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ABSTRACT 

 

This paper presents a novel remote sensing (RS) image 

retrieval system that is defined based on generation and 

exploitation of textual descriptions that model the content of 

RS images. The proposed RS image retrieval system is 

composed of three main steps. The first one generates textual 

descriptions of the content of the RS images combining a 

convolutional neural network (CNN) and a recurrent neural 

network (RNN) to extract the features of the images and to 

generate the descriptions of their content, respectively. The 

second step encodes the semantic content of the generated 

descriptions using word embedding techniques able to 

produce semantically rich word vectors. The third step 

retrieves the most similar images with respect to the query 

image by measuring the similarity between the encoded 

generated textual descriptions of the query image and those 

of the archive. Experimental results on RS image archive 

composed of RS images acquired by unmanned aerial 

vehicles (UAVs) are reported and discussed. 

 

Index Terms—Image retrieval, image textual 

description generation, semantic gap, unmanned aerial 

vehicles (UAV). 

 

1. INTRODUCTION 

 

With the fast development of earth observation satellite 

missions (such as Landsat and Sentinel) and their continuous 

information acquisition, the amount and the variety of the 

Remote Sensing (RS) image datasets are exponentially 

increasing. Therefore, the need for processing and retrieving 

information carried on those datasets is becoming a big 

challenge nowadays. As a matter of fact, image retrieval is 

crucial for expressing big datasets in a structured and 

comprehensive way for the community.  

The most popular image retrieval approach in RS has 

been the content based image retrieval (CBIR) [1], [2]. It 

principally focuses on the extraction of low level features 

(such as color, texture and shape features) of an image. The 

main problem with the CBIR method is the difficulty that 

they present in extracting high level semantic content which 

includes the characteristics of RS images associated with the 

semantic information (such as the presence of objects or 

events) within the image. Indeed, bridging the “semantic gap” 

between the low level features and the high level semantic 

content remains still a challenge task. To reduce the semantic 

gap and improve the retrieval accuracy multilabel RS image 

retrieval has been recently proposed [3], [4]. The main idea is 

that within the RS images different sub-classes may be found 

that could enrich the semantic information within the image. 

Once the labels are obtained, in [4] they use those labels to 

create regions adjacency graph (RAG) for each image. The 

created RAG is then used in the graph matching algorithm in 

order to compute image similarity. Another attempt to reduce 

the semantic gap could be representing the RS images by 

textual descriptions. Textual descriptions are also more 

suitable for humans to describe the content of an image [5]. 

Also humans prefer to use textual description as query for 

retrieving the desired images as it allows to express and 

describe better their thoughts about the query image. 

However, collecting RS image descriptions is time 

consuming and costly. 

In this work, we propose a system that generates and 

exploits textual descriptions of RS images for retrieval 

purposes. In order to overcome the issue of collecting RS 

image descriptions, we automatically generate the 

descriptions and exploit them for RS image retrieval. To the 

best of our knowledge this is the first work in the RS 

community that uses the generated RS image descriptions for 

retrieval purposes. The proposed system consists of three 

main steps: 1) image textual description generation; 2) textual 

description encoding; and 3) image retrieval using the 

generated textual descriptions.  

 

2. PROPOSED RS IMAGE RETRIEVAL SYSTEM 

 

Let 𝑿 =  [𝑿𝟏, 𝑿𝟐, … , 𝑿𝑵] be a dataset consisting of N remote 

sensing images and Xi be the i-th image. Each image is 

composed of J textual descriptions (or sentences). Let                            

𝑺𝒊,𝒋 =  {𝒘𝟏,𝒊, 𝒘𝟐,𝒊 … , 𝒘𝒍,𝒊} with j =  1, 2, … , J  be the j-th 

textual description of image 𝑿𝒊 and 𝒘𝒑  with l =  1, 2, … , L  

be the words composing the textual description. Let 𝑿𝒒 be the 

query image for which we want to perform the retrieval.  The 

proposed image retrieval methodology consists of: 1) an 

image caption generator block, 2) a sentence encoding block 

and 3) a similarity retrieval block using the generated 

sentence encoding to retrieve the desired number of most 
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similar images 𝒀 =  [𝒀𝟏, 𝒀𝟐, … , 𝒀𝒓] with respect to the query 

image 𝑿𝒒. In Figure 1 the block diagram of the proposed 

system during the test phase is illustrated.  

