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Abstract. This paper presents the MEMPower power model. MEM-
Power is a detailed empirical power model for GPU memory access. It
models the data dependent energy consumption as well as individual core
specific differences. We explain how the model was calibrated using spe-
cial micro benchmarks as well as a high-resolution power measurement
testbed. A novel technique to identify the number of memory channels
and the memory channel of a specific address is presented. Our results
show significant differences in the access energy of specific GPU cores,
while the access energy of the different memory channels from the same
GPU cores is almost identical. MEMPower is able to model these dif-
ferences and provide good predictions of the access energy for specific
memory accesses.
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1 Introduction

GPUs focus on applications with high computational requirements and substan-
tial parallelism that are insensitive to latency [1]. Large caches are ineffective
for GPUs due the execution of thousands of parallel threads [2]. These factors
cause GPUs and many GPU applications to require memory interfaces that
provide significantly higher DRAM bandwidth than what is required and pro-
vided for regular CPUs. GPUs usually achieve the high memory bandwidth by
using special graphics DRAM memories with lower capacity but wider and faster
interfaces, such as GDDR5. These high throughput memory interfaces consume
a significant amount of power. Modeling their power consumption accurately is
thus important for architectural GPU power simulators.

In our previous work, we have shown that data values influence the energy
consumption of GPU ALU operation significantly [3]. While executing the same
sequence of instructions the power consumption changed from 155 W to 257 W,
when the processed data values were changed. In this work we demonstrate that
energy cost of memory transaction also is influenced significantly by the data
values written to the DRAM or read from the DRAM. MEMPower provides
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predictions that consider the data values used in transaction as well as the
location of the transaction.

Most current discrete GPUs employ GDDR5 or GDDR5X memories [4,5].
Both employ pseudo open drain signaling (POD) [6]. In POD signaling, current
flows when transmitting a zero, while no current flow happens when transmit-
ting a one. To improve energy consumption as well as to limit the number of
simultaneously switching outputs, both types of memories use data bus inver-
sion (DBI) [7,8]. DBI encoding transmits data inverted, if that results in a lower
energy consumption and uses an extra signal line to allow the receiver to reverse
the inversion of the data, if required. POD signaling, together with DBI encod-
ing, is a source of data dependent energy consumption of the memory interface.

CMOS circuits consume dynamic power when their internal circuit nodes are
recharged to a different state. How much energy is consumed, depends on the
load capacitance of this node and the voltages. Bus wires providing long on-chip
distance routing are usually structures with high load capacitance. External off-
chip interfaces, also contain large loads in their drivers, receivers, wires as well
as parasitic package capacitances. How often each of the wires is recharged,
depends on the data and the encoding of the data transmitted over the wire.
The recharging of wires and other circuit nodes partly explains, why the energy
cost of memory transaction depends on the transmitted data.

Memory transactions are generated within the GPU cores, also called stream-
ing multiprocessors (SM). In the GTX580 GPU, the SMs are organized into
graphics processor clusters (GPCs) [9]. Each GPC contains 4 SMs. The GTX580
uses a full GF100 die with all four 4 SMs activated in each of the 4 GPCs.

This paper is structured as follows: We present related work in Sect. 2.
Section 3 describes our experimental setup including our microbenchmarks. The
following Sect. 4 shows how latency measurements can be used to discover the
mapping between memory addresses and memory channels. It also describes
the properties of the mapping and insights gained from latency measurements.
Section 5 introduces the design of the data dependent power model and evaluates
the accuracy of the model. Section 6 concludes the paper.

2 Related Work

GPUWattch [10] and GPUSimPow [11] do not take data values and locations
into account when predicting the energy cost of each memory transaction. MEM-
Power takes data values into account and thus bridges the gap between archi-
tectural simulators and slow but precise RTL power simulators.

Wattch [12] collects some activity factors related to data for some memories
and busses but does not model high performance GPUs and graphics DRAM.

Wong et al. used microbenchmarking to reveal various latency and cache
characteristics of the GT200 [13], but do not consider energy and memory chan-
nel mapping. Mei and Chu used microbenchmarks to analyze the structure of
the caches, shared memory as well as latency and throughput of the DRAM in
more recent NVidia GPUs [14].
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Table 1. GPU configuration in experimental evaluation.

