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Abstract  23 

Uruguayan Southern lagoons exhibit high Holocene resolution paleoenvironmental - 24 

paleoclimatic records for inferring long-term regional changes. The multiproxy analysis 25 

of three sediment cores allowed to recognize Holocene climatic variability from the 26 

paleolimnological record of Peña lagoon over the last 2,458 yr BP. Four main stages were 27 

identified throughout the record. The first (2,458 – 1,500 cal yr BP) was characterized as 28 

a shallow meso – eutrophic system with high abundances of aerophilic benthic species 29 

(i.e., Hantzschia amphioxys, Nitzschia brevissima, Frustulia sp., Luticola goeppertiana), 30 

epiphytic taxa (i.e Epithemia adnata, Eunotia spp., Rophalodia gibba) and planktonic 31 

taxa (i.e. Aulacoseira ambigua and A. granulata). The second stage showed a noticeable 32 

change in the diatom assemblage dominated by fresh-brackish benthic species Staurosira 33 

construens, but also fluctuations in the abundance of Aulacoseira ambigua and A. 34 

granulata, which indicates the occurrence of temperate to cold and semiarid climatic 35 

conditions, including intervals of high rainfall. The core chronology allowed us to ascribe 36 

this stage to the Little Ice Age (LIA). The third stage, post 390 cal yr BP, showed the 37 

highest proportion of freshwater planktonic species throughout the entire core, thus 38 

indicating the development of a eutrophic system under relatively warm and wet 39 

conditions, which were assigned to the Current Warm Period. After ca. 1962 AD, a sharp 40 

increase in the abundance of epiphytic species (i.e., Cocconeis placentula, Eunotia spp, 41 

Epithemia adnata and Encyonema minutum) highlights the onset of the fourth stage, 42 

which was characterized by littoral expansion and consequently, the proliferation of 43 

associated macrophytes due to anthropogenic impacts. 44 

Key words: Diatoms. Holocene. Southeastern Uruguay. Paleoecology 45 
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RELACIÓN ENTRE LA VARIABILIDAD AMBIENTAL HOLOCENA Y 47 

COMPOSICIÓN DIATOMOLÓGICA EN LA LAGUNA PEÑA, SE URUGUAY 48 

Resumen  49 

Las lagunas costeras del sudeste uruguayo son sistemas naturales que exhiben registros 50 

paleoclimaticos y paleoambientales de alta resolución temporal para analizar la 51 

variabilidad ambiental holocena. El análisis “multiproxy” de tres testigos sedimentarios 52 

permitió identificar la variabilidad climática Holocena en la laguna Peña durante los 53 

últimos 2458 años. Se identificaron cuatro estadios, el más antiguo (2458 a 1500 años cal 54 

AP), caracterizando un sistema somero meso – eutrófico, con abundancias relativas altas 55 

de especies bentónicas aerófílas (Hantzschia amphioxys, Nitzschia brevissima, Frustulia 56 

sp., Luticola goeppertiana), especies epifíticas (Epithemia adnata, Eunotia spp., 57 

Rophalodia gibba) y especies planctónicas (Aulacoseira ambigua y A. granulata). La 58 

segunda fase (1415 - 390 años cal. AP) se identifica por alto contenido de la especie 59 

bentónica dulce acuícola – salobre Staurosira construens y fluctuaciones de la 60 

abundancia de Aulacoseira ambigua y A. granulata, infiriendo condiciones climáticas 61 

templadas - frías y semiáridas con intervalos de precipitación. La cronología sedimentaria 62 

permite relacionar esta fase con la Pequeña Edad de Hielo. La tercera fase (posterior a 63 

390 años cal AP) presenta la mayor proporción de especies dulceacuícolas planctónicas, 64 

indicando el desarrollo de un sistema eutrófico bajo condiciones cálidas y húmedas, 65 

asociadas al Periodo Cálido Actual (PCA). Posterior a los ca. 1962 AD, el aumento de 66 

especies epifíticas (Cocconeis placentula, Eunotia spp, Epithemia adnata y Encyonema 67 

minutum) infiere un sistema léntico con proliferación de macrófitas y una zona litoral 68 

ampliamente desarrollada, debido al impacto antrópico. 69 

Palabras clave: Diatomeas. Holoceno Tardío. Sudeste Uruguayo. Paleoecología 70 
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URUGUAYAN coastal lagoon systems provide a multiple set of 71 

geomorphological elements as well as sedimentological, geochemical and biological 72 

indicators useful to reconstruct past environmental changes as well as the most recent 73 

anthropogenic impacts (Iriarte, 2006; del Puerto et al., 2011, Inda, 2016). Most of these 74 

lentic systems, developed after the Holocene marine transgression at around 5,500 cal. yr 75 

