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1. Introduction

The analysis of solutions of nonlocal problems in PDE has received new impulse

after the remarkable results obtained by Caffarelli and Silvestre [5]. For a proba-

bilistic view of these problems see [8], [4]. For the nonlinear see [7]. Recently

in [1],[2],[3], a dyadic version of the fractional derivative was introduced and an

associated diffusion was solved.

The classical diffusion process, described by the heat equation ∂u
∂t
= ∆u, where

∆ denotes the space Laplacian, has as a fundamental solution the Weierstrass ker-

nel Wt(x) = (4πt)−d/2e−|x|
2/4t, which is the central limit distribution, for n → ∞, of√

n−1
∑n

j=1 X j, where the X j’s are identically distributed independent random vari-

ables with finite variance t and vanishing mean value. For our later analysis it is

convenient to write the convergence in distribution of n−1/2 ∑n
j=1 X j to Wt in terms of

the common distribution of the random variables X j, j ∈ N. For the sake of simplicity

let us assume that this distribution is given by the density g in Rd. In other words,

P({X j ∈ B}) =
∫

B
g(x)dx where B is a Borel set in Rd. Hence since the random variables

The research has been supported by CONICET, UNL and ANPCyT (MINCyT).

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CONICET Digital

https://core.ac.uk/display/248093803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


X j are independent the distribution of S n =
∑n

j=1 X j is given by the convolution gn of g

n-times. Precisely, with gn
= g∗· · ·∗g n-times, we have that P({S n ∈ B}) =

∫

B
gn(x)dx.

On the other hand, P({n−1/2 ∑n
j=1 X j ∈ B}) = P({S n ∈

√
nB}) =

∫

B
(gn)√n(x)dx, with

(gn)√n the mollification of gn by
√

n in Rd. Precisely, (gn)√n(x) = n−d/2gn(
√

nx). These

observations allows to read the Central Limit Theorem (CLT) as a vague or Schwartz

weak convergence of (gn)√n(x) to Wt(x) when n→ ∞. For every f continuous and com-

pactly supported in Rd, we have that
∫

Rd (gn)√n(x) f (x) →
∫

Rd Wt(x) f (x)dx as n → ∞.
Since we shall be working in a non-translation invariant setting, to get the complete

analogy we still rewrite the CLT as the weak convergence of the sequence of Markov

kernel Kn√
n
(x, y) = (gn)√n(x−y) to the Markov Weierstrasss kernel Wt(x−y). The kernel

Kn√
n
(x, y) =

'
Rd−1 g√n(x − x1)g√n(x1 − x2) · · · g√n(xn−1 − y)dx1dx2 · · · dxn−1 corresponds

to the kernel of the n-th iteration of the operator T √n f (x) =
∫

Rd g√n(x− y) f (y)dy. The

difference in the rhythms of the upper index n of the iteration and the lower index√
n of mollification is related to the property of finite variance of g. In the problems

considered here the Markov kernels involved have heavy tails and the central equi-

libria takes place for different proportions between iteration and mollification. There

are many books where the classical CLT and some of its extensions are masterly

exposed. Let us refer to [6] as one of them.

In this paper we shall be concerned with diffusions of fractional type associated

with dyadic differentiation in the space. The basic setting for our diffusions is R+ =

{x ∈ R : x > 0}. In [2] it is proved that the function u(x, t) defined for x ∈ R+ and

t > 0, given by

u(x, t) =
∑

h∈H
e−t|I(h)|−s

〈u0, h〉 h(x),

with H the standard Haar system in L2(R+), I(h) the support of h and 〈u0, h〉 =
∫

R+
u0(x)h(x)dx, solves the problem

{

∂u
∂t
= Dsu, x ∈ R+, t > 0;

u(x, 0) = u0(x), x ∈ R+.

with

(1.1) Dsg(x) =

∫

y∈R+

g(x) − g(y)

δ(x, y)1+s
dy

for 0 < s < 1 and δ(x, y) the dyadic distance in R+ (see Section 2 for definitions). The

main point in the prove of the above statement is provided by the spectral analysis

for Ds in terms of Haar functions. In fact, Dsh = |I(h)|−s h. When 0 < s < 1, since h is

a Lipschitz function with respect to δ, the integral in (1.1) defining Dsh is absolutely

convergent. For the case s = 1 this integral is generally not convergent, nevertheless
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the operator D1 is still well defined on the Sobolev type space of those function

in L2(R+) such that the Haar coefficients 〈 f , h〉 satisfy the summability condition
∑

h∈H
|〈 f ,h〉|2

|I(h)|2 < ∞. For those functions f the first order nonlocal derivative is given by

D1 f =
∑

h∈H
〈 f ,h〉
|I(h)|h. Moreover, with u0 ∈ L2(R+), the function

u(x, t) =

∫

R+

K(x, y; t)u0(y)dy,

with

(1.2) K(x, y; t) =
∑

h∈H
e−t|I(h)|−1

h(x)h(y),

solves

(P)

{

∂u
∂t
= D1u, x ∈ R+, t > 0;

u(x, 0) = u0(x), x ∈ R+.
For each t > 0 the function of x ∈ R+, u(x, t) is in the dyadic Sobolev space of those

function f in L2(R+) with
∑

h∈H |I(h)|−2 |〈 f , h〉|2 < ∞ (see [1]). Also its D1 space

derivative belongs to L2(R+).

The kernel K(·, ·; t) for fixed t > 0 is not a convolution kernel. Nevertheless it can

be regarded as a Markov transition kernel which, as we shall prove, depends only on

δ(x, y).

In this note we prove that the Markov kernel family K(·, ·; t) is the central limit of

adequate simultaneous iteration and mollification of elementary dyadic stable Markov

kernels. We shall precisely define stability later, but heuristically it means that the

kernel behaves at infinity like a power law of the dyadic distance. The main result is

contained in Theorem 17 in Section 7. The basic tool for the proof of our results is

the Fourier Haar analysis induced on R+ by the orthonormal basis of Haar wavelets.

The paper is organized as follow. In Section 2 we introduce the basic facts from

dyadic analysis on R+, in particular the Haar system as an orthonormal basis for

L2(R+) and as an unconditional basis for Lp(R+), 1 < p < ∞. Section 3 is devoted to

introduce the Markov type dyadic kernels. The spectral analysis of the integral oper-

ators generated by Markov type dyadic kernels is considered in Section 4. Section 5

is devoted to introduce the concept of stability and to prove that the kernel in (1.2)

is 1-stable with parameter 2
3
t. The iteration and mollification operators and their

relation with stability are studied in Section 6. Finally in Section 7 we state and

prove our main result: spectral and Lp(R+) (1 < p < ∞) convergence to the solution

of (P).

