
This version is available at https://doi.org/10.14279/depositonce-9375

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Poularakis, K., Iosifidis, G., Smaragdakis, G., & Tassiulas, L. (2019). Optimizing Gradual SDN Upgrades in
ISP Networks. IEEE/ACM Transactions on Networking, 27(1), 288–301.
https://doi.org/10.1109/tnet.2018.2890248

Konstantinos Poularakis, George Iosifidis, Georgios Smaragdakis,
Leandros Tassiulas

Optimizing Gradual SDN Upgrades in ISP
Networks

Accepted manuscript (Postprint)Journal article |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/248122632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimizing Gradual SDN Upgrades in ISP
Networks

Konstantinos Poularakis1, George Iosifidis2, Georgios Smaragdakis3, and Leandros Tassiulas1

1Department of Electrical Engineering and Yale Institute for Network Science, Yale University, USA
2School of Computer Science and Statistics, and CONNECT, Trinity College Dublin, Ireland

3Chair of Internet Measurement and Analysis, TU Berlin, Germany

Abstract—Nowadays, there is a fast-paced shift from legacy
telecommunication systems to novel Software Defined Network
(SDN) architectures that can support on-the-fly network recon-
figuration, therefore, empowering advanced traffic engineering
mechanisms. Despite this momentum, migration to SDN cannot
be realized at once especially in high-end networks of Internet
Service Providers (ISPs). It is expected that ISPs will gradually
upgrade their networks to SDN over a period that spans several
years. In this paper, we study the SDN upgrading problem in an
ISP network: which nodes to upgrade and when. We consider
a general model that captures different migration costs and
network topologies, and two plausible ISP objectives: (1) the
maximization of the traffic that traverses at least one SDN
node, and (2) the maximization of the number of dynamically
selectable routing paths enabled by SDN nodes. We leverage
the theory of submodular and supermodular functions to devise
algorithms with provable approximation ratios for each objec-
tive. Using real-world network topologies and traffic matrices,
we evaluate the performance of our algorithms and show up to
54% gains over state-of-the-art methods. Moreover, we describe
the interplay between the two objectives; maximizing one may
cause a factor of 2 loss to the other. We also study the dual
upgrading problem, i.e., minimizing the upgrading cost for the
ISP while ensuring specific performance goals. Our analysis
shows that our proposed algorithm can achieve up to 2.5 times
lower cost to ensure performance goals over state-of-the-art
methods.

Index Terms—Software Defined Networks, Gradual Deploy-
ment, ISP Networks.

I. INTRODUCTION

Motivation. Software Defined Networking (SDN) [2] en-
ables unprecedented network management flexibility through
the separation of the network control and data planes, and the
centralization of the former in designated network entities
referred to as controllers. A controller maintains a global
view of the network state, including network topology, traffic
load, and link failures, and can leverage this information
to dynamically select the routing paths for each network
flow. This approach departs significantly from traditional IP
protocols, like Open Shortest Path First (OSPF) [3], that
are destination-based and route traffic along shortest paths
using static link weight metrics. SDN, therefore, empowers

Part of this work was appeared in the proceedings of IEEE Infocom
2017 [1]. K. Poularakis acknowledges the Bodossaki Foundation, Greece,
for a postdoctoral fellowship. G. Iosifidis was supported by a research grant
from Science Foundation Ireland (SFI) under Grant Number 17/CDA/4760.
G. Smaragdakis was supported by the ERC Starting Grant ResolutioNet
(ERC-StG-679158). L. Tassiulas was supported by the National Science
Foundation under Grant CNS 1815676.

advanced Traffic Engineering (TE) mechanisms that can
respond on-the-fly to network changes and support fine-
grained routing decisions per flow. Today, many Internet Ser-
vice Providers (ISPs) rely on Multiprotocol Label Switching
(MPLS) [4] to achieve such flexibility and steer traffic
without being constrained by shortest paths. Nevertheless,
MPLS has a number of shortcomings, e.g., it relies on
pre-determined source-destination paths that are hard to
maintain and time-consuming to re-configure. On the other
hand, with SDN, a central controller can be used to change
network configuration in almost real-time and achieve per-
flow QoS objectives such as end-to-end delay and end-to-
end bandwidth. This makes SDN a particularly attractive
technology.

However, as it happens with most novel network protocols
and architectures [5], migration to SDN cannot be realized
at once. This is particularly true for the large and expensive
core networks of ISPs. Namely, the one-step SDN upgrade
of entire ISP networks is practically impossible since it poses
an enormous operational burden, and also raises performance
and security risks [6]. On top of that, such upgrades require
huge capital expenditures since network components (e.g.,
backbone routers) are very expensive. Besides, upgrading
newly installed legacy routers is economically prohibitive1.
Given the above, it is expected that ISPs will opt to migrate
to SDN incrementally, i.e., by gradually upgrading their
network nodes over a period that spans several years. In these
incremental SDN deployments, the controllers will manage
only the SDN-enabled nodes, while the remaining legacy
network will still use OSPF-like routing protocols.

Even in such hybrid SDN networks, the ISPs can accrue
important benefits. Namely, for the traffic that crosses at least
one SDN node, it is possible to apply various sophisticated
policies such as access control, firewall actions, and other
middlebox-supported in-network services [8]. Moreover, us-
ing the SDN nodes it is possible to dynamically control
the routing path of the flows by overriding the underlying
legacy OSPF or MPLS protocol and thus, create a more
flexible network [9]. In line with prior works, we will use
the term programmable traffic to differentiate the traffic that

1A typical router replacement window is 3 to 5 years; more importantly
a network’s routers have out-of-phase cycles, i.e., need to be replaced in
different times, e.g., see Lifecycle Financing from Cisco Capital. Also,
router costs vary significantly from a few tens of thousands of dollars to
more than $100K [7].

2

SDN

shortest path

alternative path 1

Firewall

alternative path 2
SDNSDN

Controller

1 2 3

4 5

6 7

Fig. 1. A network that is partially upgraded to SDN. The two SDN nodes
can act as firewalls or dynamically control the routing path.

traverses at least one SDN node from that not traversing any
SDN nodes. Both in-network services and the availability of
alternative routing paths (that can be dynamically selected)
are extremely useful for ISPs. Besides, if the flow crosses
more than one SDN nodes, the ISP has even more dynamic
routing options and hence can further increase the TE
flexibility of its network.

Let us show the potential of this approach with a simple
example. Consider the hybrid SDN network shown in Figure
1 that routes a flow from source node 1 to destination node
3. Here, only two of the seven nodes are upgraded with
SDN capabilities (nodes 1 and 4). Using OSPF, the flow
is always routed along the shortest path. However, node 1
can dynamically decide to drop (instead of forwarding) the
packets, acting, e.g., as a firewall. It can also override the
OSPF shortest path by routing the packets through node 4.
The packets will then follow the alternative path 1 which
is the OSPF shortest path connecting node 4 with 3. Such
flow rerouting is important when a link of the shortest
path fails or becomes temporarily congested. Since node
4 is also upgraded to SDN, it can similarly defer packets
towards alternative path 2. In other words, as the number
of SDN-enabled nodes increases, the set of alternative paths
increases as well. Hence, there exist more degrees of freedom
(or, flexibility) in performing dynamic TE.

To gain the maximum benefits, it is important to identify
which SDN upgrade schedule is suitable for a given network.
Namely, every ISP needs to carefully select which nodes to
upgrade, and when exactly to do so. Especially this latter
aspect of timing has many implications. First, like every
new technology, the initial high cost of SDN decreases with
a high pace over time [10]. Hence the ISPs face a dilemma of
early upgrade that will allow them to reap the new technol-
ogy benefits immediately and a slow upgrade that will reduce
their capital expenditures. More practical, the ISPs need to
decide how many nodes to upgrade in each period, which for
ISPs usually amounts to 6-12 month intervals. Second, the
routers are highly heterogeneous since they serve a different
amount of traffic and have a different remaining lifetime,
and this further perplexes these decisions.

In summary, every ISP has to address the following
two questions: (i) How many nodes to upgrade in each
period? Should it upgrade all nodes as early as possible
or wait for the prices to fall?, and (ii) After deciding the
number of nodes to be upgraded, which specific nodes to
select? The ISP’s goal might be to maximize the volume of

programmable traffic or the TE flexibility by increasing the
dynamically selectable alternative paths, based on the ISP’s
priorities and preferences. Despite the very important recent
prior works on hybrid SDN networks, e.g., see [9], [11] and
Section VIII for a detailed overview, we currently lack a
systematic understanding regarding the above issues. There-
fore, our goal in this work is to investigate policies for SDN
upgrade scheduling in large (and expensive) operational ISP
networks, and focus mainly on the impact of time-dimension
and the interplay between traffic programmability and TE
flexibility benefits.

Methodology and Contributions. We develop a method-
ology to address the above two questions posed by ISPs
regarding SDN migration. We introduce a model of SDN
upgrades general enough to capture different migration costs,
as well as ISP topologies and traffic demands. We then
utilize this model to derive the optimal scheduling for router
upgrades in the ISP network over a period that may span
several years. We consider two ISP objectives. First, we
target the maximization of the programmable traffic, i.e.,
the traffic that traverses at least one SDN node (Obj1). This
upgrading policy, if designed properly, can have significant
benefits [9], [11], since it allows an ISP to control how
the traffic flows in its own network. The second objective
(Obj2) aims to maximize the TE flexibility. This objective
is achieved by increasing the number of alternative paths
through the SDN upgrades. For each one of the two ob-
jectives, we formulate a rigorous optimization problem and
devise the desirable SDN upgrading policy (or, schedule):
which nodes to upgrade and when.

