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Abstract: New trends in the area of material improvement are the use of natural 
nano-charges from renewable biomass, improving the value and sustainability of 
our country’s natural products. Bamboo is widely used in many countries of the 
world, although in Argentina, despite being commercialized and exported for the 
manufacture of wood floors, it goes unnoticed despite having native species. 
Therefore, researchers identified the native and exotic species present in our 
country and are working on novel uses. In this context, it is proposed the 
Argentine Tacuara Cane (Guadua Angustifolia Kunth), endemic plant as a new 
source of nanocellulosic materials, where stem fibers have been isolated using a 
green method achieving with yield of 45.9% of cellulose. The cellulose 
nanofibrils (CNF) were obtained using a green homogenization method. The 
CNF exhibited web-like long fibrous structure with the diameter of 10-20 nm. 
The crystallinity was 65.5%, as for the onset temperature of thermal 
decomposition was 212°C. The nanocellulose isolated from the Tacuara Cane 
seed fibers has a high potential to be used as a new source of cellulose-based 
nanofiller for the reinforcement of bionanocomposite films.   
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1 Introduction 
The field of biopolymers has gained great interest in the world in the last decades, to replace the oil 

products due to high cost and to produce eco-friendly materials [1]. This is why the concept of “green 
composites” is a solution that combines polymers called “bio-based” with renewable reinforcements, 
resulting in sustainable materials [2]. The use of biomass fibers to reinforce plastics has several 
advantages over synthetic ones. They offer environmental benefits because of their renewable nature and 
low energy consumption in production. They are low cost, low density, have a high specific strength and 
modulus, and are comparatively easy to process due to their nonabrasive nature [3]. 

Cane Tacuara Guadua is the most important native bamboo genus in tropical America; it is endemic 
to this continent, with approximately 30 species distributed from Mexico to Argentina, which can be 
found in an altitude range that goes from sea level to 2,200 m [4]. 

The exploitation of this species has intensified markedly. It is used for the elaboration of cellulose, 
reaching great economic importance [4,5]. 

Cellulose is a renewable, biodegradable and non-toxic material. It is also a great source of 
environmentally friendly and biocompatible products, and it is considered to be the most abundant 
renewable polymer on Earth. The biopolymer consists of a linear polysaccharide composed of β-D-
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glucopyranose units linked by β-1-4 bonds [6,7]. The hydroxyl groups present in its structure are capable 
of forming hydrogen bonds, which play an important role in the direction of crystalline packing and also 
govern the physical properties of cellulose. Cellulose fibers exhibit a unique structure hierarchy derived 
from their biological origin. They consist of sets of nanofibers with a diameter of 2-20 nm and a length of 
more than a few micrometers [8-10].  

Cellulose nanofibers (CNF) as a new cellulosic material was introduced by the research group of 
Turbak in 1983, and research group of Herrick in same year who produced cellulose with lateral 
dimensions in nanometer range by passing a softwood pulp aqueous suspension several times through a 
high-pressure homogenizer [11,12]. During such treatment, strongly entangled networks of nanofibrils, 
having both crystalline and amorphous domains, are produced due to high shearing forces. They possess 
high aspect ratio and form gels in water with shear-thinning and thixotropic behavior. Suspensions of 
CNF are biodegradable and have no cytotoxic effects. Incorporation of CNF in materials can increase 
tensile strength and thermal stability [13]. Taking into account the above, the objective of the work was 
the isolation and characterization of cellulose nanofibers from Tacuara Cane.  

 
2 Experimental 
2.1 Materials 

The Tacuara Cane (Guadua Angustifolia Kunth), of 2-3 years old, was obtained from the banks of 
the Tigre City delta located in Buenos Aires, Argentine. The stems were cut in small pieces of 
approximately 3 × 3 cm; these pieces were processed using a blender. The chemical products (toluene, 
ethanol, NaOH and H2O2) used to extract the cellulose from the cane was of analytical quality and was 
obtained from Sigma-Aldrich. Deionized water was used in all experiments. 

