View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CONICET Digital

Copyright © 2019 Tech Science Press JTech Science Press

Isolation and Characterization of Cellulose Nanofibers from Argentine
Tacuara Cane (Guadua Angustifolia Kunth)

C. A. Rodriguez Ramirez?, Fleur Rol?, Julien Bras®, Alain Dufresne®, Nancy Lis Garcia®” and
Norma D" Accorso’?”

tUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Quimica Organica, Buenos Aires
Argentina.

2CONICET-Universidad de Buenos Aires. Centro de Investigacion en Hidratos de Carbono (CIHIDECAR). Buenos Aires,
Argentina.

3Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000, France.

*Corresponding Authors: Nancy Lis Garcia. Email: nancylis@qo.fcen.uba.ar; Norma D" Accorso. Email:
norma@qo.fcen.uba.ar.

Abstract: New trends in the area of material improvement are the use of natural
nano-charges from renewable biomass, improving the value and sustainability of
our country’s natural products. Bamboo is widely used in many countries of the
world, although in Argentina, despite being commercialized and exported for the
manufacture of wood floors, it goes unnoticed despite having native species.
Therefore, researchers identified the native and exotic species present in our
country and are working on novel uses. In this context, it is proposed the
Argentine Tacuara Cane (Guadua Angustifolia Kunth), endemic plant as a new
source of nanocellulosic materials, where stem fibers have been isolated using a
green method achieving with yield of 45.9% of cellulose. The cellulose
nanofibrils (CNF) were obtained using a green homogenization method. The
CNF exhibited web-like long fibrous structure with the diameter of 10-20 nm.
The crystallinity was 65.5%, as for the onset temperature of thermal
decomposition was 212°C. The nanocellulose isolated from the Tacuara Cane
seed fibers has a high potential to be used as a new source of cellulose-based
nanofiller for the reinforcement of bionanocomposite films.
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1 Introduction

The field of biopolymers has gained great interest in the world in the last decades, to replace the oil
products due to high cost and to produce eco-friendly materials [1]. This is why the concept of “green
composites” is a solution that combines polymers called “bio-based” with renewable reinforcements,
resulting in sustainable materials [2]. The use of biomass fibers to reinforce plastics has several
advantages over synthetic ones. They offer environmental benefits because of their renewable nature and
low energy consumption in production. They are low cost, low density, have a high specific strength and
modulus, and are comparatively easy to process due to their nonabrasive nature [3].

Cane Tacuara Guadua is the most important native bamboo genus in tropical America; it is endemic

to this continent, with approximately 30 species distributed from Mexico to Argentina, which can be
found in an altitude range that goes from sea level to 2,200 m [4].

The exploitation of this species has intensified markedly. It is used for the elaboration of cellulose,
reaching great economic importance [4,5].

Cellulose is a renewable, biodegradable and non-toxic material. It is also a great source of
environmentally friendly and biocompatible products, and it is considered to be the most abundant
renewable polymer on Earth. The biopolymer consists of a linear polysaccharide composed of B-D-
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glucopyranose units linked by B-1-4 bonds [6,7]. The hydroxyl groups present in its structure are capable
of forming hydrogen bonds, which play an important role in the direction of crystalline packing and also
govern the physical properties of cellulose. Cellulose fibers exhibit a unique structure hierarchy derived
from their biological origin. They consist of sets of nanofibers with a diameter of 2-20 nm and a length of
more than a few micrometers [8-10].

Cellulose nanofibers (CNF) as a new cellulosic material was introduced by the research group of
Turbak in 1983, and research group of Herrick in same year who produced cellulose with lateral
dimensions in nanometer range by passing a softwood pulp aqueous suspension several times through a
high-pressure homogenizer [11,12]. During such treatment, strongly entangled networks of nanofibrils,
having both crystalline and amorphous domains, are produced due to high shearing forces. They possess
high aspect ratio and form gels in water with shear-thinning and thixotropic behavior. Suspensions of
CNF are biodegradable and have no cytotoxic effects. Incorporation of CNF in materials can increase
tensile strength and thermal stability [13]. Taking into account the above, the objective of the work was
the isolation and characterization of cellulose nanofibers from Tacuara Cane.

