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Abstract
We formulate aMarkovian response theory for the tumble rate of a bacteriummoving in a chemical
field and use it in the Smoluchowski equation. Based on amultipole expansion for the one-particle
distribution function and a reaction-diffusion equation for the chemoattractant field, we derive a
polarization extendedmodel, which also includes the recently discovered angle bias. In the adiabatic
limit we recover a generalizedKeller–Segel equationwith diffusion and chemotactic coefficients that
depend on themicroscopic swimming parameters. Requiring the tumble rate to be positive, our
model introduces an upper bound for the chemotactic drift velocity, which is no longer singular as in
the original Keller–Segelmodel. Solving theKeller–Segel equations numerically, we identify traveling
bacterial concentration pulses, for whichwe do not need a second, signaling chemicalfield nor a
singular chemotactic drift velocity as demanded in earlier publications.We present an extensive study
of the traveling pulses and demonstrate how their speeds, widths, and heights depend on the
microscopic parameters.Most importantly, we discover amaximumnumber of bacteria that the pulse
can sustain—themaximumcarrying capacity. Finally, by tuning our parameters, we are able tomatch
the experimental realization of the traveling bacterial pulse.

1. Introduction

Collectivemotion of biological and artificialmicroswimmers shows a broad range of interesting phenomena as
demonstrated in several review articles [1–5]. The formation of various patterns and clustering have been
investigated both experimentally and theoretically in systems of bacteria [6–13], of eukaryotic cells such as
Dictyostelium discoideum or human sperm [14–22], as well as in suspensions of active colloids [4, 23–32]. In this
article we study the collective behavior of a bacterial population, which in the concentration field of a
chemoattractant forms a traveling solitary pulse.

Themotilitymechanismof the run-and-tumble bacterium E.coli has been extensively studied [33–40].
Bacteria perform chemotaxis, the ability to sense and respond to chemical gradients in order tofind better living
conditions. They realize the chemotactic driftmotion along a chemical gradient by elongated run phases if the
environment becomesmore favorablewhile runs are shortened in the opposite case [39–41]. The internal
chemotaxismachinery of the bacterium senses and compares the nutrient concentration in time, which is
rationalized in a linear response theory for the tumble rate [34, 42–44].More recently, a second chemotaxis
strategy, called angle bias, has been reported [36, 39, 40]. Themean reorientation angle during tumbling is
reduced if the bacterium swims along a chemical gradient and increased in the opposite case. This also generates
a net driftmotion in the favorable direction. Finally, using logarithmic sensing, E.coli is able to perform
chemotaxis in concentrationfields varying bymany orders ofmagnitude [45–47]. Such an ability is commonly
described byWeber’s law in different physical areas [48, 49].
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Avery interesting collective phenomenon in a bacterial population is a concentration pulse that travels along
a capillary tubewith almost no dispersion nearly like a soliton [6, 36], most recently also observed in a
populationwith non-genetic variations [50]. The pulse is initiated in an initially uniform environment of a
chemoattractant. A bacterial population concentrated in space eats the nutrient and thereby creates a chemical
gradient alongwhich it drifts towards untouched regions.Moreover, Adler in his experiments also observed that
not all bacteria travel with the pulse but are left behind at the initial location [6], which indicates afinite carrying
capacity of the traveling pulse. Further chemoattractants present in Adler’s experiments then initiated further
pulses emerging from the bacteria left behind.

A very prominent theoretical approach to describe the traveling bacterial pulse is the celebratedKeller–Segel
model [51], originally introduced for the aggregation of slimemolds [52]. It couples a diffusion-drift equation
for the bacterial density to a reaction equation for the nutrient. However, the Keller–Segelmodel has two
drawbacks. First, a soliton solution (classified as unstable [53]) only occurs if the chemotactic drift velocity
diverges for vanishing nutrient concentration. Second, nutrient diffusionwas neglected. Later, based on analytic
arguments, [53]demonstrated that traveling pulses also exist in the presence of nutrient diffusion.More
importantly, Brenner et al. showed that the singularity in the chemotactic drift velocity is not necessary if one
introduces a second chemoattractant, which the bacteria excrete themselves [54]. Reference [36] followed this
approach to formulate a kineticmodel (inspired by [55]), which describes traveling pulses in their experiments.
Finally, amodification of this kineticmodel has recently been used to investigate pulse propagation in the
presence of twoE.coli populations [56]. TheKeller–Segel equations findwide applications inmodeling bacterial
chemotaxis as reviewed in [57]. They have also been derived for active Brownian particles, which propel by self-
diffusiophoresis, and for quorum-sensing run-and-tumble particles [58].

Multipole expansions have frequently been applied tomicroswimmers in order to approximate the
Smoluchowski equation for the full distribution function in themicroswimmer’s position and orientation
[13, 27, 58–60]. Besides for density such expansions also provide an additional dynamic equation for the
polarization, which unraveled interesting collective behavior of Janus particles [29] andwhich also allowed to
investigate steady-state distributions of run-and tumble particles [61]. Our derivation is inspired by the
approach of the latter reference but extends it by introducing the concentration field of a chemoattractant.

In this article we formulate aMarkovian response theory for the tumble rate. It includes logarithmic sensing
forwhichwe introduce an upper threshold.We use the tumble rate in the Smoluchowski equation and derive a
polarization extendedmodel (PE) to treat chemotaxis of non-interacting E.coli bacteria. The PEmodel contains
equations for the bacterial density, the bacterial polarization, and the chemical concentration field. In a second
step, we also include the recently discovered angle bias. In the adiabatic limit the PEmodel simplifies to a
generalizedKeller–Segelmodel (KS)where the coefficients for diffusion and chemotactic drift velocity depend
on themicroscopic swimming parameters of the bacterium. In particular, the chemotactic coefficient is not
singular in the chemical concentration.Wenumerically solve bothmodels for an initially uniform
chemoattractant and a bacterial population concentrated in space using parameters that are realistic for the
E.coli bacterium. The traveling bacterial pulse generated by both the PE andKSmodel are identical thus theKS
model is a valid approximation of the full kinetic formalism.We present a detailed parameter study of the
traveling pulse and identify amaximumcarrying capacity as a consequence of the bounded chemotactic drift
velocity, which has not beenmentioned so far. Itmeans that the pulse can only sustain afinite number of
bacteria. Finally, we tune our parameters tomatch the experimental realization of the bacterial pulse in [36].
Hence, our generalizedKeller–Segelmodel is able to describe traveling bacterial pulses without the need neither
for a singular chemotactic drift velocity nor for a second chemoattractant.

The remainder of the article is organized as follows.We present theMarkovian response theory for the
tumble rate in section 2.1.We use it to derive the polarization extendedmodel (PE) and the generalizedKeller–
Segelmodel (KS) in sections 2.2 and 2.3.We also incorporate the angle bias and formulate a non-dimensional
version of theKSmodel in sections 2.4 and 2.5. Details of the numerical solution scheme are given in sections 3
and 4 presents our detailed numerical study.We close with conclusions and an outlook in section 5.

2.Model

2.1.Markovian response theory for tumble rate
Bacteria tumble less whenmoving up a chemical gradient. Based on the established linear-response theory, we
formulate an equation for the tumble rate r e,l ( ) as a function of the swimming direction e. Below,wewill
relate it to the angle θ relative to the local gradient c of a chemoattractant with density c.