 
2.2 Isolation of Cellulose and Nanofibers Cellulose (CNF) from Tacuara Cane         
2.2.1 Isolation of Cellulose 

The pulp was repeatedly washed with water and dried at controlled temperature (45°C for 24 h). The 
pulp (100 g) was firstly treated by a mixed solution of 500 mL ethanol:toluene solution (2:1) in a Soxhlet 
extractor at 90°C for 6 h, with the object to remove some compounds, such as chlorophyll, wax, fatty acid, 
tannin, and pigment. After this process, the treated pulp was removed from the Soxhlet extractor and 
dried at 45°C for 3 h [14-16]. Then, the waste was treated with 500 mL of NaOH solution (2%) at 75°C 
for 30 min to partially remove hemicellulose and lignin. Thereafter, the residual was filtered and rinsed 
with deionized water four times until neutral pH. A subsequent bleaching was carried with 500 mL of 
hydrogen peroxide solution (10%) at 60°C for 6 h. The fibers were subsequently dried for 24 h at 40°C in 
a convection oven [17]. 

 
2.2.2 Preparation of Cellulose Nanofibers (CNF) 

The pulp was first disintegrated by an IKA high-shear mixer (T-T18 ULTRA TURRAX Basic) at 
15000 rpm speed using pulp suspensions of 2% consistency. The fibers were then refined using ultrafine 
friction grinder or a so-called supermasscolloider (MKCA6-2, Masuko Sanguo, Japan) and were passed 
through the device up to 60 times. The gap between the disks was adjusted to 9 μm. CNF was centrifuged 
at 10,000 rpm to reduce its water content and kept wet in the fridge [13,18]. 
 
2.3 Characterization 
2.3.1 Chemical Characterization of Cellulose  

To determine the chemical composition of cellulose Tacuara Cane (after chemical treatment), the 
Technical Association of Pulp and Paper Industry (TAPPI) standards TAPPI T222 om-02 for lignin and 
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TAPPI T203 cm-99 for hemicelluloses and cellulose were used. The detailed procedures are discussed in 
later sections. 

 
2.3.2 Field Emission Scanning Electron Microscopy (FESEM) 

The surface morphology of the fibers and nanoparticles samples were observed using field emission 
scanning electron microscopy (FESEM) using a Zeiss DSM982 Gemini. Test samples were coated with 
gold using a vacuum sputter coater before subjected to the FESEM analysis. 

 
2.3.3 Fourier-Transform Infrared Spectroscopy (ATR-FTIR) 

Raw materials and purified cellulose were analyzed using attenuated total reflection Fourier 
Transform Infrared (ATR-FTIR) spectroscopy (Nicolet IS50) to examine the changes in functional groups 
induced by purification of cellulose and to compare them among samples. Spectra were collected in the 
range of 4000 cm-1-500 cm-1, at a resolution of 4 cm-1. 

 
2.3.4 X-Ray Diffraction Analysis 

A Siemens D 5000 X-ray diffractometer was used to observe the diffraction patterns of all the 
developed films. X-ray generator tension and current were 40 kV and 30 mA, respectively. The radiation 
was Cu Kα of wavelength 1.54 Å. The diffraction patterns were obtained at room temperature in the range 
of 2θ between 10° and 40° by step of 0.02°. The crystallinity index (CrI) of cellulose was calculated from 
XRD pattern according to the Segal method [19]:  

𝐶𝐶𝐶𝐶𝐶𝐶(%) =
𝐶𝐶002 −  𝐶𝐶𝑎𝑎𝑎𝑎

𝐶𝐶002
𝑥𝑥100 

where I002 is the maximum intensity of the (002) lattice diffraction at 2θ = 23.0° and Iam is the intensity of 
diffraction at 2θ = 18° [19]. 

 
2.3.5 Thermal Characterization  

A simultaneous thermogravimetric/differential thermal analyzer (TGA/DTA DTG-60 Shimadzu 
instrument, Kyoto, Japan) was used to evaluate the thermal properties of cellulose and CNF. 
Approximately 5 mg of each sample was subjected to heating from 30°C to 500°C a rate of 10 °C min-1. 
Thermal properties were evaluated from the curves of both TGA and DTA. 

 
2.3.6 Differential Scanning Calorimetry (DSC) 

Calorimetric measurements were made on a TA Q20 differential scanning calorimeter in a dry 
nitrogen atmosphere. Indium standard was used for calibration. Samples of 5-10 mg were placed in the 
DSC pan. Samples were first heated to 200°C and held at that temperature for 10 min to remove the 
thermal history. Then, samples were cooled to -25°C at a rate of 10 °C/min, held for 10 min, and again 
heated to 200°C at 10 °C/min. The Tg values were taken as the midpoint of the transition in the second 
heating scan.  