 

2.1 Image textual description generation 

 

The task of image textual description generation is to 

generate natural language description of the content of an 

image. For the text generation in this work, we resort to the 

long short-term memory (LSTM) [6] which is a special case 

of the recurrent neural networks (RNN).  

RNNs have shown great success in natural language 

process (NLP) field in word prediction task. Sentence 

generation is based on the human thoughts where the 

prediction of new words depends on the previous ones. The 

main feature of the RNN is that the aforementioned property 

is satisfied by means of feedback loops which make the 

information to persist through the network.  However, RNN 

suffers the long-term dependency which occurs when the 

prediction of a new word is related to a faraway previous 

information. To address this problem in [6] the LSTM is 

introduced. LSTM is composed of a cell state which allows 

the unchanged flowing of information through the network 

and three gates which are used to control the information flow 

through the cell. In our system, the word predictions are also 

conditioned on the image content. Thus, we extract the image 

feature using a pre-trained convolutional neural network 

(CNN). In particular, we use the ResNet50 model [7].  The 

words (composing the sentences) are encoded using one-hot 

encoding having dimension of the vocabulary size and then 

projected to an embedding layer that is able to explore their 

semantic content. The sentences are represented as a 

sequence of individual word embedding. The word 

embedding (composing the sentences) are given as input to 

the LSTM that stores and learns the semantic temporal 

context of words through its recurrent layers. The final output 

of the LSTM is concatenated with image features in a 

‘multimodal’ feedforward layer to generate textual 

descriptions of the content of an image. At inference stage we 

input the image to the model and obtain the generated 

description of its content. 

 

2.2 Sentence encoding 

 

Each word of the generated descriptions is transformed into a 

vector of numbers using two different recent word embedding 

techniques: word2vec and GloVe [8]. Both techniques are 

based on co-occurrence of words in order to take into account 

context in a text represented by the neighboring words. 

The word2vec is trained on a feed-forward neural 

network using two predictive models, continuous bag of 

words (CBOW) and skip-gram model to learn the embedding 

of the words. CBOW model attempts to predict a word given 

its context, while skip-gram attempts to predict the context 

from a given word. In this work we use fastText [9], a faster 

version of word2vec which takes into account the word 

morphology. This technique is based on the skip-gram model 

and each word is represented as a sum of its n-gram character 

vectors. However, word2vec embedding technique has the 

limitation of not taking into account the global co-occurrence 

of the words in the whole corpus. In order to capture the 

global statistical information of a text corpus, GloVe 

combines the global matrix factorization with the skip-gram 

model. In addition to the probability of words in the context, 

it takes into account the ratio of co-occurrence probabilities.  

In this phase the generated sentences  𝑺�̂� = {�̂�𝟏,𝒊, … , �̂�𝒍,𝒒} 

are encoded as 𝑽𝒒 = {(𝒆𝟏,𝒒, 𝒇𝟏,𝒒), … , (𝒆𝒍,𝒒, 𝒇𝒍,𝒒)} where 𝒆𝒍,𝒒 

is the word embedding and 𝒇𝒍,𝒒 is the word frequency in the 

sentence normalized by the number of unique words 

composing the sentence.  

 

2.3 Image retrieval using the generated descriptions  

 

Using the encoded vector of the generated description, the 

similarity of any two images could be measured calculating 

the distance between their generated encoded vector. In order 

to explore the semantic information embedded in generated 

description vectors in the retrieval process we adopt the word 

mover’s distance (WMD) which is a special case of Earth 

Mover’s Distance [10] applied to space documents. The 

WMD [11] takes the advantage of word2vec and GloVe 

capability to embed the semantic information of words in the 

vector space to create a dissimilarity measurement of two 

sentences (or documents) as the minimum distance in the 

embedding space to transform the words of one sentence to 

the words of another sentence. Assuming that text documents 

are represented as normalized bag of words (nBOW) where 

the frequency of the p-th word in the document is given as  

𝒇𝒑 =
𝒘𝒑

∑ 𝒘𝒌
𝒏
𝒌=𝟏

 where 𝑤𝑝 represents the frequency that word p 

appears in the document and n is the number of unique words 

of the document. Let 𝑑(𝑝, 𝑘) = ‖𝑣𝑝 − 𝑣𝑘‖
2
 be the Euclidean 

distance in the embedding space of any two words indicating 

the word dissimilarity. The WMD extends the word 

dissimilarity to document dissimilarity. More specifically, let 

Figure 1. Block diagram of the proposed image retrieval 

system.  