We start with the linear-response theory [43]. It gives the tumble rateλ(t) as a function of time and depends
on the bacterium’s past trajectory tr ¢( )
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t R t t c t tr d , 1
t

equ òl l= - - ¢ ¢ ¢
-¥

( ) ( ) ( ( )) ( )

wherewe have introduced the response kernelR(t) and equl is the tumble rate without any chemical gradient.
Note that equation (1)describes a non-Markovian process. In appendix Awe convert it to aMarkovian process
withλ depending on location r and swimming direction e by averaging over all possible bacterial trajectories in
order to obtain themean history for a given swimming direction e. Thus, the tumble rate we give below is an
averaged quantity suitable to be used in a continuum theory. To derive it, we split the integral on the rhs of
equation (1) into contributions from individual runs, duringwhich the according swimming directions ei are
assumed to be constant. Averaging over the history of all possible paths, we can show that each of these
contributions gives a termproportional to the scalar product e c

c

· . The factor c1 results from the fact that the
response kernel is proportional to the inverse background concentration,R∝ 1/c , whichwas indeedmeasured
in experiments for the chemoattractant alpha-methyl-aspartate in [38]. This chemoattractant is widely used, e.g.
in the seminal experiments of [33, 34, 38, 62] and also in experiments of [39, 40]. For the detailed derivationwe
refer to appendix A and present thefinal result

v
c

c
r e e

r

r
, . 2equ 0 0l l c


= -( ) · ( )

( )
( )

Here, v0 is the swimming velocity of the bacterium andχ0 is a unitlessmeasure of the chemotactic strength. It
depends on integrals over the response functionR andmoments of the tumble angle distribution P(β). Note that
we obtain here clnl µ ( ) commonly known as logarithmic sensing andWeber’s law. It wasmeasured, for
example, in [47]. The linear dependence of the tumble rateλ on c r e ( ) · was already introduced by Schnitzer
as the leading order for the angular variation ofλ [61]. It follows directly from equation (1) by choosing
R t t- ¢( ) proportional to the time derivative of the δ function as demonstrated by Locsei in [63]. This article also
calculates the chemotactic drift speed (see section 2.3) by performing an average over all possible bacterial
trajectories similar to our approach. Indeed, in appendix Awe show that we arrive at the same chemotactic drift
speed for the specific response function chosen in [63].

Whenwe define the orientation angle relative to the negative chemical gradient, ecos c

c
q = - 


·

∣ ∣
, the

tumble rate becomes

v
c

c
r

r

r
, cos . 3equ 0 0l q l c q


= +( ) ∣ ( )∣

( )
( )

Infigure 1 adapted from [39], the red points show experimental data for themean tumble rate r,l q( ). It was
obtained by averaging over a population of around 1000 individual bacteria in a linear gradient. The appropriate
cosinefit (red line) confirms our theoretically derived result of equation (2) andwas themotivation to derive it
from the linear-response theory.

A biologically relevant tumble rate should have both a sensing threshold [64] aswell as a saturation of the
response to the chemoattractant [65], which is not present in equation (2). First, it is known that the bacterium
needs a small threshold concentration ct to perform chemotaxis since it senses the chemicalfield by
chemoreceptors [64]. Second, equation (2) produces a negative tumble rate for a sufficiently large gradient of

clog , which is even singular at c=0. In our derivation the singularity arises from the relationR∝ 1/c for the
response functionmentioned earlier.WhileR∝ 1/cwasmeasured for awide range of background
concentrations [38], clearly the second termon the right-hand side of equation (2) has to saturate to a value
smaller than equl to keep the tumble rate positive. There a several approaches to remedy these shortcomings.
The threshold concentrationwas implemented, e.g. in [51, 66, 67] by shifting the singularity in equation (2) from

Figure 1. Left: schematic of an individual E.coli tumbling from its previous direction e¢ to e with tumble angleβ. Right:mean
tumble rateλ(θ) (red) as a function of the swimming angle θmeasured against the negative chemical gradient. The tumble rate
was averaged over a population of around 1.000 E.coli in a linear gradient ofα-methyl-aspartate. Thefit with a cosine function,
y x a a xcos1 2= +( ) ( ) (red line) according to equation (2), yields regression parameters a1=0.278 and a2=0.115. The blue line
represents themean tumble angle cosb qá ñ( ) as a function of θ of the same population. It indicates an angle bias for tumbling in a
chemical gradient. Adapted from [39].
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c=0 to ct. To implement a saturation in the chemotactic response, [67, 68] among others used the so-called
receptor law, while [36, 69] introduced a hyperbolic tangent function. To implement both the sensing threshold
and the saturation in the chemotactic response, we decided to use the hyperbolic tangent function in
equation (2) andwrite

c

c
r e e s, 4equl l c


= - ⎜ ⎟⎛

⎝
⎞
⎠( ) ∣ ∣ · ˆ ( )

with

c

c

v c

c

c

c
tanh tanh . 5

t
0

0c c
d

d
 ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

∣ ∣ ≔ ∣ ∣ ( )

Here, we have introduced s c

c
= 


ˆ

∣ ∣
and do not explicitly state the space dependence of the concentration c. This

expression recovers equation (2) for c c 1d  <∣ ∣ and c>ct, while it smoothly approaches theminimum
tumble rate v

equ 0
0l c-
d
for c c 1d  >∣ ∣ (saturation in the chemotactic response) or it tends to equl for c<ct

(sensing threshold). The chemotactic length δ quantifies the strength of the logarithmic derivative of c r( ).
Appendix B presents a parameter study for the tumble rate of equation (4). Finally, we note that in this article the
swimming speed v0 is constant. If it varies, one always has tomake sure that v0 0 equc d l< to keep the tumble
rate positive.

2.2. Polarization extendedmodel (PE)
2.2.1. Smoluchowski equation
Wefirst construct dynamic equations for the evolution of the one-particle distribution function tr e, ,y ( ) of
position r and orientation e at time t and the concentration of chemoattractant, c tr,( ).We beginwith a
generalized Smoluchowski equation forψ [55, 61, 70–72], which contains the usual contributions from
translational and rotational currents, Jtrans and Jrot, but also contributions from tumble events represented by
 y{ }and from cell division and death, tr e e, , d

Sd
òy

a ¢ ¢( ) :

t
R F

S
tJ J r e e, , d . 6

d
trans rot ò

y
y

a
y¶

¶
= - - + + ¢ ¢· · { } ( ) ( )

Here, e e = ´ ¶ where , ,e e ee x y z
¶ = ¶ ¶ ¶( ) denotes the nabla operator in orientation space and ln 2a t= ( )

is the net growth rate with τ being themean doubling time of bacterial cells [36].We also assume that the net
growth of cells does not depend of their directon e and Sd is the surface area of a d dimensional unit sphere (full
solid angle). For the translational current we include activemotion and translational diffusion,

v DJ etrans 0 y y= - , whereD is the translational diffusion coefficient and v0 is the bacterial swimming speed.
The rotational current is purely diffusive, DJrot roty= - , where Drot is the rotational diffusion coefficient.
According to [33]we take a Poisson distribution for the run times andwrite the term for the tumble events as

P tr e e e e r e r e e, , , , , d . 7 òy l y l y= - + - ¢ ¢ ¢ ¢ ¢{ } ( ) ( ) ( ) ( ) ( )

We introduced the tumble rate r e,l ( ) and P e e e,- ¢ ¢( ) is the probability of a bacterium to reorient from
orientation e¢ to e. In equation (7) thefirst termon the rhs represents events, which cause bacteria with
orientation e to tumble into any orientation, and the second term represents all events, which cause bacteria
with other orientations to tumble into orientation e. The complete Smoluchowski equation for the evolution of
ψnow reads

t
v D D R P t

S
t

e r e e e e r e r e e

r e e

, , , , , d

, , d .
8

d

0
2

rot
2 ò

ò

y
y y y l y l y

a
y

¶
¶

= - +  + - + -

+

¢ ¢ ¢ ¢ ¢

¢ ¢

· ( ) ( ) ( ) ( ) ( )

( )
( )

For completeness, wewrite a reaction-diffusion equation for the chemoattractant concentration c, which is
also consumed by bacteria with constant rate k

c

t
D c k tr e e, , d . 9c

2 ò y
¶
¶

=  - ¢ ¢( ) ( )

2.2.2.Multipole expansion
In order to proceedwith equations (8) and (9), we assume that the probability distribution for a specific tumble
event does not depend on the initial orientation of the bacterium, P Pe e e e e,- ¢ ¢ = - ¢( ) ( ). Therefore, we can
write for the zeroth and firstmoment
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P e e ed 1, 10ò - ¢ =( ) ( )

Pe e e e ed cos , 11ò b- ¢ = á ñ ¢( ) ( )

where cosbá ñ is themean of the cosine of the reorientation angleβ [61].We take the tumble rate r e,l ( ) to vary
as in equation (4). Now,we integrate equation (8) over all orientations e and define the bacterial density

t tr r e e, , , dòr y=( ) ( ) and polarization t tP r e r e e, , , dò y=( ) ( ) , which correspond to the zeroth and first
moments ofψ, respectively, and obtain [61, 73]

t
v DP . 120

2r
r ar¶

¶
= - +  +· ( ) ( )

Wehave also used ed 02ò y = and the normalization condition equation (10) to show that tumbling does not
contribute to equation (12).

