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Inhibiting S. aureus adhesion from a factors-responses analysis of albumin-adsorption. 
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Highlights 

 
 Factorial design of experiments to study the albumin adsorption-desorption process  

 Bacterial adhesion correlation with the degree of albumin relaxation on the substrate  

 Biofunctionalization with thermal treated albumin inhibits bacterial adhesion  

 Novel and simple biofunctionalization strategy to prevent medical devices infections 

 

Abstract 

Staphylococcus aureus has become the most common opportunistic microorganism related 

to nosocomial infections due to the bacteria capacity to form biofilms on biomedical devices 

and implants. Since bacterial adhesion is the first step in this pathogenesis, it is evident that 

inhibiting such a process will reduce the opportunity for bacterial colonization on the devices. 

This work is aimed at optimizing a surface biofunctionalization strategy to inhibit the adhesion 

of S. aureus on solid substrates. The first part of the work deals with the albumin adsorption-

desorption process, studied by a factorial design of experiments to explore a wide range of 

experimental factors (protein concentration, pH, flow rate and adsorption time) and responses 

(initial adsorption rate, adsorbed amount, desorbed extent) for hydrophilic and hydrophobic 

substrates, with a reduced number of experiments. This approach allows the simultaneous 

evaluation of the factors affecting the albumin adsorption-desorption process to find a 

qualitative correlation with the amount of alive S. aureus adhered on albumin 

biofunctionalized substrates. The results of this work point to a relationship between bacterial 

adhesion and the degree of albumin relaxation on the solid substrate. In fact, the inhibition of 

bacterial adhesion on albumin biofunctionalized substrates is due to the surface perturbation 

on the native structure of the protein. On this base, a biofunctionalization strategy was 

designed using a solution of thermally treated albumin molecules (higher -sheet or unordered 

secondary structure elements) to biofunctionalize solid substrates by dipping. With these 

albumin biofunctionalized substrates S. aureus adhesion was minimized.  

 

Keywords: 

Factorial design of experiments, adsorption-desorption process, surface protein relaxation, 

partially denatured albumin, protein coated substrate, bacterial adhesion. ACCEPTED M
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1-Introduction 

 

Staphylococcus aureus has become the most common opportunistic microorganism related 

to nosocomial infections in the past years [1]. Staphylococcus aureus pathogenicity is 

fundamentally due to the bacteria capacity to form biofilms on biomedical devices and 

implants [2-4]. Nosocomial infections are acquired by patients during their stay in a hospital 

and other healthcare facilities causing a prolonged hospital stay, an increment in the morbidity 

and mortality rate as well as a general increase in the antimicrobial resistance. In the last 

years, many attempts have been made to prevent medical device-associated infections, like 

improving aseptic techniques, controlling the environment sterility, and perioperative 

antibiotic prophylaxis [5-9]. Since bacterial adhesion is the first step in the pathogenesis of 

foreign-body-related infections, it is evident that inhibiting such a process will reduce the 

opportunity for bacterial colonization to the device surface [10]. This approach to prevent 

bacterial adhesion on the surface of biomedical devices, is also promising as it would eliminate 

the need of using any other technique to avoid microbial colonization [11, 12].  

Two different strategies have been developed to use materials that resist infections in the 

fabrication of biomedical devices and implants [13, 14]: (1) surface modification of the solid 

substrate to confer anti-adhesive properties, (2) material doping with anti-microbial agents. 

The first strategy was extensively exploited by the adsorption of hydrophilic polymeric 

brushes, based on poly(ethylene glycol) or poly(ethylene oxide), on different substrates, which 

inhibits protein adsorption and bacterial adhesion because of the large exclusion volume effect 

[15-17]. Further, methacrylate co-polymers bearing phosphonic or phosphonate groups were 

proposed to improve the ability of titanium substrates to inhibit bacterial adhesion [18]. On 

the other hand, a biomimetic design based on the crystallization on solid substrates of the two 

main lipid components of the nanostructured cicada and dragonfly wings has been intended to 

kill bacteria [19]. Other biomimetic design that relies on the microtopographic features of 

lotus leaves and shark skins (surface roughness, hydrophobicity and charge), has been used to 

provide solid substrates with antiadhesive properties [20]. The second strategy is mainly based 

on the local action of anti-microbial agents on the surface of solid substrates. Polysaccharides 

films were loaded with gentamicin, such released antibiotic leads to an excellent antibacterial 

action against S. aureus and E. coli. [21]. Besides antibiotics, chitosan has been widely applied 

to coat materials in order to decrease the number of attached viable bacteria [22, 23]. Metal 

nano-antimicrobials such as silver, copper and its complexes and zinc oxide, have been also 

developed to create engineered nanostructures with improved antifouling performances [24-
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28]. In a similar way, antimicrobial peptides appeared as therapeutically useful antimicrobial 

agents [29, 30] that was combined with a biomolecular linker onto titanium surfaces [31]. 

