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Abstract. We employ a discrete integral-reflection representation of the double affine Hecke algebra of type

C∨C at the critical level q = 1, to endow the open finite q-boson system with integrable boundary interac-
tions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the

commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall-Littlewood

polynomials.

1. Introduction

The q-boson system [BB, BIK] is an elementary quantum field model built of q-deformed oscillators (cf.
e.g. [Mj, KS]) placed on a finite periodic lattice Zm = Z/mZ. It belongs to a privileged class of one-
dimensional particle-conserving quantum field theories for which the n-particle Hamiltonian boils down to
a (possibly discrete) quantum integrable Schrödinger operator, cf. e.g. [K, Th, DG, KBI, CL, La] (and
references therein) for some more examples of such integrable quantum field models. Indeed, in [Ko] it was
observed that the q-boson Hamiltonian acts in the n-particle sector of the Fock space as a discrete difference
operator that arose in [D2] as an integrable lattice discretization of the Schrödinger operator for the Lieb-
Liniger delta Bose gas on the circle [LL, Mt, Do, KBI]. In both situations, the n-particle Bethe Ansatz
eigenfunctions had been identified independently as Hall-Littlewood polynomials [Ts, D2, Ko]. Besides the
model on the periodic lattice Zm, analogous versions of the q-boson system were considered on the infinite
lattice Z [DE2] (cf. also [R]), on the semi-infinite lattice N [DE3, WZ, DP], and on the open (i.e. aperiodic)
finite lattice [LW, DE5]

Nm := {0, 1, 2, . . . ,m} (m > 0). (1.1)

Meanwhile, it has become clear that the q-boson system admits a rich variety of generalizations that surfaced
naturally e.g. in the context of integrable stochastic particle processes [SW, OP, Po, BCPS1, BCPS2, Ta]
and in the framework of discrete harmonic analysis on Weyl chambers and Weyl alcoves [D1, DE1].

The purpose of the present work is to diagonalize an open q-boson system on Nm (1.1) endowed with
integrable two-parameter boundary interactions at each of the two endpoints 0 and m. Our model is governed
by a (unital associative) q-boson field algebra that is deformed at the boundary sites. Specifically, the
underlying q-boson field algebra is determined by generators βl, β

∗
l and qNl , q−Nl (l ∈ Nm) that are ultralocal

(i.e. commuting for distinct sites) while satisfying the relations

βlq
Nl = qqNlβl, qNlβ∗l = qβ∗l q

Nl , qNlq−Nl = 1,

βlβ
∗
l = (1− c−δlqN0)(1− c+δm−lqNm)[Nl + 1]q, (1.2a)

βlβ
∗
l − qβ∗l βl = (1− c−δlq2Nm)(1− c+δm−lq2Nm),

where q ∈ (−1, 1) \ {0} and c−, c+ ∈ (−1, 1),

qkNl := (qNl)k, [Nl + k]q :=
1− qkqNl

1− q
(l ∈ Nm, k ∈ Z), (1.2b)

and δl refers to the Kronecker delta (i.e. δl = 1 if l = 0 and δl = 0 otherwise). The parameters c− and c+,
which deform the q-boson field algebra at the sites l = 0 and l = m, are complemented by two more coupling
parameters g−, g+ ∈ R regulating the interactions at these endpoints via the Hamiltonian

H := g−[N0]q + g+[Nm]q +
∑

0≤l<m

β∗l+1βl + β∗l βl+1. (1.3)

For c− = c+ = 0 the integrability of H (1.3) was shown in [LW, DE5] by means of Sklyanin’s quantum
inverse scattering formalism for open systems with reflecting boundaries [Sk]. Moreover, for the semi-infinite
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q-boson system on the nonnegative integer lattice (i.e. m = +∞), the integrability of the Hamiltonian in
question was inferred for general (one-sided) boundary parameters g− and c− [DE3, WZ]. In each of these
cases, the Bethe Ansatz eigenfunctions derived in [DE3, WZ, DE5] turn out to be given by hyperoctahedral
Hall-Littlewood polynomials as introduced by Macdonald [M1, M3, NR, Pa].

Below the results for the finite open q-boson system will be generalized to the situation of boundary
interactions governed by the full four-parameter family of c−, c+, g−, g+. Rather than to employ quantum
inverse scattering as in [LW, DE5], we recur instead to a representation of Cherednik’s double affine Hecke
algebra [C, M4] of type C∨C [N, Sa] at the critical level q = 1. The representation in question is given
explicitly in terms of discrete integral-reflection operators. It differs fundamentally from a previous q → 1
degenerate double affine Hecke algebra representation [Gr] in that here no prior rescaling of the parameters
and coordinate functions in terms of q is performed. The particular Hecke-algebraic approach suiting our
needs has its origin in the spectral analysis of Gaudin’s generalized Lieb-Liniger delta Bose gas models
associated with the (affine) Weyl groups [G1, G2, Gu, HO, EOS1, EOS2] by means of integral-reflection
operators that were first introduced by Gutkin and Sutherland [GS]. The center of the double affine Hecke
algebra provides us with the quantum integrals for H (1.3), which are subsequently diagonalized in terms of
Macdonald’s three-parameter hyperoctahedral Hall-Littlewood polynomials via a Bethe Ansatz. From the
perspective of double affine Hecke algebras, this entails an extension of the construction in [DE1] enabling
to incorporate the important five-parameter master family of type C∨C. In this picture, our parameters q,
c− and g− are associated with Hecke algebra generators corresponding to the walls of the Weyl chamber
and parametrize the hyperoctahedral Hall-Littlewood polynomials, while the parameters c+ and g+ are
associated with the Hecke algebra generator corresponding to the affine wall of the Weyl alcove and enter
the wave function only through the positions of the Bethe roots.

The presentation is structured along the following lines. In Section 2 the Hamiltonian H (1.3) is imple-
mented as a self-adjoint operator in the q-boson Fock space and its explicit action in the n-particle subspace
is determined. Section 3 formulates our main result: the diagonalization of the corresponding n-particle
Hamiltonian by means of a complete basis of Bethe Ansatz eigenfunctions given by hyperoctahedral Hall-
Littlewood polynomials evaluated at the Bethe roots. The bulk of the paper is devoted to the proof of this
result within the framework of the double affine Hecke algebra of type C∨C at the critical level q = 1.
First, the defining properties of this double affine Hecke algebra are detailed in Section 4. Then, in Section
5, a concrete representation in terms of discrete integral-reflection operators is derived by duality from the
polynomial representation. In Section 6 the discrete integral-reflection operators are used to construct a
Gutkin-Sutherland type propagation operator [GS] that intertwines between the free boson wave functions
and our interacting q-boson wave functions, respectively. By computing the image of the free Laplacian on
Zn with respect to the action of this propagation operator, we arrive in Section 7 at a quantum integrable
deformation of the free Laplacian associated with the double affine Hecke algebra. The n-particle Hamilton-
ian for q-bosons with open-end boundary interactions is retrieved from this deformed Laplacian in Section 8
upon symmetrization with respect to the action of the underlying affine hyperoctahedral group. The prop-
agation operator is then employed once more in Section 9 to show that the Bethe Ansatz eigenfunctions of
our q-boson Hamiltonian are given by Macdonald’s hyperoctahedral Hall-Littlewood polynomials. Finally,
the higher commuting quantum integrals stemming from (the center of) the double affine Hecke algebra at
critical level permit to separate the eigenvalue spectrum. This rules out linear dependencies between the
eigenfunctions and reduces the proof of the completeness of the Bethe Ansatz to a straightforward count of
the Bethe roots, which are obtained as the minima of a family of strictly convex Morse functions using the
classic toolset developed by Yang and Yang [YY, G2, KBI].

Backup material for some technical subtleties involving our approach is supplied in three appendices at
the end. Specifically, in Appendix A we briefly confirm that the Poincaré-Birkhoff-Witt property and the
basic representation of the double affine Hecke algebra of type C∨C [N, Sa, M3] persist at the critical level
q = 1, cf. also Ref. [O] for a corresponding verification in the case of the type A double affine Hecke algebra
and Ref. [Ge] for the verification covering most other types apart from C∨C. (More precisely, the latter
work deals with those types for which the index of the root lattice inside the weight lattice is not equal to 1.)
In Appendix B we verify certain intertwining relations satisfied by the fundamental propagation operator
from Section 6; these relations lie at the basis of the computation that yields the explicit formula for the
deformed Laplacian in Section 7. Finally, in Appendix C we recall Macdonald’s product formula for the
generalized Poincaré series with distinct parameters from [M2], in the special case of a stabilizer subgroup of
the affine hyperoctahedral group. This product formula is used in Section 8 to retrieve the open-end q-boson
Hamiltonian from the double affine Hecke algebra.

Note. Our notation distinguishes between the parameter q stemming from the q-boson algebra and the
parameter q associated with the double affine Hecke algebra. Throughout the presentation the value of
latter parameter is assumed to be fixed at the critical level q = 1 (unless explicitly indicated otherwise).
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2. n-Particle Hamiltonian

Let us define the Fock space

F :=
⊕
n≥0

l2(Λn,m,∆n,m) (2.1a)

consisiting of all series F =
∑
n≥0 fn with fn ∈ l2(Λn,m,∆n,m) such that

(F, F )m :=
∑
n≥0

(fn, fn)n,m <∞. (2.1b)

Here l2(Λn,m,∆n,m) stands for the (n-particle) Hilbert space of functions f : Λn,m → C on

Λn,m := {λ = (λ1, . . . , λn) ∈ Zn | m ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}, (2.2)

equipped with the following inner product

(f, g)n,m :=
∑

λ∈Λn,m

f(λ)g(λ)∆n,m(λ) (2.3a)

associated with the weight function

∆n,m(λ) :=
1

(c−; q)m0(λ)(c+; q)mm(λ)

∏
l∈Nm [ml(λ)]q!

, (2.3b)

and subject to the additional convention that Λ0,m := {∅} and ∆0,m(∅) := 1 (so l2(Λ0,m,∆0,m) ∼= C). The
orthogonality measure ∆n,m(λ) (2.3b) factorizes in terms of q-factorials

[k]q! := [k]q[k − 1]q · · · [2]q[1]q with [k]q :=
1− qk

1− q

of the (particle) multiplicities

ml(λ) := |{k ∈ Nm | λk = λl}| (l ∈ Nm),

and is moreover perturbed at the end-points by q-shifted factorials of the form

(c±; q)k := (1− c±)(1− c±q) · · · (1− c±qk−1),

where it is assumed that empty products are equal to 1 (so [0]q! = (c±; q)0 = 1).
We introduce the following actions of the q-boson field generators βl, β

∗
l and q±Nl (l ∈ Nm) on f ∈

l2(Λn,m,∆n,m) ⊂ Fm:

(βlf)(λ) := f(β∗l λ) (2.4a)

for λ ∈ Λn−1,m if n > 0 and βlf := 0 if n = 0,

(β∗l f)(λ) := (2.4b){
[ml(λ)]q(1− c−δlqm0(λ)−1)(1− c+δm−lqmm(λ)−1)f(βlλ) if ml(λ) > 0

0 otherwise

for λ ∈ Λn+1,m, and

(q±Nlf)(λ) := q±ml(λ)f(λ) (2.4c)

for λ ∈ Λn,m. Here β∗l λ ∈ Λn+1,m and βlλ ∈ Λn−1,m denote the partitions obtained from λ ∈ Λn,m by
inserting or deleting a part of size l, respectively (where in the latter case it is assumed that ml(λ) > 0).

