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Abstract

We formulate a Markovian response theory for the tumble rate of a bacterium moving in a chemical
field and use it in the Smoluchowski equation. Based on a multipole expansion for the one-particle
distribution function and a reaction-diffusion equation for the chemoattractant field, we derive a
polarization extended model, which also includes the recently discovered angle bias. In the adiabatic
limit we recover a generalized Keller—Segel equation with diffusion and chemotactic coefficients that
depend on the microscopic swimming parameters. Requiring the tumble rate to be positive, our
model introduces an upper bound for the chemotactic drift velocity, which is no longer singular as in
the original Keller—Segel model. Solving the Keller—Segel equations numerically, we identify traveling
bacterial concentration pulses, for which we do not need a second, signaling chemical field nor a
singular chemotactic drift velocity as demanded in earlier publications. We present an extensive study
of the traveling pulses and demonstrate how their speeds, widths, and heights depend on the
microscopic parameters. Most importantly, we discover a maximum number of bacteria that the pulse
can sustain—the maximum carrying capacity. Finally, by tuning our parameters, we are able to match
the experimental realization of the traveling bacterial pulse.

1. Introduction

Collective motion of biological and artificial microswimmers shows a broad range of interesting phenomena as
demonstrated in several review articles [ 1-5]. The formation of various patterns and clustering have been
investigated both experimentally and theoretically in systems of bacteria [6—13], of eukaryotic cells such as
Dictyostelium discoideum or human sperm [14-22], as well as in suspensions of active colloids [4, 23—32]. In this
article we study the collective behavior of a bacterial population, which in the concentration field of a
chemoattractant forms a traveling solitary pulse.

The motility mechanism of the run-and-tumble bacterium E.coli has been extensively studied [33—40].
Bacteria perform chemotaxis, the ability to sense and respond to chemical gradients in order to find better living
conditions. They realize the chemotactic drift motion along a chemical gradient by elongated run phases if the
environment becomes more favorable while runs are shortened in the opposite case [39-41]. The internal
chemotaxis machinery of the bacterium senses and compares the nutrient concentration in time, which is
rationalized in a linear response theory for the tumble rate [34, 42—44]. More recently, a second chemotaxis
strategy, called angle bias, has been reported [36, 39, 40]. The mean reorientation angle during tumbling is
reduced if the bacterium swims along a chemical gradient and increased in the opposite case. This also generates
anet drift motion in the favorable direction. Finally, using logarithmic sensing, E.coli is able to perform
chemotaxis in concentration fields varying by many orders of magnitude [45—47]. Such an ability is commonly
described by Weber’s law in different physical areas [48, 49].
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A very interesting collective phenomenon in a bacterial population is a concentration pulse that travels along
a capillary tube with almost no dispersion nearly like a soliton [6, 36], most recently also observed in a
population with non-genetic variations [50]. The pulse is initiated in an initially uniform environment of a
chemoattractant. A bacterial population concentrated in space eats the nutrient and thereby creates a chemical
gradient along which it drifts towards untouched regions. Moreover, Adler in his experiments also observed that
not all bacteria travel with the pulse but are left behind at the initial location [6], which indicates a finite carrying
capacity of the traveling pulse. Further chemoattractants present in Adler’s experiments then initiated further
pulses emerging from the bacteria left behind.

A very prominent theoretical approach to describe the traveling bacterial pulse is the celebrated Keller—Segel
model [51], originally introduced for the aggregation of slime molds [52]. It couples a diffusion-drift equation
for the bacterial density to a reaction equation for the nutrient. However, the Keller—Segel model has two
drawbacks. First, a soliton solution (classified as unstable [53]) only occurs if the chemotactic drift velocity
diverges for vanishing nutrient concentration. Second, nutrient diffusion was neglected. Later, based on analytic
arguments, [53] demonstrated that traveling pulses also exist in the presence of nutrient diffusion. More
importantly, Brenner et al. showed that the singularity in the chemotactic drift velocity is not necessary if one
introduces a second chemoattractant, which the bacteria excrete themselves [54]. Reference [36] followed this
approach to formulate a kinetic model (inspired by [55]), which describes traveling pulses in their experiments.
Finally, a modification of this kinetic model has recently been used to investigate pulse propagation in the
presence of two E.coli populations [56]. The Keller—Segel equations find wide applications in modeling bacterial
chemotaxis as reviewed in [57]. They have also been derived for active Brownian particles, which propel by self-
diffusiophoresis, and for quorum-sensing run-and-tumble particles [58].

Multipole expansions have frequently been applied to microswimmers in order to approximate the
Smoluchowski equation for the full distribution function in the microswimmer’s position and orientation
[13,27,58-60]. Besides for density such expansions also provide an additional dynamic equation for the
polarization, which unraveled interesting collective behavior of Janus particles [29] and which also allowed to
investigate steady-state distributions of run-and tumble particles [61]. Our derivation is inspired by the
approach of the latter reference but extends it by introducing the concentration field of a chemoattractant.

In this article we formulate a Markovian response theory for the tumble rate. It includes logarithmic sensing
for which we introduce an upper threshold. We use the tumble rate in the Smoluchowski equation and derive a
polarization extended model (PE) to treat chemotaxis of non-interacting E.coli bacteria. The PE model contains
equations for the bacterial density, the bacterial polarization, and the chemical concentration field. In a second
step, we also include the recently discovered angle bias. In the adiabatic limit the PE model simplifies to a
generalized Keller—Segel model (KS) where the coefficients for diffusion and chemotactic drift velocity depend
on the microscopic swimming parameters of the bacterium. In particular, the chemotactic coefficient is not
singular in the chemical concentration. We numerically solve both models for an initially uniform
chemoattractant and a bacterial population concentrated in space using parameters that are realistic for the
E.coli bacterium. The traveling bacterial pulse generated by both the PE and KS model are identical thus the KS
model is a valid approximation of the full kinetic formalism. We present a detailed parameter study of the
traveling pulse and identify a maximum carrying capacity as a consequence of the bounded chemotactic drift
velocity, which has not been mentioned so far. It means that the pulse can only sustain a finite number of
bacteria. Finally, we tune our parameters to match the experimental realization of the bacterial pulse in [36].
Hence, our generalized Keller—Segel model is able to describe traveling bacterial pulses without the need neither
for a singular chemotactic drift velocity nor for a second chemoattractant.

The remainder of the article is organized as follows. We present the Markovian response theory for the
tumble rate in section 2.1. We use it to derive the polarization extended model (PE) and the generalized Keller—
Segel model (KS) in sections 2.2 and 2.3. We also incorporate the angle bias and formulate a non-dimensional
version of the KS model in sections 2.4 and 2.5. Details of the numerical solution scheme are given in sections 3
and 4 presents our detailed numerical study. We close with conclusions and an outlook in section 5.

2. Model

2.1. Markovian response theory for tumble rate
Bacteria tumble less when moving up a chemical gradient. Based on the established linear-response theory, we
formulate an equation for the tumble rate A (r, e) as a function of the swimming direction e. Below, we will
relate it to the angle 6 relative to the local gradient V¢ of a chemoattractant with density c.

We start with the linear-response theory [43]. It gives the tumble rate A(f) as a function of time and depends
on the bacterium’s past trajectory r(t)
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Figure 1. Left: schematic of an individual E.coli tumbling from its previous direction €’ to e with tumble angle 3. Right: mean
tumble rate A(6) (red) as a function of the swimming angle 6§ measured against the negative chemical gradient. The tumble rate
was averaged over a population of around 1.000 E.coli in a linear gradient of a-methyl-aspartate. The fit with a cosine function,
y(x) = a1 + a, cos(x) (red line) according to equation (2), yields regression parameters a; = 0.278 and a, = 0.115. The blue line
represents the mean tumble angle { cos 3) (0) as a function of 6 of the same population. It indicates an angle bias for tumblingina
chemical gradient. Adapted from [39].

