
Sparse resultants and straight-line programs∗

Gabriela Jeronimo],†,�, Juan Sabia†,�

] Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales.
Departamento de Matemática. Buenos Aires, Argentina.

† Universidad de Buenos Aires. Ciclo Básico Común.
Departamento de Ciencias Exactas. Buenos Aires, Argentina.

� CONICET–Universidad de Buenos Aires.
Instituto de Investigaciones Matemáticas Luis A. Santaló (IMAS).

Buenos Aires, Argentina.

May 11, 2017

Abstract

We prove that the sparse resultant, redefined by D’Andrea and Sombra and by
Esterov as a power of the classical sparse resultant, can be evaluated in a number
of steps which is polynomial in its degree, its number of variables and the size of
the exponents of the monomials in the Laurent polynomials involved in its definition.
Moreover, we design a probabilistic algorithm of this order of complexity to compute
a straight-line program that evaluates it within this number of steps.

Keywords: Sparse resultants, straight-line programs, algorithms

1 Introduction

Resultants are considered a key tool in the resolution of polynomial equation systems,
mainly because of their role as eliminating polynomials. In the last decades, the practical
utility of resultants has aroused interest in their effective computation.

The study of classical homogeneous resultants goes back to Bézout, Cayley and Sylvester
(see [2], [6] and [41]). In [31], Macaulay obtained explicit formulae for the homogeneous
resultant as a quotient of two determinants and, from then on, several effective procedures
to compute these resultants have been proposed (see, for example, [9] and the references
therein). More recently, Gelfand, Kapranov and Zelevinski generalized the classical notion
to the sparse setting (see [17]). The first effective method for computing sparse resultants
was given in [39]. In [4] (see also [5]) and [40], the authors provided an algorithm for
computing a square Sylvester style matrix with determinant equal to a nonzero multiple
of the resultant. A survey of matrix constructions for the computation of resultants can be

∗Partially supported by the following Argentinian grants: PIP 11220130100527CO CONICET (2014-
2016) and UBACYT 20020120100133 (2013-2016).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/248111682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

found in [13]. In [8], it was shown that the sparse resultant is a quotient of the determinant
of a Sylvester style matrix by one of its minors, extending Macaulay’s formulation to the
sparse setting.

When dealing with the computation of the resultant of a particular system in order to
know whether it vanishes or not, its representation as a quotient of determinants may not
be enough because the denominator may vanish. Classical methods to solve this problem
consist in making a symbolic perturbation to the system (see, for instance, [4]), but they
require further computations for each particular system. This motivates the search for a
division-free representation of the resultant. A possible approach to do this is the classical
Strassen’s method to eliminate divisions described in [38]. Using this method, in [29], it
is shown how to express a quotient of two determinants that is a polynomial as a single
determinant of a matrix of size polynomial in the sizes of the original matrices.

All the previously mentioned procedures for the computation of sparse resultants deal
with matrices of exponential size: for n + 1 Laurent polynomials in n variables with n-
dimensional Newton polytopes, the number of rows and columns of the matrices involved
in the computation of the associated resultant is of order O(knn−3/2D) (see [5, Theorem
3.10]), where k is a positive constant and D is the total degree of the resultant as a
polynomial in the coefficients of the input. This implies that the algebraic complexity of
any algorithm using these matrices is necessarily exponential in the number of variables
n of the input polynomials. For the classical homogeneous resultant, the complexity of
testing it for zero and of the algorithms to compute it via Macaulay matrices was studied
in [22].

Due to the well-known estimates for the degree of the sparse resultant in terms of mixed
volumes (see, for instance, [34, Corollary 2.4] and [11, Proposition 3.4]), any algorithm
for its computation which encodes it as an array of coefficients (dense form) cannot have
a polynomial complexity in the size of the input (that is, the number of coefficients of
the generic polynomial system whose resultant is computed). Then, in order to obtain
this polynomial order of complexity, a different way of representing polynomials should be
used.

An alternative data structure which was introduced in the polynomial equation solving
framework yielding a significant reduction in the previously known complexities is the
straight-line program representation of polynomials (see, for instance, [18] and [20], where
this data structure allowed the design of the first algorithms for solving zero-dimensional
polynomial systems within complexity polynomial in the output size). Roughly speaking,
a straight-line program which encodes a polynomial is a program which enables us to
evaluate it at any given point. The first algorithm for the computation of (homogeneous
and) sparse resultants using straight-line programs was presented in [25]. Its complexity is
polynomial in the dimension of the ambient space and the volume associated to the input
set of exponents, but it deals only with a subclass of unmixed resultants. Afterwards,
in [27], an algorithm for the computation of both mixed and unmixed multihomogeneous
resultants by means of straight-line programs was given. The algorithm relies on Poisson’s
product formula for the multihomogeneous resultant and its complexity is polynomial in
the degree and the number of variables of the computed resultant.

The definition of the general sparse resultant for Laurent polynomials as an irreducible
polynomial defining the corresponding incidence variety also implied a Poisson-type for-
mula proved in [34], but this formula does not hold for arbitrary supports. A restatement

2

of this formula, valid in a more general setting, was given in [32]. In [11] (see also [14,
Definition 3.1]), the notion of sparse resultant was redefined and studied using multipro-
jective elimination theory. The new sparse resultant is a power of the previous one. It has
better properties and produces more uniform statements, in particular, a nicer Poisson-
type formula which holds for any family of supports (see [11, Theorem 1.1]). Further
properties of this resultant have been studied in [10], where the Macaulay-style formulas
in [8] are simplified and generalized to compute this new sparse resultant as a quotient of
two determinants of Sylvester-type matrices.

In this paper, we deal with the computation of the new sparse resultant defined in [11]
and [14]. We prove that it can be evaluated in a number of steps which is polynomial in
its number of variables, its total degree, and the size of the exponents of the monomials in
the Laurent polynomials involved in its definition. This theoretical result shows that, in
spite of the large number of terms that can be present in the monomial expansion of the
sparse resultant, this polynomial has a short encoding, thus extending previous results in
[25]. A fundamental tool in our proof is the already mentioned Poisson product formula
established in [11] for the new sparse resultant.

Our main result is the following:

Theorem. Let A = (A0,A1, . . . ,An), where Ai ⊂ Zn is a non-empty finite set for
every 0 ≤ i ≤ n. The sparse resultant ResA can be evaluated by a straight-line pro-
gram of length polynomial in its number of variables N =

∑
0≤i≤n |Ai|, its total de-

gree D =
∑

0≤i≤nMVn(A0, . . . ,Ai−1,Ai+1, . . . ,An) (where MVn denotes the standard
n-dimensional mixed volume), and Q = max{||a|| : a ∈ Ai, 0 ≤ i ≤ n}.

In addition, we design a probabilistic algorithm to compute, from a family of n + 1
finite subsets of Zn, a straight-line program for the sparse resultant associated to n + 1
Laurent polynomials with these support sets within a number of operations of the same
order as for the computation of the resultant (see Theorem 10 for a precise statement).
Although we have not implemented the algorithm, we think that an implementation in
the Mathemagix language could be done building on the Geomsolvex library ([30]).

