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Abstract 

We have performed high pressure synchrotron X-ray powder diffraction experiments on two 

different samples of Zn-doped magnetite nanoparticles (formula Fe(3-x)ZnxO4; x = 0.2, 0.5). The 

structural behavior of thenanoparticleswas studied up to 13.5 GPa for x = 0.2, and up to 17.4 GPa 

for x = 0.5. We have found that both systems remain in the cubic spinel structure as expected for 

this range of applied pressures. The analysis of the unit cell volume vs. pressure results in bulk 

modulus values lower than in both end-members, magnetite (Fe3O4) and zinc ferrite (ZnFe2O4), 

suggesting that chemical disorder may favor compressibility, which is expected to improve the 

increase of the Neel temperature under compression. 

 

 

1. Introduction 

The system of spinel oxides is a large family of compounds including more than eighty 

different oxides [1]. These oxides with formulae AX2O4 have a large variety of technological 

applications such as high density storage [2], spintronics [3], etc. Magnetite (Fe3O4) has an inverse 

cubic spinel structure [4], while zinc ferrite (ZnFe2O4), also known as Franklinite, has a normal 

cubic structure [5]. Solid solutions with general stoichiometry Fe(3-x)ZnxO4 (x = 0, 0.1, 0.2, 0.5 and 

1) have been investigated previously by us with emphasis on  structure and magnetic properties at 

ambient pressure [6]. The research of spinel oxides under high presure has gained a considerable 

attention also due to possible pressure generated changes in physical properties and their 

applications [7 – 9]. In particular, zinc ferrite squeezed  under pressure exhibited 

superparamagnetism [10]. 

Despite the fact that there are numerous scientific works on high pressure spinel oxides, 

most of them are based on bulk specimens and a modest fraction of them treats on nanoparticles.  

The pressure behavior of nanoparticles is often quite different from bulk materials. In particular,one 

of the effects seen on nanoparticles is Hall-Petch strengthening [11] (e.gas occurred in other spinel 

oxide: CoFe2O4 nanoparticles [12]). Doping a material can also cause changes in the high 
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pressureperformance, as demonstrated in Fe-doped SnO2 [13], in doped Bi2O3 [14], and Ni-doped 

nanoparticles of TiO2 [15]. 

In this work, we report X-ray powder diffraction high pressure studies performed on Zn-

doped magnetite nanoparticles with formula Fe(3-x)ZnxO4 (x = 0.2 and 0.5) to study their compaction 

under high pressure. The obtained results are compared with a previous study on magnetite (x = 0) 

and zinc ferrite (x=1) nanoparticles [16] to test the way the content of Zn affects the compressibility 

of magnetite nanoparticles. 

 

2. Experimental 

Zinc-doped magnetite nanoparticles with formula Fe(3-x)ZnxO4 (x = 0.2 and 0.5) were 

synthesized by wet chemical co-precipitation. The grain size of the particles ranged from 45 to 55 

nanometers. The details of the preparation as well as the characterization of the structural and 

magnetic properties at ambient pressure have been previously reported [6]. Samples of magnetite 

(of the same batch) and zinc ferrite (synthesized by sol-gel method [6, 16]), with similar grain sizes, 

were earlier studied by means of X-ray diffraction (XRD) under compression [16]. 

High pressure powder XRD diffraction experiments were performed at the XDS beam-line 

of Laboratorio Nacional de Luz Sincrotron (LNLS) located in Campinas, Brazil. High pressure 

wasapplied by means of a membrane diamond-anvil cell (DAC). We used stainless-steel 

gasketspre-indented to a thickness of 60 µm and diamond-anvils with a culet diameter of 500 µm. 

The applied pressure was determined by the ruby fluorescence method [17, 18] with an accuracy of 

1% in accordance to the most rigorous calibration of the ruby scale [19]. A 4:1 methanol-ethanol 

mixture, which is quasi-hydrostatic up to 10.5 GPa [20], was used as pressure transmitting medium 

(PTM).  Special attention was paid during sample loading into the DAC in order to avoid sample 

bridging between diamonds which could strongly affect the result of measurements [21, 22]. 

XRD experiments were performed in-situ, at room temperature, in the angle-dispersive 

configuration with a monochromatic beam with a 110 µm width and a wavelength of 0.6199 Å. The 

images were collected using a CCD Rayonix 165. The two-dimensional images were integrated to 

one-dimensional (Intensity vs. 2θ) diffraction patterns by using the program FIT2D [23]. In the case 

of the Fe2.8Zn0.2O4 sample, six different pressures were applied between 1 and 13.4 GPa, and in the 

case of the Fe2.5Zn0.5O4 sample, seven different pressures were applied from 1 to 17.4 GPa. The 

pressures were limited to these values to reduce the influence of deviatory stresses and to guarantee 

the structural stability of the cubic spinel phase. The structural analysis was performed using 

MAUD [24]. We have used a Birch-Murnaghan [25] equation of state to adjust the data of pressure 

vs. volume. 
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3. Results 

a) Sample Fe2.8Zn0.2O4 
 

In Fig. 1 we present the XRD diffraction patterns for the sample Fe2.8Zn0.2O4. The analysis 

of the patterns indicates that most of the peaks that corresponds to the magnetite cubic spinel 

structure (space group ��3��	[4]. There is also a peak corresponding to the ruby (used to determine 

pressure), which is identified in the X-ray diffraction pattern. At 9.9 and 13.5 GPa there is a peak 

originated by the gasket. All the Bragg peaks of the sample shift to the right (up to higher 2θ 

position) with pressure as expected due to the decrease of the lattice constant. From the fitting 

procedures by using MAUD software the lattice parameter and the unit-cell volume of the samples 

wereextracted (see supplementary material). 