In both cases, finding the upgrading policy requires the so-
lution of challenging combinatorial optimization problems.
Namely, we show that for Obj1 this problem is NP-Hard
even to approximate to any factor better than 1 − 1/e. For
the special case in which all the node upgrades take place
at the same time period, we show that a modified version
of a classic greedy algorithm, which enumerates all possible
triplets of nodes as candidate solutions, achieves the best
possible approximation ratio. We also show a simple way
to extend this algorithm for the general case where the
node upgrades can take place at different time periods. We
also present a second class of more sophisticated algorithms
with improved approximation ratios by expressing Obj1 as
the maximization of a submodular set function [12], i.e., a
function that satisfies the diminishing returns property.

Then, we study Obj2 (maximizing TE flexibility). This
is a more complex problem which can be expressed as
the maximization of a function with bounded supermodular
degree [13]. Using this result, we present another greedy-
based algorithm that approximately solves this problem.
For the sake of completeness, we also consider the “dual”
version of the upgrading problem (Obj3), where the above
objectives are treated as constraints and subject to them we
minimize migration costs. For a simple, yet practical, case an
approximation algorithm is proposed using a binary search
technique.

3

We evaluate the performance of the proposed algorithms
using two datasets of real network topologies and traffic
matrices [14], [15]. The results clearly differentiate situations
in which upgrades should be spread over many instead of
one-time step.

The contributions of this work are summarized as follows:

• SDN Upgrading Problem. We introduce the problem
of gradually (and partially) upgrading an ISP network
to SDN, using general models of costs and different
objectives. The upgrades can take place at different time
periods, introducing different costs at each period due
to technology maturity, the different life-cycle of the
network equipment and other practical limitations.

• Maximizing Programmable Traffic (Obj1). For the pro-
grammable traffic maximization objective, we show that
the SDN upgrading problem is NP-Hard to approximate
to any factor better than 1 − 1/e. Then, we present a
simple algorithm matching this factor for the special
case of one time period and show how it can be ex-
tended for the general case. We also present additional
more sophisticated approximation algorithms using the
theory of submodular functions.

• Maximizing TE Flexibility (Obj2). For the objective
of maximizing TE flexibility through the availabil-
ity of SDN-enabled routing paths, we show that the
optimization problem is more complex. We present
an approximation algorithm by expressing it as the
maximization of a function with bounded supermodular
degree.

• Minimizing migration costs (Obj3). For the “dual”
problem of minimizing migration costs, we show that
it is fundamentally different from the above problems.
We also present an approximation algorithm using a
binary-search technique.

• Dataset-driven Evaluation. We evaluate the proposed
algorithms using real-world network topologies and
traffic matrices. We find that our approach can increase
by 54% the amount of programmable traffic compared
to two state-of-the-art methods in practical scenarios.
We also find that by optimizing Obj1, benefits are also
realized for Obj2 (and vise versa) and we explore the
interplay between the two objectives. Finally, we show
that our proposed algorithm for Obj3 can achieve up to
2.5 times lower cost to ensure performance goals over
two additional state-of-the-art methods.

The rest of the paper is organized as follows. Section II
describes the system model and formalizes the SDN upgrad-
ing problem for Obj1. In Sections III and IV, we present
theoretical results about the computational complexity of this
problem and approximation algorithms. Section V considers
Obj2 and presents an approximation algorithm. We tackle the
cost minimization version of the problem (Obj3) in Section
VI. Section VII presents the dataset-driven evaluation of
our proposed algorithms, while Section VIII reviews our
contribution compared to related works. We conclude our
work in Section IX.

Flow 1

Flow 2

Flow 3

Flow F

SDN

SDN

Flow 4 Flow 1

Flow 2

Flow 3

Flow F

SDN

SDN

Flow 4

a) Year 1

SDN

SDN
Programmable traffic

Non-programmable traffic b) Year 2

Fig. 2. An example of incremental SDN upgrades for T = 2 years. Two
nodes are upgraded each year, increasing the amount of programmable
traffic.

II. MODEL AND PROBLEM FORMULATION

We adopt a general model representing a large ISP core
network with a set N of N nodes (e.g., IP/MPLS routers).
The network traffic consists of a set F of F origin-
destination flows. With traditional IP routing protocols,
like OSPF, each flow f follows the shortest path to the
destination. With more advanced protocols, like MPLS, flow
f can follow a different (non-shortest) path based on some
source-destination bandwidth declaration mechanism. In any
case, we denote by Nf ⊆ N the set containing the nodes
along this initial path for flow f . The ISP may decide
to upgrade some of the nodes to SDN, and makes these
decisions along a time interval of t = 1, . . . , T time periods,
t ∈ T . Typically, such decisions are made in an annual or
semi-annual fashion, and by accommodating the lifetime of
this type of equipment (3-5 years). Thus, a usual value can
be T = 5 or 10 time periods. An example of incremental
SDN upgrades is depicted in Figure 2.

Moreover, the global Internet traffic increases with time,
having an expected annual growth rate of 22 percent from
2015 to 2020 [16]. To capture these dynamics, we denote
with λtf (bps) the average rate of flow f at period t, where
λtf ≥ λt′f ,∀t > t′. Although traffic variations may appear
also within the same period, it is expected that in backbone
networks with high aggregation of flows the traffic will not
to be very volatile. The network topology might dynamically
change as well. However, it is expected that the topology of
the backbone of a network is less likely to change within a
few years, e.g., up to five years. Upgrading a node to SDN
requires capital expenditures, e.g., for buying a new SDN-
enabled device, installation costs, etc. These costs typically
differ across nodes. For example, upgrades to edge nodes are
typically less expensive than core network nodes, while it is
definitely more cost-efficient to upgrade a node at the end
of its lifetime (rather than a newly installed one). Besides,
the costs are likely to drop over time as the SDN technology
matures. We denote with btn (in USD) the cost for upgrading
node n at period t, where it may be btn 6= btn′ , n 6= n′, and
btn ≤ bt′n, t ≥ t′.

We introduce the optimization variable xtn ∈ {0, 1} that
indicates whether node n ∈ N will be upgraded to SDN at
time period t or not. These variables constitute the upgrading
policy of the ISP:

x = (xtn ∈ {0, 1} : t ∈ T n ∈ N). (1)

4

We consider the case that the ISP has an available mon-
etary budget B (in USD) that can invest in SDN upgrades.
The ISP may opt to either invest this capital at once or spread
the budget over different time periods. In any case, the SDN
upgrading policy must satisfy the following constraint:∑

t∈T

∑
n∈N

xtnbtn ≤ B. (2)

We note that in the above constraint we assume a fixed cost
btn for upgrading node n at time period t. In practice, the ISP
may obtain a discounted price per unit if it orders many SDN
nodes at the same time period. Our model can be generalized
to capture such cases, e.g., by replacing the above linear
constraint with a non-linear constraint. Clearly, each node
can be upgraded to SDN at most once:∑

t∈T
xtn ≤ 1,∀n ∈ N . (3)

Since the network is upgraded incrementally, some flows
may still traverse only legacy nodes, or they may traverse a
mixture of upgraded and legacy nodes. A flow that traverses
at least one SDN node, can be used to realize a programmatic
interface, e.g., for implementing a firewall or routing traffic
to alternative paths (as we depicted in Figure 1). The volume
of programmable traffic can be expressed as follows:

J1(x) =
∑
t∈T

∑
f∈F

λtf1{
∑

n∈Nf

∑
t′≤t xt′n≥1}. (4)

Here, 1{.} is the indicator function; it is equal to one if the
condition in the subscript is true, otherwise zero.

The first natural objective of the ISP is to find the up-
grading policy that maximizes the volume of programmable
traffic (PTM problem):

Obj1: max
x

J1(x)

s.t. constraints : (2), (3)

xtn ∈ {0, 1},∀t ∈ T , n ∈ N . (5)

This is a challenging combinatorial optimization problem.
For example, in a network of N = 100 nodes and T = 10
time periods there will be 2NT = 21000 possible solutions,
and therefore brute force algorithms that exhaustively search
the solution space will require prohibitively large running
time.

The second plausible ISP objective that we examine
(Obj2) is the maximization of the TE flexibility. The latter
is directly proportional to the number of alternative routing
paths that are dynamically selectable through the SDN
upgraded nodes. We present the formulation of this objective
in Section V.

III. COMPLEXITY ANALYSIS OF THE PTM PROBLEM

In this section, we investigate thoroughly the complexity of
the PTM problem, and we propose a simple algorithm with
a provable approximation ratio. We begin with the special
case of T = 1 period and then extend our results for any T .

Theorem 1: For the special case of T = 1 time period,
the PTM problem is NP-Hard, but there exists a polynomial-
time (1− 1/e)-approximation algorithm.

In order to prove Theorem 1, we will consider a variant
of the coverage problem known as Budgeted Maximum
Coverage Problem (BMCP) [17]. The latter can be defined
as follows.

BMCP: Given a set of elements E = {E1, E2, . . . , El}
with associated weights {wi}li=1 and a collection of sets
S = {S1, S2, . . . , Sm} defined over E with associated costs
{ci}mi=1, the goal is to find a collection of sets S ′ ⊆ S, such
that the total cost of sets in S ′ does not exceed budget C and
the total weight of elements covered by S ′ is maximized.