D = Aequ — [ R 1) e, M

where we have introduced the response kernel R(t) and A.q is the tumble rate without any chemical gradient.
Note that equation (1) describes a non-Markovian process. In appendix A we convert it to a Markovian process
with )\ depending on location r and swimming direction e by averaging over all possible bacterial trajectories in
order to obtain the mean history for a given swimming direction e. Thus, the tumble rate we give below is an
averaged quantity suitable to be used in a continuum theory. To derive it, we split the integral on the rhs of
equation (1) into contributions from individual runs, during which the according swimming directions e; are
assumed to be constant. Averaging over the history of all possible paths, we can show that each of these
contributions gives a term proportional to the scalar product e - %. The factor 1/¢ results from the fact that the
response kernel is proportional to the inverse background concentration, R o< 1 /¢, which was indeed measured
in experiments for the chemoattractant alpha-methyl-aspartate in [38]. This chemoattractant is widely used, e.g.
in the seminal experiments of [33, 34, 38, 62] and also in experiments of [39, 40]. For the detailed derivation we
refer to appendix A and present the final result

Ar, €) = Aequ — XoVo€ - Vc(r)‘ )

c(r)

Here, v, is the swimming velocity of the bacterium and X is a unitless measure of the chemotactic strength. It
depends on integrals over the response function R and moments of the tumble angle distribution P(3). Note that
we obtain here A x V (In ¢) commonly known as logarithmic sensing and Weber’s law. It was measured, for
example, in [47]. The linear dependence of the tumble rate Aon V¢(r) - e was already introduced by Schnitzer
as the leading order for the angular variation of A [61]. It follows directly from equation (1) by choosing
R(t — t') proportional to the time derivative of the 6 function as demonstrated by Locsei in [63]. This article also
calculates the chemotactic drift speed (see section 2.3) by performing an average over all possible bacterial
trajectories similar to our approach. Indeed, in appendix A we show that we arrive at the same chemotactic drift
speed for the specific response function chosen in [63].

Ve

When we define the orientation angle relative to the negative chemical gradient, cos§ = —e - o the
tumble rate becomes
A, 0) = Aequ + Xovow cosf. 3)
c(r

In figure 1 adapted from [39], the red points show experimental data for the mean tumble rate A(r, 0). It was
obtained by averaging over a population of around 1000 individual bacteria in a linear gradient. The appropriate
cosine fit (red line) confirms our theoretically derived result of equation (2) and was the motivation to derive it
from the linear-response theory.

A biologically relevant tumble rate should have both a sensing threshold [64] as well as a saturation of the
response to the chemoattractant [65], which is not present in equation (2). First, it is known that the bacterium
needs a small threshold concentration ¢, to perform chemotaxis since it senses the chemical field by
chemoreceptors [64]. Second, equation (2) produces a negative tumble rate for a sufficiently large gradient of
log ¢, which is even singular at ¢ = 0. In our derivation the singularity arises from the relation R oc 1/cfor the
response function mentioned earlier. While R o< 1/c was measured for a wide range of background
concentrations [38], clearly the second term on the right-hand side of equation (2) has to saturate to a value
smaller than g, to keep the tumble rate positive. There a several approaches to remedy these shortcomings.
The threshold concentration was implemented, e.g. in [51, 66, 67] by shifting the singularity in equation (2) from

3
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¢ = 0to ¢,. Toimplement a saturation in the chemotactic response, [67, 68] among others used the so-called
receptor law, while [36, 69] introduced a hyperbolic tangent function. To implement both the sensing threshold
and the saturation in the chemotactic response, we decided to use the hyperbolic tangent function in

equation (2) and write

A(r, €) = Aequ — X(Ivcl)e -8 4)
c
with
X(ﬂ) = Xomtanh(i)tanh(ém). 5)
c 6 ¢ c

Here, we have introduced § = Iz—zl and do not explicitly state the space dependence of the concentration c¢. This
expression recovers equation (2) for 6| V¢|/c < land ¢ > ¢, while it smoothly approaches the minimum
tumble rate Aequ — X % for 6|Vl /c > 1(saturation in the chemotactic response) or it tends to Aeqy forc < ¢,
(sensing threshold). The chemotactic length ¢ quantifies the strength of the logarithmic derivative of ¢ (r).
Appendix B presents a parameter study for the tumble rate of equation (4). Finally, we note that in this article the
swimming speed v, is constant. If it varies, one always has to make sure that xvy /6 < Acqu to keep the tumble
rate positive.

2.2. Polarization extended model (PE)
2.2.1. Smoluchowski equation
We first construct dynamic equations for the evolution of the one-particle distribution function ¥ (r, e, t) of
position r and orientation e at time ¢ and the concentration of chemoattractant, c(r, ¢). Webegin with a
generalized Smoluchowski equation for ¢ [55, 61, 70-72], which contains the usual contributions from
translational and rotational currents, Jirans and Jyor, but also contributions from tumble events represented by
F{1} and from cell division and death, s% fi/) (r, €, t)de':
8_w = _V : Itrans - R- ]rot + F{1/1} + gfw(r: e/> t)de/- (6)
ot Sa
Here, R = e X 0. where 0, = (0,,, 3ey, 0,,) denotes the nabla operator in orientation space and o = In(2) /7
is the net growth rate with 7 being the mean doubling time of bacterial cells [36]. We also assume that the net
growth of cells does not depend of their directon e and S is the surface area of a d dimensional unit sphere (full
solid angle). For the translational current we include active motion and translational diffusion,
Jirans = Vo€ — DV, where D is the translational diffusion coefficient and vy is the bacterial swimming speed.
The rotational current is purely diffusive, Jio = —Dyot R0, where D, is the rotational diffusion coefficient.
According to [33] we take a Poisson distribution for the run times and write the term for the tumble events as

Fly} = =A@, )¢ + fP(e — e, )\, eNY(r, €, t)de'. )

We introduced the tumble rate A(r, ) and P(e — €/, €’) is the probability of a bacterium to reorient from
orientation €’ to e. In equation (7) the first term on the rhs represents events, which cause bacteria with
orientation e to tumble into any orientation, and the second term represents all events, which cause bacteria
with other orientations to tumble into orientation e. The complete Smoluchowski equation for the evolution of
1ynow reads

%

5 —V - (vper)) + DV%) + D, R%) — A(r, e)) + fP(e — e, e\, )Y, €, t)de'

(8
(6% ’ ’
+S—df1/)(r, e, t)de'.

For completeness, we write a reaction-diffusion equation for the chemoattractant concentration ¢, which is
also consumed by bacteria with constant rate k

% =D,V — kfz/J(r, e, t)de'. 9

2.2.2. Multipole expansion

In order to proceed with equations (8) and (9), we assume that the probability distribution for a specific tumble
event does not depend on the initial orientation of the bacterium, P(e — €/, ¢’) = P(e — ¢’). Therefore, we can
write for the zeroth and first moment
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fP(e —eYde =1, (10)
feP(e — e)de = (cosB) ¢/, (11)

where ( cos () is the mean of the cosine of the reorientation angle 3[61]. We take the tumble rate A(r, e) to vary
asin equation (4). Now, we integrate equation (8) over all orientations e and define the bacterial density

p(r, t) = f ¥ (r, e, t)de and polarization P(r, t) = f ey (r, e, t)de, which correspond to the zeroth and first
moments of ¢, respectively, and obtain [61, 73]

0
a_p = -V - WP) + DV + ap. (12)
t
We have also used f R*pde = 0 and the normalization condition equation (10) to show that tumbling does not
contribute to equation (12).
In order to derive a dynamic equation for the polarization, we compute f e equation (8) de and introduce

the quadrupole moment Q = f (e®e— %)w(r, e, t)de with d being the number of spatial dimensions. This
gives