BP (García-Rodríguez et al., 2001; Bracco et al., 2005; Inda et al., 2006), offer valuable 76 

paleolimnological records for reconstructing climatic and environmental changes 77 

occurred in the region during the Holocene (Bracco et al., 2005; del Puerto et al., 2006, 78 

2011, 2013; Garcia-Rodriguez et al., 2001, 2002a,2002b, 2004a, 2004b, 2004c; Garcia-79 

Rodriguez & Witkowski, 2003; Inda et al., 2006, 2016). A general overview of the 80 

Holocene climate variability and associated geological processes along the Uruguayan 81 

coastal setting can be found in García-Rodriguez et al., (2011). 82 

Previous paleolimnological reconstructions from the Peña Lagoon (Figure 1) 83 

based on the analysis of opal phytolith and isotopic records, highlighted the development 84 

of three climatic stages during the last 2,458 cal yr BP (del Puerto et al., 2013) The first, 85 

spanning from 2,458 cal years BP until 700 AD, was characterized by prevailing 86 

temperate and humid conditions. The second, lasted from 700 AD until 1,200 AD, was 87 

comparatively warmer and wetter and was assigned to the Medieval Warm Period. This 88 

stage was not uniform and included a colder and drier pulse. The third climatic stage 89 

extended from 1,200 AD until the present, and it showed high variability, with three 90 

dry/cold phases reaching their maximums at 1,300, 1,600 and 1,900 AD matching with 91 

the Little Ice Age (González-Rouco et al., 2003; Bracco et al., 2005; Piovano et al., 2009, 92 

Córdoba et al., 2014, Villalba, 1994).  93 

In this paper, we explored biological and physical indicators of Holocene climatic 94 

variability from the paleolimnological record of Peña lagoon. Since, multiproxy studies 95 
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provide the means to identify sensitivities, strengths, and weaknesses of different proxies 96 

related to the environmental forcing (Birks & Birks, 2006), the analysis of both diatom 97 

assemblages and facies analysis are included to strengthen previous environmental 98 

reconstructions mostly based on isotopes and the opal phytolith record (del Puerto et al., 99 

2013). Diatoms are microscopic algae, abundant in almost all aquatic habitats. They are 100 

sensitive organisms, that respond to environmental factors, influencing some water 101 

variables (i.e., pH, salinity, water level fluctuations, and trophic status), representing one 102 

of the biological indicator that have been widely used to paleoenvironmental 103 

reconstructions (Battarbee, 2000; Battarbee et al., 2002; Lamper & Sommer, 2007; Smol, 104 

2008). Similarly, sedimentological features, such as grain size and magnetic 105 

susceptibility, may help to delineate depositional dynamics, clastic, biological, and/or 106 

authigenic sediment sources (Sandgren & Snowball 2002; Ver Straeten et al., 2011). 107 

Moreover, the study of phytoliths assemblages allow to infer the paleovegetation in the 108 

local area reflecting climatic and environmental characteristics (Fredlund & Tieszen, 109 

1994; Lu & Liu, 2003a, b). Although this proxy present taphonomic problems it does not 110 

always reflect the original plant communities precisely (Lu et al., 2006). 111 

Our results showed that the combined analyses of biological indicators with data 112 

derived from stable isotopic composition of organic matter, geochemistry, and physical 113 

proxies (i.e., magnetic susceptibility, sedimentary facies, among others) allow to infer 114 

past lake-catchment changes related to climate change during the 2,458 yr BP. Finally, 115 

this paper provides new results to be included in the general framework of the MATES 116 

Program (Multiproxy Approach for Tracking Environmental changes in Southern South 117 

America) which aims to integrate paleoclimate research across Argentina and Uruguay.  118 

METHODS 119 

Study site and climate setting  120 
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Peña lagoon is a freshwater lagoon (34°00´13´´ S - 53° 33´10´´ W), located in a 121 

narrow sedimentary fringe called “La Angostura”, situated between the Atlantic Ocean 122 

and the Negra Lagoon (Fig. 1). The catchment and lagoon area are 0.5 Km2 and ca. 0.05 123 

Km2 respectively. The maximum water depth is 1.8 m (del Puerto et al., 2013). The lagoon 124 

is located in Santa Teresa National Park, which has been drastically modified during the 125 

20th Century. More information about the site setting and vegetation can be found in del 126 

Puerto et al., (2013). 127 

 128 

Figure 1. Geographical location of Peña Lagoon. Gray point represents coring stations. 129 
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Peña Lagoon is part of a group of small marginal water bodies located on the 10 130 