In order to derive a dynamic equation for the polarization, we compute eò equation (8) ed and introduce

the quadrupolemoment tQ e e r e e, , d
d

1
ò y= Ä -( ) ( ) with d being the number of spatial dimensions. This

gives
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wherewe used de e12 = - -( ) and equation (11). To truncate themultipole expansion, we neglect the
quadrupolemoment Q, which strictlymeans that the orientational distribution hardly deviates from the
isotropic distribution and the deviation can bewell described by the polarization.We also define the relaxation
rate

D d 1 1 cos , 14rot equw b l= - + - á ñ( ) ( ) ( )

withwhich polar order relaxes or decorrelates in time. Thus, we ultimately obtain

t
D

v

d d

c

c

P
P P s

1 cos
. 152 0w r

b
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¶
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⎠
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Finally, with our definition of bacterial density ρwe canwrite equation (9) in a simpler form

c

t
D c k . 16c

2 r
¶
¶

=  - ( )

2.3. TheKeller–Segelmodel as adiabatic limit
In the case of high Peclet numbers (Pe av D 10=  ), wherewe can neglect translational diffusion4, and on
large times t 1

w
 , where the adiabatic limit 0

t

P »¶
¶

applies, the polarization from equation (15) becomes

v

d d

c

c
P s

1 cos
. 170

w
r

b
w

c r 
= - +
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We remind that c cs  =ˆ ∣ ∣. Substituting equation (17) into (12), we obtain the generalizedKeller–Segel
model

t
D

v

d
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c
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1 cos
, 18eff

2 0r
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b
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c

t
D c k , 19c

2 r
¶
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where D v d D v deff 0
2

0
2w w= + » is the typical translational diffusion coefficient of an active particle, the

orientation of which decorrelates on the characteristic timeω−1. The approximate expression forDeff is valid at
high Peclet numbers.

From the third termon the rhs of equation (18)we read off the chemotactic velocity along the chemical
gradient

v

d

c

c
v s

1 cos
. 20ch

0 b
w

c


=
- á ñ ⎜ ⎟⎛

⎝
⎞
⎠

( ) ∣ ∣ ˆ ( )

4
Note, in addition, keeping the diffusion term in the polarization equation(17)would generate spatial derivatives larger than two in

equation (18), whichwe neglect here. This can be seen, when looking at the spatial Fourier transform in k space.
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Taking v c c0 0c c = ∣ ∣ , we recover themodel suggested byKeller and Segel with c cvch µ [51], and the

chemotactic drift velocity is determined by a combination ofmicroscopic parameters,
v

d

1 cos0 0
2c b

w
- á ñ( )

, called the
chemotactic constant. However, as stated earlier, according to equation (2) the original form forχ implies
negative tumble rates for small c and sufficiently steep chemoattractant gradient. Themaximumvalue thatχ can
physically assume is equl , where the tumble rate becomes negative. As a result, the chemotactic speed v vch ch= ∣ ∣
is also bounded. Taking equc l= and approximating 1 cos equw b l» - á ñ( ) since Drot in equation (14) is
usuallymuch smaller than equl , we find

v
v

d
. 21ch

0 ( )

This shows that an appropriately bounded tumble rate is closely linked to a physically bounded chemotactic drift
speed. Furthermore, in appendix Cwewill show that this upper bound implies an upper bound for the speed of
the traveling bacterial pulse and thereby for themaximumnumber of bacteria it can carry.Wewill address this
point in section 4.

2.4. Bias of tumble angles
Up to this point we have ignored the effect of a bias in the tumble angle towards smallermean values when
swimming up the chemical gradient. This has recently been observed in experiments [36, 39].We now introduce
it by allowing the probability distribution for a specific tumble event to explicitly depend on the initial
orientation of the bacterium, e¢. Hence equations (10) and (11) become

P e e e e, d 1, 22ò - ¢ ¢ =( ) ( )

Pe e e e e e e, d cos . 23ò b- ¢ ¢ = á ñ ¢ ¢( ) ( ) ( )

Equation(22) states that the distribution is always normalized irrespective of the initial orientation of the
bacterium. In equation (23) the value of themean cosine of the tumble angle ecosbá ñ ¢( ) now explicitly depends
on the initial orientation e¢ before the tumble event.

The effect of an angle bias is to lower themean tumble angle when the bacterium alignswith the
chemoattractant gradient, hence the value of ecosbá ñ ¢( )will increase for stronger alignment. Expanding

ecosbá ñ ¢( ) up to thefirst Legendre polynomial, thus taking into account the leading polar correction, yields

c

c
e e scos cos , 240b b s


á ñ ¢ = á ñ + ¢⎜ ⎟⎛

⎝
⎞
⎠( ) ∣ ∣ · ˆ ( )

whereσ is a positive andmonotonically increasing function. It is bounded such that itsmaximumvalue
1 cosmax 0s b- á ñ , with cos 0bá ñ being themean cosine of the tumble angle, when the angle bias is not taken

into account. Using equations (2), (22)–(24), we can retrace the steps of themultipole expansion (see appendixD
for details) to obtain an extended form for equation (15)with equations (12) and (16) remaining unchanged
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Here,Ämeans dyadic product and 1 s s P P s s P2 2+ Ä = +( ˆ ˆ) ˆ ˆ · , where ·means scalar product.
One immediately recognizes that the angle bias renormalizes the relaxation rate of the polarization and

makes it anisotropic. Thus polarizations along and perpendicular to the chemical gradient relaxwith different

rates. In the adiabatic limit 0
t

P »¶
¶

and for large Pewe can again solve for the polarization by inverting the

matrix in front of P in equation (25). Substituting the resulting equation into equation (12), we again obtain a
generalizedKeller–Segel equation and a chemotactic velocity vch along the chemical gradient. It now also
depends on the angle bias quantified byσ.We refrain from giving the lengthy expression.

2.5. Rescaling theKeller–Segel equations
In order to identify essential parameters especially in the generalized Keller–Segel equations (18) and (19), we
introduce unitless quantities. First, we rescale timewith the chemical consumption rate, t kt=˜ , lengths by the

distance l
v

dk

1 2
0
2

=
w( ) , by which a bacteriumdiffuses in time k−1, thus lr r=˜ , and the net growth rate by k,

ka a=˜ . Second, we refer the bacterial and chemical densities to their initial values, 0r r r=˜ and c c c0=˜ ,

respectively. Finally, we introduce the rescaled chemotactic length ld d=˜ and the rescaled threshold density
c c ct t 0=˜ . This allows us towrite the generalized Keller–Segel equations (18) and (19), where chemotactic
response is bounded by the hyperbolic tangents, in rescaled form:
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To arrive at this form,we used D v deff 0
2 w» , whereweneglected the thermal contribution toDeff.We recognize

that the rescaled Keller–Segel equations are described by a set of six relevant para-

meters: c, , 1 cos , , ,D

D c t0
c

eff

0

0
a c b d- á ñ r{ }˜ ( ) ˜ ˜ .

3.Details of numerical solution scheme

In the followingwe study in detail traveling bacterial pulses in an initally uniformdensity field of a
chemoattractant by numerically solving both the polarization extendedmodel (PE) of equations (12), (15) and
(16) and the generalized Keller–Segelmodel (KS) of equations (18) and (19). The experiments in [36] are
performed inmicrochannels with cross sectionA. Neglecting any influence from the channel walls, we take the
three-dimensional system (d=3) to be quasi infinitely extended perpendicular to the channel axis. Thus all
densities just depend on the x coordinate along the channel and by symmetry only the x component of the
polarization is non-zero.