Then, we will prove the following Lemma.
Lemma 1: PTM for T = 1 and BMCP are equivalent

problems.
Proof: Given an arbitrary instance of the BMCP, we

construct a specific instance of PTM problem for a single
period t as follows. We create a separate node for each
set, i.e., N = {1, 2, . . . , |S|}. The upgrading costs of the
nodes match the costs of the sets, i.e., btn = cS(n) where
the set S(n) corresponds to node n. The upgrading budget B
matches the budget C in the BMCP instance. We also create
a separate flow for each element, i.e., F = {1, 2, , . . . , |E|}.
The flow rates match the weights of the elements, i.e.,
λtf = wE(f) where the element E(f) corresponds to flow
f .

If there exists a set of nodes which upgrading them to
SDN makes Q amount of traffic to traverse at least one
SDN node (programmable traffic), then there will also be
a collection of sets that cover elements with total weight
Q. The covered elements will correspond to the flows that
traverse the SDN nodes. The total cost of the node upgrades
will be equal to the total cost of the sets. Hence, the solution
to the PTM problem provides a solution to the BMCP with
the same value. Conversely, given a solution to the BMCP
problem, one can solve the PTM problem by upgrading
the nodes corresponding to the sets picked by the BMCP
solution. The two solutions will have the same value.

It is known that it is NP-Hard to approximate the BMCP
problem to any factor better than 1 − 1/e [17]. Therefore,
Lemma 1 indicates that the same statement holds for the
PTM problem. Hence, we have proved the first part of
Theorem 1. To prove the second part, we leverage an
algorithm in the literature that is used for solving the BMCP.
Specifically, the work in [17] has shown that a modification
of the well-known greedy algorithm yields a (1 − 1/e)-
approximate solution to BMCP (matching the best possible
factor). When applied to the PTM problem for T = 1, this
algorithm enumerates all subsets of nodes with cardinality
3, that have total cost at most B. It completes each subset
to a candidate solution in a greedy fashion. Specifically,
it iteratively upgrades the node with the highest ratio of
the traffic that becomes programmable over upgrading cost.
Another set of candidate solutions consists of all subsets of
nodes with cardinality less than 3, which have total cost at
most B. The algorithm will output the candidate solution

5

Algorithm 1: Modified-greedy algorithm for one
period t

1 CS1 ← ∅;
2 for all subsets N ′ ⊆ N such that |N ′| = 3 and∑

n∈N ′ btn ≤ B do
3 U ← N \ N ′;
4 repeat

select n ∈ U that maximizes
∆J1(N ′, n)/btn;

5 if
∑
n∈N ′∪{n} btn ≤ B then
N ′ ← N ′ ∪ {n};

end
6 U ← U \ {n};

until U = 0;
7 if J1(x(N ′)) > J1(x(CS1)) then

CS1 ← N ′;
end

end
8 CS2 ← argmax { J1(N ′), such that N ′ ⊆ N ,
|N ′| < 3 and

∑
n∈N ′ btn ≤ B };

9 if J1(x(CS1)) > J1(x(CS2)) then
Upgrade nodes in CS1;

end
10 Else Upgrade nodes in CS2;

that achieves the highest programmable traffic volume. The
pseudocode of the algorithm is presented in Algorithm 1,
and described in the sequel.

Here, CS1, CS2 ⊆ N are the two candidate solutions
found by the algorithm. CS1 is initialized to the empty set
(line 1). U denotes the set of nodes that are not included
in the current candidate solution. ∆J1(N ′, n) indicates the
additional traffic that becomes programmable when node n
is upgraded, given that the nodes in subset N ′ are already
upgraded. The term x(CS1) indicates the vector x for which
xnt = 1 iff n ∈ CS1. Similarly, for x(CS2). For each
possible triplet of upgraded nodes, the algorithm iteratively
upgrades the node with the highest ratio of traffic that
becomes programmable over upgrading cost (line 4). Nodes
will be skipped if their upgrade violates the budget constraint
(line 5). At the end of the loop (line 8), CS1 will be the
solution with the best value. CS2 will be the best solution
of cardinality less than 3. The algorithm will compare CS1

and CS2 and pick the solution with the best value (lines
9-10).

With the Modified-greedy algorithm, we have proved the
second part of Theorem 1. Nevertheless, this algorithm
works only for a single time period (T = 1). The rest of
this section extends the results for the general case with
many time periods.

Theorem 2: For the general case, there exists an O((1−
1/e)/ log(T))-approximation algorithm to PTM problem.

We will prove this theorem by extending any approxima-
tion algorithm that works for one period to many periods.
Formally, we prove the following lemma.

Lemma 2: We can extend any a-approximation algorithm
for the T = 1 case of the PTM problem, to obtain an
O(a/ log(T))-approximation for the general T > 1 case.

Proof: For each time period t = 1, 2, . . . , T , we define
a new problem that has its own budget B and is independent
of time periods other than t. For the problem at period
t, the upgrading decisions are denoted by xt = (xtn :
n ∈ N). The objective of this problem is to maximize
the programmable traffic at time period t given by the
function v(xt) =

∑
f∈F λtf1{

∑
n∈Nf

xtn≥1}. We note that
the function v(xt) differs from J1(x) in that (i) it considers
only the programmable traffic at time period t and (ii) it
neglects the impact of upgrading decisions taken in time
periods other than t.

We denote by ALGt and OPTt an a-approximate and an
optimal solution to the problem defined for time period t.
Our main idea is to use each ALGt solution to construct
a solution Ht for the original (for multiple time periods)
PTM problem. In the Ht solution, we perform no SDN
upgrades during the first t − 1 periods, or after the tth

period. All the upgrades take place at the tth period based
on the ALGt solution. Clearly, this is a feasible solution
for PTM problem as it satisfies constraints (2) and (3). It
should hold that J1(Ht) ≥ (T − t + 1) · v(ALGt). This
is because, the programmable traffic for Ht is (i) zero at
each of the t − 1 first time periods, (ii) v(ALGt) at time
period t and (iii) at least v(ALGt) at each of the time periods
t+1, t+2, . . . , T . The latter is due to the traffic flow demands
(λtf) increase with t for the same f . Then, we pick the
solution H∗ with the maximum programmable traffic, i.e.,
J1(H∗) = maxt J1(Ht). For each t, it should hold that:

J1(H
∗) ≥ J1(Ht) ≥ (T−t+1)·v(ALGt) ≥ (T−t+1)·α·v(OPTt)

(6)

and therefore:

v(OPTt) ≤
1

α · (T − t+ 1)
J1(H∗) (7)

We denote by OPT an optimal solution to the PTM
problem, i.e., J1(OPT) = maxx J1(x). Then, we can show
that:

J1(OPT) ≤
t∑
t=1

v(OPTt) (8)

This is because, when computing the value J1(OPT),
the same budget B needs to be spread across the time
periods t = 1, 2, . . . , T . However, when computing the
sum

∑t
t=1 v(OPTt), new budget B is available at each

time period t, without the upgrading decisions taken in t
constraining the decisions in other periods. By combining
equations (7) and (8), we obtain:

J1(OPT) ≤
t∑
t=1

1

α · (T − t+ 1)
J1(H∗) (9)

6

and by using the definition of the T th harmonic number we
get:

J1(OPT) ≤ log(T)

α
J1(H∗) (10)

or equivalently:

J1(H∗) ≥ α

log(T)
J1(OPT) (11)

Theorems 1 and 2 analyze the complexity of the PTM
problem and provide a first approximate solution. Although
it is quite simple to implement, Modified-greedy provides
an approximation ratio that worsens (goes to zero) as the
number of periods T increases. To fill this gap, we introduce
in the next section a class of (more sophisticated) algorithms
with approximation ratios that are independent of T and
therefore are suitable for upgrade schedules that extend over
long time windows.

IV. TIGHT APPROXIMATIONS FOR THE PTM PROBLEM

In this section, we present tight approximation algorithms
for the PTM problem by expressing the problem as the maxi-
mization of a submodular function. We begin by introducing
the definition of submodular functions.

Definition 1: Given a finite set of elements G (referred to
as a ground set) a function H : 2G → R is submodular if
for any sets A ⊆ B ⊆ G and every element g ∈ G \ B, it
holds:

H(A ∪ {g})−H(A) ≥ H(B ∪ {g})−H(B), (12)

i.e., the marginal value of the function when adding a new
element in a set decreases as this set expands.

Let us denote the upgrade of node n at time period t by
an element gtn and define the ground set G consisting of all
elements as:

G = (gtn : t ∈ T , n ∈ N). (13)

Then, every possible SDN upgrading policy can be expressed
by a subset X ⊆ G, where the elements in X correspond to
the time periods and nodes that upgrades took place. Based
on the above, we can write Obj 1 as a function of the set
X :

H(X) =
∑
t∈T

∑
f∈F

λtf1{
{
⋃

t′≤t, n∈Nf
gt′n}∩X 6=∅

}. (14)

Then, we prove the following lemma:
Lemma 3: The function H(X) is monotone, non-

decreasing and submodular.
Proof: Monotonicity is obvious since any new up-

grade of a node cannot decrease the value of the objec-
tive function. In order to show submodularity, we observe
that since the sum of submodular functions is also sub-
modular it suffices to show that the function Hf (X) =∑
t∈T

λtf1{
{
⋃

t′≤t, n∈Nf
gt′n}∩X 6=∅

} for a given flow f is

submodular. To this end, we consider two SDN upgrading
policies A ⊆ G and B ⊆ G, where A ⊆ B. We also consider
an element gtn ∈ G \ B to be added to both sets. This

corresponds to upgrading node n at period t, where this
upgrade was not taken place either in set A or B.