It is readily verified that the operators in Eqs. (2.4a)–(2.4c) satisfy the ultralocal q-boson algebra relations
in Eqs. (1.2a), (1.2b). Hence, we end up with a representation of the q-boson algebra on the dense domain
Dm ⊂ Fm (2.1a), (2.1b) of terminating series F =

∑
n≥0 fn with fn ∈ l2(Λn,m,∆n,m). In this representation,

the parts of λ = (λ1, . . . , λn) ∈ Λn,m are interpreted as the positions of n particles—q-bosons—on Nm. The
operators βl : l2(Λn,m,∆n,m) → l2(Λn−1,m,∆n,m) and β∗l : l2(Λn,m,∆n,m) → l2(Λn+1,m,∆n,m) annihilate
and create a q-boson at the site l ∈ Nm, respectively, while qNl counts the number of q-bosons at this site
as a power of q. The representation in question is unitary (i.e. it preserves the underlying ∗-structure):

(βlf, g)n,m = (f, β∗l g)n+1,m (f ∈ l2(Λn+1,m,∆n+1,m), g ∈ l2(Λn,m,∆n,m)),

(q±Nlf, g)n,m = (f, q±Nlg)n,m (f, g ∈ l2(Λn,m,∆n,m)),
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whereas it is also immediate from the definitions that the q-boson annihilation- and creation operators, as
well as the q-deformed number operator, at the site l ∈ Nm are bounded on Fm:

(βlf, βlf)n−1,m ≤
(1 + |c−|δl)(1 + |c+|δm−l)

1− q
(f, f)n,m,

(β∗l f, β
∗
l f)n+1,m ≤

(1 + |c−|δl)(1 + |c+|δm−l)
1− q

(f, f)n,m,

(qNlf, qNlf)n,m ≤ (f, f)n,m,

for any f ∈ l2(Λn,m,∆n,m). The upshot is the Hamiltonian H (1.3) constitutes a bounded self-adjoint on
Fm that preserves the n-particle subspace l2(Λn,m,∆n,m). From the actions of the q-boson generators in
Eqs. (2.4a)–(2.4c), one readily deduces the following explicit action of H in l2(Λn,m,∆n,m) (cf. [DE3, Prp.
3.1] and [DE5, Prp. 6.3]).

Proposition 2.1 (n-Particle Hamiltonian). For any f ∈ l2(Λn,m,∆n,m) and λ ∈ Λn,m, one has that

(Hf)(λ) =
(
g−[m0(λ)]q + g+[mm(λ)]q

)
f(λ) (2.5)

+
∑

1≤j≤n
λ+ej∈Λn,m

(1− c−δλjqm0(λ)−1)[mλj (λ)]qf(λ+ ej)

+
∑

1≤j≤n
λ−ej∈Λn,m

(1− c+δm−λjqmm(λ)−1)[mλj (λ)]qf(λ− ej),

where e1, . . . , en denote the unit vectors of the standard basis in Zn.

Remark 2.2. The actions of q-boson generators βl, β
∗
l and qNl in Eqs. (2.4a)–(2.4c) and (thus) that of

the n-particle Hamiltonian in Proposition 2.1 are polynomial in q. For q → 0 the n-particle Hamiltonian
degenerates to a self-adjoint Laplacian of the form

(Hf)(λ) =
(
g−δλn + g+δm−λ1

)
f(λ)+∑

1≤j≤n
λ+ej∈Λn,m

(1− c−δλj )δn−jf(λ+ ej) +
∑

1≤j≤n
λ−ej∈Λn,m

(1− c+δm−λj )δj−1f(λ− ej)

in l2(Λn,m,∆n,m) with ∆n,m(λ) = (1 − c−)−δλn (1 − c+)−δm−λ1 . This discrete Laplacian models n strongly
correlated bosons on the finite open lattice Nm (1.1) with boundary interactions at the end-points controlled
by the parameters g± and c±. A corresponding system of strongly correlated bosons on the finite periodic
lattice Zm—commonly referred to as the Phase Model—was studied in detail in Refs. [BIK, B, KoS].

3. Main result: diagonalization

Since the dimension

dim
(
l2(Λn,m,∆n,m)

)
=

(m+ n)!

m!n!
(3.1)

of the n-particle subspace is finite, the existence of an orthogonal eigenbasis diagonalizing the n-particle
Hamiltonian in Proposition 2.1 is immediate from the self-adjointness. Here we provide an explicit eigenbasis
for the operator in question in terms of Macdonald’s hyperoctahedral Hall-Littlewood polynomials (associated
with the root system BCn) [M3, §10]:

Pλ(ξ; q; a, â) := (3.2a)∑
σ∈Sn

ε∈{1,−1}n

C(ε1ξσ1 , . . . , εnξσn ; q, a, â) exp(iε1ξσ1λ1 + · · ·+ iεnξσnλn)

with ξ = (ξ1, . . . , ξn) and λ ∈ Λn,m. The summation is meant over all permutations σ =
(

1 2 ··· n
σ1 σ2 ··· σn

)
of the

symmetric group Sn and all sign configurations ε = (ε1, . . . , εn) ∈ {1,−1}n, and the expansion coefficients
are given explicitly by

C(ξ1, . . . , ξn; q; a, â) :=
∏

1≤j≤n

(1− ae−iξj )(1− âe−iξj )
1− e−2iξj

(3.2b)

×
∏

1≤j<k≤n

(
1− qe−i(ξj−ξk)

1− e−i(ξj−ξk)

)(
1− qe−i(ξj+ξk)

1− e−i(ξj+ξk)

)
.

For µ ∈ Λn,m (2.2) and
q, a+, a−, â+, â− ∈ (−1, 1), (3.3)
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let ψµ : Λn,m → C denote the hyperoctahedral Hall-Littlewood function of the form

ψµ(λ) := Pλ(ξµ; q; a−, â−) (λ ∈ Λn,m), (3.4)

where ξµ ∈ Rn represents the unique global minimum of the semibounded strictly convex Morse function
Vµ : Rn → R given by

Vµ(ξ) :=
∑

1≤j<k≤n

(∫ ξj+ξk

0

vq(u)du+

∫ ξj−ξk

0

vq(u)du

)
+ (3.5a)

∑
1≤j≤n

(
mξ2

j − 2π(ρj + µj)ξj +

∫ ξj

0

(
va−(u) + vâ−(u) + va+(u) + vâ+(u)

)
du

)
,

with ρj := n+ 1− j (j = 1, . . . , n) and

va(ξ) :=

∫ ξ

0

(1− a2) du

1− 2a cos(u) + a2
= i log

(
1− aeiξ

eiξ − a

)
(−1 < a < 1). (3.5b)

Theorem 3.1 (Diagonalization). For parameter values belonging to the domain in Eq. (3.3), the hyperoc-
tahedral Hall-Littlewood functions ψµ, µ ∈ Λn,m are n-particle eigenfunctions of the q-boson Hamiltonian H
(1.3):

Hψµ = E(ξµ)ψµ with E(ξ) := 2
∑

1≤j≤n

cos(ξj), (3.6a)

provided

c± = a±â± and g± = a± + â±. (3.6b)

Moreover, for nonvanishing parameter values q, a+, a−, â+, â− belonging to the domain in question these
eigenfunctions are complete in the sense that they constitute a basis for l2(Λn,m,∆n,m).

This theorem will arise below as a consequence of a much stronger statement in which all commuting
quantum integrals for our open-end q-boson model are diagonalized simultaneously. By invoking the explicit
action of H (1.3) in the n-particle subspace given by Proposition 2.1, we can reformulate the eigenvalue
equation in Theorem 3.1 as an affine Pieri rule for the hyperoctahedral Hall-Littlewood polynomials.

Corollary 3.2 (Affine Pieri Rule). For parameters belonging to the domain in Eq. (3.3), Macdonald’s
hyperoctahedral Hall-Littlewood polynomials Pλ(ξ; q; a−, â−) with λ ∈ Λn,m satisfy the following affine Pieri
formula

Pλ(ξ; q; a−, â−)
∑

1≤j≤n

(eiξj + e−iξj ) = (3.7)

(
(a− + â−)[m0(λ)]q + (a+ + â+)[mm(λ)]q

)
Pλ(ξ; q; a−, â−)

+
∑

1≤j≤n
λ+ej∈Λn,m

(1− a−â−δλjqm0(λ)−1)[mλj (λ)]qPλ+ej (ξ; q; a−, â−)

+
∑

1≤j≤n
λ−ej∈Λn,m

(1− a+â+δm−λjq
mm(λ)−1)[mλj (λ)]qPλ−ej (ξ; q; a−, â−)

at ξ = ξµ, µ ∈ Λn,m.

For â− = â+ = 0, Corollary 3.2 reproduces an affine Pieri rule found in [DE5, Sec. 11.4]. The conventional
(nonaffine) Pieri rule for Macdonald’s hyperoctahedral Hall-Littlewood polynomials [DE3, App. A], which
is valid without quantization restrictions on the values of the polynomial spectral variable ξ ∈ Rn, is of the
form in Eq. (3.7) with m→ +∞ (so the dependence on a+, â+ drops out).

Remark 3.3. It is expected that the hyperoctahedral Hall-Littlewood functions ψµ, µ ∈ Λn,m in fact con-
stitute an orthogonal eigenbasis for H (1.3) in l2(Λn,m,∆n,m) for all parameter values in the domain (3.3).
When â− = â+ = 0 (so g− = a−, g+ = a+ and c− = c+ = 0), this orthogonality was recently confirmed in
[DE5, Sec. 11.4].

Remark 3.4. The normalization of the hyperoctahedral Hall-Littlewood polynomials Pλ(ξ; q; a, â) (3.2a),
(3.2b) is such that the coefficient of the leading monomial eiλ1ξ1+···+iλnξn is given by (aâ; q)m0(λ)

∏
l∈Nm [ml(λ)]q!.

In particular, for λ = 0n = (0, . . . , 0) ∈ Λn,m, we have that P0n(ξ; q; a, â) = (aâ; q)n [n]q! 6= 0.
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Remark 3.5. Since Vµ(ξ) (3.5a), (3.5b) is smooth and Vµ(ξ) → +∞ for ξ → ∞, the existence of a global
minimum is guaranteed. The uniqueness of this minimum follows by convexity. Indeed, the Hessian

Hj,k := ∂ξj∂ξkVµ(ξ) (3.8)

=

{
2m+ v′a− (ξj) + v′â− (ξj) + v′a+

(ξj) + v′â+
(ξj) +

∑
l 6=j

(
v′q(ξj + ξl) + v′q(ξj − ξl)

)
if k = j

v′q(ξj + ξk)− v′q(ξj − ξk) if k 6= j
,

is positive definite:∑
1≤j,k≤n

xjxkHj,k =
∑

1≤j≤n

(
2m+ v′a−(ξj) + v′â−(ξj) + v′a+(ξj) + v′â+(ξj)

)
x2
j

+
∑

1≤j<k≤n

(
v′q(ξj + ξk)(xj + xk)2 + v′q(ξj − ξk)(xj − xk)2

)
≥2m

∑
1≤j≤n

x2
j ,

since v′a(ξ) = 1−a2
1−2a cos(ξ)+a2 > 0 for a ∈ (−1, 1). From the equation ∇ξVµ(ξ) = 0 for the corresponding

critical point ξµ:

2mξj + va−(ξj) + vâ−(ξj) + va+(ξj) + vâ+(ξj) (3.9)

+
∑

1≤k≤n
k 6=j

(
vq(ξk + ξj)− vq(ξk − ξj)

)
= 2π(ρj + µj)

(j = 1, . . . , n), one readily deduces that at ξ = ξµ (µ ∈ Λn,m)

π(ρj + µj)

m+ κ−
< ξj <

π(ρj + µj)

m+ κ+
(3.10a)

(for 1 ≤ j ≤ n), and also (by subtracting the kth equation from the jth equation)

π(ρj − ρk + µj − µk)

m+ κ−
< ξj − ξk <

π(ρj − ρk + µj − µk)

m+ κ+
(3.10b)

(for 1 ≤ j < k ≤ n), where

κ± :=
(n− 1)(1− q2)

(1± |q|)2
+ (3.10c)

1

2

(
1− a2

−
(1± |a−|)2

+
1− â2

−
(1± |â−|)2

+
1− a2

+

(1± |a+|)2
+

1− â2
+

(1± |â+|)2

)
.