– 20 m a.s.l. contour lines of the Uruguayan coast (Kruk et al., 2006). The topography 131 

indicates that, in contrast to the major coastal lagoons, this aquatic system was originated 132 

as the result of fluvial damming by movement of the sand dunes (Bracco et al., 2011).  133 

The study region is located along the boundary between subtropical and temperate 134 

regions of Southeastern South America (Cerveny, 1998). South America regional climate 135 

distribution is defined by continental north-to-south variations, east-west asymmetries 136 

(given by the presence of the Andes), land mass shape and the boundary conditions 137 

imposed by a cold southeastern Pacific and a warm southwestern Atlantic (Garreaud et 138 

al., 2009). Extending Eastward the Andes and covering a vast lowland area from 139 

Colombia and Venezuela up to the Argentinean Pampas in the south, it is the most 140 

outstanding geographical feature that provides a unique environment for the development 141 

of a Monsoon-like circulation (Zhou and Lau, 1998; Vera et al., 2006). Summertime 142 

climate in Southeastern South America is linked to the South Atlantic Convergence Zone 143 

(SACZ) in the form of a rainfall seesaw: increased rains in the SACZ are correlated with 144 

decreased rainfall in SESA (Doyle and Barros 2002). The SACZ, in turn, may be forced 145 

by South Atlantic SST anomalies (Barreiro et al. 2002, 2005). The wind and water mass 146 

regime are controlled by the interaction between the tropical anticyclone of the South 147 

Atlantic and the migratory polar anticyclone (Fonzar, 1994).  148 

In the study area, the Atlantic influence causes moderate daily and annual thermal 149 

amplitude with high levels of relative humidity. Mean temperature is 17 °C and mean 150 

historical total annual precipitation is 1200 mm (PROBIDES, 1999; IBERSIS, 2001). 151 

Interannual climate variability is influenced by El Niño Southern Oscillation (ENSO). El 152 

Niño episodes are mostly associated with anomalously wet conditions while drought 153 

anomalies are observed during La Niña events. However, ENSO at a regional scale 154 
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exhibits significant seasonal fluctuations, such as impacts on rainfall, which show 155 

considerable variability during the 20th Century. Decadal and interdecadal variability are 156 

possibly forced by the Pacific Decadal Oscillation (PDO) and the Antarctic Oscillation 157 

(AAO) over South America (Barreiro and Tippman, 2008; Garreaud et al., 2009). 158 

Core collection, sampling and previous analysis  159 

Cores LP1 and LP2 (95 and 156 cm long respectively) were taken in 2010 using 160 

a piston corer. Both cores were retrieved very closely, thus, a composite core LP1-LP2 161 

can be considered. A third core LP3 (106 cm long) was collected in 2014 with the same 162 

methodology used in 2010. The sampling sites, of the cores are shown in Fig 1. The 163 

opening procedure, dating, geochemistry, organic matter and isotopes analysis for the 164 

core LP1 - LP2 are described in detail by del Puerto et al. (2013). Samples for diatoms 165 

and grain size analysis were taken every 2 cm in the LP1 core (0 -95 cm) and in the basal 166 

part of the LP2 core (95 – 156 cm), both cores represent the entire record of Peña Lagoon 167 

of 156 cm long. The sedimentological description was performed on core LP3. Core 168 

correlation between LP3 and both LP1 - LP2 was established through the inspection of 169 

sedimentological features such as sedimentary structures, magnetic susceptibility core 170 

profiles, grain size values and content of sedimentary organic matter. 171 

Sedimentological analysis: grain size, magnetic susceptibility measurement  172 

The sediment grain-size was measured in samples from the LP1 and the LP2 cores 173 

using a laser diffraction grain size analyzer (HORIBA LA-950; Centro de Investigaciones 174 

en Ciencias de la Tierra (CICTERRA). Samples were pretreated with 20 mL of 30% H2O2 175 

to eliminate the organic matter, and with 20 mL HCl (10%) to remove carbonates. Finally, 176 

samples were rinsed with deionized water and dispersed in 10 mL of (NaPO3)6 solution 177 

to prevent particles from aggregating. Grain size data were analyzed using the statistical 178 

program GRADISTAT 8.0. Sediment description was performed according to 179 
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Schnurrenberger et al. (2003). The Munsell chart was utilized to characterize sediment 180 

color. The volume specific magnetic susceptibility (κ) of sediments was measured on the 181 

surface of the split half core at 1 cm intervals with a Bartington F-sensor. Values are given 182 

in 10−6 SI (dimensionless). Sedimentary core LP3 was inspected through XR radiograph 183 

in the Department of Image at the Universidad Nacional de Cordoba Argentina (UNC) to 184 

further identify sedimentary structures.  185 

Diatom analysis 186 

Samples for diatom analyses (n = 39) were pre-treated with H2O2 for organic 187 

matter removal and with HCl for carbonate removal as indicated in Metzeltin and Garcia-188 