The marginal value for adding gtn to A will be zero if
there exists another element gt′n′ ∈ A such that t′ ≤ t and
n′ ∈ Nf . This is because the flow f is already programmable
according to policy A. Else if there exists an element
gt′′n′ ∈ A such that t′′ > t and n′ ∈ Nf , then the marginal
value will be

∑t′′−1
i=t λif . This is because the flow f now

becomes programmable at time t instead of t′′. Otherwise,
the marginal value will be

∑T
i=t λif .

We now consider the marginal value for adding the
element gtn to the set B. We distinguish the following three
cases:
(i) If there exists an element gt′n′ ∈ A such that t′ ≤ t and
n′ ∈ Nf then this element will also belong to B. Hence, the
marginal value will be zero for both A and B.
(ii) If there exists an element gt′′n′ ∈ A such that t′′ > t
and n′ ∈ Nf then this element will also belong to B.
We distinguish the following two subcases. (ii.a) If there
exists an element gt′′′n′ ∈ B \ A such that t′′′ < t′′ the
marginal value for B will be

∑t′′′−1
i=t λif <

∑t′′−1
i=t λif . (ii.b)

Otherwise, the marginal value for B will be equal to that for
A (
∑t′′−1
i=t λif).

(iii) In any other case, the marginal value for the set A will
be
∑T
i=t λif . But, note that by definition this is the largest

possible marginal value for the B set as well. Hence, in all
cases, we show that the marginal value is lower or equal for
the set B than A.

The ground set can be partitioned into N disjoint sets,
G1,G2, . . . ,GN , where Gn = {gtn : ∀t ∈ T }. Since each
node can be upgraded in at most one time period, it should
be X ∈ I1 where:

I1 = {X ⊆ G : |X ∩ Gn| ≤ 1,∀n ∈ N}. (15)

Here, the pair (G, I1) forms a partition matroid con-
straint [12]. Also, due to the budget constraint, it should
be X ∈ I2 where:

I2 = {X ⊆ G :
∑
gtn∈X

btn ≤ B}. (16)

Here, the pair (G, I2) forms a knapsack constraint.
There exist various approximation algorithms for the

maximization of a monotone submodular function subject
to a matroid and a knapsack constraint. The algorithm with
the best approximation ratio was proposed in [18]. This
algorithm uses pipage rounding, a procedure which aims
to convert a fractional solution of an optimization problem
into an integral one, through a sequence of simple updates. It
achieves a (1−1/e−ε)-approximation ratio for any constant
ε > 0. Nevertheless, the value of this algorithm is mostly
theoretical, since it relies on the enumeration of a number
of elements which can be very large in practice.

A more practical choice is the technique presented in
[19]. The idea is to reduce the knapsack constraint into
a collection of partition matroids using an enumeration
method. Particularly, let us denote with {u1, u2, . . . , ul} all

7

Algorithm 2: Local search algorithm with input ε >
0

1 Set gt∗n∗ ← argmax{H({gtn}) | gtn ∈ G} and
X ← {gt∗n∗};

2 while the following operation is possible do
3 k-exchange operation: if there is a feasible X ′

such that: |X ′ \ X | ≤ 2
ε , |X \ X ′| ≤ 2k

ε ,
H(X ′) ≥ H(X) then
X ← X ′;

end
end

4 Set xtn ← 1 if gtn ∈ G ∀t, n, otherwise zero;

the different values of the upgrade costs btn, ∀t, n of the
elements in the ground set. For example, l = 1 if all elements
have the same cost, but l = NT if each element has a differ-
ent cost. Then, we can partition the ground set into the sets
G′1,G′2, . . . ,G′l , where the ith set contains all elements with
cost ui. We also define qi = bB/uic. In other words, qi is the
maximum number of elements in G′i that can be included in
a solution without violating the knapsack constraint. Clearly,
there will be at most m =

∏l
i=1 qi different solutions

that satisfy the knapsack constraint, one solution for each
combination. For each combination j ∈ {1, 2, . . . ,m} we
introduce the following partition matroid:

Ij2 = {X ⊆ G : |X ∩ G′i| ≤ q
j
i ,∀i ∈ {1, 2, . . . , l}} (17)

where qji denotes the maximum number of elements in G′i
corresponding to the jth combination.

Clearly, instead of maximizing H(.) function with respect
to the I1 ∩ I2 constraint, it is equivalent to maximize
H(.) with respect to I1 ∩ Ij2 , ∀j ∈ {1, 2, . . . ,m}. The
final solution will be simply the best performing of the
m solutions found. In other words, with this enumeration
method, we replace a knapsack constraint (I2) with a
collection of matroid constraints (Ij2 , j ∈ {1, 2, . . . ,m}).
Hence, the PTM problem can be expressed as a collection
of m subproblems where at each subproblem a submodular
function is maximized subject to k = 2 partition matroid
constraints.

A local search algorithm provides a (1/(k + ε))-
approximation for the maximization of a submodular func-
tion subject to k partition matroid constraints [12]. This
technique takes as input a parameter ε > 0 and maintains a
solution set X which is always independent in each of the
k matroids. Iteratively, the algorithm tries to add at most
2/ε elements and delete at most 2k/ε elements from X .
If there is a local move that generates a feasible solution
and improves the objective value, the algorithm repeats
the local search procedure with that new solution, until no
improvement is possible. The procedure is summarized in
Algorithm 2.

We emphasize that the enumeration technique that we
presented will be very efficient in cases that many nodes

have the same upgrade costs (l is a small number) and the
budget is relatively small compared to the upgrading costs
(qi values are small numbers). Nevertheless, there may be
cases in which a large number of matroid constraints need
to be enumerated. In order to reduce complexity in these
cases, a different enumeration method can be applied. For
example, the enumeration method in [18] that approximately
reduces every knapsack to a polynomial-time computable
collection of matroid constraints can be used. The size of the
collection can be tuned depending on how well the knapsack
is approximated by the matroid constraints (cf. Lemma 3.3.
in [19]).

The pipage rounding and the local search algorithms
provide approximation ratios that are independent of the
number of periods T . Specifically, the following theorem
holds:

Theorem 3: There exists a (1 − 1/e − ε)-approximation
algorithm and an (1/(2+ε))-approximation algorithm to the
PTM problem for any ε > 0.

V. OPTIMIZING THE TE FLEXIBILITY

In this section, we study the SDN upgrading problem
when the ISP’s goal is to maximize the TE flexibility. This
is achieved through the availability of alternative paths that
can be dynamically activated in such hybrid SDN networks.
Namely, the ISP can use these paths to avoid congestion
in cases that certain links are temporarily overloaded or
failed. For example, as explained in Figure 1, when node
1 is upgraded the flow can be dynamically routed towards
the alternative path 1; and if node 4 is also upgraded, then
the ISP can also activate alternative path 2, if needed. Note
that TE flexibility also improves network operation resilience
when the network is under stress (due to attacks or outages)
because it provides alternative paths to reroute the flows.

To formulate this as an optimization problem, we intro-
duce a set Pf for each flow f . This set includes alternative
paths that flow f can follow to reach its destination. For ex-
ample, an ISP can analyze historical network data to predict
which paths will be underutilized, and hence they can be
dynamically activated to carry flow f when its shortest path
becomes congested. For each alternative path p ∈ Pf , we
define a group of nodes spf which all need to be upgraded to
SDN in order for path p to become available to route flow f .
For example, in Figure 1 we have salternative path 1,f = {1}
and salternative path 2,f = {1, 4}. A generic approach to
compute these groups was presented in [20], [21].

There will be a TE benefit wpft ≥ 0 if alternative path
p ∈ Pf is available for routing flow f at time period
t. A similar modeling approach of TE benefit has been
considered in [20], [21]. This benefit will be higher for flows
that carry large volumes of traffic and paths with sufficient
spare capacity to carry these volumes. For a given upgrading
policy x, the total TE benefit (or flexibility) can be expressed

8

as follows:

J2(x) =
∑
t∈T

∑
f∈F

∑
p∈Pf

wpft1{
∏

n∈spf

[∑
t′≤t xt′n

]
>0}

.

(18)

Here, the benefit wpft is earned when all nodes in the group
spf have been upgraded to SDN by time t. In the special
case that wpft = 1 ∀p, f, t, the total TE benefit matches the
total number of alternative paths that are enabled by SDN
nodes.

The objective of the ISP is to find the SDN upgrading
policy that maximizes the TE flexibility (TEFM problem):

Obj2 : max
x

J2(x)

s.t. constraints : (2), (3), (5)

Obj2 is more complex than Obj1, since it depends on
the exact set of SDN nodes that each flow traverses, rather
than on whether the flow traverses at least one of them. In
this section, we present an initial approach to optimize this
objective. Our idea is to express the TEFM problem as the
maximization of a set function with bounded supermodular
degree [13]. We begin with the following definitions.

Definition 2: The supermodular degree of an element g ∈
G by a function H(.) is defined as the cardinality of the set
D+
H(g) := {g′ ∈ G : ∃X ⊆ G for which H(X ∪ {g′} ∪
{g})−H(X∪{g′}) > H(X∪{g})−H(X)}. In other words,
the set D+

H(g) contains all elements g′ the existence of which
in a set might increase the marginal value of element g.