Here one exploits that va(ξ) is odd and that 1−a2
(1+|a|)2 ≤ v′a(ξ) ≤ 1−a2

(1−|a|)2 . Moreover, since va(ξ + 2π) =

va(ξ) + 2π, it also follows from Eq. (3.9) that ξj < π at the critical point. The upshot is that for any
µ ∈ Λm,n, the unique global minimum ξµ of Vµ(ξ) (3.5a), (3.5b) is assumed inside the open fundamental
alcove

A := {(ξ1, ξ2, . . . , ξn) ∈ Rn | π > ξ1 > ξ2 > · · · > ξn > 0}. (3.11)

Remark 3.6. For µ ∈ Λn,m and parameters in the domain (3.3), the dependence of the eigenfunction ψµ (3.4)
on a±, â± and q is real-analytic. Indeed, the critical equation (3.9) is real-analytic in this parameter domain
and so is the critical point ξµ (by the implicit function theorem, because the Jacobian of the critical equation
equals the positive definite Hessian (3.8) of Vµ(ξ) and is thus invertible). Since Pλ(ξ; q; a, â) (3.2a), (3.2b)
constitutes a (trigonometric) polynomial in the spectral variable ξ with coefficients that depend polynomially
on the parameters q, a and â, this real-analyticity carries automatically over to the eigenfunction ψµ.

Remark 3.7. At q = 0 the eigenfunctions in Theorem 3.1 satisfy the eigenvalue equation for the phase model
with open-end boundary interactions governed by the discrete Laplacian in Remark 2.2 (with g± = a±+ â±,
c± = a±â± and a±, â± ∈ (−1, 1)). When a± = â± = 0 the boundary conditions of the Laplacian at
the walls λj = 0, λj = λk and λk = m (1 ≤ j < k ≤ n) become of Dirichlet type. The eigenfunction

ψµ (3.4) specializes in this situation to a symplectic Schur function evaluated at ξµ = π(ρ+µ)
m+n+1 (where

ρ := (ρ1, ρ2, . . . , ρn) = (n, n− 1, . . . , 2, 1)). The analog of the latter phase model on the periodic lattice Zm
was diagonalized by means of the algebraic Bethe Ansatz in terms of (standard) Schur functions [B, KoS].
In our case, the familiar determinantal structure of the Schur functions turns out to persist at q = 0 for
general boundary parameters a±, â± ∈ (−1, 1):

Pλ(ξ; 0; a, â) =
det[pn−j+λj (ξk; a, â)]1≤j,k≤n∏

1≤j<k≤n(eiξj + e−iξj − eiξk − e−iξk)
, (3.12a)
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where

p`(ξ; a, â) :=
(1− ae−iξ)(1− âe−iξ)

1− e−2iξ
ei`ξ +

(1− aeiξ)(1− âeiξ)
1− e2iξ

e−i`ξ. (3.12b)

Indeed, when pulling out the overall Vandermonde denominator as in Eq. (3.12a) from the q = 0 specializa-
tion of Pλ(ξ; q; a, â) (3.2a), (3.2b), one ends up with an alternating sum that coincides manifestly with the
expansion of the determinant in the numerator. The corresponding q = 0 parameter specialization of the
affine Pieri formula (3.7) for the polynomials in question becomes

Pλ(ξ; 0; a−, â−)
∑

1≤j≤n

(eiξj + e−iξj ) = (3.13)

(
(a− + â−)δλn + (a+ + â+)δm−λ1

)
Pλ(ξ; 0; a−, â−)

+
∑

1≤j≤n
λ+ej∈Λn,m

(1− a−â−δλj )δn−jPλ+ej (ξ; 0; a−, â−)

+
∑

1≤j≤n
λ−ej∈Λn,m

(1− a+â+δm−λj )
δj−1Pλ−ej (ξ; 0; a−, â−)

(at ξ = ξµ, µ ∈ Λn,m). It is not at all clear from Theorem 3.1 whether the eigenfunctions ψµ, µ ∈ Λn,m
actually remain complete in l2(Λn,m,∆n,m) at q = 0, beyond the much weaker and straightforward com-
pleteness for generic values of the boundary parameters a±, â± ∈ (−1, 1). (For generic boundary parameters
the completeness is a priori guaranteed—both at q = 0 and for generic q ∈ (−1, 1)—by the analyticity in
Remark 3.6 in combination with the elementary fact that in the Dirichlet situation of vanishing parameters
q, a±, â± the corresponding symplectic Schur functions form an orthogonal basis for l2(Λn,m), cf. e.g. [DE4,

Remark 3.7] with R = R̂ of type Cn.)

4. Double affine Hecke algebra of type C∨C at critical level

In this section we describe the affine hyperoctahedral group and its associated double affine Hecke algebra
[C, N, Sa, M4] at critical level.

4.1. Affine hyperoctahedral group. The affine hyperoctahedral group W is a Coxeter group (of type C̃n)
presented by generators s0, . . . , sn subject to the relations [H]

s2
j = 1 (j = 0, . . . , n),

sjsj+1sjsj+1 = sj+1sjsj+1sj (j = 0 or j = n− 1),

sjsj+1sj = sj+1sjsj+1, (j = 1, . . . , n− 2),

sjsk = sksj (|j − k| > 1).

(4.1)

A reduced expression for w ∈W is a decomposition in terms of these generators of the form

w = sj1 · · · sj` (j1, . . . , j` ∈ {0, . . . , n}) (4.2)

such that ` (≥ 0) is minimal. The number generators ` comprising a reduced expression is referred to as the
length `(w) of the group element (so `(w) = 0 iff w = 1).

Given a nonvanishing scale parameter c ∈ R∗ := R \ {0}, we consider a faithful action of W on Rn that
is characterized by simple reflections mapping x = (x1, . . . , xn) ∈ Rn onto

s0(x1, . . . , xn) = (2c− x1, x2, . . . , xn),

sj(x1, . . . , xn) = (x1, · · · , xj−1, xj+1, xj , xj+2, · · · , xn) (j = 1, . . . , n− 1),

sn(x1, . . . , xn) = (x1, . . . , xn−1,−xn), (4.3)

respectively. Below we will always assume that c is integral:

c ∈ Z∗ := Z \ {0}

(unless explicitly stated otherwise).

4.2. Double affine Hecke algebra. Let τ0, . . . , τn and τ̂0, . . . , τ̂n be parameters in C∗ := C\{0} such that
τj = τ̂j = τ for 0 < j < n. Throughout the paper it will be assumed that none of the five parameters τ0, τ̂0,
τ , τn, τ̂n equals a root of unity. We consider the following q → 1 degeneration of the double affine Hecke
algebra of type C∨nCn [N, Sa].
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Definition 4.1. The double affine Hecke algebra H of type C∨nCn at critical level is the unital associative
algebra over C with invertible generators T0, . . . , Tn and commuting invertible generators X1, . . . , Xn, subject
to the quadratic relations

Tj − T−1
j = τj − τ−1

j (j = 0, . . . , n), (4.4a)

the braid relations

TjTj+1TjTj+1 = Tj+1TjTj+1Tj (j = 0 or j = n− 1),

TjTj+1Tj = Tj+1TjTj+1 (j = 1, . . . , n− 2),

TjTk = TkTj (|j − k| > 1),

(4.4b)

and the cross relations

T0X1 −X−1
1 T−1

0 = τ̂−1
0 − τ̂0,

TnX
−1
n −XnT

−1
n = τ̂−1

n − τ̂n,
TjXj+1 = XjT

−1
j (j = 1, . . . , n− 1),

TjXk = XkTj (|j − k| > 1 or j = n = k + 1).

(4.4c)

For λ = (λ1, . . . , λn) ∈ Zn and for a reduced expression w = sj1 · · · sj` let

Xλ := Xλ1
1 · · ·Xλn

n and Tw := Tj1 · · ·Tj`
(which does not depend on the choice of the reduced expression by virtue of the braid relations).

Proposition 4.2 (Poincaré-Birkhoff-Witt Property). The elements XλTw (or alternatively TwX
λ), with

λ ∈ Zn and w ∈W , form a basis for H over C.

For most types other than C∨C a corresponding Poincaré-Birkhoff-Witt property was proven in [O,
Secs. 3 and 5] and [Ge, Sec. 2.1.2]. For type C∨C with q not equal to a root of unity, a proof of the
Poincaré-Birkhoff-Witt property can be found in [Sa, Sec. 3]. For completeness, we provide a proof of
Proposition 4.2 in Appendix A so as to include our setting of the double affine Hecke algebra of type C∨C
at the critical level q = 1.

It follows in particular from the above proposition that the commutative subalgebra of H generated by
X±1

1 , . . . , X±1
n is isomorphic to the algebra C[X] of Laurent polynomials in X1, . . . , Xn. Because the integral

lattice Zn ⊂ Rn is stable for the action of the affine hyperoctahedral group W in Eq. (4.3) (as c is assumed
to be integral), we can lift the action to C[X] via w(Xλ) := Xwλ (w ∈ W ). This allows to introduce the
corresponding Demazure-Lusztig operators:

Ťj := τjsj + bj(X)(1− sj) (j = 0, . . . , n), (4.5a)

where

b0(X) =
τ0 − τ−1

0 + (τ̂0 − τ̂−1
0 )X1

1−X2
1

,

bj(X) =
τ − τ−1

1−X−1
j Xj+1

(j = 1, . . . , n− 1),

bn(X) =
τn − τ−1

n + (τ̂n − τ̂−1
n )X−1

n

1−X−2
n

.

(4.5b)

Since Xλ − Xsjλ is divisible by the denominator of bj(X), these Demazure-Lusztig operators Ť0, . . . , Ťn
(4.5a)–(4.5b) are well-defined as linear operators acting on C[X] (upon interpreting bj(X)(Xλ − Xsjλ) in
terms of the corresponding terminating geometric series, cf. Eq. (5.7) below).

Proposition 4.3 (Polynomial Representation). The assignment Tj 7→ Ťj (j = 0, . . . , n), Xj 7→ Xj (j =
1, . . . , n) extends (uniquely) to a representation of H on C[X].

In Appendix A, Proposition 4.3 is proven by tweaking a q→ 1 degeneration of the polynomial represen-
tation of the double affine Hecke algebra of type C∨C going back to Noumi and Sahi [N, Sa].

