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Prioritization of low-carbon suppliers based
on Pythagorean fuzzy group decision making
with self-confidence level

Shouzhen Zenga, Xinming Penga, Tomas Bale�zentisb and Dalia Streimikieneb

aSchool of Business, Ningbo University, Ningbo, China; bLithuanian Institute of Agrarian Economics,
Vilnius, Lithuania

ABSTRACT
Business decisions often require economic analysis involving
uncertainties. This study brings forward the multi-attribute group
decision making (MAGDM) framework based upon Pythagorean
fuzzy (PF) sets with self-confidence of decision makers. By incor-
porating the ideas of the order-inducing variables of the induced
ordered weighted averaging (IOWA) operator, we propose two PF
confidence aggregation methods, namely PF confidence induced
ordered weighted averaging (PFCIOWA) operator and PF confi-
dence induced hybrid weighted averaging (PFCIHWA) operator.
The focal property of the devised operators is their ability to take
into consideration both the evaluation data and its corresponding
confidence levels. Moreover, a MAGDM method based on the
developed operators is adopted. Finally, the practicality of the
method is tested by using low carbon supplier selection prob-
lems. The new approach is compared against the existing ones in
order to check its applicability and validity. As an empirical case,
the low carbon supplier selection problem is solved.
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1. Introduction

MAGDM is a widely used tool in human activity, whose main purpose is to make a
choice among a finite set of available alternatives using the preference information
submitted by multiple experts (decision makers). However, the process of MAGDM
tends to be ambiguous and inaccurate as it involves complexity of human cognitive
thinking, which makes it difficult for decision makers or experts to give precise evalu-
ations or preference information in the evaluation process. To handle these problems,
intuitionistic fuzzy set (IFS) proposed by Atanassov (1986) can be considered as an
appealing tool to deal with the fuzziness and inaccuracy in the data. Given the ability
to handle different types of uncertain information, theoretical development and
empirical applications of IFS have seen increasing spread across the domains. To
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date, it has been widely applied in economics, management and many other fields.
Especially, Sirbiladze and Badagadze (2017) developed several probabilistic aggregation
operators for IFS and studied their application in supplier selection problems.
B€uy€uk€ozkan and G€oçer (2017) investigated the axiomatic design method for supplier
selection problems under the IFS environment. Recently, Yu and Liao (2016) conducted
a detailed scientometric review on the development of IFS from various perspectives.
Based on the study by Yu and Liao (2016), Liu and Liao (2017) carried out an in-depth
bibliometric survey of the decision-making process involving intuitionistic fuzzy and
other types of fuzzy information theories covering the years 1970� 2015.

Considering the trends outlined in the literature review above, the usefulness and
powerfulness of the IFS can be clearly described. However, the real-life applications
involve situations where the sum of the degree of membership (l) and the degree of
non-membership (v) of an IF element given by experts or decision makers is higher than
unity, yet square of the sum is still lower than or equal to unity. In these cases, IFS is not
suitable for use to describe experts’ or decision makers’ evaluation or preference informa-
tion. In order to overcome this shortcoming, the Pythagorean fuzzy set (PFS) proposed
by Yager (2014) can be considered as a useful extension of IFS. More specifically, the
restriction on the sum of the two parameters (degrees) is changed from 0 � lþ v � 1
into l2 þ v2 � 1: Based on the relaxed constraint, the PFS is more flexible than IFS
because the PFS is able to depict imprecise and ambiguous information that the latter
cannot. Consequently, the PFS theory has been perceived as an appropriate tool to handle
MAGDM problems with uncertainty (Garg, 2017). Thus, a number of MAGDM
approaches and techniques under PFS environment are developed, for example, Zhang
and Xu (2014) extended the traditional TOPSIS technique to handle the PF MAGDM
problems. Zhang (2016a) developed a closeness indicator for ranking the Pythagorean
fuzzy numbers (PFNs). Yet another ranking method was devised by Peng and Yang
(2015) to facilitate PF MAGDM problems. Zhang (2016b) proposed a new ranking
method and a novel similarity measure for PFNs. Later, Peng and Yang (2016) defined
several Choquet integral PF operators. Zeng, Chen, and Li (2016) proposed a hybrid PF
TOPSIS method based on distance measure and aggregation operator. Chen (2018) intro-
duced novel VIKOR (Vlse Kriterijumska Optimizacija IKompromisno Resenje)-based
methods for PF multiple criteria decision problems. Zeng (2017) presented a PF
MAGDM method based on probabilistic information and the ordered weighted averaging
(OWA) (Yager, 1988) approach. Peng and Dai (2017) proposed the stochastic PF decision
making framework built upon prospect theory and regret theory. Wei (2017) developed
some PF interaction aggregation operators and studied their application.