To solve the respective systemof equations, we apply a predictor-correctormethod at any given time step to
efficiently propagate the field variables in time [74]. As initial field values we choose an exponentially distributed
bacterial density, x t x x, 0 exp0 0r r= = -( ) ( ), a uniformdensity of the chemoattractant, c(x, t=0)=c0, and
zero polarization Px(x, t=0)=0.During time integration no-flux boundary conditions are employed at x=0
and at sufficiently large x∞, such that

c0 and 0 28x x x x0, 0,r¶ = ¶ =¥ ¥∣ ∣ ( )

while we assume that polarization stays zero, P 0x x0, =¥∣ , following [58]. Note, this assumption neglects
accumulation of bacteria at boundaries due to their persistentmotion.However, since the accumulation only
occurs within a thin regionwith thickness given by the persistence length v0/ω, it is not relevant for the pulse
propagation in the bulk, whichwe study here. To arrive at the conditions of equation (28), we consider the
governing equations of theKS and PEmodel, separately. The second condition for c in equation (28)means that
the chemicalflux at the boundaries vanishes. For theKSmodel, the bacterialflux is D veff chr r-  + , whichwe
identify from equations (18) and (20). Theflux vanishes at the boundaries due to thefirst condition of
equation (28) and since v 0ch = for zero chemical gradient. For the PEmodel, equation (12) gives the bacterial
flux v DP0 r-  , which also vanishes at the boundary due to the first condition of equation (28) and the
vanishing polarization5. Finally, when integrating equation(16) the sink term can produce negative concentra-
tions of the chemoattractant [75, 76]. To avoid this, we set the concentration c to zerowhenever it would become
negative. This allows the bacteria to fully degrade the chemoattractant without producing negative values for c.

Whenwe solve our equations with real parameters, we rely on [36] and take the channel length
x 10 m5m=¥ and the initial decay length of the bacterial density as x 50 m0 m= . This ensures that at t=0 99%
of the bacteria can be foundwithin 200 mm at the channel end at x0=0. To be concrete, we also assume a
channel cross section A 500 m 100 mm m= ´ to calculate the initial number of bacteriaN0=ρ0x0A, whichwe
use as a parameter instead of ρ0 in the following.We divide the channel length into 5 104´ grid points so that
the grid length is 2 mm and use the time step 0.01 s for integrating our equations in time. All the relevant
parameters are given in table 1. Finally, wewill also numerically solve the rescaledKeller–Segel equations(26)
and (27) in order to explore the dependence on some of the relevant dimensionless parameters.

4. Traveling concentration pulses of bacteria

Wefirst introduce the traveling bacterial pulse for a reference systemusing two values for the initial number of
bacteria, then perform a systematic parameter study, andfinally demonstrate a perfectmatchwith the
experimentally observed bacterial pulse reported in [36].

5
Note, the correct treatment of the no-flux boundary condition in the PEmodelwould take n J ed 0transò =· and n J e ed 0transò =· ,

where n is the unit vector normal to the bounding surface. In our geometry this implies v0Px−D∂ρ/∂x=0 and
−v0/d ρ+D∂Px/∂x=0, where in the second conditionwe neglected the contribution from the quadrupolemoment Q.
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4.1. Reference system
Figure 2(a) shows a series of snapshots of the bacterial density profile ρ(x, t), the concentration field c(x, t), and
the polarization Px(x, t) at equally spaced times for realistic parameters of the E.coli bacterium listed in table 1.
Solid lines represent numerical solutions of the polarization-extendedmodel (PE) and dashed lines of the
generalizedKeller–Segelmodel (KS). Video S1 of the supplementalmaterial is available online at stacks.iop.org/
NJP/21/103001/mmedia. It shows an animation of the propagating profiles.

Clearly, while the bacteria consume the chemoattractant completely, a traveling pulse in the bacterial density
forms that propagates with constant pulse speed v 4.68 m sp

1m= - . It has a comparable width to the traveling
step in the chemoattractant profile. In contrast to the bacterial solitons derived from the original KSmodel in
[51], our bacterial pulse shows a small dispersion visible from the slight decrease of the pulse height. It is caused
by bacteria that cannot follow the pulse at small chemoattractant concentrations since in ourmodel the
chemotactic drift velocity vch of equation (20) has an upper bound. In contrast, in the original KSmodel vch

diverges at small chemoattractant concentrations [51], which allows all bacteria to stay in the traveling pulse.
Thus, we demonstrate when one allows dispersion a singular chemotactic drift velocity is no longer necessary for

Table 1. List of parameters used for the reference pulse in figure 2 and for the
match to the experimental system shown infigure 6.

Parameter Valuefigure 2 Value figure 6 References

D 0.2 m s2 1m - Same [35]
Drot 0.06 s 1- Same [39]
α 0 1.67 10 s4 1´ - - [36]
k 3.35 10 s6 1´ - Same [64]

equl 3 s 1- Same [36]

v0 25 m s 1m - Same [36]
cosbá ñ 0.392 Same [36]

Dc 8 10 m s2 2 1m´ - Same [36]
χ0 v0.64 equ 0

1l d - Same [36]

δ 600 mm Same [36]
c0 1.26 10 m6 3m´ - 2.61 10 m6 3m´ - —-

ct 10−12 c0 10−1 c0 —-

A 5 10 m4 2m´ Same [36]
x0 50 mm Same [36]
N0 1.5 105´ 1.5 105´ [36]

Figure 2.Bacterial pulse propagation: (a) snapshots of the bacterial density ρ(x) (upper panel), the chemoattractant concentration
field c(x) (middle panel), and polarization Px(x) (bottompanel) at equally spaced times for the parameter set given in table 1. Solid lines
represent the polarization extendedmodel and dashed lines its adiabatic approximation, the generalizedKeller–Segelmodel.
(b)Bacterial density for a reduced number of bacteriaN0=0.5×105 compared to the reference system.
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traveling pulses to occur. Note, already [66] used theKSmodel with a bounded chemotactic drift and observed
traveling pulses whichwas ignored inmore recent works [36, 54]. Instead, a second chemoattractant was
proposed as explained in the introduction.

One realizes that the profiles generated from theKS and PEmodel are identical except in the beginning.We
start with Px=0 in the PEmodel whereas in theKSmodel a non-zero polarization is calculated from
equation (17). It is due to the initial gradient in the bacterial density. Thus, we conclude that the adiabatic limit

0P

t
»¶

¶
as a condition for deriving the generalized KSmodel is fulfilled. Indeed, the decorrelation or decay time

0.49 s1w =- ismuch smaller than the characteristic time for the pulse propagation. For the latter, we
approximately find 200 s for the pulse to travel its ownwidth and the polarization always assumes its stationary
value.Our finding alsomeans that the kineticmodels of [36, 41, 56], whichworkwith the full one-particle
distribution function tr e, ,y ( ), are not necessary to describe pulse propagation. They can be reduced to the
Keller–Segel equations.

Infigure 2(a)not all bacteria travel with the pulse but some remain at the initial location. This also occurs in
the experiments of [6]. However, there the remaining bacteria perform chemotaxis in oxygen as a second
chemoattractant and thereby initiate a secondary pulse. Sincewe do not incorporate another chemoattractant,
the bacterial distribution at the initial location only broadens by diffusion. Finally, wemention previous
numerical work on theKSmodel that also showed the bacteria left behind [66].

In their original workKeller and Segel derived an analytic expression for the speed of the bacterial soliton. It
is a function of the number of bacteria in the solitonNp, the consumption rate k, the cross sectionA, and the
initial chemoattractant concentration c0 [51]

v
N k

Ac
. 29p

pth

0

= ( )

In appendix Cwe demonstrate how this relation is derived. It is also valid in our case providedwe can clearly
identify an isolated pulse. Now, by integrating the bacterial density along the x direction at time t 2000 s= , we
obtain N A xd 0.88 10p

5ò r= = ´ bacteria in the pulse and for the number of bacteria left behind close to

x=0, N 0.57 10 .c
5= ´ Note,Np andNc do not add up toN0 since there are also bacteria in the trail between

the initial location and the pulse. UsingNp and the parameter values of the reference system from table 1 in
equation (29), we obtain v 4.69 m sp

th 1m= - , which is in very good agreementwith our numerical value
of v 4.68 msp

1m= - .
Infigure 2(b)we lower thenumber of bacteriaN0 by a factor of three.Now, all bacteria travel in thepulse and

none are left behind. This suggests that the traveling pulse canonly carry a certainnumber of bacteria and thus has
amaximumcarrying capacity. Indeed, in appendixCwe show that the pulse speed vp is bounded fromabove by the
chemotactic drift speed of equation (20), which itself cannot grow to infinity sincewebound the chemotactic
response through the tumble rate. Thus, the numberNpof bacteria in thepulse, given in equation (29), cannot
become arbitrarily large.Wewill investigate themaximumcarrying capacity inmore detail in the following
parameter studies, whereweuse the two traveling pulses fromfigure 2 as a reference. For the traveling pulse in
figure 2(b)wedetermine a smaller pulse speed of v 2.66 m sp

1m= - . Itmatches verywellwith the theoretical
prediction fromequation (29)using N N 0.5 10 .p 0

5= = ´ Video S2of the supplementalmaterial (available
online at stacks.iop.org/NJP/21/103001/mmedia) shows an animationof the traveling profiles.