Rodriguez (2003). Permanent microscope slides were mounted using Entellan resin 189 

(Refractive Index: 1.54). 190 

Slides were inspected at 1000x magnification with oil immersion using an 191 

Olympus BX53 light microscope. A minimum of 400 diatom valves was counted in each 192 

slide along randomly selected transects according to Battarbee et al. (2002). The relative 193 

abundances of individual species were calculated by dividing the number of valves from 194 

each species by the total number of valves counted on each slide. Diatoms were identified 195 

to species level using the appropriate keys (Metzeltin et al., 2005, Metzeltin and García-196 

Rodríguez 2003, Krammer and Lange-Bertalot 1986, 1988, 1991a, 1991b; Frenguelli, 197 

1941, 1945; Round, 1990; ANSP Algae Image Database). Ecological information of 198 

diatom taxa preferences (i.e trophic status, moisture and salinity) was extracted from 199 

Round et al. (1990), Denys (1991), Van Dam et al. (1994), Rühland et al. (2003), Hassan 200 

(2010) and Solak et al. (2012).  201 

The vertical distribution of the most abundant diatoms (i.e. those species with 202 

relative abundance higher than 3% in at least three intervals) was plotted against core 203 
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depth using C2 software (Juggins, 2005). Diatom zones were determined using 204 

constrained cluster analysis (CONISS) using the software Tilia v. 2.0.38.  205 

Geochemistry 206 

Isotopic composition of organic matter (δ 13C) as well as C/N ratios were used to 207 

infer the sedimentary organic matter source/composition in Peña Lagoon. Data were 208 

taken from del Puerto et al. (2013). The stable carbon isotope composition (δ 13C) and the 209 

ratio Carbon-Nitrogen (C/N) can be employed to assess the origin and composition of 210 

sedimentary organic matter (Lamb et al., 2006). 211 

RESULTS 212 

Sedimentology and geochemistry 213 

With the aim of establishing a stratigraphic correlation between cores LP3 and the 214 

composite core LP1 - LP2, we compared magnetic susceptibility values throughout core 215 

LP3 to grain size variations of core LP1 - LP2. Since high MS values observed in core 216 

LP3 match with coarser sediments in LP1 and LP2 (Fig.2) both variables were 217 

simultaneously used as stratigraphic markers for core correlation. Core LP3 showed a 218 

uniform pattern of magnetic susceptibility (average 4.7 SI) that was interrupted by distinct 219 

shifts to higher peak values (maximum 38.7 SI) at 19, 62 and 104 cm depth. 220 

 221 
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Figure 2. Correlation of the core LP3 with the LP1 - LP2 composite core. Dotted lines 222 

indicates the stratigraphic correlation between magnetic susceptibility (MS) of the LP3 223 

core with grain size, percentage of sand - clay and percentage of sedimentary organic 224 

matter measured in the LP1 - LP2 composite core (Published data by del Puerto et al., 225 

2013 and provided by the authors). The right side plot shows the correspondence of 226 

lithological units of the LP3 core with those identified by del Puerto et al (2013). Based 227 

on physical data, LU V, VI and VII from core LP1 - LP2 were considered within LU IV 228 

identified in LP3. 229 

The core LP3 consisted of massive to banded and laminated, dark-gray – black, 230 

sandy-silty muds, with abundant fibrous plant remains. Based on the sedimentological 231 

features, magnetic susceptibility, grain size, OM content and sediment color (Fig. 2 and 232 

3), the sedimentary record was subdivided into four lithological units (LU): LU IV (106 233 

–93 cm): Massive Sandy Muds; LU III (93 – 41 cm): Banded organic-rich Sandy Muds; 234 

LU II (41 – 20 cm): Massive Sandy Muds and LU I (20 – 0 cm): Banded Medium Silt 235 

Muds. A summary of lithological units characteristics, photographs and XR radiographs 236 

is presented in Figure 3. 237 
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Figure 3. Description of LP3 lithological units: (1) Photograph of the sedimentary record 239 

LP3 (106 cm) and (2) corresponding X ray image, (3) banded zone of LU I (10 – 15 cm), 240 

(4) massive sandy mud of LU II (26 – 31 cm), (5) fibrous plants remains zone of LU III 241 

(48 – 57 cm), (6) sandy sediments present in LU III (84 – 90 cm) and (g) black sandy 242 

mud zone of LU IV (93 – 100 cm). 243 

The relationship between δ13C and C/N ratio values for each lithological unit is 244 

shown in Fig. 4. In the LU IV, δ 13C values ranged between – 26.7‰ and – 23.0‰, while 245 