Remark 4.4. It follows from Proposition 4.2 that H can be equivalently characterized as the unital associative
algebra over C spanned by the elements XλTw (or alternatively TwX

λ) subject to the relations

TwTj =

{
Twsj if `(wsj) = `(w) + 1,

Twsj + (τj − τ−1
j )Tw if `(wsj) = `(w)− 1,

(4.6a)

XλXµ = Xλ+µ, (4.6b)

TjX
λ −Xs′jλTj = bj(X)(Xλ −Xs′jλ), (4.6c)
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for all w ∈ W , j ∈ {0, . . . , n}, and λ, µ ∈ Zn. Here s′j refers to the derivative of the simple reflection sj
(i.e. s′0(x1, . . . , xn) = (−x1, x2, . . . , xn) and s′j = sj for j = 1, . . . , n). The subalgebra H ⊂ H generated by
T0, . . . , Tn and spanned by the basis Tw, w ∈ W amounts to Lusztig’s three-parameter (viz. τ0, τ and τn)

affine Hecke algebra of type C̃n [Lu].

5. Lattice integral-reflection operators

In this section a representation of H in terms of lattice integral-reflection operators is derived. These oper-
ators are discrete analogs—in the spirit of [DE1]—of corresponding integral-reflection operators originating
from the Gutkin-Sutherland approach towards the solution of the spectral problem for Gaudin’s general-
ized Lieb-Liniger models associated with the (affine) Weyl groups [G1, GS, Gu, HO, EOS1, EOS2]. Here
we arrive at the pertinent lattice integral-reflection operators of C∨C type by duality from the polynomial
representation in Proposition 4.3.

5.1. Integral-reflection representation of H. Let C(Zn) be the space of lattice functions f : Zn → C.
The affine hyperoctahedral group acts on these functions via

(wf)(λ) := f(w−1λ) (w ∈W, f ∈ C(Zn), λ ∈ Zn) (5.1)

(where—recall—c is assumed to be a nonzero integer). Upon rewriting the action of the simple reflections
in Rn as

sjx = x− aj(x)αj (j = 0, . . . , n), (5.2a)

with

αj =


−e1 if j = 0,

ej − ej+1 if j = 1, . . . , n− 1,

en if j = n

(5.2b)

(where e1, . . . , en denotes the standard basis of unit vectors in Rn), and

aj(x) =


2(c− x1) if j = 0,

xj − xj+1 if j = 1, . . . , n− 1,

2xn if j = n,

(5.2c)

we are in the position to define corresponding discrete integral-reflection operators Ij : C(Zn) → C(Zn) of
the form

Ij := τjsj + Jj (j = 0, . . . , n). (5.3a)

Here Jj : C(Zn) → C(Zn) denotes a discrete weighted integral operator that integrates the lattice function
f ∈ C(Zn) over lattice points on the line segment between λ and sjλ = λ− aj(λ)αj :

(Jjf)(λ) :=


−
∑aj(λ)
k=1 uj(k)f(λ− kαj) if aj(λ) > 0,

0 if aj(λ) = 0,∑−aj(λ)−1
k=0 uj(k)f(λ+ kαj) if aj(λ) < 0,

(5.3b)

where

uj(k) =

{
τj − τ−1

j if k is even,

τ̂j − τ̂−1
j if k is odd.

(5.3c)

For any µ ∈ Zn, let us denote by tµ : C(Zn)→ C(Zn) the translation operator of the form

(tµf)(λ) := f(λ− µ) (f ∈ C(Zn), λ ∈ Zn). (5.4)

The following proposition asserts that the integral-reflection operators I0, . . . , In in combination with the
unit-translation operators te1 , . . . , ten give rise to a representation of the type C∨C double affine Hecke
algebra at critical level on C(Zn).

Proposition 5.1 (Integral-Reflection Representation). The assignment Tj → Ij (j = 0, . . . , n), Xj → tej
(j = 1, . . . , n) extends (uniquely) to a representation of H on C(Zn).
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5.2. Proof of Proposition 5.1. Let us consider the following nondegenerate bilinear pairing (·, ·) : C(Zn)×
C[X]→ C:

(f, p(X)) := (p(X)f)(0) (f ∈ C(Zn), p(X) ∈ C[X]), (5.5)

where the action of p(X) =
∑
λ cλX

λ (cλ ∈ C) on C(Zn) is determined by the following action of the basis
elements: Xλf := tλf (λ ∈ Zn). So, we have in particular that (f,Xλ) = (tλf)(0) = f(−λ).

To prove the proposition it suffices to verify that for any f ∈ C(Zn) and λ ∈ Zn:

(tejf,X
λ) = (f,XjX

λ) (j = 1, . . . , n), (5.6a)

(I
(c)
j f,Xλ) = (f, Ť

(−c)
j Xλ) (j = 0, . . . , n), (5.6b)

where the superscripts indicate that opposite values for c have to be chosen in the difference-reflection
representation and the polynomial representation. (Notice in this connection that the actions of sj and thus

that of Ij and Ťj only depend on c for j = 0.) By acting on an arbitrary basis element Xλ with both sides of

the quadratic relations, the braid relations and the cross relations for Ť
(−c)
0 , Ť1, . . . , Ťn and X1, . . . , Xn, one

readily verifies the corresponding relations for I
(c)
0 , I1, . . . , In and te1 , . . . , ten upon pairing with f ∈ C(Zn)

and using Eqs. (5.6a), (5.6b). Here it is exploited that the pairing (·, ·) (5.5) is nondegenerate.
While Eq. (5.6a) is an immediate consequence of the above definitions, Eq. (5.6b) follows similarly from

the explicit actions of Ij (5.3a)–(5.3c) and Ťj (4.5a)–(4.5b) upon invoking the geometric series expansion

bj(X)(Xλ −Xsjλ) =


∑aj(λ)−1
k=0 uj(k)Xλ−kαj if aj(λ) > 0,

0 if aj(λ) = 0,

−
∑−aj(λ)
k=1 uj(k)Xλ+kαj if aj(λ) < 0,

(5.7)

for j = 0, . . . , n.

6. Lattice propagation operator

One of the principal tools to construct the Bethe-Ansatz eigenfunctions for the open q-boson Hamiltonian
H (1.3) is provided by a propagation operator stemming from the integral-reflection representation of H.
For the graded affine Hecke algebra and its double affine counterpart at critical level such propagation
operators were employed in [GS, Gu, HO] and [EOS1, EOS2], respectively, to construct the Bethe-Ansatz
wave functions for Gaudin’s generalized Lieb-Liniger delta Bose gas models associated with the (affine) Weyl
groups [G1, G2]. The propagation operator relevant for our present purposes turns out to be the C∨C-type
analog of a lattice propagation operator introduced in [DE1].

6.1. Propagation operator. From now on we set

c = m with m > 0. (6.1)

A fundamental domain for the action of W in Zn ⊂ Rn (cf. Eq. (4.3)) is then given by the fundamental
alcove Λn,m (2.2). For λ ∈ Zn, let wλ ∈W denote the (unique) shortest group element such that

λ+ := wλλ ∈ Λn,m. (6.2)

Moreover, for w ∈ W let Iw : C(Zn) → C(Zn) and τw ∈ C∗ be the respective images of Tw ∈ H ⊂ H with
respect to the lattice integral-reflection representation in Proposition 5.1 and the trivial representation of H
onto C determined by the assignment Tj → τj , j = 0, . . . , n (cf. Remark 4.4).

The propagation operator J : C(Zn)→ C(Zn) is now defined by the following linear action on f ∈ C(Zn):

(J f)(λ) := τ−1
wλ

(Iwλf)(λ+) (λ ∈ Zn). (6.3)

Clearly this propagation operator acts trivially on lattice functions supported inside the fundamental alcove:
(J f)(λ) = f(λ) for λ ∈ Λn,m.

Proposition 6.1 (Bijectivity). The propagation operator J (6.3) is bijective (i.e. it constitutes a linear
automorphism of C(Zn)).

6.2. Proof of Proposition 6.1. To λ ∈ Zn ⊂ Rn we attach the following convex polytope:

[λ] := Conv{v−1λ+ | v ≤ wλ} ⊂ Rn, (6.4)

where Conv refers to the convex hull and the comparison of the group elements is meant with respect to
the Bruhat partial order on W , i.e. v ≤ w iff a reduced expression for v can be obtained from a reduced
expression for w by deleting simple reflections [H]. These polytopes (which degenerate to a point if `(wλ) = 0
and to a line segment if `(wλ) = 1) give rise to the following inclusion partial order � on Zn:

∀µ, λ ∈ Zn : µ � λ⇔ [µ] ⊆ [λ]. (6.5)
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Lemma 6.2 (Triangularity). The propagation operator J (6.3) is triangular with respect to the inclusion
partial order (6.5), viz.

∀f ∈ C(Zn), λ ∈ Zn : (J f)(λ) =
∑

µ∈Zn, µ�λ
Jλ,µf(µ), (6.6)

for certain expansion coefficients Jλ,µ ∈ C with Jλ,λ = τ−2
wλ

(6= 0).

Proof. The proof proceeds by induction with respect to the length of wλ. For `(wλ) = 0 (i.e. λ ∈ Λn,m), our
polytope [λ] degenerates to the single point λ and the stated triangularity becomes trivial: (J f)(λ) = f(λ)
(as noticed above just after Eq. (6.3)). For `(wλ) > 0 let us pick j ∈ {0, . . . , n} such that wλsj < wλ, i.e.
wλ = wsjλsj with `(wλ) = `(wsjλ) + 1 (so wsjλ < wλ and sjλ ≺ λ). One then has that

(J f)(λ) =τ−1
wλ

(Iwλf)(λ+) = τ−1
j τ−1

wsjλ
(IwsjλIjf)

(
(sjλ)+

)
(i)
=τ−1

j

∑
µ∈Zn, µ�sjλ

Jsjλ,µ(Ijf)(µ)
(ii)
=

∑
µ∈Zn, µ�λ

Jλ,µf(µ),

where step (i) hinges on the induction hypothesis and in step (ii) it was used that—while (Ijf)(µ) involves
evaluations of f at lattice points on the line segment joining µ and sjµ—both the polytopes [sjλ] and sj [sjλ]
are contained in the polytope [λ]. Finally, upon invoking the explicit action of the lattice integral-reflection
operator Ij (5.3a)–(5.3c) and comparing the leading coefficients on both sides of the equality of step (ii), it

is readily seen that Jλ,λ = τ−2
j Jsjλ,sjλ, whence Jλ,λ = τ−2

wλ
(again by induction). �

The triangularity in Lemma 6.2 implies that for a given g ∈ C(Zn), the value of f ∈ C(Zn) at any point
λ ∈ Zn can be uniquely solved from the linear equation (J f)(λ) = g(λ) by performing induction with respect
to the inclusion order (6.5). Hence, the lattice propagation operator J : C(Zn)→ C(Zn) is bijective.

7. Deformed Laplacian in C(Zn)

In this section the (invertible) propagation operator J (6.3) is employed to construct an integrable Lapla-
cian in C(Zn) associated with H.