2. Some basic dyadic analysis

Let R+ denote the set of nonnegative real numbers. A dyadic interval is a subset

of R+ that can be written as I = I
j

k
= [k2− j, (k + 1)2− j) for some integer j and some
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nonnegative integer k. The family D of all dyadic intervals can be organized by levels

of resolution as follows; D = ∪ j∈ZD j, where D j
=

{

I
j

k
: k = 0, 1, 2, . . .

}

.

Let us next introduce a metric in R+ naturally induced by the dyadic intervals.

The dyadic distance induced on R+ by D and the Lebesgue measure is defined by

δ(x, y) = inf {|I| : I ∈ D, x ∈ I, y ∈ I} where |E| denotes the one dimensional Lebesgue

measure of E. It is easy to check that δ is a distance (ultra-metric) on R+. Since

|x − y| = inf{|J| : x ∈ J, y ∈ J, J = [a, b), 0 ≤ a < b < ∞}, we have |x − y| ≤ δ(x, y) for every

x and y in R+. Notice also that δ(x, y) is usually strictly larger than |x − y|. Take for

instance xn = 1 − 1/n and y = 1. Hence δ(xn, y) = 2 while |xn − y| = 1/n.

Set Bδ(x, r) = {y ∈ R+ : δ(x, y) < r} to denote the δ-ball centered a x with positive

radius r. Then Bδ(x, r) is the largest dyadic interval containing x with Lebesgue

measure less than r. For r > 0, let j ∈ Z be such that 2 j < r ≤ 2 j+1. Then, for

x ∈ R+, Bδ(x, r) = I with x ∈ I ∈ D, 2 j
= |I| < r ≤ 2 j+1. So that r

2
≤ |Bδ(x, r)| < r.

This normality property of (R+, δ) equipped with Lebesgue measure shows that the

δ-Hausdorff dimension of intervals in R+ is one. In particular for fixed x ∈ R+ the

functions of y ∈ R+ defined by δα(x, y) and |x − y|α have the same local and global

integrability properties for α ∈ R.

Lemma 1.

(a) The level sets L(λ) = {(x, y) : δ(x, y) = λ} are empty if λ is not an integer power of two.

On the other hand L(2 j) = ∪I∈D j (Il × Ir)∪ (Ir × Il) with Il and Ir, the left and right halves

of I ∈ D j. Hence, δ(x, y) =
∑

j∈Z 2 jχL(2 j)(x, y).

(b) For x ∈ R+ and r > 0 we have,

b-i)
c(α)

21+α r1+α ≤
∫

y∈Bδ(x,r)
δα(x, y)dy ≤ c(α)r1+α for α > −1 with c(α) = 2−1(1 −

2−(1+α))−1;

b-ii)
∫

Bδ(x,r)
δα(x, y)dy = +∞ for α ≤ −1;

b-iii) c̃(α)r1+α ≤
∫

{y:δ(x,y)≥r} δ
α(x, y)dy ≤ c̃(α)

21+α r1+α for α < −1 with c̃(α) = 2−1(1 −
21+α)−1;

b-iv)
∫

{y:δ(x,y)≥r} δ
α(x, y)dy = +∞ for α ≥ −1.

Proof of (a). Let j ∈ Z fixed. Then δ(x, y) = 2 j if and only if x and y belong to the same

I ∈ D j, but they do not belong to the same half of I. In other words, (x, y) ∈ Il × Ir or

(x, y) ∈ Ir × Il.
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Proof of (b). Fix x ∈ R+. Take 0 < a < b < ∞. Then, from (a),

∫

{y∈Bδ(x,b)\Bδ(x,a)}
δα(x, y)dy =

∫

{y:a≤δ(x,y)<b}
δα(x, y)dy

=

∑

{ j∈Z:a≤2 j<b}

∫

{y:δ(x,y)=2 j}
2α jdy

=
1

2

∑

{ j∈Z:a≤2 j<b}
2(1+α) j

=
1

2
S (α; a, b).

When α ≥ −1, then S (α; a, b) → +∞ for b → ∞, for every a. Thus proves (iv). When α ≤
−1 then S (α; a, b) → +∞ for a → 0, for every b. For α > −1, we have with 2 j0 ≤ r < 2 j0+1

that

∫

Bδ(x,r)

δα(x, y)dy =
1

2
lim
a→0

S (α; a, b) =
1

2

∑

j≤ j0(r)

2(1+α) j
=

1

2

1

1 − 2−(1+α)
2(1+α) j0

= c(α)2(1+α) j0 .

Hence
c(α)

21+α
r1+α ≤

∫

y∈Bδ(x,r)

δα(x, y)dy ≤ c(α)r1+α.

For α < −1 we have, with 2 j0 ≤ r < 2 j0+1, that

∫

δ(x,y)≥r

δα(x, y)dy =
1

2
lim
b→∞

S (α; r, b) =
1

2

∑

j≥ j0(r)

(21+α) j =
1

2

1

1 − 21+α
2(1+α) j0

= c̃(α)2(1+α) j0 ,

so that
c̃(α)

21+α
r1+α ≥

∫

{y:δ(x,y)≥r}
δα(x, y)dy ≥ c̃(α)r1+α.

�

The distance δ is not translation invariant. In fact, while for small positive ε, δ( 1
2
− ε, 1

2
+

ε) = 1, δ( 1
2
+

1
2
− ε, 1

2
+

1
2
+ ε) = 2. Neither is δ positively homogeneous. In fact, neither

is δ positively homogeneous of degree one in the sense that δ(λx, λy) = λδ(x, y) for every

λ > 0 and every x, y ∈ R+. In fact, for example δ( 8
9
, 1) = 2 and δ(3 8

9
, 3) = δ( 8

3
, 3) = 2.

Nevertheless the next statement contains a useful property of dyadic homogeneity.

Lemma 2. Let j ∈ Z be given. Then, for x and y in R+, δ(2 jx, 2 jy) = 2 jδ(x, y).
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Proof. Notice first that since x = y is equivalent to 2 jx = 2 jy, we may assume x , y. Since

for x and y in I ∈ D we certainly have that 2 jx and 2 jy belong to 2 jI, and the measure of 2 jI

is 2 j times the measure of I, in order to prove the dyadic homogeneity of δ, we only have to

observe that the multiplication by 2 j as an operation on D preserves the order provided by

inclusion. In particular x and y belong to I but x and y do not belong to the same half Il or Ir

of I, if and only if 2 jx and 2 jy belong to 2 jI but 2 jx and 2 jy do not belong to the same half

of 2 jI. �

As in the classical case of the Central Limit Theorem, Fourier Analysis will play an impor-

tant role in our further development. The basic difference is that in our context the trigono-

metric expansions are substituted by the most elementary wavelet analysis, the associated to

the Haar system. Let us introduce the basic notation. Set h0
0
(x) = χ[0,1/2)(x) − χ[1/2,1)(x) and,

for j ∈ Z and k = 0, 1, 2, 3, . . .; h
j

k
(x) = 2 j/2h0

0
(2 jx − k).