 

Figure 1.X-ray diffraction pattern of Fe2.8Zn0.2O4 sample at different pressures. The main peaks of 

the magnetite structure are denoted with the corresponding hkl values.  

 

The unit-cell volume vs. pressure results are displayed in Fig. 2. The smooth pressure 

dependence can be represented by a third-order Birch-Murnaghan (BM3) equation of state (EOS), 
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which was used to adjust the data. Two different regions were considered in the fits: pressures 

below 10.5 GPa where the pressure-transmitting medium is quasi-hydrostatic, and the complete 

range of pressure including the measurement at 13.5 GPa where the 4:1 methanol-ethanol mixture is 

not fully hydrostatic. 

The results of fitted EOS curves can be also seen in Fig 2. The adjusted values for the zero-

pressure volume (V0), bulk modulus (B0), and its firstpressurederivative (B0′) were V0 = 607.2(6) 

Å3, B0= 113(9)GPa, and B0´ = 4.4(5) for pressures below than 10.5 GPa; and V0 = 607(1) Å3, B0 = 

117(9)GPa, and B0´ = 3.6(9)for all the pressure range. Both sets of parameters agree within the 

errors. Interestingly, the bulk modulus and its pressure derivative are lower than the measured 

values for pure magnetite nanoparticles, B0 = 152(9) GPa and B0´ = 5.2(9). They are also below the 

value of the bulk modulus reported for magnetite, which ranges from144 to 222 GPa [16].  We 

compare later systematically the compressibility obtained for same-size nanoparticles of 

Fe2.8Zn0.2O4, Fe2.5Zn0.5O4, magnetite and zinc ferrite. 

Figure 2. Unit-cell volume vs. pressure of Fe2.8Zn0.2O4 sample. Dots are the experimental values, 
the solid line is the BM3fit to the data for pressures below 10.5 GPa, and the dashed line is the BM3 
fit for all the range. 
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b) Sample Fe2.5Zn0.5O4 

In Fig. 3 we present the XRD patterns of Fe2.5Zn0.5O4 sample integrated from the corresponding 

images.   Despite the great content of zinc used to prepare this sample, the diffraction peaks can be 

adjusted to the magnetite cubic spinel structure (space group ��3��). Besides, there are peaks 

corresponding to the ruby present in the DAC. As expected, the peaksshift to higher 2θ values with 

increasing pressures, indicating the reduction of the cell constant.  In the supplementary material, 

we show a table with the values of cell constant and the unit-cell volume derived from it. 

Figure 3. X-ray diffraction pattern of Fe2.5Zn0.5O4 sample at different pressures. The main peaks of 

the magnetite structure are denoted with the corresponding hkl indices, the star marks the positions 

of the ruby diffractions peaks. 

 

Following these data, a third-order Birch-Murnaghan (BM3) equation of state was applied 

considering as it was employed before two different regions of applied pressures. The data with 

pressures below 10.5 GPa, where the pressure-transmitting medium is quasi-hydrostatic, and results 

from the complete range of pressure, including the measurement at 10.8, 13.8 and 17.4 GPa, where 

the pressure-transmitting medium cannot longer be considered as hydrostatic. The adjusted values 
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were V0 = 604.0(7) Å3, B0 = 129(9)GPa, B0´ = 4.8(5) for pressures below than 10.5 GPa; and V0 = 

606(1) Å3, B0 = 125(9)GPa, B0´ = 4.7(9)for the complete pressure range. The values of the bulk 

modulus and its pressure derivative agree within error bars. On the other hand, they are slightly 

larger than the values determined for the Fe2.8Zn0.2O4 sample (which hasalower concentration of 

zinc). However, the lower limits of the error bars of the values determined for Fe2.5Zn0.5O4 overlaps 

with the upper limits of the error bars of the parameters determined for Fe2.8Zn0.2O4. This suggests 

that both doped samples have a similar compressibility [26], which is larger than that of Fe3O4 and 

ZnFe2O4 as we will discuss in the next section. 

 

Figure 4. Unit-cell volume vs. pressure of Fe2.5Zn0.2O4 sample. Dots are the experimental values, 

the solid line is the BM3 fit to the data for pressures below 10.5 GPa, and the dashed line is the 

BM3 fit for all the measured pressure range. 