% = %VQ - %Vp + DV?P — [Dioe(d — 1) + (1 — (€05 8)) Aequ] P
- <cos6>)><('v"'| Jas + = <C°sﬁ>x('v‘")p ; (13)
c d c
where we used R?¢ = —(d — 1)e and equation (11). To truncate the multipole expansion, we neglect the

quadrupole moment Q, which strictly means that the orientational distribution hardly deviates from the
isotropic distribution and the deviation can be well described by the polarization. We also define the relaxation
rate

w = Drot(d - 1) + (1 - <Cosﬁ>))\equ) (14)
with which polar order relaxes or decorrelates in time. Thus, we ultimately obtain
1 —
oP _ —wP 4+ DV?P — ﬁVp + (cosﬁ)x(|Vc|)p 8. (15)
ot d d c
Finally, with our definition of bacterial density p we can write equation (9) in a simpler form
9 _ D.V%c — kp. (16)
ot

2.3.The Keller-Segel model as adiabatic limit
In the case of high Peclet numbers (Pe = av, /D > 1), where we can neglect translational diffusion®, and on
large times ¢t > i, where the adiabatic limit ((39_1: ~ 0 applies, the polarization from equation (15) becomes

p_ —ﬂVp N 1 - <COSB>X(|VCI)p . (17)
wd wd c

Weremind that § = V¢/|V¢|. Substituting equation (17) into (12), we obtain the generalized Keller—Segel
model

9 _ Det V2p + ap — wv ) [X(E)P g], (18)
ot wd c
Oc )
— = D.V% — kp, (19)
ot

where D.gt = ¢ /wd + D =~ vi /wd is the typical translational diffusion coefficient of an active particle, the
orientation of which decorrelates on the characteristic time w™ . The approximate expression for D, is valid at
high Peclet numbers.

From the third term on the rhs of equation (18) we read off the chemotactic velocity along the chemical
gradient

Veh = (20)

vo(1 — {cos 3)) X( V| )§

wd c

Note, in addition, keeping the diffusion term in the polarization equation (17) would generate spatial derivatives larger than two in
equation (18), which we neglect here. This can be seen, when looking at the spatial Fourier transform in k space.

5
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Taking x = x|V |/ ¢, werecover the model suggested by Keller and Segel with v, o< V¢/c [51], and the

chemotactic drift velocity is determined by a combination of microscopic parameters, W, called the
chemotactic constant. However, as stated earlier, according to equation (2) the original form for y implies
negative tumble rates for small c and sufficiently steep chemoattractant gradient. The maximum value that x can
physically assume is A.qu, where the tumble rate becomes negative. As a result, the chemotactic speed 1, = |Vcp|
is also bounded. Taking X = Aqu and approximating w ~ (1 — (cos 3)) Aequ sSince Dy in equation (14) is
usually much smaller than Aq,, we find

Vb < d . (21)
This shows that an appropriately bounded tumble rate is closely linked to a physically bounded chemotactic drift
speed. Furthermore, in appendix C we will show that this upper bound implies an upper bound for the speed of
the traveling bacterial pulse and thereby for the maximum number of bacteria it can carry. We will address this
pointin section 4.

2.4. Bias of tumble angles

Up to this point we have ignored the effect of a bias in the tumble angle towards smaller mean values when
swimming up the chemical gradient. This has recently been observed in experiments [36, 39]. We now introduce
it by allowing the probability distribution for a specific tumble event to explicitly depend on the initial
orientation of the bacterium, e’. Hence equations (10) and (11) become

fP(e — ¢, e)de = 1, (22)

feP(e — €/, e'yde = (cos B)(¢)) €. (23)

Equation (22) states that the distribution is always normalized irrespective of the initial orientation of the

bacterium. In equation (23) the value of the mean cosine of the tumble angle ( cos 3) (¢") now explicitly depends

on the initial orientation e’ before the tumble event.

The effect of an angle bias is to lower the mean tumble angle when the bacterium aligns with the

chemoattractant gradient, hence the value of ( cos 3) (¢) will increase for stronger alignment. Expanding

( cos B) (e') up to the first Legendre polynomial, thus taking into account the leading polar correction, yields
(cos B) (') = (cosB)o + U(ﬂ)e’ -8, (24)

c

where ¢ is a positive and monotonically increasing function. It is bounded such that its maximum value

Omax < 1 — (cos B)g, with ( cos 3)q being the mean cosine of the tumble angle, when the angle bias is not taken

into account. Using equations (2), (22)—(24), we can retrace the steps of the multipole expansion (see appendix D

for details) to obtain an extended form for equation (15) with equations (12) and (16) remaining unchanged

P _ —{wl + [ ! X(lvcl )a(lvcl )](1 L% ® §)}P +pvep - Ny,

ot d+ 2 c c d
- Ae u
N 1 (cosﬁ>0X(|Vc|) 4 Dea U(lVCl) 03 (25)
d c d c

Here, ® means dyadic productand (1 + 2§ ® §)P = P + 2§ § - P, where - means scalar product.

One immediately recognizes that the angle bias renormalizes the relaxation rate of the polarization and
makes it anisotropic. Thus polarizations along and perpendicular to the chemical gradient relax with different
rates. In the adiabatic limit % ~ 0 and for large Pe we can again solve for the polarization by inverting the
matrix in front of P in equation (25). Substituting the resulting equation into equation (12), we again obtain a
generalized Keller—Segel equation and a chemotactic velocity v., along the chemical gradient. It now also
depends on the angle bias quantified by 0. We refrain from giving the lengthy expression.

2.5.Rescaling the Keller—Segel equations

In order to identify essential parameters especially in the generalized Keller—Segel equations (18) and (19), we

introduce unitless quantities. First, we rescale time with the chemical consumption rate, 7 = kt, lengths by the
2\1/2

distance | = (ﬁ) , by which a bacterium diffuses in time k™! thus ¥ = r/I, and the net growth rate by k,

& = a/k. Second, we refer the bacterial and chemical densities to their initial values, p = p/p,and ¢ = ¢/cy,

respectively. Finally, we introduce the rescaled chemotactic length & = §/1 and the rescaled threshold density

& = ¢, /co. This allows us to write the generalized Keller—Segel equations (18) and (19), where chemotactic

response is bounded by the hyperbolic tangents, in rescaled form:

6
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3_? = vzﬁ + @p — xo(1 — {cos3)) /8 ~-[tanh(i)tanh(gl d )ﬁ §] (26)
ot o ¢
65 Dc =2~ Po ~
Z o k- By, 27
Of Dt ‘ Cop @7

To arrive at this form, we used Degr ~ v /wd, where we neglected the thermal contribution to D¢ We recognize
that the rescaled Keller—Segel equations are described by a set of six relevant para-

D~ Py T o~
meters: {DTff’ &, Xo(1 — (cos B3)), C—;‘, o, c[}.

3. Details of numerical solution scheme

In the following we study in detail traveling bacterial pulses in an initally uniform density field of a
chemoattractant by numerically solving both the polarization extended model (PE) of equations (12), (15) and
(16) and the generalized Keller—Segel model (KS) of equations (18) and (19). The experiments in [36] are
performed in microchannels with cross section A. Neglecting any influence from the channel walls, we take the
three-dimensional system (d = 3) to be quasi infinitely extended perpendicular to the channel axis. Thus all
densities just depend on the x coordinate along the channel and by symmetry only the x component of the
polarization is non-zero.