4.2. Parameter studies
4.2.1. Influence of bounded chemotactic drift
To keep the tumble rate positive, we introduced the chemotactic length δ in equation (4), which prevents the
chemotactic drift velocity in equation (20) to become arbitrarily large. Furthermore, for the chemotactic
response the lower chemical threshold ctwas introduced. Infigure 3we explore the influence of both parameters
on the traveling bacterial pulse. The chemotactic length δ increases from left to right and the threshold
concentration ct from top to bottom. The reference systemof figure 2(a) is in the center.

A smaller chemotactic length δmeans that the bacterium can sense larger chemical gradients and that the
drift velocity vch saturates at a larger value proportional to δ

−1. However, δ cannot be chosen arbitrarily small
since then the tumble rate in equation (4) becomes negative. In this case our numerical solution scheme is
unstable and the bacterial density becomes negative.

The length 384 md m= is close to theminimal value. In particular for small ct nearly all bacteria travel in the
pulse, none are left at the origin. As a result, the pulse travels the fastest. Increasing δ to 600 mm , it is clearly
visible that some bacteria are left behind. Thus, the pulse contains less bacteria and, therefore, is slower. This is
also in agreementwith the smaller chemotactic drift velocity. Interestingly, for the smallest ctwe observe a
second propagating pulse strongly decreasing in height. Finally, if we increase δ by a factor of 10–6000 mm , the
majority of bacteria stay close to the initial locationwhile only a smaller number of them travels in the pulse
(note the 10 times smaller range of the vertical axis). Thus, the pulse speed is small and the pulse has not yet
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separated from the non-propagating bacteria. In conclusion, increasing δ decreases themaximum carrying
capacity significantly andmakes the pulse slower.

Increasing the threshold concentration ct fromnearly zero to ct=0.1c0 has three effects. First, the dispersion
of the pulse increases which slows down the pulse. This ismost notable when comparing the second to the third
row. Second, the shape of the pulse becomesmore asymmetric as bacteria at the rearflank cannot follow the
pulse. Third, the number of bacteria left behind at the initial location increases slightly. In the uppermiddle plot
we recognize that the threshold ct is so low that the remaining bacteria can still travel by chemotaxis, although
with a stronger dispersion as the first pulse. Finally, even for the vanishing threshold of the upper left plot a slight
dispersion is visible. This again suggests that a true propagating soliton, for which the pulse shape does not vary
in time, is not possible as long as the chemotactic drift velocity is bounded.

4.2.2. Quantitative study of the rescaled Keller–Segel equations
Wenow consider the rescaledKeller–Segel equations and study the propagating bacterial pulse in detail. Hence,
we plot the rescaled pulse speed vp, the pulse full width at halfmaximumΔxh, and the pulse amplitude ρmax/ρ0
as a function of the remaining parameters ρ0/c0,Dc/Deff and 1 cos0c b- á ñ( ). Again, we neglect bacterial
growth by setting 0a =˜ . Figure 4 shows all results and the relevant parameters are given in thefigure caption.

Infigure 4(a)we see that the pulse speed depends linearly on ρ0/c0 in agreement with theKeller–Segel
prediction of equation (29) but then saturates at a constant value. The reference pulse fromfigure 2(b) (purple
disc), where all bacteria travel with the pulse, is located in the linear regime, while the reference pulse from
figure 2(a) (orange star), where some bacteria remain close to the origin, propagates in the saturated regime.
Thus, in thefirst case addingmore bacteria to the system increases the number of bacteria in the traveling pulse
and speeds it up. In contrast, in the second case additional bacteria remain close to the initial location. Thus, the
traveling concentration pulse has amaximumcarrying capacityN*with respect to the amount of bacteria it can
carrywhile further bacteria exceeding the carrying capacity are left behind. This is in agreement with
appendix C, wherewe derive an upper bound forN*. The transition between both regimes occurs at the critical
ratio (ρ0/c0)

*. To illustrate the transition, we discuss the following scenario. Lowering c0 at constant ρ0 speeds up
the pulse in the linear regime since bacteria degrade the chemoattractant faster and in agreement with
equation (29). However, once c0 0 *r( ) is reached, the pulse looses bacteria to keep the pulse velocity constant,
again according to equation (29). Thus the carrying capacity of the pulse decreases when c0 decreases below a
treshold.

The ratio ρ0/c0 also influences the pulse shape. In the linear regime of increasing ρ0/c0 the pulse becomes
narrowerwhile its absolute height ρmax roughly increases with ρ0

2.When reaching the saturation regime, the
pulsewidth stays constant as should ρmax. Thus for the relative height we find cmax 0 0 0

1r r rµ -( ) .
Infigure 4(b)we show the pulse speed does not significantly depend on the ratio of diffusion constants,

Dc/Deff, for both study cases I (blue stars) and II (green circles). This is in contrast to [77]where the authors
proposed a correction term to equation (29), which predicts a decrease of the pulse speedwith increasingDc.
However, when examining the bacterial pulse profile, we observe that for largerDc/Deff the pulse needsmore
time to form. It needsmore time to consume all the chemoattractant at the origin due to the larger diffusive flux

Figure 3.Rescaled bacterial density ρ/ρ0 as a function of the chemotactic length δ and threshold concentration ct.We increase δ from
left to the right and ct from top to bottom. The reference pulse fromfigure 2(a) is in the center. The color code for the different times is
the same as infigure 2.Note the smaller ranges of the x and y axis in the last column.
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of chemoattractant into the depleted areas. But once the bacteria have fully degraded the chemoattractant, the
pulse propagates with the same speed vp independent ofDc. For increasingDc/Deff thewidth of the pulse also
increases while the amplitude decreases. However, both trends are not very significant since pulsewidth and
amplitude do not even change by a factor of twowhileDc/Deff is varied over four orders ofmagnitude. Finally,
we note the relevant length scale l D keff= to depend on the effective bacterial diffusion constantDeff and

thusfind v Dp effµ .Moreover, the pulse width increases significantly withDeff while the absolute height
increases only slightly.

Figure 4(c) shows the results when the chemotactic parameter 1 cos0c b- á ñ( ) is varied. For values larger
than 50 the numerical scheme becomes unstable similar to the instability in the chemotactic length δ already
discussed in section 4.2.1. The pulse speed increases linearly in the chemotactic parameter for the study case I
(blue stars) and also for the study case II (green circles) in the range 1 cos 200c b- á ñ <( ) . To understand this
finding, we looked in detail at the bacterial profiles. In study case II we find thatwith increasing 1 cos0c b- á ñ( )
more andmore bacteria from the vicinity of the initial location enter the pulse, which according to equation (29)
then speeds up. Thuswe conclude for themaximumcarrying capacity of the pulse, N 1 cos0* c bµ - á ñ( . A

similar observation in connectionwith the scenario offigure 4(b) gives N Deff* µ . Note that our results are in
contrast to [78]which found vp 0cµ . In study case II (green circles)we start with a smaller number of

bacteria. Thus, at 1 cos 200c b- á ñ »( ) all bacteria have entered the pulse, which then travels with constant
speedwhen 1 cos0c b- á ñ( ) is further increased. Finally, with growing chemotactic parameter thewidth of the
traveling pulse decreases in the study case I (blue stars). The curve of study case II (green circles) follows this
trend until the pulse speed becomes constant and then steadily increases.

For the pulse amplitude of the two study cases the behavior of the curves are inverted compared to the pulse
width. The curves are wellfitted by y(x)=AxB, where the constantsA differ approximately by a factor of three.
This is the factor bywhich the density ratios ρ0/c0 of study cases I and II differ. The factor of three appears since
we plot the reduced amplitude ρmax/ρ0. The exponents are nearly the same. The amplitude of the study case II
(green circles) decreases for 1 cos 200c b- á ñ >( and thereby compensates the increasing pulsewidth as the
number of bacteria in the pulse is constant.

