follows that (X, r) is a braided set associated with
a rack (or, which is equivalent, that (X, r) is a non-degenerate braided set with
h = idV and τV = 0) if and only if g is a k-linear automorphism such that

σV ◦ (g ⊗ g) = σV ◦ (V ⊗ g) = g ◦ σV

and, for all u, v, w ∈ V ,

σV (u⊗ σV (v ⊗ w)) = σV (σV (u ⊗ v) ⊗ g(w)) + σV (g(v) ⊗ σV (u⊗ w)).

Note that, when g = idV , then the first two conditions are fulfilled and the last one
says that the map σV (u⊗ −) is a derivation. In other words, if r(1 ⊗ v) = v⊗ 1 for
all v ∈ V , then (X, r) is a braided set associated with a rack if and only if (V, σV )
is a Leibniz algebra. Compare with [14].
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versitaria, Intendente Guiraldes 2160 (C1428EGA) Buenos Aires, Argentina.

E-mail address: vander@dm.uba.ar
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