These two strategies can be also addressed by surface biofunctionalization that emerges as 

the process by which biomolecules are incorporated to solid substrates to repel bacteria (in 

the first case) or kill them (in the second one). Meanwhile, protein biofunctionalization of solid 

substrates to repel bacterial adhesion has been scarcely explored in the literature. Recently, it 

was reported that surface coating with fungal proteins (hydrophobins) reduced biofilm 

formation of different strains of S. epidermidis on polystyrene surfaces [32, 33]. It is generally 

assumed that the strategies of surface modification that minimize protein adsorption, are also 

capable of inhibiting bacterial adhesion [34, 35]. This work is aimed at optimizing a surface 

biofunctionalization strategy to inhibit the adhesion of S. aureus on solid substrates. With such 

a purpose, albumin biofunctionalized silica substrates were used as model systems to correlate 

the surface properties of any material with both the protein adsorption process and the 

bacterial adhesion behavior (see supplementary information, Scheme 1-SI). On the one hand, 

albumin is not only the most abundant plasma protein by far [36], but also a nontoxic, 

biocompatible and biodegradable [27] biopolymer for surface biofunctionalization. On the 

other hand, the surface properties of silica substrates, such as hydrophobicity and charge 

density, can be easily modified to account for their effect on the protein adsorption and 

bacterial adhesion processes. The first part of this work deals with the albumin adsorption-

desorption process on hydrophilic and hydrophobic substrates, studied by a factorial design of 

experiments to explore a wide range of experimental factors (protein concentration, pH, flow 

rate and adsorption time) with a reduced number of experiments. Hence, the factorial design 

of experiments allows the simultaneous evaluation of the effect that several factors have on 

the optimization of the protein adsorption-desorption process related to bacterial adhesion. 

Although the adsorption-desorption process of albumin has been extensively reported in the 

literature [37-39], it has not been studied by factorial design of experiments in order to explore 

the relevant factors to optimize the experimental conditions that minimize bacterial adhesion. 

In this way, the outcome of the experimental design can be related to the adhesion of S. 

aureus on solid substrates with previously adsorbed albumin. This relationship represents the 

basis for the second part of the work in which a simple and novel biofunctionalization strategy 

was proposed to minimize bacterial adhesion based on the response given by the best 

combination of experimental factors (see supplementary information, Scheme 1-SI). 
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2- Materials and methods 

 

2.1-Materials 

 

2.1.1-Reagents 

Bovine serum albumin (A-4503) was purchased from Sigma (Saint Louis, MO). This sample 

was characterized in several works [39, 40]. Bovine and human serum albumin share 76% 

sequence homology [41]. Glutaraldehyde, chloroform, NaCl, NaH2PO4.H2O, ethanol, dextrose 

and K2HPO4 were obtained from J.T. Baker, (3-Aminopropyl) trymethoxysilane (APTMS) from 

Fluka, acetone and dimethyldichlorosilane from Carlo Erba, casein acid peptone, soy peptone 

and agar from Britania and LIVE/DEAD BacLight Bacterial Viability Kit (L-13152) from 

Invitrogen. All reagents were of analytical grade and used without further purification. 

Aqueous solutions were prepared in 18 M/cm resistance water (Milli-Q, Millipore; Billerica, 

MA). Phosphate buffer saline (PBS) consists of 5 mM NaH2PO4 solution and 150 mM NaCl 

solution. The pH adjustment was performed by adding KOH (Baker) or HCl (Baker) solutions 

and the pH measurements were carried out with a glass electrode and a digital pH meter 

(Mettler Toledo–Seven Compact). Unless noted, all experiments were performed at room 

temperature (22±2 °C). 