Parameter Value Parameter Value

GPU cores (SMs) 16 Integer units/core 16

GPCs 4 Float units/core 32

Core clock 1.5 Ghz Memory clock 2 Ghz

CUDA 6.5 Driver 343.36

3 Experimental Setup

For our experiments, we used an NVidia GTX580 GPU with a full GF100 chip
using the Fermi architecture [9]. A short overview of its parameters is provided
in Table 1. This GPU was selected for two main reasons: 1. GPGPU-Sim cur-
rently does not support more recent GPU architectures. Energy was measured
using a GPU power measurement testbed that has been described in a previous
work [11]. 2. Our previous work resulted in a data-dependent power model for
the ALUs of this GPU [3]. This work adds the missing memory power model
to enable the creation of architectural power model of the GTX580 GPU, that
includes both ALU and memory data dependent power.

In order to measure the power consumption of memory transactions we
developed custom microbenchmarks. These microbenchmarks execute the tested
memory transaction millions of times. This allows us to measure the small energy
used per transaction. In order to measure only the data dependent energy of each
transaction we measure every transaction twice: Once with the test vector and
once with a baseline vector of all ones. Then the energy consumed by the base-
line vector is subtracted to calculate the energy difference caused by the specific
test vector. Both measurements are performed at nearly the same time to ensure
that the GPU temperature stays approximately constant in both measurements
to avoid errors. Without this step GPU temperature variations could result in
different amounts of static (leakage) power.

The microbenchmarks use inline PTX assembler to generate special load
and store instructions that mostly bypass the L2 cache (ld.global.cv.u32 and
st.wt.u32). Even with these instructions, using the nvprof profiler, we detected
that multiple accesses to the same address, issued at nearly the same time, are
still combined at the DRAM. Our microbenchmark was then redesigned to avoid
this issue by making sure that the different SMs are not generating accesses to
the same location at nearly the same time. The profiler was used to verify that
our microbenchmark generates the expected number of memory transactions.
Each measurement was performed 128 times and averaged. The order of the
measurements was randomized.
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4 Memory Layout

According to NVIDIA the GTX580 features 6 different memory channels [9].
CUDA allows us to allocate space in the GDDR5 but does not provide any
control over which memory channels are used for the allocation. We suspected
that the different memory channels might have different properties in terms of
energy consumption due to different PCB layout of the memory channels as well
as internal layout GF100 differences. To use all available memory bandwidth,
allocations are typically spread over all memory channels, so that all the capacity
can be used and all memory bandwidth can be utilized. However, when we want
to measure a specific memory channel we need to identify where a specific mem-
ory location is actually allocated. As no public API is available to query that
information, we hypothesized that the differences in physical distance between
the GPU cores and the memory channels would also result in slightly differ-
ent latencies when accessing the memory. CUDA offers a special %smid register
that can be used to identify the SM executing the code and a %clock register
that allows very fine-grained time measurements. We used these two features to
measure the memory latency of reading from each location from each SM. We
measure the latency of each location 32 times and averaged our measurements to
reduce measurement noise. For each location, this results in a 16 element latency
vector, where each element of the vector shows the average memory read latency
from that SM to the memory location. We detected that the latency to the same
memory location is indeed different from different SMs and different memory
locations show different latency patterns. We noticed that the latency pattern
stays constant for 256 consecutive naturally aligned bytes. This means the gran-
ularity of the mapping from addresses to memory channels is 256 bytes, and we
only need to perform our latency measurements once for each 256 byte block to
identify the location of the whole block.

As the memory latency is not completely deterministic but changes slightly,
e.g. due to background framebuffer accesses running in parallel to the measure-
ment, all the latency vectors are slightly different. We solved this issue using
k-means clustering [15]. We initially tried to map our latency vectors into six
clusters corresponding to the six memory controllers listed in NVIDIA’s descrip-
tions of the GF100 [9]. This, however, failed to provide a plausible mapping of
the memory locations, but mapping the latency vectors into twelve clusters was
successful.

