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Abstract: The concept of a “flow network”—a set of nodes and links which carries one or more
flows—unites many different disciplines, including pipe flow, fluid flow, electrical, chemical reaction,
ecological, epidemiological, neurological, communications, transportation, financial, economic and
human social networks. This Feature Paper presents a generalized maximum entropy framework
to infer the state of a flow network, including its flow rates and other properties, in probabilistic
form. In this method, the network uncertainty is represented by a joint probability function over its
unknowns, subject to all that is known. This gives a relative entropy function which is maximized,
subject to the constraints, to determine the most probable or most representative state of the network.
The constraints can include “observable” constraints on various parameters, “physical” constraints
such as conservation laws and frictional properties, and “graphical” constraints arising from
uncertainty in the network structure itself. Since the method is probabilistic, it enables the prediction
of network properties when there is insufficient information to obtain a deterministic solution.
The derived framework can incorporate nonlinear constraints or nonlinear interdependencies between
variables, at the cost of requiring numerical solution. The theoretical foundations of the method are
first presented, followed by its application to a variety of flow networks.

Keywords: maximum entropy analysis; flow network; probabilistic inference

1. Introduction

The past decade witnessed a tremendous growth of interest in the structural and dynamic
properties of networks, especially from the perspective of statistical physics, e.g., [1–10]. This was
triggered by many new applications, e.g., the Internet and Web 2.0 applications, e.g., [11,12];
human social networks, e.g., [3,4,8]; electrical power networks with distributed generation and storage,
e.g., [13,14]; land transport, air traffic and freight networks, e.g., [15–19]; complex dynamical systems
and causal networks, e.g., [20–22]; nonequilibrium chemical reaction and biological networks, such as
metabolic networks, e.g., [23–25]; ecological and global climate networks, e.g., [26,27]; and “networks
of networks”, e.g., [28–31]. A literature review spanning all of these applications would be vast;
we here defer to several reviews and monographs [3–5,7,9,19,21,30,31]. However, despite the breadth
and depth of these studies, many fundamental questions on the analysis of networks have not been
satisfactorily resolved. In particular, while many studies have analyzed the dynamics of networks,
much less attention has been devoted to the analysis of dynamics on networks, or the combined
problem of dynamics on and by networks. Despite several pioneering studies within several disciplines,
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a general probabilistic framework for the analysis of flows on networks subject to uncertainty has not
been presented.

We here define a flow network as a set of nodes connected by links, which carries flow(s) of
one or more quantities; typically but not exclusively of conserved quantities. Such networks can
be represented by undirected or directed graph structures such as those illustrated in Figure 1a,b.
Many flow networks will carry flows that are driven by or associated with differences in a physical
field or potential, while in others, the demand is governed by parameters other than potentials.
The concept of a flow network thus provides a unifying theoretical framework for the analysis of
networks from many disparate disciplines, e.g., pipe flow, fluid flow, electrical, chemical reaction,
ecological, epidemiological, neurological, communications, transportation, financial, economic and
human social networks. Consider, for example, two types of flow network of importance to human
society: (i) pipe flow networks used for the distribution of potable water and natural gas in populated
areas, e.g., [32,33], and (ii) transportation networks used by motor vehicles, e.g., [15–19]. In the latter
case, the network can have a physical manifestation such as a road or rail network, or could be a virtual
(topological) network represented by aircraft or shipping routes. A third example of increasing interest
is that of epidemiological networks, which govern the spread of disease, e.g., [34,35]; these commonly
require interconnections between networks of different character, or “networks of networks” [28–31].
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Figure 1. Graph representations of flow networks, with (a) undirected or (b) directed flows.

The aim of this study is to present a general framework for the analysis of any flow network
based on the maximum entropy (MaxEnt) method [36–41], the fundamental tool of statistical physics.
The method is founded on the generic (probabilistic or information-theoretic) definition of entropy,
a measure of the spread of a probability distribution, which in thermodynamics has a deep connection
to observable irreversible change. In the MaxEnt method, the user maximizes the entropy of a system,
subject to any physical constraints, to infer its state, expressed in the form of a probability distribution.
This can be post-processed to extract additional information on the system, such as its statistical
moments. The power of the MaxEnt method lies in its ability to infer the state of an underconstrained
(underdetermined) dynamical system, i.e., for which the number of unknowns exceeds the number
of equations. In many situations it also enables a substantial reduction in model order. The classical
example of this utility is demonstrated by chemical thermodynamics, for which the MaxEnt method
generally furnishes a 23-order-of-magnitude reduction compared to the underlying (molecular or
canonical) dynamical system. In addition to its outstanding successes in statistical thermodynamics,
over the past few decades, the MaxEnt method provided new insights in many other fields of research,
throughout all branches of science, engineering, mathematics and the social sciences [38,41–43].

We first sketch the relationship between the present framework and conventional thermodynamics:
whereas in many problems of physics, a system will consist of a discrete or continuous set of (macro)states
embedded in a continuous (physical or phase) space, in a flow network the geometry is partly discretized.
Adopting a statistical physics formulation, we assign state variables to the flow rates through each internal
and external link of the network, and also (if defined) to the potentials at each node. A network ensemble
can then be conceptualized by considering all copies of the system at different times or with different
initial conditions, as is usual in statistical physics. The (generic) entropy of the system can then be
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defined using the Boltzmann equation H = lnP [44–46], where P is the governing probability distribution,
which in this case expresses the allocation of entities (flow rate and potential state variables) to states
(their possible values). For discrete, distinguishable entities and states, a multinomial distribution results:
P = N !∏i qni

i /ni!, where ni entities are allocated to the ith state, qi is the prior probability of allocating
an entity to the ith state, andN is the total number of entities. Here we note that the prior probability
qi represents the ith state of the “unconstrained” system, and is needed to account for states of unequal
weighting (degeneracy). In the asymptotic limitsN →∞ and ni/N → pi, this gives the relative entropy
H = −∑i pi ln(pi/qi) [38,47,48]. The network will also be subject to a variety of constraints, in the form
of specified values of various statistical moments, physical laws and network properties; these must
be incorporated into the optimization procedure. Maximizing the relative entropy H, subject to the
constraints, is then equivalent to maximizing P (in the asymptotic limit) subject to the same constraints,
to give the most probable state of the network. From the information-theoretic perspective, this can
also be interpreted as the least informative description of the network, or that which contains the least
information subject to the constraints [36–38,41]. In the present study, for mathematical convenience
we consider continuous flows on a discretized network, giving a continuous, multivariate form of the
above apparatus.

This work is set out as follows. In Section 2, we define the generalized flow network under
consideration, including a standard set of specifications applicable to potential-flow and transportation
networks. In Section 3, we provide a general formulation for the probability distribution, entropy and
constraints for this standard network, and work through the operation of the MaxEnt method
to its main findings. For this we examine the handling of nonlinear moment constraints and
interdependencies, not usually examined under the MaxEnt framework. We also discuss the role of
time in the MaxEnt formulation. In Section 4, we discuss the application of the method to a variety of
flow networks. A brief comparison between the MaxEnt method and Bayesian inference is provided in
Section 5. The conclusions are then summarized in Section 6.

2. Network Specifications

Consider a generalized flow network such as one of those represented in Figure 1a,b. For maximum
generality, we consider all possible undirected graphs (with unspecified flow directions), directed graphs
or digraphs (with fixed flow directions), simple graphs (no self-loops or multiple connections),
loop-graphs (with self-loops) and multigraphs (with multiple connections). The multigraphs can be
further classified into undirected and directed forms, and those without or with loops. Weighted graphs
are treated as continuous forms of multigraphs. We do not specifically discuss bipartite graphs or
networks of networks, but these can be analyzed by extension of the formulation given here.

We first consider a flow network defined by the following set of quantitative specifications,
here termed the “standard set”:

(1) A set of N ∈ N∪ 0 = N0 vertices (nodes), with index i or j.
(2) A set of M ∈ N0 internal edges (including loop edges) between pairs of nodes,

commonly represented by an N × N adjacency matrix A, in which each element Aij indicates
the connectivity between nodes i and j. On an undirected graph, Aij ∈ {0, 1}, indicating Boolean
connectivity (hence A is symmetric with a zero diagonal), so ∑N

i=1∑
N
j=1 Aij = [2M, 2M − L]

respectively for undirected simple graphs and undirected loop-graphs, where L ∈ N0 is the
number of self-loops. On a digraph, Aij ∈ {0, 1} refers strictly to the connection from node i
to j, thus incorporating the flow direction (so A can be asymmetric), hence ∑N

i=1∑
N
j=1 Aij = M.

