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Graphical abstract 

 

 

Abstract 

The objective of this contribution was to propose a model that would explain the 

nanocomplexes formation between Human Recombinant Insulin (I) and a polydisperse 

Chitosan (CS). Such an objective implied exploring I and CS concentration conditions 

that allowed the formation of complexes with defined and reproducible submicronic 

dimensions. I-CS complexes were obtained by mixing I and CS solutions at pH 2 and 

then increasing the pH up to 6 promoting electrostatic interactions between them. 

Colloidal stages of I and I-CS nano-complexes formation were characterized by dynamic  

light scattering (DLS), ζ-potential, solutions flow behavior and absorbance 

measurements. 1·10-2%, w/w, of CS allowed covering completely the surface protein 

aggregates constituting core–shell nano-structures of 200 nm, with a ζ-potential of 17,5 
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mV. Solution dynamic viscosity results kept relation with different stages of nano-

complexation process. Biological activity of I-CS complexes was studied in 3T3-L1 

cultured fibroblast showing a delayed and sustained activity as compared to free insulin. 

I-CS nano-complexes could be an alternative for developing a new generation of drugs 

allowing I protection from the hostile conditions of the body and increasing its 

absorption. These findings have basic and practical impacts as they could be exploited to 

exert the controlled release of I in therapeutic formulations by using the I-CS nano-

complexes. 

 

Keyword: macromolecular assembly, nano-complexes, insulin, chitosan,   
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1. Introduction 

While Insulin (I) is one of the most widely used peptides in the treatment of insulin-

dependent patients worldwide, its oral administration has low bioavailability due mainly 

to the gastric pH and to the enzymatic and physical barriers of the intestinal tract. 

Intraperitoneal administration, on the other hand, requires I to pass through the peritoneal 

cavity before reaching the bloodstream [1]. In this context alternative administration 

routes, are being explored especially those for pediatric uses. 

Pulmonary drug delivery is a non-invasive route used for treating a variety of diseases 

[2]. The lungs provide an extensive alveolar surface area and a dense capillary network 

that favors drug absorption and enhances drug biodisponibility, while avoiding most 

barriers associated with systemic administration [3]. 

Chitosan (CS) is a biodegradable, biocompatible and non-toxic biopolymer that is 

obtained from chitin after chemical deacetylation process. Chitosan is a cationic 

copolymer of N-acetyl glucosamine and D-glucosamine, varying in composition, 

sequence and molecular chain length. The presence of -NH2 and -OH groups gives it 

interesting chemical and biological properties [4]. With a pKa of approximately 6.5 on 

the amine groups, CS is positively charged at acidic pH meanwhile it presents negative 

charges at pH > pKa [5]. 

The formation of I-CS nano-complexes could be an alternative in the development of a 

new generation of therapeutic peptides protected from body hostile conditions and with a 

higher amount of absorption. The controlled release of I could be also modulated with the 

advantage of enhancing the time interval of bioavailability [6]. 

The interactions between biological charged macromolecules strongly depend on the type 

of biopolymer, as well as on the conditions of the medium and its physicochemical 
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properties (pH, ionic strength, temperature, etc.) [7]. In this context, Mao et al [8] studied 

the influence of chitosan chain length and ionic strength on I-CS complexation. Chitosan 

of different chain lengths (all of analytical grade) were considered in the mentioned work.  

Instead, in the present contribution a new chitosan type, having a polydispersed 

molecular weight distribution was used. The design of new products has become a key 

factor in achieving industrial success. Efforts were put by pharmaceutical, cosmetic and 

food industries focused on reducing the times of manufacturing and in reducing the 

number of steps when implementing a production system. In this context, the using of our 

chitosan would reflect a more realistic way to design processes for insulin-chitosan 

nanoparticles production at industrial levels. 

Even although many examples exist regarding single I aggregation processes [9][10] and 

I-polysaccharides interactions [11][12][13], macromolecular interaction parameters 

obtained from models application to experimental data (describing the assembling 

process) are scarce in scientific literature. Several applied analytical techniques allowed 

us to propose a configuration model for I-CS interactions under the conditions used here. 

I-CS nano-complexes obtained via electrostatic interactions were characterized in terms 

of colloidal and flow properties. To complete this contribution, I-CS biological activity 

was assesed in 3T3-L1 cultured fibroblast. 

 

2. Materials and methods 

2.1. Materials 

Chitosan was kindly donated by the Microbiology Laboratory of Instituto Nacional de 

Tecnología Industrial of Mar del Plata, Argentina. In order to use only soluble material, 

CS was washed previous to its use, as described by Mukhopadhyay [14]. A stock solution 
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of purified CS 1%, w/w, was prepared, from which subsequent 10-fold serial dilutions 

were made with 1%, w/w, acetic acid. CS stock solution concentration was 0.2 %, w/w. 

The viscosity-average molecular weight (MW) of chitosan resulted 300 kDa and was 

determined according to the Mark-Houwink-Sakurada equation considering 1.81x10-3 dL 

g-1 and 0.93 values for the K and α constants, respectively [15]. Measurements were done 

at 25±1°C, by an Ubbelohde viscometer (Thermoscientific, Beverly, MA, USA).  

