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Carbon capture processes are highly energy intensive and the main driving force during the process design is 
the necessity to reduce the energy consumption for the solvent regeneration. The energy efficiency of 
absorption desorption processes is driven by the plant design and operation conditions, but also to a large 
extent by the choice of the scrubbing liquid (Wang et al., 2011). Absorbent screening for CO2 capture is time-
consuming and costly. Apart from the energy efficiency, aspects such as loading capacity and robustness 
towards industrial impurities and disturbances have to be investigated before designing a large-scale plant 
and optimally operating it. In this contribution, a systematic approach is presented to carry out evaluation tests 
for a novel solvent in an industrial pilot-plant and at the same time to determine an optimal operation point with 
maximum energy efficiency. The three-step approach is based on the assumption that for a novel absorbent 
little to no thermodynamic data is available. Hence, the investigation is solely based on simulation data from 
similar solvents and experimental data on the novel one. Monoethanolamine (MEA) still is widely used as 
reference absorbent for removing CO2. Consequently, simulation data and the properties of MEA are taken as 
a baseline for the general performance and behaviour of amine-based absorbents. As a first step, data from 
rigorous simulations is used to develop a surrogate model describing the general behaviour of a carbon 
capture process for MEA. Subsequently, pilot-plant-scale experiments are carried out to investigate the 
application of MEA in practice. Secondly, the surrogate model is then updated to account for the plant 
characteristics as given by the experimental data for MEA. Finally, by means of the MEA-based data-driven 
model, the new solvent is experimentally investigated. By successive approaches the surrogate model’s 
maximum in energy efficiency is identified and repeatedly updated for the novel solvent’s experimental 
behaviour. In terms of the energy efficiency and based on this workflow the performance of the novel solvent 
is compared with MEA. 

1. Introduction 
Solvent based gas treating processes are widely used in the chemical industry, especially in oil and gas 
exploration / processing and for air pollution control applications. For CO2 removal, the usage of reactive 
amine solutions is a promising technology and has already been commercially implemented in the industry for 
decades. The process has been well established for a long time and is used for retrofitting existing plants with 
additional CO2 removal sections for emissions reductions (Wang et. al, 2011). The CO2 removal processes 
with MEA still represent the reference for carbon capture processes. Nevertheless, MEA has also major 
disadvantages, e.g. a high sensitivity towards acidic components in flue gas and high energy requirements for 
regeneration. An investigation of the specific energy demand of MEA regarding varying operation conditions is 
shown in Lang et al. (2017). In order to improve the process performance and to extent the application for 
other types of gas streams beyond flue gas, novel solvents are being developed and uniquely adapted to each 
process and application. However, a mechanistic model of novel solvents is often very complex, e.g. due to 
thermodynamic properties. Previous studies used data-driven approaches to model physical phenomena 

                                

 
 

 

 
   

                                                  
DOI: 10.3303/CET1869030 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Wilhelm R., Esche E., Guetta Z., Menzel J., Thielert H., Repke J.U., 2018, Model adaptation and optimization for the 
evaluation and investigation of novel amine blends in a pilot-plant scale co2 capture process under industrial conditions, Chemical Engineering 
Transactions, 69, 175-180  DOI: 10.3303/CET1869030 

175

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/248119586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


based on experimental data. Dadhe et al. (2001) implemented neural networks to replace calculations for 
physical properties in reactive distillation. In the present paper a new approach for solvent characterisation 
and determination of optimal operating conditions based on simulations and pilot-plant data incorporated into 
data-driven surrogate models is introduced. Optimal operation points are characterized by a minimized 
specific energy demand for the regeneration in dependence of the gas and solvent flow rate. For this purpose, 
simulations are performed with ASPEN Plus® followed by a derived surrogate model, which is subsequently 
used for the optimization of the specific energy supply for each solvent. Practical experiments with MEA and 
the novel solvent are carried out using a pilot-plant and operated at the identified optimal operation points. The 
pilot-plant was designed and constructed at the Process Dynamics and Operations Group of Technische 
Universität Berlin. The plant is connected to a steel mill in Duisburg, Germany, and operates under real 
industrial conditions. 