On a multigraph, Aij ∈ N0 indicates the number of edges from node i to j, whence ∑N
i=1∑

N
j=1 Aij =

[2M, 2M − L, M] respectively for undirected multigraphs, undirected loop multigraphs and
multidigraphs. For weighted graphs, Aij ∈ [0,∞) = R+0 (or more generally Aij ∈ R), representing
the weight of each edge. Double summation then gives ∑N

i=1∑
N
j=1 Aij = [2W, 2W − WL, W]



Entropy 2019, 21, 776 4 of 20

respectively for undirected, undirected loop and directed weighted graphs, where W, WL ∈ R+0
(or more generally W, WL ∈ R) are respectively the total weight and the weight of self-loops.

(3) A set of P ∈ N0 external edges (links) to nodes, represented by an N-dimensional external
adjacency vector U, in which each element Ui ∈ N0 indicates the number of external links to node
i. For undirected graphs, digraphs and multigraphs, P = ∑

N
i=1 Ui. (While not implemented here,

the external links could alternatively be represented by P connections to a fictitious external node,
allowing all links to be united into an (N + 1)× (N + 1) augmented adjacency matrix Ã [24,33].)
For a weighted graph, if the external edges are also weighted then WP = ∑

N
i=1 Ui, where WP ∈ R+0

(or more generally WP ∈ R) is the total weight of external edges.
(4) A set of M internal flow rates Qij, i, j ∈ {1, ..., N}, of some countable quantity B from nodes i to j

along the ijth edge, measured in units of B s−1. In general, the flow rates will be functions of time
and/or the graph ensemble. For a simple graph, they can be grouped into the N × N flow rate
matrixQ, with nonexistent edges handled by assigning Qij = 0 or Qij = undefined. (Alternatively,
the admissible flow rates Qn can be stacked into a flow rate vector Q, for which the ijth and nth
edges are connected by a lookup table [32,33].) In addition:

(a) On an undirected graph, the non-diagonal flow rates Qij ∈ R,∀i ≠ j, are antisymmetric
Qij = −Qji and can reverse direction. In contrast, on a digraph they are strictly nonnegative
Qij ∈ R+0 and need not be correlated Qij ⪋ Qji. We recognize that in all networks, the flows
are quantized (especially significant for transport networks), but for maximum generality,
we here adopt the continuum assumption with real-valued flow rates.

(b) A graph with self-loops can have Qii ∈ R+0 , i.e., Qii ≥ 0. Such flows are incompatible with
potential flow networks, but can be realized in other systems such as transport networks.

(c) On a multigraph, there may be up to K = max(Aij) ∈ N0 connections from node i to j,
with flow rates labelled Qij(k) for k ∈ {1, ..., K}. These can be united into the N × N × K
third-order matrix Q, assigning Qij(k) = 0 or Qij(k) = undefined for nonexistent edges.
If summed along the kth direction, this gives an N × N total internal flow rate matrix Q̂,
with entries Qij = ∑

K
k=1 Qij(k).

(d) For networks with alternating electrical currents, it is convenient to consider complex
flow rates (phasors) Qij(k) ∈ C, commonly expanded as Qij(k) = Iij(k) = ∣Iij(k)∣ exp(ıψij(k)),
where ∣Iij(k)∣ is the current amplitude, ψij(k) is the phase and ı =

√

−1.
(e) For multidimensional flows, we define Qij(k)c as the flow of species c ∈ {1, ..., C} on the

ij(k)th edge, where C is the total number of species (e.g., cars, trucks and buses on a road
network, or independent chemical species on a chemical reaction network). These can
be collated into the N × N ×K ×C fourth-order matrixQ, which if summed along the kth
direction gives the N × N ×C total internal flow rate matrix Q̂. For brevity, we refer to flows
of a C-dimensional vector quantity B with components Bc ∈ {B1, ..., BC}.

(f) In some flow networks, a given edge into a node may be connected only to some outward
edges (e.g., certain traffic junctions in cities, or protected nodes in electrical networks).
Such nodes must be treated as graphical objects in their own right, leading to embedded
networks-of-networks. Such complications, while important, are not examined further here.

(5) A set of P external flow rates Θi(m) ∈ R, i ∈ {1, ..., N}, m ∈ {1, ..., O}, where O = max(Ui),
denoting flow on the mth external link to node i, here defined positive if an inward flow.
These flow rates are also measured in units of B s−1, and can be grouped into the N ×O matrix Θ,
again assigning Θi(m) = 0 or Θi(m) = undefined for nonexistent external links. Furthermore:

(a) For networks with a maximum of one external link to each node (O = 1), we need only
consider the N-vector Θ of external flow rates Θi.
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(b) For alternating current networks, we consider complex external flow rates (phasors)
Θi(m) = ∣Θi(m)∣ exp(ıηi(m)) ∈ C, where ∣Θi(m)∣ is the external current amplitude and ηi(m)
the phase.

(c) For multidimensional flows, we consider the flow rate Θi(m)c of each species c, which can
be assembled into the N ×O ×C external flow rate matrix Θ. This can be summed along the
m direction to give the N ×C total external flow rate matrix ̂Θ, with entries ∑O

m=1 Θi(m)c.

(6) For potential flow systems: a set of N potentials Ei ∈ R at each node i ∈ {1, ..., N}, united into
the N-dimensional vector E. For alternating current networks, we consider complex potentials
(phasors) Ei ∈ C, commonly written as Ei = Vi = ∣Vi∣ exp(ıφi), where ∣Vi∣ is the electrical potential
amplitude and φi is the phase. For multidimensional flows, we consider the independent
potentials Eic, assembled into the N ×C matrix E.

(7) For potential flow systems: a set of M potential losses (negative differences), on a simple graph
given by:

▲Eij = −∆Eij = Ei − Ej, ∀i, j (1)

These are generally interpreted as driving forces for the flow rates Qij, measured in units of a
difference or gradient in the intensive variable conjugate to B. Examples include losses in pressure,
electrical potential, temperature (or reciprocal temperature) and chemical potential (or chemical
potential divided by temperature). For simple graphs, these can be assembled into the N × N
matrix ▲E . In a multigraph, the potential losses are independent of subindex k:

▲Eij(k) =▲Eij, ∀i, j, k (2)

but it is useful computationally to retain all terms in an N ×N ×K matrix▲E . For multicomponent
flows, the potential losses ▲Eij(k)c = −∆Eij(k)c = Eic − Ejc give the N × N ×K ×C matrix ▲E .

(8) For potential flow systems: a set of M resistance or constitutive relations for each edge, which for
purely local dependencies can be written as:

▲Eij(k) = −∆Eij(k) = Rij(k)(Qij(k)), ∀i, j, k (3)

where Rij(k) is the ij(k)th resistance relation. For example, in electrical circuits, (3) give linear
relations ▲Eij(k) = Rij(k)Qij(k) (Ohm’s law), where Rij(k) is the resistance (for direct currents) or
impedance (for alternating currents) of the ij(k)th edge. In pipe flow networks, (3) are often
written as power law relations ▲Eij(k) = Xij(k)Qij(k) ∣ Qij(k) ∣ α−1 (Blasius’ law), where Xij(k) is a
parameter and 1 ≤ α ≤ 2 is a coefficient [49,50], or can be expressed in more complicated forms
such as the Colebrook equation [51]. Some resistance relations may not be functions: i.e., they may
allow multiple solutions. For multidimensional flows, (3) applied to the cth pair of flow rates and
potential losses gives:

▲Eij(k)c = Rij(k)c(Qij(k)c), ∀i, j, k, c (4)

In multidimensional flows, there is also the possibility of cross-phenomenological transport
processes, e.g., of thermodiffusive, thermoelectric, electrokinetic, electroosmotic or galvanomagnetic
phenomena, e.g., [52–56]. These are usually represented by linear Onsager relations, valid close to
equilibrium, of the form:

▲Eij(k)b =
C
∑

c=1
Rij(k)bcQij(k)c, ∀i, j, k, b (5)

in which Rij(k)bc is the bcth phenomenological resistance, which will satisfy reciprocity Rij(k)bc =

Rij(k)cb. However, in general these will require the (nonlinear) relations:

▲Eij(k)b =
C
∑

c=1
Rij(k)bc(Qij(k)c), ∀i, j, k, b (6)
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in which Rij(k)bc is now the bcth phenomenological resistance function. The connections between
reciprocal functions may be complicated. Equations (3)–(6) can be assembled into the function:

▲E =R(Q) (7)

whereR is an N × N ×K ×C resistance operator, which in general may contain non-local effects,
cross-phenomenological effects and other dependencies.

Combining the above points, we consider a flow network defined by the standard set of specifications:

S = {N, M, P, K, O,A, U, C, B,Q, Θ, E,▲E ,R} (8)

which from (1)–(7) and various other constraints—to be discussed—will involve some functional
interdependencies. It is convenient here to amalgamate all graph properties into the discrete function:

G = G(N, M, P, K, O,A, U) (9)

and also to remove the redundancy between potentials and potential differences, to give the set:

S = {G, C, B,Q, Θ,▲E , E
,R} (10)

where E
 is a vector of reference potentials E

c at a nominated node.

