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Abstract 

BACKGROUND: The impact of concentration gradients in large industrial-scale bioreactors 

on microbial physiology can be studied in scale-down bioreactors. However,  scale-down 

systems pose several challenges in construction, operation and footprint. Therefore, it is 

challenging to implement them in emerging technologies for bioprocess development, 

such as in high throughput cultivation platforms. In this study, a mechanistic model of a 

two-compartment scale-down bioreactor is developed. Simulations from this model are 

then used as bases for a pulse-based scale-down bioreactor suitable for application in 

parallel cultivation systems.  

RESULTS: As an application, the pulse-based system model was used to study the 

misincorporation of non-canonical branched-chain amino acids into recombinant pre-

proinsulin expressed in Escherichia coli, as a response to oscillations in glucose and 

dissolved oxygen concentrations. The results show significant accumulation of overflow 

metabolites, up to 18.3 % loss in product yield and up to 10 fold accumulation of the non-

canonical amino acids norvaline and norleucine in the product in the pulse-based 

cultivation, compared to a reference cultivation.  

CONCLUSIONS: Our results indicate that the combination of a pulse-based scale-down 

approach with mechanistic models is a very suitable method to test strain robustness and 

physiological constraints at the early stages of bioprocess development.  
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INTRODUCTION 

Inadequate mixing and the associated concentration gradients in large-scale microbial 

bioprocesses have significant impacts on both cell physiology and recombinant protein 

quality. In these processes, cells are constantly exposed to oscillating concentrations of 

substrate, metabolites, dissolved oxygen and carbon dioxide. Hence, the study of 

performance under conditions similar to industrial scale process is essential to increase 

scale-up reliability and speed up process development. 1,2 The effects of oscillating 

cultivation conditions on microbial physiology and product yields have been studied in the 

laboratory by applying scale-down techniques, either in the form of scale-down 

bioreactors 3–6 or as pulse-based methods. 7–10  

A scale-down system is a laboratory scale bioreactor designed to mimic the environmental 

conditions in large-scale bioreactors. In multi-compartment scale-down bioreactors, a 

perfectly mixed stirred tank reactor (STR) is connected to one or more STRs 11 or to one or 

more plug flow reactors (PFR)  11,12, through which the culture is circulated at a rate 

equivalent to a specified residence time (Figure 1A). A stress inducing agent (e.g. highly 

concentrated substrate, base or acid) is injected into one of the sections, which is 

eventually mixed with the bulk of the culture in the other sections. 13 In a pulsing system, 

the stress inducer is injected into the bioreactor intermittently, at specified intervals 7 or 

randomly 14. These operation mechanisms produce zones similar to feeding and starvation 

zones in large-scale bioreactors and result in periodic exposure of the culture to varying 

stresses. 15 Scale-down techniques have been applied for the successful study of the impact 

of large-scale gradients for most industrially relevant organisms, with significant 

differences in process behaviour compared to standard small scale cultivations. 1,12,16,17  

The most recent advances in the development of scale-down concepts include the coupling 

of computational fluid dynamics (CFD) models of bioreactors with cellular growth kinetics 

(cellular reaction dynamics, CRD) 18–21 and the mechanistic description of population 

groups in heterogeneous environments. 22,23 The CFD-CRD models have been used to 

define specific stress exposure times that are assumed to occur at the larger scale, based 

on mixing characteristics (CFD simulations) and the dynamics of cellular responses 18. 

However, the evaluation of the detailed physiological adaptation to oscillations and their 

incorporation into CRD models can be an enormous amount of work, as is obvious from 

the works of Vanrolleghem and Canelas. 24,25 In our opinion, the development of such 

models and especially their parametrisation could benefit from the parallelization of scale-

down systems.  Although some authors have applied pulse-based feeding profiles in 

parallel mini-bioreactor systems 26, mostly due to the difficulty that continuous feeding 
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was technically not possible, real scale-down approaches have not been published in 

parallel systems, to our knowledge. 