Our approach improves previous results in the sense that our complexity bounds are
not exponential in the number of variables n of the input Laurent polynomials. Even
though the polynomial we compute is a power of the classical sparse resultant, the former
encodes all the relevant information provided by the latter (for instance, they both vanish
at the coefficients of the same Laurent polynomial systems).

Throughout the paper, to avoid confusion, following [11], we will call sparse eliminant
to the classical (irreducible) sparse resultant, and sparse resultant to the new object defined
as a power of the sparse eliminant.

The paper is organized as follows. In Section 2, we introduce the basic definitions
and the notation used throughout the paper, we present the notion of sparse resultant
and discuss our algorithmic framework. In Section 3, we first show how to reduce the
problem to a special case (essential family of supports) and then, we present some auxiliary
algorithmic tools we will apply. Finally, Section 4 is devoted to proving our main result.

3

2 Preliminaries

2.1 Basic definitions and notation

Let x = (x1, . . . , xn) be indeterminates over Q. For α = (α1, . . . , αn) ∈ Zn, we de-
note by xα := xα1

1 · · ·xαnn the monomial in the ring of Laurent polynomials Q[x±1] :=
Q[x1, x

−1
1 , . . . , xn, x

−1
n].

Given a family of finite subsets A1, . . . ,Ar of Zn, a sparse system with supports
A1, . . . ,Ar is given by Laurent polynomials

hi =
∑

ai,j∈Ai

cai,jx
ai,j , for i = 1, . . . , r,

with cai,j 6= 0 for every ai,j ∈ Ai.
When dealing with sparse polynomial systems, the affine lattice generated by the

exponents of their monomials and the convex hulls of these exponent sets play an important
role.

Let M be a r-dimensional lattice in Rn, and let MR be the linear subspace it generates.
We consider the volume form volM defined on MR from the r-dimensional Euclidean
volume normalized so that the fundamental domain P of M satisfies that volM (P) = 1.
The mixed volume of a family of lattice polytopes Q1, . . . , Qr ⊂MR is defined as

MVM (Q1, . . . , Qr) =

r∑
j=1

(−1)r−j
∑

1≤i1<···<ij≤r
volM (Qi1 + · · ·+Qij).

We refer the reader to [7, Chapter 7 §4] for basic properties of the mixed volume.
For a family A1, . . . ,An of finite subsets of Zn, we denote by MVn(A1, . . . ,An) the

mixed volume of the convex hulls of A1, . . . ,An in Rn. Bernstein’s theorem (see [1]) states
that the number of isolated zeros in (C∗)n (where C∗ = C \ {0}) of a sparse system with
supports contained in A1, . . . ,An is at most MVn(A1, . . . ,An).

2.2 Sparse resultant

Here, we recall the notion of sparse resultant introduced in [11] (see also [14, Definition
3.1]). We state it for Laurent polynomials with exponents in Zn.

For i = 0, . . . , n, consider a non-empty finite subset Ai = {ai,0, . . . , ai,Ni} ⊂ Zn, a set
of Ni + 1 variables Ui = (Ui0, . . . , UiNi), and the general Laurent polynomial with support
Ai in the variables x = (x1, . . . , xn):

fi =

Ni∑
k=0

Uik x
ai,k ∈ Q[Ui][x

±1
1 , . . . , x±1

n]. (1)

Set A = (A0, . . . ,An). Let

ΓA = {(ξ, u) ∈ (C∗)n ×
n∏
i=0

PNi | f0(u0, ξ) = 0, . . . , fn(un, ξ) = 0}

be the associated incidence variety.

4

The A-resultant or sparse resultant associated to A, which will be denoted by ResA, is
defined as the unique (up to sign) primitive polynomial in Z[U0, . . . , Un] giving an equation
for the direct image π∗ΓA := dAπ(ΓA), where π : (C∗)n ×

∏n
i=0 PNi →

∏n
i=0 PNi is the

projection to the second factor, dA is the degree of the restriction of π to ΓA (which is
defined as 0 if dim(π(ΓA)) < dim(ΩA)), and dAπ(ΓA) is the corresponding cycle.

The sparse resultant is a homogeneous polynomial in each group of variables Ui, for
i = 0, . . . , n, and

degUi(ResA) = MVn(A1, . . . ,Ai−1,Ai+1, . . . ,An) (2)

(see [11, Proposition 3.4]).
We point out that the above definition of sparse resultant differs from the classical

one introduced in [17] and [40] as an irreducible polynomial in Z[U0, . . . , Un] defining the
Zariski closure of π(ΓA), if this is a hypersurface, and as 1 otherwise. Following [11], we
call A-eliminant or sparse eliminant associated to A to this irreducible polynomial, and
we denote it by ElimA.

Both notions relate as follows:

ResA = ±ElimdA
A .

2.3 Algorithms and codification

Since the goal of this paper is the computation of sparse resultants as multivariate poly-
nomials with integer coefficients, it suffices for us to consider an algorithmic model over
the base field Q. The only operations allowed in our algorithms are arithmetic operations
in Q and comparisons (= or 6=) between two elements in Q. We assume that the cost
of each operation is 1 and so we define the complexity of the algorithm as the number
of operations it performs. For a more detailed treatment of this kind of computational
models, which is widely used in the symbolic polynomial system solving framework, see
for instance [3].

The main objects our algorithms deal with are polynomials with coefficients in Q. We
represent each of them by means of one of the following data structures:

• Sparse encoding, that is, as a list of pairs (a, ua) where a runs over the set of ex-
ponents of monomials in a fixed set and ua is the corresponding coefficient of the
polynomial, provided that we know in advance that the coefficient of any other
monomial of the polynomial is zero.

• Dense form, that is, as the array of all its coefficients (including zeroes) in a prefixed
order of all monomials of degree at most d, where d is an upper bound for the degree
of the polynomial.

• Division-free straight-line program (slp for short), that is, an algorithm without
branchings that enables us to evaluate the polynomial at any given point. Each of
the instructions in this program is an addition, subtraction or multiplication between
two precalculated polynomials, or an addition or multiplication by a variable or a
rational number. The number of instructions in the program is called the length of
the straight-line program. For a precise definition of a straight-line program we refer
the reader to [3, Definition 4.2] and [24].

5

Note that, from any of these representations of a polynomial f with rational coefficients,
it is possible to evaluate f at any given point with coordinates in an effective field K of
characteristic 0.

A polynomial f ∈ Q[x1, . . . , xn] of degree at most d > 0 and at most N nonzero
terms can be evaluated with O(nN log(d)) arithmetic operations in Q. Thus, f can be
encoded by a straight-line program of this length that can be easily obtained from its
sparse representation.

In this work, we will also consider multivariate Laurent polynomials, which will be
encoded in sparse representation.