We note that many networks—especially in transportation—do not have potentials,
potential differences or resistances. Such networks can be examined using the above standard set (10),
with the demand handled by the use of cost or travel time functions instead of potentials, in many
cases augmented by various strategies or optimization schemes for route selection [15,16,18].

3. Maximum Entropy Analysis

3.1. Overview

We now consider the analysis of flow networks by the maximum entropy (MaxEnt) method.
This always consists of the following steps [38]:

(1) Definition of a joint probability and/or probability density function (pdf), to quantify all
uncertainties in the specification of a given system;

(2) Definition of a relative entropy function for the network, based on this probabilistic representation;
(3) Incorporation of information about the a priori distribution of the system over its parameter space,

in the form of a prior probability and/or pdf;
(4) Encoding of other background information, for example any physical laws or known parameter

values, in the form of constraints;
(5) Maximization of the relative entropy function, subject to the prior and constraints, to predict the

state of the system.

Philosophically, the MaxEnt algorithm has been shown to select the most probable description
of the system [44–46], or its least informative description [36–38,41], consistent with the constraints.
This is generally interpreted as the stationary state of the system, equivalent to its “typical” or “most
representative” state. In typical thermodynamic systems involving isolated systems or canonical
ensembles—for which the probabilities and constraints are defined over the contents of the system or
the ensemble—the stationary state is interpreted as the equilibrium position of the system, e.g., [57–60].
However, in forced flow systems such as flow networks—in which the probabilities and constraints are
defined over constant flow rates or fluxes into or through part of the system—the stationary state must
instead be interpreted as the steady state of the system [61–63]. (We note that the term “steady-state” is
somewhat misleading, since it refers only to the mean flow and not its fluctuations; a steady-state flow
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need not be steady in time, only in the mean.) More elaborate formulations involving time-dependent
constraints are discussed further in Section 3.6.

Each step of the MaxEnt framework, applied to the analysis of flow networks, is discussed in turn.

3.2. Uncertainty and Probabilistic Representation

A flow network is always subject to some uncertainty associated with a lack of knowledge of its
specification. For example, there may be uncertainty in the known values of its instantaneous flow rates
Q and potential differences ∆E ; in its controlling external flows Θ; in its more fundamental properties
such as the resistance functionsR; or even concerning the existence of specific internal or external
links (represented byA or U) or the number of nodes N. The maximum entropy (MaxEnt) method
of Jaynes provides a rigorous technique with which to predict the state of the network, despite these
inherent uncertainties in its specification.

We must first represent the uncertainties in quantitative form. Following the well-established
line of reasoning developed by Bayes [64], Laplace [65] and many others, extended by Polya [66,67],
Cox [68] and Jaynes [38], the uncertainty (or degree of belief) in a discrete parameter should be
expressed as a probability. Writing Υn for a discrete random variable which takes values n over the
domain Ωn ⊆ N or Ωn ⊆ Z, this probability is defined by:

p(n ∣ I) = Prob.(Υn = n ∣ I) (11)

Some authors refer to this as a probability mass function (pmf) [69]. Equation (11) is conditioned on the
background information I, which contains all that is known from the problem specification (including
the parameter space, prior and constraints). Equation (11) will satisfy normalization, ∑n∈Ωn p(n ∣ I) = 1.

Alternatively, for a real parameter x, the uncertainty should be expressed as a pdf. For a
continuous random variable Υx which takes values x over the domain Ωx ⊆ R, this is defined by
the probability:

p(x ∣ I)dx = Prob.(x ≤ Υx ≤ x + dx ∣ I) (12)

again conditioned on some background information I. This will again satisfy normalization

∫Ωx
p(x ∣ I)dx = 1. Extending this to an s-dimensional continuous vector or matrix quantity x, we can

write the joint probability:

p(x ∣ I)dx = Prob.(x ≤ Υx ≤ x + dx ∣ I) = Prob.
⎛

⎜
⎜

⎝

x1 ≤ Υx1 ≤ x1 + dx1

⋮

xs ≤ Υxs ≤ xs + dxs

RRRRRRRRRRR

I
⎞

⎟
⎟

⎠

(13)

in which dx =∏
s
i=1 dxi is the product of differentials of all terms. We can also consider a joint probability

containing both discrete and continuous variables, thus invoking a mixed probability mass and density
function, for simplicity also referred to here as a pdf.

Accordingly, the uncertainty in a flow network defined by the standard set of specifications (10) is
given by the joint probability:

p(S ∣ I) = p(G, C, B,Q, Θ,▲E , E
,R ∣ I)dQ dΘ d▲E dE
 dR (14)

This definition accounts for the fact that G, C and B are discrete, while the other variables
are continuous. Equation (14) is again conditioned on the background information I. In (14),
the configurational specifications are listed first, but this does not imply any priority order. If some
parameters are not required, e.g., if there is no need to consider potentials or potential differences (such
as in a transport network), these can be omitted from (14).

In consequence, for any given problem involving a flow network, we can write a joint pdf to
describe its uncertainty over the set of unknown parameters, conditional on those which are known.
For example, if the network configuration, flow species, external flow rates, reference potentials and
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resistance functions are known, but there is uncertainty over the internal flow rates and potential
differences, we adopt the joint conditional pdf:

p(Q,▲E ∣G, C, B, Θ, E
,R, I) =
p(G, C, B,Q, Θ,▲E , E
,R ∣ I)

p(G, C, B, Θ, E
,R ∣ I)
(15)

which as indicated, is equivalent to the original pdf (14) divided by the pdf of known parameters.
The latter is defined by:

p(G, C, B, Θ, E
,R ∣ I) = ∫
ΩQ

∫

Ω▲E

p(G, C, B,Q, Θ,▲E , E
,R ∣ I) dQ d▲E (16)

i.e., by marginalization (summation or integration) of the original pdf (14) over the unknown
parameters. For simplicity, in the following we adopt the notation:

p( f ∣ g, I) =
p( f , g∣I)

p(g∣I)
=

p( f , g∣I)

⨋

Ω f

p( f , g ∣ I)
(17)

where f and g respectively denote the sets of unknown and known parameters and operators, while

⨋Ω f
indicates summation or integration, as appropriate, with respect to the discrete or continuous

parameters within Ω f , the differentials being implicit [69].
Based on the above analysis, we can therefore speak of the level of description of a flow network,

given by the sets of unknown and known parameters and operators in its specifying pdf. At the lowest
level of description, only the background information I is known, giving the pdf (14). At the next
few levels, successively more information will be included, for example on its graphical properties G.
At higher levels, knowledge of other features, such as the resistance functionsR, will also be included.
The flow network specified by (15) is posed at an even higher level of description. At the highest level
of description, a flow network can be said to be fully specified; i.e., its description—including the prior
and constraints embedded within I—furnishes sufficient information to fully determine all properties,
including all flow rates within each edge and (if included) all potentials at each node. At this level,
there is no need to invoke a probabilistic formulation, since the problem is now deterministic.

For some networks, the conditional pdf (17) might be separable into distinct sums and/or
integrals over particular parameters or subsets, allowing dramatic simplification. However, the above
probabilistic representation will always remain valid, regardless of whether such separability
is possible.

3.3. Entropy and Prior Probabilities

The relative entropy of a flow network is defined over all uncertainties in the network,
and therefore follows directly from its probabilistic representation (17). From the Boltzmann approach
discussed in the Introduction, we adopt the multivariate relative entropy (negative Kullback–Leibler
divergence [47]), in shorthand form:

H = −⨋

Ω f

p( f ∣ g, I) ln
p( f ∣ g, I)
q( f ∣ g, I)

(18)

where q( f ∣ g, I) is the joint prior pdf or simply the prior, defined at the same level of description as the
problem specification (17). The sums and/or integrals in (18) are evaluated over the domain Ω f of all
unknown parameters.

The prior represents one part of the background information I, providing a probabilistic baseline
or “reference distribution” for the flow network in the absence of constraints. It thereby accounts for
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different a priori weights of the parameter values. Indeed, for any continuous parameters, to ensure
dimensional consistency and scale invariance, the prior cannot be omitted [37,38].

In many MaxEnt analyses, the prior is often assumed constant by default, equivalent to adopting
the improper prior q = 1 [38]. If; however, one knows that a random variable is not distributed uniformly
over its parameter space—if it is more probable, a priori, for certain values or subdomains to be
occupied—then this information must be included in the prior. In thermodynamics, this is referred to
as the degeneracy. Similar (opposite) considerations apply to less probable values or domains, or those
which must be strictly excluded. Sometimes these restrictions can be formulated as strict constraints
rather than imposed within the prior. An illustrative example is the adjacency matrixA of an N-node
multigraph, which is drawn from the domain ΩA = N0

N×N . In the absence of a prior or some other
restriction, the MaxEnt algorithm will assign equal weightings to all graphs within this ensemble,
i.e., will be heavily biased towards graphs with infinite numbers of edges. Another example is a
constructed potential flow network such as an electrical or pipe flow network: a priori, no edge can
carry an infinite flow rate, in either direction. Unless this information is encoded within a prior,
the MaxEnt algorithm will be biased towards the consideration of extremely high (unphysical) flow
rates. It is, therefore, crucial to incorporate any restrictions on the parameter specifications within
the problem formulation, to avoid inferring a solution for a system which is far from the network
of interest.