 
3 Results and Discussion 
3.1 Isolation and Characterization of Cellulose 
3.1.1 Purification and Chemical Composition of Cellulose 

 The isolation process starts with the extraction with different solvents to eliminate the chlorophyll, 
wax, fatty acid, tannin, and pigments [14]. Then, it was proceeded to add a diluted alkali with the 
objective to remove the lignin, hemicelluloses, waxes, pectin, proteins, soluble mineral salts, silica and 
ash, while that the peroxide bleaching treatment was applied to remove the lignin residues [20]. The yield 
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of purification was 45.9%, the mass loss of cellulose during the purification process can be attributed to 
two factors: (i) the breakdown of cellulose chains during bleaching treatment and (ii) the loss of material 
inherent in various filtering processes and mass transfer [21]. The pulp obtained after the chemical 
treatments, we obtained cellulose: hemicelluloses: lignin in a relationship in percentage 87.6: 9.8:1.6, 
respectively (the values are based on dry basis).  

Fig. 1 shows the physical aspect of the Tacuara Cane during different purification steps. Visually, 
variations in pulp coloration are observed when subjected to different treatments, resulting in a white pulp. 

 

 
Figure 1: Photographs of A: the Tacuara Cane, B: pieces of cane cut untreated, C: delignified cane pulp, 
and D: bleached pulps 

 
3.1.2 FESEM Observations of Cellulose 

Scanning electron microscopy images of the Tacuara cane fibers at different processing stages are 
shown in Fig. 2. In micrograph A is observed the smooth surface of raw fiber showing large fiber bundles 
and intact structures. The fibers are composed by several microfibrils with diameters in the range between 
5-10 μm. Each elementary fiber shows a compact structure; exhibiting an alignment in the fiber axis 
direction, with some non-fibrous components in the surface [22,23].  

 

 
Figure 2:  FESEM of A: Tacuara Cane; B: delignified cane pulp, C: bleached pulps 

 
After alkali treatment due to the partial removal of the materials such as lignin, hemicelluloses, 

pectin, wax and other impurities, the fiber surface becomes rougher as shown in 2B. The effect of the 
subsequent bleaching treatment was evident from the comparison of micrographs 2B and 2C, where is 
observed that the cane fibers bundles separate into individual fibers. This decrease indicates that under the 
strong chemical treatment conditions almost all the components that bind the fibril structure of the cane 
were removed thus enabling the fibers to separate into an individual form. This is further indication that 
the alkali treatment was unable to eliminate all the non-cellulosic components [24]. This is why the 
bleaching process allows the removal of the remaining non-cellulosic portion in the sample. 

 
 

A B C D 
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3.1.3 ATR-FTIR Spectroscopy Analysis 
FTIR spectroscopy was used to verify that the lignin and hemicellulose have been removed during 

the chemical treated at the Tacuara Cane. In Fig. 3 is shown the FTIR spectra of the original Tacuara 
Cane (A), delignified fibers (B) and bleached cellulose (C). All spectra showed a broad and strong 
absorption band centered at about 3340 cm-1 attributed to stretching vibrations of O-H bond resulting 
from of the hydroxyl groups present in the structure and the weak peak centered at 2913 cm-1 attributed to 
Csp3-H stretching, meanwhile the signal at 1019 cm-1 was due to C-O-C stretching from pyranose ring 
[17,25], in addition we observed  the C-O stretching characteristic  of lignin [26]. In A spectrum is 
observed between 1600-1800 cm-1 characteristic signs of stretching C=O from lignin residues, these 
signals decrees with chemical treatments (see B and C spectra).  It is important to note that the bands 
located around 1644 cm-1 had a decreasement attributed to functional group of acetyl and ester to present 
in hemicellulose [27]. The same effect is observed in the peaks around 1521 and 1308 cm-1 belonging to 
symmetry and asymmetry stretching of the aromatic ring present in lignin. These signals disappeared in 
the spectrum of the purified cellulose [26]. 