Our algorithms are probabilistic in the sense that they make random choices of points
which lead to a correct computation provided the points lie outside certain proper Zariski
closed sets of suitable affine spaces. Although we will not estimate the error probability
of our algorithms, it can be controlled, using the Schwartz-Zippel lemma ([36], [42]), by
making the needed random choices uniformly within sufficiently large finite sets of inte-
gers whose cardinalities depend on the degrees of the polynomials defining the previously
mentioned Zariski closed sets. In this sense, our algorithms can be considered of Monte
Carlo type.

We will use the standard O notation in our complexity estimates: for f, g : Z≥0 → R,
f(d) = O(g(d)) if |f(d)| ≤ c|g(d)| for a positive constant c. We will also use the notation
M(d) for the number of arithmetic operations in a commutative ring R of characteristic
0 needed for the multiplication of two univariate polynomials of degree at most d with
coefficients in R. According to [16, Chapter 8], M(d) = O(d log(d) log(log(d))), where
log denotes logarithm to base 2. We recall that multipoint evaluation and interpolation
of univariate polynomials of degree d with coefficients in R can be performed within
O(M(d) log(d)) operations in R (see [16, Chapter 10]).

We denote by ω the exponent in the complexity estimate O(Dω) for the multiplication
of two D × D matrices with rational coefficients. It is known that 2 ≤ ω < 2.376 (see
[16, Chapter 12]). Finally, we write Ω for the exponent in the complexity O(DΩ) of the
computation without divisions of the determinant and adjoint of a matrix of size D ×D
with entries in a commutative ring R. By [28], we have that Ω < 2.7.

3 Tools

In this section we will prove two auxiliary results we will use in order to design our
algorithm for the computation of sparse resultants.

3.1 Essential families

We recall here the notion of essential subfamily of supports introduced in [40] to charac-
terize those families A = (A0,A1, . . . ,An), where Ai ⊂ Zn is a finite set, for which the
associated sparse eliminant is not constant.

For i = 0, . . . , n, if Ai = {ai,0, . . . , ai,Ni} ⊂ Zn, let LAi :=
∑Ni

k=1(ai,k − ai,0)Z. For
I ⊂ {0, . . . , n}, we write AI := (Ai)i∈I and LAI :=

∑
i∈I LAi . As usual, |I| denotes the

cardinality of the set I and, for a lattice L, rank(L) denotes its rank.

6

Definition 1 Let I ⊂ {0, . . . , n}. The subfamily AI is said to be essential if the following
conditions hold:

• |I| = rank(LAI) + 1;

• for every I ′ (I, |I ′| ≤ rank(LAI′).

As proved in [40, Corollary 1.1], the sparse resultant associated to a family of supports
A is not constant if and only if A has a unique essential subfamily AI and, if this is the
case, ResA depends only on the coefficients of Laurent polynomials with supports AI . We
start proving a result on the existence of a unique essential subfamily.

For every 0 ≤ i ≤ n, we denote Mi(A) = MVn(A0, . . . ,Ai−1,Ai+1, . . . ,An).

Proposition 2 Let A = (A0,A1, . . . ,An), where Ai ⊂ Zn is a finite set for every 0 ≤ i ≤
n. Let I := {i | 0 ≤ i ≤ n, Mi(A) > 0}. The family A has a unique essential subfamily if
and only if AI is essential.

Proof. Recall that for a family B = (B1, . . . ,Bn) of finite sets of Zn, MVn(B1, . . . ,Bn) > 0
if and only if, for every J ⊂ {1, . . . , n}, |J | ≤ rank(LBJ) ([15, Chapter IV, Theorem 4.13]).
Moreover, ifMVn(B1, . . . ,Bn) = 0, it is easy to see that for a minimal subset J ⊂ {1, . . . , n}
such that rank(LBJ) < |J |, the family BJ is essential.

In order to prove the proposition, first, note that, if Mi(A) > 0 for every 0 ≤ i ≤ n,
then A is the unique essential subfamily. Otherwise, if Mi(A) = 0 for some index i, there
exists J ⊂ {0, . . . , n} \ {i} such that AJ is essential. It follows that there always exists an
essential subfamily of A.

We have that I ⊂ I for every I ⊂ {0, . . . , n} such that AI is essential: for i ∈ I, we
have that Mi(A) > 0 and so, no family AJ with J ⊂ {0, . . . , n}\{i} is essential; therefore,
i ∈ I.

If I1 6= I2 are two subsets of {0, . . . , n} such that AI1 and AI2 are essential, then
I ⊂ I1 ∩ I2 (I1, and therefore, AI is not essential.

Assume now that A has a unique essential subfamily AI . If j /∈ I, then Mj(A) = 0
and therefore, I ⊂ {0, . . . , n} \ {j}, which implies that j /∈ I. As we already know that
I ⊂ I, we conclude that I = I. �

Remark 3 The subset I = {i | 0 ≤ i ≤ n, Mi(A) > 0} satisfies that AI is essential if
and only if rank(LAI) = |I| − 1. This is a direct consequence of the fact that if AI is
not essential, but I ⊂ {0, . . . , n} satisfies that AI is essential, we have that I (I; then,
rank(LAI) ≥ |I|.

As shown in [12, Theorem 8], there is a polynomial time algorithm to determine
whether the mixed volume of n convex polytopes in Rn is zero or not. Therefore, we
can compute the set I and decide if AI is the unique essential subfamily of A in polyno-
mial time.

3.2 Geometric resolutions and Newton-Hensel lifting

A common way to describe zero-dimensional affine varieties defined by polynomials over
Q is a geometric resolution (see, for instance, [21] and the references therein). The precise
definition we are going to use in our algorithm is the following.

7

Let V ⊂ Cn be a zero-dimensional variety defined by rational polynomials consisting
of δ points. Given a linear form ` = `1x1 + · · · + `nxn in Q[x] such that `(ξ) 6= `(ξ′) if
ξ 6= ξ′, the following polynomials completely characterize V :

• the minimal polynomial q =
∏
ξ∈V (Y − `(ξ)) ∈ Q[Y] of ` over the variety V (where

Y is a new variable),

• polynomials v1, . . . , vn ∈ Q[Y] with deg(vj) < δ for every 1 ≤ j ≤ n satisfying
V = {(v1(η), . . . , vn(η)) ∈ Cn | η ∈ C, q(η) = 0}.

The family of univariate polynomials (q, v1, . . . , vn) ∈ Q[Y]n+1 is called a geometric reso-
lution of V (associated with the linear form `).

A geometric resolution of a zero-dimensional variety can be obtained algorithmically
from a finite set of polynomials defining it. We will use a subroutine from [26] which
computes geometric resolutions in the sparse setting (we recall that we use the standard
notation M(d) = d log(d) log log(d), but the notation in [26] is M(d) = d log2(d) log log(d)):

Lemma 4 ([26, Proposition 5.13]) Let h1, . . . , hn ∈ Q[x1, . . . , xn] be generic sparse poly-
nomials with supports A1, . . . ,An ⊂ (Z≥0)n. There is a probabilistic algorithm which
computes a geometric resolution of the set of common zeros of h1, . . . , hn in (C∗)n within
complexity

O(n3N log(Q)M(δ) log(δ)(M(δ) log(δ) +M(δ′) log(δ′))),

with N :=
∑

1≤i≤n |Ai|, Q := max{||ai,k|| : 1 ≤ i ≤ n, 1 ≤ k ≤ |Ai|}, δ := MVn(A1, . . . ,An),
and δ′ :=

∑
1≤i≤nMVn(∆,A1, . . . ,Ai−1,Ai+1, . . . ,An), where ∆ denotes the standard n-

dimensional simplex.