7.1. Integrability. The hyperoctahedral group W0 ⊂ W arises as the finite subgroup of W generated by
s1, . . . , sn. In the explicit representation of Eq. (4.3), this subgroup acts on the coordinates of x ∈ Rn as
the group of signed permutations. The action of w ∈W decomposes in turn as w = vtµ = tvµv with v ∈W0

and µ ∈ 2mZn (cf. Eq. (6.1)), where tµx := x + µ. The derivative w′ ∈ W0 ignores the affine translation:
w′ = (vtµ)′ := v (cf. Remark 4.4).

It is evident from the cross relations in Eq. (4.6c) that the W0-invariant subalgebra C[X]W0 := {p ∈
C[X] | wp = p, ∀w ∈ W0} belongs to the center Z(H) := {z ∈ H | zh = hz, ∀h ∈ H} of the double affine
Hecke algebra at critical level:

C[X]W0 ⊂ Z(H). (7.1)

The elementary symmetric functions

Er(X1, . . . , Xn) :=
∑

J⊂{1,...,n}
|J|=r

∏
j∈J

(Xj +X−1
j ) (r = 1, . . . , n), (7.2)

provide a system of algebraically independent generators for C[X]W0 . (Here |J | refers to the number of
elements of J ⊂ {1, . . . , n}.) By conjugating the images of these elementary symmetric functions in the
integral-reflection representation of Proposition 5.1 with respect to the propagation operator J (6.3), we
arrive at commuting operators L1, . . . , Ln representing a quantum integrable system in C(Zn):

Lr := JEr(t)J−1 (r = 1, . . . , n), (7.3a)

where

Er(t) := Er(te1 , . . . , ten) =
∑

µ∈W0(e1+···+er)

tµ. (7.3b)

7.2. Laplacian associated with H. The simplest of the above quantum integrals L1 = JE1(t)J−1

with E1(t) =
∑

1≤j≤n(tej + t−ej ) stems from the first elementary symmetric function E1(X1, . . . , Xn) =∑
1≤j≤n(Xj + X−1

j ). The following proposition reveals that the operator in question acts in C(Zn) as a
deformed Laplacian.
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Proposition 7.1 (Deformed Laplacian). The explicit action of L := L1 (7.3a), (7.3a) on C(Zn) is of the
form

(Lf)(λ) =
∑

1≤j≤n

(
τ2
wwλ(λ+ej)

f(λ+ ej) + τ2
wwλ(λ−ej)

f(λ− ej) (7.4a)

+
(
dλ+,ej + dλ+,−ej

)
f(λ)

)
(f ∈ C(Zn), λ ∈ Zn), with

dλ,ν :=


τ2(j−1)τ0(τ̂0 − τ̂−1

0 ) if λj = m and ν = ej ,

τ2(n−j)τn(τ̂n − τ̂−1
n ) if λj = 0 and ν = −ej ,

0 otherwise.

(7.4b)

Proof. Given an arbitrary lattice function f : Zn → C, let g := J−1f ∈ C(Zn). One has that for any λ ∈ Zn:

(Lf)(λ) = (JE1(t)g)(λ)
Eq. (6.3)

= τ−1
wλ

(IwλE1(t)g)(λ+)

Eq. (7.1)
= τ−1

wλ
(E1(t)Iwλg)(λ+)

(i)
= τ−1

wλ

∑
ν∈W0e1

(Iwλg)(wλ(λ+ ν))

(ii)
=

∑
ν∈W0e1

(
τ2
wwλ(λ+ν)

f(λ+ ν) + dλ+,w′λν
f(λ)

)
.

Here we relied (i) on Eq. (7.3b) and the elementary property that wλ+W0µ = w(λ+W0µ) for any λ, µ ∈ Zn
and w ∈W , and (ii) on the affine intertwining relation in Eq. (B.1) of Appendix B. �

8. Quantum integrability of the open q-boson system

By pushing the integral-reflection representation restricted to H ⊂ H through the propagation operator
J (6.3), we arrive at a difference-reflection representation of the affine Hecke algebra of type C̃n on C(Zn)
(cf. Remark 4.4). This difference-reflection representation is subsequently used to retrieve a system of n
commuting quantum integrals for the n-particle q-boson Hamiltonian in Proposition 2.1 as the W -invariant
reduction of the commuting quantum integrals for the deformed Laplacian L (7.4a), (7.4b).

8.1. Difference-reflection representation of H. For j ∈ {0, . . . , n}, let T̂j : C(Zn) → C(Zn) be the
difference-reflection operator of the form

(T̂jf)(λ) := τjf(λ) + τ
sgn(aj(λ))
j

(
f(sjλ)− f(λ)

)
(8.1)

(f ∈ C(Zn), λ ∈ Zn), where sgn(x) := 1 if x ≥ 0 and sgn(x) := −1 if x < 0.

Proposition 8.1 (Intertwining Relations). The (invertible) propagation operator J (6.3) intertwines between
the integral-reflection operators and the difference-reflection operators:

J Ij = T̂jJ (j = 0, . . . , n). (8.2)

Proof. From the definitions it is seen that for any j ∈ {0, . . . n}, f ∈ C(Zn) and λ ∈ Zn:

(J Ijf)(λ)
(i)
=τ−1

wλ
(IwλIjf)(λ+)

(ii)
=

{
τ−1
wλ

(Iwλsjf)(λ+) if aj(λ) ≥ 0

τ−1
wλ

(
(Iwλsjf)(λ+) + (τj − τ−1

j )(Iwλf)(λ+)
)

if aj(λ) < 0

=τjτ
−1
wλ

(Iwλf)(λ+)

+ τ
sgn(aj(λ))
j

(
τ−1
wλsj

(Iwλsjf)(λ+)− τ−1
wλ

(Iwλf)(λ+)
)

(iii)
= (T̂jJ f)(λ),

where we used (i) Eq. (6.3), (ii) Eq. (4.6a) and the relation `(wλsj) = `(wλ)+sgn(aj(λ)), and (iii) Eqs. (6.3),
(8.1) and the observation that

τ−1
wλsj

(Iwλsjf)(λ+) = τ−1
wsjλ

(Iwsjλf)(λ+).

�

It is immediate from the intertwining relations in Eq. (8.2) (and the invertibility of J guaranteed by

Proposition 6.1) that the difference-reflection operators T̂0, . . . , T̂n inherit the quadratic relations and the
braid relations for the affine Hecke algebra generators from the corresponding relations satisfied by the
integral-reflection operators I0, . . . , In (cf. Proposition 5.1).
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Corollary 8.2 (Difference-Reflection Representation). The assignment Tj → T̂j (j = 0, . . . , n) extends
(uniquely) to a representation of H on C(Zn).

8.2. W -Invariant reduction. The W -invariant subspace

C(Zn)W := {f ∈ C(Zn) | sjf = f, j = 0, . . . , n} (8.3a)

Eq. (8.1)
= {f ∈ C(Zn) | T̂jf = τjf, j = 0, . . . , n} (8.3b)

consists of the lattice functions f : C(Zn) → C that are permutation-invariant, even, and periodic with
period 2m in the coordinates λ1, . . . , λn of the variable λ ∈ Zn. This subspace turns out to be stable with
respect to the action of Lr (7.3a), (7.3b).

Proposition 8.3. The commuting quantum integrals L1, . . . , Ln (7.3a), (7.3b) map the W -invariant subspace
C(Zn)W into itself.

Proof. For any f ∈ C(Zn)W and r ∈ {1, . . . , n}, one has that

T̂jLrf
Eq. (7.3a)

= T̂jJEr(t)J−1f
Eq. (8.2)

= J IjEr(t)J−1f

Eq. (7.1)
= JEr(t)IjJ−1f

Eq. (8.2)
= JEr(t)J−1T̂jf

Eq. (8.3b)
= τjLrf

for j = 0, . . . , n, whence Lrf ∈ C(Zn)W . �

8.3. Quantum integrals for the q-boson Hamiltonian. Let Π : C(Zn)W → C(Λn,m) be the linear
isomorphism of the form

(Πf)(λ) := f(λ) (f ∈ C(Zn)W , λ ∈ Λn,m), (8.4a)

with the inverse map given by

(Π−1f)(λ) = f(λ+) (f ∈ C(Λn,m), λ ∈ Zn). (8.4b)

This explicit isomorphism between C(Zn)W and C(Λn,m) allows us to interpret the W -invariant reductions
of the operators L1, . . . , Ln in Proposition 8.3 as commuting operators H1, . . . ,Hn on C(Λn,m), where

Hr := ΠLr Π−1 (r = 1, . . . , n). (8.5)

For r = 1 the action of Hr in C(Λn,m) can be made explicit using Proposition 7.1.

Proposition 8.4 (q-Boson Hamiltonian). The explicit action of H := H1 (8.5) on f ∈ C(Λn,m) is given by

(Hf)(λ) = u(λ)f(λ) +
∑

1≤j≤n, ε∈{1,−1}
λ+εej∈Λn,m

vj(λ)f(λ+ εej) (λ ∈ Λn,m), (8.6a)

where

vj(λ) := [mλj (λ)]τ2(1 + δλjτ
2
nτ

2(m0(λ)−1))(1 + δm−λjτ
2
0 τ

2(mm(λ)−1)) (8.6b)

and

u(λ) := τn(τ̂n − τ̂−1
n )[m0(λ)]τ2 + τ0(τ̂0 − τ̂−1

0 )[mm(λ)]τ2 . (8.6c)

The details of the computation leading to this explicit formula for the restriction of the action of L
(from Proposition 7.1) to C(Λn,m) are provided in Subsection 8.4 (below). It involves a special instance of
Macdonald’s product formula for the generalized Poincaré series with distinct parameters [M2]—pertaining
to a stabilizer subgroup of W—that is recalled in Appendix C.

If the inner product structure of the Hilbert space is ignored (so l2(Λn,m,∆n,m) ∼= C(Λn,m)), then the
actions of the Hamiltonians in Propositions 2.1 and 8.4 formally coincide upon identifying the q-boson
parameters q, a± and â± with the parameters stemming from the double affine Hecke algebra as follows:

q = τ2, a+ = τ0τ̂0, â+ = −τ0τ̂−1
0 , a− = τnτ̂n, â− = −τnτ̂−1

n (8.7)

(and c± = a±â±, g± = a± + â±). The subsequent overall conclusion concerning the integrability of the
q-boson Hamiltonian is now immediate.

Theorem 8.5 (Quantum Integrals). For parameters of the form in Eq. (8.7), the operators H1, . . . ,Hn

(8.5) provide n commuting quantum integrals for the n-particle open q-boson Hamiltonian H (= H1).

At this point it is not yet necessary to impose any additional reality conditions on the parameters: our
Hecke-algebraic construction holds for any τ0, τ̂0, τ, τn, τ̂n ∈ C∗ not equal to a root of unity.
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8.4. Proof of Proposition 8.4. From the explicit action of L in Proposition 7.1, it is readily seen that the
action of H = ΠLΠ−1 on f ∈ C(Λn,m) is of the form

(Hf)(λ) = u(λ)f(λ) +
∑

ν∈W0e1
λ+ν∈Λn,m

vν(λ)f(λ+ ν) (λ ∈ Λn,m),

with

u(λ)
(i)
=

∑
ν∈W0e1

dλ,ν =
∑

1≤j≤n
λj=0

dλ,−ej +
∑

1≤j≤n
λj=m

dλ,ej

= τn(τ̂n − τ̂−1
n )

n∑
j=n−m0(λ)+1

τ2(n−j) + τ0(τ̂0 − τ̂−1
0 )

mm(λ)∑
j=1

τ2(j−1)

= τn(τ̂n − τ̂−1
n )[m0(λ)]τ2 + τ0(τ̂0 − τ̂−1

0 )[mm(λ)]τ2

and

vν(λ) =
∑

η∈W0e1
(λ+η)+=λ+ν

τ2
wλ+η

(ii)
=

∑
µ∈Wλ(λ+ν)

τ2
wµ =

Wλ(τ2, τ2
n, τ

2
0 )

(Wλ ∩Wλ+ν)(τ2, τ2
n, τ

2
0 )
, (8.8)

where Wλ ⊂W refers to the stabilizer subgroup {w ∈W | wλ = λ} and

Wλ(τ2, τ2
n, τ

2
0 ) :=

∑
w∈W
wλ=λ

τ2
w,

(Wλ ∩Wλ+ν)(τ2, τ2
n, τ

2
0 ) :=

∑
w∈W

wλ=λ and
w(λ+ν)=λ+ν

τ2
w.