Degree of deacetylation (DD) of CS was determined by elemental analysis. The 

percentage content of carbon (C) and nitrogen (N) were determined by the CHN EA 1108 

Elemental Analyzer (Carlo Erba, New Jersey, USA). Because the deacetylation process 

has a direct impact on the number of C and N atoms present in the chitosan repeat unity, 

the following equation, which represents mass ratio between C and N in such unity, can 

be used to calculate the DD [16]:  

           
141

12]2)1(6[

x

xxDD

N

C 
                          (1) 

                      

Thus, the calculated DD of CS resulted of 72 %. 

Chitosan sample had a polydispersity ratio of Mw/Mn = 4.6, where Mw is the weight 

average molecular weight and Mn is the number average molecular weight. 

Recombinant Human I was supplied by Denver Farma Laboratories, Buenos Aires, 

Argentina. The exact mass of I was dissolved in 20mM HCl solution, pH 2, to give a 

concentration of 0.4%, w/w.  

All other chemicals were of analytical quality. MilliQ water was always used. 

Biopolymers solutions were kept 24 h at 4 °C to achieve the complete hydration of the 

molecules previous to their use.  
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 2.2. Preparation of mixed biopolymers complexes by macromolecular assembly (charge 

screening method) 

 

The biopolymer solutions were prepared freshly, filtered through 0.45 mm microfilters 

(Whatman International Ldt, Maidstone, England) and kept 24 h at 4 °C to achieve the 

complete hydration of macromolecules. The appropriate volume of each 2X concentrated 

biopolymer solution was mixed at pH 2, to give the required final concentrations of 

protein (0.2%, w/w) and polysaccharide in the bulk solution, 1·10-4, 1·10-3 and 1·10-2 %, 

w/w. I solution was poured into CS under gently magnetic stirring. The mixed solution 

pH was increased up to 6 by careful addition of Na(OH) (4N) solution, added drop by 

drop under stirring. At this pH value electrostatic interactions between I and CS would be 

maximized. 

 2.3 Kinetics of aggregation  

Solutions absorbance was registered upon time to study the impact of different CS 

concentrations in the nano-complexing process kinetics at pH 2 and 6 [17] [18] using a 

PHERASTAR-FS microplate reader (BMG LabTech, Ortenberg, Germany). Absorbance 

of I solution was also registered as a control. Data was acquired at λ=500nm, away from I 

and also CS intensities peaks [19]. All measurements were performed at 25 °C; 200 µl of 

each solution was poured into each well. Then, kinetic parameters were obtained as 

proposed by Stirpe et al [20]. 

 

2.4 Dynamic Light Scattering (DLS) and ζ – potential 
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Particle size distribution and its derived parameter, main peaks, and ζ - potential 

measurements were carried out using a Zetasizer Nano-Zs particle analyzer (Malvern 

Instruments, Worcestershire, UK). All samples were analyzed with an angle of 173°, at 

25°C. Each measure consisted in 10 runs. Particle size distribution was obtained as 

indicated by Pérez et al. [21]. The intensity distribution is determined using a multi 

exponential function (CONTIN) to fit the correlation data. In this type of analysis, the 

presence of more than one family of particle sizes is taken into consideration. These 

multiexponential algorithms, for which there is no standard and which generally vary 

from manufacturer to manufacturer, will generate an intensity distribution and, using the 

Mie theory, a distribution normalized for the volume of the scattering particles [22] 

Volume size distribution was considered to determine the relative importance of each 

peak. The following constants were used for measurements: RI: 1.333 for ultrapure water; 

which was the dispersant, dielectric constant: 78.5 , viscosity: 0.8872 cp, equilibration 

time was always 180 s . 

ζ -potential was evaluated from the electrophoretic mobility of the particles, at 25 °C. The 

conversion of the measured electrophoretic mobility data into ζ -potential was done using 

Henry’s equation [23] [21]. Disposable capillary cells were used to perform these 

experiments (DTS1060, Malvern Instruments, Worcestershire, UK). 

 

2.5 Flow behavior 

Rheological characterization of I, CS and I-CS solutions was carried out using an Anton 

Paar MCR 301 (Physica MCR 301, Anton Paar, Germany) stress controlled rheometer. 

Flow curves were obtained at 25 ºC using cone plate geometry, CP50 (50 mm diameter, 

1º cone angle and 0.099 mm gap) and shear rate varied from 0.01 to 1000 s-1. 560 μL of 

each sample were placed in the determination platform of the instrument. Tests were done 
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in automatic mode to ensure that the steady state at each shear rate was reached. 

Experimental data were fitted by applying the following Power Law model: 

                                             τ= K γ
.

n
                                                (2) 

Where  is the shear stress (Pa), γ
.

 is the shear rate (s-1), K is the consistency coefficient 

(Pa.s), which is commonly homologated with the viscosity and n (dimensionless) is the 

flow behavior index [24]. 

 

2.6 Cell culture and Western blotting 

 

3T3-L1 fibroblasts cells were obtained from ATCC® CRL-1658™. Cells were grown in 

Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS) and penicillin/streptomycin (50 U/ml; 50 μg/ml) (all Gibco; Thermo Fisher 

Scientific, Inc.). Cultures were maintained in a humidified incubator at 37°C with 5% 

CO2 and 95% air.  