Another tool we will use is an algorithmic version of the Newton-Hensel lifting (see
[19, 23]).

Let F := (f1(U, x), . . . , fn(U, x)) be polynomials in Q[U, x], where x = (x1, . . . , xn),
and U is a family of indeterminates over Q[x]. Assume the Jacobian matrix DF (x) of
the polynomials F with respect to the variables x is non-singular. The Newton operator
associated to F is defined as:

NF (x)t := xt −DF (x)−1.F (x)t.

For κ ∈ Z>0, the κth iteration of the Newton operator is given by a vector of rational
functions:

N κ
F (x) =

(
g

(κ)
1

h(κ)
, . . . ,

g
(κ)
n

h(κ)

)
where g

(κ)
1 , . . . , g

(κ)
n , h(κ) ∈ Q[U, x]. The following lemma states the complexity of the

computation of these polynomials.

Lemma 5 ([19, Lemma 30]) Let notations and assumptions be as before. If the polynomi-
als F have degrees bounded by d in the variables x and are given by a straight-line program
of length L, for a given κ ∈ Z>0, there is a straight-line program of length O(κd2n7L) which

evaluates g
(κ)
1 , . . . , g

(κ)
n , h(κ). This straight-line program can be obtained within complexity

of the same order.

8

3.3 Padé approximation

Our algorithm for the computation of the sparse resultant will compute it as the numerator
of a rational function that will be approximated up to a prescribed order. To recover
the numerator and the denominator of a rational function from a suitable power series
expansion we will apply the well-known technique of Padé approximation (see, for instance,
[16, Section 5.9]). The following result provides a complexity estimate for the procedure
in our setting.

Lemma 6 Let Z = (Z1, . . . , Zm) be indeterminates over Q. Let ϕ = p/q ∈ Q(Z)
be a rational function such that p and q are relatively prime polynomials in Q[Z] with
deg(p),deg(q) ≤ D. Assume that q(z) 6= 0 for a given z = (z1, . . . , zm) ∈ Qm and let
Φ =

∑2D
i=0 ϕi be the Taylor expansion of order 2D of ϕ centered at z, where ϕi is a

homogeneous polynomial of degree i in Z − z = (Z1 − z1, . . . , Zm − zm). There is a prob-
abilistic algorithm that, from a straight-line program of length L encoding ϕ0, . . . , ϕ2D,
computes a straight-line program encoding p and q (up to a factor in Q) within complexity
O(D2(DΩ + L)).

Proof. The algorithm is based on Padé approximation for univariate power series. In
order to reduce the problem to the univariate case, we follow the strategy in [35, Section
4.3], adapting the procedure to work with (division-free) straight-line programs and to
estimate the complexity in our computational model.

First, we introduce a new variable s. Let Φ̃ :=
∑2D

i=0 ϕis
i. Note that Φ̃ is a polynomial

of degree at most 2D in the variable s and that (p(s(Z1 − z1) + z1, . . . , s(Zm − zm) +
zm), q(s(Z1−z1)+z1, . . . , s(Zm−zm)+zm)) in Q(Z)[s]2 is a (D+1, D) Padé approximant
to Φ̃.

Let (P ,Q) ∈ Q(Z)[s]2 be the Padé approximant to Φ̃ obtained by applying the Ex-
tended Euclidean Algorithm to s2D+1 and Φ̃ ([16, Corollary 5.21]). Due to the unique-
ness of the (D + 1, D)-Padé approximant, it follows that Q(s)/Q(0) = q(s(Z1 − z1) +
z1, . . . , s(Zm − zm) + zm))/q(z) and P (s)/Q(0) = p(s(Z1 − z1) + z1, . . . , s(Zm − zm) +
zm))/q(z).

So, in order to obtain (a scalar multiple of) p and q, it suffices to compute P (1)/Q(0)
and Q(1)/Q(0).

Let rj , sj , tj ∈ Q(Z)[s] be the polynomials appearing in the jth row in the Extended

Euclidean Algorithm for s2D+1 and Φ̃. If j is minimal such that deg(rj) ≤ D, by [16,
Corollary 5.21], we have that (rj , tj) ∈ Q(Z)[s]2 is a (D + 1, D)-Padé approximant to

Φ̃. Following [16, Corollaries 6.48 and 6.49], we can compute without divisions multiples
in Q[Z][s] of these polynomials by the same factor in Q[Z]. We now explain briefly the
procedure in order to estimate the complexity in our framework.

Using the notation in [16, Section 6.10], if Sk is the kth subresultant matrix of s2D+1

and Φ̃, in the first step we determine k0 := max{0 ≤ k ≤ D : det(Sk) 6= 0}, which is the
degree of rj . The entries of the matrices Sk are polynomials in Q[Z] encoded by an slp;
then, in order to decide if the determinants det(Sk) are zero or not, we evaluate them at
a randomly chosen point in Qm. Since each Sk is a submatrix of the Sylvester matrix of
s2D+1 and Φ̃, which is a square matrix of size (4D+ 1)× (4D+ 1), the complexity of this
step is of order O(L+Dω+1).

9

In a second step, we solve the linear system Sk0(α, β)t = det(Sk0)(0, . . . , 0, 1)t, where
α = (α2D−k0−1, . . . , α0) ∈ Q[Z]2D−k0 and β = (β2D−k0 , . . . , β0) ∈ Q[Z]2D−k0+1 give the
coefficients for polynomials V :=

∑2D−k0−1
i=0 αis

i and Q :=
∑2D−k0

i=0 βis
i such that if P :=

V s2D+1 + Q Φ̃, then (P ,Q) is a (D + 1, D)-Padé approximant of Φ̃ in Q[Z][s]. By using
Cramer’s rule and division-free computation of the adjoint matrix of Sk0 , the complexity of
this step is of order O(DΩ) and it produces an slp of length O(L+DΩ) for the coordinates
of α and β.

The polynomials Q(0), P (1) and Q(1) ∈ Q[Z] can be obtained by specialization of s
within O(D) additional operations, which does not modify the complexity order or the
slp length. Finally, we compute the exact quotients P (1)/Q(0) and Q(1)/Q(0) by means
of the well-known Strassen Vermeidung von Divisionen (division avoiding) algorithm from
[38]. In order to apply it, we choose randomly a point ζ ∈ Qm so that Q(0)(ζ) 6= 0.
Following [25, Lemma 1.7], the complexity of this step is of order O(D2(DΩ + L)). �

4 A short slp for the sparse resultant

This section is devoted to describing our main algorithm, which computes an slp for the
sparse resultant with length polynomial in the number of variables of the resultant, its
total degree, and an upper bound for the size of the points in the input supports.