C/N values ranged between 8.5 and 14.9. The LU III, exhibited δ 13C values between – 246 

27.0‰ and – 24.5‰ and C/N values between 10.0 and 13.7. In the LU II, δ 13C ranged 247 

between – 24.7‰ and – 23.9‰ and C/N values ranged between 12.7 and 13.7. The LU I 248 

showed δ 13C values ranging between – 25.8‰ and – 23.9‰, and C/N ratios ranging 249 

between 10.6 and 12.7. 250 

 251 

Figure 4. The relationship between δ13C values and C/N ratios sediment cores (LP1 – 252 

LP2) (Published data by del Puerto et al., 2013 and provided by the authors), including 253 

typical ranges of sources according to data presented by Meyers (1994) and Lamb et al. 254 

(2006). 255 

Diatoms 256 
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A total of 109 species were identified in 39 samples selected from cores LP1 (0 – 257 

95 cm) and LP2 (95 – 156 cm). The vertical distribution of the most abundant diatom 258 

species, the percentage of diatom groups (i.e., Planktonic, Benthic and Epiphytic) and the 259 

Diatom Association Zones (DAZ), inferred from the stratigraphic constrained cluster 260 

analysis are presented in Figure 5. 261 

 262 

Figure 5. Relative abundance of diatom species of cores LP1 (0 – 95 cm) and LP2 (95 – 263 

106 cm). Percentage of groups of diatoms; planktonic (P), benthic (B) and epiphytic (E). 264 

Clustering groups, lithological units (LU) and Diatom Assemblage Zones (DAZ) are 265 

shown to the right of the plot. 266 

Those species with a relative abundance lower than 3% were excluded from the 267 

statistical analysis as they are considered as rare species (Whiting and Mc Intire 1985, in 268 

Hassan et al., 2006). Therefore, a set of 26 representative co-dominant species with a 269 

relative abundance ≥ 3% in at least two intervals are presented in Figure 5.  270 

Cluster analysis allowed us to identify five diatom zones (DAZ) (Fig. 5). DAZ 1, 271 

encompassed the basal section of the sedimentary record (156 – 122 cm), and was 272 

dominated by Staurosira construens Ehrenberg, Aulacoseira ambigua (Grunow) 273 

Simonsen, Aulacoseira granulata (Ehrenberg) Simonsen, Fragilaria brevistriata 274 

(Grunow) Van Heurck, Encyonema minutum (Hilse) D.G.Mann in Round, Nitzschia 275 
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amphibia Grunow, Hantzschia amphioxys (Ehrenberg) Grunow, Eunotia spp, Epithemia 276 

adnata (Kützing) Brébisson, Nitzschia brevissima Grunow, Frustulia sp., Luticola 277 

goeppertiana (Bleisch ex Rabenhorst) D.G.Mann in Round and Rophalodia gibba 278 

(Ehrenberg) O. Müller. The most abundant diatom species in this zone consisted of 279 

freshwater planktonic species Aulacoseira ambigua (26%), Aulacoseira granulata (18%) 280 

from 156 cm to 148 cm, and 148 to 122 cm the benthic – brackish/freshwater species of 281 

Staurosira construens (13%). DAZ 1 exhibited a mean value of 55.5% of benthic 282 

aerophilic taxa (i.e., Hantzschia amphioxys, Nitzschia brevissima, Frustulia sp., Luticola 283 

goeppertiana) from which 19.5% were epiphytic (i.e., Epithemia adnata, Eunotia spp., 284 

Rophalodia gibba) and 25% planktonic. In the interval 134 - 122 cm there was an increase 285 

in epiphytic species (Fig. 5).  286 

In DAZ 2 (122 – 70 cm) the benthic brackish/freshwater species Staurosira 287 

construens showed a relative abundance of 40%, while Aulacoseira ambigua exhibited a 288 

relative abundance of 27%. In addition, lower frequencies of Cyclotella meneghiniana 289 

Kützing, Frankophila similioides Lange-Bertalot and U. Rumrich, Achnanthidium 290 

exiguum (Grunow) Czarnecki, Fragilaria brevistriata, Epithemia adnata, Cocconeis 291 

placentula Ehrenberg and Rhopalodia gibba, were observed. The relative abundance of 292 

benthic taxa increased to a mean value of 66.5%, while the planktonic species Aulacoseira 293 

granulata decreased sharply (Fig. 5).  294 

In DAZ 3 (70 – 50 cm) the relative abundance of planktonic taxa increased, 295 

reaching here the highest value (62%) of the entire core, dominated by Aulacoseira 296 

ambigua (43%) and Aulacoseira granulata (25%). The benthic taxa decreased to 26%, 297 

and low proportions of Staurosira construens; Epithemia adnata, Rhopalodia gibba, 298 