Western blots were performed according to standard procedures. Briefly, 5·104 cells were 

seeded in plates of 6 wells during 48 h. until 70% of confluence. 3T3-L1 were serum 

starved for 4 h. and treated with I, 6·10-5 % w/w or I-CS complexes containing an 

equivalent I amount for 0, 0.5, 2, 30 and 120 min. Cells were immediately scraped in 

cracking solution (Tris-HCl 200 mM, SDS 8%, Bromophenol Blue 0.4%, Glycerol 40% 

and β-mercaptoethanol 400 mM) with proteases inhibitors (P8340 SIGMA, St Louis, 

USA) and phosphatases inhibitors (NaF 50 mM, Sodium Orthovanadate 2mM and β-

glycerolphosphate 10 mM).  Lysates were separated on 10 % SDS- polyacrylamide gel 

and transfered onto a PVDF membrane (Amersham Hybond GE Healthcare Life 
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Sciences, Germany). Blotting efficiency was verified by staining the membrane with 

Ponceau Red. Membranes were blocked with 5% BSA in TBS (150 mM NaCl in 50 mM 

Tris-HCl buffer pH 8) for 1 h. and then incubated overnight at 4ºC with rabbit anti-P-Akt 

S473 (Cell Signaling, USA). Rabbit IgG-HRP (Santa Cruz, CA, USA) was used to detect 

Immunoreactive bands by chemiluminescence, with ECL Prime Western Blotting 

Detection Reagents RPN 2232 (Amersham GE Healthcare, UK).  

 

3. Results and discussion 

 

3.1 Intermacromolecular association kinetics in mixed solutions 

 

Protein aggregation depends on several parameters including time, pH, concentration and 

solvent properties [25] [26]. In this context, self-association of I molecules into dimers, 

hexamers, and macromolecular aggregates has been reported before [27]. On the other 

hand, CS aggregation starts to occur at concentrations as high as 0.1%, w/w, as reported 

by Phillipova [28], well above the ones used in this work. Absorbance measurements (i.e. 

scattering or turbidity) were used here to understand the kinetics of aggregation of both 

species and how CS influences I aggregation meanwhile nano-complexes formation 

ocurred. Turbidimetric studies as applied to protein-polysaccharide systems were based 

on the fact that turbidity is proportional to both size and concentration of the particles 

formed [29]. 

Fig. 1 shows the absorbance as a function of time which was registered for three different 

concentrations of pure CS, at pH 2 and pH 6 (Fig. 1a); pure I and I-CS mixed solutions at 

pH2 (Fig. 1b) and at pH 6 (Fig. 1c). Single polysaccharide did not register remarkable 

changes in absorbance at the considered pH values, indicating the absence of scattering 
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(Fig. 1a), as demonstrated by the insignificant changes observed in the “y” axis. Figure 

1b shows the results concerning to mixed systems at pH 2 which corresponded to the pH 

value at which biopolymers solutions were mixed. Single I and CS solutions did not show 

absorbance change in the considered frame of time indicating co-solubility of 

biopolymers. The electrostatic interactions between both biopolymers would be 

minimized meanwhile the repulsive forces between the macromolecules would be 

maximized. The protein has positive charge as its isoelectric point (pI) was reported to be 

~ 5.4 [30]. On the other hand, the polysaccharide is positively charged at pH<6.5 due to 

the protonation of the amino groups [14].  

Absorbance was also registered as a function of time at pH 6 for I and I-CS (Fig. 1c). 

Under these conditions nano-complexation process would be favored via electrostatic 

interactions. Insulin presented negative and CS positive surface charges, respectively. The 

curve for single I was included as a reference for the analysis of mixed systems behavior. 

No remarkable changes were observed in the absorbance for pure I as time elapsed. This 

behavior could obey to the fact that the protein aggregation process could occur at a 

limited scale (small aggregates) or at a low formation rate. Single protein aggregation 

would not be impeded as I is near to its pI value and the protein concentration was above 

its critical aggregation concentration [31]. Therefore, the formed protein aggregates 

would not have a size big enough to scatter light.  

I-CS mixed systems showed an initial low absorbance value that started to increase over 

time. Changes in absorbance could be attributed to the scattering due to protein solution 

turbidity increase [20]. Turbidity, a measure of the extension of I aggregates formation 

induced by the presence of CS or due to the intermacromolecular arrangement, variated 

inversely with the polysaccharide concentration. Similar trends concerning to turbidity 

behavior were reported by Mao et al [8]. CS concentration influenced the aggregation 
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state of the protein, i.e. aggregates characteristics such as size and shape, and the rate of 

formation. The time needed for increasing turbidity varied with the amount of added 

polysaccharide. Protein aggregation and macromolecular interactions with CS requires a 

special thermodynamic state previously acquired by the protein molecules for this process 

to take place [19]. This protein state, which seems to be a general rule, was reported for 

myoglobin [32], BSA [33], β-lactoglobulin [34], whey protein concentrates and isolates 

and ovoalbumin [35].  
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Fig. 1. Time dependence of the absorbance at 500 nm for CS solutions registered (a) pH 2 and 6 (b) and I-

CS mixed solutions at pH 2 and (c) pH 6. Pure protein solution concentration, 0.2 %, w/w, was monitored 

for comparison. CS concentrations in mixed solutions were 1·10-4, 1·10-3 and 1·10-2%, w/w. Temperature: 

25 °C. 
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The kinetics model application to experimental absorbance vs time data allowed 

determining the  (s-1) and  (dimensionless) parameters, which corresponded 

respectively to the rate and the order of spontaneous aggregate formation [20]. Equation 

(3) corresponds to the function used to fit the experimental data for obtaining the 

mentioned parameters: 

                                                                                                             (3) 

 

Thus, a faster aggregates formation was observed for those systems containing the lowest 

CS concentration (1·10-3 and 1·10-4 %, w/w) as indicated by the  values obtained from 

the model application (Table 1).  