 The objective of this work was to develop a mechanistic model of a typical pulse-based 

scale-down bioreactor, suitable for application in high throughput parallel cultivation 

platforms. The mechanistic model of the pulse-based system was developed from 

simulations of a two-compartment scale-down bioreactor (2CR), which had been used in 

many studies before. Thus, the principles of two different scale-down concepts (multi-

compartment and pulse-based systems) were combined in a mechanistic model to flexibly 

design the exposure time of the culture to either high or low glucose and oxygen 

concentrations. The pulse-based system was used to study the influence of model-derived 

glucose and dissolved oxygen perturbations on the misincorporation of non-canonical 

amino acids into pre-proinsulin expressed in E. coli. The mechanistic modelling concept 

has the potential to facilitate the incorporation of scale-down studies into experimental 

set-ups that would already consider scale-up effects at the early stages of bioprocess 

development. The big benefit is that cellular reaction models which consider the response 

to oscillations can be developed and parametrised with a much lower effort. Additionally, 

the run of such experiments in efficient parallel robotic experimental facilities would 

allow for a rapid phenotyping of large number of candidates under process relevant 

conditions in short times. 26–29  

 

 

 

MATERIALS AND METHODS 

 

Mechanistic Model of Two-compartment Scale-down Bioreactor 

The 2CR system that is modelled in this study has been thoroughly described by 

Junne et al. 30 It consists of a 12 L (working volume) stirred tank bioreactor 

connected to a 1.2 L plug flow reactor.  Using the ratio of the volumes of the 

PFR:STR and the feed and recycling rates, it is estimated that a cell, on average, 

spends about 5 min in the STR before going through one cycle in the PFR, if the 

residence time in the PFR is set to 30 seconds. 30 The mathematical model used to 

describe the macro-kinetic dynamics of the culture has been presented elsewhere, 

31  but a summarized version is presented in the Appendix.  This model is a 

nonlinear Ordinary Differential Equation (ODE) system given as: 
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where   [       ]    is the time,  ( )       are dependent state variables,  ( )      

are the time-varying inputs or experimental design variables,       the unknown 

parameter vector, and initial conditions are given by   . The vector  ( )      are the 

predicted response variables whose elements are defined by the selection matrix 

        . The states considered are the biomass concentration (X, g L-1), glucose as 

substrate concentration (S, g L-1), extracellular acetate concentration (A, g L-1), and 

dissolved oxygen tension (DOT in % of saturation). 

Some important assumptions have to be made to achieve the required level of 

simplification in the model of the two-compartment reactor, which have to be considered: 

I. There is no cell history (the cultivation can be described by a time invariant 

equation system) 

II. The metabolic activity under anaerobic conditions can be tracked by changes in 

parameter values of the model 

III. The STR is ideally mixed so that there is no distribution in the residence time of 

the microorganisms 

IV. the PFR has no concentration gradients in radial direction, and convection and 

diffusion effects can be neglected. 

The 2CR model is complicated by the fact that the plug flow reactor never reaches steady 

state because of the continuous recycling of broth from the STR and the exponential feed 

injected into the PFR section (Figure 1A). To formulate the mechanistic model of the 2CR 

system, the transient solution of the Partial Differential Equation (PDE) system was solved 

by finite differences with discretization in space (dividing the 3.6 m long PFR into 100 tiny 

reactors), and solving the biomass, glucose, acetate and dissolved oxygen (DOT) profiles of 

the E. coli model 31 over each finite element. The cumulative time of the transient solution 

is equal to the desired residence time in the PFR. By varying the flow rate of the recycling 

stream in the simulations, different residence times, and therefore different biomass and 

glucose profiles can be achieved in the PFR (Figure 2). This can then be used to judge how 

long the culture has been exposed to the stressing agent (e.g. glucose), as demonstrated  in 
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the simulations of a single cell trajectory (Figure 1 C) for a cell that moves through both 

the stirred tank and plug flow reactors. The trajectory of an average cell is calculated as 

   ( )    ( )         (1) 

where  ( ) represents the velocity of the cell (m h-1),  ( ) represents the feed flow rate 

(m3 h-1), and   the cross-sectional area of the PFR. In order to facilitate the computation of 

the trajectory including the volume change in the STR due to feeding, the geometry of the 

2CR is transformed into a toroid with an ideally mixed flow (Figure 1C, top). The volume 

ratios of STR:PFR and feeding points in the actual 2CR  and the toroidal shape are equal. 

The varying glucose concentrations a traversing cell is exposed to between the STR and 

PFR are equivalent to intermittent glucose pulses (Figure 1C, bottom). Therefore, to 

transfer these characteristics to a pure glucose pulsing scheme, simulations were done to 

determine the , µset and feed concentrations at which there would be a glucose carry over 

from the PFR into the STR. This would ensure the maximum exposure time to the stress in 

the pulse-based scale-down system. 