1

−1

√
2

−
√

2

0 1 3
2

2

Figure 1. h0
0

and h1
3

Notice that h
j

k
has L2-norm equal to one for every j and k. Moreover, h

j

k
is supported in

I = I
j

k
∈ D j. Write H to denote the sequence of all those Haar wavelets. For h ∈ H we

shall use the notation I(h) to denote the interval I in D for which supp h = I. Also j(h) is

the only resolution level j ∈ Z such that I(h) ∈ D j.

6



The basic analytic fact of the system H is given by its basic character. In fact, H is

an orthonormal basis for L2(R+). In particular, for every f ∈ L2(R+) we have that in the

L2-sense f =
∑

h∈H 〈 f , h〉 h, where, as usual, for real valued f , 〈 f , h〉 =
∫

R+
f (x)h(x)dx.

One of the most significant analytic properties of wavelets is its ability to characterize

function spaces. For our purposes it will be useful to have in mind the characterization of all

Lp(R+) spaces for 1 < p < ∞.

Theorem 3 (Wojtaszczyk [9]). For 1 < p < ∞ and some constants C1 and C2 we have

(2.1) C1 ‖ f ‖p ≤

∥

∥

∥

∥

∥

∥

∥















∑

h∈H
|〈 f , h〉|2 |I(h)|−1 χI(h)















1/2
∥

∥

∥

∥

∥

∥

∥

p

≤ C2 ‖ f ‖p

3. Markov dyadic kernels defined in R+

A real function K defined in R+ × R+ is said to be a symmetric Markov kernel if K is

nonnegative, K(x, y) = K(y, x) for every x ∈ R+ and y ∈ R+ and
∫

R+
K(x, y)dy = 1 for

every x ∈ R+. We are interested in kernels K as above such that K(x, y) depends only on

the dyadic distance δ(x, y) between the points x and y in R+. The next lemma contains three

ways of writing such kernels K. The first is just a restatement of the dependence of δ and the

other two shall be used frequently in our further analysis. The Lemma also includes relation

between the coefficients and their basic properties.

Lemma 4. Let K be a real function defined on R+×R+. Assume that K is nonnegative and

depends only on δ, i.e., δ(x, y) = δ(x′, y′) implies K(x, y) = K(x′, y′), with
∫

R+
K(x0, y)dy = 1

for some x0 ∈ R+. Then, with the notation introduced in Lemma 1 (a) for the level sets of δ,

we have

(1) K =
∑

j∈Z k jχL(2 j), k j ≥ 0,
∑

j∈Z k j2
j−1
= 1 and K is a symmetric Markov kernel.

(2) The sequence α = (αl = 2−l(k−l − k−l+1) : l ∈ Z) belongs to l1(Z),
∑

l∈Z αl = 1 and the

function ϕ(s) =
∑

l∈Z αlϕl(s) with ϕl(s) = 2lχ(0,2−l](s), provides a representation of K in

the sense that ϕ(δ(x, y)) = K(x, y). Moreover,
∫

R+
|ϕ(s)| ds < ∞ and

∫

R+
ϕ(s)ds = 1.

(3) The function ϕ(s) can also be written as ϕ(s) =
∑

j∈Z Λ j(ϕ j+1(s) − ϕ j(s)).

(4) The coefficients k = (k j : j ∈ Z) in (1), α = (α j : j ∈ Z) in (2) and Λ = (Λ j : j ∈ Z) in

(3) are related by the formulae

(4.a) α j =
k− j−k− j+1

2 j

(4.b) k j =
∑∞

i= j 2−iα−i

(4.c) Λ j =
∑

l> j αl

(4.d) α j = Λ j−1 − Λ j

(4.e) Λ j =
1
2

(

−k− j2
− j
+

∑

l<− j kl2
l
)

(4.f) k j = −2− j
Λ− j +

∑

i≥ j+1 2−i
Λ−i.

(5) Some relevant properties of the sequences k, α and Λ are the following.
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(5.a) α ∈ l1(Z);

(5.b)
∑

l≤ j αl2
l ≥ 0 for every j ∈ Z;

(5.c) |αl| ≤ 2 for every l ∈ Z;

(5.d) lim j→−∞ Λ j = 1;

(5.e) lim j→+∞ Λ j = 0;

(5.f)
∑

l≤ j−1Λl2
l ≥ Λ j2

j for every j ∈ Z;

(5.g) sup jΛ j = 1;

(5.h) inf jΛ j ≥ −1;

(5.i) if k is decreasing then also Λ is decreasing.

Proof of (1). Since K depends only on δ, then the level sets for δ are level sets for K. Hence

K is constant, say k j ≥ 0, in L(2 j) for each j ∈ Z. Notice that the section of L(2 j) at

any x ∈ R+ has measure 2 j−1, no matter what is x. In fact, L(2 j)
∣

∣

∣

x
= {y ∈ R+ : (x, y) ∈

L(2 j)} = {y ∈ R+ : δ(x, y) = 2 j} = I, where I ∈ D is the brother of the dyadic interval J

of level j − 1 such that x ∈ J. Hence
∣

∣

∣L(2 j)
∣

∣

∣

x

∣

∣

∣ = 2 j−1. With the above considerations, since
∫

R+
K(x0, y)dy = 1, we see that

1 =

∫

R+

K(x0, y)dy =
∑

j∈Z
k j

∫

R+

χL(2 j)(x0, y)dy

=

∑

j∈Z
k j

∣

∣

∣

∣

L(2 j)
∣

∣

∣

x0

∣

∣

∣

∣

=

∑

j∈Z
k j2

j−1

=

∑

j∈Z
k j

∣

∣

∣L(2 j)
∣

∣

∣

x

∣

∣

∣ =

∫

R+

K(x, y)dy.

Then K is a Markov kernel and that the series
∑

j∈Z k j2
j−1 converges to 1. The symmetry of

K is clear.

Proof of (2). Since |αl| ≤ 2−lk−l + 2−lk−l+1, the fact that α belongs to l1(Z) follow from the

fact that
∑

j∈Z k j2
j
= 2 proved (1). On the other hand,

∑

l∈Z
αl =

∑

l∈Z
k−l2

−l −
∑

l∈Z
k−l+12−l

= 2 − 1 = 1.
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Let us now check that ϕ(δ(x, y)) = K(x, y). Since δ(x, y) is a integer power of two and k j → 0

as j→ ∞, we have

ϕ(δ(x, y)) =
∑

l∈Z
αlϕl(δ(x, y))

=

∑

l∈Z
αl2

lχ(0,2−l](δ(x, y))

=

∑

l≤log2

1
δ(x,y)

2−l(k−l − k−l+1)2l

=

∑

j≥log2 δ(x,y)

(k j − k j+1)

= klog2 δ(x,y) = K(x, y).