Here we used that for any λ ∈ Λn,m: (i) (λ ± ej)+ 6= λ and (ii) wλ±ej ∈ Wλ. Invoking of Macdonald’s

explicit product formula (C.4) for the generalized Poincaré series Wλ(τ2, τ2
n, τ

2
0 ) (= W

(n,m)
λ (τ2, τ2

n, τ
2
0 )) of

the stabilizer subgroup Wλ (= W
(n,m)
λ ) with λ ∈ Λn,m, entails that

vej (λ) = [mλj (λ)]τ2(1 + δλjτ
2
nτ

2(m0(λ)−1)) = vj(λ)

if λ+ ej ∈ Λn,m and

v−ej (λ) = [mλj (λ)]τ2(1 + δm−λjτ
2
0 τ

2(mm(λ)−1)) = vj(λ)

if λ− ej ∈ Λn,m. More specifically, these compact expressions for vν(λ) with ν = ej and ν = −ej have their
origin in the following observation: if both λ, λ + ν ∈ Λn,m (for such a ν ∈ W0e1), then the decomposition
of Wλ ∩Wλ+ν as a direct product of finite hyperoctahedral groups and permutation groups differs from the

corresponding decomposition of Wλ (= W
(n,m)
λ ) in Eq. (C.3) by at most a single factor. In view of Eq.

(C.4), the expression in Eq. (8.8) thus simplifies as the quotient of the Poincaré series corresponding to
these distinct factors in the numerator and the denominator (as the Poincaré series stemming from all other
factors in the decomposition appear common in the numerator and the denominator and therefore cancel):

vej (λ) =


Smλj

(λ)(τ
2)

Smλj
(λ)−1(τ2) if λj > 0,

W
(m0(λ))
0 (τ2,τ2

n)

W
(m0(λ)−1)
0 (τ2,τ2

n)
if λj = 0,

v−ej (λ) =


Smλj

(λ)(τ
2)

Smλj
(λ)−1(τ2) if λj < m,

W
(mm(λ))
0 (τ2,τ2

0 )

W
(mm(λ)−1)
0 (τ2,τ2

0 )
if λj = m.

Upon evaluating the surviving Poincaré series with the aid of Eqs . (C.2a), (C.2b), this gives rise to the
compact expressions for v±ej (λ) displayed above.

9. Completeness of the Bethe Ansatz associated with H

In this section the commuting quantum integrals H1, . . . ,Hn (8.5) for the n-particle open q-boson system
are simultaneously diagonalized in C(Λn,m) by means of a basis of Bethe Ansatz eigenfunctions that consists
of hyperoctahedral Hall-Littlewood polynomials. Throughout this section it will be assumed that the q-boson
parameters q, a±, â± and the double affine Hecke algebra parameters τ , τ±, τ̂± are related through Eq. (8.7)
and that none of these parameters lies on the unit circle.
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9.1. Affine hyperoctahedral Hall-Littlewood functions. For a wave vector ξ = (ξ1, . . . , ξn) ∈ Rn, let
eiξ ∈ C(Zn) denote the associated plane wave function of the form

eiξ(λ) := eiλ1ξ1+···+iλnξn (λ ∈ Zn).

The affine hyperoctahedral Hall-Littlewood function Φξ ∈ C(Zn) with spectral parameter ξ is now defined as

Φξ := J φξ where φξ :=
( ∑
w∈W0

τwIw

)
eiξ. (9.1)

Notice that φξ arises from the integral-reflection action of the element 10 :=
∑
w∈W0

τwTw on the plane wave

eiξ. This element is identified as the normalized idempotent corresponding to the trivial representation of
the Hecke algebra of the hyperoctahedral group W0:

Tj10 = τj10 (j = 1, . . . , n). (9.2)

By summing all contributions stemming from the idempotent, one arrives at an explicit formula for φξ.

Proposition 9.1 (Plane Waves Decomposition). For

ξ ∈ Rnreg := {ξ ∈ Rn | ξj , ξj ± ξk 6∈ πZ, for 1 ≤ j 6= k ≤ n}, (9.3)

the function φξ (9.1) decomposes into the following linear combination plane waves:

φξ =
∑
w∈W0

C(wξ)eiwξ, (9.4a)

where

C(ξ) :=
∏

1≤j<k≤n

1− qe−i(ξj−ξk)

1− e−i(ξj−ξk)

1− qe−i(ξj+ξk)

1− e−i(ξj+ξk)

×
∏

1≤j≤n

(1− a−e−iξj )(1− â−e−iξj )
1− e−2iξj

.

(9.4b)

This explicit plane waves expansion for φξ (9.1) amounts to a well-known formula in the affine Hecke
algebra H going back to Macdonald, see e.g. [M1, Sec. 4], [NR, Thm. 2.9] and [Pa, Thm. 6.9]. To keep our
presentation self-contained, a short elementary verification based on the integral-reflection representation is
provided below in Subsection 9.4.

9.2. W -invariance. The affine hyperoctahedral Hall-Littlewood function is automatically invariant with
respect to the finite group action of W0 because for j = 1, . . . , n:

T̂jΦξ = T̂jJ φξ
Eq. (8.2)

= J Ijφξ
Eq. (9.2)

= J τjφξ = τjΦξ, (9.5)

so sjΦξ = Φξ. In order for it to be also periodic with respect to the action of the translations provided by
the affine part of W , the spectral parameter ξ must additionally satisfy an algebraic system of Bethe-type
equations.

Proposition 9.2 (Bethe Equations). For ξ ∈ Rnreg (9.3) the affine hyperoctahedral Hall-Littlewood function

Φξ (9.1) belongs to the W -invariant subspace C(Zn)W (8.3a), (8.3b), provided the spectral parameter ξ
satisfies the following algebraic system of Bethe type equations

e2imξj =
(1− a+e

iξj )(1− â+e
iξj )

(eiξj − a+)(eiξj − â+)

(1− a−eiξj )(1− â−eiξj )
(eiξj − a−)(eiξj − â−)

(9.6)

×
∏

1≤k≤n
k 6=j

(1− qei(ξj−ξk))(1− qei(ξj+ξk))

(ei(ξj−ξk) − q)(ei(ξj+ξk) − q)
for j = 1, . . . , n.

To prove this proposition it suffices to check that the Bethe equations are equivalent to the condition that
T̂0Φξ = τ0Φξ (cf. Eqs. (8.3b) and (9.5)). The details of this verification are relegated to Subsection 9.5 at
the end.

As a direct consequence of the trivial action of the propagation operator J (6.3) on functions supported on
the fundamental domain Λn,m (2.2)—together with the plane waves decomposition of φξ in Proposition 9.1
and the conditioned W -invariance of Φξ in Proposition 9.2—one deduces that the affine hyperoctahedral Hall-
Littlewood function (9.1) can be written explicitly in terms of hyperoctahedral Hall-Littlewood polynomials
(3.2a), (3.2b) when the spectral parameter satisfies the Bethe equations in Eq. (9.6).

Corollary 9.3 (Bethe Wave Function). For ξ ∈ Rnreg (9.3) satisfying the Bethe equations (9.6), one has that

Φξ(λ) = Pλ+(ξ; q, a−, â−) (λ ∈ Zn), (9.7)

where Pλ(ξ; q, a, â) is given by Eqs. (3.2a), (3.2b).
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9.3. Diagonalization. In this subsection we will restrict our parameters further to the domain

q, a±, â± ∈ (−1, 1) \ {0}, (9.8a)

or equivalently (cf. Eq. (8.7))

0 < |τ0| < |τ̂0| < 1, 0 < |τn| < |τ̂n| < 1 and 0 < |τ | < 1, (9.8b)

where τ and the pairs τ0, τ̂0 and τn, τ̂n are each either real or purely imaginary.
Let us recall that ξµ, µ ∈ Λn,m denotes the unique global minimum of the semibounded strictly convex

Morse function Vµ(ξ) (3.5a), (3.5b). We will first check that this minimum provides a solution to the Bethe
equations in Proposition 9.2. The crux is that the critical equation ∇ξVµ(ξ) = 0 in Eq. (3.9) coincides with
the Bethe equations (9.6) up to exponentiation.

Proposition 9.4 (Bethe Vectors). The minima ξµ, µ ∈ Λn,m provide (m+n)!
m!n! (distinct) solutions for the

Bethe equations (9.6) belonging to the open fundamental alcove A (3.11) (and thus in particular to Rnreg
(9.3)).

Proof. If we multiply Eq. (3.9) by the imaginary unit and exponentiate both sides (using Eq. (3.5b)), then
it becomes clear that for any µ ∈ Λm,n the critical point ξµ provides a solution to the Bethe equations (9.6).
As detailed at the end of Remark 3.5, the critical points in question belong to the open fundamental alcove
A (⊂ Rnreg). Moreover, it is also manifest from Eq. (3.9) that ξµ 6= ξµ̂ if µ 6= µ̂. �

By combining Corollary 9.3 and Proposition 9.4, it follows that for any µ ∈ Λn,m the value of ψµ := ΠΦξµ

at λ ∈ Λn,m is given explicitly by Pλ(ξµ; q, a−, â−) (3.2a), (3.2b):

ψµ(λ) = Φξµ(λ) = Pλ(ξµ; q, a−, â−) (∀µ, λ ∈ Λn,m). (9.9)

We are now in the position to formulate the main result of this paper.

Theorem 9.5 (Completeness of the Bethe Ansatz Eigenfunctions). For parameters in the domain (9.8a),
(9.8b), the hyperoctahedral Hall-Littlewood functions ψµ = ΠΦξµ , µ ∈ Λn,m constitute a basis for C(Λn,m)

that diagonalizes the commuting q-boson quantum integrals H1, . . . ,Hn (8.5) simultaneously:

Hrψµ = Er(ξµ)ψµ (µ ∈ Λn,m, r = 1, . . . , n). (9.10)

Here Er(ξ) := Er(e
iξ1 , . . . , eiξn) refers to the elementary symmetric function in Eq. (7.2) with Xj replaced

by eiξj (j = 1, . . . , n).