2. Methodology 
The current work involves the experimental analysis and characterisation of a novel solvent for CO2 
absorption from an industrial gas and determination of optimal operation points using data-driven models. The 
methodology consists of a three-step approach: Initially, the general behaviour of an absorption process is 
mapped by extensive steady-state simulations of the pilot-plant of a known absorbent, in this case an aqueous 
solution of MEA. The simulation results are then used to construct a surrogate model, which is subsequently 
used to represent the physical trends of the amine systems. As a second step the surrogate model is adapted 
to pilot-plant´s experimental results with MEA to incorporate the real plant behaviour. As a final step the 
updated surrogate model is then fitted to experimental results for the novel absorbent applied in the pilot-plant. 
By an analytic analysis of the surrogate model an approximation to the globally optimal operation point is 
identified for each solvent, based on the lowest minimum of the model. In order to have a fair basis for 
comparison the optimal operation point of the novel absorbent is repeatedly updated for the solvent’s 
experimental behaviour and compared to that of MEA. In the following, the experimental set-up as well as the 
model structure and application are detailed. In terms of process design of the pilot-plant it is necessary to 
enable a wide operation range for comprehensive investigations. 

2.1 Process Design 

A pilot-plant is constructed for the experimental investigation of novel solvents for the carbon capture. The 
pilot-plant is installed in bypass gas line to a steel mill in Duisburg, Germany. For the experimental setup blast 
furnace gas is used containing up to 26 vol.-% CO2 as well as other components and impurities. The modular 
design of the plant enables an easy transport and operation at various industrial sites. The basic scheme of 
the process and a picture at the steel mill is shown in Figure 1.  

 

Figure 1: Basic flowsheet of the absorption desorption process (left) and a picture of the pilot-plant at the 
industrial site (right) 

The installation of a compressor realizes a gas flow of 15 to 50 kg/h, whereas the liquid pumps reach a solvent 
flow rate of up to 300 kg/h. Two absorber columns are installed in sequence with a total packing height of 6 m 
and a diameter of 0.11 m (Montz Pak B1-350.60). It is possible to bypass one column to reduce the packing 
height to 3 m. The stripper contains 2.5 m packing with a diameter of 0.11 m (Montz Pak B1-350). At the gas 
outlets, back-washing columns are installed to achieve the required process conditions at the gas outlets and 
to reduce the loss of the amine solution. If necessary, a pre-treatment column is available for a caustic wash. 
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The pre-treatment and back-washing columns contain 1 m of structured packing with a diameter of 0.11 m 
each (Sulzer Mellapak 250.X). The experimental setup includes sampling of the gas flow at the inlet, outlet 
and in-between the two columns. Further details on the experimental setup can be found in  
Wilhelm et al., 2016. 

2.2 Experimental Case Studies 

The experimental characterisation of solvents and the verification of the surrogate model require systematic 
experimental case studies. The general approach for the experiments is the variation of important process 
variables within the technical boundaries, such as the gas and liquid load in the columns. In order to achieve 
constant conditions regarding the fluid dynamics, the gas and solvent load is kept constant for each operation 
point. The energy supply in the stripper is adapted to each operation point for an intended carbon capture rate 
of up to 90 vol.-%. At the bottom of the stripper the temperature is controlled via an electrical heater. In order 
to assess the performance of the stripper, the mass flow of desorbate is a meaningful indicator. A steady-state 
operation point is achieved when constant gas and liquid flows, as well as a constant CO2 capture rate are 
established. One operation point needs to last for at least two hours to achieve one complete circulation of the 
amine solution. Liquid samples are taken to analyse the rich and lean loading. The CO2 concentration is 
measured permanently with an infrared measurement device (ABB EL3020). The energy supply in the stripper 
determines the specific energy demand for the regeneration of the solvents and represents the benchmark of 
absorption desorption processes. ݁஼ைమ = ௐሶ ೃ೐೒೐೙೐ೝೌ೟೔೚೙௠ሶ ಴ೀమ   (1) 

where ݁஼ைమ is the specific energy demand, ሶܹ ோ௘௚௘௡௘௥௔௧௜௢௡ represents the energy supply for regeneration 
considering plant characteristics, such as heat losses and efficiencies of heat exchangers, and ሶ݉ ஼ைమ is the 
captured mass of CO2. 

2.3 Approach for Solvent Characterisation 

This work presents a three-step approach, which is taken for the experimental characterisation of a novel 
solvent under industrial operation conditions and the subsequent identification of the optimal operation point 
using a data-based model. The general workflow is shown in Figure 2. 