Now, the absolute integrability of ϕ and the value of its integral follow from the formulae

ϕ(s) =
∑

l∈Z αlϕl(s) since α ∈ l1(Z),
∑

l∈Z αl = 1 and
∫

R+
ϕl(s)ds = 1.

Proof of (3). Fix a positive s and proceed to sum by parts the series defining ϕ(s) =
∑

l∈Z αlϕl(s). Set Λ j =
∑

l> j αl. Since αl = Λl−1 − Λl, we have that

ϕ(s) =
∑

l∈Z
(Λl−1 − Λl)ϕl(s) =

∑

l∈Z
Λl−1ϕl(s) −

∑

l∈Z
Λlϕl(s) =

∑

l∈Z
Λl(ϕl+1(s) − ϕl(s)),

as desired. Notice, by the way, that ϕl+1(s) − ϕl(s) can be written in terms of Haar functions

as ϕl+1(s) − ϕl(s) = 2
l
2 hl

0
(s).

Proof of (4). It follows from the definitions of α and Λ.

Proof of (5). Notice first that (5.a) was proved in (2). The nonnegativity of K and (4.b)

show (5.b). Property (5.d) and (5.e) of the sequence Λ follow from (4.c) and the fact that
∑

l∈Z αl = 1 proved in (2). Inequality (5.f) follows from the positivity of K and (4.f).

We will prove (5.g). From (5.d) and (5.e) we have that Λ ∈ l∞(Z). In fact, there exist j1 <

j2 in Z such that Λ j < 2 for j < j1 and Λ j > −1 for j > j2. Since the set {Λ j1 ,Λ j1+1, . . . ,Λ j2 }
is finite, we get the boundedness of Λ. On the other hand, since from (5.d) lim j→−∞ Λ j = 1

we have that sup j Λ j ≥ 1. Assume that sup jΛ j > 1. Then there exists j0 ∈ Z such that

Λ j0 > 1. Hence, again from (5.d) and (5.e) we must have that for j < j3, Λ j < Λ j0 and

for j > j4, Λ j < 1 < Λ j0 for some integers j3 < j4. So that there exists j5 ∈ Z such that

Λ j5 ≥ Λ j for every j ∈ Z and Λ j5 > 1. Now

2 j5Λ j5 =

∑

l≤ j5−1

Λ j5 2l >
∑

l≤ j5−1

Λl2
l

which contradicts (5.f) with j = j5.
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For prove (5.h) assume that inf jΛ j < −1. Choose j0 ∈ Z such that Λ j0 < −1. Then from

(5.f)

Λ j0+1 ≤ 2−( j0+1)
∑

l≤ j0

Λl2
l
=

∑

l≤ j0

Λl2
l−( j0+1)

=
1

2

















Λ j0 +

∑

l< j0

Λl2
l− j0)

















≤ 1

2
(Λ j0 + 1).

In the last inequality we used (5.g). Let us prove, inductively, that Λ j0+m ≤ 1
2
(Λ j0 + 1) for

every m ∈ N. Assume that the above inequality holds for 1 ≤ m ≤ m0 and let us prove it for

m0 + 1.

Λ j0+(m0+1) ≤
∑

l< j0+m0+1

2l−( j0+m0+1)
Λl

= 2−m0−1

















j0+m0
∑

l= j0

2l− j0Λl +

∑

l< j0

2l− j0Λl

















= 2−m0−1

















m0
∑

l=1

2l
Λ j0+l + Λ j0 +

∑

l< j0

2l− j0Λl

















≤ 2−m0−1

















m0
∑

l=1

2l−1(Λ j0 + 1) + Λ j0 +

∑

l< j0

2l− j0

















= 2−m0−1((2m0 − 1)(Λ j0 + 1) + Λ j0 + 1)

=
1

2
(Λ j0 + 1).

Property (5.c) for the sequence α follows from (4.d), (5.g) and (5.h). Item (5.i) follows

from (4.a) and (4.d). �

In the sequel we shall write K to denote the set of all nonnegative kernels defined on

R
+ × R+ that depends only on δ and for some x0 ∈ R+,

∫

R+
K(x0, y)dy = 1.

Let us finish this section by proving a lemma that shall be used later.

Lemma 5. LetΛ = (Λ j : j ∈ Z) be a decreasing sequence of real numbers satisfying (5.d)

and (5.e). Then there exists a unique K ∈ K such that the sequence that (3) of Lemma 4

associates to K is the given Λ.

Proof. Define K(x, y) =
∑

j∈Z(Λ j−1 − Λ j)ϕ j(δ(x, y)). Since Λ is decreasing the coefficients

in the above series are all nonnegative. On the other hand, from (5.d) and (5.e) we have that
∑

j∈Z(Λ j−1 − Λ j) = 1. Hence, for every x ∈ R+ we have

∫

y∈R+
K(x, y)dy =

∑

j∈Z
(Λ j−1 − Λ j)

∫

y∈R+
ϕ j(δ(x, y))dy =

∑

j∈Z
(Λ j−1 − Λ j) = 1

So that K ∈ K . �
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4. The spectral analysis of the operators induced by kernels inK

For K ∈ K and f continuous with bounded support in R+ the integral given by
∫

R+
K(x, y) f (y)dy is well defined and finite for each x ∈ R+. Actually each K ∈ K

determines an operator which is well defined and bounded on each Lp(R+) for 1 ≤ p ≤ ∞.

Lemma 6. Let K ∈ K be given. Then for f ∈ Lp(R+) the integral
∫

R+
K(x, y) f (y)dy is

absolutely convergent for almost every x ∈ R+. Moreover,

T f (x) =

∫

R+

K(x, y) f (y)dy

defines a bounded (non-expansive) operator on each Lp(R+), 1 ≤ p ≤ ∞. Precisely, ‖T f ‖p ≤
‖ f ‖p for f ∈ Lp(R+).

Proof. Notice first that the function K(x, y) f (y) = ϕ(δ(x, y)) f (y) is measurable as a function

defined on R+ ×R+, for every measurable f defined on R+. The case p = ∞ follows directly

from the facts that K is a Markov kernel and that K(x, y) | f (y)| ≤ K(x, y) ‖ f ‖∞. For p = 1

using Tonelli’s theorem we get

∫

x∈R+

(∫

y∈R+
K(x, y) | f (y)| dy

)

dx =

∫

y∈R+
| f (y)|

(∫

x∈R+
K(x, y)dx

)

dy = ‖ f ‖1 .