4. Discussion 

Using the results of volume vs. pressure of magnetite and zinc ferrite nanoparticles (of 

similar grain size) reported previously by us [16] for adjusting a third-order Birch-Murnaghan 

equation of state, we are able to make a full comparison of the samples with different content of 
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zinc with general unit formula Fe(3-x)ZnxO4 (x = 0, 0.2, 0.5 and 1). This comparison is resumed in 

Fig. 5, where the values of bulk modulus and its pressure derivative for the four different Zn 

compositions. 

 

 

 

Figure 5. Bulk modulus and its pressure derivative Fe(3-x)ZnxO4nanoparticles with a different 

fraction of zinc content. The values correspond to those obtained using a third-order Birch-

Murnagham EoS. The symbols for different compositions are indicated in the inset. 

 

As it can be seen in the figure, Fe2.5Zn0.5O4 and Fe2.8Zn0.2O4nanoparticles have a bulk 

modulus which is more than 10% smaller than the bulk modulus of magnetite (x = 0) and zinc 

ferrite (x = 1). There is also a tendency for the samples with an intermediate composition to have 

also a smaller B0’, however, for this parameter there is an overlap if the error bars are taken into 

account.  The results summarized in Fig. 5 undoubtedly indicate that Fe2.5Zn0.5O4 and 

Fe2.8Zn0.2O4are more compressible than the end-members of the family. There are several reasons 

than can explain this behavior. One is the increase of the volume caused by chemical disorder in 

Fe2.5Zn0.5O4 and Fe2.8Zn0.2O4[6]. Notice that the volume of these samples is 1-2% larger than that of 

zinc ferrite and magnetite. Such phenomenon usually induces a reduction of the bulk modulus as 
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recently found in lanthanide doped UO2 [27] and yttrium doped Ag2S [28]. Other reasonable 

hypothesis to explain the observed phenomenon is the presence in the doped samples of 

stoichiometric vacancies in the unit cell as it occurs in spinel sulfides [29] or the enhancement of 

cation migration under compression in the doped samples [30]. Further studies are needed to 

establish which of the proposed hypothesis is causing the observed decrease of the bulk modulus in 

Fe2.5Zn0.5O4 and Fe2.8Zn0.2O4.Of particular relevance to determine the possible cation migration of 

Zn and Fe are high pressure EXAFS measurements [31], which can be carried out both at the Fe 

and Zn K-edge.We would like to mention here that thedecrease of the bulk modulus for 

intermediateZn doping levels suggests a reduction of thecation-oxygen bond stiffness, which should 

have consequences in many mechanical and vibrational properties and also in transition pressures.  

Finally, the fact that Fe2.5Zn0.5O4 and Fe2.8Zn0.2O4 are more compressible than magnetite and zinc 

ferrite should have direct consequences in the pressure dependence of the Neel temperature. This 

temperature is known to increase as the volume of a compound decreases [32]. This suggests that 

the Neel temperature increase should be enhanced in Fe2.5Zn0.5O4 and Fe2.8Zn0.2O4. 

 

4. Conclusions 

In this work, we report a room-temperature powder XRD study on Zn-doped magnetite 

nanoparticles (Fe2.8Zn0.2O4 and Fe2.5Zn0.5O4)under compression using synchrotron radiation. The 

samples used for the experiments were synthesized and characterized at ambient pressure (before 

high pressure experiments) using a combination of techniques. We determined the effect of pressure 

in the cubic spinel structure and a pressure-volume EoS for their different Zn-doped systems. None 

of the samples undergoes a phase transition in the pressures measured. For both samples we have 

determined that obtained bulk modulus is lower than that of magnetite and of zinc ferrite [16]. We 

propose possible reasons for the observed decrease in compressibility and discuss potential 

consequences of such phenomenon. More studies are needed to determine if a similar phenomenon 

exists in other doped spinel oxides. 
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Supplemental Material 

Pressure (GPa) Lattice constant (Å) Unit-cell volume (Å3) 

1.0(1) 8.4445(3) 602.18(6) 

3.0(1) 8.3967(2) 592.00(4) 

5.6(1) 8.3439(3) 580.92(5) 

7.6(1) 8.3045(5) 572.7(1) 

9.9(1) 8.2602(6) 563.6(1) 

13.5(1) 8.1833(6) 548.0(1) 

Table 1.Values of lattice constant and unit-cell volume for different pressures of Fe2.8Zn0.2O4 

Pressure (GPa) Lattice constant (Å) Unit-cell volume (Å3) 

1.0(1) 8.4307(9) 599.2(2) 

3.0(1) 8.3897(5) 590.5(1) 

5.6(1) 8.3440(5) 580.9(1) 

7.6(1) 8.3118(6) 574.2(1) 

10.8(1) 8.2524(6) 562.0(1) 

13.8(1) 8.1991(6) 551.2(1) 

17.4(1) 8.1344(6) 538.2(1) 

Table 2.Values of lattice constant and unit-cell volume for different pressures of Fe2.5Zn0.5O4.  
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• Two samples of Zn-doped (with different stoichometry) nanocrystals were studied under 

high pressure.
• Bulk compresssibility is determined
• The bulk compresssibility is lower than the found values for nanocrystals of magnetite (no 

Zn doping) and Zinc ferrite (full doping).