Given an arbitrary family of n+ 1 supports in Zn, we first reduce the problem to the
computation of a power of a resultant associated to a family of k+ 1 supports in Zk which
is essential. More specifically, given A = (A0,A1, . . . ,An), where Ai ⊂ Zn is a finite set
for every 0 ≤ i ≤ n, we first determine the set I := {i | 0 ≤ i ≤ n, Mi(A) > 0}. By
Proposition 2, Remark 3 and [40, Corollary 1.1], if rank(LAI) 6= |I| − 1, then ResA = 1;
otherwise, AI is the only essential subfamily of A and

ResA = (ResAI)
eI with eI = MVZn/LsatAI

({$(Aj) : j /∈ I}),

where LsatAI = (LAI ⊗ Q) ∩ Zn and $ is the projection $: Zn → Zn/LsatAI (see [11,
Proposition 3.13]). In this case, if f0, . . . , fn are the polynomials defined in (1), by means
of a suitable change of variables, the polynomials {fi}i∈I can be written as polynomials in
|I|−1 new variables. This can be done by computing the Smith normal form of an integer
matrix (see, for instance, [37] for algorithms and complexity estimates). Thus, without
loss of generality, from now on we will assume that I = {0, . . . , n}.

The algorithm relies on the Poisson formula for the sparse resultant from [11, Theorem
1.1]. Before stating the formula we introduce some notation.

Let B ⊂ Zn be a nonempty finite set and f =
∑

b∈B cbx
b be a Laurent polynomial in

the variables x = (x1, . . . , xn). For v ∈ Zn, we set

hB(v) = min
b∈B
〈b, v〉, Bv = {b ∈ B | 〈b, v〉 = hB(v)} and fv =

∑
b∈Bv

cbx
b.

With this notation and following [11, Definition 4.1], the Poisson formula states that

ResA(U0, U1, . . . , Un) = ±
∏
v

ResA1,v ,...,An,v(f1,v, . . . , fn,v)
−hA0

(v)
∏

ξ∈V (f1,...,fn)

f0(ξ),

10

where the first product runs over the primitive vectors v ∈ Zn and V (f1, . . . , fn) denotes

the set of common zeros in (Q(U1, . . . , Un)
∗
)n of f1, . . . , fn (here the overline denotes

algebraic closure). Note that all points in V (f1, . . . , fn) have multiplicity 1, since the
system is generic and the characteristic of the base field is 0 (see, for instance, [33, Chapter
V, Corollary (3.2.1)]).

Set U := (U1, . . . , Un) and x±1 := (x±1
1 , . . . , x±1

n). For f ∈ Q(U0, U)[x±1] and the
Q(U0, U)-algebra A = Q(U0, U)[x±1]/(f1, . . . , fn), we write f for the class of f in the
quotient ring A and mf : A→ A for the linear map defined as

mf (g) = f.g.

Lemma 7 For f0 ∈ Q(U0, U)[x±1] we have that

ResA(U0, U1, . . . , Un) = ρ(U) det(mf0)

with ρ(U) = ±
∏
v ResA1,v ,··· ,An,v(f1,v, . . . , fn,v)

−hA0
(v) ∈ Q(U) \ {0}, where the product

runs over the primitive vectors v ∈ Zn .

Proof. The result follows from the Poisson formula stated above and [7, Chapter 2, The-
orem (4.5)]. �

Without loss of generality, by multiplying f0 by x−α for any α ∈ A0, we may assume
that 0 ∈ A0 (this does not change the resultant). Then, we have:

Lemma 8 If 0 ∈ A0, the sparse resultant ResA is the numerator of a representation as
an irreducible fraction of det(mf0) ∈ Q(U0, U1, . . . , Un).

Proof. Note that the determinant det(mf0) is in Q(U)[U0] and, since it is monic in
the variable U00, when written as an irreducible fraction G(U0, U)/H(U), the polyno-
mial G does not have a non-constant factor in Q[U]. On the other hand, ResA is a
power of the irreducible polynomial ElimA, which depends effectively on the variables
U0. Then, from Lemma 7, taking into account that the assumption 0 ∈ A0 implies that
hA0(v) ≤ 0 for every v, it follows that the denominator of det(mf0) is a scalar multiple

of
∏
v ResA1,v ,...,An,v(f1,v, . . . , fn,v)

−hA0
(v) and the numerator is the corresponding scalar

multiple of ResA. �

Our algorithm recovers a scalar multiple of the sparse resultant ResA from a suitable
approximation of the rational function det(mf0) as a power series. To this end, we first
compute a Taylor expansion of the determinant which approximates it with an adequate
precision. Finally, we reconstruct the numerator and the denominator of det(mf0) from
the computed Taylor series expansion by means of Padé approximation.

We first describe the approximation step.
By multiplying each of the Laurent polynomials f1, . . . , fn by a suitable monomial

if needed, we assume that Ai ⊂ (Z≥0)n for i = 1, . . . , n. In this situation, there is an
isomorphism between

A = Q(U0, U)[x±1]/(f1, . . . , fn)

11

and
B = Q(U0, U)[x]/(f1, . . . , fn) : (x1 · · ·xn)∞,

where (f1, . . . , fn) : (x1 · · ·xn)∞ = {g ∈ Q(U0, U)[x] | (x1 . . . xn)Ng ∈ (f1, . . . , fn) for some
N ∈ Z≥0}. For f ∈ Q(U0, U)[x], via this isomorphism, the map mf : A → A can be
interpreted as mf : B → B.

The Newton-Hensel lifting introduced in Section 3.2 enables us to approximate det(mf)
for any f ∈ Q[U0][U, x] from a geometric resolution of the set of common zeros in (C∗)n
of a generic system with supports A1, . . . ,An:

Let u1, . . . , un be rational vectors such that f1(u1, x), . . . , fn(un, x) ∈ Q[x] have δ :=
MVn(A1, . . . ,An) simple common zeros in (C∗)n (by Bernstein’s theorem, this holds for
a generic choice of u1, . . . , un). Assume a geometric resolution q, v1, . . . , vn ∈ Q[Y] as-
sociated to a linear form ` of this set of common zeros is given. Let M ∈ Qδ×δ be
the companion matrix of q, and, for j = 1, . . . , n, consider vj(M), which is the matrix
of mxj : Q[x]/(f1(u1, x), . . . , fn(un, x)) : (x1 · · ·xn)∞ → Q[x]/(f1(u1, x), . . . , fn(un, x)) :
(x1 · · ·xn)∞ in the basis {1, `, . . . , `δ−1}.