 

Figure 1 (A) Schematic diagram of two-compartment bioreactor consisting of a stirred 

tank reactor and a plug-flow reactor. (B) Profiles of dissolved oxygen, biomass, glucose 

and acetate after running the 2CR for 10 hours  with feed injection into the PFR (C ) top: 

Cascade configuration of 2CR and toroidal conversion for calculation of cell trajectories;  

middle: Gradient profiles of glucose showing the trajectory of a single cell and the glucose 

concentrations it encounters as it circulates between the STR and PFR; bottom: pulse 

representation of glucose gradients experienced by one cell (Glucose in feed = 250 g L-1, 
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biomass in STR = 1.85 g L-1 dry weight—Matlab code and full details of simulation are 

available in the Supplementary Material). 

 

 

Recycling Rate in the PFR 

The recycling rate is determined by the flow rate set on the recycling pump (Figure 1 A). 

The recycling rate of the broth determines three important factors of the 2CR: (i) the 

duration of the stress, i.e. time in which the culture is exposed to excess glucose 

environments, (ii) the magnitude of the stress, i.e. the strength of concentration gradients 

and (iii) the number of times a particular cell goes through a cycle in the PFR, which is the 

frequency of exposure to the stress. When the exposure time is in the same or a few orders 

of magnitude as the characteristic growth time (1/),  there is a marked influence of the 

stress on both physiological and metabolic, as well as transcriptional processes in the cell 

8,17,32. Therefore, it is important to determine, in the simulations of the 2CR, how the 

recycling rate affects both the frequency and magnitude of glucose gradients that the cells 

are exposed to. These profiles are shown in Figure 2. At low recycling rates, the cells spend 

a longer time in the PFR and are therefore exposed to a stronger pulse (higher magnitude, 

low frequency). At higher recycling rate, the pulse size is smaller, but the cell passes 

through the vicinity of the stress many times within a given period. 
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Figure 2 Effect of recycling rate on (A) pulse frequency and (B) pulse size.  High recycling 

rates result in high frequency of exposure, but at lower gradient sizes, and vice versa. 

 

Strain and Fermentation Conditions 

All experiments were performed with E. coli W3110M (lacIq) pSW3 (ampr) 33 expressing a 

recombinant mini-proinsulin under a tac-promoter (inducible with IPTG) (kindly 

provided by Sanofi-Aventis Deutschland GmbH) in a 3.7 L bioreactor (KLF 2000, 

Bioengineering AG, Wald, Switzerland).  As pre-culture, 25 ml of bioreactor medium was 

inoculated with stock cultures of this strain in a 125 ml Erlenmeyer flask and incubated at 

37 °C, 250 rpm in an orbital shaker (Adolf Kühner AG, Birsfelden, Switzerland). After 12 

hours, appropriate volumes of the pre-culture were used to inoculate the bioreactor to an 

OD600 of 0.01.  The bioreactor medium consisted of mineral salt medium, containing (per 
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L): 2 g Na2SO4, 2.468 g (NH4)2SO4, 0.5 g NH4Cl, 14.6 g K2HPO4, 3.6 g NaH2PO4 × 2H2O, 1 g 

(NH4)2-H-citrate and 1 ml antifoam (Antifoam 204, Sigma). Before inoculation, the 

medium was supplemented with 2 ml L-1 trace elements solution, 2 ml L-1 MgSO4 solution 

(1.0 M) and 1 ml L-1 ampicillin (100 mg L-1). The trace element solution comprised (per L): 

0.5 g CaCl2 × 2H2O, 0.18 g ZnSO4 × 7H2O, 0.1 g MnSO4 × H2O, 20.1 g Na-EDTA, 16.7g FeCl3 × 

6H2O, 0.16 g CuSO4 × 5H2O, 0.18 g CoCl2 × 6H2O.  In all bioreactor cultivations, the initial 

glucose concentration for the batch phase was 5 g L-1. The temperature was maintained at 

37 C and the pH was controlled at 7 by automatic titration with 25% NH4OH solution.  

 

Reference Cultivation 

At the end of the batch phase, an exponential feeding mechanism was implemented in the 

reference cultivation according to Equation 1,  

 

   ( )  
    

   ⁄   
(  )    (    )      (2) 

where F represents the feed flow rate (L h-1), Si (g L-1) the concentration of glucose in the 

feed, Yx/s the biomass yield coefficient (g g-1), set the set-point of the specific growth rate 

(h-1) and tb the time at which the batch phase ended. After three hours of exponential 

feeding, recombinant protein production was induced by a pulse addition of IPTG to a final 

concentration of 1 mM. The feed was then switched to a constant feed, where the constant 

flow rate was equal to the last flow rate reached in the exponential feeding phase. The feed 

solution contained 8 ml L-1 trace elements solution, mineral salts (same concentration as 

in batch phase) and 400 g L-1 glucose.  