 

Figure 2: General three-step approach for the design of data-driven model and subsequent adaption to 
experimental results for the determination of optimal operation points for each solvent 

As a first step, the structure of the surrogate model is determined by results of comprehensive simulations 
studies with ASPEN Plus® (Figure 2). According to Eq(1), the specific energy demand is determined in 
dependence of the gas and liquid flow. Due to little thermodynamic knowledge of the novel solvent the 
simulation are performed with MEA. Each simulation represents one operation point. The feasible region for 
the operation points is limited by the technical restrictions of the pilot-plant. The chosen operation points are 
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well-distributed and initialized by a Hammersley sequence to avoid clustering of the following data. Via 
statistical methods an approximate model is constructed based on gathered simulation data (Lophaven et al. 
2012).  

ଵ݂(ݔଵ, ,ଶݔ (݌ = ݁஼ைమ  (2) 

with ଵ݂ as the structure of the data-driven model, ݔଵ,  ݌ ,ଶ for set values of gas, respectively solvent flow rateݔ
for the set of parameters within the model. This procedure enables the transfer of information from a physical 
model (ASPEN Plus®) to the data-driven model. Consequently, the identified structure of the model 
represents the theoretical behaviour of the required energy depending on the gas and solvent flow. 
Secondly, plant experiments are carried out with MEA and the surrogate model is fitted to experimental data. 
For this purpose, the model structure remains unchanged, whereas the parameters within the surrogate model 
are updated. This leads to an adapted surrogate model based on experimental data with MEA, which is used 
to determine the minimal energy demand for regeneration by an optimization for	݁஼ைమ. ଶ݂(ݔଵ, ,ଶݔ (ଶ݌ = ݁஼ைమ  (3) 

Where ݌ଶ is updated. The function ଶ݂ represents the data-driven model adapted to experimental data. Due to 
the fitting to experimental data the surrogate model takes into account the plant characteristics as wells as 
industrial impurities and disturbances. 
As a third step, the updated surrogate model with MEA is adapted to experimental results of the novel solvent 
to evaluate and investigate the novel solvent under experimental and industrial conditions. For this purpose 
the parameters are re-estimated once again. The model adaption results in a modified response surface for 
the novel solvents, which represents the energy requirements under industrial conditions. In terms of energy 
consumption the minimal ݁஼ைమ is determined for the new solvent. 
The construction of surrogate models is performed by applied statistical methods. Kriging is a method 
developed to construct an approximation model, which is fitted to data and used as a surrogate model. The 
approximated model can be used to predict output at untried inputs. In general Kriging is an optimal 
interpolation based on regression of observed values against surrounding data points (Oliver and Webster, 
1990). The basic form is ܼ∗(ݑ) − (ݑ)݉ = ∑ (ఈݑ)ఈሾܼߣ − ሿ௡(௨)ఈୀଵ(ఈݑ)݉     (4) 

with ݑ,  with number (ݑ)݊ ,ߙ ఈ as location vectors for estimation and one neighbouring data point, indexed byݑ
of data points used for estimation, ݉(ݑ),݉(ݑఈ) as expected values of ܼ(ݑ),  ఈ as Kriging weight. Theߣ ,(ఈݑ)ܼ
value ܼ(ݑ) represents the estimated value. The goal of this method is to determine the weight, ߣఈ, in order to 
minimize the variance of the estimator. The present application represents a regression problem, which is 
characterised by a strong dependence of the process variable (݁஼ைమ) against surrounding values. For the 
analysis of the process a regression of second order is chosen and a Gaussian correlation between the data 
points is applied.  

3. Results 
Data obtained from previous studies (Mangalapally et al., 2011) using pilot-plant experiments indicated a 
reduction of the regeneration energy by optimizing the operation conditions. According to Mangalapally et al., 
2011 different solvent flow rates lead to a decrease of the specific energy demand for regeneration from 
4.1 MJ/kg CO2 to 3.8 MJ/kg CO2 for MEA. In this contribution, the focus lies on the experimental 
characterisation of a novel solvent and comparison of the energy efficiency to MEA based on data-driven 
models.  
According to step one of the workflow, the specific energy demand for MEA is determined in dependence of 
the gas and solvent flow rate using simulations. Figure 3 shows the results visualized by a response surface 
plot. According to Eq(5) the structure of the surrogate model is identified based on simulation data with MEA.  ݁஼ைమ = ܣ + ܤ ∙ ଵݔ + ܥ ∙ ଶݔଵݔ + ܦ ∙ ଶݔ + ܧ ∙ ଵଶݔ + ܨ ∙ ଶଶݔ   (5) 