Eunotia spp. and Encyonema minutum were observed throughout this zone (Fig. 5).  299 
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In DAZ 4 (50 – 14 cm) planktonic and benthic taxa reached the 43% and 33% 300 

respectively. DAZ 4 was dominated by Staurosira construens, and Aulacoseira 301 

granulata, with lower proportions of Aulacoseira ambigua and Cocconeis placentula, 302 

showing higher abundances towards the upper section of the zone. Conversely, lower 303 

percentages of Frankophila similioides, Encyonema minutum, Nitzschia amphibia, 304 

Epithemia adnata, Eunotia spp and Cyclotella meneghiniana, were registered in DAZ 4. 305 

The percentage of Aulacoseira ambigua was higher than that of the upper section of the 306 

zone, while Aulacoseira granulata displayed lower values in the basal section of the zone 307 

(Fig. 5). 308 

In DAZ 5 (14 – 2 cm), diatom assemblages were dominated by Eunotia spp and 309 

Aulacoseira granulata, but Staurosira construens, displayed a decreasing upward trend. 310 

Aulacoseira ambigua showed the lowest abundances of the core. In the subsurface 311 

sediments of this zone, the occurrence of Nitzschia frustulum, Nitzschia ampliatum, 312 

Pinnularia gibba, Staurosirella pinnata and Tabularia fasciculata was observed (Fig. 5).  313 

DISCUSSION 314 

The combined analysis of geochemical, sedimentological proxy-data (Fig. 2 and 315 

4) and diatom assemblages (Fig. 5) allowed to infer distinct changes in the environmental 316 

conditions of Peña Lagoon throughout the past 2,458 yr BP. 317 

Four lithological units (LU) were defined according to changes in grain size 318 

composition as well as in the magnetic susceptibility ratio, which are considered as 319 

indicators of different sediment sources. Coarser sediments in lithological unit II - III with 320 

high MS ratios are attributed to an increased input of sandy sediments from the lake 321 

watershed.  322 
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According to Meyers (1994) the δ13C and C/N ratio values allowed us to infer a 323 

mixed source of sedimentary organic matter with signals of freshwater microalgae and 324 

C3 terrestrial plants in lithological unit IV (Fig. 4), where an environment with important 325 

proliferation of grasses and phytoplankton/microphytobenthos was inferred by del Puerto 326 

et al., (2013). Similar environmental conditions in the source of sedimentary organic 327 

matter were observed in LU III and LU I, based on δ13C and C/N ratio values (Fig. 4). 328 

However, in LU II, both isotopic and C/N values indicate that the organic matter 329 

completely derived from the C3 terrestrial plants (Fig. 4). Therefore, the changes in the 330 

isotopic composition of OM and C/N ratios allowed us to reliably infer past changes in 331 

organic matter composition where signals of freshwater microalgae and continental C3 332 

plants were the most important sources. 333 

The variability in diatom assemblages (DAZ 1-5) combined with physical and 334 

chemical proxies indicate four main stages during the past 2,458 yr BP in Peña Lagoon, 335 

as depicted in Fig. 6.  336 
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Figure 6. Holocene main climatic variability stages in Peña Lagoon over the last 2,458 338 

cal yr BP. 339 

Stage 1  340 

This stage is recorded from 122 to 156 cm (i.e., DAZ 1). The age of basal 341 

sediments is unknown, but the interval of 127.5 cm was dated at 2,458 cal yr BP and the 342 

top at 1,415 cal yr BP. Sediments are dominantly sandy-muds (Fig. 2 - 3) with a 343 

coarsening trend at the basal part of the core (ca. ø 5.3) thus suggesting sandy sediment 344 

inputs from the surrounding lagoon area. Allochthonous inputs of organic matter derived 345 

from the watershed can be considered according to δ 13C values (-23.6‰), which indicate 346 

a terrestrial plant inputs (Meyers, 1994; Wei et al., 2010) (Fig. 4). Previous results also 347 

inferred such external inputs using the OP/OBP index (opal phytolith:other biosiliceous 348 

particles ratio) as a proxy, which showed both the highest values of the record and 349 

dominance of C4 phytoliths (del Puerto et al., 2013). The uppermost section of stage 1 350 

(dated at 1,415 yr BP) could be ascribed to warm temperate and humid conditions, 351 

corresponding to the Medieval Warm Period (MWP; ca. 1500 years BP), inferred for the 352 

Pampean region by Piovano et al. (2009) and in Uruguay by Perez et al. (2016) as warmer 353 

and more humid pulses with variations in rainfall and wind patterns for 1,200 cal yr BP. 354 

Benthic taxa characteristic of moist or temporarily dry sediments (Denys, 1991; 355 