4.2.3. Influence of growth rateα
Finally, we investigate the influence of the growth term in theKeller–Segel equation(18). Figure 5 shows
propagating pulses for three different growth ratesα, while the other parameters are chosen as in the reference

Figure 4.Parameter study for the traveling bacterial concentration pulse. The rescaled pulse speed vp (first line), full width at half
maximumof the pulseΔ xh (second line), and pulse amplitude ρmax/ρ0 (third line) are plotted as a function of the rescaled parameters
ρ0/c0 (a),Dc/Deff (b), and 1 cos0c b- á ñ( ) (c). The values are determined at rescaled time t 1010=˜ , where pulse propagation is well
established.When not varied, the following rescaled parameters are used: c 4.76 100 0

8r = ´ - (blue stars, study I) and
c 1.59 100 0

8r = ´ - (green circles, study II),Dc/Deff=7.84, 1 cos 29.60c b- á ñ =( ) , 1.09 105d = ´˜ , c 10t
12= -˜ , and 0a =˜ .

The reference pulses fromfigures 2(a) and (b) aremarkedwith orange stars (Ref I) and purple discs (Ref II), respectively. The dashed
line in the curve ρmax versus ρ0/c0 is afit to y(x)=C/xwith C 2.22 10 9= ´ - while the dashed lines in the curves ρmax versus

1 cos0c b- á ñ( ) are fits to y(x)=AxBwith A 3.53 10 4= ´ - ,B=1.42 (blue stars) and A 10.4 10 4= ´ - ,B=1.43 (green
circles).
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systembutwith the reduced initial number of bacteria N 0.5 10 .0
5= ´ It is below themaximumcarrying

capacity of the pulse andwas used infigure 2(b).
Consequently, in the upper panel the pulse grows due to the non-zero growth rate and speeds up in time

until themaximumcarrying capacity is reached at around 2600 s. Then, the pulse propagates with constant
shape like a perfect soliton.However, in our case the pulse leaves a trail of bacteria behind, which originates from
the continuous bacterial growth.

In themiddle and lower panel, themaximum carrying capacity is reached after 1000 s and 50 s, respectively.
Interestingly, the pulse does no longer separate from the broad distribution of bacteria, which spreads from the
initial location, but rather sits on top of the distribution’s rightflank. In the lower panel the pulse is fastest and its
amplitude is highest. This comes from the fact that the broad distribution around the origin containsmuch
more bacteria compared to themiddle panel and, thus,more bacteria actively take part in the degradation of the
chemoattractant. As a consequence, the pulse propagates faster.

Last, we observe thatwith increasing growth rate the pulse becomesmore peaked. This is reminiscent to
figures 4(a) and (c), where a faster pulse has a smaller pulsewidth.

4.3.Matching the experimental pulse
Figure 6 (upper panel) shows the traveling bacterial concentration pulse recorded in the experiments of [36] and
compares it to the numerical solution of our polarization extendedmodel. Both propagating pulses agree very
well in shape and in speed v 3.8 m sp

1m= - .We extracted the experimental data from figure 1(b) in [36] and in
ourmodelmainly used parameters from the same publication including a non-zero growth rate but also added
missing values from [39, 64].Moreover, a realistic value for the sensing threshold
c c2.61 10 m 0.1t

5 3
0m= ´ =- was chosen [64]. This was necessary tomatch the asymmetry and dispersion of

the pulse. The full parameter set is given in table 1.

Figure 5.Propagating bacterial pulses for three different growth ratesα. Other parameters are the same as the reference pulse of
figure 2(b)with an initial population of N 0.5 10 .0

5= ´

Figure 6.Comparison of the experimental traveling pulse (gray circles) fromfigure 1(b) in [36] and the simulated pulse using our
model (colored lines)with parameters given in table 1. Both bacterial density profiles are indicated in the upper panel at different
times, the chemicalfield c is shown in themiddle panel, and the polarization Px in the lower panel. The pulse speeds in both cases are
identical: v 3.8 m sp

1m= - .
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5.Discussion and conclusions

In thefirst part of this article we demonstrated how to derive the celebrated Keller–Segel equation using a
generalized Smoluchowski equation for the full distribution function in position and orientation and a
multipole expansion. An important ingredient is the bacterial tumble rate in a chemical field.We derived the
knownMarkovian response theory for themean tumble rate starting from the classical chemotaxis strategy
based on temporal sensing in order to explain experimental results from [39]. Our expression for the tumble rate
includes logarithmic sensing andwe added a lower chemical threshold and an upper bound for the chemotactic
response to keep the tumble rate positive. Themultipole expansion provides a polarization extendedmodel (PE)
fromwhichwe derived theKeller–Segel equation in the adiabatic limit, where the bacterial polarization instantly
follows variations in the density.We thereby obtainmicroscopic expressions for the diffusion coefficient and the
chemotactic drift velocity. Due to the bounded chemotactic response the inherent and unrealistic singularity in
the drift velocity is removed.

Our detailed study of the traveling bacterial pulse shows that its characteristic time ismuch larger than the
relaxation time of the bacterial polarization. Thus, PE andKSmodel provide identical results except for the
initialfields andwe conclude that the full Smoluchowski equation as used for example in [36, 56] is not
necessary. This drastically reduces the computational effort and allowed us to perform extensive numerical
studies of the bacterial pulse propagation.

Wefind that due to the upper bound of the chemotactic velocity the traveling pulse can only carry a limited
number of bacteria. To the best of our knowledge such amaximum carrying capacity has not yet been reported in
the context of traveling bacterial pulses. In particular, it is not predicted by the analytic soliton solution of the
original Keller–Segelmodel [51]. Another consequence of the upper bound of the chemotactic velocity is an
effective dispersion of the pulse.While propagating, the pulse leaves a trail of bacteria behind and hence the pulse
height decreases and thewidth expands. This is consistent with results from [66]. The loss of bacteria can be
compensated by a non-zero growth rate andwe have seen that soliton-like pulses, which propagate with
constant shape, are possible.

Exploiting a rescaled version of our KSmodel, we quantify howpulse speed, pulsewidth, and pulse
amplitude depend on the different unitless parameters.Wemention some key results. First, throughout our
parameter studywefind that the analytic soliton solution of the original KSmodel still provides a correct
estimate for the pulse speed as a function of the number of bacteria in the pulse. Second, wefind themaximum
carrying capacity to be proportional to the chemotactic strength 1 cos0c b d- á ñ( ) ˜ and Deff . As a
consequence these parameters affect the pulse speed as long as there are sufficient bacteria in the system so that
themaximumcarrying capacity is reached. Third, the diffusion coefficient of the chemoattractant does not
influence the pulse speed as predicted in a theoreticmodel in [77]. The pulse only takes longer to eat up all the
chemoattractant at the origin due to the larger diffusive flux of chemoattractant into depleted areas.

Finally, we show that our simulated pulse propagation is able tomatch quantitatively the traveling bacterial
pulse in the exeriments of [36] in speed and shape. In contrast to themodels used in [54] and [36], we do not
need a second chemoattractant to generate a traveling concentration pulse as a solution of our generalized KS
model.

Wemention four directions intowhich our approach can be extended. First, so far we did not explore the full
PEmodel, whichwill be relevant for dynamic processes with typical time scales of the order of 1/ω. In future
works it would be interesting to explore the possibility of having the bacterial polarization as an independent
field and its potential to induce complex dynamics. For example, the alignment or polarization ofmagnetotatic
bacteria can be controlled by an externalmagnetic field [79, 80], which offers the possibility to address
polarization as an independent field variable, e.g. by a time-varying external stimulus. The dependence of cell
characteristics on polarization could also evoke a feedback loop in highly nonlinear equations. For example, it
was shown that the nutrient uptake of bacteria depends on cell shape [81], meaning that the consumption rate
may depend on the polarization, which then influences chemotaxis [82]. For Janus colloids with effective
phoretic repulsion this can generate interesting collective dynamics on timesmuch smaller than the
characteristic time scale of the bacterial pulse [29]. Finally, in complex geometries with characteristic lengths
similar to the persistence length of the bacterium,we expect the polarization equation also to become important.

Second, to describe themultiple pulses that have been observed in experiments with several nutrients [6, 83],
one can extend ourmodel by coupling the bacterial density to several nutrient fields. Bacteria that are left behind
by thefirst pulse can then perform chemotaxis in a second nutrient field and thereby create a second pulse.

