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How is an acoustically diffuse field defined? To what extent are the equations of diffuse field theory valid?
These are the questions addressed in this presentation. The answers are explained through more general 
theories, in turn explained with figures. The starting point is the idealization of diffuse sound field, from 
where the basic calculation tools used in architectural acoustics are derived. Then, we go through the 
physical-mathematical models of wave theory and ray theory assuming diffuse field simplifications and 
analyze the scope of diffuse field models. Wave models and ray models are presented in a simple format 
with visual support and reference to the underlying mathematical models. The criteria used to define a 
diffuse field in frequency domain as well as in temporal domain are analyzed. Finally, we present a review 
of several state of the art tools used to address the real cases when diffuse field cannot be assumed.
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1. INTRODUCTION 
The room acoustics discipline can be considered as a communication model in which the transmitter 

are the sound sources, the medium is the air in the room as well as the borders of the room, and the receiver 

are persons or eventually the microphones of measuring instruments, recording devices, electroacoustic 

systems, or telecommunication systems. Formally, these communication models can be mathematically 

formulated by the inhomogeneous Helmholtz wave equation. However, frequently accurate results are 

achieved with approximated models based on sound rays. 

The problem can be simplified when a diffuse field occurs. However, a diffuse field is an idealization 

that can only be accepted when the results fall within a specified (or a reasonable) tolerance. Jeong (2016) 

says that new measures are needed to quantify the degree of diffusion of reverberation chambers and that 

subjective aspects of diffuseness have not been much investigated.  

This article proposes a general method to define the scope of diffuse field models that should be applied 

for a particular definition of the diffuse field according to each application. The proposed method is based 

on time and frequency sliding windows, whose size depends on the application, that can be used to develop 

a measure accounting for perceptive aspects, physical aspects, the position of the source and the receiver, 

the sound content, etc. 

2. DIFFUSE FIELD 
A diffuse sound field is an idealization of a sound field in which all possible directions of arrival are 

equally probable. This condition is never actually achieved in real rooms but under certain criteria the 

diffuse field can be assumed. Figure 1 shows representations of rays arriving at a receiver in each room in 

the left part and the corresponding temporal profiles in the right part. The top panel (a) shows the ideal 

diffuse sound field and the bottom panel (b) shows a realistic situation.  

 
Figure 1.Schematic representation of an acoustically diffuse field a) ideal and b) real  

The realistic situation is that not all the directions of arrival are equally probable and that the sound 

does not arrive simultaneously from all possible directions. The probability of arrival at all directions can 

be computed under discrete conditions of time and directions of arrival.  
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3. WAVE EQUATION MODELS 
The propagation theory of acoustic waves is a branch of physics based on a force diagram, continuity 

of mass considerations, and the relations of an adiabatic process under an infinitesimal volume. The 

adiabatic relation of sound pressure with variations of the density of the medium as an adiabatic process 

can be modeled as a linear relation for a wide range of room acoustics applications. Considering a sound 

source, these equations yield to the inhomogeneous Helmholtz equation 

 𝛻2𝑝 + 𝑘2𝑝 = −�̇� (1) 

under border conditions 

 
𝜁

𝜕𝑝

𝜕𝑛
+ 𝑗𝑘𝑝 = 0 (2), 

where p is the sound pressure, k is the wave number (k = ω/c), ζ is the specific acoustic impedance, and Ġ 

is the velocity of mass increase per unit volume.  

The solution is based on the general solutions to the corresponding homogeneous equation that can be 

obtained by setting the right side of equation (1) to zero. These homogeneous solutions pn are known as the 

natural modes of vibration of the room. Given a shoebox room, the solutions have forms similar to the 

isosurfaces in Figure 2 

 
Figure 2.Normal modes of vibration. Axial, tangential and oblique modes. The modulus of the sound 

pressure is proportional to the light of each surface. 