When we assume twelve clusters, all latency vectors are located close to one
of the twelve centroids and the second closest centroid is much farther away. The
number of points that gets assigned to each cluster is also approximately equal.
When we access only locations mapped to one centroid, we achieve approxi-
mately 1/12 of the bandwidth achieved, when all locations from all channels are
used. This pattern also continues if we selected larger subsets of the centroids,
e.g. selecting locations from two clusters results in 1/6 of the bandwidth. The
nvprof profiler also provides additional hints that the identified mapping is cor-
rect: Many DRAM counters are provided twice, one counter for something called
subpartition 0 and another counter for subpartition 1. If we access only locations
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from a single cluster, we notice that only one of these two performance counters
is incremented significantly, while the other counter stays very close to zero. This
indicates all locations in each of the clusters are part of the same subpartition.

Lopes et al. list six L2 Cache banks with two slices each for GTX580 [16].
The GTX580 has a 384-bit wide memory interface. Six 64-bit wide channels
together with the 8n prefetch of GDDR5 would result in a fetch-granularity
of 64 bytes per burst. Memory access patterns that only access 32 consecutive
bytes and do not touch the next 32 bytes would always overfetch 32 bytes per
transaction and would result in an effective bandwidth of less than half the peak
bandwidth. However, our experiments showed better than expected performance
for 32 byte fetches. An additional hint at 32 byte transaction is also provided
by the NVIDIA profiler, where many DRAM related performance counters are
incremented by one per 32 bytes. This indicates that the GTX580 can fetch
32 bytes at a time, which is consistent with twelve 32-bit channels. From these
findings, we estimate that the GTX580 uses six memory controllers with two
subpartitions in each controller and one 32-bit wide channel per subpartition.

As twelve is not a power of two, the GTX580 cannot simply use a few address
bits to select the memory channel. Round-robin mapping of addresses to memory
channels is conceptually simple but would require a division of the addresses by
twelve.

Figure 1 provides a graphical representation of the recovered memory map-
ping of 1 MB block of memory. Each pixel represents a 256 byte block, each of
the 64 lines represents 64 × 256B = 16 kB. The memory mapping seems to be

Fig. 1. 1 MB memory block with recovered memory channel mapping, each pixel is
equivalent to a 256 byte block
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structured, but does not use any simple round robin scheme. With this mapping
twelve consecutive 256B blocks, on average, use 10.6 different memory channels.
A simple round robin scheme would likely result in some applications having
biased memory transaction patterns that favor some memory channels over oth-
ers, which would result in a performance reduction. The mapping is likely the
output of a simple hash function, that makes it unlikely for applications to use
a biased memory access patterns by chance. Sell describes a similar scheme used
by Xbox One X Scorpio Engine [17].

We also analyzed the latency vectors (Table 2) to reveal more information
about the internal structure of the GPU. We first notice that all SMs in the
same GPC have nearly the same latency pattern for the memory channels. The
first SM in each GPC seems to have the lowest latency. The other SMs are
approximately 2, 6 and 8 cycles slower. This additional latency within the GPC
does not depend on the memory channels addressed. It is also identical for all
four GPCs. This indicates an identical layout of all four GPCs and a shared
connection of all SMs of a GPC to the main interconnect. The latency of four
memory channels is lowest at GPC1. This is also true for GPC2 and GPC3.
There are no memory channels where GPC0 provides the lowest latency. We
suspect that is the result of a layout such as shown in Fig. 2. This also matches
well with the PCB layout of a GTX580 where DRAM chips are located on 3 of
the four sides of the GF100 and the PCIe interface can be found at the bottom.
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Fig. 2. GF100 organization

Table 2. DRAM latency.