A mass balance on gases across the entry and exit points on the STR was used to calculate 

the specific oxygen consumption rate (qO2) and specific carbon dioxide evolution rate 

(qCO2) as  

      (     {        (          )})      (3) 

       ({         (          )}       )     (4) 

where VG represents the gassing rate (mol L-1 h-1) and X the biomass concentration (g L-1). 

The concentration of all gases in Equations 2 and 3 are in volumetric fractions (%v v-1) 

and were determined by measuring the composition of the exhaust gas using a BlueSens 

off-gas analyser (BlueSens Gas Sensor GmbH, Herten, Germany). The biomass 

concentration for each off-gas measuring point was determined by fitting a biomass 

profile to values of hourly samples, and interpolating at off-gas measuring points. The 

respiratory quotient was calculated as           ⁄ . 
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Figure 3 Schematic diagram of (A) the reference cultivation showing the constant 

agitation rate (lower curve) and the smooth glucose feed in two phases: exponential feed 

followed by constant feeding (upper curve), (B) the pulse-based cultivation showing the 

intermittent supply of glucose feed as pulses in both the exponential and constant feeding 

phases. The glucose pulses coincide with rpm shifts to achieve the desired gradients; (C) 

overall cultivation scheme. 

 

Pulse-based Cultivation 

In order to mimic the oscillations in DOT and glucose concentrations of large 

industrial-scale bioreactors in the pulse-based system, the calculated exponential feed 

(Equation 1) at the end of the batch phase was divided into discrete pulses of 1 min 

feeding followed by 9 min of glucose limitation as determined from the 2CR simulations. 

The amount of glucose fed within the 1 min was equal to that which would have been fed 

in a continuous exponential feed for 10 min (1+9), to maintain the set point of the specific 

growth rate at 0.25 h-1. During the 1 min feeding period, the agitation rate was manually 
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decreased to 400 rpm, (from 800 rpm in the batch phase). In the glucose-limiting phase, it 

was increased to 1000 rpm (Figure 3). These cyclic shifts resulted in recurring oxygen-rich 

and oxygen-deficient conditions, which, together with the glucose pulses, resulted in 

approximate oscillations in concentration as observed in the 2CR system and in 

large-scale. The feed switching was done manually by turning the feed pump on and off, as 

required. The kinetics of glucose consumption and acetate production during glucose 

pulsing were followed by rapidly sampling through a 0.22 µm filter at the point of glucose 

addition (0 seconds), 1 min, 3 min and 6 min after each pulse.  A total of 3 pulses were 

sampled: two in the exponential feeding phase and one after protein induction. The effect 

of environmental oscillations on overall growth kinetics, cell mass and the accumulation of 

metabolites and non-canonical branched chain amino acids in the recombinant protein 

product were assessed by analysing hourly samples. The Respiratory Quotient (RQ) was 

calculated for the pulsed-based cultivation as in the reference cultivation. Recombinant 

protein production was induced by adding IPTG to the same concentration as in the 

reference cultivation. 

 

Analyses 

Cell growth was monitored in both the reference and pulse-based cultivations by 

measuring the optical density of samples in a UV-vis spectrophotometer (Novaspec III, 

Amersham Biosciences, Amersham, UK) in triplicate, at a wavelength of 600 nm (OD600). 

The dry weight was calculated from the OD600 values, using a conversion factor of 0.37 g L-

1 dry weight per OD600, which was previously established for this strain using the same 

spectrophotometer. Supernatant samples for analysis of residual glucose and acetate were 

taken from the bioreactor through a 0.22 µm membrane filter at the sampling port and 

stored at -20 °C for further analysis. The concentration of organic acids and glucose were 

measured with an Agilent 1200 HPLC system (Waldbronn, Germany), equipped with a 

HyperRezTM XP Carbohydrate H+ column (300 × 7.7 mm, 8 µm) (Fisher Scientific, 

Schwerte, Germany) and a refractive index detector, using 5 mM H2SO4 as the eluent at a 

flow rate of 0.5 ml min-1. The column temperature was set to 65 °C. 