Definition 3: The supermodular degree of a function
H(.), denoted by D+

H , is simply the maximum supermod-
ular degree of any element g ∈ G. Formally, D+

H =
maxg∈G |D+

H(g)|.
It is not hard to express J2 as a function with bounded

supermodular degree (D+
J2

). In fact, all the nodes that are
included in the same group depend on each other, in the
sense that upgrading only one of them yields no TE benefit,
but when they are all upgraded a benefit is earned (wpft for
group spf). For example, in Figure 1, the marginal value for
upgrading node 4 is zero if node 1 is not already upgraded,
since the only available path for the flow would be still
the shortest path. But, if node 1 is already upgraded, then
the marginal value for upgrading node 4 becomes positive
(since routing over alternative path 2 now becomes possible).
Hence, the supermodular degree of function J2 is 1 in this
example. For a single time period, the supermodular degree
of J2 is simply the maximum number of nodes that share
the same group with any other node. Intuitively, the more
the path p diverges from the initial shortest path of the
flow f the more node upgrades are needed to enable such
re-routing, and hence the larger the spf group becomes.
The exact number of such nodes depends on how the
shortest and alternative paths overlap. In general, it holds
0 ≤ D+

J2
≤ NT − 1.

A variant of the greedy algorithm has been proposed for
maximizing any function H with bounded supermodular
degree D+

H . We call this the Super-greedy algorithm (see

Algorithm 3: Super-greedy algorithm

1 X ← ∅;
2 while there exists an element g such that X ∪ {g} is

a feasible solution do
3 Let g∗ ∈ G \ X and D̂+

H(g∗) ⊆ D+
H(g∗) be a pair

of an element and a set such that:
(i) X ′ := X ∪ {g∗} ∪ D̂+

H is a feasible solution,
and

(ii) it maximizes H(X ′)−H(X);
4 X ← X ′;

end
5 Set xtn ← 1 iff gtn ∈ X , otherwise 0;

Algorithm 3). This algorithm starts with an empty solution
set X (line 1) and iteratively augments subsets of elements
to it (lines 2-4). At each iteration, it picks an element g∗ and
a subset of those elements that increase the marginal value
of g∗, i.e., a subset of the set D+

H(g∗). The above choice is
made greedily so that the highest marginal benefit is earned.
The procedure ends when there are no more elements to
augment.

The work in [13] has shown that Super-greedy achieves
an approximation ratio for the problem of maximizing a
function with bounded supermodular degree. Nevertheless,
a necessary condition for this result to hold is that the
constraints of the problem form a k-extendible system, which
is a class of constraints that capture the case of k matroid
constraints, but not the case of knapsack constraints. For
the special case that all the upgrading costs are equal, the
constraints (2), (3) can be expressed as k = 2 matroid
constraints. Therefore, we obtain:

Proposition 1: Super-greedy achieves an (1/(2(D+
J2

+
1) + 1))-approximation ratio to the TEFM problem for the
special case of uniform upgrading costs.

VI. MINIMIZING THE UPGRADE COSTS

So far, we focused on the investment of a given eco-
nomic budget B in SDN upgrades, aiming to optimize a
performance objective (Obj1 or Obj2). In certain cases,
however, an ISP may be more concerned about meeting
specific performance targets rather than spending a specific
budget. These performance targets may span one or multiple
time periods. For example, an ISP may prefer to upgrade
its network in a way that directly makes 30% or more of
its traffic programmable, while another ISP may opt for
10% the first year, 20% the second year, etc. Similarly,
the targets can be with respect to Obj2. This gives rise
to a different, yet equally important, version of the SDN
upgrading problem. The objective in this “dual” version is to
minimize the cost spent in upgrades while ensuring specific
levels of performance.

For the sake of completeness, in this section, we study
such a minimization version of the SDN upgrading problem
where the targets are with respect to programmable traffic.

9

In each time period t ∈ T the upgrading policy must
ensure that at least Pt ∈ [0, 1] portion of the traffic is
made programmable, where typically Pt′ > Pt for t′ > t.
Formally, the following constraints must be satisfied:∑

f∈F λtf1{
∑

n∈Nf

∑
t′≤t xt′n≥1}∑

f∈F λtf
≥ Pt, ∀t ∈ T . (19)

The optimal upgrading policy will minimize the total cost
spent in upgrades (UCM problem):

Obj3: min
x

∑
t∈T

∑
n∈N

xtnbtn

s.t. constraints : (3), (5), (19)

Subsequently, we investigate the complexity of the UCM
problem. We focus on the special, yet practical, case of a
single time period (T = 1), i.e., one-step upgrade. Even for
this case, we show that the problem is NP-Hard and present
an approximation algorithm.

Theorem 4: For the special case of T = 1 time period,
the UCM problem is NP-Hard, but there exists a polynomial-
time (4/3 + ε)H(∆)−approximation algorithm, where ε is
any positive constant, ∆ is the maximum number of flows
that traverse a node and H is the harmonic number, i.e.,
H(q) =

∑q
k=1 1/k.

To prove the above theorem, we show the equivalence to
the following variant of the cover problem [22].

Definition 4: Generalized Partial Cover (GPC): Given a
set of elements E = {E1, E2, ..., El} with associated weights
{wi}li=1 and a collection of sets S = {S1, S2, ..., Sm}
defined over E with associated costs {ci}mi=1, the goal is
to find a collection of sets S ′ ⊆ S such that the total weight
of the elements covered by S ′ is at least L, a specified lower
bound, and the total cost of sets in S ′ is minimized.

Specifically, we prove the following lemma.
Lemma 4: UCM for T = 1 and GPC are equivalent

problems.
Proof: The proof is similar to that of Lemma 1. Given

an instance of the GPC problem, we create a separate node
for each set (with upgrading cost equal to the cost of the
set) and a separate flow for each element (with rate equal
to the weight of the element). If there exists a set of nodes,
such that by upgrading the nodes in this set to SDN makes
Pt = L or more traffic programmable, then there will also
be a collection of sets that cover elements with total weight
Pt or more, having the same total cost.

Building on Lemma 4, we can use the approximation
algorithms that have been proposed for GPC in order to
solve UCM for a single time period t. Below, we explain
one of these algorithms, proposed in [22].

First, we introduce the auxiliary variable ztf ∈ {0, 1}
which indicates whether flow f is not programmable in
period t. The respective vector of variables for period t
will be zt = (ztf : f ∈ F). Similarly, we define
xt = (xtn : n ∈ N).

Second, we define the Lagrangian Relaxation of the UCM
problem (referred to as LR-UCMt). This is realized by

dualizing the constraint in (19) and lifting it to the objective
function multiplied by µ ≥ 0:

min
xt,zt

∑
n∈N

xtnbtn + µ

(∑
f∈F

λtfztf − (1− Pt)
∑
f∈F

λtf

)
s.t.

∑
n∈Nf

xtn + ztf ≥ 1,∀f ∈ F , (20)

xtn, ztf ∈ {0, 1}, ∀n ∈ N , f ∈ F . (21)

In the above formulation, there is no restriction to make any
flow programmable; however, if the nodes we upgrade leave
a flow f un-programmable (ztf = 1), we incur a penalty of
µλtf .

Third, we use a simple greedy scheme to obtain an
approximate solution to the LR-UCMt problem [22]. That
is, starting with an empty solution (xt = 0, zt = 0), we
iteratively set the value of a variable (xtn for some n or zf
for some f) from zero to one such that the average gain is
maximized. When a variable xtn is set to one, the average
gain will be the number of flows that become programmable
and for which ztf = 0 over btn. However, when a variable
zf is set to one, the average gain will be 1 over µλtfH(∆).
Note, here, that the cost in the denominator is inflated by a
factor H(∆). This greedy scheme will end when every flow
f has either become programmable or ztf = 1.

Fourth, we use as a “black-box” the solution to LR-UCMt

to solve the UCM problem for period t. Specifically, we
conduct a binary search over the possible values of µ which
consists of a polynomially-bounded number of calls to the
greedy scheme for LR-UCMt. The binary search is over the
following interval:

µ ∈
[
0,

2
∑
n∈N btn

minf∈F λtf

]
(22)

The result of the binary search will be two values µ1 ≥ µ2

in the above interval that satisfies:
1) µ1 − µ2 ≤ εminn btn, where ε is any given positive

constant,
2) the programmable traffic corresponding to the solution

for µ1 is at least Pt, and at the same time, the
programmable traffic for µ2 is at most Pt.

The solution for µ1, denoted by x1
t , will always be feasible,

while the solution for µ2, denoted by x2
t , may not be

feasible.
The fifth and last step is to create an additional feasible

solution x3
t , by augmenting x2

t with a subset of nodes
upgraded in x1

t . We do this greedily by upgrading the node
with the highest ratio of traffic that becomes programmable
over upgrading cost until the Pt target is met. Finally, among
the two feasible solutions x1

t and x3
t , the one with the lowest

upgrading cost is picked. This solution will be within a factor
of (4/3 + ε)H(∆) from optimal [22].