wherein ܣ	݋ݐ	ܨ are regression parameters.  
As can be seen in Figure 3, the specific energy shows a significant dependency of gas and solvent flow rate. 
An increasing solvent flow rate leads to a considerable decrease of energy requirements but is soon followed 
by smooth surface. This indicates a wide range of the operation window of the application with MEA. The 
phenomenon is consistent with results obtained in previous studies (Mangalapally et al., 2011), which proves 
that the identified surrogate model is well suited to describe correlation of energy requirements. 
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Figure 3: Computation of specific energy demand for regeneration in dependence of gas and solvent flow;  
left (simulation for carbon capture process), right (surrogate model based on process simulations for MEA)  

As a second step, the identified model is adapted to experimental data with MEA. The structure of the model 
stays unchanged, whereas the parameters are updated using Eq(5). The gas and solvent flow rate are fixed 
set points within the automation system. The results for the data-driven model with experimental results for 
MEA are shown in Figure 4. 

         

Figure 4: Response surface plot for the specific energy demand based on experimental results with MEA (left). 
Comparison of simulation (blue) and experimental data (red) with MEA (right) 

Figure 4 shows that an increasing solvent flow causes a decrease of the specific energy demand. The offset 
between the theoretical and practical investigations can be explained by plant characteristics, such as heat 
losses and efficiencies of heat exchangers. Relative high heat losses are caused by significant ambient 
changes, such as wind and rain, and lead to higher energy requirements and deformation of the surface plot. 
By the use of the surrogate model the normalized optimal operation point for MEA is derived. Based on the 
identified minimum for the required energy, the plant is operated at this point in order to confirm the optimum 
with experimental data. The additional operation point confirms the energy minimum.  
Finally, experiments are carried out with the novel solvent within the same technical specifications of the pilot-
plant. The surrogate model from the simulations using MEA is applied and fitted to the experimental data with 
the novel solvent. Figure 5 shows the obtained results.  
It can be observed that the characteristic decrease of the specific energy demand does not appear for the 
novel solvent. Furthermore, minima appear within the response surface plot, instead of a smooth surface (s. 
Figure 4 for MEA), what is identified as minimal specific energy. For validation purposes the pilot-plant is 
operated at this point. The experiment yields in a specific energy demand. Consequently, the surrogate model 
of the novel solvent is supplemented by this point. Based on the unique operation points of each solvent the 
minimal required energy demand of each solvent is compared. This method is only valid for novel solvents 
with similar characteristics to a known solvent.  
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Figure 5: Response surface plot for specific energy demand based on experimental results with the novel 
solvent (green, left). Compared to experimental data with MEA (red, right)  

4. Conclusions & Outlook 
Prior research studies have pointed out the importance of reducing the energy requirements for the 
regeneration in CO2 capture processes. Lang et al. (2017) reports that applications with novel solvents need 
to be taken into account in order to achieve the required energy reduction. However, these studies have 
focused on theoretical simulations based on complex mechanistic models for known amine solutions. This 
study deals with an experimental characterisation of a novel solvent and the identification of the optimal 
operation point using data-driven models. Therefore, a three-step approach is developed based on the 
assumptions that little thermodynamic knowledge of the novel solvent is available and the new scrubbing 
liquid indicates a similar behaviour as MEA. As a first step, simulation data with MEA is taken as baseline to 
characterise the general behaviour of a carbon capture process and for the identification of the surrogate 
model´s structure. The specific energy consumption ݁஼ைమ classifies the performance of the process and is 
computed in dependence of gas and solvent flow. To establish comparability for the novel solvents 
experiments with MEA are carried out. The surrogate model is fitted to the experimental results with MEA to 
consider plant characteristics. By means of the adapted model, the optimal operation point for MEA is derived. 
As a final step, the surrogate model is adapted to experimental data of the novel solvent to evaluate and 
investigate the novel solvent in terms of energy consumption under experimental and industrial conditions. 
Using the adapted model the optimal operation point is derived for the novel solvent and compared to that of 
MEA. Based on the identified minimum, the pilot-plant is repeatedly operated at this point to confirm the 
minimal energy consumption for each solvent. Within the three-step approach different techniques for the 
modelling can be applied, such as neural nets. The choice of the model technique is of great importance and 
goes along with different advantages and disadvantages. 
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