Proof. Let us first emphasize that Eq. (9.9) implies that for any µ ∈ Λn,m the function ψµ 6= 0 as an element
of C(Λn,m) (cf. Remark 3.4). Moreover, by acting with Hr (8.5) on ψµ = ΠΦξµ it is readily confirmed that
we are dealing with an eigenfunction:

Hrψµ = ΠLrΦξµ

(i)
= ΠJEr(t)φξµ

(ii)
= ΠJEr(ξµ)φξµ

(iii)
= Er(ξµ)ψµ,

where we have used (i) Eqs. (7.3a), (9.1), (ii) Eq. (7.3b) and Proposition 9.1, and (iii) the fact that
Er(ξµ) is a scalar and can therefore be pulled out from the left. Since the elementary symmetric func-
tions E1(ξ), . . . , En(ξ) separate the points of A (3.11), we see that for any µ, µ̂ ∈ Λn,m:

µ 6= µ̂
Prp. 9.4

=⇒ ξµ 6= ξµ̂ =⇒ Er(ξµ) 6= Er(ξµ̂)

for some r ∈ {1, . . . , n}. This nondegeneracy ensures that the (m+n)!
m!n! eigenfunctions ψµ, µ ∈ Λn,m must be

linearly independent, so they indeed provide a basis for C(Λn,m). �

By specializing to the simplest quantum integral for r = 1, Theorem 9.5 gives rise to Theorem 3.1. From
the explicit formula for the operator at issue in this particular case (cf. Propositions 2.1 and 8.4), it is
manifest that we may analytically continue the corresponding eigenvalue equation in Eqs. (3.6a), (3.6b) to
the slightly larger parameter domain in Eq. (3.3) (cf. Remark 3.6).

9.4. Proof of Proposition 9.1. It is seen from the explicit action in Eqs. (5.3a)–(5.3c) that for any
ξ ∈ Rnreg (9.3) and j = 1, . . . , n:

τjIje
iξ = bj(sjξ)eiξ + cj(sjξ)eisjξ,

= bj(−ξ)eiξ + cj(−ξ)eisjξ,
(9.11)

where

bj(ξ) = τ2
j − cj(ξ) = cj(−ξ)− 1,

cj(ξ) =


1−qe−i(ξj−ξj+1)

1−e−i(ξj−ξj+1) if j = 1, . . . , n− 1,

(1−a−e−iξn )(1−â−e−iξn )
(1−e−2iξn )

if j = n.
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Hence φξ (9.1) decomposes in this situation as a linear combination of plane waves of the form

φξ =
∑
w∈W0

Cw(ξ)eiwξ (9.12)

for certain unique coefficients Cw(ξ) ∈ C. Here we use that for ξ ∈ Rnreg the plane waves eiwξ, w ∈ W0

are linearly independent in C(Zn), because the corresponding wave vectors wξ, w ∈W0 are distinct modulo
2πZn (as the stabilizer of ξ ∈ Rnreg for the action of W in Eq. (4.3) with c = π is trivial).

Let us first compute the coefficient Cw(ξ) for w = w0, where w0 refers to the longest element of W0 (so
w0ξ = −ξ). To this end we define

rj := sjsj+1 · · · sn−1snsn−1 · · · sj+1sj for j = 1, . . . , n (9.13a)

(so rj(ξ1, . . . , ξn) = (ξ1, . . . , ξj−1,−ξj , ξj+1, . . . , ξn)), which permits to decompose w0 in terms of the following
reduced expression:

w0 = r1r2 · · · rn (9.13b)

(of length n2). From Eq. (9.11) it is immediate that for any reduced expression w = sj` · · · sj1 ∈ W0 the
action of τwIw on eiξ is of the form

τwIweiξ =
( ∏

1≤k≤`

cjk(sjk · · · sj2sj1ξ)
)
eiwξ + l.o., (9.13c)

where l.o. stands for a linear combinations of plane waves eivξ with v < w in the Bruhat partial order on
W0 (cf. Subsection 6.2). With the aid of Eqs. (9.13a), (9.13c), one computes that

τrjIrje
iξ =

eirjξ

 (1− a−eiξj )(1− â−eiξj )
1− e2iξj

∏
j<k≤n

1− qei(ξj−ξk)

1− ei(ξj−ξk)

1− qei(ξj+ξk)

1− ei(ξj+ξk)

 + l.o.

Hence, we deduce that the leading coefficient (with respect to the Bruhat order) in the plane waves expansion
(9.12) is given explicitly by Cw0

(ξ) = C(w0ξ) = C(−ξ) with C(·) as in Eq. (9.4b).
To compute the remaining coefficients Cw(ξ) for w 6= w0, we note that Ijφξ = τjφξ for j = 1, . . . , n

(because of Eq. (9.2)). It thus follows—by Eq. (9.11) and the linear independence of the plane waves—that
for ξ ∈ Rnreg:

Csjw(ξ)cj(wξ) = Cw(ξ)cj(−wξ) for all w ∈W0, j ∈ {1, . . . , n}.
Moreover, it is readily seen that C(wξ) also satisfies this same recurrence relation, since we deduce from the
explicit product formula in Eq (9.4b) that for ξ ∈ Rnreg:

C(sjξ)cj(ξ) = C(ξ)cj(−ξ) for all j ∈ {1, . . . , n}.

The upshot is that Cw(ξ) = C(wξ) for all w ∈ W0 and any ξ ∈ Rnreg (by downward induction with respect
to the Bruhat order starting from the initial condition Cw0

(ξ) = C(w0ξ) while using that cj(ξ) 6= 0).

9.5. Proof of Proposition 9.2. The affine Hall-Littlewood function belongs to C(Zn)W provided T̂0Φξ =
τ0Φξ (cf. Eqs. (8.3b) and (9.5)), or equivalently I0φξ = τ0φξ (cf. Proposition 8.1). Since for any ξ ∈ Rnreg

(9.3), the action of I0 (5.3a)–(5.3c) on eiξ is determined by

τ0I0e
iξ = b0(−ξ)eiξ + c0(−ξ)s0e

iξ,

where s0e
iξ = e2imξ1eis

′
0ξ and

b0(ξ) = τ2
0 − c0(ξ) = c0(−ξ)− 1,

c0(ξ) =
(1− a+e

iξ1)(1− â+e
iξ1)

1− e2iξ1
,

we see from the plane waves decomposition in Eqs. (9.4a), (9.4b) that in this situation

τ0I0φξ =
∑
w∈W0

b0(−wξ)C(wξ)eiwξ

+
∑
w∈W0

c0(wξ)C(s′0wξ)e−2im(wξ)1eiwξ.

If we compare this expression with the corresponding plane waves decomposition of τ2
0φξ—while recalling

the linear independence of the plane waves eiwξ, w ∈ W0 for ξ ∈ Rnreg (cf. Subsection 9.4)—then it follows
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that the W -invariance of the affine Hall-Littlewood polynomial is guaranteed for ξ ∈ Rnreg provided

e2im(wξ)1 =
C(s′0wξ)

C(wξ)

c0(wξ)

τ2
0 − b0(−wξ)

=
C(s′0wξ)

C(wξ)

c0(wξ)

c0(−wξ)

= −C(s′0wξ)

C(wξ)

(1− a+e
i(wξ)1)(1− â+e

i(wξ)1)

(ei(wξ)1 − a+)(ei(wξ)1 − â+)
∀w ∈W0.

(9.14)

By substituting the explicit product formula for C(·) from Eq. (9.4b) and canceling the common factors in
the numerator and denominator, we see that

C(s′0ξ)

C(ξ)
= − (1− a−eiξ1)(1− â−eiξ1)

(eiξ1 − a−)(eiξ1 − â−)

∏
1<j≤n

(1− qei(ξ1−ξj))(1− qei(ξ1+ξj))

(ei(ξ1−ξj) − q)(ei(ξ1+ξj) − q)
,

which confirms that Eq. (9.14) amounts to the Bethe equations stated in Eq. (9.6).

Appendix A. The basic representation and Poincaré-Birkhoff-Witt property at critical
level

In this appendix Propositions 4.2 and 4.3 are proven. To this end we adapt corresponding results of Noumi
[N] and Sahi [Sa] to the critical level q=1, with the aid of techniques from [O, Sec. 3], [EOS2, Sec. 4.3], [Ge,
Ch. 2.1] and [M4, Ch. 4.3].

Let A denote the quotient field of the algebra C[X,Y ] of Laurent polynomials in the independent inde-
terminates X1, . . . , Xn and Y1, . . . , Yn. Our action of W0 on C[X] is lifted to A via the field homomorphism
determined by the assignment

w(XλY µ) := XwλY wµ (for w ∈W0 and λ, µ ∈ Zn),

where (recall) Xλ = Xλ1
1 · · ·Xλn

n and Y µ = Y µ1

1 · · ·Y µnn . We write fw for the result of the action of w ∈W0

on f ∈ A.

Definition A.1. The skew-group algebra (or smash product) A∗W0 is the associative unital complex algebra
characterized by the following three properties:

(i) A ∗W0 contains A and the group algebra C[W0] as subalgebras,
(ii) the multiplication map defines an isomorphism of C-vector spaces

A⊗C C[W0]→ A ∗W0,

(iii) and we have the cross relations

(fv)(gw) = fgvvw, (∀f, g ∈ A and ∀v, w ∈W0).

We write AX ∗ W0 for the subalgebra of A ∗ W0 determined by the smash product of C[W0] and the
subfield AX ⊂ A generated by C[X] ⊂ C[X,Y ].

Since W ∼= W0 n (2cZ)n ⊂ W0 n Zn (cf. Subsection 7.1), it is clear from the definitions that we can
identity the group algebra C[W ] as a subalgebra of A ∗W0 via an injective homomorphism determined by
the assignment tλv → Y λv (λ ∈ Zn, v ∈ W0). In particular: s0 = t2ce1s

′
0 → Y 2c

1 s′0, cf. Remark 4.4. With
this identification, the Demazure-Lusztig operators Ťj (4.5a)–(4.5b) will now be interpreted as elements of
A ∗W0.

Let Ť ′j be given by Ťj (4.5a)–(4.5b) with sj replaced by s′j . (So Ť ′j = Ťj unless j = 0.) The following
lemma provides a representation of H that can be regarded as a q → 1 degeneration of the well-known
polynomial representation of the C∨C double affine Hecke algebra due to Noumi [N] (at the level of the
affine Hecke algebra) and Sahi [Sa] (at the level of the double affine Hecke algebra), cf. also [St].

Lemma A.2 (Noumi-Sahi Representation at q=1). The assignment Tj 7→ Ť ′j (j = 0, . . . , n), Xj 7→ Xj

(j = 1, . . . , n) extends (uniquely) to an algebra homomorphism H→ AX ∗ C[W0].

Proof. This follows from [Sa, Thm. 3.1] in the limit q→ 1. �

We now modify the representation of Lemma A.2 by replacing Ť ′0 with Ť0 (cf. [EOS2, Thm. 4.11]).

Proposition A.3 (Basic Representation at q=1). The assignment Tj 7→ Ťj (j = 0, . . . , n), Xj 7→ Xj

(j = 1, . . . , n) uniquely extends to an algebra homomorphism H→ A ∗W0.

Proof. To verify the statement, we have to check that the Demazure-Lusztig operators Ť0, . . . , Ťn (4.5a)–
(4.5b) satisfy the corresponding relations of the form in Eqs. (4.4a), (4.4b) and (4.4c). For all relations that
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do not involve Ť0, the asserted equalities are immediate from Lemma A.2. So it suffices to consider only the
remaining relations that do involve Ť0:

Ť0 − Ť−1
0 = τ0 − τ−1

0 ,

Ť0Ť1Ť0Ť1 = Ť1Ť0Ť1Ť0,

Ť0Ťj = Ťj Ť0, 1 < j ≤ n,
Ť0X1 − Ť−1

0 X−1
1 = τ̂−1

0 − τ̂0,
Ť0Xj = Xj Ť0, 1 < j ≤ n.