3.4. Moment Constraints

The second component of the background information I consists of constraints upon or between
parameters, in MaxEnt analysis usually expressed in the form of mathematical moments (expectations).
These always include normalization of the joint pdf:

⟨1⟩ = ⨋
Ω f

p( f ∣ g, I) = 1 (19)

If the problem is formulated using several probabilities or pdfs, each must be normalized. A flow
network may also be subject to linear global constraints on various functions r( f) of the unknown
parameters—which could be scalars, vectors or in matrix form—summed and/or integrated with
respect to all unknowns:

⟨r⟩ = ⨋
Ω f

r( f) p( f ∣ g, I) = vr (20)

where vr indicates some specified value of r. Some flow networks may also have intermediate or local
constraints, in which the expectation is calculated over a lower-dimensional projection h = π( f) of
the unknowns:

⟦r⟧h = ⨋

Ωh ⊂Ω f

r(h) p( f ∣ g, I) = vr (21)

These are less mathematically tractable, being functions of the remaining unknowns f /h. Many flow
networks may also be subject to nonlinear global constraints of the form:

F(⟨r⟩) = F[⨋
Ω f

r( f) p( f ∣ g, I)] = 0 (22)

where F is a nonlinear function of the expectations of r( f), whence in general F(⟨r⟩) ≠ ⟨F(r)⟩. It is also
possible to have nonlinear local constraints, defined by

F(⟦r⟧h) = F[ ⨋

Ωh ⊂Ω f

r(h) p( f ∣ g, I)] = 0 (23)



Entropy 2019, 21, 776 10 of 20

Finally, any of the above constraints could be imposed as an inequality, for example for the linear
global constraints:

⟨r⟩ = ⨋
Ω f

r( f) p( f ∣ g, I) ≤ vr or ⟨r⟩ = ⨋
Ω f

r( f) p( f ∣ g, I) ≥ vr (24)

In this study, both linear and nonlinear global equality constraints are examined in detail, and we also
comment on inequality constraints. In principle, many other kinds of constraints can be included in
the MaxEnt method, although moment constraints are best suited to extremization by the method of
the calculus of variations.

Physically, the moment constraints (20)–(21) are usually identified with the time average:

r̄ = ⨋
Ωt

r(t)p(t∣I) (25)

where t is the discrete or continuous time, p(t∣I) is the probability or pdf of time and Ωt is the time
domain, or alternatively the ensemble average:

r̃ = ⨋
Ωρ

r(ρ)p(ρ∣I) (26)

where ρ is the discrete index or continuous density of individual realizations, p(ρ∣I) is the probability
or pdf of a realization and Ωρ is the domain of realizations. These are not the only viable choices;
indeed, moment constraints can be identified with any function which satisfies the properties of a
Reynolds average [70].

We therefore consider three categories of moment constraints on a flow network: (i) those
arising from specified moments of various physical parameters, e.g., means, variances or higher-order
moments of particular flow rates or potential differences, as defined by (20)–(21); (ii) those imposed
by physical laws, in particular the conservation laws (Kirchhoff’s laws) and resistance functions;
and (iii) those arising from constraints on the network properties (the graph ensemble). Philosophically,
the physical laws and graphical constraints are appropriately imposed in the mean, to allow for
fluctuations about their mean values; such analysis is particularly well suited to the MaxEnt framework.

Consider the latter two categories of constraints, for a flow network defined by the standard set
of specifications (10). Firstly, Kirchhoff’s laws can be written as:

(1) Kirchhoff’s first law: Applied in the mean, this states that the mean flow rate of each species c
through each node i will be zero at steady state. For an undirected graph, this can be written as
the sums of inflows and outflows:

0 =

O
∑

m=1
⟨Θi(m)c⟩+

1
2

N
∑

j=1

K
∑

k=1
(⟨Qji(k)c⟩− ⟨Qij(k)c⟩), ∀i, c

=

O
∑

m=1
⟨Θi(m)c⟩+

K
∑

k=1
⟨Qii(k)c⟩−

N
∑

j=1

K
∑

k=1
⟨Qij(k)c⟩, ∀i, c

(27)

using ⟨Qji(k)c⟩ = −⟨Qij(k)c⟩ except for i = j. On a directed graph, the flow paths into and out of
each node must be counted separately:

0 =

O
∑

m=1
⟨Θi(m)c⟩+

N
∑

j=1

K
∑

k=1
(⟨Qji(k)c⟩− ⟨Qij(k)c⟩), ∀i, c (28)
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Reversing the sum and expectation operators, (27)–(28) can be assembled into the N ×C matrix
equation:

⟨
̂Θ⟩+ ε (⟨Q̂⟩

⊺
− ⟨Q̂⟩)1 = ⟨

̂Θ⟩+ ε Φ(⟨Q̂⟩) = 0 (29)

where 0 and 1 are vectors or matrices of 0s or 1s of appropriate dimension, ⊺ denotes the transpose,
ε =

1
2 for an undirected graph and 1 for a directed graph, and Φ is an N ×C operator on ⟨Q̂⟩.

Equation (29) makes use of the k-summed flow rate matrices ̂Θ and Q̂, with the latter viewed from
its N × N face, so the bracketed term accounts for the row and column sums of Q̂ respectively.

(2) Kirchhoff’s second law: Applied in the mean, this states that at steady state, the mean potential
losses must be in balance around each connected loop, or equivalently that the mean potentials
at each node must be constant. For a flow network with multidimensional potentials, the first
definition gives an expression for each loop (cycle) ` on the network:

∑

ij(k)∈`
⟨▲Eij(k)c⟩ = 0, ∀` (30)

in which the potential losses are added in the assigned direction of `. In a multigraph, (30) applies
to each parallel edge k ∈ {1, ..., K}, while in a directed graph, the two loop orientations (clockwise
or anticlockwise) can be independent. A search algorithm is required to identify a maximal set of
Λ independent loops, expressed by the N × N ×K loop adjacency matricesM` for ` ∈ {1, ..., Λ},
containing elements Mij(k)` ∈ {−1, 0, 1} to indicate the presence and orientation of each edge in
the loop. These can be stacked into the N × N ×K ×Λ loop adjacency matrixM. Equation (30)
can then be rewritten as the Λ ×C matrix equation:

M⊘ ⟨▲E⟩ = [ ∑

all ij(k)
Mij(k)` ⟨▲Eij(k)c⟩] = 0 (31)

where ⊘ is a contraction product over the common indices of two matrices, given by the sum of
their element-wise products, which subsumes the vector scalar product (dot product) for vectors
and the tensor scalar product (double dot product) for second order tensors. In some networks,
additional terms (e.g., reservoir potentials, pump heads, electrical source potentials, etc.) may
also appear in (30)–(31).

Secondly, the resistance function constraints (7) can be imposed either (i) strictly, thereby eliminating
the potential differences as independent variables; or (ii) in the mean, based on the nonlinear relation:

⟨▲E⟩ =R(⟨Q⟩) (32)

In this case, ▲E must be included as an unknown within f . We note that the form of (32),
rather than ⟨▲E⟩ = ⟨R(Q)⟩, is necessary to ensure consistency between the MaxEnt and deterministic
solutions for a fully determined problem, when calculated using mean potential differences and flow
rates. For alternating currents in electrical systems, (32) should instead be formulated in terms of
root-mean-square quantities, thus connecting the second moments, ⟨(▲E)2

⟩ = R(⟨Q2
⟩)). Thirdly,

in some networks there may be uncertainty in the number C or identities B of the flow species,
necessitating their inclusion in f and the imposition of species constraints, for example:

Ψ(⟨C⟩) = 0 (33)

where Ψ is a vector or matrix operator. Finally, the graphical constraints could take many forms,
depending on the problem specification. These again divide into (i) strict constraints, for example on
the number of nodes or their connections, and (ii) weaker constraints such as moment constraints,
for example on the expected degrees of certain nodes. The strict graphical constraints can be written as:

Γ(G) = 0 (34)
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where Γ is a vector or matrix operator and G represents the properties of an individual graph.
These relations can be included directly in the problem formulation I and do not require extremization.
On the other hand, graphical moment constraints can be written in moment form as:

Ξ(⟨G⟩) = 0 (35)

where Ξ is another vector or matrix operator, based on the expected properties ⟨G⟩ of the graph
ensemble. We see that (34) defines a “microcanonical graph ensemble”, whereas (35) can be interpreted
as a “canonical graph ensemble”. In either case (34)–(35), the loop adjacency matrix M will be a
function of the graph properties, respectively G or ⟨G⟩. In more complicated networks, there may also
be coupling constraints between the graphical properties and physical parameters.