 

2.1.2-Substrates 

Silicon wafers (100 mm, Silicon Valley Microelectronics Inc.; Santa Clara, CA) were oxidized 

for 1 h at 1000 °C in order to obtain a silica layer of about 100 nm thick, which was verified by 

ellipsometry. Such a thickness is essential to achieve high sensitivity in reflectometry 

experiments [42]. The wafer was then cut in strips (1 cm × 4 cm) following the crystallographic 

plane. Prior to each experiment, the silica strips were cleaned with boiling piranha solution 

(2:1 H2SO4:H2O2) and rinsed thoroughly with deionized water (Caution! Piranha solution is a 

powerful oxidizing agent that reacts violently with organic compounds; it should be handled 

with extreme care). 

The surface hydrophobicity was modified by dipping the substrate in a 5% 

dimethyldichlorosilane solution in chloroform for 30 minutes. The contact angle was measured 

using the static sessile drop method and it was analyzed with low bond axisymmetric drop 

shape analysis (LBADSA) [43]. The contact angle was (438)° before the modification, while it 

was (942)° for the hydrophobic substrate (uncertainties were calculated as 95% confidence 

interval of three repeats). Further, the surface charge of the substrates was modified by 
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incorporating amino groups through a self-assembled monolayer (SAM), formed in a 1% (3-

aminopropyl)trymethoxysilane (APTMS) solution in ethanol for 2 hours [44].  

 

2.1.3-Bacterial strains, culture medium and stain 

S. aureus (ATCC 25923) was kindly provided by Dr. Claudia Sola (CIBICI-CONICET, 

Universidad Nacional de Córdoba, Córdoba, Argentina). The culture media were Tryptone Soy 

Agar (TSA) and Tryptone Soy Broth (TSB). The bacteria zeta potential changed from (-19.80.3) 

mV in PBS pH 7.3 to (-13.70.3) mV in TSB. LIVE/DEAD BacLight Bacterial Viability Kit (L-13152) 

was employed to visualize the adhered bacteria to the solid substrates by Fluorescence 

confocal microscopy as well as to discriminate between live and dead bacteria. The kit utilizes 

a mixture of the nucleic acid stain SYTO® 9 (green-fluorescent) and propidium iodide (red-

fluorescent), thus, bacteria with intact cell membranes stain fluorescent green, whereas 

bacteria with damaged membranes stain fluorescent red [45, 46]. The final concentration of 

each dye was 0.0006 mM SYTO 9 stain and 0.003 mM propidium iodide.  

 

2.2-Methods 

 

2.2.1- Albumin adsorption-desorption process 

The albumin adsorption-desorption process was studied by reflectometry (AKZO Research 

Laboratories, Arnhem) as reported elsewhere [37, 42, 47]. The reflectometer was equipped 

with a stagnation point flow setup, previously described [48, 49]. In such a condition, the 

protein transport rate J0 (mg/m2s) towards the surface depends on the geometry of the cell, 

the diffusion coefficient of the molecule, the flow rate and the concentration in solution, as 

described by the following equation [42, 48]: 

𝐽0 = 0.53(𝐷2𝛼 𝐹𝑟 𝑅−4)1 3 ⁄ 𝐶𝑝 = 𝑘𝐶𝑝       (1) 

where D is the diffusion coefficient of albumin (6 × 10−11 m2/s), α is a dimensionless flow 

intensity parameter which is constant for a given cell geometry and flow rate (3.5), Fr is the 

flow rate which was controlled by a peristaltic pump, R is the radius of the circular hole 

through which the solution enters the cell (0.9 × 10−3 m) and Cp the protein concentration in 

mg/m3. The calculated value for k was 3.85 × 10−6 m/s (Fr = 0.02 mL/s) or 6.59 × 10−6 m/s (Fr = 

0.10 mL/s).  

The factorial design of experiments to explore the albumin adsorption-desorption process 

included different factors depending on the surface properties of the substrates. The factors 

evaluated for the hydrophilic substrates were: pH (4.8, the isoelectric point of albumin, and 
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7.3, the pH of the physiological medium), Fr (0.02 mL/s and 0.10 mL/s), Cp (0.005 mg/mL and 

0.100 mg/mL albumin) and adsorption time (50 s and 300 s). On the other hand, with the 

hydrophobic substrates the pH was fixed at 7.3 and the other factors were the same ones. As a 

consequence, 24 and 23 factorial designs were used for hydrophilic and hydrophobic 

substrates, respectively. The evaluated responses were the initial adsorption rate (IAR), the 

albumin adsorbed amount at a given adsorption time () and the desorption percentage (see 

supplementary information, Table 1-SI). Common statistical tools, such as analysis of variance 

(ANOVA), F-test and Student’s t test, were used to find out the significant factors which affect 

the responses of the adsorption-desorption process. The STATISTICA software was used to 

design and randomize experiments and analyze modeled responses. The level of significance 

was given as values of the probability (p-value) less than 0.05.  