It can be mathematically demonstrated that the sound pressure distribution of modes in a shoebox room 

correspond to the superposition of eight plane waves for an oblique mode (Kuttruff, 2000). An axial mode 

corresponds to the superposition of two plane waves with opposite directions and a tangential mode to the 

superposition of four plane waves. The direction of each of these plane waves can be computed. Figure 3 

shows an example for an axial mode and another example for a tangential mode with isocurves for the 

sound pressure distribution and arrows to identify the above mentioned directions. Each normal mode 

corresponds to a resonating frequency ωn with a damping constants δn. 

The inhomogeneous solution to equation (1) for the particular case of a given monopole source at a 

given position of the source (rsource) and a given position of the receiver (rreceiver) can be calculated by 

describing the sound pressure in terms of the basis that forms the homogeneous solutions pn.  

 
𝑝(𝜔) ∝ ∑

𝑝𝑛(𝑟𝑠𝑜𝑢𝑟𝑐𝑒)𝑝𝑛(𝑟𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟)

𝜔2 − 2𝑗𝛿𝑛𝜔𝑛 − 𝜔𝑛
2

𝑛

 (3) 

Axial Tangential Oblique 
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Figure 3. Normal modes composed of plane waves with given directions 

Figure 4 shows a representation of equation 3 for a room of 7 m long, 5 m wide, and 3 m high with a 

monopole source located at rsource = (1,3,1) and a receiver at rreceiver = (5,2,1.1). The blue line represents the 

total frequency response and the black lines represent each term of equation (3) which in turn correspond 

to the response of each mode. 

 
Figure 4. Frequency response using wave theory for a shoebox room. The frequency is annotated in each 

peak with red for axial modes, purple for tangential modes and light-blue for oblique modes  

The first mode in figure 4 is an axial mode and so spreads in the room as a couple of plane waves with 

opposite directions and of course it cannot be assumed as a diffuse field in which all directions of 

propagation should be equally probable. Similar observations can be extended to each mode with two, four, 
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or eight plane waves. However, for higher frequencies the number of modes per unit of frequency 

bandwidth increases and so does the number of possible directions of propagation per unit of frequency 

bandwidth.  

A frequency window can be defined and the probability of the direction of arrival of sound can be 

estimated within this window. Then, the window can be slid on the frequency response of the room and the 

probability of direction of arrival can be computed again. This procedure can be repeated and the directions 

of arrival of sound energy will be more homogeneous as the frequency window slides to the high frequency 

part of the frequency response.  

An acceptable criterion of diffuse field can be developed for each application based in the possibility 

for humans to hear a resonance, in the variance in measurements of reverberation time or of sound pressure 

in different points of the room, or any other measurement ad-hoc to that application. The criterion should 

define the size of the window, a measure of the probability of direction of arrival or another measure of 

physical or perceptive parameters, and a tolerance value (or maximum allowable variance) for that measure.  

4. RAY MODELS 
Ray theory in acoustics is derived from Snell’s law in optics. This is the simplest, most easily insightful 

form of wave propagation theory. This theory estimates the sound field representing the emission from 

sound sources as rays distributed in all directions that each source emits. Figure 5 shows that each ray has 

its own direction. 

 
Figure 5. Schematic representation of the ray theory model in a room 

A receiver placed inside the room in figure 5 will receive rays from several directions. The impulse 

response of the room can be calculated using an impulsive monopole point source and tracking the signal 

at the receiver. Figure 6 shows a measured impulse response captured with a consumer recorder validated 

for acoustical measurements (Miyara et al., 2010) and an omnidirectional condenser microphone. While 

identifying the direct sound and the first reflections in Figure 6 is straightforward, identifying the late 

reflections is hard because they are too close between them. A detailed review on current methods of 

geometrical room acoustics modeling can be found in Savioja, L. and Svensson, 2015. 

    

 

 …
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Figure 6. Absolute value of impulse response measured for a concert hall (Accolti et al., 2017) 

Each reflection and also the direct sound have well defined directions. Figure 7 shows the direction of 

arrival of different rays. The time interval between reflection generally decrease for higher order reflections 

that arrive later compared to direct sound and first reflections that correspond to low order reflections. 

 
Figure 7. Propagation path of a direct sound ray, a first order reflection, and a forth order reflection. 