For analysis of the recombinant protein, samples were taken from the bioreactor every 

hour after protein induction. These samples were normalized to OD600 = 15 (in 1 ml) and 

centrifuged at 16000 ×g for 5 min in pre-weighed Eppendorf tubes. The cell pellet was 

weighed and stored at 4 C for inclusion body (IB) purification. The inclusion body 

separation was carried out with Bugbuster® protein extraction kit (Novagen, Darmstadt, 

Germany) as follows. The cell pellets from the normalized samples were resuspended in 
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Bugbuster® reagent and incubated for 20 min at room temperature, taking 5 ml of reagent 

per gram of wet cell paste. To reduce the viscosity and improve inclusion body extraction, 

25 units of benzonase and 1000 units of rLysozymeTM (all from Merck KGaA, Darmstadt, 

Germany) were added, for each millilitre of Bugbuster reagent used. After the incubation 

period, the samples were centrifuged and the pellets washed 3 times in 10× diluted 

Bugbuster reagent to obtain the purified inclusion bodies. The mass of inclusion bodies 

per mass of biomass was used as quantitative measure of the inclusion body fraction. All 

the purified inclusion bodies obtained from Bugbuster method and 125 µL of internal 

standard (0.225 mM α-aminobutyric acid) were hydrolysed in 1 ml of 6 M HCl at 80 °C for 

24 h. The hydrolysed samples were then dried in a speed vacuum concentrator 

(Bachhofer, Reutlingen, Germany), followed by derivatization of the solid residue at  60 °C 

for 60 min.  The derivatization reagents were 50 µL N-(tert-butyldimethylsilyl)-N-methyl-

trifluoroacetamide (MTBSTFA), 50 µL acetonitrile and 5 µL anhydrous 1-butanol (all from 

Merck KGaA, Darmstadt, Germany). The derivatized samples were analysed on an Agilent 

5975C GC-MS system equipped with a DB-5MS column (30 m × 250 µm, 0.25 µM) and a 

quadrupole detector, using helium as the carrier gas. All amino acid concentrations were 

normalized to the mass of inclusion bodies that was hydrolysed. 

 

RESULTS 

 

Model Fitting of the Pulse-Based System 

The dynamic model which was used to derive the glucose pulses was fitted to the pulse 

feeding experiment to allow a better understanding of growth kinetics under oscillating 

environmental conditions. The model parameters were estimated by solving the 

optimization problem 

 ̂          (   )      (5) 

where the nonlinear least-square objective function  (   ) was calculated as  

 (   )  
 

 
( (   )    )  ( (   )    )  (6) 

In equation 6,  (   ) represents the model predictions whereas    represents the 

experimental data.  Both the exponential feeding and constant feeding phases of the pulse-

based cultivation and the corresponding model fitting are shown in Figure 4, with 

dynamic response of the state variables to oscillating glucose input. The recently 

described mechanistic model 31 was solved in a pulsing manner, with the addition of 

residence times of the PFR to dictate the frequency of the pulses. The model fitting 
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resulted in a set of parameter values that sufficiently describe growth under glucose and 

dissolved oxygen stresses. The model solution fits the experimental data to acceptable 

accuracy, as given by the relative standard deviations (<20 %) of the estimated 

parameters (Table 1). In further applications, the estimated model parameters can be used 

to calculate various pulse sizes at varying frequencies, as a means of studying gradient 

effects under different process conditions. 

 

 

Figure 4 Model fitting of fed-batch phase of the pulse-based scale down cultivation 

(experimental data  , model —  ). The dashed line represents the time of induction (3h). 

The Matlab code for the model fitting is available as a Supplementary Material.  

 

Growth and Metabolic Behaviour in Pulse-based and Reference Cultivations 

Although the pulse-based experiment and the reference cultivation had similar biomass 

concentrations at the end of their respective batch phases, they showed different growth 

patterns during the exponential feeding phase, with the reference cultivation reaching 15 

% less biomass than the pulse cultivation at the end of this phase. The specific growth rate 

 achieved in the exponential feeding phase in the pulse-based cultivation was slightly 

lower (average of 0.23 h-1) than in the reference cultivation (0.24 h-1), compared to the set 

point of µset = 0.25 h-1. Upon changing from exponential feed to constant feed with protein 

induction, the specific growth rates declined (Figure 5C) with the decreasing supply of 

glucose per gram of biomass. However, the pulse-based culture sustained some level of 
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growth (biomass profile, Figure 5A), leading to a more gentle, exponential decline in , 

compared to a sharper decline in  for the reference cultivation. 