Briefly, the adsorption-desorption kinetic experiments were conducted using a peristaltic 

pump (0.02 mL/s or 0.10 mL/s) as follows:  from 0 to 200 s, PBS (pH 4.8 or 7.3) was introduced 

into the cell to establish a stable baseline, from 200 s up to 250 s or 500 s (depending on the 

adsorption time of the experiment) the flow was switched from PBS to the albumin solution 

(prepared in PBS) at either 0.005 mg/mL or 0.100 mg/mL. After that, for the next 300 s, the 

flow was switched back to PBS in order to analyze the desorption process by dilution.  

 

2.2.2-Bacterial adhesion 

S. aureus was grown overnight at 37 °C in TSA and resuspended in TSB in order to reach a 

1x108 CFU/mL bacteria concentration by measuring the OD600 [50]. Appropriate controls were 

performed to quantify the number of viable bacteria in each bacterial suspension previous to 

each experiment. Later, the bacterial suspension was centrifuged at 8500 rpm for 5 minutes 

and the cells were resuspended in PBS pH 7.3, a procedure which was conducted twice [50, 

51]. Control experiments to check the bacteria viability were performed in PBS during the 

adhesion time. This medium was selected in order to minimize the interference of the 

adsorption of the culture media components on the substrates during incubation with the 

bacteria. Then, the substrates were incubated in the bacterial suspension in vertical position at 

37 °C for 40 minutes. A duplicate series of experiments were carried out in each case. 

Afterwards, the substrates were washed with 0.9% NaCl to remove non-adhered bacteria, 

stained with 200 µL of dye solution, as previously detailed, and incubated in the dark for 15 

minutes. The visualization of the stained samples was performed in an Olympus FV300 

Confocal Fluorescence microscope [50, 52]. For the analysis of S. aureus adhesion, 8 images of 

each duplicate for each condition (n=16) were analyzed by quantifying dead (red) and alive 

(green) bacteria. The bacterial adhesion was evaluated through total bacteria/m2 and alive 
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bacteria percentage. For each case, the results are expressed as a confidence interval with a 

level of 95%. Statistical analysis was performed using one-way ANOVA to evaluate the 

differences between experimental conditions. A p < 0.05 was considered statistically 

significant.  

For the visualization of adhered bacteria by SEM (FE-SEM Carl Zeiss Sigma), the adhered 

bacteria were fixed with 2.5% glutaraldehyde in PBS pH 7.3 for 1 h. After three washes of 10 

minutes with PBS, the cells were dehydrated in solutions of increasing acetone concentration 

(25–100%) for 10 minutes each. Samples were critical-point dried with liquid CO2 as the 

transition fluid and then coated with gold [53].  

 

2.2.3-Albumin surface biofunctionalization 

Surface biofunctionalization was performed through the physical adsorption of partially 

denatured albumin by thermal treatment on hydrophilic substrates at pH 7.3. For the thermal 

treatment, 0.100 mg/mL albumin solution was heated up to 65 C for 1 or 18 hours. The 

secondary structure of albumin was studied by circular dichroism (CD) on a JASCO J-810 

spectropolarimeter using a 0.1 cm quartz cuvette. The spectra were scanned between 190 and 

260 nm with 0.2 nm resolution; 16 scans were accumulated with a scan rate of 100 nm/min 

and a time constant of 0.125 s. For the quantitative analysis of the spectra, the algorithm 

CDSSTR [54] was employed from the web server DICHROWEB [55]. For CD experiments, NaCl 

was replaced by Na2SO4 (Baker) in PBS [56]. 

The hydrophilic substrates were biofunctionalized with thermal-treated albumin (0.100 

mg/mL) by dipping them for 1 h (0.5 mg/m2). Bacterial adhesion on these biofunctionalized 

substrates was studied as previously described.  