 
Figure 3: FTIR spectra of A: Tacuara Cane; B: delignified fibers with NaOH, C:  bleaching cellulose 

 
3.2 Characterization of Cellulose Nanofibers  
3.2.1 FESEM Observations Cellulose Nanofibers 

Fig. 4 FESEM shows the nanofibers obtained after the mechanical-ultrasonic process by 
MASUKO®. Through this process, defibrillation is achieved obtaining nanometric fibers as seen in Fig. 4 
A and B from the yellow circle, forming a web-like-structure. Since Fig. 4(C), it can observed nanofibers 
about 20 nm in diameter.  

 

 
Figure 4:  FESEM of A, B, C. CNF Tacuara Cane, with different magnifications, A: 100.00KX; B: 200 
KX and C: 400.00 KX  
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FESEM imaging can zoom into the nanofibril network to provide clear visualization of ultra-fine 
morphological development during mechanical fibrillation (Fig. 4C). These interconnected networks of 
nanofibers could provide great reinforcing capability for composite applications [28,29].   

 
3.2.2 X-Ray Analysis 

XRD studies were carried out to analyze the effects of the crystallinity in nanofibers. The XRD 
graph (Fig. 5), showed that all diffractograms exhibited sharp peaks around 2θ = 18° and 23°, which were 
believed to represent typical cellulose I form. This indicates that the crystal structure of cellulose was not 
changed during the chemical treatment [20,30,31]. 

 
Figure 5:  X-ray diffraction patterns of the A: Tacuara Cane; B:  bleached pulps, C: CNF Tacuara Cane 

 
The crystallinity of each sample is also calculated and listed in Table 1. In this table increase in the 

percentages of crystallinity is observed (% CrI), after the cane is subjected to the different chemical and 
mechanical processes. This crystallinity increase was undoubtedly due to the removal of hemicellulose 
and lignin, which exist in amorphous regions. This leads to the realignment of cellulose molecules [8,32].  

 
Table 1: Percentage of crystallinity 

Sample  CrI(%) 
Tacuara cane 48.5 

Bleached pulps 52.0 
CNF 65.5 

 
3.2.3 Thermostability Analysis 

Thermal stability of the extracted cellulose (red line) and NFC (black line), were analyzed by (TGA) 
and it is showed in Fig. 6. For both samples, the thermal decomposition occurred in three main steps. The 
first step, recorded below 100°C, corresponds to the moisture evolution of the water absorbed. The 
second degradation occurs above 150°C until approximately 210°C, resulted mainly from the thermal 
decomposition of hemicelluloses and some portion of lignin. At temperature range (212-285°C) 
corresponding to the last degradation was associated with degradation of cellulose and lignin. In this 
temperature range, the rupture of the glycosidic linkages is generates due to depolymerization of the 
cellulose. Also, due to the presence of the phenyl groups in the lignin the decomposition is extended to 
the high temperature range, starting below 200°C and up to 450°C. 
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Figure 6:  TGA curve of cellulose and cellulose nanofibers from Tacuara cane 

 
On the other hand, the cellulose showed a decomposition temperature at 306°C, while for the CNF it 

was 314°C. The better thermal stability of nanocellulose could be attributed to the removal of amorphous 
regions of cellulose and residual lignin as well as its higher degree of crystallinity [8,15]. This result is also 
consistent with the results obtained from the XRD and FTIR, indicating that the chemical and mechanical 
process did not influence cellulose chemical composition, crystal structure, and thermostability.  

Finally, with regard to the analysis carried out by DSC, a transition in 53.3°C was observed during 
cooling, as reported by Szczesniak et al. (2008), this temperature is distant from the decomposition 
temperature, these facts make the material interesting, which makes it an excellent candidate to be used in 
the formulation of polymer matrices that allows to improve its thermal and mechanical characteristics. 

 
4 Conclusion 

In this work we show the use of the endemic plant of Argentina to increase the commercial value, 
in this case we obtain CNF capable of being used in different industrial applications. The characterization 
allowed us to confirm the purity of the CNF, due to the elimination of the other components present using 
a new green methodology. It is important to note that this NFC recovery gives added value to an invasive 
plant in the delta that is being discarded due to its endemic character. Considering the high thermal 
stability of the cellulose nanofibers of Tacuara Cane can serve to know their applicability as 
biocomposites processing. It is important to take into account the possibility of using it as an effective 
reinforcement material in packaging or coating film. 
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