𝑆 and 𝑆′ be two sentences represented as nBOW. Each word 

p in S is transformed into any word in 𝑆′ in total or in parts. 

In [11] the flow matrix 𝑇𝜖 𝑅𝑛×𝑛 is introduced where  𝑇𝑝,𝑘 ≥

0 determines how much of word 𝒑 in 𝑆 travels to word k in 

𝑆′. Basically, the flow matrix measures the effort needed to 

transport the histogram weight of one word from one 

document to every word in the other document. Then the 

minimum cumulative cost of moving one document to 

another under constraints is given by solving the following 

linear problem, 

min
𝑇≥0

∑ 𝑇𝑝,𝑘 ∙ 𝑑(𝑝, 𝑘)

𝑛

𝑝,𝑘=1

   𝑝, 𝑘 𝜖 {1,2, … , 𝑛} (1) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑇𝑝,𝑘 = 𝑓𝑝

𝑛

𝑘=1

     ∑ 𝑇𝑝,𝑘 = 𝑓𝑘

𝑛

𝑝=1

 (2) 

 

where the first constraint ∑ 𝑇𝑝,𝑘 = 𝑓𝑝
𝑛
𝑘=1   assures that the total 

flow from word p in 𝑆 is totally transported to word k in 𝑆 ′ 
and the second constraint ∑ 𝑇𝑝,𝑘 = 𝑓𝑘

𝑛
𝑝=1  assures that word k  

receives all the incoming flow. After estimating the WMD 

between the generated description of the query image and 

those of all the images in the archive, the images that have the 

lowest distance with respect to the query image are retrieved. 

 

3. EXPERIMENTAL RESULTS 

 

In order to validate the proposed method, we used images 

acquired by unmanned aerial vehicles (UAVs) with EOS 

550D camera near the city of Civezzano, Italy on October 17, 

2012. This dataset has 10 RGB images of pixel size 5184 ×
3456 characterized by a spatial resolution of 2 cm. The 

dataset is split into training (7 images) and test (3 images) 

sets. For the purpose of this work, we generated non-

overlapping frames of size 256 × 256 for both the training 

and test sets. In total there are 2058 and 882 frames in the 

training and test sets, respectively and each frame is 

composed of three text descriptions written by three different 

human annotators. Example of frames along with the 

description is shown in Figure 2. 

 The metric used in this paper is BLEU [12]. BLEU 

metric is based on the precision measure. Precision is 

computed as the number of consecutive words (n-grams) 

occurring in the reference sentence divided by the total 

number of words in the candidate sentence. More precisely, 

supposed to have a generated description G and a real 

description (reference) R, BLEU score between G and R is 

computed as follows: 

𝐵𝐿𝐸𝑈(𝑁, 𝐺, 𝑅) = 𝑃(𝑁, 𝐺, 𝑅) × 𝐵𝑃(𝐺, 𝑅) (3) 

where 𝑃(𝑁, 𝐺, 𝑅) =  (∏ 𝑝𝑛
𝑁
𝑛=1 )1 𝑁⁄  is the geometric mean of 

n-gram precision, 𝑝𝑛 =  𝑚𝑛 𝑙𝑛⁄ ,  𝑚𝑛 is the number of matched 

n-grams between G and R, 𝑙𝑛 is the total number of n-grams 

in G and 𝐵𝑃(𝐺, 𝑅) = min (1.0, exp (1 − (
𝑙𝑒𝑛(𝑅)

𝑙𝑒𝑛(𝐺)
))) is a 

brevity penalty if the length of the generated sentence G 

𝑙𝑒𝑛(𝐺) is smaller than the one of reference 𝑙𝑒𝑛(𝑅). When 

there is no higher order n-gram precision (𝑒. 𝑔.  𝑛 = 4) in a 

sentence, the entire BLEU score of the sentence is 0 

independently from the quantity of the lower n-grams 

(𝑛 = 1,2,3) matching found in the sentence. Therefore we 

use a smoothing technique proposed in [13] which replaces 

the 0 score, in presence of low order n-grams, to a small 

positive value 𝜀. BLEU score ranges from 0 to 1 where 1 is 

good. For the n-gram precision we used 𝑛 = 1,2,3,4.  