Lemma 9 With the previous assumptions and notations, consider the Newton operator
NF (x) associated to F := (f1(U1, x), . . . , fn(Un, x)) with respect to the variables x. Let
κ ∈ Z>0, and g1, . . . , gn, h ∈ Q[U, x] such that the κth iteration of NF is given as N κ

F (x) =(g1

h
, . . . ,

gn
h

)
. For j = 1, . . . , n, let Nj := h(U,v(M))−1gj(U,v(M)), where v(M) :=

(v1(M), . . . , vn(M)).

For f ∈ Q[U0][U, x], if M̃f := f(U0, U,N1, . . . ,Nn), then det(M̃f) approximates det(mf)
with precision 2κ in the ring Q[U0][[U − u]] of formal power series in U − u = (U1 −
u1, . . . , Un − un) with coefficients in Q[U0], that is to say, det(M̃f) − det(mf) lies in the
ideal (U − u)2κ+1.

Proof. The result follows straightforwardly from [23, Lemma 6], �

Now, we can prove our main result.

Theorem 10 Let A = (A0,A1, . . . ,An), where Ai ⊂ Zn is a finite set for every 0 ≤
i ≤ n. Assume the family A is essential. There is a probabilistic algorithm which
computes a straight-line program of length O(D4(DΩ−2 + δω+1 log(D)Q2 log(Q)n10N))
for a scalar multiple of the sparse resultant ResA within complexity O(n3N(log(n) +
log(Q))M(δ) log(δ)M(δ′) log(δ′) +D4(DΩ−2 + δω+1 log(D)Q2 log(Q)n10N)), where

• N :=
∑

0≤i≤n |Ai|,
• Q = max{||a|| : a ∈ Ai, 0 ≤ i ≤ n},
• D :=

∑
0≤i≤nMVn(A0, . . . ,Ai−1,Ai+1, . . . ,An),

• δ := MVn(A1, . . . ,An),

• δ′ :=
∑

1≤i≤nMVn(∆,A1, . . . ,Ai−1,Ai+1, . . . ,An), where ∆ denotes the standard
n-dimensional simplex.

12

Proof. Without loss of generality, by multiplying by suitable monomials if needed (which
does not change the resultant), we may assume that f1, . . . , fn ∈ Q[U][x]. We may also
assume that 0 ∈ A0. Then, by Lemma 8, the resultant ResA is a numerator of the rational
function det(mf0).

To compute it, we first choose integer vectors u1, . . . , un for the coefficients of the
polynomials f1, . . . , fn at random, and approximate det(mf0) as an element of Q[U0][[U −
u]], where U − u = (U1 − u1, . . . , Un − un). We determine the order of approximation
required to apply Lemma 6 in terms of the degrees of the numerator and the denominator.

From Lemmas 7 and 8, we have that a denominator of det(mf0) is∏
v

ResA1,v ,...,An,v(f1,v, . . . , fn,v)
−hA0

(v) ∈ Q(U) \ {0},

where the product runs over the primitive vectors v ∈ Zn. By the known formula for the
degrees of sparse resultants (see equation (2)), for every 1 ≤ i ≤ n, this polynomial is
homogeneous in the variables Ui of degree

−
∑
v

hA0(v)MV (A1,v, . . . ,Ai−1,v,Ai+1,v, . . . ,An,v) = MVn(A0, . . . ,Ai−1,Ai+1, . . . ,An),

where the equality follows from [15, Chapter IV, Theorem 4.10]. Recalling that the nu-
merator of det(mf0) is ResA, it follows that det(mf0) is a quotient of two polynomi-
als in Q[U0, . . . , Un] of total degrees

∑
0≤i≤nMVn(A0, . . . ,Ai−1,Ai+1, . . . ,An) = D and∑

1≤i≤nMVn(A0, . . . ,Ai−1,Ai+1, . . . ,An) ≤ D respectively.
Therefore, by Lemma 6, we may recover the numerator and the denominator of

det(mf0) from its Taylor expansion up to order 2D centered at (0, u), where 0 is the
center corresponding to the variables U0 and u = (u1, . . . , un). We compute this Taylor
expansion following the Newton-Hensel lifting approach described above. To this end, we
will deal with multiplication maps associated to polynomials in the variables x.

If α0j := −min{0; (a0,k)j | a0,k ∈ A0} and α0 := (α01, . . . , α0n), we have that f̃0 :=

xα0f0 ∈ Q[U0][x]. From the definition of f̃0, it follows that the linear maps m
f̃0

, mxα0 and

mf0 defined over Q(U0, U)[x±1]/(f1, . . . , fn) satisfy

m
f̃0

= mxα0 ◦mf0 ,

and so,
det(mf0) = det(mxα0)−1 det(m

f̃0
).

As f̃0 and xα0 are polynomials, we will work in Q(U0, U)[x]/(f1, . . . , fn) : (x1 · · ·xn)∞.
The algorithm underlying Lemma 4 allows us to compute a geometric resolution

q, v1, . . . , vn associated with a linear form ` ∈ Q[x] of the set V of common zeros in (C∗)n
of the system f1(u1, x), . . . , fn(un, x). Then, by Lemma 9 applied to the polynomials f̃0

and xα0 for κ = dlog(2D + 1)e, we can obtain approximations of det(m
f̃0

) and det(mxα0)

with precision 2D in Q[U0][[U − u]]:
Let g1, . . . , gn, h ∈ Q[U, x] be the polynomials appearing in the κth iteration of the

Newton operator NF (x) associated with F = (f1(U1, x), . . . , fn(Un, x)). Let M ∈ Qδ×δ

be the companion matrix of the polynomial q and v(M) = (v1(M), . . . , vn(M)). Consider
the matrices

H := h(U,v(M)) and Gj := gj(U,v(M)), for 1 ≤ j ≤ n.

13

Then, as consequence of Lemma 9, we have that

det(H)−|α0|
∏

1≤j≤n
det(Gj)

α0j

approximates det(mxα0) and also that, if M0 = f̃hom0 (U0, H,G1, . . . , Gn), where f̃hom0 ∈
Q[U0, x0, x] is the polynomial obtained by homogeneizing f̃0 up to degree δ0 := deg(f̃0)
with a new variable x0,

det(H)−δ0 det(M0)

approximates det(m
f̃0

). Therefore, we approximate det(mf0) with

det(H)|α0|−δ0
∏

1≤j≤n
det(Gj)

−α0j det(M0). (3)

Finally, we recover the numerator and the denominator of det(mf0) and, therefore, a
scalar multiple of the desired resultant, applying Lemma 6. To this end, we first obtain
the homogeneous components of the Taylor expansion of order 2D centered at (0, u) of
the rational function in (3). Depending on whether |α0| − δ0 ≥ 0 or not, we regard this
rational function as the quotient of the polynomials

det(H)|α0|−δ0 det(M0) and
∏

1≤j≤n
det(Gj)

α0j ,

or of the polynomials

det(M0) and det(H)δ0−|α0|
∏

1≤j≤n
det(Gj)

α0j ,

and, in order to obtain a polynomial that approximates the inverse of the denominator
with precision 2D in Q[[U − u]], we use the formula in [23, p. 99]. This completes the
description of the algorithm and the proof of its correctness.