Obviously, there have been a number of extensions proposed for PF aggregation
methods and decision making frameworks. However, it can be noted that all the above
mentioned studies do not consider the information regarding the self-confidence associ-
ated with the ratings submitted by the decision makers (or experts). In other words, it
is implicitly assumed that the decision makers (or experts) feature uniform levels of
familiarity of the attributes describing the assessed objects. But in real-life situations,
decision makers (or experts) often have different academic and professional back-
grounds, which will result in their differences and inconsistencies for the evaluated
object (Liu, Dong, Chiclana, Cabrerizo, & Herrera-Viedma, 2017; Xia, Xu, & Chen,
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2011; Yu, 2014). Thus it is important to consider that the preference values are pro-
vided with the different self-confidence levels of decision makers. In order to overcome
this drawback and enhance the scientific validity of evaluation, decision makers (or
experts) may provide the preference information on the objects under evaluation along
with the corresponding confidence levels defining the degrees to which they are confi-
dent with the ratings they provided given the circumstances surrounding the evaluation.
On the other hand, addressing the vagueness and imprecision by using the powerful
PFS in decision making process concerning the low carbon supplier evaluation problem
is an interesting topic. Considering the reasons discussed above, this paper proposes
two new PF aggregation methods, viz. PFCIOWA operator and PFCIHWA operator, to
aggregate information in the evaluation of a set of alternatives when information is
expressed in PFNs and supplemented with confidence levels. Moreover, a MAGDM
method based on the proposed operators is developed. Finally, the practicality of the
method is tested by using low-carbon supplier selection problems.

The paper further proceeds in the following manner. Preliminaries for the IF, PFS
theory and IOWA operator are discussed in Section 2. The PFCIOWA and
PFCIHWA operators are developed in Section 3. Section 4 proposes a MAGDM
method involving the developed operators. Next, Section 5 embarks on an illustrative
numerical example for realising the practicality of the proposed methodology. Finally,
Section 6 puts the concluding remarks alongside directions for further research.

2. Preliminaries

Definition 1. Let X ¼ fx1; x2; :::; xng be a universe of discourse, an IFS I in X is
defined in the following way:

I ¼ hx; lI xð Þ; vI xð Þð Þijx 2 X
� �

: (1)

where functions lIðxÞ and vIðxÞ are termed the membership degree and non-mem-
bership degree, respectively, defining to which extent element x belongs to the set I:
The degrees of membership and non-membership are restricted so as to maintain
0 � lIðxÞ þ vIðxÞ � 1; and pIðxÞ ¼ 1�lIðxÞ�vIðxÞ is termed the degree of hesitancy
of x to the set I:

Yager (2014) offered the PFS as a generalization of the IFS which basically extends
the domain of the parameters defining a certain IFS. More specifically, the sum of
squares of the parameters is restricted rather than just the sum of the parameters.
Formally, the PFS is defined as follows:

Definition 2. Assuming X ¼ fx1; x2; :::; xng is a fixed set, a certain PFS P is defined
in the following manner:

P ¼ hx; lP xð Þ; vP xð Þð Þijx 2 X
� �

: (2)

where functions lPðxÞ and vPðxÞ represent the degrees of membership and non-
membership, respectively, for element x to set P: The degrees of membership and
non-membership are restricted so that condition 0 � ðlPðxÞÞ2 þ ðvPðxÞÞ2 � 1 is
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maintained. The degree of indeterminacy for x to set P is calculated residually

as pPðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðlPðxÞÞ2�ðvPðxÞÞ2

q
:

A shorthand notation has been proposed by Zhang and Xu (2014): a Pythagorean
fuzzy number (PFN) is a collection of two parameters a ¼ ðla; vaÞ such that la 2
½0; 1�; va 2 ½0; 1� and ðlaÞ2 þ ðvaÞ2 � 1: Furthermore, some basic operation laws and
comparison method of PFNs also were introduced.

Definition 3. The operations for arbitrarily given PFNs a ¼ ðla; vaÞ; a1 ¼ ðla1 ; va1Þ
and a2 ¼ ðla2 ; va2Þ are defined as following:

1. a1�a2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

a1
þ l2

a2
�l2

a1
� l2

a2

q
; va1 � va2Þ;

2. a1 � a2 ¼ ðla1 � la2 ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
a1
þ v2

a2
�v2

a1
� v2

a2

q
Þ;

3. k � a ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�l2aÞk

q
; ðvaÞkÞ ; k>0;

4. ak ¼ ððlaÞk;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�v2

a
Þk

q
Þ ; k>0:

Multi-criteria decision making involves ranking of alternatives. In case information
is expressed in the PFNs, certain ranking rules of such numbers are needed. The fol-
lowing definition presents an instance of these rules:

Definition 4. Following Zhang and Xu (2014), a certain PFN a ¼ ðla; vaÞ can be

associated with score and accuracy functions which are obtained as sðaÞ ¼
ðlaÞ2�ð�aÞ2 and hðaÞ ¼ ðlaÞ2 þ ð�aÞ2 respectively. Therefore, any two PFNs a1 ¼
ðla1 ; va1Þ and a2 ¼ ðla2 ; va2Þ can be compared: if sða1Þ>sða2Þ; then a1>a2; if sða1Þ ¼
sða2Þ; then

�
hða1Þ<hða2Þ ) a1<a2
hða1Þ>hða2Þ ) a1>a2

:

The operational rules above have been applied in a number of frameworks which
allowed for construction of different PF aggregation operators. Among these, Yager
(2014) introduced the Pythagorean fuzzy weighted averaging (PFWA) operator which
has been a celebrated tool for handling PF information. The definition below dis-
cusses the operator:

Definition 5. For a certain collection of PFNs aj ¼ ðlaj ; vajÞ; j ¼ 1; 2; :::; n; an
n-dimensional PFWA operator is defined as a mapping PFWA:Xn ! X (X is the set
of all PFNs) which considers weighting vector W with its elements restricted by wj 2
½0; 1� and Pn

j¼1 wj ¼ 1 :

PFWA a1; a2; :::; anð Þ ¼ �
n

j¼1
wjaj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Yn
j¼1

1�l2aj
� �wj

vuut ;
Yn
j¼1

v
wj
aj

0
B@

1
CA: (3)

Yager and Filev (1999) introduced the IOWA operator which aggregates informa-
tion by re-ordering the arguments according to order-inducing variables. Contrasted
to the OWA operator, the IOWA operator does not consider the values of the
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arguments during the aggregation process. Instead, the order-inducing variables
provide a rule for re-ordering of and attaching corresponding weights to the argu-
ments. Due to its suitability for decision analysis, applications of the IOWA oper-
ator can be found across different areas of performance management and
frameworks involving multiple decision making approaches (Aggarwal, 2015;
Merig�o & Gil-Lafuente, 2013; Xian, Zhang, & Xue, 2016; Zeng, Merig�o, Palacios-
Marqu�es, Jin, & Gu, 2017; Zhou, Tao, Chen, & Liu, 2014). The IOWA operator can
be defined in the following manner:

Definition 6. An n-dimensional IOWA operator maps a collection of real numbers
to a single real number IOWA:Rn � Rn ! R (R is the set of real numbers) with
respect to an associated weighting vector W with its elements bounded according to
wj 2 ½0; 1� and Pn

j¼1 wj ¼ 1 such that:

IOWA hu1; a1i; hu2; a2i; :::; hun; anið Þ ¼
Xn
j¼1

wjbj; (4)

where bj actually represents a certain value ai from the IOWA pair hui; aii featuring
the j-th largest ui; note that the order inducing variable ui and the argument variable
ai are the values presented as the initial decision information.

Following the ideal of the IOWA operator, Xu, Yu, Zeng, and Liu (2017) intro-
duced the Pythagorean fuzzy induced ordered weighted averaging
(PFIOWA) operator.

Definition 7. For a certain collection of PFNs aj ¼ ðlaj ; vajÞðj ¼ 1; 2; :::; nÞ; a
PFIOWA operator is defined by a weighting vector W ¼ ðw1; :::;wnÞ and an order-
inducing vector U ¼ ðu1; :::; unÞ; such that:

PFIOWA hu1; a1i; hu2; a2i; :::; hun; anið Þ ¼
Xn
j¼1

wjbj
(5)

where 0 � wj � 1 and
Pn

j¼1 wj ¼ 1; ðb1; :::; bnÞ is recorded ða1; :::; anÞ as per decreas-
ing order of ðu1; :::; unÞ:

3. Pythagorean fuzzy information aggregation method with
confidence level

The order-induced variables used for the IOWA operator can be constructed on
either cardinal or ordinal scale, and are often used to represent any property related
to each alternative-criterion pair, such as confidence levels, importance, or consist-
ency of an alternative (Yager & Filev, 1999). Following this kind of reasoning allows
us to directly construct the Pythagorean fuzzy confidence level aggregation method
taking the PFIOWA operator as the underlying aggregation principle. However, the
role of the order-induced variables in IOWA and PFIOWA operators is limited to
establishing the order of arguments to be aggregated, which often results in the loss
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of information related to inherent changes between the order-inducing variables.
More specifically, the differences in the magnitude of the order-inducing variables do
not affect the aggregation results. So we shall propose a new confidence aggregation
operator with PF information, named the PFCIOWA operator, which can not only
consider the confidence level represented with order-induced variables in the actual
aggregation step, but also aggregate the PF information. Its definition is given below.