2 Experimental
2.1 Materials

The Tacuara Cane (Guadua Angustifolia Kunth), of 2-3 years old, was obtained from the banks of
the Tigre City delta located in Buenos Aires, Argentine. The stems were cut in small pieces of
approximately 3 x 3 cm; these pieces were processed using a blender. The chemical products (toluene,
ethanol, NaOH and H202) used to extract the cellulose from the cane was of analytical quality and was
obtained from Sigma-Aldrich. Deionized water was used in all experiments.

2.2 Isolation of Cellulose and Nanofibers Cellulose (CNF) from Tacuara Cane
2.2.1 Isolation of Cellulose

The pulp was repeatedly washed with water and dried at controlled temperature (45°C for 24 h). The
pulp (100 g) was firstly treated by a mixed solution of 500 mL ethanol:toluene solution (2:1) in a Soxhlet
extractor at 90°C for 6 h, with the object to remove some compounds, such as chlorophyll, wax, fatty acid,
tannin, and pigment. After this process, the treated pulp was removed from the Soxhlet extractor and
dried at 45°C for 3 h [14-16]. Then, the waste was treated with 500 mL of NaOH solution (2%) at 75°C
for 30 min to partially remove hemicellulose and lignin. Thereafter, the residual was filtered and rinsed
with deionized water four times until neutral pH. A subsequent bleaching was carried with 500 mL of
hydrogen peroxide solution (10%) at 60°C for 6 h. The fibers were subsequently dried for 24 h at 40°C in
a convection oven [17].

2.2.2 Preparation of Cellulose Nanofibers (CNF)

The pulp was first disintegrated by an IKA high-shear mixer (T-T18 ULTRA TURRAX Basic) at
15000 rpm speed using pulp suspensions of 2% consistency. The fibers were then refined using ultrafine
friction grinder or a so-called supermasscolloider (MKCA®G-2, Masuko Sanguo, Japan) and were passed
through the device up to 60 times. The gap between the disks was adjusted to 9 um. CNF was centrifuged
at 10,000 rpm to reduce its water content and kept wet in the fridge [13,18].

2.3 Characterization
2.3.1 Chemical Characterization of Cellulose

To determine the chemical composition of cellulose Tacuara Cane (after chemical treatment), the
Technical Association of Pulp and Paper Industry (TAPPI) standards TAPPI T222 om-02 for lignin and
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TAPPI T203 cm-99 for hemicelluloses and cellulose were used. The detailed procedures are discussed in
later sections.

2.3.2 Field Emission Scanning Electron Microscopy (FESEM)

The surface morphology of the fibers and nanoparticles samples were observed using field emission
scanning electron microscopy (FESEM) using a Zeiss DSM982 Gemini. Test samples were coated with
gold using a vacuum sputter coater before subjected to the FESEM analysis.

2.3.3 Fourier-Transform Infrared Spectroscopy (ATR-FTIR)

Raw materials and purified cellulose were analyzed using attenuated total reflection Fourier
Transform Infrared (ATR-FTIR) spectroscopy (Nicolet 1S50) to examine the changes in functional groups
induced by purification of cellulose and to compare them among samples. Spectra were collected in the
range of 4000 cm*-500 cm™, at a resolution of 4 cm™.

2.3.4 X-Ray Diffraction Analysis

A Siemens D 5000 X-ray diffractometer was used to observe the diffraction patterns of all the
developed films. X-ray generator tension and current were 40 kV and 30 mA, respectively. The radiation
was Cu Ka of wavelength 1.54 A. The diffraction patterns were obtained at room temperature in the range
of 26 between 10° and 40° by step of 0.02°. The crystallinity index (Crl) of cellulose was calculated from
XRD pattern according to the Segal method [19]:

Iooy — I
Cri(%) = ~2—" 4100

002
where lgo2 is the maximum intensity of the (002) lattice diffraction at 26 = 23.0° and Lam is the intensity of
diffraction at 26 = 18° [19].

2.3.5 Thermal Characterization

A simultaneous thermogravimetric/differential thermal analyzer (TGA/DTA DTG-60 Shimadzu
instrument, Kyoto, Japan) was used to evaluate the thermal properties of cellulose and CNF.
Approximately 5 mg of each sample was subjected to heating from 30°C to 500°C a rate of 10 °C min™.
Thermal properties were evaluated from the curves of both TGA and DTA.