Van Dam et al., 1994) accounted for 55% of the diatom abundance from which 19.5% 356 

consisted of epiphytic taxa, thus indicating the presence of aquatic plants associated to a 357 

shallow system with a well-developed littoral zone. Li et al. (2015) inferred similar 358 

conditions based on high abundances of epiphytic taxa (i.e, Epithemia adnata, Cocconeis 359 

placentula) in south-western China. In addition, a meso eutrophic brackish system (e.g., 360 

Denys, 1991; Van Dam et al., 1994), with significant water turbulence and associated 361 

turbidity can be inferred from the occurrence of the planktonic species Aulacoseira 362 
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granulata and Aulacoseira ambigua in the basal section of the core (150 - 156 cm). 363 

Moreover, A. granulata is considered a thermophilic diatom linked to water temperatures 364 

higher than 15°C (Rioual et al., 2007), this taxa have been reported in modern Pampean 365 

lakes sediments from Argentina in temperatures ranging from 7 up to 25 °C (Hassan, 366 

2015) The decreasing upward trend in the abundance of both planktonic species, together 367 

with the occurrence of Hantzschia amphioxys, Nitzschia brevissima, Frustulia sp. and 368 

Luticola goeppertiana in DAZ 1, suggest a reduction in the water column productivity of 369 

the system, higher salinity (⁓ 0.9 – 1.8‰, Denys, 1991; Van Dam et al., 1994), cooler 370 

conditions, and a decrease in water turbidity, possibly as a result of a reduction in windy 371 

conditions. The fine grain size fraction of sediments above 140 cm depth, indicate lower 372 

runoff from the catchment.  373 

Results are consistent with previous reconstructions which analyzed the phytolith 374 

record of Negra lagoon, where a warm/wet period was also identified between 1,980 ± 40 375 

yr BP and 930 ± 45 yr BP, although an intermediate drier/colder episode has been 376 

proposed (Bracco et al., 2005a; 2005b; 2010; del Puerto, 2009) Furthermore, 377 

paleolimnological studies in the southern Pampa plains of Argentina suggested that it is 378 

fairly acceptable to assume that during the middle–late Holocene, the ratio of evaporation 379 

to precipitation was higher, thus leading to salinization, low water levels and possible 380 

desiccation of lakes (Stutz et al., 2012). In the northern region of the Pampa plain, a 381 

paleolimnological record indicates brackish to saline conditions with pulses of short-382 

periodic freshwater conditions for 4,840 – 1,200 cal. yr BP (Stutz et al., 2012), as well as 383 

dry conditions during most of the Holocene (Piovano et al., 2009). 384 

Stage 2 385 

This stage is recorded by sandy mud sediments entirely matching DAZ 2 (122 cm 386 

– 70 cm), which was dominated by the benthic species Staurosira construens with pulses 387 
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of increased abundance of Aulacoseira ambigua (Fig. 5). The age of the section is ca. 388 

1,415 cal. yr BP (117 cm) while the top corresponds to 390 cal yr BP (73 cm).  389 

High abundances of the fragilarioid species Staurosira construens (Stoermer, 390 

1993 in Fey et al., 2009), which are also in agreement with the disappearance of a 391 

thermophilic species A. granulata allowed us to infer cold conditions during this stage. 392 

Likewise, del Puerto et al. (2013) reported an increase of pooid and chloridoid phytolith 393 

morphotypes as well as an increase in the temperature:humidity (T:H) index, thus 394 

suggesting lower average temperature values, and either more arid or highly seasonal 395 

conditions. Above 90 cm depth, an allochthonous input from runoff processes due to 396 

increased rainfall was inferred based on changes in the relative abundance of S. 397 

construens, and A. ambigua. In addition, changes in the relative abundance of S. 398 

construens, and the increase in A. ambigua indicate a reduction in salinity to < 0.9 (Van 399 

Dam et al., 1994; Alcántara et al., 2002). At the same level, the coarser sediments, high 400 

content of sedimentary OM, high values of C/N ratio and a δ 13C can be attributed to 401 

higher external inputs. In agreement with this, high terrestrial inputs and lower mean 402 

annual temperatures were inferred by del Puerto et al. (2013) based on an increase in 403 

phytoliths of winter grasses. Considering the age of the uppermost section of this stage, 404 

it can be assigned to the Little Ice Age (LIA). Moreover, other paleolimnological records 405 

from Southern Uruguay (Bracco et al., 2011a, 2011b) indicate a climatic deterioration 406 

linked to the Little Ice Age (LIA) with estimated chronologies between 800 - 200 yr BP, 407 

thus suggesting semiarid climatic conditions with intervals of rainfall increase. In the 408 

central plain of Argentina, high salinities and low lake levels for the LIA were identified. 409 