To solve the respective system of equations, we apply a predictor-corrector method at any given time step to
efficiently propagate the field variables in time [74]. As initial field values we choose an exponentially distributed
bacterial density, p(x, t = 0) = p, exp(—x/x), a uniform density of the chemoattractant, c(x, t = 0) = ¢y, and
zero polarization P,(x, t = 0) = 0. During time integration no-flux boundary conditions are employed atx = 0
and at sufficiently large x, such that

8xplO,xOo =0 and ax(:lO,xoo =0 (28)

while we assume that polarization stays zero, Py, = 0, following [58]. Note, this assumption neglects
accumulation of bacteria at boundaries due to their persistent motion. However, since the accumulation only
occurs within a thin region with thickness given by the persistence length v,/w, it is not relevant for the pulse
propagation in the bulk, which we study here. To arrive at the conditions of equation (28), we consider the
governing equations of the KS and PE model, separately. The second condition for ¢ in equation (28) means that
the chemical flux at the boundaries vanishes. For the KS model, the bacterial flux is —D.g Vp + v, p, which we
identify from equations (18) and (20). The flux vanishes at the boundaries due to the first condition of
equation (28) and since v, = 0 for zero chemical gradient. For the PE model, equation (12) gives the bacterial
flux vyP — DV p, which also vanishes at the boundary due to the first condition of equation (28) and the
vanishing polarization’. Finally, when integrating equation(16) the sink term can produce negative concentra-
tions of the chemoattractant [75, 76]. To avoid this, we set the concentration cto zero whenever it would become
negative. This allows the bacteria to fully degrade the chemoattractant without producing negative values for c.
When we solve our equations with real parameters, we rely on [36] and take the channel length
Xs = 10°um and the initial decay length of the bacterial density as x, = 50 um. This ensures thatatt = 099%
of the bacteria can be found within 200 pm at the channel end at x, = 0. To be concrete, we also assume a
channel cross section A = 500 um x 100 pm to calculate the initial number of bacteria Ny = poxoA, which we
use as a parameter instead of py in the following. We divide the channel length into 5 x 10* grid points so that
the gridlength is 2 pm and use the time step 0.01 s for integrating our equations in time. All the relevant
parameters are given in table 1. Finally, we will also numerically solve the rescaled Keller—Segel equations (26)
and (27) in order to explore the dependence on some of the relevant dimensionless parameters.

4. Traveling concentration pulses of bacteria

We first introduce the traveling bacterial pulse for a reference system using two values for the initial number of
bacteria, then perform a systematic parameter study, and finally demonstrate a perfect match with the
experimentally observed bacterial pulse reported in [36].

5 Note, the correct treatment of the no-flux boundary condition in the PE model would take n - f Jiransde = Oand n - f Jiransede = 0,
where n is the unit vector normal to the bounding surface. In our geometry this implies voP, — DJp/0x = 0and
—vo/d p + DOP,/O0x = 0, where in the second condition we neglected the contribution from the quadrupole moment Q.
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Figure 2. Bacterial pulse propagation: (a) snapshots of the bacterial density p(x) (upper panel), the chemoattractant concentration
field ¢(x) (middle panel), and polarization P,(x) (bottom panel) at equally spaced times for the parameter set given in table 1. Solid lines
represent the polarization extended model and dashed lines its adiabatic approximation, the generalized Keller—Segel model.
(b) Bacterial density for a reduced number of bacteria Ny = 0.5 x 10° compared to the reference system.

Table 1. List of parameters used for the reference pulse in figure 2 and for the
match to the experimental system shown in figure 6.

Parameter Value figure 2 Value figure 6 References
D 0.2 pum? s~ Same [35]
Dot 0.06 57! Same [39]
a 0 1.67 x 107*s7! [36]
k 3.35 x 10°s7! Same [64]
Aequ 357! Same [36]
Vo 25 pum s~ Same [36]
(cos B) 0.392 Same [36]
D. 8 x 10 um?s~! Same [36]
Xo 0.64 Aequbvo™! Same [36]
) 600 pum Same [36]
o 1.26 x 10 ym™3 2.61 x 10° ym~3 —
o 1072 ¢, 107 ¢, —
A 5 x 10* pm? Same [36]
Xo 50 pm Same [36]
N, 1.5 x 10° 1.5 x 10° [36]

4.1. Reference system

Figure 2(a) shows a series of snapshots of the bacterial density profile p(x; t), the concentration field c(x, ), and
the polarization P,(x, f) at equally spaced times for realistic parameters of the E.coli bacterium listed in table 1.
Solid lines represent numerical solutions of the polarization-extended model (PE) and dashed lines of the
generalized Keller—Segel model (KS). Video S1 of the supplemental material is available online at stacks.iop.org/
NJP/21/103001/mmedia. It shows an animation of the propagating profiles.

Clearly, while the bacteria consume the chemoattractant completely, a traveling pulse in the bacterial density
forms that propagates with constant pulse speed v, = 4.68 pum s~ '. It has a comparable width to the traveling
step in the chemoattractant profile. In contrast to the bacterial solitons derived from the original KS model in
[51], our bacterial pulse shows a small dispersion visible from the slight decrease of the pulse height. It is caused
by bacteria that cannot follow the pulse at small chemoattractant concentrations since in our model the
chemotactic drift velocity vy, of equation (20) has an upper bound. In contrast, in the original KS model v,
diverges at small chemoattractant concentrations [51], which allows all bacteria to stay in the traveling pulse.
Thus, we demonstrate when one allows dispersion a singular chemotactic drift velocity is no longer necessary for
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traveling pulses to occur. Note, already [66] used the KS model with a bounded chemotactic drift and observed
traveling pulses which was ignored in more recent works [36, 54]. Instead, a second chemoattractant was
proposed as explained in the introduction.

One realizes that the profiles generated from the KS and PE model are identical except in the beginning. We
start with P, = 0 in the PE model whereas in the KS model a non-zero polarization is calculated from
equation (17). Itis due to the initial gradient in the bacterial density. Thus, we conclude that the adiabatic limit
g—}: ~ 0 asa condition for deriving the generalized KS model is fulfilled. Indeed, the decorrelation or decay time

w~! = 0.49 s is much smaller than the characteristic time for the pulse propagation. For the latter, we
approximately find 200 s for the pulse to travel its own width and the polarization always assumes its stationary
value. Our finding also means that the kinetic models of [36, 41, 56], which work with the full one-particle
distribution function ) (r, e, t), are not necessary to describe pulse propagation. They can be reduced to the
Keller—Segel equations.

In figure 2(a) not all bacteria travel with the pulse but some remain at the initial location. This also occurs in
the experiments of [6]. However, there the remaining bacteria perform chemotaxis in oxygen as a second
chemoattractant and thereby initiate a secondary pulse. Since we do not incorporate another chemoattractant,
the bacterial distribution at the initial location only broadens by diffusion. Finally, we mention previous
numerical work on the KS model that also showed the bacteria left behind [66].

In their original work Keller and Segel derived an analytic expression for the speed of the bacterial soliton. It
isa function of the number of bacteria in the soliton N, the consumption rate k, the cross section A, and the
initial chemoattractant concentration ¢, [51]

th NP k

vy, = A’ (29)
In appendix C we demonstrate how this relation is derived. It is also valid in our case provided we can clearly
identify an isolated pulse. Now, by integrating the bacterial density along the x direction at time # = 2000 s, we
obtain N, = A f pdx = 0.88 x 10° bacteria in the pulse and for the number of bacteria left behind close to
x = 0, N, = 0.57 x 10° . Note, N, and N. do not add up to N since there are also bacteria in the trail between
the initial location and the pulse. Using N, and the parameter values of the reference system from table 1 in
equation (29), we obtain v;h = 4.69 pm s~!, which is in very good agreement with our numerical value
of v, = 4.68 pms .

In figure 2(b) we lower the number of bacteria N, by a factor of three. Now, all bacteria travel in the pulse and
none are left behind. This suggests that the traveling pulse can only carry a certain number of bacteria and thus has
amaximum carrying capacity. Indeed, in appendix C we show that the pulse speed v, is bounded from above by the
chemotactic drift speed of equation (20), which itself cannot grow to infinity since we bound the chemotactic
response through the tumble rate. Thus, the number N,, of bacteria in the pulse, given in equation (29), cannot
become arbitrarilylarge. We will investigate the maximum carrying capacity in more detail in the following
parameter studies, where we use the two traveling pulses from figure 2 as a reference. For the traveling pulse in
figure 2(b) we determine a smaller pulse speed of v, = 2.66 jum s~ '. It matches very well with the theoretical
prediction from equation (29) using N, = Ny = 0.5 x 10° . Video S2 of the supplemental material (available
online at stacks.iop.org/NJP/21/103001/mmedia) shows an animation of the traveling profiles.