2.3.6 Differential Scanning Calorimetry (DSC)

Calorimetric measurements were made on a TA Q20 differential scanning calorimeter in a dry
nitrogen atmosphere. Indium standard was used for calibration. Samples of 5-10 mg were placed in the
DSC pan. Samples were first heated to 200°C and held at that temperature for 10 min to remove the
thermal history. Then, samples were cooled to -25°C at a rate of 10 °C/min, held for 10 min, and again
heated to 200°C at 10 °C/min. The Tg values were taken as the midpoint of the transition in the second
heating scan.

3 Results and Discussion
3.1 Isolation and Characterization of Cellulose
3.1.1 Purification and Chemical Composition of Cellulose

The isolation process starts with the extraction with different solvents to eliminate the chlorophyll,
wax, fatty acid, tannin, and pigments [14]. Then, it was proceeded to add a diluted alkali with the
objective to remove the lignin, hemicelluloses, waxes, pectin, proteins, soluble mineral salts, silica and
ash, while that the peroxide bleaching treatment was applied to remove the lignin residues [20]. The yield
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of purification was 45.9%, the mass loss of cellulose during the purification process can be attributed to
two factors: (i) the breakdown of cellulose chains during bleaching treatment and (ii) the loss of material
inherent in various filtering processes and mass transfer [21]. The pulp obtained after the chemical
treatments, we obtained cellulose: hemicelluloses: lignin in a relationship in percentage 87.6: 9.8:1.6,
respectively (the values are based on dry basis).

Fig. 1 shows the physical aspect of the Tacuara Cane during different purification steps. Visually,
variations in pulp coloration are observed when subjected to different treatments, resulting in a white pulp.

Figure 1: Photographs of A: the Tacuara Cane, B: pieces of cane cut untreated, C: delignified cane pulp,
and D: bleached pulps

3.1.2 FESEM Observations of Cellulose

Scanning electron microscopy images of the Tacuara cane fibers at different processing stages are
shown in Fig. 2. In micrograph A is observed the smooth surface of raw fiber showing large fiber bundles
and intact structures. The fibers are composed by several microfibrils with diameters in the range between
5-10 um. Each elementary fiber shows a compact structure; exhibiting an alignment in the fiber axis
direction, with some non-fibrous components in the surface [22,23].
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Figure 2: FESEM of A: Tacuara Cane; B: dellgnlfled cane pulp, C: bleached pulps

After alkali treatment due to the partial removal of the materials such as lignin, hemicelluloses,
pectin, wax and other impurities, the fiber surface becomes rougher as shown in 2B. The effect of the
subsequent bleaching treatment was evident from the comparison of micrographs 2B and 2C, where is
observed that the cane fibers bundles separate into individual fibers. This decrease indicates that under the
strong chemical treatment conditions almost all the components that bind the fibril structure of the cane
were removed thus enabling the fibers to separate into an individual form. This is further indication that
the alkali treatment was unable to eliminate all the non-cellulosic components [24]. This is why the
bleaching process allows the removal of the remaining non-cellulosic portion in the sample.
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3.1.3 ATR-FTIR Spectroscopy Analysis

FTIR spectroscopy was used to verify that the lignin and hemicellulose have been removed during
the chemical treated at the Tacuara Cane. In Fig. 3 is shown the FTIR spectra of the original Tacuara
Cane (A), delignified fibers (B) and bleached cellulose (C). All spectra showed a broad and strong
absorption band centered at about 3340 cm attributed to stretching vibrations of O-H bond resulting
from of the hydroxyl groups present in the structure and the weak peak centered at 2913 cm™ attributed to
Cspa-H stretching, meanwhile the signal at 1019 cm™ was due to C-O-C stretching from pyranose ring
[17,25], in addition we observed the C-O stretching characteristic of lignin [26]. In A spectrum is
observed between 1600-1800 cm™ characteristic signs of stretching C=0 from lignin residues, these
signals decrees with chemical treatments (see B and C spectra). It is important to note that the bands
located around 1644 cm™ had a decreasement attributed to functional group of acetyl and ester to present
in hemicellulose [27]. The same effect is observed in the peaks around 1521 and 1308 cm™ belonging to
symmetry and asymmetry stretching of the aromatic ring present in lignin. These signals disappeared in
the spectrum of the purified cellulose [26].
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Figure 3: FTIR spectra of A: Tacuara Cane; B: delignified fibers with NaOH, C: bleaching cellulose