 

3-Results and discussion 

 

3.1. Correlating albumin adsorption and S. aureus adhesion 

 

3.1.1 Factorial design of experiments of the adsorption-desorption process  

In order to study the albumin adsorption-desorption process on hydrophilic and 

hydrophobic substrates, a wide range of experimental factors was employed to analyze a 

group of responses using a factorial design of experiments (see supplementary information, 

Scheme 1-SI and Table 1-SI). The protein adsorption process comprises different stages that 

depend on both the surface properties of the substrate (mostly charge and hydrophobicity) 
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and the nature of the biomolecule [57, 58]. The relative rates of each one of these steps 

determine the final adsorption amount and the conformation of the proteins at the interface 

in such a way that this state may be either thermodynamic or kinetically controlled. In this 

scenario the experimental factors that control the biofunctionalization process on a particular 

substrate can be traced from different variables such as pH, Cp, Fr and the adsorption time 

(supplementary information, Table 1-SI), which are related to the kinetics of the process, the 

strength and type of the protein-substrate interactions and the degree of surface coverage. 

Similarly, the experimental responses to establish the features of the substrate 

biofunctionalization are associated with the IAR, and the extent of desorption upon dilution 

[57, 58] (supplementary information, Table 1-SI). In figure 1, the three evaluated responses 

(IAR, and the desorption percentage), are shown for all the combinations of the 

experimental factors addressed: red symbols represent hydrophilic substrates at pH 7.3 (solid) 

and 4.8 (patterned) whereas green symbols stand for the adsorption on hydrophobic 

substrates at pH 7.3, measured at the two levels of Cp, Fr and adsorption times. It is important 

to note that the combination of surface properties and pH values gives a general picture on the 

interplay between electrostatic and hydrophobic interactions ruling the albumin adsorption-

desorption process. In the first place, the values of IAR are lower than the protein transport 

rate (J0) given by equation (1) for all the studied factors (see supplementary information, Table 

2-SI), evidencing a delay for the adsorption when the protein molecules arrive to the surface. 

As a consequence, the interaction between albumin molecules and the substrates (hydrophilic 

as well as hydrophobic) controls the rate of the adsorption process rather than the transport 

from the solution. 

The statistical analysis (ANOVA) of the results provided in figure 1, clearly shows that all of 

the experimental factors strongly affect the albumin adsorption on hydrophilic substrate 

whereas on the hydrophobic one, only Cp play a significant role on IAR and the adsorption time 

on both and the desorption percentage (see supplementary information, Figures 1-SI and 2-

SI and Table 3-SI). The level of Cp is particularly important at the initial stage of the adsorption, 

reinforcing the idea that albumin attachment rules the process, driven by either electrostatic 

or hydrophobic interactions. Electrostatic attachment causes slower initial adsorption steps on 

hydrophilic substrates that also depend on Fr. On the other hand, the dependence of  on the 

two levels of the adsorption time of albumin on both substrates indicates a slower step after 

the first attachment, surely due to some degree of protein spreading driven by either 

hydrophobic or electrostatic interactions [58]. An interesting result at pH 4.8 is that observed 

at the high level of Cp and the low level of adsorption time (red-patterned diamond), in 
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whichdepends on Fr, in contrast to the same condition at the high level of adsorption time 

(red-patterned pentagon). This factors-response dependence suggests that longer residence 

time is required to optimize the contact points between albumin and the hydrophilic 

substrates under favorable electrostatic interactions. Finally, it is generally assumed [57, 58] 

that a reduction in the desorption percentage is due to stronger protein-substrate interactions 

that in turns are due to the relaxation of the adsorbed proteins. This effect is clearly observed 

on the hydrophilic substrate because increasing the adsorption time leads to lower desorption 

percentages for the combinations of the two levels of Cp and Fr. Thus, the relaxation process is 

conditioned by a tradeoff between Cp and Fr. Moreover, the dependence of this response with 

the adsorption time implies that attachment and relaxation occurs at the same timescale on 

hydrophilic and hydrophobic substrates. All together these responses indicate that in order to 

correlate the protein adsorption process with the bacterial adhesion it is mandatory to know 

the amount of adsorbed albumin remaining after desorption upon dilution as well as the 

degree of relaxation of the biomolecules after attachment. 

Figure 2 shows the adsorbed amount remaining after desorption upon dilution (rem) as a 

function of measured at all the experimental factors (see the supplementary information to 

focus on the lowest values, figure 3-SI). The trend indicates the presence of two zones: a 

constant rem at around 0.04 mg/m2 up to =0.20 mg/m2 followed by a linear relationship with 

a 0.91 slope (R2=0.98). The first zone is mostly observed at pH 7.3 on hydrophilic substrates, 

where from higher  values (0.04-0.20 mg/m2) only 0.04 mg/m2 are maintained after 

desorption upon dilution. Hence, there are at least two populations, a loosely attached one 

and a strongly adsorbed one. Obviously, this rem is a consequence of relaxed adsorbed 

albumin molecules attached with several contact points to the substrate. The second zone 

highlights that the desorption process is almost absent in most of the evaluated experimental 

factors. This fact is related to the strength of the protein-substrate interactions driven by 

electrostatics or hydrophobic interactions and/or the lateral interactions between adsorbed 

proteins [57, 58]. 

