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 15 

Abstract 16 

This work offers researchers the first version of an open-source sperm tracker software (Sperm 17 

Motility Tracker V1.0) containing a novel suit of algorithms to analyze sperm motility using ram 18 

and buck sperm as models. The computer-assisted semen analysis (CASA) is used in several 19 

publications with increasing trend worldwide in the last years, showing the importance of 20 

objective methodologies to evaluate semen quality. However, commercial systems are costly 21 

and versatility is constrained. In the proposed method, segmentation is applied and the 22 

tracking stage is performed by using individual Kalman filters and a simplified occlusion 23 

handling method. The tracking performance in terms of precision (number of true tracks), the 24 

percentage of fragmented paths and percentage of correctly detected particles were manually 25 
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validated by three experts and compared with the performance of a commercial motility 26 

analyzer (Microptic’s SCA). The precision obtained with our Sperm Motility Tracker was 27 

higher than the one obtained with a commercial software at the current acquisition frame rate 28 

of 25 fps (p<0.0001), concomitantly with a similar percentage of fragmentized tracks 29 

(p=0.0709) at sperm concentrations ranging 25 and 37x10
6
 cells/ml. Moreover, our tracker was 30 

able to detect trajectories that were unseen by SCA. Kinetic values obtained by using both 31 

methods were contrasted. The higher values found were explained based on the better 32 

performance of our sperm tracker to report speed parameters for very fast motile sperm. To 33 

standardize results, acquisition conditions are suggested. This open-source sperm tracker 34 

software has a good plasticity allowing researchers to upgrade according requirements and to 35 

apply the tool for sperm from a variety of species. 36 

 37 

Introduction 38 

Motion analysis on quality assessment of semen samples is of great importance for the 39 

positive association with male fertility and because it is in one of the most affected parameter 40 

after cryopreservation. However, sperm tracking is quite complex due to cell collision, 41 

occlusion and missed detection. Computer-assisted semen analysis (CASA) systems are used in 42 

several publications with an increasing trend worldwide in the last years, showing the 43 

importance of objective methodologies to evaluate semen quality and predict fertility. It is 44 

well-known that CASA systems are commonly used for determination of sperm quality from 45 

various species (Billard & Cosson 1992, Dietrich et al. 2005), cryopreservation effectiveness 46 

(Cueto et al. 2016), toxicity bioassays, prediction of fertility potential or research related to 47 

basic sperm biology (Muiño Otero 2008, Muiño 2008, Buzón Cuevas 2014). 48 

CASA systems provide sequential digital images of each spermatozoa track allowing individual 49 

motion analyzing thus facilitating a rapid, precise and accurate assessment of several and 50 

meaningful kinetic measurements (Verstegen et al. 2002, Amann & Waberski 2014) that are 51 
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considered as objective and reproducible, while using identical instrument settings. On the 52 

other hand, it has been recognized that among commercial software disadvantages, one can 53 

mainly list high cost, need to regular upgrade and dramatic changes influenced by different 54 

settings that are not well documented in publications (Schleh & Leoni 2013). Even when each 55 

lab standardizes its own conditions, the setup of the parameters is crucial to allow 56 

comparisons between different studies and to obtain reproducibility as well as consistency of 57 

internal and external controls (Holt et al. 1994, Fraser 1998). Since there are many factors 58 

affecting CASA performance (Broekhuijse et al. 2011), the methodologies and system 59 

specificities (equipment, chamber, plate temperature and acquisitions details) have to be fully 60 

and clearly described (Verstegen et al. 2002). However, these details are not often given in 61 

most publications. Moreover, the accuracy of CASA results is intrinsically dependent of the 62 

range of sperm concentrations analyzed (Muiño Otero 2008, Muiño 2008, Talarczyk-Desole et 63 

al. 2017). 64 

Another fact that has to be considered is that motility estimates and concentration using CASA 65 

systems are highly influenced by the counting chamber (Hoogewijs et al. 2012, Palacín et al. 66 

2013). Besides spermatozoa speeds vary according to each species, the choice of a particular 67 

acquisition velocity is under discussion, since the selected frame rate affects the measure of 68 

several kinetic parameters (Davis & Katz 1992, Verstegen et al. 2002). Verstegen et al. (2002) 69 

described that trajectories are not well detected when setting of maximum velocity is too low, 70 

in these cases the software generates wrong trajectories since it connects points belonging 71 

from different spermatozoa tracks. In most of the cases, a good measure of a high curvilinear 72 

velocity value is due to a good frame rate setting. 73 

Concerning costs, there are also some open source systems that are widely useful in sperm 74 

motility analysis, e.g. National Institutes of Health has developed a CASA plugin for the ImageJ 75 

software (Wilson-Leedy & Ingermann 2011) that has been especially adapted for the kinetic 76 