Hence
∫

R+
K(x, y) f (y)dy is absolutely convergent for almost every x and ‖T f ‖1 ≤ ‖ f ‖1.

Assume that 1 < p < ∞ and take f ∈ Lp(R+). Then

|T f (x)|p ≤
(∫

R+

K(x, y) | f (y)| dy

)p

=

(∫

R+

K(x, y)
1
p′ K(x, y)

1
p | f (y)| dy

)p

≤
(∫

R+

K(x, y)dy

)

p

p′
(∫

R+

K(x, y) | f (y)|p dy

)

=

∫

R+

K(x, y) | f (y)|p dy.

Hence ‖T f ‖pp =
∫

R+
|T f (x)|p dx ≤

∫

y∈R+
(∫

x∈R+ K(x, y)dx
)

| f (y)|p dy = ‖ f ‖pp. �

The spectral analysis of the operators T defined by kernels in K is given in the next

result.

Theorem 7. Let K ∈ K and let T be the operator in L2(R+) defined by T f (x) =
∫

R+
K(x, y) f (y)dy. Then the Haar functions are eigenfunctions for T and the eigenvalues

are given by the sequence Λ introduced in Lemma 4. Precisely, for each h ∈H

Th = Λ j(h)h := λ(h)h,

where j(h) is the level of the support of h, i.e. supp h ∈ D j(h).

11



Proof. Since the sequence (αl : l ∈ Z) belongs to ℓ1(Z) and we can interchange orders of

integration and summation in order to compute Th. In fact,

Th(x) =

∫

y∈R+
ϕ(δ(x, y))h(y)dy =

∫

y∈R+















∑

l∈Z
αlϕl(δ(x, y))















h(y)dy

=

∑

l∈Z
αl

(

2l

∫

{y:δ(x,y)≤2−l}
h(y)dy

)

.

Let us prove that

ψ(x, l) = 2l

∫

{y:δ(x,y)≤2−l}
h(y)dy = χ{l> j(h)}(l)h(x).

If x < I(h), since {y : δ(x, y) ≤ 2l} is the only dyadic interval Ix
l

containing x of length 2l,

only two situations are possible, Ix
l
∩ I(h) = ∅ or Ix

l
⊃ I(h), in both cases the integral vanish

and ψ(x, l) = 0 = χ{l<− j(h)}(l)h(x). Take now x ∈ I(h). Assume first that x ∈ Il(h) (the left

half of I(h)). So that ψ(x, l) = 2−l
∫

Ix
l

h(y)dy = 0 if l ≤ j(h), since Ix
l
⊃ I(h). When l > j(h)

we have that h ≡ |I(h)|−1/2 on Ix
l
, hence ψ(l, x) = 2−l |I(h)|−1/2

∣

∣

∣Ix
l

∣

∣

∣ = |I(h)|−1/2
= h(x). In a

similar way, for x ∈ Ir(h), we get ψ(l, x) = − |I(h)|−1/2
= h(x). �

Notice that the eigenvalue λ(h) tends to zero when the resolution j(h) tends to infinity.

Moreover this convergence is monotonic when all the αl are nonnegative. Notice also that the

eigenvalues depend only on the resolution level of h, but not on the position k of its support.

Sometimes we shall write λ j, j ∈ Z, instead of λ(h) when j is the scale of the support of h.

With the above result, and using the fact that the Haar system H is an orthonormal basis

for L2(R+), we see that, the action of T on L2(R+) can be regarded as a multiplier operator

on the scales.

Lemma 8. Let K and T as in Theorem 7. The diagram

L2(R+) ℓ2(Z)

L2(R+) ℓ2(Z)

T

H

H

M

commutes, where H( f ) = (〈 f , h〉 : h ∈ H ) and M(ah : h ∈ H ) = (λ(h)ah : h ∈ H ). In

particular, ‖T f ‖22 =
∑

h∈H λ2(h) |〈 f , h〉|2.

The characterization of the space Lp(R+) (1 < p < ∞), Theorem 3 above, provides a

similar result for the whole scale of Lebesgue spaces, 1 < p < ∞ with the only caveat that

when p , 2 the norms are only equivalent. The next statement contains this observation.
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Theorem 9. With K and T as before and 1 < p < ∞ we have that

‖T f ‖p ≃

∥

∥

∥

∥

∥

∥

∥

(

∑

h∈H
(λ(h))2 |〈 f , h〉|2 |I(h)|−1 χI(h)

)

1
2

∥

∥

∥

∥

∥

∥

∥

p

with constants which do not depend on f .

Corollary 10. For every K ∈ K and (λ(h) : h ∈ H ) as in Theorem 7 we have the

representation

K(x, y) =
∑

h∈H
λ(h)h(x)h(y).

Proof. For f =
∑

h∈H 〈 f , h〉 h with 〈 f , h〉 , 0 only for finitely many Haar functions h ∈H ,

we have that

∫

R+

K(x, y) f (y)dy = T f (x) =
∑

h∈H
〈 f , h〉 Th(x)

=

∑

h∈H

(∫

y∈R+
f (y)h(y)dy

)

λ(h)h(x)

=

∫

y∈R+















∑

h∈H
λ(h)h(y)h(x)















f (y)dy.

Since the space of such functions f is dense in L2(R+) we have that K(x, y) =
∑

h λ(h)h(x)h(y).

�

5. Stability ofMarkov kernels

In the case of the classical CLT the key properties of the distribution of the indepen-

dent random variables X j are contained in the Gaussian central limit itself. Precisely,

(2πt)−1/2e−|x|
2/4t is the distribution limit of n−1/2 ∑n

j=1 X j when X j are independent and are

equi-distributed with variance t and mean zero. Our “gaussian” is the Markov kernel Kt(x, y)

defined in R+ × R+ by applying Lemma 5 to the sequence Λ j = e−t2 j

, j ∈ Z for fixed t. We

may also use the Haar representation of Kt(x, y) given by Corollary 10 in § 4. In this way

we can write this family of kernels as Kt(x, y) =
∑

h∈H e−t2 j(h)

h(x)h(y). As we shall see, after

obtaining estimates for the behavior of K for large δ(x, y), this kernel has heavy tails. In

particular, the analogous of the variance given by
∫

y∈R+ Kt(x, y)δ2(x, y)dy is not finite. This

kernel looks more as a dyadic version of Cauchy type distributions than of Gauss type distri-

butions. Which is an agreement with the fact that Kt solves a fractional differential equation

and the natural processes are of Lvy type instead of Wiener Brownian. As a consequence,

the classic moment conditions have to be substituted by stability type behavior at infinity.
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Lemma 11. Set for r > 0

ψ(r) =
1

r

















∑

j≥1

2− je−(2 jr)−1 − e−r−1

















.

Then ψ is well defined on R+ with values in R+. And

r2ψ(r)→ 2

3
as r → ∞.