Third, in our generalized Smoluchowski equation the swimming speed is a constant as it is commonly done
for the E coli. bacterium also during chemotaxis [33, 35, 40]. However, some bacteria are known to couple their
swimming speed to the concentration of a chemical field [84–86], a strategy which is called chemokinesis.
Reference [58]derived coupled equations for bacterial polarization and density from a Smoluchowski equation
where the swimming velocity depends on the chemical concentration. It is certainly interesting to extend our
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theory in order to investigate the combined effect of chemokinesis and chemotaxis. A cell that performs both
strategies is the sperm cell [44].

Finally, it would be interesting to extend our approach to chemoattractants towhich E.coli is not perfectly
adapted such as serine [33, 40, 87]. For this chemoattractant themean tumble rate drops as the concentration of
serine increases. Thus, when swimming up a chemical gradient, the chemotactic velocity increases [87]. In our
generalizedKSmodel, the effective diffusion coefficient of bacteriaDeff, which directly depends on the tumble
rateλequ, now is enhanced in front of the pulse as runs are longer, while it is smaller in the back of the pulsewhere
runs are shorter. This should affect the pulse propagation and indeed, experiments with serine showed that
below a certain strength of the chemical gradient traveling pulses do not form [88].
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AppendixA.Markovian response theory for tumble rate

Equation (1) describes the non-Markovian linear response of the tumble rate on the concentration history of the
bacterial trajectory c tr ¢( ( )). Now, by averaging over all possible trajectories that arrive at location r with
orientation e, we are able to derive aMarkovian response theory for themean tumble rate.Wemake use of the
fact that rightward and leftward tumbling is equally probable, thus the tumble angle distribution is an even
function, P Pe e e e- ¢ = ¢ -( ) ( ). This has indeed beenmeasured for E.coli in experiments [33, 39, 40]. In the
following, we derive equation (2) from themain text.

We start with repeating the expression for the tumble rate from the linear response theory:

t R t t c t tr d . A1
t

equ òl l= - - ¢ ¢ ¢
-¥

( ) ( ) ( ( )) ( )

In the following, wewill use three key properties of the response functionR(τ) that weremeasured in
experiments [34, 38, 62]. First, starting from τ=0 it is non-zero over a time interval 15 smt ⪅ , whichwe call

thememory time. Second, it fulfills R d 0
0

ò t t =
-¥

( ) , whichmeans the tumble rate does not depend on the

absolute chemical concentration (perfect adaptation). Third, it is inversely proportional to the adaptation
concentration, R t t R t t ca- ¢ = - ¢( ) ( ) . Adaption occurs during thememory time, thuswe can set
c c tra = ( ( )). Taking these properties into account, wewill use the approximation

R f t c R fd 1 da
0 0

m
ò òt t t t t»

t-¥ -
( ) ( ) ˜( ) ( ) . In particular, due to perfect adaption any additive constant in f (τ)

will not contribute to the integral.
To evaluate equation (A1), we need an expression for c tr ¢( ( )). Therefore, we perform aTaylor expansion

around the current position tr rt=( ) and locally approximate the chemicalfield by

c c cr r r r , A2t t¢ = + ¢ -( ) ( ) · ( ) ( )

wherewe used tr r¢ = ¢( ). In the following derivation, all locations r¢ that contribute to the integral in
equation (A1) should be close to the current location rt so that the linear approximation is valid.Moreover, we
assume that temporal variations of the chemical field are negligible within thememory time τm so that c is
constant. Both requirements are justified for the bacterial pulse. On the one hand, themean run length of
bacteria ismuch smaller than thewidth of the step in the chemoattractant concentration, and on the other hand
on times comparable to τm the step hardlymoves.

Using equation (A2) in (A1), we obtain

t c c R t t t tr d , A3a
t

t

equ
m

òl l = - - ¢ ¢ ¢
t-

( ) · ˜( ) ( ) ( )

wherewe applied the property of perfect adaption to set R t t c c t tr r d 0
t

t t
m

ò - ¢ - ¢ =
t-

( )[ ( ) ( ) · ] and that

c is constant within thememory time τm.
To proceed, wewrite the trajectory of a bacterium that swimswith constant velocity v0 along the direction

given by unit vector te( ) as t t v t tr r e d
t

t
0 ò= ¢ + ¢¢ ¢¢

¢
( ) ( ) ( ) , where the bacteriumhas been at location tr ¢( )

before reaching tr( ), thus t t¢ . In the following, we use it in the form
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t t v t tr r e d . A4
t

t

0 ò¢ = +  
¢

( ) ( ) ( ) ( )

Changes in the swimming direction due to rotational diffusion aremuch smaller than due to tumbling.
Consequently, the trajectory of the bacteriumbecomes a sequence of straight runs and instantaneous tumble
events. Denoting tumble events by index i, the tumble time ti, and ei the direction prior to tumble event i, we can
write the orientation vector in equation (A4) at any time t t¢¢ < with the help of a telescope sum:

t te e e e e e . A5
i

n

i i
i

n

i i
1

1
0

1å å = + - = -
=

-
=

-( ) ( ) ( ) ( ) ( )

Herewe set te e0 = ( ) for the current direction after the last tumble event i=1 and e 01 =- is used. The
number of tumble events in the time interval t t- ¢¢ is n andwe number the tumble events backwards in time.

Now,we determine themean tumble rate tlá ñ( ) by averaging the right-hand side of equation (A3) over an
ensemble of bacterial trajectories tr ¢( ) that all reach the position tr( )with swimming direction te( ). For this, we
first have to evaluate teá ¢¢ ñ( ) in equation (A4) by averaging over n independent tumble events and considering
that n is a random variable. It is determined by the probability distribution P n t t, - ¢¢( ) of having n tumble
events in the time interval t t- ¢¢.We can thuswrite

t P n t te e e, . A6
n i

n

i i
0 0

1å åá  ñ = -  á - ñ
=

¥

=
-( ) ( ) ( )

Note, for a constant tumble rate P n t t, - ¢¢( ) becomes a Poisson distribution. To calculate themean tumble
direction e ei i 1á - ñ- weuse the probability distribution P e ei i1 --( ) from themain text and calculate thefirst
moment as in equation (11) but nowwith respect to the incoming direction ei of the tumble event. This gives

Pe e e e e ed cosi i i i i i1 1ò bá ñ = - = á ñ- -( ) , where the tumble angle is determined by e ecos i i1b = - · andwe
used that P e ei i1 --( ) is an even functionmeaning that left- and rightward tumbles are equally probable.
Repeating the formula for eiá ñ for thewhole sequence of tumble events, wefinally have te ecosi

ibá ñ = á ñ ( ) and
the telescope sum in equation (A6) becomes

t t t

t

e e e e e 0 e e

e

cos cos

cos . A7
i

n

i i
i

n

i i
i

n
i i

n
0

1
0

1
1

1å å å b b

b

á - ñ= á ñ - á ñ = - + á ñ - á ñ

= á ñ
=

-
=

-
=

-( ) ( ) ( )

( ) ( )

Combining the last two equations yields

t P n t t te e, cos , A8
n

n

0
å bá  ñ = -  á ñ
=

¥

( ) ( ) ( ) ( )

where the only remaining orientation vector is the current one, te( ). In general, the probability distribution
P n t t, - ¢¢( ) is a complex quantity as it depends on the tumble rates at previous times. Only forweak chemotaxis
we can approximate the tumble rate by the constant value equl andP becomes the Poisson distribution

P n t t
t t

n
, e . A9

n
t tequ

equ
l

-  =
-  l- - ( )

[ ( )]
!

( )( )

Theweak-chemotaxis approximationwas used, e.g. by Locsei in [63]. However, knowing the exact formof
P n t t, - ¢¢( ) is not relevant for our further argumentation.

Now,with equations (A8) and (A4)we can formulate the average location

t t v P n t t t tr r e, cos d . A10
t

t

n

n
0

0
ò å bá ¢ ñ = + -  á ñ 

¢

=

¥

( ) ( ) ( ) ( ) ( )

Using it in the tumble rate (A3), wefinally obtain

v t
c

c
e A11

a
equ 0 0l l c


á ñ = - ( ) · ( )

with

P n t t t R t t t, cos d d . A12
t

t

t

t

n

n
0

0m
ò ò åc b= -  á ñ  - ¢ ¢

t-

¢

=

¥

( ) ˜( ) ( )

Setting c c ra = ( )we then recover equation (2) from themain text. It is clear thatχ0 is a complicated quantity,
which depends on the history of all trajectories, we average over. In the article we take amore pragmatic
approach.We takeχ0 as a constant and concentrate on how the tumble rate depends on

t c ce cos q  = -( ) · ∣ ∣ . This dependence wasmeasured in experiments as we show in the plot of figure 1,
right reproduced from [39].