4.2. Parameter studies

4.2.1. Influence of bounded chemotactic drift

To keep the tumble rate positive, we introduced the chemotactic length ¢ in equation (4), which prevents the
chemotactic drift velocity in equation (20) to become arbitrarily large. Furthermore, for the chemotactic
response the lower chemical threshold ¢, was introduced. In figure 3 we explore the influence of both parameters
on the traveling bacterial pulse. The chemotactic length ¢ increases from left to right and the threshold
concentration ¢, from top to bottom. The reference system of figure 2(a) is in the center.

A smaller chemotactic length  means that the bacterium can sense larger chemical gradients and that the
drift velocity v, saturates at a larger value proportional to 6. However, § cannot be chosen arbitrarily small
since then the tumble rate in equation (4) becomes negative. In this case our numerical solution scheme is
unstable and the bacterial density becomes negative.

Thelength 6 = 384 pum is close to the minimal value. In particular for small ¢, nearly all bacteria travel in the
pulse, none are left at the origin. As a result, the pulse travels the fastest. Increasing 6 to 600 pm, itis clearly
visible that some bacteria are left behind. Thus, the pulse contains less bacteria and, therefore, is slower. This is
also in agreement with the smaller chemotactic drift velocity. Interestingly, for the smallest ¢, we observe a
second propagating pulse strongly decreasing in height. Finally, if we increase ¢ by a factor of 10-6000 pm, the
majority of bacteria stay close to the initial location while only a smaller number of them travels in the pulse
(note the 10 times smaller range of the vertical axis). Thus, the pulse speed is small and the pulse has not yet
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Figure 3. Rescaled bacterial density p/ pg as a function of the chemotactic length § and threshold concentration ¢,. We increase ¢ from
left to the right and ¢, from top to bottom. The reference pulse from figure 2(a) is in the center. The color code for the different times is
the same as in figure 2. Note the smaller ranges of the x and y axis in the last column.

separated from the non-propagating bacteria. In conclusion, increasing ¢ decreases the maximum carrying
capacity significantly and makes the pulse slower.

Increasing the threshold concentration ¢, from nearly zero to ¢, = 0.1¢, has three effects. First, the dispersion
of the pulse increases which slows down the pulse. This is most notable when comparing the second to the third
row. Second, the shape of the pulse becomes more asymmetric as bacteria at the rear flank cannot follow the
pulse. Third, the number of bacteria left behind at the initial location increases slightly. In the upper middle plot
we recognize that the threshold ¢, is so low that the remaining bacteria can still travel by chemotaxis, although
with a stronger dispersion as the first pulse. Finally, even for the vanishing threshold of the upper left plot a slight
dispersion is visible. This again suggests that a true propagating soliton, for which the pulse shape does not vary
in time, is not possible as long as the chemotactic drift velocity is bounded.

4.2.2. Quantitative study of the rescaled Keller—Segel equations

We now consider the rescaled Keller—Segel equations and study the propagating bacterial pulse in detail. Hence,
we plot the rescaled pulse speed v,, the pulse full width at half maximum Ax;, and the pulse amplitude pyax/ po
as a function of the remaining parameters po/co, D./Degrand x,(1 — ( cos §)). Again, we neglect bacterial
growth by setting & = 0. Figure 4 shows all results and the relevant parameters are given in the figure caption.

In figure 4(a) we see that the pulse speed depends linearly on py/ ¢, in agreement with the Keller—Segel
prediction of equation (29) but then saturates at a constant value. The reference pulse from figure 2(b) (purple
disc), where all bacteria travel with the pulse, is located in the linear regime, while the reference pulse from
figure 2(a) (orange star), where some bacteria remain close to the origin, propagates in the saturated regime.
Thus, in the first case adding more bacteria to the system increases the number of bacteria in the traveling pulse
and speeds it up. In contrast, in the second case additional bacteria remain close to the initial location. Thus, the
traveling concentration pulse has a maximum carrying capacity N* with respect to the amount of bacteria it can
carry while further bacteria exceeding the carrying capacity are left behind. This is in agreement with
appendix C, where we derive an upper bound for N*. The transition between both regimes occurs at the critical
ratio (py/c)". To illustrate the transition, we discuss the following scenario. Lowering ¢, at constant p, speeds up
the pulse in the linear regime since bacteria degrade the chemoattractant faster and in agreement with
equation (29). However, once (p,/co)™ is reached, the pulse looses bacteria to keep the pulse velocity constant,
again according to equation (29). Thus the carrying capacity of the pulse decreases when ¢y decreases below a
treshold.

The ratio py/ ¢y also influences the pulse shape. In the linear regime of increasing po/ ¢y the pulse becomes
narrower while its absolute height pyq roughly increases with pg. When reaching the saturation regime, the
pulse width stays constant as should pp,,,x. Thus for the relative height we find . /p, o (p,/c0) "

In figure 4(b) we show the pulse speed does not significantly depend on the ratio of diffusion constants,

D,/ D.g, for both study cases I (blue stars) and II (green circles). This is in contrast to [77] where the authors
proposed a correction term to equation (29), which predicts a decrease of the pulse speed with increasing D...
However, when examining the bacterial pulse profile, we observe that for larger D,/ D.gthe pulse needs more
time to form. It needs more time to consume all the chemoattractant at the origin due to the larger diffusive flux
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Figure 4. Parameter study for the traveling bacterial concentration pulse. The rescaled pulse speed v, (first line), full width at half
maximum of the pulse A x;, (second line), and pulse amplitude pp../ po (third line) are plotted as a function of the rescaled parameters
00/ €0 @), Do/ Dege(b),and x,(1 — (cos 3)) (c). The values are determined at rescaled time = 10'* , where pulse propagation is well
established. When not varied, the following rescaled parameters are used: p, /co = 4.76 x 1078 (blue stars, studyI) and

Po/c0 = 1.59 x 1078 (green circles, study 1), D./Degr = 7.84, X, (1 — (cos 3)) = 29.6,8 = 1.09 x 10°, & = 1072 ;and & = 0.
The reference pulses from figures 2(a) and (b) are marked with orange stars (Ref I) and purple discs (RefII), respectively. The dashed
line in the curve py,., versus po/coisafitto y(x) = C/xwith C = 2.22 x 10~ while the dashed lines in the curves py,,, versus

Xo(1 — (cos B))arefitstoy(x) = Ax®with A = 3.53 x 107* ,B = 1.42 (bluestars)and A = 10.4 x 10~*,B = 1.43 (green
circles).

of chemoattractant into the depleted areas. But once the bacteria have fully degraded the chemoattractant, the
pulse propagates with the same speed v, independent of D... For increasing D/ D¢ the width of the pulse also
increases while the amplitude decreases. However, both trends are not very significant since pulse width and
amplitude do not even change by a factor of two while D,/ D, 1s varied over four orders of magnitude. Finally,
we note the relevant length scale | = /D.¢s /k to depend on the effective bacterial diffusion constant D gand
thus find v, oc /Detr. Moreover, the pulse width increases significantly with D g while the absolute height
increases only slightly.

Figure 4(c) shows the results when the chemotactic parameter x,(1 — ( cos 3)) is varied. For values larger
than 50 the numerical scheme becomes unstable similar to the instability in the chemotactic length 6 already
discussed in section 4.2.1. The pulse speed increases linearly in the chemotactic parameter for the study case I
(blue stars) and also for the study case II (green circles) in the range x,(1 — (cos 5)) < 20. To understand this
finding, we looked in detail at the bacterial profiles. In study case Il we find that with increasing x,(1 — (cos 3))
more and more bacteria from the vicinity of the initial location enter the pulse, which according to equation (29)
then speeds up. Thus we conclude for the maximum carrying capacity of the pulse, N* oc x,(1 — (cos 3). A
similar observation in connection with the scenario of figure 4(b) gives N* oc /D, Note that our results are in
contrast to [78] which found v, o< /X, . In study case Il (green circles) we start with a smaller number of
bacteria. Thus, at x,(1 — (cos 3)) ~ 20 all bacteria have entered the pulse, which then travels with constant
speed when x, (1 — (cos 3)) is further increased. Finally, with growing chemotactic parameter the width of the
traveling pulse decreases in the study case I (blue stars). The curve of study case II (green circles) follows this
trend until the pulse speed becomes constant and then steadily increases.