Proof. Since e−(2 jr)−1

is bounded above we see that ψ(r) is finite for every r > 0. On the

other hand since ψ(r) = 1
r

∑

j≥1 2− j[e−(2 jr)−1 − e−r−1

] and terms in brackets are positive we see

that ψ(r) > 0 for every r > 0. Let us check the behavior of ψ at infinity

r2ψ(r) =
∑

j≥1

2− j[e−(2 jr)−1 − e−r−1

]

r−1
→

∑

j≥1

2− j(1 − 2− j) =
2

3
.

�

Lemma 12. Let t > 0 be given. Set Λ
(t)

j
= e−t2 j

, j ∈ Z. Let Kt(x, y) be the kernel that

Lemma 5 associated to Λ(t). Then Kt ∈ K and since Kt(x, y) = 1
t
ψ(

δ(x,y)

t
), with ψ as in

Lemma 11, we have

(5.1) δ(x, y)2Kt(x, y)→ 2

3
t

for δ(x, y)→ +∞.

Proof. Since Λ
(t)

j+1
< Λ

(t)

j
, for every j ∈ Z, lim j→−∞ Λ

(t)

j
= 1 and lim j→+∞ Λ

(t)

j
= 0 we

can use Lemma 5 in order to obtain the kernel Kt(x, y). Now from Corollary 10 we have

that Kt(x, y) =
∑

h∈H e−t2 j

h(x)h(y). Let us check following the lines of [1], that Kt(x, y) =
1
t
ψ(

δ(x,y)

t
), with ψ as in Lemma 11. In fact, since Kt(x, y) =

∑

h∈H e−t|I(h)|−1

h(x)h(y), then

a Haar function h ∈ H contributes to the sum when x and y both belong to I(h). The

smallest of such intervals, say I0 = I(h(0)) is precisely the dyadic interval that determines

δ(x, y). Precisely |I0| = δ(x, y). Let h(1) and I1 = I(h(1)) be the wavelet and its dyadic

support corresponding to one level less of resolution than that I0 itself. In more familiar

terms, I0 is one of two son of I1. In general, for each resolution level less than that of I0

we find one and only one Ii = I(h(i)) with I0 ⊂ I1 ⊂ . . . ⊂ Ii ⊂ . . . and |Ii| = 2i |I0|. We

have to observe that except for I0 where x and y must belong to different halves I0,r or I0,l

of I0, because of the minimality of I0 for all the other Ii, x and y must belong to the same

half Ii,l or Ii,r of Ii because they are all dyadic intervals. These properties also show that
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h(0)(x)h(0)(y) = − |I0|−1
= −δ−1(x, y) and, for i ≥ 1, h(i)(x)h(i)(y) = 2−i |I0|−1

= (2iδ(x, y))−1.

Hence

Kt(x, y) = −e
− t
δ(x,y)

δ(x, y)
+

∑

i≥1

e
− t2−i

δ(x,y)
2−i

δ(x, y)

=
1

δ(x, y)

















∑

i≥1

2−ie
− t
δ(x,y)

2−i

− e
− t
δ(x,y)

















=
1

t
ψ

(

δ(x, y)

t

)

.

So that

δ(x, y)2Kt(x, y) = δ(x, y)2 1

t
ψ

(

δ(x, y)

t

)

= t

(

δ(x, y)

t

)2

ψ

(

δ(x, y)

t

)

which from the result of Lemma 11 tends to 2
3

when δ(x, y)→ +∞. �

Notice that from Lemma 1-b.iv) and the behavior at infinity of Kt(x, y) provided in the

previous result, we have
∫

R+
Kt(x, y)δ2(x, y)dy = +∞

for every x ∈ R+. Moreover,
∫

R+
Kt(x, y)δ(x, y)dy = +∞. The adequate substitute for the

property of finiteness of moments is provided by the stability involved in property (5.1)

in Lemma 12. Since this property is going to be crucial in our main result we introduce

formally the concept of stability. We say that a kernel K in K is 1-stable with parameter

σ > 0 if

δ(x, y)2K(x, y)→ σ

for δ(x, y)→ ∞. In the above limit, since the dimension of R+ with the metric δ equals one,

we think δ2 as δ1+1, one for the dimension and the other for the order of stability.

Since for K ∈ K we have K(x, y) = ϕ(δ(x, y)), the property of 1-stability can be written

as a condition for the behavior at infinity of profile ϕ. In particular, with the notation of

Lemma 4, the stability is equivalent to 4 jk j → σ as j→ ∞.

6. Iteration and mollification inK

As we have already observed in the introduction, the two basic operations on the identi-

cally distributed independent random variables Xi in order to obtain the means that converge

in distribution to the Central Limit, translate into iterated convolution and mollification. In

this section, we shall be concerned with two operations, iteration and mollification on K

and on the subfamily K 1 of 1-stable kernels in K .

In the sequel, given a kernel K in K , Λ̄, ᾱ and k̄ are the sequences defined on Lemma 4

associated to K. When a family of kernels in K is described by an index associated to K,

say Ki, the corresponding sequences are denoted by Λ̄i, ᾱi and k̄i.
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Lemma 13. (a) For K1 and K2 ∈ K , the kernel

K3(x, y) = (K1 ∗ K2)(x, y) =

∫

z∈R+
K1(x, z)K2(z, y)dz

is well defined; K3 ∈ K with

α3
j = α

1
jλ

2
j + α

2
jλ

1
j + α

1
jα

2
j

for every j ∈ Z;

(b) (K , ∗) and (K 1, ∗) are semigroups;

(c) λ3
j
= λ1

j
λ2

j
for every j ∈ Z.

Proof of (a). Let Ki(x, y) = ϕi(δ(x, y)), i = 1, 2; with ϕi(s) =
∑

j∈Z α
i
j
ϕ j(s),

∑

j∈Z α
i
j
= 1,

∑

j∈Z

∣

∣

∣

∣

αi
j

∣

∣

∣

∣

< ∞. Then, for x , y both in R+. Set I∗ to denote the smallest dyadic interval

containing x and y. Then |I∗| = δ(x, y) and x and y belong to different halves of I∗. From the

above properties of the sequences ᾱi, i = 1, 2; we can interchange the orders of summation

and integration in order to obtain

K3(x, y) =

∫

z∈R+
K1(x, z)K2(z, y)dz

=

∑

j∈Z

∑

l∈Z
2iα1

j2
lα2

l

∫

z∈R+
χ(0,2− j](δ(x, z))χ(0,2−l](δ(z, y))dz

=

∑

j∈Z
2 jα1

j

∑

l∈Z
2lα2

l

∣

∣

∣

∣

I
j

k(x)
∩ Il

k(y)