 

Table 1. Results of model fitting for pulse-based scale-down experiments 

Par Unit Initial* 

guess 

Estimate Standard Dev 95% CI 

    ̂   % LB UB 

Kap g g-1 h-1 0.438 0.349 0.029 8.30 0.340 0.3570 

Ksa g L-1 0.016 0.020 0.003 15.0 0.019 0.0210 

Ks g L-1 0.035 0.019 0.003 15.7 0.0182 0.0198 

Kis g L-1 1.111 14.26 1.338 9.40 13.890 14.629 

Kip g g-1 1.562 0.870 0.108 12.4 0.835 0.9051 

pAmax g g-1 h-1 0.203 0.326 0.041 12.6 0.3150 0.3274 

qAmax g g-1 h-1 0.106 0.250 0.026 10.1 0.2428 0.2572 

qm g g-1 h-1 0.013 0.040 0.001 2.40 0.0397 0.0403 

qSmax g g-1 h-1 0.635 0.519 0.025 4.80 0.5121 0.5259 

Yas g g-1 0.827 0.970 0.203 20.9 0.9039 0.9999 

Yoa g g-1 1.100 1.199 0.101 8.42 1.1710 1.2270 

Yxa g g-1 0.611 0.501 0.091 18.2 0.4760 0.5260 

Yem g g-1 0.546 0.481 0.134 20.8 0.4440 0.5187 

Yos g g-1 1.100 1.079 0.073 6.80 1.0530 1.0930 

Yxsof g g-1 0.206 0.351 0.041 11.7 0.3399 0.3620 

Ypx g g-1 0.250 0.532 0.039 7.40 0.5211 0.5434 

*initial parameter guesses taken from literature 26,31 

 

In the pulse-based cultivation, all the glucose in a pulse was consumed before the end of 

the 10 min interval, indicated by a sharp increase in DOT, 60 to 80 seconds before the next 

glucose pulse (Figure 4) during the constant feeding phase. Considering that this pulse 

contained the same amount of glucose as in ten min of continuous feed in the reference 

cultivation, the pulse-based cultivation seemed to have a higher specific glucose uptake 

rate than in the reference cultivation. As the major product of overflow metabolism in E. 

coli, acetate accumulated to higher levels in the pulse-based system than in the reference 

cultivation. After the change to constant feeding, acetate was immediately re-assimilated 
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in the reference cultivation, but acetate re-assimilation in the pulse-based system was 

delayed up to 1 hour after protein induction (Figure 5B).  

The RQ remained constant at around 1.2 for the reference cultivation as shown in Figure 

4D. The RQ for the pulse cultivation shows the periodic availability and depletion of 

glucose in response to the pulses, with an average value (middle line, Figure 5D) that 

declined continuously in the course of the cultivation from 1.48 to 1.05 at the end. In the 

analysis of E. coli cultures growing on glucose, the RQ value is unaffected by overflow 

metabolism due to the fact that the substrate (glucose), the major overflow product 

(acetate) and the biomass all have the same degree of reduction of approximately 4. 14,34 

Therefore, the RQ value is not as informative in E. coli as it is in cultivations of 

Saccharomyces cerevisiae where it can indicate important overflow metabolic states due to 

differences between the degree of reduction of glucose and that of ethanol. However, in 

the pulse-based cultivation, the intermittent exposure of the culture to anaerobic 

conditions can lead to the formation of formate and lactate which should have an 

influence on the cumulative degree of reduction of the metabolites. Therefore, the 

metabolic behaviour showed a slightly higher average RQ value for the reference 

cultivation than in the pulse-based cultivation during recombinant protein production.  

 

Inclusion Body Formation and Recombinant Product Quality 

Prior to protein induction by IPTG in the pulse-based cultivation, there was already some 

accumulation of inclusion bodies in the cells (Figure 6A). This seemingly leaky expression, 

which was not observed in the reference cultivation can be attributed to the partial de-

repression of the tac promoter by the intermittent glucose limitation 35 between pulses in 

the exponential feeding phase. As shown in Figure 6A, the pulse based scale-down 

cultivation condition led to a lower amount of recombinant pre-proinsulin per gram of 

biomass than in the reference cultivation. The final product yield in the pulse-based 

cultivation was 18 % lower than in the reference cultivation.  