For the pulse amplitude of the two study cases the behavior of the curves are inverted compared to the pulse
width. The curves are well fitted by y(x) = Ax”, where the constants A differ approximately by a factor of three.
This is the factor by which the density ratios po/ ¢y of study cases I and II differ. The factor of three appears since
we plot the reduced amplitude pp,.,/ po- The exponents are nearly the same. The amplitude of the study case II
(green circles) decreases for x,(1 — (cos ) > 20 and thereby compensates the increasing pulse width as the
number of bacteria in the pulse is constant.

4.2.3. Influence of growth rate o
Finally, we investigate the influence of the growth term in the Keller—Segel equation (18). Figure 5 shows
propagating pulses for three different growth rates «, while the other parameters are chosen as in the reference
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Figure 6. Comparison of the experimental traveling pulse (gray circles) from figure 1(b) in [36] and the simulated pulse using our
model (colored lines) with parameters given in table 1. Both bacterial density profiles are indicated in the upper panel at different
times, the chemical field c is shown in the middle panel, and the polarization P, in the lower panel. The pulse speeds in both cases are
identical: v, = 3.8 um s~

system but with the reduced initial number of bacteria Ny = 0.5 x 10° . Itis below the maximum carrying
capacity of the pulse and was used in figure 2(b).

Consequently, in the upper panel the pulse grows due to the non-zero growth rate and speeds up in time
until the maximum carrying capacity is reached at around 2600 s. Then, the pulse propagates with constant
shape like a perfect soliton. However, in our case the pulse leaves a trail of bacteria behind, which originates from
the continuous bacterial growth.

In the middle and lower panel, the maximum carrying capacity is reached after 1000 s and 50 s, respectively.
Interestingly, the pulse does no longer separate from the broad distribution of bacteria, which spreads from the
initial location, but rather sits on top of the distribution’s right flank. In the lower panel the pulse is fastest and its
amplitude is highest. This comes from the fact that the broad distribution around the origin contains much
more bacteria compared to the middle panel and, thus, more bacteria actively take part in the degradation of the
chemoattractant. As a consequence, the pulse propagates faster.

Last, we observe that with increasing growth rate the pulse becomes more peaked. This is reminiscent to
figures 4(a) and (c), where a faster pulse has a smaller pulse width.

4.3. Matching the experimental pulse

Figure 6 (upper panel) shows the traveling bacterial concentration pulse recorded in the experiments of [36] and
compares it to the numerical solution of our polarization extended model. Both propagating pulses agree very
well in shape and in speed v, = 3.8 um s~ !. We extracted the experimental data from figure 1(b) in [36] and in
our model mainly used parameters from the same publication including a non-zero growth rate but also added
missing values from [39, 64]. Moreover, a realistic value for the sensing threshold

¢; = 2.61 x 10° um~2 = 0.1cy was chosen [64]. This was necessary to match the asymmetry and dispersion of
the pulse. The full parameter set is given in table 1.
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5. Discussion and conclusions

In the first part of this article we demonstrated how to derive the celebrated Keller—Segel equation using a
generalized Smoluchowski equation for the full distribution function in position and orientation and a
multipole expansion. An important ingredient is the bacterial tumble rate in a chemical field. We derived the
known Markovian response theory for the mean tumble rate starting from the classical chemotaxis strategy
based on temporal sensing in order to explain experimental results from [39]. Our expression for the tumble rate
includes logarithmic sensing and we added a lower chemical threshold and an upper bound for the chemotactic
response to keep the tumble rate positive. The multipole expansion provides a polarization extended model (PE)
from which we derived the Keller—Segel equation in the adiabatic limit, where the bacterial polarization instantly
follows variations in the density. We thereby obtain microscopic expressions for the diffusion coefficient and the
chemotactic drift velocity. Due to the bounded chemotactic response the inherent and unrealistic singularity in
the drift velocity is removed.

Our detailed study of the traveling bacterial pulse shows that its characteristic time is much larger than the
relaxation time of the bacterial polarization. Thus, PE and KS model provide identical results except for the
initial fields and we conclude that the full Smoluchowski equation as used for example in [36, 56] is not
necessary. This drastically reduces the computational effort and allowed us to perform extensive numerical
studies of the bacterial pulse propagation.

We find that due to the upper bound of the chemotactic velocity the traveling pulse can only carry a limited
number of bacteria. To the best of our knowledge such a maximum carrying capacity has not yet been reported in
the context of traveling bacterial pulses. In particular, it is not predicted by the analytic soliton solution of the
original Keller—Segel model [51]. Another consequence of the upper bound of the chemotactic velocity is an
effective dispersion of the pulse. While propagating, the pulse leaves a trail of bacteria behind and hence the pulse
height decreases and the width expands. This is consistent with results from [66]. The loss of bacteria can be
compensated by a non-zero growth rate and we have seen that soliton-like pulses, which propagate with
constant shape, are possible.

Exploiting a rescaled version of our KS model, we quantify how pulse speed, pulse width, and pulse
amplitude depend on the different unitless parameters. We mention some key results. First, throughout our
parameter study we find that the analytic soliton solution of the original KS model still provides a correct
estimate for the pulse speed as a function of the number of bacteria in the pulse. Second, we find the maximum
carrying capacity to be proportional to the chemotactic strength y,(1 — (cos 3)) /8 and \/D. Asa
consequence these parameters affect the pulse speed as long as there are sufficient bacteria in the system so that
the maximum carrying capacity is reached. Third, the diffusion coefficient of the chemoattractant does not
influence the pulse speed as predicted in a theoretic model in [77]. The pulse only takes longer to eat up all the
chemoattractant at the origin due to the larger diffusive flux of chemoattractant into depleted areas.

Finally, we show that our simulated pulse propagation is able to match quantitatively the traveling bacterial
pulse in the exeriments of [36] in speed and shape. In contrast to the models used in [54] and [36], we do not
need a second chemoattractant to generate a traveling concentration pulse as a solution of our generalized KS
model.

We mention four directions into which our approach can be extended. First, so far we did not explore the full
PE model, which will be relevant for dynamic processes with typical time scales of the order of 1 /w. In future
works it would be interesting to explore the possibility of having the bacterial polarization as an independent
field and its potential to induce complex dynamics. For example, the alignment or polarization of magnetotatic
bacteria can be controlled by an external magnetic field [79, 80], which offers the possibility to address
polarization as an independent field variable, e.g. by a time-varying external stimulus. The dependence of cell
characteristics on polarization could also evoke a feedback loop in highly nonlinear equations. For example, it
was shown that the nutrient uptake of bacteria depends on cell shape [81], meaning that the consumption rate
may depend on the polarization, which then influences chemotaxis [82]. For Janus colloids with effective
phoretic repulsion this can generate interesting collective dynamics on times much smaller than the
characteristic time scale of the bacterial pulse [29]. Finally, in complex geometries with characteristic lengths
similar to the persistence length of the bacterium, we expect the polarization equation also to become important.

Second, to describe the multiple pulses that have been observed in experiments with several nutrients [6, 83],
one can extend our model by coupling the bacterial density to several nutrient fields. Bacteria that are left behind
by the first pulse can then perform chemotaxis in a second nutrient field and thereby create a second pulse.

Third, in our generalized Smoluchowski equation the swimming speed is a constant as it is commonly done
for the E.coli bacterium also during chemotaxis [33, 35, 40]. However, some bacteria are known to couple their
swimming speed to the concentration of a chemical field [84—86], a strategy which is called chemokinesis.
Reference [58] derived coupled equations for bacterial polarization and density from a Smoluchowski equation
where the swimming velocity depends on the chemical concentration. Itis certainly interesting to extend our
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theory in order to investigate the combined effect of chemokinesis and chemotaxis. A cell that performs both
strategies is the sperm cell [44].