Definition 8. Let there be a collection of PFNs aj ¼ ðlaj ; vajÞ; j ¼ 1; 2; :::; n: Further
on, let lj be the confidence levels associated with each PFN aj such that 0 � lj � 1:
An n-dimensional PFCIOWA operator is then defined as a mapping
PFCIOWA:Rn � Xn ! X (R and X are the sets of real numbers and PFNs, respect-
ively) that applies weighting vector W with its elements satisfying wj 2 ½0; 1� andPn

j¼1 wj ¼ 1 such that:

PFCIOWA hl1; a1i; hl2; a2i; :::; hln; anið Þ ¼
Xn
j¼1

wjlr jð Þar jð Þ : (6)

where ðrð1Þ; :::; rðnÞÞ is a permutation of ð1; 2; :::; nÞ carried out with respect to the
confidence levels such that lrðj�1Þ 	 lrðjÞ for any j; and a

rðjÞ is a PFN corresponding to
the confidence level lrðjÞ; j ¼ 1; 2; :::; n:

Next we take up an example to illustrate the aggregation process based on the
PFCIOWA operator.

Example 1. Let the PFNs and confidence levels to be aggregated in the form
hli; aii beh0:9; ð0:3; 0:8Þi; h0:5; ð0:6; 0:6Þi; h0:6; ð0:4; 0:7Þi; h0:8; ð0:7; 0:2Þi and the
weighting vector is W ¼ ð0:3; 0:2; 0:1; 0:4Þ: We first record the confidence levels
and have:

lr 1ð Þ ¼ l1 ¼ 0:9; lr 2ð Þ ¼ l4 ¼ 0:8; lr 3ð Þ ¼ l3 ¼ 0:6; lr 4ð Þ ¼ l2 ¼ 0:5:

Thus,

a
r 1ð Þ ¼ a1 ;

a
r 2ð Þ ¼ a4 ;

a
r 3ð Þ ¼ a3 ;

a
r 4ð Þ ¼ a2 ;

So, by Eq. (6), we get the final aggregation result:

PFCIOWA h0:9; 0:3; 0:8ð Þi; h0:5; 0:6; 0:6ð Þi; h0:6; 0:4; 0:7ð Þi; h0:8; 0:7; 0:2ð Þi� 	
¼ 0:3� 0:9� 0:3; 0:8ð Þ�0:2� 0:8� 0:7; 0:2ð Þ�
�0:1� 0:6� 0:4; 0:7ð Þ�0:4� 0:5� 0:6; 0:6ð Þ

¼ 0:456; 0:643ð Þ:
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Differently from the IOWA and the PFIOWA operators where the order-inducing
variables simply decide the ordering of the arguments, the PFCIOWA operator uses
the information provided by the confidence indicators when constructing the weights.
Also, the information expressed in terms of PFNs can by aggregated which makes the
PFCIOWA operator suitable for handling uncertain information.

Considering the operational rules defined for the PFNs, one can prove that the
PFCIOWA operator features the desirable properties for aggregation operators. These
include monotonicity, idempotency, boundedness and independence on permutation.
The theorems below prove the aforementioned properties for the PFCIOWA operator.

Theorem 1. (Monotonicity). Let there be the two collections of PFNs denoted by aj
and bj; j ¼ 1; 2; :::; n: Further on, let there be aj � bj for all j; then

PFCIOWA hl1; a1i; :::; hln; anið Þ � PFCIOWA hl1; b1i; :::; hln; bnið Þ: (7)

Theorem 2. (Idempotency). If all PFNs aj; j ¼ 1; 2; :::; n; are equal, i.e. aj ¼ a for all
j; then

PFCIOWA hl1; a1i; :::; hln; anið Þ ¼ a: (8)

Theorem 3. (Boundedness). The PFCIOWA operator returns the aggregate value
which lies in between the values provided by max and min operators, that is

min a1; :::; anð Þ � PFCIOWA hl1; a1i; :::; hln; anið Þ � max a1; :::; anð Þ: (9)

Theorem 4. (Independence on permutation). Say a collection of PFNs
ðhl1; b1i; :::; hln; bniÞ is any permutation of another collection of PFNs
ðhl1; a1i; :::; hln; aniÞ; j ¼ 1; 2; :::; n; then

PFCIOWA hl1; a1i; :::; hln; anið Þ ¼ PFCIOWA hl1; b1i; :::; hln; bnið Þ: (10)

Note that the proofs of these theorems are straightforward and we, thus, omit
them here for the sake of brevity.

Obviously, the PFCIOWA operator only weights the induced order arguments, but
ignores the importance of the arguments themselves. Next we introduce the
PFCIHWA operator, in which the weights of the induced order arguments and them-
selves are all taken into account.