 As it was mentioned in Section 2 we have used two 

different encoding techniques to convert the words of the 

generated sentences into vectors. The GloVe vectors we used 

are pre-trained on Wikipedia 2014 + Gigaword 5 corpus and 

are available on the Stanford website [14] for free. The 

fastText vectors instead are trained in our own corpus. From 

our empirical results we have chosen the word vectors to be 

of size 50 as a tradeoff between the computational time and 

accuracy. In Table 1 we report the results in terms of mean 

BLEU score per query image in which we use the image 

“Ground Truth” sentences for retrieval purposes. The 

methodology applied is the same as the one in Figure 1 

without the caption generator block. The obtained results 

represent the upper bound of the proposed methodology 

regarding the considered dataset. In Table 2 we report the 

results using the automatically generated sentences for 

retrieval purposes. As there is no other work to perform a 

comparative study, we make a comparison between the 

results of the two tables. We can notice, in terms of mean 

BLEU score, an average gap of 0.3 with respect to the upper 

bound. The two encoding techniques show rather similar 

results. The reported results are affected by many factors, for 

example by the caption generator block shown in Figure 1. 

Indeed, observing Figure 2, we can see that for the top and 

bottom images, the generated sentences are affected by some 

errors. One way to get closer to the upper bound result could 

be improving the caption block. An example of the retrieved 

Figure 2. An example of three images from the dataset. The 

sentences from 1 to 3 correspond to Ground Truth data and 

sentence 4 (highlighted by red) is the generated sentence. 



images is shown in Figure 3. The query image is highlighted 

in red and the order of retrieved images is given above each 

retrieved image. Though the automatically generated 

descriptions are characterized by some errors as already 

stressed before, we can see that the five retrieved images are 

semantically similar to the query. They all show cars (from 

one to three) parked in a parking lot.  

Table 1. Upper bound results in terms of mean BLEU score 

per query image. For the query and retrieved images the 

“Ground Truth” sentences are used. 

  

Table 2. Results obtained by the proposed system in terms of 

mean BLEU score per image. For the query and retrieved 

images the generated sentences are used. 

Embedding 
# of 

Retriev. 

Bleu 

1 

Bleu

2 

Bleu

3 

Bleu

4 

GloVe 

1 0.605 0.519 0.473 0.417 

5 0.574 0.487 0.439 0.382 

10 0.559 0.469 0.422 0.361 

fastText 

1 0.605 0.519 0.473 0.417 

5 0.575 0.487 0.439 0.382 

10 0.558 0.469 0.421 0.360 

 

 

4. CONCLUSION 

 

In this paper, we have presented a semantic image retrieval 

method based on generated textual descriptions which 

attempt to explore the high level semantic content 

incorporated in the generated descriptions. A comparison 

between using the real descriptions and the generated 

descriptions for RS image retrieval purpose is made, from 

which we can notice that there is an average gap of 0.3 in 

terms of mean BLEU score. In order to reduce this gap and 

improve the retrieval performances, in a future work we plan 

to improve the caption generation block.  
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Embedding 
# of 

Retriev. 

Bleu 

1 

Bleu

2 

Bleu

3 

Bleu

4 

GloVe 

1 0.991 0.851 0.806 0.741 

5 0.880 0.811 0.761 0.690 

10 0.859 0.786 0.735 0.663 

fastText 

1 0.895 0.846 0.806 0.746 

5 0.858 0.801 0.759 0.694 

10 0.839 0.773 0.729 0.664 

Figure 3. Example of a query image and five retrieved 

images.  

 