 

3.1.2-Bacterial adhesion 

Before discussing the effect of adsorbed albumin on the adhesion process of S. aureus, the 

surface properties of the bare substrates were evaluated. Figure 3 A and B shows the effect of 

the surface charge (negative [59] and positive) and hydrophobicity on bacterial adhesion, 

expressed as the alive bacteria percentage and total bacteria/µm2. The statistical analysis 

indicates that the surface properties do not have any significant effect on the adhesion process 
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of S. aureus, suggesting that the interactions involved in the adhesion process are very diverse 

(electrostatic, hydrophobic, etc.). 

To study the effect of adsorbed albumin on the bacterial adhesion, three conditions of the 

wide range of the explored combination of the experimental factors were chosen from the 

results shown in Figure 2. Since the three selected conditions represent the actual amount of 

adsorbed albumin remaining after desorption upon dilution as well as the extent of protein 

relaxation, the effect of low (red circle), medium (green triangle) and high (patterned-red 

square) rem on the adhesion process provides with a first relationship between these 

processes (Figure 4). Further, this selection also represents all the factors studied in the 

factorial design of experiments previously discussed; hence, low rem (0.04±0.02 mg/m2) was 

taken from the hydrophilic substrate at pH 7.3 (Cp = 0.100 mg/mL, Fr = 0.02 mL/s and 50 s 

adsorption time), medium rem (0.92±0.09 mg/m2) was selected from the hydrophobic 

substrate at pH 7.3 (Cp = 0.005 mg/mL, Fr = 0.10 mL/s and 300 s adsorption time) and high rem 

(2.93±0.01 mg/m2) was chosen from the hydrophilic substrate at pH 4.8 (Cp = 0.100 mg/mL, Fr 

= 0.02 mL/s and 300 s adsorption time). Figure 4 A and B show the S. aureus adhesion on the 

biofunctionalized substrates at these three conditions, expressed as the percentage of 

variation of alive bacteria percentage and total bacteria/m2 related to the bare substrates 

(mean value from all the results shown in figure 3). Therefore, positive results indicate more 

alive bacteria on the biofunctionalized substrates compared to the bare ones whereas negative 

results stand for the inhibition of S. aureus adhesion. Therefore, albumin adsorbed at the 

conditions represented by the lowest rem on the hydrophilic substrate at pH 7.3 correlates 

with the minimum adhesion of alive bacteria. The observed differences on the different 

substrates highlight the influence of the protein adsorbed amount and the biomolecule 

relaxation extent on the bacterial adhesion. These results clearly indicate that bacterial 

adhesion can be modulated by changing the biofunctionalization features.  

Considering the experimental condition that leads to a minimal bacterial adhesion as a 

reference, variations in the experimental factors involved in albumin biofunctionalization were 

introduced to explore whether it was possible to improve the response towards S. aureus 

adhesion. The experimental factors involved in albumin adsorption were slightly modified to 

hydrophobic substrates (green circle) or to longer adsorption times (red square) as indicated in 

figure 4 A and B. None of them result in better responses: either a higher number of total 

adhered bacteria or alive bacteria are reached in comparison with the previous 

biofunctionalization condition. However, the values of rem in these cases are about 0.7 mg/m2 

indicating that rem could be a good parameter to correlate the albumin adsorption process 
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and S. aureus adhesion. This behavior is further corroborated by just reducing Cp (red triangle) 

on the hydrophilic substrate (rem= 0.04±0.02 mg/m2). Finally, these same conditions on the 

hydrophobic substrate (green triangle) do not give a low rem value (0.21±0.04 mg/m2) nor 

improve bacterial adhesion. This piece of evidence indicates that albumin rem modulates S. 

aureus which may be due to the low amount of adsorbed protein and/or to the relaxation 

state reached by the protein population that cannot be removed by dilution. This fact suggests 

a qualitative correlation between albumin relaxation state on the solid substrate and the 

amount of alive adhered bacteria. 