A temporal window can be defined and the probability of the direction of arrival of sound can be 

estimated in this window. Then the window can be slid on the impulse response of the room and the 

probability of direction of arrival can be estimated again. This procedure can be repeated and the directions 

of arrival of sound energy become more homogeneous as the time window slides to the late part of the 

impulse response. An acceptable criterion of diffuse field can be developed for each application based on 

the possibility for humans to hear an echo, a source location displacement, the variance in measurements 

of reverberation time or sound pressure in different points of the room, or any other measurement ad-hoc 

to the application. As in the frequency response case (in the section above) the criterion should define the 

size of the window, a measure and a tolerance value for that measure. 

5. CURRENT CRITERIA 
Criteria for both impulse response and frequency response are often used to identify the scope of diffuse 

field methods and complement them with wave theory methods or ray acoustics methods. These existing 

criteria are accurate for a great number of applications. However, depending on the application, more 

accurate criteria can be developed based on time or frequency sliding windows. 

A. FREQUENCY CRITERION 

A well-known criterion is the Schroeder frequency (fc). This criterion states that at least three modes in 

average are located in the bandwidth of one mode above fc for a room of volume V and reverberation time 

T (Schroeder 1996).  
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𝑓𝑐 = 2000√
𝑇

𝑉
 (4) 

This criterion can also be described as a sliding window of variable size that should include at least 

three modes in that window. Criteria depending on the number of modes are independent of the position of 

the source and the receiver. Although these criteria are simple, some combinations of source-receiver could 

not fulfil some expected considerations.  

The frequency response was computed for two combinations of source-receiver positions by solving 

the wave equation using the methods in Kuttruff (2000) for a shoebox room of 7 m long, 5 m wide, and 3 m 

high. The 1/1 octave band response is computed as the accumulated sound energy in each band from the 

solution of the wave equation. A second version of the 1/1 octave band response is computed using the 

diffuse field equation 

 
𝐿𝑝 = 𝐿𝑊 + 10 𝑙𝑜𝑔 (

𝑇

4𝜋𝑟2
+

4 − 4 𝐴
𝑆⁄

𝐴
) (5) 

where Lp is the sound pressure level, LW is the sound power level, T is the reverberation time, A is the total 

sound absorption of the room, and S is the total area of the interior surfaces of the room. These three versions 

of the frequency response are plotted together and the Schroeder frequency identified.  

Figure 8 shows the frequency responses described above for a source and a receiver in positions that 

can be representative of usual cases with good conditions for communication. The diffuse field equation is 

a good approximation for the three octave bands frequency response above the Schroeder frequency.  

 
Figure 8. Frequency response for a source at rsource=(2.0; 3.0; 1.4) and a receiver at rreceiver=(6.2; 4.5; 1.3) 

inside a room of 7 m long, 5 m wide, and 3 m high.  

Figure 9 is similar to figure 8 but the positions of the source and the receiver are very unusual. The 

source is separated 10 cm of each of the 3 surfaces that form a corner, and the receiver is also separated 
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10 cm of each of the other 3 surfaces of the room (the opposite corner). In this case, the difference between 

the diffuse field equation and the wave equation approach is about 10 dB for the octave band just above the 

Schroeder frequency and about -5 dB for the following band.  

 
Figure 9. Frequency response for a source at rsource=(0.1; 0.1; 0.1) and a receiver at rreceiver=(6.9; 4.9; 2.9) 

inside a room of 7 m long, 5 m wide, and 3 m high.  

The criterion for a diffuse field, in the two previous cases, can be a window of 1/1 bandwidth and a 

tolerance in the frequency response of less than 3 dB for the difference between wave equation approach 

and diffuse field approximation. The first case (figure 8) fulfils the criterion just above the Schroeder’s 

frequency and the second one (figure 9) fulfils the criterion about two octaves above the Schroeder’s 

frequency. 