Finally, it would be interesting to extend our approach to chemoattractants to which E.coli is not perfectly
adapted such as serine [33, 40, 87]. For this chemoattractant the mean tumble rate drops as the concentration of
serine increases. Thus, when swimming up a chemical gradient, the chemotactic velocity increases [87]. In our
generalized KS model, the effective diffusion coefficient of bacteria D.g, which directly depends on the tumble
rate A.qu, Now is enhanced in front of the pulse as runs are longer, while it is smaller in the back of the pulse where
runs are shorter. This should affect the pulse propagation and indeed, experiments with serine showed that
below a certain strength of the chemical gradient traveling pulses do not form [88].
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Appendix A. Markovian response theory for tumble rate

Equation (1) describes the non-Markovian linear response of the tumble rate on the concentration history of the
bacterial trajectory ¢ (r(¢")). Now, by averaging over all possible trajectories that arrive at location r with
orientation e, we are able to derive a Markovian response theory for the mean tumble rate. We make use of the
fact that rightward and leftward tumbling is equally probable, thus the tumble angle distribution is an even
function, P(e — e’) = P(e’ — e). This hasindeed been measured for E.coli in experiments [33, 39, 40]. In the
following, we derive equation (2) from the main text.

We start with repeating the expression for the tumble rate from the linear response theory:

AW = A — [ " ORG - ) e(e(dr, (A1)

In the following, we will use three key properties of the response function R(7) that were measured in
experiments [34, 38, 62]. First, starting from 7 = 0 itis non-zero over a time interval 7,, 5 15 s, which we call
the memory time. Second, it fulfills L 0 R(7)d7 = 0, which means the tumble rate does not depend on the
absolute chemical concentration (perféozcc)t adaptation). Third, it is inversely proportional to the adaptation
concentration, R(t — t') = R(¢t — ') /c,. Adaption occurs during the memory time, thus we can set
¢, = c(r(¢)). Taking these properties into account, we will use the approximation
L OOO R(n)f (r)dt =~ 1/c, L OT R(7)f (7)d7.In particular, due to perfect adaption any additive constant in f(7)
will not contribute to the integral.

To evaluate equation (A1), we need an expression for ¢ (r(¢')). Therefore, we perform a Taylor expansion
around the current position r(¢) = r, and locally approximate the chemical field by

c@)=c@)+ Ve (@' —n), (A2)

where we used ' = r(¢'). In the following derivation, all locations r’ that contribute to the integral in
equation (A1) should be close to the current location r; so that the linear approximation is valid. Moreover, we
assume that temporal variations of the chemical field are negligible within the memory time 7,,, so that V¢ is
constant. Both requirements are justified for the bacterial pulse. On the one hand, the mean run length of
bacteria is much smaller than the width of the step in the chemoattractant concentration, and on the other hand
on times comparable to 7,, the step hardly moves.

Using equation (A2) in (A1), we obtain

D = A~ Ve/er [ Rt~ i) rde, (A3)

t—"Tmn

where we applied the property of perfect adaption to set fj _ R(t — t")[c(r) — Vec(t) - r;]dt’ = 0and that
V¢ is constant within the memory time 7,,,. '

To proceed, we write the trajectory of a bacterium that swims with constant velocity v, along the direction
given by unitvector e(t) as r(t) = r(t') + vy ftf e(t'")dt", where the bacterium has been at location r(¢')

before reaching r(¢), thus ¢ < ¢.In the following, we use it in the form
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t,
r(t) = r(t) + v f e(t")dt". (Ad)

Changes in the swimming direction due to rotational diffusion are much smaller than due to tumbling.
Consequently, the trajectory of the bacterium becomes a sequence of straight runs and instantaneous tumble
events. Denoting tumble events by index i, the tumble time ¢, and e; the direction prior to tumble event i, we can
write the orientation vector in equation (A4) atany time "/ < ¢ with the help of a telescope sum:

n

n
e(t") =e(®) + > (e; —ei_)) = (e; — ej_y). (A5)
i=1 i=0

Here we set e = e(t) for the current direction after the last tumble eventi = 1and e_; = 0 isused. The
number of tumble events in the time interval # — "’ is n and we number the tumble events backwards in time.

Now, we determine the mean tumble rate (A (¢)) by averaging the right-hand side of equation (A3) over an
ensemble of bacterial trajectories r(¢’) that all reach the position r(¢) with swimming direction e(t). For this, we
first have to evaluate (e(¢"’)) in equation (A4) by averaging over n independent tumble events and considering
that n is arandom variable. It is determined by the probability distribution P(#n, t — t'') of having #n tumble
events in the time interval t — t"/. We can thus write

(e(t")) = Z P(n, t — t”)z —ei_1) (A6)

Note, for a constant tumble rate P(n, t — t'") becomes a Poisson distribution. To calculate the mean tumble
direction (e; — e;_1) we use the probability distribution P(e;_; — e;) from the main text and calculate the first
moment as in equation (11) but now with respect to the incoming direction e; of the tumble event. This gives

€)= feiP (e;_1 — e;)de; = (cos B)e;_,, where the tumble angle is determined by cos 5 = e;_; - ;and we
used that P(e;_; — e;) is an even function meaning that left- and rightward tumbles are equally probable.
Repeating the formula for (e;) for the whole sequence of tumble events, we finally have {e;) = (cos 3)'e(t) and
the telescope sum in equation (A6) becomes

do(ei—ei)=> (e) — (ein) =e(t) — 0+ (cosf)e(t) — (cosB) 'e(r)
i=0 i=0 i=1
= ({cos B)"e(1). (A7)
Combining the last two equations yields
(e(t")) = Z P(n, t — t"){cos B)"e(t), (A8)
n=0

where the only remaining orientation vector is the current one, e(t). In general, the probability distribution
P(n, t — t'")isacomplex quantity as it depends on the tumble rates at previous times. Only for weak chemotaxis
we can approximate the tumble rate by the constant value A.q, and Pbecomes the Poisson distribution

N\
[)\equ(t -1 )] e*/\equ(t*fu)_

P(n,t —t") = (A9)
n!
The weak-chemotaxis approximation was used, e.g. by Locsei in [63]. However, knowing the exact form of
P(n, t — t"")is not relevant for our further argumentation.
Now, with equations (A8) and (A4) we can formulate the average location
t'
(r(t) = r(t) + v f Z P(n, t — t"){cos B)"dt" e(r). (A10)
n=0
Using it in the tumble rate (A3), we finally obtain
Ve
<)\> = )\equ — XoVvoe(f) - C_ (A11)
with
th oo
f f Z P(n, t — t"){cos B)"dt"R(r — t)dt’. (A12)

Setting ¢, = c(r) we then recover equation (2) from the main text. It is clear that x, is a complicated quantity,
which depends on the history of all trajectories, we average over. In the article we take a more pragmatic
approach. We take x as a constant and concentrate on how the tumble rate depends on
e(t) - V¢/|Vc = —cos 6. This dependence was measured in experiments as we show in the plot of figure 1,
right reproduced from [39].

Locsei in [63] calculated the chemotactic drift speed v, in the weak-chemotaxis approximation using an
explicit form for the reponse function. We can reproduce his formula for v, which demonstrates that our
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approach agrees with his work. For weak chemotaxis equation (A9) is valid. Following [89] we can also include
rotational diffusion and obtain for the mean orientation

(e(t")) = e A= {cos ) @=DDrot(1—t") g (1) (A13)

which replaces equation (A8). Note that in the exponent we recover the relaxation rate

W= Aequl = {cos 3)) + (d — 1) D,y from equation (14) in the main text. We will further use it. Now the
exponential function of the last equation becomes the integrand in equation (A12). Integrating over ¢/,

we arrive at

t e—w(t—t) _
o= [ Rt~ )t (Al4)
-

m

The parameter X, appears in equation (20) for the chemotactic drift speed v, = |Vep,|, which we reproduce
here without the threshold and saturation terms:

i1 — (cosﬁ))XO |Vc|‘

= (A15)
< wd c
We choose the same parametrization for the response function as [63]
3 20N] 2
Ry = 20 | Aean? el )T (A16)
3 2 2

where ( quantifies the strength of the response function. Calculating x, from equation (A14) we finally arrive at

G Nequ (1 = (<05 3)) 2w + 3Aeq) |V
9w [w + /\equ]3 ¢ )

Veh = (A17)

were we used the dimension d = 3. This expression agrees with equation (57) in [63] up to the factor 1 /¢, which
resulted from setting R = R/c in the beginning and which [63] did not introduce.