Figure 5 shows the images obtained from fluorescence confocal and scanning electron 

microscopies of adhered S. aureus on biofunctionalized hydrophilic substrates. The first one 

was used to follow alive (green) and dead (red) bacteria whereas electron microscopy (SEM) 

was employed to explore the differences in bacterial morphology between dead and alive 

cells. Figure 5 A shows the positive control experiment that was performed on the hydrophilic 

substrate biofunctionalized with albumin (Cp= 0.100 mg/mL) at pH 7.3 during 50 seconds. Such 

a condition results in a high amount of alive adhered bacteria (835%) after 90 minutes of 

adhesion. In the SEM image, the adhered bacteria are visualized as symmetrical diplococci cells 

corresponding to alive S. aureus. On the other hand, in the negative control experiment (Figure 

5 B) bacteria adhesion was performed overnight at room temperature in order to induce the 

bacterial death. Fluorescence confocal microscopy images show that most of the cells are dead 

and from SEM image, it can be observed disturbances at bacterial surface which suggest the 

outflow of cellular content. Finally, the substrate biofunctionalization that results in the 

minimal bacterial adhesion is included in the images of Figure 5 C. More dead bacteria are 

visualized in the fluorescence confocal microscopy images, as well as changes in the cell 

morphology-like in SEM images. 

 

 

3.2- Albumin surface biofunctionalization 

The results discussed in the previous section point to a relationship between bacterial 

adhesion and the degree of albumin relaxation on the solid substrate. The assumption 

underlying these results is that the inhibition of bacterial adhesion on albumin 

biofunctionalized substrates is due to the perturbation on the native structure of albumin 

induced by the optimization of the protein-substrate interactions. On this basis, albumin 

surface biofunctionalization strategy was designed using partially disturbed albumin molecules 

to minimize bacterial adhesion on solid substrates (see supplementary information, Scheme 1-

SI). To address this issue, a thermal treatment of native albumin in solution was first explored; 

ACCEPTED M
ANUSCRIP

T



13 
 

afterwards, this solution was employed for substrate biofunctionalization with albumin. It is 

well known that the extent of -helical structure of albumin sharply decreases with rise of 

temperature beyond 30 °C [60] and that the transition temperature to a perturbed structure is 

about 57 °C [61]. Consequently, native albumin in solution was thermally treated at 65 °C for 

two incubation periods (1 and 18 h). After thermal treatment, the secondary structure of 

albumin molecules shows some loss in the helix content as judged from the changes of the CD 

bands at 195 and 222 nm (see supplementary information, Figure 4-SI and Table 4-SI). 

Treatment for 1 hour leads to an increase in the β-sheet element whereas the treatment 

during 18 h shows a marked secondary structure loss together with arising of the unordered 

structure [55, 61].  

Figure 6 A and B compares the bacterial adhesion on albumin biofunctionalized substrates 

(alive bacteria percentage and total bacteria/m2 respect to the bare substrate) using different 

strategies: a) native albumin adsorbed on hydrophilic substrate at pH 7.3 (Cp = 0.100 mg/mL, Fr 

= 0.02 mL/s, 50 s adsorption time and low rem) as previously discussed (Figure 4, red circle), b) 

partially denatured albumin (1 h thermal-treatment) adsorbed on hydrophilic substrate at pH 

7.3 (Cp = 0.100 mg/mL dipping for 1 hour) and c) partially denatured albumin (18 h thermal-

treatment) adsorbed on hydrophilic substrate at pH 7.3 (Cp = 0.100 mg/mL dipping for 1 hour). 

One-way ANOVA established that there were no significant differences between the variations 

of the alive bacteria percentage (Figure 6 A). However, the surface biofunctionalization with 

thermally treated albumin improves the response regarding the total amount of adhered 

bacteria (Figure 6 B). These results indicate, on the one hand, that undoubtedly the inhibition 

of bacterial adhesion on albumin biofunctionalized substrates is due to the perturbation on the 

native structure of albumin (see supplementary information, Figure 5-SI). On the other hand, 

the simple strategy proposed to minimize bacterial adhesion properly works and it could be 

generalized to different solid substrates. 