Locsei in [63] calculated the chemotactic drift speed vch in theweak-chemotaxis approximation using an
explicit form for the reponse function.We can reproduce his formula for vch, which demonstrates that our
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approach agrees with his work. Forweak chemotaxis equation (A9) is valid. Following [89]we can also include
rotational diffusion and obtain for themean orientation

t te ee , A13d D t t1 cos 1equ rotá  ñ = l b- -á ñ - - ( ) ( ) ( )( )( ) ( )

which replaces equation (A8). Note that in the exponent we recover the relaxation rate
d D1 cos 1equ rotw l b= - á ñ + -( ) ( ) from equation (14) in themain text.Wewill further use it. Now the

exponential function of the last equation becomes the integrand in equation (A12). Integrating over t ¢¢,
we arrive at

R t t t
e

d . A14
t

t t t

0
m

òc
w

= - ¢ ¢
t

w

-

- - ¢
˜( ) ( )

( )

The parameterχ0 appears in equation (20) for the chemotactic drift speed v vch ch= ∣ ∣, whichwe reproduce
herewithout the threshold and saturation terms:

v
v

d

c

c

1 cos
. A15ch

0
2

0
b

w
c


=

- á ñ( ) ∣ ∣ ( )

Wechoose the same parametrization for the response function as [63]

R t
t t2

3
e 1

2 2
, A16tequ

3
equ equ

2
equ

zl l l
= - -l-

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

˜( ) ( )

where ζ quantifies the strength of the response function. Calculatingχ0 from equation (A14)wefinally arrive at

v
v c

c

1 cos 2 3

9
, A17ch

0
2

equ
3

equ

equ
3

z l b w l

w w l


=
- á ñ +

+

( )( )
[ ]

∣ ∣ ( )

werewe used the dimension d=3. This expression agrees with equation (57) in [63] up to the factor 1/c, which
resulted from setting R R c= ˜ in the beginning andwhich [63] did not introduce.

Appendix B. Parameter dependence of the tumble rate

We restate the relation for the tumble rate

v c

c

c

c
r e e s, tanh tanh , B1

t
equ 0

0l l c
d

d


= - ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ∣ ∣ · ˆ ( )

wherewe use the normalized gradient direction s c

c
= 


ˆ

∣
.We also introduce the orientation angle θ between e

and the negative chemical gradient

e scos . B2q = - · ˆ ( )

To illustrate the effect of the additional parameters δ and ct associatedwith the hyperbolic tangent function,
we plot the tumble rate as a function of the chemical concentration c infigureC1 varying different parameters.
Already infigure C1(a), wherewe vary ct, we recognize themain features by identifying three regions. For
concentrations well below the sensing threshold, c ct , the tumble rate approaches its equilibrium value. This

FigureC1. Semi-logarithmic plot of the normalized tumble rate equl l as a function of the chemical concentration c for different ct
(a), δ (b), and θ (c).We always choose c c2 10 m4 1

0m = ´ - -∣ ∣ , close to themaximum slope of the chemical step infigure 2(a). If not
stated otherwise, we also keep the values of the other parameters constant: 384.0 m

v0 0

equ
m=c

l
, c c10t

3
0= - , 600 md m= , and θ=π.

The saturation of the chemotactic response occurs below c c* d= ∣ ∣ and ct is the chemotactic sensing threshold.
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also ensures a smooth transition to the case where no chemoattractant is present, c 0 equl l= =( ) . For
increasing concentrations but smaller than c c* d= , the chemotactic response saturates to a constant value
below equl . Note that the tumble rate cannot become negative as long as the parameters satisfy

v
1. B30 0

equ

c
dl

< ( )

This relationmust be also fulfilledwhen the bacterial swimming speed varies. Finally, increasing c further
beyond c*, we recover the 1/c dependence from the original Keller–Segelmodel.

Infigure C1(b)we vary the chemotactic length δ, which has two effects. First, the concentration c c* d= ,
where the transition to the conventional 1/c dependence occurs, increases with δ. Note that δ=600 μmused
for the pulse propagation infigure 2(a) guarantees that we are in the conventional 1/c regime. Second, the
maximum tumble-rate variationχ0v0/δ scales with δ

−1, which is clearly visible infigure C1(b). In fact, at
δ=384 μmthe tumble rate becomes zero. Finally, infigure C1(c)we illustrate that themaximum tumble-rate
variation behaves like vcos 0 0q c d .

AppendixC.Upper bound for themaximumcarrying capacity

From theKeller–Segel equations (18) and (19) in 1Dwe derive the equations to describe a bacterial pulse. Since it
should propagate with constant shape, onewrites the bacterial and chemical densities as functions of the pulse
variable ξ=x−vpt and obtains [51]

v D v , C1p eff

2

2 ch
r
x

r
x x

r-
¶
¶

=
¶
¶

-
¶
¶

( )

v
c

D
c

k . C2p c

2

2x x
r-

¶
¶

=
¶
¶

- ( )

The boundary conditions at x  ¥ are ρ=0, 0=r
x

¶
¶

, c=c0/0, and 0c =
x

¶
¶

. Following the approach

of [51], we integrate the second equation from-¥ to¥ and obtain theKeller–Segel relation for the pulse
speed vp:

v
kN

Ac
, C3p

p

0

= ( )

whereNp/A is the number of bacteria in the pulse per unit area.
Now,we can derive another relation for the pulse speed by integrating equation (C1) from ξ to¥

v v D . C4p ch effx
r

r= -
¶
¶x

( ) ( )

This equation has to be fulfilled for all ξ, in particular, also in the rear of the pulse.Here r
x

¶
¶

is positive and so is the

second termon the rhs of the last equation. Therefore, the pulse speed always has to be smaller than the
chemoctactic drift speed, which itself has amaximumvalue vch,max. Thuswe obtain an upper bound for the pulse
speed

v v . C5p ch,max< ( )

Inserting vp from equation (C3), we finally obtain an upper bound for themaximum carrying capacity

N
Ac

k
v . C60

ch,max* < ( )

AppendixD.Multipole expansionwith bias in the tumble angle

Following the same steps as in themultipole expansionwithout angle bias, we average equation (8) over all
orientations e using equation (22) and obtain

t
v DP . D10

2r
r ar¶

¶
= - +  +· ( ) ( )

Similarly, we compute the polarization eò equation (8) ed using equations (23) and (24) andwith s c

c
= 


ˆ

∣ ∣
we

obtain
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The last term in equation (D2) is part of the octupolemoment which is defined as

O e e e
d

e e e tr e e
1

2
, , d , D3ijk i j k i jk k ij j kiò d d d y= -

+
+ +[ ( )] ( ) ( )

and represents the interplay between tumble rate variation and tumble angle bias. By neglecting allmoments
above thefirst and again defining a relaxation rate D d 1 1rot equw l= - + - Q( ) ( ) we arrive at
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Appendix E. Time dependence of the pulse speed and effect of the initial bacterial
configuration

Figure E1(a) shows the time dependence of the pulse speed vp(t) for the reference pulses from figure 2(a) (Ref I)
and fromfigure 2(b) (Ref II), respectively. The pulse speed converges to a constant value.

Infigure E1(b)we investigate the effect of the initial bacterial configuration on the pulse propagation.
Changing the initial distribution from an exponential to a step profile or a linear profile has no effect on the pulse
speed, indeed the curves are very close. The same is truewhenwe change the decay length to x 5 m0 m= and
x 500 m0 m= . Only for x 5000 m0 m= , which corresponds to 5%of the system length andwhich is larger than
the pulsewidth, the curve starts to look different. Probably, when one simulates formuch larger time, the pulse
assumes the speed of the previous cases. As the pulse speed is directly linked to the number of bacteria in the
pulse, we conclude that themaximum carrying capacity is stable for reasonable variations in the initial bacterial
configuration.

Figure E1.Pulse speed as a function of time: (a) for the reference pulse fromfigure 2(a); (b) for different initial configurations for the
bacterial configuration. Instead of an exponential profile with decay length x 50 m0 m= , we try a step profile and a linear profile with
the same decay length.Moreover, we also vary the decay length for the linear profile to x 5, 500, 5000 m0 m= { } .
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