On the other hand, α values corresponding to pure I and that of I-CS 1·10-2 %, w/w, 

resulted lower than the former ones. The  value for pure protein was in line with the 

hypothesis explained before that single protein aggregation occurred at a lower rate or 

was non extensive, as manifested by the absorbance vs time curve. 

 

Table 1 

 

 

 

 

 

 

 

 

Kinetic parameters describing intermacromolecular association process as determined by fitting the 

absorbance curves for single Insulin and I-CS mixed solutions. Samples were analyzed at pH6. 

 *mean±SD of replicates corresponding to three independently prepared samples solution.  

Sample (s-1)* β*  R2 

I not applicable not applicable   

I-CS 1·10-2% 0.24 ± 0.06a 4.1 ± 0.9a  0,99 

I-CS 1·10-3% 0.65 ± 0.09b 3.2 ± 0.7a  0,99 

I-CS 1·10-4% 0.76 ± 0.16b 2.1 ± 0.8a  0,98 

 ).(
0 . tecyy 
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A lag phase at the highest CS concentration (1·10-2%, w/w) suggested that the 

polysaccharide had impact on I, which was visualized as a higher amount of time needed 

for the aggregation process to start. The long interval time observed for I-CS 1·10-2 %, 

could be attributed to the existence of sequential or multiple stages during global 

biopolymer association. Although absorbance showed a sigmoidal-like behavior for all 

mixtures, reaching a plateau after 2 hours approximately, I-CS 1·10-2%, w/w mixed 

system described a remarkable lag phase. Absorbance remained constant before its 

enhancement, and a plateau was reached after biopolymers association process became 

stable. This lag time was attributed to the time needed by the protein molecules to acquire 

the state that favors the association process, which variated according to the amount of 

CS in the solution bosom. In fact, protein-to-polysaccharide ratio is crucial to control the 

charge balance between interacting biopolymers [36]. For a specific protein–

polysaccharide pair, there is an optimal ratio for which electrostatic interactions reach 

equilibrium between repulsive and associative interactions, allowing the formation of 

different intermacromolecular or complexing patterns. The polysaccharide, being a 

polyelectrolyte able to cover I aggregates surface at the highest bulk concentration 

studied, would be increasing the electrostatic repulsion between the complexes once 

formed and concomitantly decreasing the probability of association.

 parameter completed the analysis of data fitted with the kinetic model occurring with I 

at different CS concentrations. The protein aggregates formation process becomes more 

cooperative and complex involving the formation of intermediates as indicated by the 

lower values of β (Table 1) [34][37]. Higher β values indicate that more intermediate 

species were formed as the I aggregation proceeded as evidenced in I-CS systems, 
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containing 1·10-2 % w/w of CS. Therefore it could be concluded that CS amount would 

be modulating protein aggregation and the intermolecular association as well.  

It can be observed that the rate of absorbance increase is inversely proportional to CS´s 

concentration. This result is a manifestation of a decrease in the bridging-flocculation 

phenomenon, in analogy to the term used in emulsion science. Briefly, the long 

polysaccharide chains are able to bind more than one protein aggregate, forming protein 

molecular clusters. Thus, each cluster is formed by charge neutralization and bridging 

effects. This effect is most pronounced at lower polysaccharide concentrations where 

protein aggregates surfaces are only partially covered. This finding is in line with the 

results published in the pioneer paper of Mao et al [8] and those obtained in a more recent 

paper by Sogias et al. [19], who attributed the changes in absorbance of mucin solutions 

to the formation of biggest clusters at low CS concentrations. In other words, smaller 

nano-complexes were formed at lower I/CS ratio.  

Accordingly, the results presented hereinafter concerning to I-CS mixed systems were 

derived from 3 h aged solutions after mixing and pH adjustment to 6. This time was 

considered enough to reach a plateau for I-CS intermacromolecular association as 

determined by turbidity measurements. 

 

3.2. Particle Size characterization of mixed biopolymers complexes 

 

A study of size distribution was performed by DLS, which is based on the Brownian 

motion of particles. Fig. 2a shows the volume size distributions for I at pH 2 and 6. This 

protein displayed a monomodal distribution at both pH values. At the lower one, pH 2, 

the peak was broadening from 1.4 to 2.1 nm with a maximum at 1.8 nm. The area under 

the peak includes I monomers, and structures larger than dimers as well. Particle size 
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distribution of I was displaced to higher sizes at pH 6. Particle size distribution, being 

also monomodal, manifested a maximum value at 2.6 nm with 2 and 5 nm peak limits. At 

this matter, it can be pointed out that self-association state of a protein can be influenced 

by intrinsic solution properties, such as the protein concentration, pH and the ionic 

strength, or extrinsic conditions as temperature, radiations, electric power, etc. Table 2 

resumes the parameters derived from particle size distribution analysis. Thus, at pH 2, the 

measured diameters for the protein coincided with dimeric quaternary structures. The 

molecular weight was estimated from empirically determined size vs. protein mass 

relationships. At pH 6, the measured diameters by the same methodology were consistent 

with the hexameric forms of the protein, in coincidence with the literature [38]. 