 

4. Conclusions 

 

The adhesion process of S. aureus strongly depends on the presence of adsorbed albumin 

molecules on the solid substrates. In fact, there is a clear relationship between albumin 

relaxation state on the substrate and the amount of alive adhered bacteria. The structural 

changes that albumin molecule suffers during surface relaxation leads to the minimization of 

the bacterial adhesion. Consequently, bacterial adhesion can be modulated by changing the 

biofunctionalization features, particularly the structure of the protein molecules. As a matter 
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of fact, biofunctionalized solid substrates with thermally treated albumin inhibits the adhesion 

of alive S. aureus. In the long term, the results of this work point to a novel strategy to 

minimize the risk of medical device-associated infections involving the biofunctionalization of 

solid substrates with partially denatured albumin.  
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Figure 1. Initial adsorption rate (IAR), adsorbed amount () and desorption percentage for all 

the combinations of the experimental factors evaluated for the albumin adsorption-desorption 

process:(red) hydrophilic substrates at pH (solid) 7.3 (patterned) 4.8 and (green) hydrophobic 

substrate at pH 7.3. The shape of the symbols represents the combination of the studied 

factors, Cp, Fr and adsorption time, respectively: () 0.005 mg/mL-0.02 mL/s-50 s, () 0.005 
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mg/mL-0.02 mL/s-300 s, () 0.005 mg/mL-0.10 mL/s-50 s, () 0.005 mg/mL-0.10 mL/s-300 s, 

() 0.100 mg/mL-0.02 mL/s-50 s, () 0.100 mg/mL-0.02 mL/s-300 s, () 0.100 mg/mL-0.10 

mL/s-50, () 0.100 mg/mL-0.10 mL/s-300 s. The error bars represent the standard deviation 

calculated from duplicate experiments for each combination of the factors. 
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Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Albumin adsorbed amount remaining after desorption (rem) as a function of albumin 

adsorbed amount () at different experimental factors: (red) hydrophilic substrates at pH 

(solid) 7.3 (patterned) 4.8 and (green) hydrophobic substrate at pH 7.3. The shape of the 

symbols represents the combination of Cp, Fr and adsorption time, respectively: () 0.005 

mg/mL-0.02 mL/s-50 s () 0.005 mg/mL-0.02 mL/s-300 s () 0.005 mg/mL-0.10 mL/s-50 s () 

0.005 mg/mL-0.10 mL/s-300 s () 0.100 mg/mL-0.02 mL/s-50 s () 0.100 mg/mL-0.02 mL/s-

300 s () 0.100 mg/mL-0.10 mL/s-50 s () 0.100 mg/mL-0.10 mL/s-300 s. The error bars 

represent standard deviation calculated from duplicate experiments for each combination of 

the factors. 
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Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (A) Percentage of alive and (B) total S. aureus adhered on bare substrates with 

different surface properties for 40 minutes: (red) hydrophilic substrates at pH (patterned) 4.8 

and (solid) 7.3, (green) hydrophobic substrates at pH 7.3, (blue) positive hydrophilic substrates 

at pH 4.8 and (pink) 7.3. The error bars are 95% confidence interval and * represents values 

with p  0.05.  
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Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Variation of the (A) percentage of alive and (B) total S. aureus on biofunctionalized 

solid substrates (related to bare ones) for 40 minutes: (red) hydrophilic substrates at pH 

(patterned) 4.8 and (solid) 7.3, (green) hydrophobic substrates at pH 7.3. The shape of the 

symbols represents the combination of Cp, Fr and adsorption time, respectively: () 0.005 

mg/mL-0.02 mL/s-50 s () 0.005 mg/mL-0.10 mL/s-300 s () 0.100 mg/mL-0.02 mL/s-50 s () 

0.100 mg/mL-0.02 mL/s-300 s. The error bars are 95% confidence interval and * represents 

values with p  0.05. ACCEPTED M
ANUSCRIP

T
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Figure 5.  

Figure 5. Fluorescence confocal and scanning electron microscopies images of adhered S. 

aureus on albumin biofunctionalized hydrophilic substrates at pH 7.3. (A) Positive and (B) 

negative controls. (C) Biofunctionalization conditions: Cp = 0.100 mg/mL, Fr = 0.02 mL/s, 

adsorption time = 50 s.  
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Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Variation of the (A) percentage of alive and (B) total S. aureus on albumin 

biofunctionalized hydrophilic substrates at pH 7.3 (related to bare ones) for 40 minutes. 

Biofunctionalization conditions: (red) Native albumin at Cp = 0.100 mg/mL, Fr = 0.02 mL/s and 

50 s, (purple) thermally treated albumin at 65 °C for 1 hour and 18 hours (orange) at Cp = 0.100 

mg/mL and 1 h (dipping). The error bars are 95% confidence interval and * represents values 

with p  0.05. 
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