Definition 9. Say there is a collection of PFNs aj ¼ ðlaj ; vajÞ; j ¼ 1; 2; :::; n: Then, the
n-dimensional PFCIHWA operator is defined as a mapping PFCIHWA:Rn � Xn ! X
(R and X are the sets of real numbers and PFNs, respectively) that has an associated
weight vector W with wj 2 ½0; 1� and Pn

j¼1 wj ¼ 1 such that:

PFCIHWA hl1; a1i; hl2; a2i; :::; hln; anið Þ ¼
Xn
j¼1

wjlr jð Þbr jð Þ ; (11)
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where b
rðjÞ ¼ nxjarðjÞ ; arðjÞ is the PFN corresponding to the confidence level lrðjÞ; j ¼

1; 2; :::; n; xj is the corresponding weight of argument PFN aj ¼ ðlaj ; vajÞ; j ¼
1; 2; :::; n; satisfying xi 2 ½0; 1� and

Pn
i¼1 xi ¼ 1;n is balancing coefficient, ensuring

balance between the arguments aggregated and the result of aggregation.

The example below is provided to give an intuition on the aggregation of a set
of PFNs according to the rules of the proposed operator.

Example 2. Three experts (whose weights vector is x ¼ ð0:4; 0:5; 0:1ÞT) give their
PFNs evaluations and corresponding confidence levels in the form h0:7; ð0:5; 0:8Þi;
h0:9; ð0:7; 0:7Þi and h0:5; ð0:6; 0:3Þi; respectively. We first record the confidence levels
and have:

lr 1ð Þ ¼ 0:9; lr 2ð Þ ¼ 0:7; lr 3ð Þ ¼ 0:5;

In this example, the balancing coefficient is n ¼ 3 and based on the operational
laws of PFNs, we have

b
r 1ð Þ ¼ nx1ar 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�0:72ð Þ3�0:5

q
; 0:73�0:5


 �
¼ 0:797; 0:586ð Þ;

b
r 2ð Þ ¼ nx2ar 2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�0:52ð Þ3�0:4

q
; 0:83�0:4


 �
¼ 0:540; 0:765ð Þ;

b
r 3ð Þ ¼ nx3ar 3ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�0:62ð Þ3�0:1

q
; 0:33�0:1


 �
¼ 0:354; 0:697ð Þ;

Suppose the underlying vector of weight coefficients for the PFCIHWA operator is
given by W ¼ ð0:2; 0:5; 0:3ÞT : Therefore, by applying the Eq. (11), we get

PFCIHWA h0:7; 0:5; 0:8ð Þi; h0:9; 0:7; 0:7ð Þi; h0:5; 0:6; 0:3ð Þi� 	 ¼ 0:525; 0:783ð Þ:

Given the principles outlined in Definition 9 and Example 2, it can be concluded
that that the PFCIHWA operator comprises the three main stages of data processing:
first, the initial data are weighted by means of the pre-specified weights reflecting the
importance of the arguments, the data are then re-ordered according to order-induc-
ing variables and, finally, the weights are applied upon the re-ordered arguments to
reflect the importance of the positions of the arguments as well as the associated lev-
els of confidence. Once the data are processed, they can be aggregated into a single
value (a PFN). Therefore, the PFCIHWA operator simultaneously captures the differ-
ence in the importance of arguments and their positions defined by the order-induc-
ing variables. Later, we are to examine the relationship between the PFCIHWA and
PFCIOWA operators.

Theorem 5. The PFCIOWA operator is a particular case of the
PFCIHWA operator.

Proof. Let the weights of the initial data be uniform, i.e. x ¼ ð1=n; 1=n; :::; 1=nÞT ;
then
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PFCIHWA hl1; a1i; :::; hln; anið Þ ¼
Xn
j¼1

wjlr jð Þbr jð Þ

¼
Xn
j¼1

wjlr jð Þ nxjar jð Þð Þ

¼
Xn
j¼1

wjlr jð Þar jð Þ

¼ PFCIOWA hl1; a1i; :::; hln; anið Þ

:

which proves Theorem 5.
Note that if there exists no differences in confidence levels, i.e. l1 ¼ l2 ¼ ::: ¼ ln ¼ l;

then the PFCIHWA operator boils down to the PF combined weighted average (PFCWA)
operator, which can be defined in the following way:

PFCWA a1; a2; :::; anð Þ ¼
Xn
j¼1

wjbj
; (12)

where b
j
¼ nxjaj ; xj stands for the corresponding weight of argument PFN aj ¼

ðlaj ; vajÞ; j ¼ 1; 2; :::; n; satisfying xi 2 ½0; 1� and
Pn

i¼1 xi ¼ 1;n is balancing coeffi-
cient, which ensures the balance between arguments and the result of aggregation.
Assuming equal importance of the arguments, we set x ¼ ð1=n; 1=n; :::; 1=nÞT ; then
the PFCWA operator boils down to the PFWA operator. Thus, we showed that the
PFCIOWA, PFCWA and PFWA operators can all be derived as special cases of the
PFCIHWA operator. Moreover, a number of instances of aggregation operators can
be devised by modifying the PFCIHWA operator in the spirit of the recent studies on
aggregation operators (Liu & Peng, 2017; Merig�o, Guill�en, & Sarabia, 2015; Wang,
Wang, & Li, 2016; Zeng, 2016; Zeng et al., 2016).