The quality of the recombinant product, as used in this text refers to the concentration of 

non-conventional amino acids (norvaline, norleucine and beta-methyl-norleucine) present 

in the purified product. These amino acids replace their corresponding canonical forms 

(leucine, methionine and isoleucine, respectively) in the product under stressful 

cultivation conditions 36 and thus reduce the efficacy of therapeutic proteins produced 

recombinantly in E. coli. The results of the scale-down studies show a steady increase in 

the concentration of non-canonical amino acids in the product for the pulse-based 
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cultivation, which is about 10-fold higher than their concentrations in the reference 

cultivation.  

 

 

 

Figure 5 (Left) Growth profiles and metabolic activity of E. coli during the fed-batch phase 

of cultivations under pulse-based () and reference cultivation () methods. (A) Biomass 

concentration, (B) Extracellular acetate concentration, (C) Respiratory quotient and (D) 

Specific growth rate during the exponential and constant feed fed-batch phases. The 

dashed line indicates the point of induction by IPTG. Error bars show the standard 

deviation. Figure 6 (Right) Product formation profile and the concentration of non-

canonical amino acids in the purified inclusion bodies from the pulse-based cultivation () 

and the reference cultivation (). 
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DISCUSSION  

Physiological Response of E. coli to Glucose and Oxygen Pulses 

Scale-down bioreactors provide an effective method to investigate the challenges of 

bioprocess scale-up. Their ability to mimic the environmental heterogeneity in large-scale 

bioreactors provides a possibility to look into the dynamics of industrial cultivations, and 

to study the effects of such dynamics on microbial physiology and process efficiency. The 

model-based pulsing scheme implemented in the current study as a scale-down 

methodology resulted in significant differences in both the metabolic behaviour and 

recombinant protein quality, compared to the reference cultivation. Earlier studies report 

that E. coli cells in oscillating environmental conditions show a higher cell viability in 

comparison to laboratory-scale cultivations. 5,15 This observation was also confirmed in 

the current study as seen in the more gentle decline of specific growth rate for the scale-

down cultivation (Figure 5C). This higher viability can be attributed to the higher specific 

uptake capacities under oscillating conditions, as observed in the glucose uptake rates in 

the current study and also discussed by Lin et al. 37 The loss of product yield in 

heterogeneous conditions is a common occurrence during bioprocess scale-up. 38,39 The 

results of the scale-down cultivation indicate a significant loss in product yield in the 

presence of heterogeneous environmental conditions. This lower product accumulation 

rate (Figure 5B) may be due to the loss of valuable carbon source through overflow 

metabolism and the associated low ATP generation under stressful cultivation conditions. 

10 These factors lead to a lower biomass accumulation rate and consequently, a lower 

specific product formation rate in large-scale bioreactors, as demonstrated in the scale-

down cultivation in the present study. 

There was also a significant accumulation of non-canonical amino acids in the purified 

inclusion bodies in the pulse-based cultivation.  According to recent reviews, 36,40 these 

wrong amino acids can arise from metabolic by-products originating from environmental 

stresses in E. coli cultivation. The results of Soini et al. (2008) also directly link 

heterogeneous fermentation conditions to norvaline accumulation in E. coli W3110. 41 

Thus, the higher accumulation of these non-canonical amino acids in the pulse-based 

cultivation shows the ability of this cultivation set-up to reproduce environmental stresses 

that trigger unfavourable responses in E. coli, under scale-down conditions.  

 

Model Application in Scale-down Bioreactor Systems 

A major outcome of the current study is the dynamic description of concentration 

gradients in a mechanistic framework, that allows the estimation of physiological 
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parameters under oscillating environmental conditions. These parameters, when 

estimated in high throughput platforms under scale-down conditions can be used for CFD-

CRD applications, 21,42 as well as for screening large libraries under real cultivation 

conditions. The application of glucose pulses for physiological studies in fermentation is 

not a new concept. 7,14 However, in most of the previous studies the pulses applied were 

randomly determined and not based on any physiological basis. Here, an exponential feed 

profile to maintain a certain specific growth rate in the fed-batch phase was calculated, 

then a mechanistic model (see pseudocode in Supplementary material) was used to 

discretize this feed into pulses according to gradient profiles simulated in the 2CR. The 

duration, frequency and magnitude of concentration gradients in an actual large-scale 

bioreactor are all dynamic parameters. 15,43 In effect, the exposure time in the scale-down 

bioreactor should be a flexible parameter that can be changed easily, to suit a specific 

large-scale bioreactor.  44 In the current contribution, this flexibility of scale-down design 

is offered by the modelling framework of the pulse-based system. Thus, data for the 

inclusion of variable exposure times to study response kinetics of specific zones (organism 

lifelines) in CFD-CRD models  can be generated easily in such an experimental set-up. 