3.5. Extended MaxEnt Algorithm

We now provide an extended formulation of Jaynes’ MaxEnt algorithm, based on the
relative entropy (18) subject to normalization (19), linear (20) and nonlinear (22) global constraints.
Collecting the latter into generic stacked vector or matrix forms ⟨r⟩ = vr and F(⟨r⟩) = 0 respectively,
we write the Lagrangian [36–38,41]:

L = −⨋

Ω f

p( f ∣ g, I) ln
p( f ∣ g, I)
q( f ∣ g, I)

− κ( ⨋
Ω f

p( f ∣ g, I)− 1)− η⊘ ( ⨋

Ω f

r( f) p( f ∣ g, I)− vr)− ζ ⊘F(⟨r⟩) (36)

where κ, η and ζ are Lagrangian multipliers respectively for each type of constraint, of compatible
order and dimension to enable contraction into scalars. Applying the calculus of variations, we set the
total variation of (36) to zero:

δL = 0 =

∂L

∂p( f ∣ g, I)
δp( f ∣ g, I) (37)

Since each δp can be non-zero, this gives ∂L/∂p = 0 for each f ∈ Ω f . Taking the functional derivative
of (36) with respect to p, making use of the chain rule:

∂F(⟨r⟩)
∂p

=

∂F(⟨r⟩)
∂⟨r⟩

∂⟨r⟩
∂p

= F ′
(⟨r⟩)

∂⟨r⟩
∂p

(38)

followed by normalization (19) gives the inferred pdf:

p∗( f ∣ g, I) =
q( f ∣ g, I)

Z
exp[−η⊘ r( f)− ζ ⊘F ′

(⟨r⟩) r( f)] (39)

where Z = exp(κ + 1) is the partition function. Equation (39) is an extended (nonlinear) form of the
Boltzmann distribution, which can be solved in conjunction with the constraints to give p∗, Z, η and
ζ. Once the pdf (39) is available, the nth moment of any other uncertain parameter a( f) can also
be calculated:

⟨a( f)n
⟩ = ⨋

Ω f

a( f)n p∗( f ∣ g, I) (40)

e.g., n = 1 gives the mean, while n ∈ {1, 2} gives the mean and variance.
We note that previous treatments of the MaxEnt method, based almost exclusively on linear

constraints, give an analytic solution for p∗, with the Lagrangian multipliers then computed
numerically [36–41]. In this study, in which (39) contains nonlinear constraints and interdependencies,
its solution will usually require an iterative computational scheme. Depending on the problem
formulation, nonlinear constraints can give rise to a non-convex Lagrangian, which would preclude
the use of the standard tools of convex optimization, e.g., [71], and with the possibility of multiple
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solutions, e.g., [72]. In the authors’ experience of water distribution, electrical and transport networks,
we did not encounter significant computational difficulties or multiple solutions, although we note
that the resistance function constraints (6) in such systems tend to be monotonic. We have, however,
encountered examples of sharp transitions, for example in pipe flows due to the laminar-turbulent
transition, e.g., [32,33], and in transport networks due to routing changes, e.g., [73]. In contrast, for a
problem with nonlinear constraints and Gaussian priors, we identified an analytical solution based
on matrix operations [74]. We note that a general numerical algorithm for MaxEnt analysis based on
nonlinear constraints is not available, and that it may be necessary to implement a tailored solution for
a given problem.

If any inequality constraints such as (24) are included in (36), these can be handled by a
Lagrangian multiplier which is real-valued at equality and which vanishes when the inequality applies.
Usually, an inequality test is implemented at each iteration, enabling the inequality Lagrangian multipliers
to be switched on or off as appropriate, e.g., [32]. For some problems, inequality constraints can also
be handled using integration limits, e.g., [73]. If any local constraints (21) or (23) are included in (36),
they and their corresponding Lagrangian multipliers will be functions of the non-marginalized variables,
providing a more elaborate solution than (39), but which accords with the same mathematical framework.

As an example, consider a flow network defined by the standard specifications (10), subject to
constraints on normalization (19), global expectation values of some physical properties (20),
Kirchhoff’s node laws (29), Kirchhoff’s loop laws (31), resistance functions (32), expected number
of species (33) and expected graph properties (35). (Please note that only some expected values (20)
should be imposed, otherwise the problem will become overdetermined.) The Lagrangian, for brevity
written in expectation form, now becomes:

L = −⟨ln
p
q
⟩− κ(⟨1⟩− 1)−λ⊘ (⟨Q⟩− vQ)− µ⊘ (⟨Θ⟩− vΘ)− ν⊘ (⟨▲E⟩− v▲E)

− α⊘ (⟨
̂Θ⟩+ ε Φ(⟨Q̂⟩))− β⊘M(⟨G⟩)⊘ ⟨▲E⟩−γ⊘ (⟨▲E⟩−R(⟨Q⟩))− δ⊘Ψ(⟨C⟩)−φ⊘Ξ(⟨G⟩)

(41)

where λ, µ, ν, α, β, γ, δ and φ are Lagrangian multiplier vectors or matrices of appropriate order and
dimension. Combining like terms and taking the functional derivative yields:

p∗ =
q
Z

exp[−λ⊘Q− µ⊘Θ − ν⊘▲E − α⊘ ̂Θ − ε α⊘Φ′
(⟨Q̂⟩) Q̂− β⊘M(⟨G⟩)⊘▲E

− β⊘M′
(⟨G⟩)G ⊘ ⟨▲E⟩−γ⊘▲E +γ⊘R′

(⟨Q⟩)Q− δ⊘Ψ′
(⟨C⟩)C −φ⊘Ξ′

(⟨G⟩)G]
(42)

Depending on the network and its level of description, many of the terms in (42) may simplify further.
In principle, (42) can be solved in conjunction with the constraints to give the pdf, the partition function
and all Lagrangian multipliers. Since p∗ is implicit within each expectation, (42) will usually require
numerical solution.

3.6. Role of Time

We finally comment on the role of time in MaxEnt analysis. In traditional applications in
statistical mechanics and in the above formulation, the probabilities, entropy function and constraints
are considered independent of time, usually invoking the ergodic hypothesis that the time- and
ensemble-averages (25)–(26) are equivalent [57]. However, for many networks it may be desirable
to adopt a time-based formulation, in which the probabilities, entropy function and constraints are
functions of time. Explicitly, instead of (36), the Lagrangian can be written:

L(t) = −⨋
Ω f

p( f ∣ g, t, I) ln
p( f ∣ g, t, I)
q( f ∣ g, t, I)

− κ(t)( ⨋
Ω f

p( f ∣ g, t, I)− 1)− η(t)⊘ ( ⨋

Ω f

r( f) p( f ∣ g, t, I)− vr(t))

− ζ(t)⊘F(⟨r(t)⟩)

(43)
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Philosophically, (43) makes a clear distinction between time and ensemble averaging, essential for
the probabilistic representation of a time-dependent dynamical system. The suitability of the MaxEnt
algorithm will now depend on the time scales of the network. For simple dynamics, in which the
response times of relaxation processes within the network are significantly faster than that of the
forcing, the MaxEnt algorithm will provide the “moving stationary state” of the network, or in other
words its asymptotic distribution subject to the forcing. If on the other hand, the relaxation processes
are significantly slower than the forcing, the network may experience periods of quiescence followed
by sudden responses (phase changes or tipping points), for which it may necessary to construct a
dynamical model to meaningfully capture the dynamics. For systems with multiple time-scales or
more complicated dynamics, the network response to forcing can become very complicated [21].
For such systems, the observer may need to seek insights from both maximum entropy and dynamical
models, in the same way that an observer of crystallization or chemical reaction processes will seek
insights from both thermodynamics and kinetics.

An alternative path-based or maximum calibre approach for the analysis of time-varying systems is
to redefine the entropy and all constraints as integrals over time [75–77], i.e., by integrating (43) with
respect to time. The stationary state of the system then becomes the description of its most probable
path through time. While this approach is well-defined, with deep connections to the principle of least
action [77,78], it requires a very detailed knowledge of the behaviour of the constraints over all times,
which is unlikely to be available for most flow networks of interest.

4. Applications

The above MaxEnt framework (42) can be used to infer the state of any flow network
constrained by mean parameter values, physical laws (such as Kirchhoff’s laws) and/or network
properties. This includes the analysis of a wide variety of networks, including pipe flow, electrical,
chemical reaction, communications, transportation, epidemiological, human economic and social
networks. Since the method is probabilistic, it enables the probabilistic prediction of the flow and other
properties of a network when there is insufficient information to obtain a deterministic solution. As
noted, the mean properties (or any other moments) of the system can be inferred from the probabilistic
solution, by calculating their expected values.