4. Pythagorean fuzzy MAGDM model based on the PFCIHWA operator

In this section, we will focus on studying the application of the PFICHWA operator
in a MAGDM problems. Consider a MAGDM problem which involves m alternatives
denoted as A ¼ fA1;A2; :::;Amg and compared against n attributes denoted as C ¼
fC1;C2; :::;Cng with weights arranged into vector x ¼ ðx1;x2; :::;xnÞT satisfying
xk 	 0 and

Pn
k¼1 xk ¼ 1: Furthermore, let there be multiple decision makers

(experts) denoted by set E ¼ fe1; e2; :::; etg and associated with the corresponding
weights arranged into weight vector k ¼ ðk1; k2; :::; ktÞT ; kk 	 0;

Pt
k¼1 kk ¼ 1: The

process can be outlined in terms of the following steps:
Step 1. The ratings and the information on the confidence are provided by each

expert in regard to alternative Ai against attribute Cj: In this way, the individual PF
decision matrix is established ðhlðkÞij ; aðkÞij iÞm�n for each k ¼ 1; 2; :::; t; where aðkÞij
denotes the rating expressed in PFNs: aðkÞij ¼ ðlðkÞij ; vðkÞij Þ; and lðkÞij is the corresponding
confidence level for aðkÞij ; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; n:

Step 2. The individual decision matrices ðhlðkÞij ; aðkÞij iÞm�n; k ¼ 1; 2; :::; t; are then
summarised into the aggregate PF decision matrix ðaijÞm�n; where
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aij ¼ PFCIHWA hl 1ð Þ
ij ; a 1ð Þ

ij i; hl 2ð Þ
ij ; a 2ð Þ

ij i; :::; hl tð Þij ; a tð Þ
ij i

� �
: (13)

Step 3. The PF utility scores are calculated for each alternative by applying the
PFWA operator on the PF aggregate ratings aij; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; n: The util-
ity score for the i-th alternative ai ði ¼ 1; 2; :::;mÞ is obtained as:

ai ¼ PFWA ai1; ai2; :::; ainð Þ: (14)

Step 4. The alternatives are ranked and the best one is identified by applying the
score and accuracy functions given in Definition 4 on each ai; i ¼ 1; 2; :::;m: The
higher values imply more preferable alternatives.

5. An application for the choice of low-carbon supplier

Environmental considerations have become more important across different regions
and sectors due to the global climate change (Anastasiadis, Konstantinopoulos,
Kondylis, Vokas, & Salame, 2018; Zhao et al., 2017). In recent years, much attention
has been paid to analysis of the low carbon supply chain amid the pursuit for curbing
the global warming and environmental protection awareness (Govindan & Sivakumar,
2016; Krishnendu, Ravi, Surendra, & Lakshman, 2012; Rao, Xiao, Xie, Goh, & Zheng,
2017). The creation of sustainable supply chain and subsequent reduction of the
environmental pressures highly rely on identifying and selecting suitable low-carbon
suppliers. Generally speaking, the supplier selection process can be represented by a
MADM problem because discordant and numerous attributes should be considered
and evaluated in the decision process (Qin, Liu, & Pedrycz, 2017; Song, Xu, & Liu,
2017; Wan, Xu, & Dong, 2017). So far, low carbon supplier evaluation and selection
has been implemented by means of the MADM methods, yet it was often assumed
that the attribute information is certain and precise (Asadabadi, 2017; Davood, Seyed,
& Ashkan, 2016; Jain, Panchal, & Kumar, 2014). However, the rapid development of
the economy and complex commercial environment makes it difficult for decision
makers to give precise evaluations or preference information due to the ambiguity of
human thinking involved. Recently, the induced intuitionistic ordered weighted aver-
aging (IIOWA) operator was applied by Tong and Wang (2016) when solving low
carbon supplier selection problem involving intuitionistic preference information. As
mentioned in the Introduction, the relaxed restrictions on the (non-)membership
degrees of the PFSs allow for an extended domain thus making PFS superior to intui-
tionistic fuzzy set (IFS) in describing imprecise and ambiguous information.
Therefore, it is interesting and necessary to investigate the low carbon supplier selec-
tion problem in the PF situation.