Algorithm SparseResultant below summarizes the procedure. Now, we estimate its
complexity.

Step 1 involves computing a0,k − a0,0 for k = 1, . . . , N0, which can be done with nN0

operations.
For i = 0, . . . , n, the vector αi in Step 2 can be computed within complexity O(nNi).
After the multiplication by monomials in Step 3, we have that max{||ai,k + αi|| : 1 ≤

i ≤ n, 0 ≤ k ≤ Ni} ≤ (n + 1)Q. Then, the computation of the geometric resolution
q, v1, . . . , vn in Step 5 can be done, by Lemma 4, within complexity

O(n3N(log(n) + log(Q))M(δ) log(δ)(M(δ) log(δ) +M(δ′) log(δ′))).

As M ∈ Qδ×δ and deg(vj) ≤ δ for j = 1, . . . , n, then the matrices v(M) in Step 7 can
be computed by means of an slp of length O(nδω+1).

Since the degree in each variable xj of the polynomials fi defined in Step 3 is bounded
by 2Q, we can obtain an slp of length O(nN log(Q)) encoding f1, . . . , fn ∈ Q[U, x]. Then,
taking into account that the total degree in x of the polynomials fi is at most (n + 1)Q,

14

by Lemma 5, we compute an slp of length O(log(D)Q2 log(Q)n10N) for the polynomi-
als g1, . . . , gn, h appearing in the κth iteration of the Newton operator associated with
f1, . . . , fn, for κ = dlog(2D + 1)e (Step 8), within a complexity of the same order as the
slp length.

From the slp computing v(M) and the slp for g1, . . . , gn, h, we easily obtain an slp of
lengthO(nδω+1+δ3 log(D)Q2 log(Q)n10N) evaluating the entries of the matricesG1, . . . , Gn,
H in Step 9.

Now, we obtain an slp of length O(nN0 log(Q)) evaluating the polynomial f̃hom0 (Step
11) and, from this slp and the slp computing the matrices G1, . . . , Gn, H, we get an slp
for the entries of the matrix M0 in Step 12. The total length of this slp is O(nδω+1 +
δ3 log(D)Q2 log(Q)n10N).

The determinant of each of the matrices G1, . . . , Gn, H and M0 with polynomial entries
can be computed without divisions by means of an slp of length O(δΩ) from an slp encoding
their entries. Then, as Ω ≤ ω + 1 (see Section 2.3), we obtain an slp of length O(nδω+1 +
δ3 log(D)Q2 log(Q)n10N) evaluating ΦNum and ΦDen in Step 14 or Step 16. Computing a
polynomial that approximates the inverse of ΦDen with precision 2D in Q[[U−u]] following
[23, p. 99] (Step 17) increases the slp length in O(log(D)).

By applying a standard procedure which from an slp evaluating a polynomial computes
an slp evaluating its homogeneous components up to a given degree (see, for instance, [3,
Lemma 21.25]), in Step 18 we obtain an slp of lengthO(D2(nδω+1+δ3 log(D)Q2 log(Q)n10N)).
Finally, following Lemma 6, in Step 19, we obtain an slp of length

O(D2(DΩ +D2(nδω+1 + δ3 log(D)Q2 log(Q)n10N)))

encoding the numerator and denominator of det(mf0) and, therefore, the desired resultant.
The overall complexity of the algorithm follows by adding the complexity of its suc-

cessive steps. �

The notation and subroutines involved in Algorithm SparseResultant are the follow-
ing:

• Vects(n;K1, . . . ,Kn) stands for n randomly chosen integer vectors of Ki coordinates
for i = 1, . . . , n.

• GeometricResolution(h1, . . . , hn) computes a geometric resolution of the zero set
in (C∗)n of the sparse system h1, . . . , hn ∈ Q[x] in n variables.

• NumDenNewton(f1, . . . , fn;x, κ) computes numerators and a denominator for the κth
iteration of the Newton operator associated to f1, . . . , fn with respect to the variables
x.

• Inverse(Ψ; z, ν) computes an approximation with precision ν in Q[[Z − z]] of the
inverse of Ψ ∈ Q[Z] provided that Ψ(z) 6= 0.

• GradedParts(Ψ; z, ν) computes the graded parts of Ψ ∈ Q[Z] centered at z up to
degree ν.

• Pade(Φ; z, 2ν) computes the (ν+1, ν)-Padé approximant of the function whose Taylor
expansion centered at z has graded parts Φ.

15

Algorithm SparseResultant(n,A, D)

n ∈ Z>0

A = (A0, . . . ,An) ⊂ (Zn)n+1 an essential family, where Ai = {ai,0, . . . , ai,Ni}
D =

∑
0≤i≤nMVn(A0, . . . ,Ai−1,Ai+1, . . . ,An)

The procedure returns a scalar multiple of the A-resultant.

1. f0 := x−a0,0
∑N0

k=0 U0,k x
a0,k ; # 0 is in the support of f0

2. for i = 0, . . . , n, j = 1, . . . , n,
αij := −min{0; (ai,k)j | ai,k ∈ Ai}, and αi := (αi1, . . . , αin);

3. for i = 1, . . . , n, fi := xαi
∑Ni

k=0 Ui,k x
ai,k ; # fi is a polynomial in x

4. (u1, . . . , un) := Vects(n;N1 + 1, . . . , Nn + 1);

5. (q, v1, . . . , vn) := GeometricResolution(f1(u1, x), . . . , fn(un, x));

6. M := CompanionMatrix(q);

7. v(M) := (v1(M), . . . , vn(M));

8. (g1, . . . , gn, h) := NumDenNewton(f1, . . . , fn;x, dlog(2D + 1)e);
9. (G1, . . . , Gn, H) := (g1(U,v(M)), . . . , gn(U,v(M)), h(U,v(M)));

10. δ0 := max{|a0,k + α0| : 0 ≤ k ≤ N0};

11. f̃hom0 (U0, x0, x) :=
∑N0

k=0 U0,k x
δ0−|a0,k+α0|
0 xa0,k+α0 ;

12. M0 := f̃hom0 (U0, H,G1, . . . , Gn);

13. if |α0| ≥ δ0 then

14. (ΦNum,ΦDen) := (det(H)|α0|−δ0 det(M0),
∏

1≤j≤n
det(Gj)

α0j);

15. else

16. (ΦNum,ΦDen) := (det(M0),det(H)δ0−|α0| ∏
1≤j≤n

det(Gj)
α0j);

17. Φinv
Den := Inverse(ΦDen;u, 2D);

18. Φ := GradedParts(ΦNumΦinv
Den; (0, u), 2D);

19. (P,Q) := Pade(Φ; (0, u), 2D);

20. return(P);

Acknowledgement. The authors wish to thank the referees for their careful reading of
the paper and helpful suggestions.

16

References

[1] D. N. Bernstein, The number of roots of a system of equations. Functional Anal.
Appl. 9 (1975), no. 3, 183–185.

[2] E. Bézout, Théorie Générale des Équations Algébriques, Paris, 1779.