∣

∣

∣

∣

where I
j

k(x)
is the only dyadic interval in D j such that x ∈ I

j

k(x)
. Notice that the intersection

of I
j

k(x)
and Il

k(y)
is empty when j and l are both larger than the level j∗ of I∗. On the other

hand, when j or l is smaller than or equal to j∗, the intersection is the smallest one. Say, if

j ≤ j∗ and l > j, I
j

k(x)
∩ Il

k(y)
= Il

k(y)
.
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With the above considerations we are now in position to compute K3(x, y) in terms of the

sequences ᾱi and λ̄i as follows, with c( j∗) = {( j, l) ∈ Z2 : j > j∗ and l > j∗},

K3(x, y) =
∑ ∑

( j,l)∈Z2

2 j+lα1
jα

2
l

∣

∣

∣

∣

I
j

k(x)
∩ Il

k(y)

∣

∣

∣

∣

=

∑ ∑

Z2\c( j∗)

2 j+lα1
jα

2
l

∣

∣

∣

∣

I
j

k(x)
∩ Il

k(y)

∣

∣

∣

∣

=

∑

j≤ j∗

2 jα1
j

∑

l> j

2lα2
l

∣

∣

∣Il
k(y)

∣

∣

∣ +

∑

l≤ j∗

2lα2
l

∑

j>l

2 jα1
j

∣

∣

∣

∣

I
j

k(x)

∣

∣

∣

∣

+

∑

l≤ j∗

2lα2
l 2lα1

l

∣

∣

∣Il
k(y)

∣

∣

∣

=

∑

j≤ j∗

2 jα1
jλ

2
j +

∑

l≤ j∗

2lα2
l λ

1
l +

∑

l≤ j∗

2lα1
l α

2
l

=

∑

j≤ j∗

[

α1
jλ

2
j + α

2
jλ

1
j + α

1
jα

2
j

]

2 j

=

∑

j∈Z

[

α1
jλ

2
j + α

2
jλ

1
j + α

1
jα

2
j

]

ϕ j(δ(x, y)).

In other words, K3(x, y) = ϕ3(δ(x, y)) with ϕ3(s) =
∑

j∈Z α
3
j
ϕ j(S ) and α3

j
= α1

j
λ2

j
+ α2

j
λ1

j
+

α1
j
α2

j
. Since, as it is easy to check by Tonelli’s theorem

∫

R+
K3(x, y)dy = 1, we have that

K3 ∈ K .

Proof of (b). We only have to show that if K1 and K2 are 1-stable kernels in K , then

K3 = K1 ∗ K2 is also 1-stable. As we observed at the end of Section 5 for Ki (i = 1, 2) we

have 4 jki
j
→ σi when j → +∞. We have to prove that 4 jk3

j
→ σ1 + σ2 when j → +∞. By

Lemma 4, item (4.b), we can write

4 jk3
j = 4 j

∑

i≥ j

2−iα3
−i

= 4 j
∑

i≥ j

2−i[α1
−iλ

2
−i + α

2
−iλ

1
−i + α

1
−iα

2
−i]

= 4 j
∑

i≥ j

(2−iα1
−i)λ

2
−i + 4 j

∑

i≥ j

(2−iα2
−i)λ

1
−i + 4 j

∑

i≥ j

2−iα1
−iα

2
−i

= I( j) + II( j) + III( j).

We claim that I( j) → σ1, II( j) → σ2 and III( j) → 0 when j → +∞. Let us prove that

I( j)→ σ1, j→ +∞. Since

|I( j) − σ1| ≤

∣

∣

∣

∣

∣

∣

∣

∣

4 j
∑

i≥ j

2−iα1
−i(λ

2
−i − 1)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣4 jk1
j − σ1

∣

∣

∣

from the fact that K1 ∈ K 1 with parameter σ1 and because of (5.d) in Lemma 4 we have

that I( j) → σ1 as j → ∞. The fact II( j) → σ2 follows the same pattern. Let us finally
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estimate III( j). Notice that from (4.a) en Lemma 4 we have

|III( j)| ≤ 4 j
∑

i≥ j

2−i
∣

∣

∣α1
−i

∣

∣

∣

∣

∣

∣α2
−i

∣

∣

∣

≤ 4 j

















∑

i≥ j

2−i
∣

∣

∣α1
−i

∣

∣

∣

































∑

l≥ j

∣

∣

∣α2
−l

∣

∣

∣

















= 4 j













sup
i≥ j

2−i

∣

∣

∣

∣

∣

∣

k1
i
− k1

i+1

2−i

∣

∣

∣

∣

∣

∣





























∑

l≥ j

∣

∣

∣α2
−l

∣

∣

∣

















≤ 2 4 j sup
i≥ j

k1
i

















∑

l≥ j

∣

∣

∣α2
−l

∣

∣

∣

















= 2 4 jk1
i( j)

















∑

l≥ j

∣

∣

∣α2
−l

∣

∣

∣

















,

where, since ki → 0 when j → ∞, i( j) ≥ j is the necessarily attained supremum of the ki’s

for i ≥ j. So that 4 jk1
i( j)
= 4 j−i( j)4i( j)k1

i( j)
is bounded above because K1 ∈ K 1. On the other

hand, since ᾱ2 ∈ l1(Z) the tail
∑

l≥ j

∣

∣

∣α2
−l

∣

∣

∣ tends to zero as j→ ∞.

Proof of (c). Since each Ki, i = 1, 2, can be regarded as the kernel of the operator Ti f (x) =
∫

y∈R+ Ki(x, y) f (y)dy, K3 is the kernel of the composition of T1 and T2, we have that

T3h = (T2 ◦ T1)h = T2(T1h) = T2(λ1(h)h) = λ1(h)T2h = λ1(h)λ2(h)h.

So λ1 and λ2 depend only on the scale j of h, so does λ3
= λ1λ2. �

Corollary 14. Let K ∈ K 1 with parameter σ, then for n positive integer the kernel Kn

obtained as the composition of K n-times, i.e.,

K(n)(x, y) =

(
(R+)n−1

K(x, y1) · · ·K(yn−1, y)dy1 · · · dyn−1

belongs to K 1 with parameter nσ and eigenvalues λ
(n)

j
= (λ j)

n, j ∈ Z, with λ j the eigenval-

ues of K.

Trying to keep the analogy with the classical CLT, the mollification operator, that we have

to define, is expected to preserve K 1 producing a contraction of the parameter σ in order to

counteract the dilation provided by the iteration procedure.

The first caveat that we have in our search for dilations is that, even when R+ is closed un-

der (positive) dilations, the dyadic system is not. This means that usually K(cx, cy) does not

even belong to K when K ∈ K and c > 0. Nevertheless, Lemma 2 in § 2 gives the answer.