Such conditions persisted until the early 1970s, after which extreme pulses of positive 410 

water balances were inferred (Villalba, 1994; Piovano et al., 2004; 2009; Córdoba et al., 411 

2014)  412 
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Stage 3 (after 390 cal yr BP) 413 

This stage matches entirely with DAZ 3 (50 cm – 70 cm) where a clear increase 414 

in the abundance of planktonic freshwater species Aulacoseira granulata and A. ambigua, 415 

together with higher C/N ratios, suggest an autochthonous contribution to the bulk 416 

organic matter (Fig. 4) with a diminished external input which is also supported by the 417 

finer grain sediment size. Both planktonic species are considered eutrophic freshwater 418 

taxa. High abundances of these taxa were observed during conditions of increasing 419 

eutrophic conditions in the Baltic Sea (Andrén, 1999) and in the Bothnian sea (Andrén et 420 

al., 2016). In the Southern argentinean pampas, A. granulata was the dominant species 421 

under high nutrient loading and turbid conditions in the lake Lonkoy, associated with 422 

higher water levels and low salinities (Hassan, 2013). Comparatively higher abundances 423 

of planktonic diatoms in the Peña Lagoon can be attributed to the onset of warmer 424 

conditions, as previously reported by del Puerto et al. (2013) based on the increase in 425 

small grass cells. The presence of A. ambigua and A. granulata species suggest higher 426 

water column trophic state conditions (Bicudo et al., 2016) during stage 3 compared to 427 

stage 2.  428 

The presence of sandy muds (part of LU II) and C3 terrestrial plant sources of 429 

sedimentary organic matter (Fig. 4), in addition to the presence of genus Aulacoseira, 430 

indicate fairly windy conditions during this stage. Aulacoseira has been used in many 431 

geographical regions as a proxy for strong wind stress, turbulent water, and nutrient 432 

upwelling conditions (Wang et al., 2008). Furthermore, del Puerto et al. (2013) observed 433 

variability in phytolith composition and inferred colder and drier conditions by 300 yr 434 

BP, which is in agreement with the aeolian sand input into the water body.  435 

Stage 4 436 
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The uppermost 50 cm of the sedimentary record that include DAZ 4 and DAZ 5, 437 

consisted of finer grain size and higher content of OM, thus reflecting higher primary 438 

productivity since 1962 AD to the present. High proportions of epiphytic species such as 439 

Cocconeis placentula, Eunotia spp, Epithemia adnata and Encyonema minutum suggest 440 

a eutrophic lenthic system with a well-developed littoral zone associated with macrophyte 441 

proliferation. Based on the increase in phytoliths of the morphotype Oryzoide a similar 442 

paleoenvironment was reported by del Puerto et al. (2013), where an increase in 443 

hydrophilic vegetation might have been triggered by warm and humid conditions. The 444 

higher trophic state can be inferred from the increasing upward trend in sedimentary OM 445 

and acidic waters, as suggested by the increase of Eunotia spp, which are characteristic 446 

of humic waters, where macrophyte degradation is commonly observed (Eloranta y 447 

Soinninen, 2002). Similar changes were reported in the top 10 cm of the 448 

paleolimnological record (attributed to the last century) of Lake Lonkoy in Argentina, 449 

which were ascribed to the agricultural impact (Hassan, 2013). Even though, in the 450 

surrounding area of Peña Lagoon there are no significant agricultural practices, there is a 451 

water treatment plant which throws the residuary sediment waste into the Peña lagoon 452 

thus leading the proliferation of macrophytes.  453 

FINAL REMARKS 454 

The diatom assemblages, organic matter composition and sedimentological 455 

proxies allowed to recognize four main environmental stages for the last 2,458 cal yr BP: 456 

(i) a shallow meso – eutrophic system with high abundances of aerophilic benthic species, 457 

with high inputs from the watershed, and organic matter signals of C3 plants. This stage 458 

could be ascribed to the Medieval Warm Period (ii) a system dominated by 459 

brackish/freshwater species, with high terrestrial inputs and low temperatures 460 

synchronous with the Little Ice Age, (iii) a system dominated by planktonic freshwater 461 
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species, high proportion of autochthonous  sedimentary organic matter during the Current 462 

Warm Period, and (iv) a eutrophic system with high proportions of epiphytic taxa, and 463 

the proliferation of macrophytes in the littoral zone due to recent human impacts.  464 

The results remarks, the importance of developing paleolimnological research at 465 

a regional scale in South East of South America in order to evaluate the timing and 466 

magnitude of climatic changes during the Holocene as well the most recent response of 467 

aquatic systems to human activities. 468 
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