3.2 Characterization of Cellulose Nanofibers
3.2.1 FESEM Observations Cellulose Nanofibers

Fig. 4 FESEM shows the nanofibers obtained after the mechanical-ultrasonic process by
MASUKO®. Through this process, defibrillation is achieved obtaining nanometric fibers as seen in Fig. 4

A and B from the yellow circle, forming a web-like-structure. Since Fig. 4(C), it can observed nanofibers
about 20 nm in diameter.
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Figure 4: FESEM of A, B, C. CNF Tacuara Cane, with different magnifications, A: 100.00KX; B: 200
KX and C: 400.00 KX
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FESEM imaging can zoom into the nanofibril network to provide clear visualization of ultra-fine
morphological development during mechanical fibrillation (Fig. 4C). These interconnected networks of
nanofibers could provide great reinforcing capability for composite applications [28,29].

3.2.2 X-Ray Analysis

XRD studies were carried out to analyze the effects of the crystallinity in nanofibers. The XRD
graph (Fig. 5), showed that all diffractograms exhibited sharp peaks around 20 = 18° and 23°, which were
believed to represent typical cellulose I form. This indicates that the crystal structure of cellulose was not
changed during the chemical treatment [20,30,31].
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Figure 5: X-ray diffraction patterns of the A: Tacuara Cane; B: bleached pulps, C: CNF Tacuara Cane

The crystallinity of each sample is also calculated and listed in Table 1. In this table increase in the
percentages of crystallinity is observed (% Crl), after the cane is subjected to the different chemical and
mechanical processes. This crystallinity increase was undoubtedly due to the removal of hemicellulose
and lignin, which exist in amorphous regions. This leads to the realignment of cellulose molecules [8,32].

Table 1: Percentage of crystallinity

Sample Crl(%)
Tacuara cane 48.5
Bleached pulps 52.0
CNF 65.5

3.2.3 Thermostability Analysis

Thermal stability of the extracted cellulose (red line) and NFC (black line), were analyzed by (TGA)
and it is showed in Fig. 6. For both samples, the thermal decomposition occurred in three main steps. The
first step, recorded below 100°C, corresponds to the moisture evolution of the water absorbed. The
second degradation occurs above 150°C until approximately 210°C, resulted mainly from the thermal
decomposition of hemicelluloses and some portion of lignin. At temperature range (212-285°C)
corresponding to the last degradation was associated with degradation of cellulose and lignin. In this
temperature range, the rupture of the glycosidic linkages is generates due to depolymerization of the
cellulose. Also, due to the presence of the phenyl groups in the lignin the decomposition is extended to
the high temperature range, starting below 200°C and up to 450°C.
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Figure 6: TGA curve of cellulose and cellulose nanofibers from Tacuara cane

On the other hand, the cellulose showed a decomposition temperature at 306°C, while for the CNF it
was 314°C. The better thermal stability of nanocellulose could be attributed to the removal of amorphous
regions of cellulose and residual lignin as well as its higher degree of crystallinity [8,15]. This result is also
consistent with the results obtained from the XRD and FTIR, indicating that the chemical and mechanical
process did not influence cellulose chemical composition, crystal structure, and thermostability.

Finally, with regard to the analysis carried out by DSC, a transition in 53.3°C was observed during
cooling, as reported by Szczesniak et al. (2008), this temperature is distant from the decomposition
temperature, these facts make the material interesting, which makes it an excellent candidate to be used in
the formulation of polymer matrices that allows to improve its thermal and mechanical characteristics.

4 Conclusion

In this work we show the use of the endemic plant of Argentina to increase the commercial value,
in this case we obtain CNF capable of being used in different industrial applications. The characterization
allowed us to confirm the purity of the CNF, due to the elimination of the other components present using
a new green methodology. It is important to note that this NFC recovery gives added value to an invasive
plant in the delta that is being discarded due to its endemic character. Considering the high thermal
stability of the cellulose nanofibers of Tacuara Cane can serve to know their applicability as
biocomposites processing. It is important to take into account the possibility of using it as an effective
reinforcement material in packaging or coating film.
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