VII. DATASET-DRIVEN EVALUATION

In this section, we evaluate the performance of the
proposed algorithms using real-world network topologies

10

CHINng

ATLA-M5

DNVRng

HSTNng

LOSAng

WASHng

(1)

(3)

(2)

37
649

2
9
3

60
0

1994

1258

1
1
2
5

18641642

660

361
1
8
2

966

886

9
5

ATLAng

SNVAng

STTLng

KSCYng
IPLSng

NYCMng

Fig. 3. The Abilene network. SDN upgraded nodes returned by DEG
(highlighted in light gray), VOL (highlighted in red) and Local Search
(indexed by (1), (2), (3)) algorithms for T = 1 and B = $300K. Node
labels correspond to router names and link labels correspond to aggregate
traffic volumes (in Mbps).

and traffic matrices. Overall, we find that our approach
can increase by 54% the amount of programmable traffic
compared to state-of-the-art methods, especially in practical
scenarios where the network is upgraded in a time window
of four or five years. In general, the ISP acquires more
benefits by spreading the upgrades over many instead of
one year. Nevertheless, this strategy can be detrimental
when the SDN costs are relatively stable over time (up to
20% drop per year). We also find that by optimizing the
objective of programmable traffic maximization, benefits are
also realized for the objective of TE flexibility maximization
(and vise versa). However, there will be a performance
loss (up to a factor of 2), since each algorithm favors one
objective over the other.

We have implemented the following eight algorithms:

1) DEG [33]: This scheme upgrades the nodes with the
highest degrees (number of incoming and outgoing
adjacent links) in the topology graph, until budget B
is spent. All the upgrades take place at the first time
period.

2) VOL [11], [33]: This scheme upgrades the nodes with
the highest traffic volume that traverses them, until
budget B is spent. All the upgrades take place at the
first time period.

3) Modified-greedy: The proposed scheme in Algorithm
1 extended for many time periods.

4) Local search: The proposed scheme in Algorithm 2
for ε = 2 that can spread upgrades over many time
periods.

5) Super greedy: The proposed scheme in Algorithm 3
that maximizes TE flexibility.

6) MUcPF [27]: This scheme upgrades the node that cov-
ers the maximum number of flows until the minimum
programmable traffic target is met. All the upgrades
take place at the first time period.

7) Highest ratio [28]: This scheme upgrades the node
with the highest ratio of traffic volume that traverses it
over upgrading cost, until the minimum programmable
traffic target is met. All the upgrades take place at the
first time period.

8) Binary search: The proposed scheme in Section VI

for ε = 0.1 that minimizes upgrading cost. All the
upgrades take place at the first time period.

The first four algorithms above will be compared with
respect to Obj1 subject to a specific budget B. The fifth
algorithm will be evaluated with respect to Obj2 subject
to the same budget. Finally, the last three algorithms will
be compared with respect to Obj3 subject to a specific
performance target Pt.

The main part of the evaluation is carried out using the
Abilene dataset [14] which is obtained from an educational
backbone network in North America. This network consists
of 12 nodes and 30 directed links as depicted in Figure
3. The dataset records the traffic matrix, i.e., the data
transmitted between every pair of nodes, every 5 minutes for
an overall period of six months. We use the traffic matrix
at 8:00 pm on the first day to set the rates of the respective
144 flows. The aggregate rate is found to be 5.46 Gbps.
These rates correspond to the λtf values for period t = 1.
We increase the rates in subsequent periods (years) by 22%
(λtf = λt−1f · 122%) [16]. The dataset also records the
OSPF weights of all the links, which allows us to find the
shortest path between every pair of nodes (Nf sets).

We emphasize that we focus on this specific subset of the
dataset because it represents a peak time period when SDN is
more important. Moreover, this dataset is publicly available
online, whereas data from most ISPs is proprietary. The eval-
uation code we wrote is publicly available online [35]. We
believe that the reproducibility of the results will encourage
future experimentation with SDN algorithms.

We start with Obj1 and examine how the proposed al-
gorithms compare with the state-of-the-art methods. Since
the latter neglect the timing issue, and in order to ensure
a fair comparison, we begin our investigation with T = 1
time period, i.e., all upgrades take place within one year.
As a canonical scenario, we set the cost of upgrading a
node to SDN to $100K [7] (btn values for t = 1), and
we vary the budget B from $100K to $1M (Figure 4(a)).
We observe that as the budget increases, the volume of
programmable traffic increases for all algorithms. This is
because more nodes are upgraded to SDN which creates
more opportunities for the flows to traverse SDN nodes.
There exists a saturation point (B = $900K), after which
no significant changes are noticed. The proposed algorithms
(Modified greedy and Local search) achieve up to 54% more
programmable traffic than their counterparts.

To better understand how the algorithms work and why
we obtain the above gains, we depict the upgrading decisions
of the algorithms in Figure 3. While DEG upgrades the
three nodes with the highest degrees (ATLAng, HSTNng and
DNVRng), VOL picks the IPLSng, KSCYng and CHINng
nodes which cover the most heavy-loaded links. Local search
upgrades first the IPLSng node similar to VOL. However,
the next decisions are different as most of the traffic that
KSCYng and CHINng cover is already made programmable
by the upgrade of IPLSng. Therefore, two different nodes
will be picked (WASHng and LOSAng). We note that the

11

0 2 4 6 8 10
20

30

40

50

60

70

80

90

100

Budget ($105)

P
ro

g
ra

m
m

ab
le

 T
ra

ff
ic

 (
%

)

Local search
Modified greedy
VOL
DEG

 Saturation Point
54% Gains

(a)

T=1 T=2 T=3 T=4 T=5
50

60

70

80

Number of Time Periods (Years)

P
ro

g
ra

m
m

ab
le

 T
ra

ff
ic

 (
%

)

DEG VOL Modified greedy Local search

47%

36%

(b)

10 20 30 40 50 60 70
0

20

40

60

80

100

Annual Cost Reduction (%)

U
p

g
ra

d
es

 (
%

)

Y1 Y1

Y3

Y2

Y1
Y1

Y2

Y3

Y4

Y3

Y2

Y1 Y1

Y3

Y4

Y3

Y1

Y4

Y2

Y5

(c)

Fig. 4. The programmable traffic achieved by DEG, VOL, Modified greedy and Local search algorithms as a function of (a) the budget
B and (b) the number of time periods T . (c) The distribution of upgrades across years (Y1, Y2, Y3, Y4, Y5) for different cost
reduction rates.

1 2 3 4 5 6 7 8 9 10
0

50

100

Budget ($105)

P
ro

gr
am

m
ab

le
 T

ra
ff

ic
 (

%
)

1 2 3 4 5 6 7 8 9 10
0

50

100

Budget ($105)

A
lt

er
na

ti
ve

 P
at

hs
 (

%
)

Local search
Super greedy

Local search
Super greedy

Optimizing Obj. 1

Optimizing Obj. 2

(a)

40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

5

Programmable traffic target (%)

U
pg

ra
di

ng
 c

os
t (

$)

Highest ratio
MUcPF
Binary search

x2.5 cost
x1.67 cost

(b)

Fig. 5. (a) Impact of optimizing different objectives for T = 1. (b) Upgrading cost (Obj3) for different minimum levels of
programmable traffic.

Modified Greedy algorithm will return the same upgrading
policy with Local search, which happens to be optimal in
this case.

We note that since the Abilene network is fairly small
(N = 12 nodes) and for T = 1 time period, we can
compute the optimal solution in reasonable time by using
exhaustive search methods. That is by enumerating all the
212 = 4, 096 possible solutions and then picking the solution
that yields the largest programmable traffic. By carrying out
this process, we observed that Modified greedy and Local
search algorithms perform very close to the optimal (less
than 1% for the scenarios in Figure 4(a)). However, we
are not able to apply exhaustive search methods to find the
optimal solution in scenarios of larger T or larger networks.

We then explore the impact of the number of time periods
T in Figure 4(b). Here, we keep B = $200K constant,
but we vary T within 1 to 5 years. To capture technology
maturity, we decrease the SDN upgrading costs by 40% per
year, i.e., btn = bt−1n− bt−1n · 40%. For T = 1, the results
match those in Figure 4(a). For T > 1, additional benefits
can be acquired by postponing some of the upgrades after
the first year when the costs will be lower. Local search
algorithm intelligently spreads the upgrades across different
years to achieve the best performance among the four

algorithms. The benefits over the state-of-the-art methods
are up to 47%, and 5.5% over Modified greedy for T = 5.

In Figure 4(c), we take a closer look into the distribution
of upgrades over years when the Local search algorithm is
used. We evaluate various scenarios which differ into the
annual decrease rate of the upgrading costs. We find that
for relatively low rates of cost decrease (up to 20%), all
the upgrades should take place within the first year. But,
after this point, it is more beneficial to postpone some of the
upgrades in the future. The distribution of upgrades over
years becomes more diverse as the rate of cost decrease
increases.

Then, we explore the interplay between traffic pro-
grammability (Obj1) and TE flexibility benefits (Obj2). As
we showed in previous figures, Local Search is in practice
a very efficient algorithm for maximizing programmable
traffic. But, a large volume of programmable traffic cannot
guarantee by itself a large number of alternative routing
paths (and vise versa). Therefore, it is questionable how well
an algorithm that optimizes one of the two objectives will
perform with respect to the other objective. Figure 5(a) aims
to shed light on this issue by comparing the performance of
the Local search algorithm (which optimizes programmable
traffic) and Super-greedy (which optimizes TE flexibility).

12

6 12 18 24 30
50

60

70

80

90

100

Budget ($105)

P
ro

gr
am

m
ab

le
 T

ra
ff

ic
 (

%
)

Local search
Modified greedy
VOL
DEG

x10 Nodes => x3 Saturation Point

12% Gains

Fig. 6. Programmable traffic for the Deltacom network [15].

Here, to model the TE benefits, we focus on the 10 flows
with the highest rate, for which TE is most important. Then,
we consider as alternative paths the second and third shortest
path for each flow that does not overlap with the shortest path
(Pf sets). We find that by optimizing one of the objectives,
benefits are also realized for the other objective. However,
there will be a performance loss (up to a factor of 2), since
each algorithm favors one objective over the other.