[3] B. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory. Springer-
Verlag, 1997.

[4] J. F. Canny, I. Z. Emiris, An efficient algorithm for the sparse mixed resultant. In:
Cohen, G., Mora, T., Moreno, O. 35 (Eds.), Proc. Int. Symp. on Appl. Algebra,
Algebraic Algorithms and Error-Corr. Codes. Puerto Rico. In: LNCS, vol. 36, 263
(1993), 89–104.

[5] J. F. Canny, I. Z. Emiris, A subdivision-based algorithm for the sparse resultant. J.
ACM 47 (3) (2000), 417–451.

[6] A. Cayley, On the theory of elimination. Cambridge and Dublin Math. J. 3 (1848),
116–120.

[7] D. Cox, J. Little, D. O’Shea, Using algebraic geometry. Graduate Texts in Mathe-
matics 185. Second Edition. Springer-Verlag, New York, 2005.

[8] C. D’Andrea, Macaulay style formulas for sparse resultants. Trans. Amer. Math. Soc.
354 (7) (2002), 2595–2629.

[9] C. D’Andrea, A. Dickenstein, Explicit formulas for the multivariate resultant. J. Pure
Appl. Algebra 164 (12) (2001), 59–86.

[10] C. D’Andrea, G. Jeronimo, M. Sombra, Sparse resultants: combinatorial properties
and Macaulay style formulas, in preparation.

[11] C. D’Andrea, M. Sombra, A Poisson formula for the sparse resultant. Proc. Lond.
Math. Soc. (3) 110 (2015), no. 4, 932–964.

[12] M. Dyer, P. Gritzmann, A. Hufnagel, On the complexity of computing mixed volumes.
SIAM J. Comput. 27 (1998) (2), 356–400.

[13] I.Z. Emiris, B. Mourrain, Matrices in elimination theory. J. Symbolic Comput. 28
(1999), 3–44.

[14] A. Esterov, Newton polyhedra of discriminants of projections. Discrete Comput.
Geom. 44 (2010), no. 1, 96–148.

[15] G. Ewald, Combinatorial Convexity and Algebraic Geometry. Grad. Texts in Math.,
vol. 168, Springer, New York, 1996.

[16] J. von zur Gathen, J. Gerhard, Modern computer algebra. Cambridge University
Press, New York, 1999.

17

[17] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and
multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser
Boston, Inc., Boston, MA, 1994.

[18] M. Giusti, J. Heintz, La détermination des points isolés et de la dimension d’une
variété algébrique peut se faire en temps polynomial. In: Computational Algebraic
Geometry and Commutative Algebra (Cortona, 1991). Sympos. Math. XXXIV, Cam-
bridge Univ. Press, Cambridge (1993), 216–256.

[19] M. Giusti, J. Heintz, K. Hägele, J. E. Morais, L. M. Pardo, J. L. Montaña, Lower
bounds for Diophantine approximations. Algorithms for algebra (Eindhoven, 1996).
J. Pure Appl. Algebra 117/118 (1997), 277–317.

[20] M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, L. M. Pardo, Straight-line pro-
grams in geometric elimination theory. J. Pure Appl. Algebra 124 (13) (1998), 101–
146.

[21] M. Giusti, G. Lecerf, B. Salvy, A Gröbner free alternative for polynomial system
solving. J. Complexity 17 (2001), no. 1, 154-211.

[22] B. Grenet, P. Koiran, N. Portier, On the complexity of the multivariate resultant. J.
Complexity 29 (2013), 142–157.

[23] J. Heintz, T. Krick, S. Puddu, J. Sabia, A. Waissbein, Deformation techniques for
efficient polynomial equation solving. J. Complexity 16 (2000), 70–109.

[24] J. Heintz, C. P. Schnorr, 1982. Testing polynomials which are easy to compute. In:
Monographie 30 de l’Enseignement Mathématique, 237–254.

[25] G. Jeronimo, T. Krick, J. Sabia, M. Sombra, The computational complexity of the
Chow form. Found. Comput. Math. 4 (2004), no. 1, 41–117.

[26] G. Jeronimo, G. Matera, P. Solernó, A. Waissbein, Deformation techniques for sparse
systems. Found. Comput. Math. 9 (2009), no. 1, 1–50.

[27] G. Jeronimo, J. Sabia, Computing multihomogeneous resultants using straight-line
programs. J. Symbolic Comput. 42 (2007), 218–235.

[28] E. Kaltofen, G. Villard, On the complexity of computing determinants. Comput.
Complexity 13 (2004), no. 3-4, 91–130.

[29] E. Kaltofen, P. Koiran, Expressing a fraction of two determinants as a determinant.
Proceedings ISSAC 2008, 141–146.

[30] G. Lecerf, Geomsolvex, a Mathemagix library for geometric polynomial system
solving, 2012,
http://www.mathemagix.org/www/geomsolvex/doc/html/index.en.html.

[31] F. Macaulay, Some formulae in elimination. Proc. London Math. Soc. 1 (33) (1902),
3–27.

18

[32] M. Minimair, Sparse resultant under vanishing coefficients. J. Algebraic Combin. 18
(2003), 53–73.

[33] M. Oka, Non-degenerate complete intersection singularity. Actualités Mathématiques.
Hermann, Paris, 1997.

[34] P. Pedersen, B. Sturmfels, Product formulas for resultants and Chow forms. Math.
Z. 214 (1993), no. 3, 377–396.

[35] E. Schost, Computing parametric geometric resolutions. Appl. Algebra Engrg. Comm.
Comput. 13 (2003), no. 5, 349–393.

[36] J. Schwartz, Fast probabilistic algorithms for verification of polynomial identities. J.
ACM 27 (1980), 701–717.

[37] A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis, ETH, Zürich,
Switzerland, 2000.

[38] V. Strassen, Vermeidung von Divisionen. J. Reine Angew. Math. 264 (1973), 184–202.

[39] B. Sturmfels, Sparse elimination theory. In: Eisenbud, D., Robbbiano, L. (Eds.),
Computational Algebraic 40 Geometry and Commutative Algebra (Cortona, 1991).
In: Sympos. Math. XXXIV, Cambridge Univ. Press, 41 (1993), 264–298.

[40] B. Sturmfels, On the Newton polytope of the resultant. J. Algebraic Combin. 3 (1994),
no. 2, 207–236.

[41] J. J. Sylvester, On a theory of syzygetic relations of two rational integral functions.
Comprising an application to the theory of Sturm’s functions, and that of the greatest
algebraic common measure. Philos. Trans. 143 (1853), 407–548.

[42] R. Zippel, Effective Polynomial Computation. Kluwer Int. Ser. Eng. Comput. Sci.,
vol. 241 (1993), Kluwer, Dordrecht.

19

	Introduction
	Preliminaries
	Basic definitions and notation
	Sparse resultant
	Algorithms and codification

	Tools
	Essential families
	Geometric resolutions and Newton-Hensel lifting
	Padé approximation

	A short slp for the sparse resultant