In respect to mixed systems, a subtle trend was observed, as CS concentration increases, 

the maximum peak decreases and the particle size distribution tended to be monomodal 

as well. Thus, the measured diameters for I-CS system containing 1·10-2% w/w, of CS, 

are consistent with a monomeric structure of I. At pH 2 the electrostatic interactions are 

minimized given by the protein pI and the CS pKa [39] [18].  

The polysaccharide may induce the modification of insulin native structure and even 

trigger the proteins aggregation, via molecular interactions other than the electrostatics 

(hydrophobics, Van der Waal forces, etc) [40]. The non-polar regions of the protein 

surface could interact with the less polar region of the polysaccharide, modulating the 

possibility of protein association or oligomers dissociation. 
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Table 2 

 

 

 

 

 

 

 
 
Particle size parameters from volume size distribution analysis, obtained from DLS 
measurements for single Insulin and I-CS mixed solutions at pH 2 and 6. 
*mean±SD of replicates corresponding to readings of three independently prepared samples 
solutions. Data were obtained at 25°C. 

 

At pH 6, I-CS systems showed a multimodal behavior in size distributions (Fig. 2c). As 

can be seen, the entire distribution displaced to lower sizes upon increasing CS 

concentrations. The particle size distribution of I-CS system with CS 1·10-4%, w/w, 

manifested two peaks, the first at 196 and the second at 328 nm (Table 2). Mixed solution 

with CS 1·10-3 %, w/w, presented a multimodal behavior with peaks placed at 92, 130 and 

188 nm respectively. It is important to note the behavior described by mixed solution with 

CS 1·10-2 %, w/w, that had one main peak observed at 129 and a shoulder located at 

lower sizes, 95 nm. The remarkable change observed for I-CS mixed solutions at pH 6 in 

comparison with the behavior observed at pH 2, could obey to two reasons. First of all, 

the electrostatic interactions could be maximized and complexation would occur as both 

biopolymers had opposite surface electrical charge at this pH. The second reason has a 

connection with relative biopolymer concentrations. In general terms, it could be said that 

particle size decreased as CS bulk concentration increased. Such an effect was explained 

as a decrease in the bridging-flocculation effect, which was previously explained. In line 

with the results presented here, Sogias [19] reported that mucin aggregation decreased as 

pH 2 pH 6 

MONOMODAL DISTRIBUTION    MULTIMODAL DISTRIBUTION 

Sample 
Peak 
(nm)* 

Sample 
Peaks 
(nm)*

I 2.0 ±0.09 I 2.6 ±  0.02 

I-CS 1·10-2% 1.5 ±0.04 I-CS 1·10-2% 95, 129 

I-CS 1·10-3% 1.7 ±0.03 I-CS 1·10-3% 92, 130, 188 

I-CS 1·10-4% 1.7 ±0.06 I-CS 1·10-4% 196, 328 
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CS concentration increased, and that was related to a subsequent protein disaggregation 

caused by the excess of cationic polymer in solution and further complexation. To sum 

up, particle size distribution results were in line with those found by absorbance studies in 

section 3.1. 

 

Fig. 2. Volume particle size distribution (based on DLS data) of (a) Insulin at pH 2 and pH 6. (b) Curves 

obtained for I-CS nano-complexes at pH2 (c) and pH 6. Pure protein solution, 0.2 %, w/w, was monitored 
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for comparison. CS concentrations in mixed solutions were 1·10-4, 1·10-3 and 1·10-2 %, w/w. Temperature 

for DLS measurements was 25 °C. 

 

3.3. Mixed biopolymers complexes characterization 

 

Single chemical species previously characterized in terms of size were analyzed 

comparatively in terms of surface charge. Fig. 3 shows the ζ-potential values for single 

biopolymers aqueous solutions as a function of pH. It can be seen that ζ -potential varied 

between 25 mV at pH 2 and -35 mV at pH 6 for pure I, with a point of zero charge around 

pH 5, in coincidence with the reported pI value [41]. Surface electrical charge of CS 

solutions variated between 6 mV at pH<6 (lower than the amine groups pKa) and -20 mV 

at pH>7 (higher than the amine groups pKa). The global surface charge corresponding to 

zero for CS was around pH 6.5. The superimposition of curves for I and CS (Fig. 3), 

allowed the establishment of the optimum pH range that maximizes the occurrence of 

electrostatic interactions between I and CS molecules, which occurred between 5.0 and 

6.5. Interaction pH range is pointed out by the shaded gray zone in Fig. 3. Thus, pH 6.0 

was selected due to practical benefits since it was more easily adjusted. As the pH was 

increased, from 2 to 6, the number of anionic groups on the protein also increased, 

inducing the electrostatic attraction with the CS cationic groups. In practical terms, the 

electrostatic complexation between CS and I generated nano-complexes, whose 

dimensions clearly fell into the so called submicronic scale (<1 µm) [42]. 
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Fig. 3. Influence of pH on the electrical charge (ζ-potential) of solutions containing Insulin and Chitosan 

1·10-3%, w/w. Shaded zone in the graph indicates the highest probability for the electrostatic interactions 

between  molecules. Temperature: 25 °C. 

. 