GPC0 GPC1 GPC2 GPC3

Added latency vs. GPC1

3.6 - 3.6 7.5

3.9 - 3.8 7.5

7.4 - 3.7 11.2

11.3 - 5.7 15.1

Added latency vs. GPC2

3.6 3.8 - 0.0

3.8 3.8 - 0.1

9.4 3.8 - 5.8

11.2 2.0 - 7.6

Added latency vs. GPC3

4.0 7.6 4.0 -

3.9 7.7 3.9 -

3.9 9.5 5.9 -

3.8 9.6 5.7 -
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5 Data-Dependent Energy Consumption

As already described in the introduction, we expect two main reasons for data
dependent energy consumption: 1. Special signaling lines such as the GDDR5
DQ lines with additional energy consumption at a certain signal level. 2. State
changes of wires and other circuit nodes. Our model allows a fast and simple
evaluation, for this reason, we selected a simple linear model. Every memory
transaction is mapped to a small vector that describes the relevant properties
of the block. A dot product of this vector with a coefficient vector results in
the estimated energy consumption for this transaction. The coefficient vector is
calculated in a calibration process.

SM GPC L2
DRAM
Ctrl.

DRAM

? ? ? 32

Fig. 3. Memory datapath

The following properties of the block are used to estimate the energy con-
sumption. We model signal level related energy consumption by including the
population count of the block. The population count is the number of set bits.
We also need to estimate the amount of recharging of internal wires and circuitry
caused by the transaction. Memory transactions travel through several units and
various connections until they finally reach the DRAM. A simplified diagram is
shown in Fig. 3. We know that the transaction travels through a 32-bit wide
interface between DRAM and memory controller. Unless a reordering of bits is
performed, we know which bits will be transmitted through the same wire and
could cause switching activity on these wires, e.g: bits 0, 32, 64, ... are transmit-
ted on the same DQ line, bits 1, 33, 65, ... are transmitted on the next DQ line,
etc. While we know the width of the DRAM interface itself, the width of the
various internal interconnections is unknown. We assume the internal link width
are powers of two and are at least byte wide. The coefficients for all potential
link sizes are first added to the model. During the calibration of the model, the
best subset of coefficients is selected, and we indirectly gain knowledge about
the internal interconnections. Because GDDR5 memory can use DBI encoded
data, an extra version of each of the previously described coefficients is added
to our model. This second version assumes DBI encoded data.

A synthetic set of test vectors was generated to calibrate the model. The cal-
ibration test vectors are designed to span a wide range of combinations in terms
of toggles at various positions and in terms of population count. We measured
the real energy consumption of our test vectors. Initially, the model uses a larger
number of coefficients and some of these likely have no corresponding hardware
structure in the GPU. This causes a significant risk of overfitting the coeffi-
cients to our calibration measurements. We avoid this issue by using LASSO
regression as an alternative to regular least square fit [18]. Instead of fitting the
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calibration data as closely as possible LASSO also tries to reduce the number
of used coefficients and reduces their size. The hyperparameter α controls the
trade off between number and size of the coefficients and prediction error with
the calibration set.

In addition to the set of calibration vectors, we generated another set of test
vectors to validate our model. The validation vectors are generated to mimic real
application data. The vectors use various integer and floating-point data types, a
mixture of random distributions with different parameters was used to generate
realistic data. Real application data is often also highly correlated, some test
vectors used a Gaussian process to provide correlated data.

Figure 4 shows the prediction error at various values of α. α = 0.007 results
in the smallest error in the validation set for store transaction. Smaller values of
α overfit the calibration set, while larger values discard important coefficients.
Table 3 shows the coefficients, it should be noted that the coefficients were cal-
culated per 512 bitflips for numerical reasons. None of the DBI coefficients are
used, which indicates that the GPU is not using DBI encoding for stores. The
largest coefficient corresponds to a 32 byte wide link. Coefficients for 4 and 8

Fig. 4. Store access prediction accuracy vs. α

Table 3. 128B transaction coefficients

Store
Coefficient DBI Value (nJ)

Const No 7.631
Pop Cnt. No -3.060
Pop Cnt. Yes -0.551
Toggle 1 No 0.031
Toggle 1 Yes 0.036
Toggle 2 No 0.013
Toggle 2 Yes 0.025
Toggle 4 No 0.933
Toggle 4 Yes 0.084
Toggle 8 No 0.810
Toggle 8 Yes -0.035
Toggle 16 No 2.276
Toggle 16 Yes 0.042
Toggle 32 No 9.354
Toggle 32 Yes 0.156
Toggle 64 No 5.169
Toggle 64 Yes 0.132