In recent years, variants of the above MaxEnt formulation (42) have been applied to the analysis
of a variety of engineered flow networks. These include:

(1) Analyses of pipe flow networks used for water distribution systems, incorporating constraints on
normalization (19), linear and nonlinear global expectation values (20) and (22), Kirchhoff’s node and
loop laws (29) and (31), and resistance functions (32) [32,33,73,74,79–85]. This includes development
of the analytical formulation, iterative numerical methods to handle nonlinear constraints, and rapid
semi-analytical (quadratic programming) schemes for partition function integration. More recently,
this work was extended by the use of reduced parameter basis sets to ensure consistency regardless
of network representation [33,73,81]. Research also extended to comparative analyses of different
prior probability functions [32,33,73,74,79], the use of priors to encode “soft constraints” [73,74,79],
and formulation of an alternative linear algebra solution method for nonlinear systems with Gaussian
priors [73,74,79]. The method was also demonstrated by application to a 1123-node, 1140-pipe water
distribution network from Torrens, ACT, Australia [32,33,73]. An example set of inferred water flow
rates on this network is illustrated in Figure 2a; further details of this analysis are given in [32].

(2) Analyses of electrical networks, incorporating constraints on normalization (19), global expectation
values (20) and (22), Kirchhoff’s node and loop laws (29) and (31), and resistance or impedance
functions (32) [73,86]. This includes analysis of a 400-node electrical network in Campbell, ACT,
Australia, subject to solar forcing from distributed household photovoltaic systems. An example set
of inferred electrical power flows on this network is illustrated in Figure 2b, showing flow reversals
due to high solar forcing; further details of this analysis are given in [73,86].



Entropy 2019, 21, 776 15 of 20

Outflows

0L/s

0.1L/s

0.2L/s

0.3L/s

0.4L/s

0.5L/s

0.6L/s

Pipes

0L/s

10L/s

20L/s

30L/s

40L/s

50L/s

60L/s

205,500 206,000 206,500 207,000

59
3
,5
00

59
4,
00

0
59

4
,5
00

59
5
,0
00

Easting (m ACT Standard Grid AGD66)

N
or
th
in
g
(m

)

(a)

149.156 149.158 149.160 149.162 149.164
Longitude

0.01 kW

0.1 kW

1 kW

10 kW

100 kW

Reversed flow

(b)

Figure 2. (a) Case study water distribution network from Torrens, ACT, Australia, showing inferred
flow rates on the network (lines) and delivered to houses (dots), based on constraints on normalization,
Kirchhoff’s laws, a grouped inflow rate and a head difference, using a multidimensional Gaussian prior
with zero means (after [32] Figure 7a, used with permission), and (b) case study electricity grid in Campbell,
ACT, Australia, showing inferred mean power flows on the network and to houses, based on constraints
on normalization, Kirchhoff’s laws and solar forcing (after [86] Figure 1, used with permission]).

(3) Analyses of transport networks, reformulated in terms of trip flow rates (from origins to
destinations) rather than link flow rates, and incorporating constraints on normalization (19),
global expectation values (20) and (22), various forms of Kirchhoff’s node laws (29) and various
cost constraints [73,87]. These include different formulations using the gravity model of
transport flows, or for route selection by proportional assignment or equilibrium assignment
(cost minimization) methods.

(4) Derivation of graph priors for several graph ensembles [88], invoking the relative entropy:

HG = −∑

ΩG

p(G∣I) ln
p(G∣I)
q(G∣I)

(44)

where G is reinterpreted to represent a graph macrostate, p(G∣I) and q(G∣I) are the posterior and
prior probabilities and ΩG is the graph ensemble. This is used in place of the Shannon entropy
typically used in MaxEnt analyses of networks, e.g., [6,7,9,10,28–30]:

HSh
G = −∑

ΩG

p(G∣I) ln p(G∣I) (45)

in which G represents an individual graph. The use of graph priors enables a simplified
accounting over graph macrostates—taking advantage of the most important feature of statistical
mechanics—thereby simplifying the analysis of networks with uncertainty in the network structure.

Considerable research is still required on the full extent of the MaxEnt formulation (42) for flow
networks, especially for the analysis of multidimensional flows and chemical reaction networks,
the formulation of numerical algorithms for particular classes of nonlinear constraints, and the analysis
of coupled flow and graphical properties due to uncertainties in both the state and structure of
the network.



Entropy 2019, 21, 776 16 of 20

5. Comparison to Bayesian Inference

An alternative method for probabilistic inference is that of Bayesian inference, in which one
calculates the probability of an hypothesis or model using Bayes’ rule [64,65]. In the terminology of
the present analysis, this gives:

p( f ∣ g, I) =
p(g ∣ f , I)p( f ∣ I)

p(g ∣ I)
=

p(g ∣ f , I)p( f ∣ I)

⨋

Ω f

p(g ∣ f , I)p( f ∣ I)
(46)

where p( f ∣ g, I) is the posterior probability or pdf, p( f ∣ I) is the prior probability or pdf of f , p(g ∣ f , I)
is the likelihood function, and p(g ∣ I) is the prior probability or pdf of g, commonly termed the
evidence. This approach makes use of the Bayesian understanding of a probability as a value between
0 and 1, assigned based on what is known, which need not correspond to a measurable frequency [38].
The application of Bayesian inference to the analysis of flow networks has been studied by many
authors, including comparative analyses of the MaxEnt and Bayesian approaches, e.g., [73,74,89,90].
For flow network problems involving moment constraints as formulated here, the MaxEnt method
offers the advantage (usually) of simpler mathematical operations compared to the Bayesian method,
in which constraints are generally incorporated in a more complicated form, such as delta functions.
However, for problems which include nonlinear constraints, this advantage of the MaxEnt method
may not be so prominent. For problems involving significant observational data, the Bayesian method
will be the more the natural choice, since it allows the incorporation of individual data points rather
than summary data expressed in the form of moment constraints.

For Gaussian priors, it can be shown that the MaxEnt and Bayesian methods give the same
or very similar posterior mean values, but their covariances are different, e.g., [73,74]. This arises
from the different algorithms used: in the Bayesian method, the interactions between variables are
applied through the likelihood function, using second or higher-order cross-terms within the posterior
pdf. In contrast, the MaxEnt method incorporates interactions between variables using Lagrange
multipliers, avoiding second-order correlation terms in the posterior covariance. This suggests that the
MaxEnt method could provide a numerical advantage over Bayesian inference for moment-constrained
problems of the type examined here, in cases which avoid covariance terms in its integrations.

6. Conclusions

We present a generalized MaxEnt framework for inferring the state of a flow network—here
defined as a set of nodes and links which carries one or more flows—subject to uncertainty in the
parameters of interest and in the network itself. In this method, the network uncertainty is represented
by a joint probability function over its unknowns, subject to all that is known. This gives a relative
entropy function which is maximized, subject to the constraints, to determine the most probable
or most representative state of the network. The constraints can include “observable” constraints
on various parameters, “physical” constraints such as conservation laws and frictional properties,
and “graphical” constraints arising from uncertainty in the network structure itself. Since the method
is probabilistic, it enables the prediction of network properties when there is insufficient information
to obtain a deterministic solution. For linear constraints, the MaxEnt framework is analytic, but can
also handle nonlinear constraints or nonlinear interdependencies between variables, generally at the
cost of requiring numerical solution. The MaxEnt formulation provided can be applied to a large
variety of flow networks across many different disciplines, including pipe flow, fluid flow, electrical,
chemical reaction, ecological, epidemiological, neurological, communications, transportation, financial,
economic and human social networks.



Entropy 2019, 21, 776 17 of 20

Author Contributions: Conceptualization, R.K.N., M.A. and M.S.; Formal analysis, R.K.N., M.A., M.S. and S.H.W.;
Methodology, R.K.N., M.A., M.S. and S.H.W.; Writing—original draft, R.K.N., M.A. and M.S.; Writing—review &
editing, R.K.N., M.A., M.S. and S.H.W.

Funding: This research was funded by the Go8/DAAD Australia-Germany Joint Research Cooperation Scheme
2013-15, the Australian Research Council Discovery Projects grant DP140104402, and also supported by French
sources including Institute Pprime, CNRS, (former) Région Poitou-Charentes and l’Agence Nationale de la
Recherche Chair of Excellence (TUCOROM), all in Poitiers, France, and CentraleSupélec, Gif-sur-Yvette, France.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Barabasi, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [CrossRef]
[PubMed]

2. Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [CrossRef] [PubMed]
3. Dorogovtsev, S.N.; Mendes, J.F.F. Evolution of networks. Adv. Phys. 2002, 51, 1079–1187. [CrossRef]
4. Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97.