ζ-potential provides indicative evidence towards the nature of surface charges  assuming 

that the predominant ions in the electric double layer up to the slipping plane are similar 

(positive/negative) compared to the surface of the particle itself. The practical way to 

confirm the nature as well as to determine charge density on nanoparticles is to titrate it 

with known amounts of ions or polyelectrolytes [43]. The results obtained for surface 

charge titration are shown in Fig. 4. ζ-potential values were analyzed at pH 6 for mixed 

systems, in which protein concentration was kept constant, 0.2%, w/w, as CS 

concentrations increased. It is shown that both I and I-CS mixed solutions had values 

placed between -35 mV at 0% w/w, and 20 mV at 0.1% of CS, respectively. This type of 
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plots reveals the gradual increase in the particle surface charge with interacting CS 

concentration increase. The existence of surface charges on the complexes assures 

colloidal stability which prevents the formed nano-complexes for further aggregation.  

 

 

Fig. 4. ζ -potential values of Insulin, 0.2%, w/w, with variable concentration of chitosan (I-CS), compared 

with samples containing pure chitosan, at pH 6. Measurements were perfomed after 3 hours of I-CS mixed 

solution preparation. Black arrow indicates pure Insulin ζ-potential. Temperature: 25 °C. 

 

Associative interactions between opposite charged I and CS have a profound impact on 

determining the structure of nano-complexes, granting their physical stability. In other 

words, associative interactions prevent the complexed biopolymers from dissociation and 

imparting functionality during storage and the passage through the epithelium in delivery 

systems [44].  
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Protein–polysaccharide associative interactions allowed designing colloidal particles. It 

was claimed that steric effect and the thickness and porosity of the polysaccharide layer 

also contributes to colloidal stability of complexes besides the electrical characteristics of 

the adsorbed layer [45]. I-CS would not be the exception. As seen in Fig. 4, mixed 

solution up to 0.003% w/w of CS, manifested ζ-potential values significantly more 

negative than CS’s alone. Mixed systems acquired positives values at concentrations of 

CS equal to 0.005%, w/w, or higher, drawing on closer to the values found for pure CS 

solution. At the CS concentration ≥ 0.1%, w/w, the complexes were found to approach to 

their maximal ζ-potential value, which was also very close to the value for free CS. In our 

experiments no further charge reversal was observed when the CS concentration 

increased. Surface charge saturation could indicate that the formed nano-complexes 

would have a core-shell type nanostructure, with insulin forming the core and CS the 

shell [46], respectively. 

 

3.5. Rheological properties of I-CS solutions 

 

Polymers solutions viscosity must be characterized for systems with applications in the 

pharmaceutical and biomedical fields, such as in this case. The combination of two 

biopolymers determines the mixed solution viscosity. In turn, two biopolymer solutions 

mixing could also lead to subsequent processing difficulties, modifying degradability, and 

availability of functional groups in the crosslinked polymer or even to a potential increase 

in cytotoxicity [47]. Rheological properties of I-CS nano-complexes solutions were 

studied in comparison with single I solution, Fig. 5a displays the flow curves for these 

systems, or shear stress vs shear rate curves. These curves represent the real experimental 

data obtained from rheological determinations. It can be seen that the shear stress 
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increased with shear rate in all cases into the studied shear rate domain. Fig. 5b shows the 

apparent viscosity variation with shear rate, from which the character of flow can be 

obtained. Thus, it was observed that I and I-CS 1·10-2 %, w/w exhibited a characteristic 

non-Newtonian behavior being more viscous than the remaining mixtures up to 200 s−1. 

I-CS mixtures with 1·10-3 and 1·10-4 %, w/w of CS, manifested a similar behavior 

between them (Fig. 5b). This result indicates that the rheological behavior of the solution 

resembled the one of the protein, at the highest polysaccharide concentrations (CS 110-

2%, w/w). In other words, the behavior within the rheometer was very similar, for both I 

and I-CS 110-2%, where single individual particles, with no entanglement, were detected. 
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Fig. 5. Flow curves for (a) I-CS mixed solutions and (b) viscosity, registered at pH 6. Pure protein solution 

concentration, 0.2 %, w/w, was included for comparison. CS concentrations in mixed solutions were 1·10-4, 

1·10-3 and 1·10-2%, w/w. Temperature of measurements 25 °C. 
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To obtain quantitative parameters from the rheological experimental data, Power Law 

model was used to describe the flow curves. The corresponding parameters obtained from 

the model are shown in Table 3. The high correlation coefficients obtained 

(0.988<R2<0.998) indicate that the model appropriately fitted the experimental data.  

It can be observed that an increase of the polysaccharide concentration provoked a 

decrease in K parameter in comparison to pure I solution. Meanwhile, K resulted lower 

when CS was at 1·10-3 and 1·10-4%, w/w. Lower K values than those of pure I aqueous 

solution would confirm biopolymers co-solubility enhancement and the formation of less 

entangled macromolecular rearrangement in the solution bosom. Single I and I-CS 1·10-

2%, w/w, presented the highest K values. In terms of surface charges, nano-complexes 

would stay more separated due to higher repulsion as the surface of protein was 

completely covered by CS. The flow behavior n = 1 indicates a Newtonian fluid and n < 

1 represents a shear thinning fluid because the slope of the curve decreased as shear rate 

increased [48]. At this respect, two different trends were defined, one for pure I solution, 

which was shear thinning, and the other for I-CS mixed systems with n values between 