B. TEMPORAL CRITERION 

Hidaka, Yamada and Nakagawa (2007) proposed a transition time tL when the spectrum of the 

Schroeder decay curve is sufficiently uncorrelated to the frequency response of the room. They regressed 

tL to the reverberation time T measured in concert halls, chamber music halls, and opera houses and found 

that for the 500 Hz octave band the transition time is roughly estimated by the equation  

 𝑡𝐿 = 0.08 𝑇 (6). 

They found that part of the variance can be due to the type and form of the room. It can be expected 

that the positions of source and receiver can influence this definition because the influence of direct sound 

and first reflections near the stage on the frequency response depend on source-receiver distance.  

Other current criteria are a fixed transition time (frequently set at the first 50 ms or 80 ms), criteria 

depending on the order of reflections, or criteria based on the remaining energy of the rays after several 

reflections. 

C. WHEN DIFFUSE FIELD CANNOT BE ASSUMED 

When diffuse field cannot be assumed, acousticians have a wide set of tools derived from wave 

propagation theory and ray methods. A criterion to identify the frequency range or the part of the impulse 

response that can be assumed as diffuse is very important in order to improve the usage of these tools.  

10 100 1.000 10.000 
50 

60 

70 

80 

90 

100 

110 

120 

130 

frequency (Hz) 

S
o
u
n
d
 l

ev
el

 (
d
B

) 

  
f
c
 

Wave eq 
1/1 wave eq. 
Diffuse field eq 

E. Accolti and F. di Sciascio Diffuse field considerations

Proceedings of Meetings on Acoustics, Vol. 31, 015003 (2018) Page 8



 

 

Bolt (1946), Bonello (1981), and Cox et al. (2004) criteria for the distribution of normal modes are 

good examples of tools to use in the frequency region where diffuse field cannot be assumed. These methods 

allow to avoid modes that could be perceived or to identify compromising modes and modify them with 

resonators or similar absorbers.  

The non-diffuse field part of the impulse response is quite important because first reflections are 

relevant aspects of the acoustic quality of several kind of rooms. Ray methods can help to design panels, 

ceilings, or shells to influence on the first reflections (Beranek, 1992, Jurkiewicz et al., 2012, Miyara et al., 

2016). Ray methods are also used to avoid undesired effects such as echoes, direction of arrival mismatch, 

or comb filtering. 

D. EXISTING METHODS FOR FURTHER RESEARCH 

The dependence of the sound sources and the content of the sound signals can be studied using 

databases of audio recordings and methods that automatically generate audio signals based on parameters 

such as the spectrum, the temporal characteristics, the signal to noise ratio, class of sounds events, etc. 

These criteria can be generalized for certain applications by combining methods for automatic signal 

generation and methods for room response modeling. Methods for automatic signal generation that combine 

sound signals in order to obtain desired spectral and temporal characteristics were developed by Accolti 

and Miyara (2015) and methods that can also obtain desired signal to noise ratios depending on frequency 

were developed by Accolti et al. (2017b). The required measures can be obtained with questionnaires and 

auralization techniques (Vorländer, 2008), ray acoustics models (Savioja and Svensson, 2015), or wave 

equation models (Kuttruff, 2000) according to the application and in turn to the particular definition of the 

diffuse field.  

6. CONCLUSION  
This article proposes a general method to determine what parts of the room response are suitable for 

considerations of a diffuse field. This method is based on a criterion that in turn depends on the application. 

The method involves defining a measure, a tolerance value for that measure and the size of a sliding window 

over which the measure is evaluated.  

A case in which the octave band levels is required was studied and compared with the Schroeder’s 

frequency criterion. Although the Schroeder’s frequency is a useful criterion, it was shown that this case 

should be treated with other criteria. 

These criteria can be used to define both frequency and time transitions. Currently available criteria are 

good starting points but they can be improved for certain applications. The proposed method allows to 

account for the effects of the position of the source and the receiver as well as for the specific goal of the 

model that could be an acoustical physical measure as well as a sound perception measure. 

Further investigation with audio signal processing and perception evaluations can use this method for 

the development of simpler or adapted criteria for each application. The study of the influence of signal to 

noise ratio, spectral and temporal issues of the signal could also be addressed with this method. 
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