[CrossRef]
5. Newman, M.E.J. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [CrossRef]
6. Park, J.; Newman, M.E.J. Statistical mechanics of networks. Phys. Rev. E 2004, 70, 066117
7. Barrat, A.; Barthélemy, M.; Vespignani, A. Dynamical Processes on Complex Networks; Cambridge University

Press: Cambridge, UK, 2008.
8. Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81,

591–646. [CrossRef]
9. Newman, N. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010.
10. Squartini, T.; Garlaschelli, D. Maximum-Entropy Networks: Pattern Detection, Network Reconstruction and Graph

Combinatorics; Springer: Cham, Switzerland, 2017.
11. Barabási, A.-L.; Albert, R.; Jeong, H. Scale-free characteristics of random networks: the topology of the

world-wide web. Physica A 2000, 281, 69–77. [CrossRef]
12. Fu, F.; Liu, L.; Wang, L. Empirical analysis of online social networks in the age of Web 2.0. Phys. A 2008, 387,

675–684. [CrossRef]
13. Caamaño-Martín, E.; Laukamp, H.; Jantsch, M.; Erge, T.; Thornycroft, J.; De Moor, H.; Cobben, S.; Suna, D.;

Gaiddon, B. Interaction between photovoltaic distributed generation and electricity networks. Prog. Photovolt.
Res. Appl. 2008, 16, 629–643. [CrossRef]

14. Buldyrev, S.V.; Parshani, R.; Paul, G.; Stanley, H.E. Havlin, S. Catastrophic cascade of failures in
interdependent networks. Nature 2010, 464, 1025–1028. [CrossRef] [PubMed]

15. Wilson, A.G. A statistical theory of spatial distribution models. Transp. Res. 1967, 1, 253–269. [CrossRef]
16. Willumsen, L.G. Estimation of an O-D Matrix from Traffic Counts: A Review; Working Paper 99; Institute of

Transport Studies, University of Leeds: Leeds, UK, 1978.
17. Guimera, R.; Mossa, S.; Turtschi, A.; Amaral, L.A.N. The worldwide air transportation network: Anomalous

centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA 2005, 102, 7794–7799.
[CrossRef] [PubMed]

18. de Ortúzar, J.D.; Willumsen, L.G. Modelling Transport, 4th ed.; Wiley: New York, NY, USA, 2011.
19. Barthélemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [CrossRef]
20. Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhoug, C. Synchronization in complex networks.

Phys. Rep. 2008, 469, 93–153. [CrossRef]
21. George, B.; Kim, S. Spatio-Temporal Networks; Springer: Heidelberg, Germany, 2013.
22. Albantakis, L.; Marshall, W.; Hoel, E.; Tononi, G. What caused what? A quantitative account of actual

causation using dynamical causal networks. Entropy 2019, 21, 459. [CrossRef]
23. Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabasi, A.L. The large-scale organization of metabolic

networks. Nature 2000, 407, 651–654. [CrossRef]
24. Famili, I.; Palsson, B.O. The convex basis of the left null space of the stoichiometric matrix leads to the

definition of metabolically meaningful pools. Biophys. J. 2003, 85, 16–26. [CrossRef]

http://dx.doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1038/35065725
http://www.ncbi.nlm.nih.gov/pubmed/11258382
http://dx.doi.org/10.1080/00018730110112519
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1016/S0378-4371(00)00018-2
http://dx.doi.org/10.1016/j.physa.2007.10.006
http://dx.doi.org/10.1002/pip.845
http://dx.doi.org/10.1038/nature08932
http://www.ncbi.nlm.nih.gov/pubmed/20393559
http://dx.doi.org/10.1016/0041-1647(67)90035-4
http://dx.doi.org/10.1073/pnas.0407994102
http://www.ncbi.nlm.nih.gov/pubmed/15911778
http://dx.doi.org/10.1016/j.physrep.2010.11.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.3390/e21050459
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1016/S0006-3495(03)74450-6


Entropy 2019, 21, 776 18 of 20

25. Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433, 895.
[CrossRef]

26. Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.;
Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem
respiration: review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [CrossRef]

27. Donges, J.F.; Zou, Y.; Marwan, N.; Kurths, J. Complex networks in climate dynamics: Comparing linear and
nonlinear network construction methods. Eur. Phys. J. Spec. Top. 2009, 174, 157–179. [CrossRef]

28. Bianconi, G. Statistical mechanics of multiplex networks: Entropy and overlap. Phys. Rev. E 2013, 87, 062806.
[CrossRef] [PubMed]

29. Menichetti, G.; Remondini, D.; Bianconi, G. Correlations between weights and overlap in ensembles of
weighted multiplex networks. Phys. Rev. E 2014, 90, 062817. [CrossRef] [PubMed]

30. Boccaletti, S.; Bianconi GCriado, R.; del Genio, C.I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal,
I.; Wang, Z.; Zanin, M. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122.
[CrossRef]

31. Kivelä, M.; Arenas, A.; Barthélemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks.
J. Complex Netw. 2014, 2, 203–271.

32. Waldrip, S.H.; Niven, R.K.; Abel, M.; Schlegel, M. Maximum entropy analysis of hydraulic pipe flow
networks. J. Hydraul. Eng. ASCE 2016, 142, 04016028. [CrossRef]

33. Waldrip, S.H.; Niven, R.K.; Abel, M.; Schlegel, M. Reduced-parameter method for maximum entropy analysis
of hydraulic pipe flow networks. J. Hydraul. Eng. ASCE 2018, 144, 04017060. [CrossRef]

34. Perra, N.; Gonçalves, B.; Pastor-Satorras, R.; Vespignani, A. Activity driven modeling of time varying
networks. Sci. Rep. 2002, 2, 469. [CrossRef]

35. Keeling, M.J.; Eames, K.T.D. Networks and epidemic models. J. R. Soc. Interface 2005, 2, 295–307. [CrossRef]
36. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [CrossRef]
37. Jaynes, E.T. Information theory and statistical mechanics. In Brandeis University Summer Institute, Lectures in

Theoretical Physics, Vol. 3: Statistical Physics; Ford, K.W., Ed.; Benjamin-Cummings Publ. Co.: San Francisco,
CA, USA, 1963; pp. 181–218; In Papers on Probability, Statistics and Statistical Physics; Rosenkratz, R.D., Ed.; D.
Reidel Publ. Co.: Dordrecht, Holland, 1983; pp. 39–76.

38. Jaynes, E.T. Probability Theory: The Logic of Science; Bretthorst, G.L., Ed.; Cambridge U.P.: Cambridge,
UK, 2003.

39. Tribus, M. Information theory as the basis for thermostatics and thermodynamics. J. Appl. Mech. Trans. ASME
1961, 28, 1–8. [CrossRef]

40. Tribus, M. Thermostatics and Thermodynamics; D. Van Nostrand Co. Inc.: Princeton, NJ, USA, 1961.
41. Kapur, J.N.; Kesevan, H.K. Entropy Optimization Principles with Applications; Academic Press, Inc.: Boston,

MA, USA, 1992.
42. Gzyl, H. The Method of Maximum Entropy; World Scientific: Singapore, 1995.
43. Wu, N. The Maximum Entropy Method; Springer: Berlin, Germay, 1997.
44. Boltzmann, L. Über die Beziehung zwischen dem zweiten Hauptsatze der Mechanischen Wärmetheorie und

der Wahrscheinlichkeitsrechnung, respektive den Sätzen über das Wärmegleichgewicht. Wien. Ber. 1877, 76,
373–435; English Translated: Le Roux, J., 2002. Available online: http://users.polytech.unice.fr/~leroux/
boltztrad.pdf (accessed on 1 June 2019).

45. Planck, M. Über das Gesetz der Energieverteilung im Normalspektrum. Annalen der Physik 1901, 4, 553–563.
[CrossRef]

46. Ellis, R.S. Entropy, Large Deviations, and Statistical Mechanics; Springer: New York, NY, USA, 1985.
47. Kullback, S.; Leibler, R.A. On information and sufficiency. Annals Math. Stat. 1951, 22, 79–86. [CrossRef]
48. Sanov, I.N. On the probability of large deviations of random variables. Mat. Sbornik 1957, 42, 11–44.

(In Russian)
49. Schlichting, H.; Gersten, K. Boundary Layer Theory, 8th ed.; Springer: New York, NY, USA, 2001.
50. Niven, R.K. Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes.