0.8 and 1. The latter clearly denotes a tendency towards a Newtonian behavior, related to 

the cosolubility increase as the CS concentration decreased as reported. 
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Table 3  

 

Sample  Power Law  parameters  

 K.103 (mPa.sn)* n* R2 

I 8.451 ± 0.505a 0.695 ± 0.007a 0.994 

I-CS 1·10-2 % 4.940 ± 0.495b 0.813 ± 0.012b 0.988 

I-CS 1·10-3 % 1.590 ± 0.289c 0.969 ± 0.028c 0.992 

I-CS 1·10-4 % 1.764 ± 0.096c 0.928 ± 0.006c 0.998 

Consistency index (K), and flow behavior index (n) for single Insulin and I-CS mixed solutions 
(pH 6),derived from Power Law application. 
*mean±SD of replicates corresponding to readings of three independently prepared samples solutions. Data 
were obtained at 25°C. Different letters indicate statistically significative differences at p<0.05. 
 

The ANOVA test results (Table 3) indicate that the four solutions can be divided into 

three homogeneous groups: single I, I-CS 1·10-2 % and I-CS for 1·10-3 and 1·10-4 %.  

Thus, three stages can be characterized from the rheological experimental data at pH 6, in 

accordance to particle size, ζ -potential and absorbance measurements. The first, 

concerning to the single I solution, which has the highest K and the lowest n values, 

presented a negative surface charge, making the protein highly soluble by virtue of 

electrostatic repulsion between molecules. In general terms, a lower viscosity was 

observed for mixed systems evidencing the polysaccharide influence. Such a decrease 

was stronger as the CS concentration increased, with the concomitant trend to a non-

Newtonian behavior at 110-2%, w/w of the polysaccharide. Thus, the decrease in 

viscosity could be explained by the adsorption of cationic chitosan on the surface of 

negatively charged insulin. At pH 6 biopolymers carry opposite charges and 

complexation process occurred with particular features. When chitosan concentration was 

low, there was insufficient CS available to coat the anionic protein aggregates and 

clusters of higher sizes were formed (bridging- flocculation) which contributed to a slight 
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decrease of viscosity. At this respect Bohidar et al (2005)[49] described such a behavior 

in terms of soluble protein-polyelectrolyte complexes. Interactions in solution bosom 

between such complexes were presumed to provide cross-links which could be stable in 

time and modulating flow properties. 

On the other hand, core-shell nano-complexes were formed in mixed solutions, with CS 

concentrations above a critical one (0.01 %, w/w). The attractive forces between Insulin 

and cationic chitosan promoted the formation of microphases rich in nano-complexes, 

that increased the viscosity of the system. This behavior was also explained by Bohindar 

et al (2005) referring to the presence of complex rich domains, i.e. core-shell, more 

viscous, leading to the formation of complex-poor microphases, which would be more 

fluid [48]. 

 

3.6 Association model 

In function of the obtained results we proposed a configuration model for insulin and 

chitosan assembling via macromolecular interactions (Fig 6). The phenomena occurring 

from single I molecules as the CS concentration increases can be divided into three stages 

at pH 6.  

Insulin pI determines the existence of a turning point. At pH lower than 5.5, I dimer 

formation was observed regardless CS concentration, as determined by DLS [49], ζ-

potential and absorbance measurements. This phenomenon occurred at a slow rate and 

was less cooperative than systems constituted by higher amounts of CS as confirmed by 

the parameters obtained from turbidity data fitting. 

At pH higher than 5.5, when the protein has a negative surface charge, two scenarios 

were observed: core-shell complexes were formed at the highest CS concentration (1·10-

2%, w/w) (Fig. 6a). This solution presented a non-Newtonian behavior and the highest 
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apparent viscosity of the three mixtures. Regarding to the lowest CS concentrations (1·10-

4 and 1·10-3%, w/w), bridging-flocculation process took place, resulting in larger clusters, 

as indicated by DLS (Fig. 6b). This process occurred at higher rate with fewer molecular 

intermediates forms as indicated by α and β values obtained from fitting the absorbance 

vs time data. Lower values of apparent viscosity would indicate the formation of weakly 

entangled macromolecular rearrangements. 

 

 

Fig. 6. Scheme showing the configuration events occurring during I-CS nano-complexation as modulated 
by the pH of mixed solution and CS concentration. (a) CS concentration 1·10-2% with no association 
between I dimers and CS, at pH<pI of I. Core-shell nanostructures at pH>pI. (b) CS concentration<1·10-
2%. No association between I dimers and CS, at pH<pI I-CS systems. Nano-complexes of different 
structures were formed by macromolecular entanglements at pH>pI. 
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3.6 Activity in cultured cells 

In order to evaluate the biological activity of core-shell I-CS nano-complexes (I 

completely covered by 1·10-2% CS), we measured the activation of the insulin-induced 

signaling pathway in 3T3-L1 fibroblasts. This is a well-established I responding 

preadipocyte model [50]. Activation of the insulin receptor at the cell membrane rapidly 

recruits and activates by phosphorylation IRS-1 and AKT leading to the translocation of 

the glucose transporter and the activation of the metabolic response[51] .Following 

activation, receptors are internalized into endosomes were they could be recycled or 

transported to lysosomes for degradation [52]. To quantify the dynamics of the I pathway 

activation by I-CS, changes in phosphorylated AKT levels,, were measured by Western 

blot at different times after ligand induction . As shown in Fig. 7a, I-CS stimulation 

displayed a delayed and sustained activation of AKT as compared to single I. This 

experimental result confirms that the structural and functional stability of Insulin and its 

release from the nano-complexes allows a sustained stimulation of the I signaling in 3T3-

L1 cells. 