To illustrate the possibilities for solving the low carbon supplier problem by
means of reasoning based on the PFSs, we consider the following MADM prob-
lem. The proposed framework relies on the principles outlined in Section 4. Let
us assume there are a group of experts who are to provide ratings for different
suppliers in regard to the objectives of the low carbon supply chain. Specifically,
let there be the four potential suppliers denoted by Ai; i ¼ 1; 2; :::; 4; and the five
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criteria: low carbon technology (C1), cost (C2), risk factor (C3), capacity (C4) and
Economic efficiency (C5). Due to uncertainties associated with the phenomenon
under analysis, PFNs are used to express the ratings provided by the group of
experts (k1 ¼ 0:35; k2 ¼ 0:25; k3 ¼ 0:4). The resulting individual decision matrices
are given in Tables 1–3.

The decision making process proceeds by aggregating the individual decision
matrices into the collective one by exploiting the PFCIHWA operator. Let the under-
lying weight vector be W ¼ ð0:243; 0:514; 0:243ÞT ; as suggested by the normal distri-
bution method (Xu, 2005). Table 4 presents the results.

In this problem, the five attributes have different importance as represented by the
weight vector x ¼ ð0:22; 0:18; 0:25; 0:15; 0:20ÞT : Based on this information, we can
aggregate the collective information from Table 4 by employing the PFWA operator.
The resulting PF utility for each alternativeAi ði ¼ 1; 2; 3; 4Þ is given below:

a1 ¼ 0:6884; 0:3072ð Þ; a2 ¼ 0:6144; 0:3583ð Þ;
a3 ¼ 0:7492; 0:3125ð Þ; a4 ¼ 0:6462; 0:3191ð Þ:

Finally, the PF utility scores are defuzzified by applying the score function for each
ai; i ¼ 1; 2; 3; 4 :

Table 2. PF decision matrix for expert 2.
C1 C2 C3 C4 C5

A1 h0:6; ð0:3; 0:8Þi h0:8; ð0:4; 0:5Þi h0:7; ð0:2; 0:6Þi h0:5; ð0:7; 0:2Þi h0:4; ð0:8; 0:1Þi
A2 h0:7; ð0:6; 0:2Þi h0:8; ð0:4; 0:4Þi h0:4; ð0:3; 0:6Þi h0:6; ð0:7; 0:5Þi h0:3; ð0:6; 0:2Þi
A3 h0:3; ð0:7; 0:4Þi h0:8; ð0:9; 0:2Þi h0:9; ð0:9; 0:1Þi h0:7; ð0:3; 0:8Þi h0:6; ð0:7; 0:4Þi
A4 h0:8; ð0:5; 0:4Þi h0:6; ð0:8; 0:1Þi h0:8; ð0:7; 0:1Þi h0:6; ð0:2; 0:7Þi h0:7; ð0:3; 0:5Þi

Table 3. PF decision matrix for expert 3.
C1 C2 C3 C4 C5

A1 h0:3; ð0:5; 0:6Þi h0:8; ð0:4; 0:7Þi h0:4; ð0:7; 0:4Þi h0:4; ð0:9; 0:3Þi h0:6; ð0:6; 0:5Þi
A2 h0:7; ð0:7; 0:3Þi h0:3; ð0:7; 0:1Þi h0:8; ð0:8; 0:1Þi h0:7; ð0:6; 0:2Þi h0:4; ð0:4; 0:8Þi
A3 h0:6; ð0:3; 0:8Þi h0:7; ð0:8; 0:2Þi h0:6; ð0:9; 0:1Þi h0:6; ð0:4; 0:6Þi h0:7; ð0:8; 0:1Þi
A4 h0:3; ð0:9; 0:3Þi h0:6; ð0:5; 0:5Þi h0:7; ð0:3; 0:4Þi h0:4; ð0:8; 0:3Þi h0:3; ð0:4; 0:5Þi

Table 4. The aggregate PF decision matrix.
C1 C2 C3 C4 C5

A1 (0.533,0.637) (0.568,0.598) (0.672,0.209) (0.803,0.172) (0.787,0.189)
A2 (0.638,0.315) (0.429,0.481) (0.737,0.289) (0.568,0.449) (0.537,0.350)
A3 (0.562,0.527) (0.832,0.196) (0.837,0.238) (0.393,0.697) (0.797,0.206)
A4 (0.779,0.310) (0.672,0.209) (0.496,0.256) (0.687,0.402) (0.511,0.534)