J. Non-Equilib. Thermodyn. 2010, 35, 347–378. [CrossRef]
51. Colebrook, C.F. Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the

Smooth and Rough Pipe Laws. J. ICE 1939, 11, 133–156. [CrossRef]
52. De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications: New York, NY, USA, 1984.

http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1111/j.1365-2486.2005.001002.x
http://dx.doi.org/10.1140/epjst/e2009-01098-2
http://dx.doi.org/10.1103/PhysRevE.87.062806
http://www.ncbi.nlm.nih.gov/pubmed/23848728
http://dx.doi.org/10.1103/PhysRevE.90.062817
http://www.ncbi.nlm.nih.gov/pubmed/25615157
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001126
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001379
http://dx.doi.org/10.1038/srep00469
http://dx.doi.org/10.1098/rsif.2005.0051
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1115/1.3640461
http://users.polytech.unice.fr/~leroux/boltztrad.pdf
http://users.polytech.unice.fr/~leroux/boltztrad.pdf
http://dx.doi.org/10.1002/andp.19013090310
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1515/jnetdy.2010.022
http://dx.doi.org/10.1680/ijoti.1939.13150


Entropy 2019, 21, 776 19 of 20

53. Kreuzer, H.J. Nonequilibrium Thermodynamics and Its Statistical Foundations; Clarendon Press: Oxford,
UK, 1981.

54. Demirel, Y. Nonequilibrium Thermodynamics; Elsevier: New York, NY, USA, 2002.
55. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons: New York, NY,

USA, 2002.
56. Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed.;

John Wiley & Sons: Chichester, UK, 2015.
57. Tolman, R.C. The Principles of Statistical Mechanics; Oxford University Press: London, UK, 1938.
58. Davidson, N. Statistical Mechanics; McGraw-Hill: New York, NY, USA, 1962.
59. Hill, T.L. Statistical Mechanics: Principles and Selected Applications; McGraw-Hill: New York, NY, USA, 1956.
60. Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; John Wiley: New York, NY,

USA, 1985.
61. Niven, R.K. Steady state of a dissipative flow-controlled system and the maximum entropy production

principle. Phys. Rev. E 2009, 80, 021113. [CrossRef]
62. Niven, R.K.; Noack, B.R. Control volume analysis, entropy balance and the entropy production in

flow systems. In Beyond the Second Law: Entropy Production and Non-Equilibrium Systems; Dewar, R.C.,
Lineweaver, C., Niven, R.K., Regenauer-Lieb, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 129–162.

63. Niven, R.K.; Ozawa, H. Entropy production extremum principles. In Handbook of Applied Hydrology, 2nd ed.;
Singh, V., Ed.; McGraw-Hill: New York, NY, USA, 2016; Chapter 32.

64. Bayes, T. (presented by Price, R.) An essay towards solving a problem in the doctrine of chance. Philos. Trans.
R. Soc. Lond. 1763, 53, 370–418.

65. Laplace, P. Mémoire sur la probabilité des causes par les évènements. l’Académie Royale des Sciences 1774,
6, 621–656.

66. Polya, G. Mathematics and Plausible Reasoning, Vol II, Patterns of Plausible Inference; Princeton U.P.: Princeton,
NJ, USA, 1954.

67. Polya, G. Mathematics and Plausible Reasoning, Vol II, Patterns of Plausible Inference, 2nd ed.; Princeton U.P.:
Princeton, NJ, USA, 1968.

68. Cox, R.T. The Algebra of Probable Inference; John Hopkins Press: Baltimore, MD, USA, 1961.
69. Zwillinger, D. CRC Standard Mathematical Tables and Formulae; Chapman & Hal/CRC Press: Boca Raton, FL,

USA, 2003.
70. Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. I; Dover Publ.: Mineola,

NY, USA, 1971.
71. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
72. Favretti, M. Lagrangian submanifolds generated by the maximum entropy principle. Entropy 2005, 7, 1–14.

[CrossRef]
73. Waldrip, S.H. Probabilistic Analysis of Flow Networks using the Maximum Entropy Method. Ph.D. Thesis,

The University of New South Wales, Canberra, Australia, 2017.
74. Waldrip, S.H.; Niven, R.K. Comparison between Bayesian and maximum entropy analyses of flow networks.

Entropy 2017, 19, 58. [CrossRef]
75. Dewar, R.C. Information theory explanation of the fluctuation theorem, maximum entropy production

and self-organized criticality in non-equilibrium stationary states. J. Phys. A Math. Gen. 2003, 36, 631–641.
[CrossRef]

76. Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A Math. Gen. 2005, 38,
L371–L381. [CrossRef]

77. Jaynes, E.T. The minimum entropy production principle. Ann. Rev. Phys. Chem. 1980, 31, 579–601. [CrossRef]
78. Wang, Q.A. Maximum entropy change and least action principle for nonequilibrium systems, Astrophys.

Space Sci. 2006, 305, 273–281. [CrossRef]
79. Waldrip, S.H.; Niven, R.K. Bayesian and Maximum Entropy Analyses of Flow Networks with Gaussian or

Non-Gaussian Priors, and Soft Constraints. In Proceedings of the 37th International Workshop on Bayesian
Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), Sao Paulo, Brazil, 9–14
July 2017; Springer Proc. Math. Stat., 2018, 239, 285–294.

http://dx.doi.org/10.1103/PhysRevE.80.021113
http://dx.doi.org/10.3390/e7010001
http://dx.doi.org/10.3390/e19020058
http://dx.doi.org/10.1088/0305-4470/36/3/303
http://dx.doi.org/10.1088/0305-4470/38/21/L01
http://dx.doi.org/10.1146/annurev.pc.31.100180.003051
http://dx.doi.org/10.1007/s10509-006-9202-0


Entropy 2019, 21, 776 20 of 20

80. Niven, R.K.; Waldrip, S.H.; Abel, M.; Schlegel, M. Probabilistic modelling of water distribution networks,
extended abstract. In Proceedings of the 22nd International Congress on Modelling and Simulation
(MODSIM2017), Hobart, Tasmania, Australia, 3–8 December 2017.

81. Waldrip, S.H.; Niven, R.K.; Abel, M.; Schlegel, M. Consistent maximum entropy representations of pipe flow
networks. In Proceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy
Methods in Science and Engineering (MaxEnt 2016), Ghent, Belgium, 10–15 July 2016; AIP Conf. Proc 1853,
Melville NY USA, 2017, 070004.

82. Waldrip, S.H.; Niven, R.K.; Abel, M.; Schlegel, M.; Noack, B.R. MaxEnt analysis of a water distribution
network in Canberra, ACT, Australia. In Proceedings of the 34th International Workshop on Bayesian
Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2014), Amboise, France,
21–26 September 2014; AIP Conf. Proc. 1641, Melville NY USA, 2015, 479–486.

83. Niven, R.K.; Abel, M.; Waldrip, S.H.; Schlegel, M. Maximum entropy analysis of flow and reaction networks.
In Proceedings of the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering (MaxEnt 2014), Amboise, France, 21–26 September 2014; AIP Conf. Proc. 1641,
Melville NY USA, 2015, 271–278.

84. Niven, R.K.; Abel, M.; Schlegel, M.; Waldrip, S.H. Maximum entropy analysis of flow networks.
In Proceedings of the 33rd International Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering (MaxEnt 2013), Canberra, Australia, 15–20 December 2013; AIP Conf. Proc. 1636,
Melville NY USA, 2014, 159–164.

85. Waldrip, S.H.; Niven, R.K.; Abel, M.; Schlegel, M. Maximum entropy analysis of hydraulic pipe networks.
In Proceedings of the 33rd International Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering (MaxEnt 2013), Canberra, Australia, 15–20 December 2013; AIP Conf. Proc. 1636,
Melville NY USA, 2014, 180–186.

86. Niven, R.K.; Waldrip, S.H.; Abel, M.; Schlegel, M. Probabilistic modelling of energy networks, extended
abstract. In Proceedings of the 22nd International Congress on Modelling and Simulation (MODSIM2017),
Hobart, Tasmania, Australia, 3–8 December 2017.

87. Waldrip, S.H.; Niven, R.K.; Abel, M.; Schlegel, M. MaxEnt analysis of transport networks. In Proceedings
of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering (MaxEnt 2016), Ghent, Belgium, 10–15 July 2016; AIP Conf. Proc 1853, Melville NY USA,
2017, 070003.

88. Niven, R.K.; Abel, M.; Waldrip, S.H.; Schlegel, M.; Guimera, R. Maximum entropy analysis of flow networks
with structural uncertainty (graph ensembles). In Proceedings of the 37th International Workshop on
Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), Sao Paulo,
Brazil, 9–14 July 2017; Springer Proc. Mathematics and Statistics 2018, 239, 261–274.

89. Skilling, J.; Gull, S. Bayesian maximum entropy image reconstruction. In Spatial Statistics and Imaging: Papers
from the Research Conference on Image Analysis and Spatial Statistics, Bowdoin College, Brunswick, Maine, Summer
1988; Possolo, A., Ed.; Institute of Mathematical Statistics: Hayward, CA, USA, 1991; pp. 341–367.

90. Mohammad-Djafari, A.; Giovannelli, J.F.; Demoment, G.; Idier, J. Regularization, maximum entropy
and probabilistic methods in mass spectrometry data processing problems. Int. J. Mass Spectrom. 2002,
215, 175–193. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1387-3806(01)00562-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 Network Specifications
	 Maximum Entropy Analysis
	 Overview
	 Uncertainty and Probabilistic Representation
	 Entropy and Prior Probabilities
	 Moment Constraints
	Extended MaxEnt Algorithm
	 Role of Time

	 Applications
	 Comparison to Bayesian Inference
	 Conclusions
	References