The covering of I by a shell of CS in nano-complexes would explain the delayed 

activation of its cellular response, with no instantaneous access to cell receptors. Free I 

molecules binds to its receptor and the activated ligand-receptor complex is fully 

internalized within 120 min [52]. On the other hand, the sustained activation exterted by 

I-CS core-shell nano-complexes upon time indicates I releasing from the nano-complexes 

in a time dependent manner. Fig. 7b represents the quantification of AKT activation over 

time by I or I-CS stimulation. A clear difference in their activation profile was observed. 

While I stimulated activation reached a maximum after 10 min and had a further 

decrease, I-CS showed a sustained activity after 120 min. This finding has practical 
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impact as this property could be exploited to exert the controlled release of I in 

therapeutic formulations by using the I-CS nano-complexes.  

 

 

Fig. 7. (a) Western blot showing changes in phosphorylated AKT levels after I or core-shell I-CS (1·10-2% 
CS) stimulation assayed in 3T3-L1 fibroblasts upon time. (b) Quantification of AKT activation over time 
showing a sustained increase for I-CS activation after two hours of stimulation.  

 

 

Conclusions 

Insulin-Chitosan nano-complexes were designed by applying the macromolecular 

assembling principle. The CS solution concentration for complete protein aggregates 

surface coverage was determined as 1·10-2%, w/w, i.e. constituting core-shell type nano-
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complexes. The interactions between both biopolymers were modulated by the pH of the 

solution. Hydrodynamic and colloidal interactions were evaluated by light scattering 

technique. ζ-potential determinations made possible to find the electrostatic interaction 

zone between these macromolecules. This approach has also resulted useful to determine 

the I surface coverage by CS. Flow curves properties reflected the biopolymers 

association and the shape pattern of nano-complexes. Mathematical models application to 

the experimental data allowed obtaining parameters that described the nano-complexation 

process, i.e. the kinetics parameters of nano-complexes formation under the conditions 

here considered. 

I-CS nano-complexes could be an alternative in the development of a new generation of 

pharmaceuticals for protein protection from the hostile conditions of the body, increasing 

its absorption and exerting the controlled release as demonstrated by the biological 

activity assay. Furthermore, the nano-complexes generated according to this 

configuration could be the starting point for new drug designs aimed at new 

administration routes, such as pulmonary, relevant for pediatric uses. 
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Figure captions 

 

Fig. 1. Time dependence of the absorbance at 500 nm for CS solutions registered (a) pH 2 and 6 (b) and I-

CS mixed solutions at pH 2 and (c) pH 6. Pure protein solution concentration, 0.2 %, w/w, was monitored 

for comparison. CS concentrations in mixed solutions were 1·10-4, 1·10-3 and 1·10-2%, w/w. Temperature: 

25 °C. 

 

Fig. 2. Volume particle size distribution (based on DLS data) of (a) Insulin at pH 2 and pH 6. (b) Curves 

obtained for I-CS nano-complexes at pH2 (c) and pH 6. Pure protein solution, 0.2 %, w/w, was monitored 

for comparison. CS concentrations in mixed solutions were 1·10-4, 1·10-3 and 1·10-2 %, w/w. Temperature 

for DLS measurements was 25 °C. 

 

Fig. 3. Influence of pH on the electrical charge (ζ-potential) of solutions containing Insulin and Chitosan 

1·10-3%, w/w. Shaded zone in the graph indicates the highest probability for the electrostatic interactions 

between  molecules. Temperature: 25 °C. 

 

Fig. 4. ζ -potential values of Insulin, 0.2%, w/w, with variable concentration of chitosan (I-CS), compared 

with samples containing pure chitosan, at pH 6. Measurements were performed after 3 hours of I-CS 

mixtures preparation. Black arrow indicates pure Insulin ζ-potential. Temperature: 25 °C. 

 

Fig. 5. Flow curves for (a) I-CS mixed solutions and (b) viscosity, registered at pH 6. Pure protein solution 

concentration, 0.2 %, w/w, was included for comparison. CS concentrations in mixed solutions were 1·10-4, 

1·10-3 and 1·10-2%, w/w. Temperature of measurements 25 °C. 

 

Fig. 6. Scheme showing the configuration events occurring during I-CS nano-complexation as modulated 

by the pH of mixed solution and CS concentration. (a) CS concentration 1·10-2% with no association 

between I dimers and CS, at pH<pI of I. Core-shell nanostructures at pH>pI. (b) CS concentration<1·10-
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2%. No association between I dimers and CS, at pH<pI I-CS systems. Nano-complexes of different 

structures were formed by macromolecular entanglements at pH>pI. 

 

Fig. 7. (a) Western blot showing changes in phosphorylated AKT levels after I or core-shell I-CS (1·10-2% 

CS) stimulation assayed in 3T3-L1 fibroblasts upon time. (b) Quantification of AKT activation over time 

showing a sustained increase for I-CS activation after two hours of stimulation.  

 

 

 