Load
Coefficient DBI Value (nJ)

Const No 9.001
Pop Cnt. No -3.905
Pop Cnt. Yes -0.491
Toggle 1 No 0.009
Toggle 1 Yes -0.005
Toggle 2 No 0.011
Toggle 2 Yes -0.018
Toggle 4 No 1.676
Toggle 4 Yes 0.000
Toggle 8 No 0.435
Toggle 8 Yes -0.004
Toggle 16 No 1.021
Toggle 16 Yes 0.000
Toggle 32 No 7.446
Toggle 32 Yes 0.020
Toggle 64 No 9.919
Toggle 64 Yes 1.872
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Fig. 5. MEMPower energy prediction for store access

byte wide links are small. Narrow 1 or 2 byte wide links are not employed. The
large coefficient for a 64 byte wide link could be linked to SM internal power
consumption, as the SMs use 16 wide SIMD units with 32-bits per unit.

The heatmap in Fig. 5 shows the prediction accuracy of our model for 128
byte store transactions. If the model would offer perfect prediction all points
would be on the dashed white line. However, all our predictions are very close
to the line which indicate a great prediction accuracy. Our RMS error is 0.39 nJ
and the relative error is just 3.1%. Smaller transactions use different coefficients,
results are not shown here because of the limited space. But one interesting result
is that register values from disabled threads influence the energy consumption.
Likely these register values are still transmitted through parts of the interconnect
but marked as inactive. Taking data values into account instead of assuming a
constant average energy per transaction improves the prediction error from an
average error of 1.7 nJ to a error of just 0.39 nJ.

Figure 6 shows the prediction accuracy of our load model. In general, the
model achieves a good prediction accuracy of 9.1% but tends to underestimate
the energy required for cheaper transactions. Our load kernel achieves a signif-
icantly lower bandwidth than the store kernel as it will not send the next load
transaction before the last transaction returned, while stores will be pipelined.
The lower bandwidth results in a reduced signal to noise ratio of the measure-
ments. The load coefficients printed in Table 3 indicate that load transaction are
employing DBI encoding. Error improves from 2.3 nJ to 1.43 nJ.
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Fig. 6. MEMPower energy prediction for read access

Fig. 7. Normalized memory channel energy consumption
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We combined the microbenchmarks with the memory channel identification
technique from Sect. 4 to check for energy differences between different memory
channels and SMs. We tested the first SM from each GPC and used simplified
test vectors to check for changes of our most important coefficients. The nor-
malized results are shown in Fig. 7. We detected only small differences between
the different SMs, however, the blue coefficient for switching activity on a 4 byte
wide bus shows a large variance between different memory channels. Memory
transactions to channels 8 to 11 are significantly cheaper than memory transac-
tions on Channels 0 to 3 and 5 to 7. Memory transactions on Channels 3 and
4 are more expensive. As these results are consistent for all four GPCs, these
differences are likely the result of slightly different PCB layout of the different
memory channels instead of chip internal routing.

6 Conclusion

In this paper, we have presented the MEMPower power model for GPU memory
transactions. Our contributions can be summarized as follows:

– We presented a novel technique to identify in which memory channel a specific
memory address is located.

– Our microbenchmarks uncovered previously unknown architectural details of
GF100-based GPUs.

– We show that memory channels are not completely identical, but differ in
latency and energy consumption.

– The MEMPower model improves the energy predictions accuracy by on aver-
age 37.8% for loads compared to non-data dependent models and provides a
77.1% improvement on our validation set for stores.

At peak bandwidth data dependent changes to energy can influence the total
power consumption of the GTX580 GPU by more than 25 W or around 10% of
the total power. Future Work includes software and hardware techniques to
reduce the energy consumption. Common but expensive data patterns could be
recoded to patterns with reduced energy consumption. As memory transactions
are significantly more expensive than simple ALU operations, even software solu-
tions could be beneficial. Programmer control over data allocation could allow
rarely used data to be placed in memory channels with costlier memory access
and often used data in memory channels with reduced energy consumption.
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