Appendix B. Parameter dependence of the tumble rate

We restate the relation for the tumble rate

v c Ve R
A, €) = Aequ — XO—Otanh — tanh(&l l)e -8, (B1)
6 I c

where we use the normalized gradient direction § = |VTCC‘ We also introduce the orientation angle  between e
and the negative chemical gradient

cosf = —e - S. (B2)

To illustrate the effect of the additional parameters ¢ and ¢, associated with the hyperbolic tangent function,
we plot the tumble rate as a function of the chemical concentration cin figure C1 varying different parameters.
Already in figure C1(a), where we vary ¢,, we recognize the main features by identifying three regions. For
concentrations well below the sensing threshold, ¢ < ¢;, the tumble rate approaches its equilibrium value. This

2 ¢ = 0.001 2 § = 384pm 2
— ¢ =0.005 — 0 = 600pm
g — =001 2 — 5= 1000pm 9, M
<14 <14 Sl =" 0 =0.75m ___ S=
= = = \ — 0=05n /
— 0=0.257
— 0=0
01, . . . 01, . - . 01, . . . .
0.0001 0.01 c* 1.0 0.0001 & 0.01 1.0 0.0001 ¢ 0.01 c* 1.0
¢/co c¢/co ¢/co

Figure C1. Semi-logarithmic plot of the normalized tumble rate A /A.q, as a function of the chemical concentration c for different c,
(@), § (b), and 6 (c). We always choose [ V| = 2 x 107 um~ ¢y, close to the maximum slope of the chemical step in figure 2(a). If not
stated otherwise, we also keep the values of the other parameters constant: @ = 384.0 um, ¢; = 1073 ¢, 6 = 600 pm,and = 7.

The saturation of the chemotactic response occurs below ¢* = |V ¢|§ and ¢, is the chemotactic sensing threshold.
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also ensures a smooth transition to the case where no chemoattractant is present, A(c = 0) = Aq,. For
increasing concentrations but smaller than ¢* = § V¢, the chemotactic response saturates to a constant value
below ).q,. Note that the tumble rate cannot become negative as long as the parameters satisfy
XoVo
0Aequ

<1 (B3)

This relation must be also fulfilled when the bacterial swimming speed varies. Finally, increasing c further
beyond ¢*, we recover the 1/c dependence from the original Keller-Segel model.

In figure C1(b) we vary the chemotactic length 6, which has two effects. First, the concentration ¢* = § Ve,
where the transition to the conventional 1/c dependence occurs, increases with 6. Note that § = 600 pm used
for the pulse propagation in figure 2(a) guarantees that we are in the conventional 1/cregime. Second, the
maximum tumble-rate variation y,v,/8 scales with § ', which is clearly visible in figure C1(b). In fact, at
6 = 384 pim the tumble rate becomes zero. Finally, in figure C1(c) we illustrate that the maximum tumble-rate
variation behaves like cos 6 x,v /6.

Appendix C. Upper bound for the maximum carrying capacity

From the Keller—Segel equations (18) and (19) in 1D we derive the equations to describe a bacterial pulse. Since it
should propagate with constant shape, one writes the bacterial and chemical densities as functions of the pulse
variable { = x — v,tand obtains [51]

Op 0% 0
—Vy—— = Def—= — —Vech P> Cl1
Vpag ff(952 8§Vhp (Ch
Oc 0%c
—v,— = D.— — kp. C2
Vpag o¢? P (C2)

The boundary conditionsat ¢ — tooarep = 0, g—g = 0,¢c = ¢y/0,and ? = 0. Following the approach
of [51], we integrate the second equation from — o0 to 00 and obtain the Keller—Segel relation for the pulse
speed v,

kN, C3)
V= ——,
b Ac 0
where N, /A is the number of bacteria in the pulse per unit area.
Now, we can derive another relation for the pulse speed by integrating equation (C1) from £ to 00
0

%= v(©) ~ Der 57/, (C4)

<

This equation has to be fulfilled for all &, in particular, also in the rear of the pulse. Here g—p is positive and so is the

second term on the rhs of the last equation. Therefore, the pulse speed always has to be smaller than the
chemoctactic drift speed, which itself has a maximum value ¥, ;.. Thus we obtain an upper bound for the pulse
speed

Vp < Vehmax- (C5)

Inserting v, from equation (C3), we finally obtain an upper bound for the maximum carrying capacity

N < B (C6)
Appendix D. Multipole expansion with bias in the tumble angle

Following the same steps as in the multipole expansion without angle bias, we average equation (8) over all
orientations e using equation (22) and obtain

0
a—f = -V - WP) + DV?p + ap. (D1)
Similarly, we compute the polarization f e equation (8) de using equations (23) and (24) and with § = i gz jwe

obtain
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oP Yo 2 el
== WV -Q— ;Vp 4+ DV?P — [Dyoe(d — 1) 4+ (1 — ©) AequlP
+(@1 - @O)X(g)(} -8
J— =) >\€ u
. @0X(|Vc|)p ‘4 Aequo_(lvq)Q o4 D U(IVCI)p s
d c c d c
X(ﬂ)g(ﬂ)sisjfeiej ey (r, e, t)de. (D2)
c c
The last term in equation (D2) is part of the octupole moment which is defined as
Oy = f[eiejek - L(ei‘sjk + exbij 4 ¢d)]Y (r, e, f)de, (D3)
d+2

and represents the interplay between tumble rate variation and tumble angle bias. By neglecting all moments
above the first and again defining a relaxation rate w = Dyoi(d — 1) + (1 — ©) Aequ We arrive at

oP v 1 -6, (IVd) Ve  Aequ (V) Ve
Z— =—wP +DV?®P - 2Vp+ 0 ( ) +
or ¢ T T XU iva T a U v

[ 2 X(chl)g(chl)P. VC]VC 1 X(chl)J(chl)P' 09
d+2 c c IVl [V d+2) c c

Appendix E. Time dependence of the pulse speed and effect of the initial bacterial
configuration

Figure E1(a) shows the time dependence of the pulse speed v,(#) for the reference pulses from figure 2(a) (RefT)
and from figure 2(b) (RefII), respectively. The pulse speed converges to a constant value.

In figure E1(b) we investigate the effect of the initial bacterial configuration on the pulse propagation.
Changing the initial distribution from an exponential to a step profile or a linear profile has no effect on the pulse
speed, indeed the curves are very close. The same is true when we change the decay length to xy = 5 pm and
X9 = 500 pm. Only for x, = 5000 pm, which corresponds to 5% of the system length and which is larger than
the pulse width, the curve starts to look different. Probably, when one simulates for much larger time, the pulse
assumes the speed of the previous cases. As the pulse speed is directly linked to the number of bacteria in the

pulse, we conclude that the maximum carrying capacity is stable for reasonable variations in the initial bacterial
configuration.

°
T 5.0 stk | 2 5.0 Bnunay -
g o g “S%eeee .
3 =) XYY
N 2.5 ~0C00C00C00Cc00000 ‘; 2.51e
s S
0.0 0.0
0 1500 3000 0 1500 3000
* Ref I O Ref Il *  Expon. > Linear 5
Step < Linear 500
Linear ®  Linear 5000

Figure E1. Pulse speed as a function of time: (a) for the reference pulse from figure 2(a); (b) for different initial configurations for the
bacterial configuration. Instead of an exponential profile with decay length xo = 50 pm, we trya step profile and a linear profile with
the same decay length. Moreover, we also vary the decay length for the linear profile to xo = {5, 500, 5000} yem.
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