If K(x, y) = ϕ(δ(x, y)) then K j(x, y) = 2 jK(2 jx, 2 jy) = 2 jK(δ(2 jx, 2 jy)) = 2 jϕ(2 jδ(x, y)) for

every j ∈ Z. Hence K j depends only on δ. In the next lemma we summarize the elementary

properties of this mollification operator.
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Lemma 15. Let K ∈ K 1 with parameter σ be given. Then K j(x, y) = 2 jK(2 jx, 2 jy)

belongs to K 1 with parameter 2− jσ. Moreover, denoting with ϕ( j), ᾱ j
= (α

j

i
: i ∈ Z) and

λ̄ j
= (λ

j

i
: i ∈ Z) the corresponding functions and sequences for each K j we have that;

(a) ϕ( j)(s) = 2 jϕ(2 js), j ∈ Z, s > 0;

(b) α
j

l
= αl− j, j ∈ Z, l ∈ Z;

(c) λ
j

l
= λl− j, j ∈ Z, l ∈ Z.

Proof. From the considerations above, it is clear that K j ∈ K . Now, for j ∈ Z fixed,

δ(x, y)2K j(x, y) = δ(x, y)22 jK(2 jx, 2 jy) = 2− jδ(2 jx, 2 jy)2K(2 jx, 2 jy)

which tends to 2− jσ when δ(x, y)→ ∞. Property (a) is clear. Property (b) follows from (a);

ϕ( j)(s) = 2 jϕ(2 js) = 2 j
∑

l∈Z
αlϕl(2

js) =
∑

l∈Z
αlϕl+ j(s) =

∑

l∈Z
αl− jϕl(s).

Hence α
j

l
= αl− j. Finally (c) follows from (b) and (4.c) in Lemma 4. �

Corollary 14 and Lemma 15 show that for K ∈ K 1 with parameter σ if we iterate K,

2i-times (i a positive integer) to obtain K(2i) and then we mollify this kernel by a scale 2i, the

new kernel Mi belongs to K 1 with parameter σ. Notice also that iteration and mollification

commute, so that Mi can be also seen as the 2i-th iteration of the 2i mollification of K. Let

us gather in the next statement the basic properties of Mi that shall be used later, and follows

from Corollary 14 and Lemma 15.

Lemma 16. Let K ∈ K 1 with parameter σ and let i be a positive integer. Then, the

kernel Mi ∈ K 1 with parameter σ and λi
j
= λ2i

j−i
.

7. The main result

We are in position to state and prove the main result of this paper. In order to avoid a

notational overload in the next statement, we shall use the notation introduced in the above

sections.

Theorem 17. Let K be in K 1 with parameter 2
3
t > 0. Then

(a) the eigenvalues of Mi converge to the eigenvalues of the kernel in (1.2) when i → +∞,

precisely

λ2i

j−i → e−t2 j

, when i→ ∞;

(b) for 1 < p < ∞ and u0 ∈ Lp(R+), the functions vi(x) =
∫

R+
Mi(x, y)u0(y)dy converge in

the Lp(R+) sense to the solution u(x, t) of the problem

(P)

{

∂u
∂t
= D1u, x ∈ R+, t > 0;

u(x, 0) = u0(x), x ∈ R+.

for the precise value of t for which the initial kernel K is 1-stable with parameter 2
3
t.
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Proof of (a). Since K ∈ K 1 with parameter 2
3
t > 0, which means that km4m → 2

3
t as m

tends to infinity we have both that km2m → 0 when m → ∞ and that
∑

l<m kl2
l−1 < 1 for

every positive integer m. Since, on the other hand
∑

l∈Z kl2
l−1
= 1, we have for j ∈ Z fixed

and i a large nonnegative integer that

0 <
∑

l<i− j

kl2
l−1 −

ki− j2
i− j

2
< 1.

Hence, from Lemma 15 and Lemma 4, the j-th scale eigenvalues of the operator induced by

the kernel Mi ar given by

λ2i

j−i =

















1

2

















∑

l<i− j

kl2
l − ki− j2

i− j

































2i

=

















∑

l<i− j

kl2
l−1 − ki− j

2i− j

2

















2i

=

















1 −
















∑

l≥i− j

kl2
l−1
+

ki− j4
i− j

2

2 j

2i

































2i

=

[

1 − γ(i, j)
2 j

2i

]2i

,

with γ(i, j) = 2i− j
∑

l≥i− j kl2
l−1
+

ki− j4
i− j

2
. Notice that

γ(i, j) = 2i− j
∑

l≥i− j

2−l−1(kl4
l) +

ki− j4
i− j

2
=

∞
∑

m=0

2−m−1(ki+m− j4
i+m− j) +

ki− j4
i− j

2
,

which tends to t > 0 when i→ ∞. With these remarks we can write

λ2i

j−i =























[

1 − γ(i, j)2 j

2i

]

2i

γ(i, j)2 j























γ(i, j)2 j

which tends to e−t2 j

when i tends to infinity.

Proof of (b). The function vi(x) − u(x, t) can be seen as the difference of two operators Ti

and T t
∞ acting on the initial condition,

vi(x) = Tiu0(x) =

∫

y∈R+
Mi(x, y)u0(y)dy
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and

u(x, t) = T t
∞u0(x) =

∫

y∈R+
K(x, y; t)u0(y)dy.

Since the eigenvalues of Ti−T t
∞ are given by λ2i

j(h)−i
−e−t2 j(h)

, for each h ∈H , from Theorem 9

in Section 4 we have

‖vi − u(·, t)‖Lp(R+) ≤ C1

∥

∥

∥

∥

∥

(

∑

h∈H

∣

∣

∣

∣

λ2i

j(h)−i − e−t2 j(h)
∣

∣

∣

∣

2

|〈u0, h〉|2 |I(h)|−1 χI(h)(·)
)1/2∥

∥

∥

∥

∥

Lp(R+)

.

From (5.g) and (5.h) in Lemma 4 we have that the sequence λ2i

j(h)−i
is uniformly bounded.

On the other hand, since
∥

∥

∥

∥

(∑

h∈H |〈u0, h〉|2 |I(h)|−1χI(h)(·)
)1/2

∥

∥

∥

∥

Lp(R+)
≤ C2 ‖u0‖Lp(R+) < ∞,

we can take the limit for i → +∞ inside the Lp-norm and the series in order to get that

‖vi − u(·, t)‖Lp(R+) → 0 when i→ +∞. �

The function Γ(x, y; t) = K(x, y; t), in (1.2), for t > 0 and Γ(x, y; t) = 0 for t ≤ 0 gives,

at least formally a fundamental solution of ∂Γ
∂t
− D1

yΓ. In other words, ∂Γ
∂t
− D1

yΓ = δx,0, the

Dirac unit mass at (x, 0) ∈ R+ × R.
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