Table 1. PF decision matrix for expert 1.
C1 C2 C3 C4 C5

A1 h0:5; ð0:6; 0:6Þi h0:7; ð0:8; 0:6Þi h0:8; ð0:4; 0:7Þi h0:5; ð0:8; 0:1Þi h0:3; ð0:9; 0:2Þi
A2 h0:4; ð0:5; 0:7Þi h0:7; ð0:3; 0:8Þi h0:5; ð0:7; 0:7Þi h0:6; ð0:4; 0:8Þi h0:2; ð0:5; 0:4Þi
A3 h0:2; ð0:5; 0:4Þi h0:6; ð0:6; 0:4Þi h0:8; ð0:7; 0:6Þi h0:5; ð0:5; 0:7Þi h0:4; ð0:9; 0:2Þi
A4 h0:7; ð0:8; 0:3Þi h0:7; ð0:3; 0:4Þi h0:5; ð0:4; 0:5Þi h0:3; ð0:4; 0:6Þi h0:5; ð0:6; 0:6Þi
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s a1ð Þ ¼ 0:3976; s a2ð Þ ¼ 0:2490; s a3ð Þ ¼ 0:4637; s a4ð Þ ¼ 0:3157:

Since

s a3ð Þ 
 s a1ð Þ 
 s a4ð Þ 
 s a2ð Þ;

we have

A3 
 A1 
 A4 
 A2:

The latter ordering implies A3 is the best candidate supplier.
We now reiterate the exercise by assuming that all the decision makers are equally

confident about the ratings they provide during the decision making process, i.e. we
set lij ¼ 1: In this case, the PFCWA operator is used to integrate the views of three
experts. The new collective decision matrix is presented in Table 5.

Given the new aggregate decision matrix, we re-calculate the utility of each alterna-
tive. The utility values ai; i ¼ 1; 2; 3; 4 are obtained by exploiting the PFWA operator:

a1 ¼ 0:6939; 0:3003ð Þ; a2 ¼ 0:5963; 0:3344ð Þ;
a3 ¼ 0:7782; 0:2755ð Þ; a4 ¼ 0:6303; 0:3114ð Þ:

The score function is applied on PF utility scores ai; i ¼ 1; 2; 3; 4 :

s a1ð Þ ¼ 0:3912; s a2ð Þ ¼ 0:2438; s a3ð Þ ¼ 0:5297; s a4ð Þ ¼ 0:3004:

Given

s a3ð Þ 
 s a1ð Þ 
 s a4ð Þ 
 s a2ð Þ;

we establish the following order of preference:

A3 
 A1 
 A4 
 A2:

Again, alternative A3 turns out to be the most preferable one. In this case, the
results coincide with those rendered by the PFCIHWA operator. However, the scores
attached to each alternative are different. The differences in the utility scores can be
explained by the fact that the PFCIHWA operator considers the differences in confi-
dence levels during the aggregation of ratings provided by the experts, whereas the
PFCWA operator aggregates the ratings under assumption of 100% confidence in
the assessment.

Table 5. The aggregate PF decision matrix under complete confidence.
C1 C2 C3 C4 C5

A1 (0.466,0.676) (0.574,0.559) (0.680,0.204) (0.813,0.175) (0.810,0.171)
A2 (0.624,0.287) (0.515,0.305) (0.635,0.361) (0.633,0.417) (0.542,0.331)
A3 (0.596,0.469) (0.844,0.221) (0.880,0.141) (0.397,0.703) (0.808,0.214)
A4 (0.767,0.327) (0.680,0.204) (0.580,0.202) (0.552,0.517) (0.437,0.507)
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6. Conclusion

This study proposed the Pythagorean fuzzy MAGDM method which allows considering
decision makers’ confidence levels associated with the subjective ratings. By implementing
the improvements in regard to information aggregation rules based on order-inducing
variables in IWOA operator, two PF confidence aggregation operators, namely the
PFCIOWA and PFCIHWA operators are developed. The desirable properties and differ-
ent families of each operator have also been studied. It is observed that some existing PF
aggregation operators, including the PFWA and the PFCIOWA operators are all special
cases of the PFCIHWA operator proposed in this study. Moreover, a MAGDM method
based on the PFCIHWA operator is presented to handle PF problems.

Finally, an illustrative example concerning low carbon supplier selection has been
provided to demonstrate possibilities for application of the proposed method in sup-
ply chain management. The comparative analysis was conducted by assuming com-
plete confidence and comparing the results to those under incomplete confidence. It
is shown that the PFS is an effective tool to describe vague and uncertain information
in MAGDM problems and inclusion of the information on the confidence alters the
results. Altogether, the devised operators are relevant to complicated instances of
MAGDM due to their ability to aggregate preference information expressed in PFNs
with corresponding confidence levels. Inclusion of confidence levels indicated by
experts themselves improves the robustness of the analysis. In future research, exten-
sions of the proposed operators for different types of information and application of
the presented operator in different areas will be analysed.
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