Although the pulse-based feed leads to a synchronised response of the culture to the 

stress, advanced process analytical technology (PAT) tools such as online in-situ 

microscopy 45  could be used to monitor the population heterogeneity.  

 

CONCLUSIONS 

We have demonstrated in this study that physiological behaviour of cells under 

environmental oscillations can be described fully with mechanistic models. The model can 

then be used to design simple scale-down experimental setups, which is a step in 

simplifying scale-down bioreactor systems for application in parallelization. Such 

experimental set-ups could be used to study the effects of scale-up stresses on the 

efficiency of bioprocesses at the early stages of process development. As demonstrated by 

Cruz et al. 26, model-based automation can be used to achieve faster bioprocess 

characterization. Therefore, incorporating scale-up effects into such platforms through 

modelling provides further opportunities to facilitate bioprocess development with scale-

up in mind. 
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Appendix 

Macro-kinetic model of Escherichia coli 

The mechanistic model of E. coli used in this publication is based on the physiological use 

of glucose, in a glucose partitioning framework as well as the overflow of glucose to 

acetate through the acetate cycling concept. The two physiological concepts, as given by 

Neubauer et al. 2000 9 and Lin et al., 37 and basic growth concepts such as Monod kinetics 

and acetate inhibition are used to derive simple algebraic equations that describe 

intracellular pathways of glucose and oxygen usage. Details on the derivation of the model 

and its subsequent usage in E. coli processes can be found in the literature. 26,31,37 The 

algebraic equations that describe these intracellular activities are as follows: 
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The algebraic equations are coupled with mass balances for a fed-batch process to yield 

the full ODE system. The ODE system for the E. coli mechanistic model is derived from 

mass balances on biomass (X), glucose (substrate, S), acetate (A) and dissolved oxygen 

measured as the percentage saturation at the operating conditions in the bioreactor 

(DOT). 
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The model (equations A.1—A.14) was compiled as a single mathematical function 

(e_colimodel) and implemented in Matlab® R2016a. The model was integrated with 

ode15s solver and parameter estimation was done with the fmincon optimization routine 

in Matlab. 

 

 

Code for fitting the pulse-based Cultivation 

The mechanistic model of E. coli was solved in a pulsing manner to fit the data of the pulse-

based scale-down cultivation. The pulsing scheme was determined by two time spans: tsp 
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and tswof, which are respectively the times of glucose feed and glucose limitation. For each 

pulse cycle (tse = tsp + tswof), the exponential feed profile was integrated to find the volume 

of feed added within the time tsp. The details of the calculations are given in the 

pseudocode in Algorithm A.1. 
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Notation 

Kap     = Monod-type saturation constant, intracellular acetate prod. (g g-1 h-1) 

Ksa     = Affinity constant, acetate consumption (g L-1) 
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Ks      = Affinity constant, glucose consumption (g L-1) 

Kia     = Inhibition constant, inhibition of cellular growth by extracellular acetate(g L-1) 

Kis     = Inhibition constant, inhibition of acetate uptake by glucose (g L-1) 

pAmax  = Maximum specific acetate production rate (g g-1 h-1) 

qAmax   = Maximum specific acetate consumption rate (g g-1 h-1) 

qm      = Specific maintenance coefficient (g g-1 h-1) 

qSmax   = Maximum specific glucose uptake rate (g g-1 h-1) 

Yas     = Yield of acetate on substrate (g g-1) 

Yoa     = Specific oxygen used per gram of acetate metabolized (g g-1) 

Yxa     = Yield of biomass on acetate (g g-1) 

Yem     = Yield of biomass on glucose, excluding maintenance (g g-1) 

Yos     = Oxygen used per gram of glucose metabolized per gram biomass (g g-1)  

Yxsof   = Yield of biomass other products of overflow routes, excluding acetate (g g-1) 

C        = Carbon content of (s) substrate, (x) biomass 

DOT  = dissolved oxygen tension (%).  DOT* represents saturating value of DOT in the 

broth at the given operating conditions. 

F  = Flow rate (L h-1) 

  = specific growth rate (h- 
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