We also present evaluation results for Obj3 to examine
how the proposed algorithm (Binary search) compares with
the state-of-the-art methods (MUcPF and Highest ratio).
We carry this out for a single time period t and different
values of the programmable traffic target (Pt). The results
are depicted in Figure 5(b). As expected, the cost spent on
upgrades increases with Pt for all the algorithms. Interest-
ingly, the proposed algorithm requires significantly lower
cost than its counterparts; up to 2.5 and 1.67 times lower
than Highest ratio and MUcPF respectively.

Although in our evaluation we used a real network
topology and traffic matrices, it would be also interesting
to study the results in larger networks. Towards this goal,
we use the topology of the Deltacom backbone network
in North America, which consists of 113 nodes and 161
links, and it is publicly available online in [15]. Since there
is no available information about the traffic, we generate
this artificially. Particularly, we create F = 1, 000 flows,
by picking uniformly at random origin-destination pairs.
We compute the shortest paths based on the hop count
length, and we set the flow rate to be disproportional to
it (following the gravity model [36]). In Figure 6, we repeat
the experiment presented in Figure 4(a), but for this larger
network. We find that the proposed algorithms perform up
to 12% better than their counterparts. The saturation point
is found to be B = $3M , about three times larger than
in the small network. We attribute this difference to the
larger number of nodes (10x) in the Deltacom network and
the topological characteristics, as the Deltacom has a higher
link density which enables SDN nodes to cover more flows.
The running times of the algorithms are typically on the
scale of minutes for the small network and hours for the
large network. For the Local search algorithm specifically,

the running time will be less than 10 minutes even if we
consider all the possible 12656 (113 × 112) flows in the
large network. These are acceptable running times in practice
since the problem has to be solved offline by the ISP.

VIII. RELATED WORK

In this section, we present related work on SDN upgrad-
ing. We also put our work in perspective in Table I that lists
the main papers that tackle this problem, categorized based
on their contributions.

Hybrid SDN. Incremental deployment of new protocols
and architectures is an operational paradigm shift [5], and
SDN is no exception to that. Namely, several techno-
economic factors make ISPs reluctant to proceed with imme-
diate full-scale SDN deployment. This renders hybrid SDN
networks an imperative intermediate step [6]. Such systems
are nowadays possible due to hybrid routers [23], yet their
deployment is not without challenges. For example, the co-
existence of multiple control planes poses risks for fault-free
routing, and specific measures should be taken to avoid this,
e.g., see [24].

One of the key traffic engineering goals in these hybrid
networks is to use the SDN routers so as to minimize the load
of congested links, e.g., see seminal work [9], and [25], [26].
For a given set of upgraded nodes, this can be expressed
as an LP problem. However, upgrading decisions are more
challenging as they yield intractable problem formulations.

SDN upgrading problem. References [27] and [28]
proposed meaningful heuristics for the programmable traffic
maximization and upgrading cost minimization objective
respectively. Reference [29] designed a cover-based approxi-
mation algorithm for the programmable traffic maximization
objective. A distinctive feature of the latter work is that
the SDN devices do not replace the legacy ones, but are
deployed in addition to them. In another front, the work
in [30] studied the objective of maximizing the minimum
number of loop-free routing paths enabled by the SDN
nodes. This TE-based objective can have a positive impact
on security by eliminating the routing bottlenecks likely to
be utilized by an adversary. Another approach that deploys
SDN nodes in a way that partitions the network into sub-
domains so as to achieve TE capabilities comparable to full
SDN deployment, was proposed in [31]. While the above
works considered similar objectives to our work, they did
not provide approximation bounds (with the exception of
[29]), nor they studied the timing aspect.

Joint SDN upgrading & routing problem. Another
series of works follow a joint SDN upgrading and rout-
ing optimization approach, i.e., the flow routing and node
upgrading decisions are jointly made. The pioneer work in
[11] proposed a joint scheme that deploys SDN nodes and
re-routes all flows through at least one of them (hence all the
traffic is made programmable), with the goal of minimizing
the total path stretch. Another joint scheme that assigns
to each legacy node an SDN node, able to dynamically
receive traffic and perform failover, was proposed in [32].

13

TABLE I
RELATED WORKS ON SDN UPGRADING.

Reference Objective Joint routing & upgrading Timing aspect
Max

programmable traffic
Max

TE gains
Min

upgrade cost
Min

path stretch
[27] 3 3 3 7 7 7
[28] 3 7 3 7 7 7
[29] 3 7 7 7 7 7

[30],[31] 7 3 7 7 7 7
[11] 7 7 7 3 3 7
[32] 7 7 3 7 3 7

[33],[34] 7 3 7 7 3 7
[20],[21] 7 3 7 7 7 3

This work 3 3 3 7 7 3

Here, the objective was to minimize the total number of up-
graded nodes subject to certain assignment restrictions. Two
more joint schemes have been proposed in the literature; a
heuristic that minimizes the maximum link usage [33] and a
randomized-based approximation algorithm that maximizes
network throughput [34].

We note that although the above joint approaches are
meaningful in certain cases, in general, the ISP will solve the
SDN upgrading and routing problems in different timescales.
A typical SDN upgrade window may span several years.
On the contrary, the routing problem should be solved in a
shorter time scale to respond to dynamic network conditions.
Therefore, in this work, we tackle the SDN upgrading
problem independently from routing, using long-term traffic
predictions (as in [27], [28], [29], [30], [31], [20], [21]).

Timing aspect. Besides, one of our main focal points
is the impact of upgrade timing. This is a very crucial
and practical issue in hybrid SDNs given that (i) new
technology costs reduce rapidly [37], (ii) the out-of-phase
life-cycles of the legacy devices render cost-prohibitive
massive replacements, and (iii) the practical, technical and
security limitations render impossible one-time upgrades.
Prior works as those above do not focus on these aspects. On
the contrary, few prior interesting works [20], [21] studied
gradual upgrades, yet, they do not provide tight bounds, nor
they analyze the impact of equipment cost reduction. Clearly,
the necessary consideration of time dimension increases
further the problem’s complexity. To cope with this issue,
we carefully employ state-of-the-art algorithms such as [12],
which can provide good-guarantees even for large networks.

Alternatives to hybrid SDN. Prior work also tries to
achieve SDN-like flexible path enforcement with legacy
networks. Fibbing [38] injects fake nodes and links into the
underlying link state routing protocol to achieve some level
of load balancing and TE, but its forwarding rule matching
is limited to destination-based, and its expressivity is thus
confined to the expressiveness of IP routing. Besides, with
injected “lies”, Fibbing could lead to debugging issues and
incorrect operation. DEFO [40] leverages segment routing
to control routing paths for carrier-grade traffic engineering
but shares some similar limitations as in Fibbing. Besides, its
constraint programming based middle-point selection largely
focuses on static traffic matrices, while our proposed TE

module can load balance dynamic traffic demands.

IX. CONCLUSION

In this paper, we studied the migration to SDN of high-end
ISP core networks. To this end, we introduced a model of
gradual SDN upgrades general enough to capture different
ISP migration strategies, costs, and objectives. An ISP can
apply our methodology to optimally decide which nodes
to upgrade over a period that may span several years. We
focused on two popular objectives of ISPs, namely, (i) the
maximization of the programmable traffic that traverses at
least one of the SDN enabled nodes, and (ii) the maximiza-
tion of the traffic engineering flexibility, i.e., the increase in
the number of alternative paths available to flows achieved
by SDN upgrades. For these two objectives we characterized
the complexity of the problem and we proposed algorithms
to achieve the optimal upgrading schedule. We also studied
the dual problem of minimizing the cost of SDN upgrades
to ensure specific performance goals. Using two real-world
network topologies and traffic matrices, we differentiated
situations in which upgrades should be spread over many
instead of one step and explored the interplay between the
different objectives. Our results showed that for the first two
objectives, the performance of our algorithms showed up to
54% gains over state-of-the-art methods and for the dual
problem our proposed algorithm achieved up to 2.5 times
lower cost to ensure performance goals over state-of-the-art
methods.

REFERENCES

[1] K. Poularakis, G. Iosifidis, G. Smaragdakis, L. Tassiulas, “One Step at
a Time: Optimizing SDN Upgrades in ISP Networks”, IEEE Infocom,
2017.

[2] W. Xia, Y. Wen, C. Foh, D. Niyato, “A Survey on Software-defined
Networking”, IEEE Commun. Surveys & Tutor., vol. 17, no. 1, 2015.

[3] J. Moy, “OSPF Version 2”, RFC 2328, April 1998.
[4] D.O. Awduche, “MPLS and traffic engineering in IP networks”, IEEE

Communications Magazine, vol. 37 , no. 12 , pp. 42-49, 1999.
[5] M. K. Mukerjee, D. Han, S. Seshan, P. Steenkiste, “Understanding

Tradeoffs in Incremental Deployment of New Network Architectures”,
in Proc. of ACM CoNEXT, 2013.

[6] S. Vissicchio, L. Vanberer, O. Bonaventure, “Opportunities and Re-
search Challenges of Hybrid Software Defined Networks”, ACM CCR,
vol. 44, no. 2, 2014.

[7] Reuters Technology News, “AT&T to buy Cisco Core Routers for
Network Upgrade”, [Online:] www.reuters.com

[8] Z. Cao, M. Kodialam, T. V. Lakshman, “Traffic Steering in Software
Defined Networks: Planning and Online Routing”, ACM DCC, 2014.