(A.1)

Given a fixed k ∈ {1, . . . , n}, let us pick a µ ∈ Zn such that a0(µ) = ak(µ) = 0. Then

Ť ′0 = Y −µŤ0Y
µ and Ťk = Y −µŤkY

µ.

By conjugating a relation in Eq. (A.1) with Y −µ, the element Ť0 gets replaced by Ť ′0 and the element Ťk
is left unchanged. The upshot is that the relations in Eq. (A.1) follow from those with Ť0 replaced by Ť ′0,
which hold in turn by Lemma A.2. �

Let us denote the image of Tw, w ∈ W in the basic representation by Ťw. The following proposition
reveals that the basic representation in Proposition A.3 is faithful.

Proposition A.4 (Poincaré-Birkhoff-Witt Property). The elements XµŤw (or alternatively ŤwX
µ), with

µ ∈ Zn and w ∈W , are linearly independent in A ∗W0 over C.

Proof. We mimic Macdonald’s proof in [M4, (4.3.11)] of a corresponding statement for q 6= 1. Only the
case of the elements XµŤw will be considered here, as the proof for the elements ŤwX

µ is similar. Since
Ťj = bj(X) + cj(X)sj with

cj(X) = τj − bj(X) = τ−1
j

(1− τj τ̂jX−αj )(1 + τj τ̂
−1
j X−αj )

1−X−2αj

(j = 0, . . . , n), we have that for any reduced expression w = sj1 · · · sj` ∈W :

Ťw =
∑
v≤w

fvw(X)v, (A.2)

where ≤ refers to the Bruhat partial order on W (cf. Subsection 6.2), and the coefficients fvw(X) belong to
AX with

fww(X) = cj1(X) · · · cj`(X) 6= 0.

The linear dependence of the elements XµŤw would imply the existence of a nonempty finite subset
V ⊂W such that ∑

w∈V
gw(X)Ťw = 0

for certain coefficients gw(X) ∈ C[X] \ {0}. Combined with Eq. (A.2) this implies that∑
w∈V,v∈W
v≤w

gw(X)fvw(X)v = 0. (A.3)

Since the elements Y λw with λ ∈ Zn and w ∈ W0 are (by definition) linearly independent in the algebra
A ∗W0 when considered as a vector space over the field AX , it follows from Eq. (A.3) that for any v ∈ W
that is dominated in the Bruhat order by some element(s) of V :

hv(X) :=
∑
w∈V
w≥v

gw(X)fvw(X) = 0.

Upon picking v to be a maximal element of V it is seen that in this situation hv(X) = gv(X)fvv(X) = 0,
which contradicts the assumption that gv(X) 6= 0 (because fvv(X) 6= 0). �

Proposition 4.2 is immediate from Propositions A.3 and A.4. Proposition 4.3 follows from Proposition
A.3 upon identifying the X and Y indeterminates: Yj = Xj , j = 1, . . . , n. With this identification the basic
representation passes over into the polynomial representation (which is no longer faithful).
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Appendix B. Affine intertwining relations

In this appendix it is shown that for any

f ∈ C(Zn), λ ∈ Zn and ν ∈ {±ej | j = 1, . . . , n}

one has that

τ−1
wλ

(Iwλg)(wλ(λ+ ν)) = τ2
wwλ(λ+ν)

f(λ+ ν) + dλ+,w′λν
f(λ), (B.1)

where g := J−1f and dλ,ν is given by Eq. (7.4b). This affine intertwining relation lies at the basis of the
proof for Proposition 7.1.

To infer Eq. (B.1), let us first provide a reduced expression for the group element wλ+ν with λ ∈ Λn,m
and ν ∈ {±ej | j = 1, . . . , n} such that λ+ ν 6∈ Λn,m.

Lemma B.1 (Reduced Expressions for wλ±ej ). For any λ ∈ Λn,m (2.2) and j ∈ {1, . . . , n}, one has that

wλ+ej =

{
smm(λ)−1 · · · s1s0s1 · · · sj−1 if λj = m,

smm(λ)+···+mλj+1(λ)+1 · · · sj−2sj−1 if λj = λj−1 < m,
(B.2a)

and

wλ−ej =

{
sn−m0(λ)+1 · · · sn−1snsn−1 · · · sj if λj = 0,

smm(λ)+···+mλj (λ) · · · sj+1sj if λj = λj+1 > 0,
(B.2b)

with all stated expressions being reduced.

Proof. It is immediate that the stated expressions map the corresponding vector λ+ ν into Λn,m. Moreover,
since wµ = wsjµsj with `(wµ) = `(wsjµ)+1 for any µ ∈ Zn and j ∈ {0, . . . , n} such that aj(µ) < 0, it follows
by induction on the length of wλ+ν that the expressions in question are indeed reduced. �

The above reduced expressions reveal in particular that for any λ ∈ Λn,m and ν ∈ {±ej | j = 1, . . . , n}
one has that wλ+ν ∈Wλ, and therefore (λ+ ν)+ 6= λ.

Lemma B.2 (Affine Intertwining Relations). For any f ∈ C(Zn), λ ∈ Λn,m and ν ∈ {±ej | j = 1, . . . , n}:

τwλ+ν (Iwλ+νf)((λ+ ν)+) = f(λ+ ν)− dλ,νf(λ).

Proof. The proof of the lemma is by induction on `(wλ+ν), starting from the trivial situation that λ + ν ∈
Λn,m. When `(wλ+ν) > 0, we employ the reduced expression of Lemma B.1 to write wλ+ν = wλ+s′jν

sj with

`(wλ+ν) = `(wλ+s′jν
) + 1. Invoking of the induction hypothesis then yields that

τwλ+ν (Iwλ+νf)((λ+ ν)+) = τjτwλ+s′
j
ν
(Iwλ+s′

j
ν
Ijf)((λ+ s′jν)+)

= τj(Ijf)(λ+ s′jν)− τjdλ,s′jν(Ijf)(λ)

(where it was used that sj(λ+ ν) = λ+ s′jν so (λ+ s′jν)+ = (λ+ ν)+). We are now in either of the following
two situations:

(i) 1 ≤ j ≤ n− 1 and aj(λ+ ν) = −1,
(ii) j = 0 or j = n and aj(λ+ ν) = −2.

Since for any f ∈ C(Zn), µ ∈ Zn and j ∈ {0, . . . , n} such that 0 ≤ aj(µ) ≤ 2:

τj(Ijf)(µ) =


τ2
j f(µ) if aj(µ) = 0

f(µ− αj) if aj(µ) = 1

f(µ− 2αj)− τj(τ̂j − τ̂−1
j )f(µ− αj) if aj(µ) = 2

(by Eqs. (5.3a)–(5.3c)), it is seen that τj(Ijf)(λ+ s′jν) = f(λ+ ν) and (Ijf)(λ) = τjf(λ) in Case (i), while

τj(Ijf)(λ + s′jν) = f(λ + ν) − τj(τ̂j − τ̂−1
j )f(λ) in Case (ii). The lemma now follows because in Case (i)

τ2
j dλ,s′jν = dλ,ν , while in Case (ii) τj(τ̂j − τ̂−1

j ) = dλ,ν and dλ,s′jν = 0. �

We are now in the position to verify Eq. (B.1). Since (λ+ ν)+ = wλ+ν(λ+ ν) = wwλ(λ+ν)wλ(λ+ ν), one
has that

f(λ+ ν) = (J g)(λ+ ν) = τ−1
wλ+ν

(Iwλ+νg)((λ+ ν)+)

= τ−1
wwλ(λ+ν)wλ

(Iwwλ(λ+ν)wλg)((λ+ ν)+).
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Moreover, because wλ(λ + ν) = λ+ + w′λν it follows that wwλ(λ+ν) ∈ Wλ+
(in view of the observation just

after Lemma B.1), whence `(wwλ(λ+ν)wλ) = `(wwλ(λ+ν)) + `(wλ). We may thus rewrite the above equality
in a form equivalent to Eq. (B.1):

f(λ+ ν) = τ−1
wwλ(λ+ν)

τ−1
wλ

(Iwwλ(λ+ν)
Iwλg)((λ+ ν)+)

= τ−2
wwλ(λ+ν)

τ−1
wλ

(
(Iwλg)(wλ(λ+ ν))− dλ+,w′λν

(Iwλg)(λ+)
)

= τ−2
wwλ(λ+ν)

(
τ−1
wλ

(Iwλg)(wλ(λ+ ν))− dλ+,w′λν
f(λ)

)
,

where we used Lemma B.2 with f , λ and ν being replaced by Iwλg, λ+ and w′λν, respectively.

Appendix C. Hyperoctahedral Poincaré series with distinct parameters

In this appendix Macdonald’s product formula for the generalized Poincaré series with distinct parameters
from [M2] is recalled for the special instance of a stabilizer subgroup of the affine hyperoctahedral group.
For this purpose the rank n of our (affine) hyperoctahedral group is made explicit here by attaching it as a
superscript (n).

The two-parameter generalized Poincaré series W
(n)
0 (τ2, τ2

n) of the (finite) hyperoctahedral group W
(n)
0 ⊂

W (n) is defined as [M2]:

W
(n)
0 (τ2, τ2

n) :=
∑

w∈W (n)
0

τ2
w. (C.1)

Macdonald’s celebrated product formula states that

W
(n)
0 (τ2, τ2

n) = Sn(τ2)(−τ2
n; τ2)n, (C.2a)

where Sn(τ2) denotes the Poincaré series of the symmetric group Sn ⊂ W
(n)
0 generated by s1, . . . , sn−1

(which acts in the representation of Eq. (4.3) by permuting the coordinates of x = (x1, . . . , xn)):

Sn(τ2) :=
∑
w∈Sn

τ2
w =

∑
w∈Sn

τ2`(w) = [n]τ2 [n− 1]τ2 · · · [1]τ2 = [n]τ2 !. (C.2b)

For any λ ∈ Λn,m, the stabilizer subgroup W
(n,m)
λ := {w ∈ W (n) | wλ = λ} decomposes as a direct

product of finite hyperoctahedral groups and symmetric groups:

W
(n,m)
λ

∼= W
(m0(λ))
0 × Sm1(λ) × · · · × Smm−1(λ) ×W

(mm(λ))
0 . (C.3)

More specifically, these factors arise as the subgroups of W
(n,m)
λ generated by the following simple reflections

W
(m0(λ))
0

∼= 〈sm1(λ)+···+mm(λ)+1, . . . , sn〉,
Sml(λ)

∼= 〈sml+1(λ)+···+mm(λ)+1, . . . , sml(λ)+···+mm(λ)−1〉 (l = 1, . . . ,m− 1),

W
(mm(λ))
0

∼= 〈s0, . . . , smm(λ)−1〉.
It thus follows that

W
(n,m)
λ (τ2, τ2

0 , τ
2
n) :=

∑
w∈W (n,m)

λ

τ2
w (C.4)

= W
(m0(λ))
0 (τ2, τ2

n)Sm1(λ)(τ
2) · · ·Smm−1(λ)(τ

2)W
(mm(λ))
0 (τ2, τ2

0 )

= (−τ2
n; τ2)m0(λ)(−τ2

0 ; τ2)mm(λ)

∏
0≤l≤m

[ml(λ)]τ2 !.
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