14

[9] S. Agarwal, M. Kodialam, T.V. Lakshman, “Traffic Engineering in
Software Defined Networks”, IEEE Infocom, 2013.

[10] Light Reading Portal, “NEC Slashes OpenFlow SDN Controller
Pricing”, [Online]: http://www.lightreading.com/carrier-sdn/
sdn-technology/nec-slashes-openflow-sdn-controller-pricing/d/d-id/
711391, 2014.

[11] D. Levin, M. Canini, S. Schmid, F. Schaffert, A. Feldmann, “Panop-
ticon: Reaping the Benefits of Incremental SDN Deployment in Enter-
prise Networks”, in Proc. of USENIX ATC, 2014.

[12] J. Lee, M. Sviridenko, J. Vondrak, “Submodular Maximization over
Multiple Matroids via Generalized Exchange Properties”, Math. of
Operations Research, vol. 35, no. 4, 2010.

[13] M. Feldman, R. Izsak, “Constrained Monotone Function Maximiza-
tion and the Supermodular Degree”, in Proc. of APPROX/RANDOM,
2014.

[14] Abilene dataset, http://www.cs.utexas.edu/∼yzhang/research/
AbileneTM

[15] “The Internet Topology Zoo”, http://www.topology-zoo.org/dataset.
html

[16] Cisco White Paper, “VNI: Forecast and Methodology, 2015-2020”,
2016.

[17] S. Khuller, A. Moss, J. Naor, “The Budgeted Coverage Problem”,
Information Processing Letters, vol. 70, no. 1, 1999.

[18] C. Chekuri, J. Vondrák, R. Zenklusen, “Dependent Randomized
Rounding via Exchange Properties of Combinatorial Structures”, in
Proc. of FOCS, 2010.

[19] A. Gupta, V. Nagarajan, R. Ravi, “Robust and MaxMin Optimization
under Matroid and Knapsack Uncertainty Sets”, ACM Transactions on
Algorithms, vol. 12, no. 1, 2016.

[20] M. Caria, A. Jukan, M. Hoffmann,“A Performance Study of Network
Migration to SDN-enabled Traffic Engineering”, IEEE Globecom,
2013.

[21] T. Das, M. Caria, A. Jukan, M. Hoffmann, “A Techno-economic
Analysis of Network Migration to Software-Defined Networking”,
arXiv. 1310.0216v1, 2013.

[22] J. Konemann, O. Parekh, D. Segev, “A Unified Approach to Approx-
imating Partial Covering Problems”, Algorithmica, vol. 59, no. 4, pp.
489-509, 2011.

[23] Open Networking Foundation, “OpenFlow Switch Specification”,
March 2015.

[24] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, L. Vanberer,
“On the Co-Existence of Distributed and Centralized Routing Control-
Planes”, in Proc. of IEEE Infocom, 2015.

[25] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, “Traffic Engineering in
SDN/OSPF Hybrid Network”, in Proc. of IEEE ICNP, 2014.

[26] J. He, and W. Song, “Achieving Near-Optimal Traffic Engineering
in Hybrid Software Defined Networks”, in Proc. of IFIP Networking,
2015

[27] E. H.-K. Wu, B. Kar, and Y.-D. Lin, “The Budgeted Maximum
Coverage Problem in Partially Deployed Software Defined Networks”,
IEEE Transactions on Network and Service Management, vol. 13, no.
3, pp. 394-406, 2016.

[28] X. Jia, Y. Jiang, Z. Guo, “Incremental Switch Deployment for Hybrid
Software-Defined Networks”, IEEE LCN, 2016.

[29] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental Deployment and Throughput Maximization Routing for
a Hybrid sdn”, IEEE/ACM Transactions on Networking, 2017.

[30] L. Wang, Q. Li, Y. Jiang, J. Wu, “Towards Mitigating Link Flooding
Attack Via Incremental SDN Deployment”, IEEE ISCC, 2016.

[31] M. Caria, A. Jukan, M. Hoffmann, “Divide and Conquer: Partitioning
OSPF networks with SDN”, IEEE IM 2015.

[32] C.-Y. Chu, K. Xi, M. Luo, H. Chao, “Congestion-aware Single Link
Failure Recovery in Hybrid SDN Networks”, IEEE Infocom, 2015.

[33] D.K. Hong, Y. Ma, S. Banerjee, Z.M. Mao, “Incremental Deployment
of SDN in Hybrid Enterprise and ISP Networks”, ACM SOSR, 2016.

[34] H. Xu, J. Fan, J. Wu, C. Qiao, L. Huang, “Joint Deployment and
Routing in Hybrid SDNs”, IEEE/ACM IWQoS, 2017.

[35] “The evaluation code for DEG, VOL, Modified greedy, and local
search used to produce the results for the Abilene topology presented
in section VII” [Online:] goo.gl/EXoZZZ

[36] P. Tune, M. Roughan, “Internet Traffic Matrices: A Primer”, Recent
Advances in Networking, vol. 1, 2013.

[37] L. Duan, J. Huang, J. C. Walrand, “Economic Analysis of 4G Upgrade
Timing”, IEEE Trans. Mob. Comput, vol. 14, no. 5, 2015.

[38] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central
Control over Distributed Routing”, in Prof. of ACM SIGCOMM, 2015.

[39] M.S. Bansal, V.C. Venkaiah, “Improved Fully Polynomial time Ap-
proximation Scheme for the 0-1 Multiple-choice Knapsack Problem”,
in Proc. SIAM Conference on Discrete Mathematics, 2004.

[40] A. Cianfrani, M. Listanti, M. Polverini , “Incremental Deployment
of Segment Routing Into an ISP Network: a Traffic Engineering
Perspective”, IEEE/ACM Transactions on Networking, 2017.

Konstantinos Poularakis obtained the Diploma,
and the M.S. and Ph.D. degrees in Electrical Engi-
neering from the University of Thessaly, Greece,
in 2011, 2013 and 2016 respectively. In 2014, he
was a Research Intern with Technicolor Research,
Paris. Currently, he is a Post-Doctoral researcher
at Yale University. His research interests lie in
the area of network optimization with emphasis
on emerging architectures such as software de-
fined networks and content distribution wireless
networks. He was the recipient of several awards

and scholarships during his studies, from sources including the Greek State
Scholarships foundation (2011), the Center for Research and Technology
Hellas (2012), the Alexander S. Onassis Public Benefit Foundation (2013)
and the Bodossaki Foundation (2016). He also received the Best Paper
Award at the IEEE Infocom 2017.

George Iosifidis received the Diploma degree in
telecommunications engineering from the Greek
Air Force Academy in 2000, and the M.S. and
Ph.D. degrees in electrical engineering from the
University of Thessaly in 2007 and 2012, respec-
tively. He was a Post-Doctoral Researcher with
CERTH, Greece, and Yale University, USA. He is
currently the Ussher Assistant Professor in Future
Networks with Trinity College Dublin, Ireland.
His research interests lie in the broad area of
wireless networks and network economics.

Georgios Smaragdakis received the Diploma de-
gree in electronic and computer engineering from
the Technical University of Crete in 2003, and
the Ph.D. degree in computer science from Boston
University in 2009. In 2008, he was a Research
Intern with Telefonica Research. From 2008 to
2014, he was a Senior Researcher with Deutsche
Telekom Laboratories. From 2014 to 2017, he
was a Marie Curie Fellow at the Massachusetts
Institute of Technology (MIT) Computer Science
and the Artificial Intelligent Laboratory, and from

2016 to 2018, a Research Affiliate with the MIT Internet Policy Research
Initiative. He is currently a Professor with Technical University (TU) Berlin
and a Research Collaborator with Akamai Technologies. His research brings
a data- and measurement-driven approach to understand the state and
improve the resilience of the Internet, as well as to enhance Web privacy.
His research received the Best Paper Awards at ACM IMC in 2011, 2016,
and 2018, ACM CoNEXT in 2015, and the IEEE INFOCOM in 2017,
the Marie Curie International Outgoing Fellowship in 2013, the European
Research Council Starting Grant Award in 2015, and an IETF/IRTF Applied
Networking Research Prize in 2019.

15

Leandros Tassiulas (S’89, M’91, SM/05 F/07)
is the John C. Malone Professor of Electrical
Engineering at Yale University. His research in-
terests are in the field of computer and commu-
nication networks with emphasis on fundamental
mathematical models and algorithms of complex
networks, architectures and protocols of wireless
systems, sensor networks, novel internet architec-
tures and experimental platforms for network re-
search. His most notable contributions include the
max-weight scheduling algorithm and the back-

pressure network control policy, opportunistic scheduling in wireless, the
maximum lifetime approach for wireless network energy management,
and the consideration of joint access control and antenna transmission
management in multiple antenna wireless systems. Dr. Tassiulas is a
Fellow of IEEE (2007). His research has been recognized by several
awards including the IEEE Koji Kobayashi computer and communications
award, the inaugural INFOCOM 2007 Achievement Award “for fundamen-
tal contributions to resource allocation in communication networks,” the
INFOCOM 1994 best paper award, a National Science Foundation (NSF)
Research Initiation Award (1992), an NSF CAREER Award (1995), an
Office of Naval Research Young Investigator Award (1997) and a Bodossaki
Foundation award (1999). He holds a Ph.D. in Electrical Engineering from
the University of Maryland, College Park (1991). He has held faculty
positions at Polytechnic University, New York, University of Maryland,
College Park, and University of Thessaly, Greece.