analysis of fish sperm (Verstegen et al. 2002) but also validated for mammalian sperm 77 
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(Giaretta et al. 2017). Disadvantages of this method include many manual settings, needing to 78 

apply different thresholds to each video. 79 

The aim of this work was to develop an automated particle detection tool and a suite of 80 

tracking algorithms to analyze motility parameter characteristics using ram and buck sperm as 81 

models. Our tool has the clear advantage that is plausible to be extrapolated to other species 82 

due to its plasticity to perform changes depending on the researcher’s objectives and the 83 

intrinsic characteristics of the samples. Moreover, this prototype is useful to track each 84 

spermatozoon since the corresponding trajectory is drawn step by step through the images 85 

sequence.  86 

In this way, we developed a sperm tracker software containing a suite of algorithms for sperm 87 

motility analysis that includes the stages of detection (frame to frame), tracking and motility 88 

analysis for videos of ram and buck sperm cells. A manual validation was performed to 89 

compare the tracking performance of our algorithm with that of an available version of the 90 

Microptic’s Sperm Class Analyzer-SCA over the same videos. This work offers an open-source 91 

software to evaluate semen motility for researchers in the reproductive field 92 

 93 

MATERIALS AND METHODS 94 

Samples collection  95 

Animal handling was performed in accordance with Spanish Animal Protection Regulation, RD 96 

53/2013, which conforms to European Union Regulation 2010/63. Blanca Celtibérica buck and 97 

Manchega ram (age > 1.5 years) were maintained in a semi-free ranging regime at El Campillo 98 

(Elche de la Sierra, Albacete, Spain) or at experimental farm of University of Castilla-La 99 

Mancha, respectively. The collection of ejaculates was performed using two different 100 

methods: artificial vagina for ram (5 males) or electroejaculation for buck (5 males), according 101 

to the guidelines RD 841/2011 and protocols previously described (Marco-Jimenez et al. 2008, 102 
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Jimenez-Rabadan et al. 2012). Ram samples were collected and pooled whereas samples from 103 

buck were analyzed individually. 104 

Sperm concentration was calculated by Bürker chamber counting and adjusted to 30 x 10
6 

105 

spermatozoa/ml for ram and 20 x 10
6 

spermatozoa/ml for buck with a phosphate buffer (PBS) 106 

at 37 °C.  107 

 108 

Experimental procedure 109 

Objective motility was assessed with a Makler® counting chamber (10 µm depth) and samples 110 

were observed using a 10 X objective (negative phase contrast field). Each analysis captured 111 

several fields with a Basler A302fs digital camera (Basler Vision Technologies, Ahrensburg, 112 

Germany) connected to a computer by an IEEE 1394 interface. The image size was 768 x 576 113 

pixels. The acquisition frame rate was set in 25 frames per second (fps) videos which were 114 

simultaneously analyzed by Computer Assisted Semen Analysis (CASA) using the Sperm Class 115 

Analyzer software (SCA 2002, Microptic, Barcelona,Spain) and by our sperm motility tracker 116 

software. Buck sperm tracking videos produced by our algorithm are available at Vimeo 117 

homesite (see references https://vimeo.com) The motility parameters assessed are described 118 

in section D (Motility Parameters and Motility analysis). 119 

 120 

Algorithm development 121 

A. Detection of the Cells Head 122 

Image processing algorithms were developed in C++ with the Netbeans IDE and using the 123 

OpenCV 3.2.0 library. A detection method similar to the one have been used by Buchelly et al. 124 

(2016) for cells segmentation was used but with a highlighting step due to opening Top-Hat 125 

(Serra 1982). For the Top-Hat transform we used a circular structuring element with the 126 

sufficient size to enclose one spermatozoon head (11x11 pixels). The fixed threshold to obtain 127 

the binary image was set to 30. The structuring element used for the binary morphological 128 
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filter is circle shaped and it has a size of 5 x 5 pixels to remove little noise points, sharp 129 

features like the sperm tails, and to separate some particles. 130 

 131 

B. Concentration measurement 132 

Cells concentration was determined for each sample video as the average number of cells in 133 

each frame per square millimeter (cells/cm3), according to (1): 134 

  � =	�10� �	
	� 	�
� � �∑ �������.�.� �     (1) 135 

Here, L and d are the setting parameters and depend on the experimental conditions: L is the 136 

length of the side of the gride square in pixels and d is the counting chamber depth in 137 

micrometers, w and h are the image width and height respectively in pixels. So, the first factor 138 

in (1) refers to the transformation of the lengths from pixels to metric units. By the other hand, 139 

the second factor shows the average number of cells in the video sequence determined by the 140 

numbers of cells in each frame (nk) and the total number of frames, N.  141 

 142 

C. Sperm cells tracking 143 

In order to define an object’s model, kinematic variables, shape or geometric descriptors, 144 

contours, gray levels or textures can be considered (Lucena López 2003, Azari et al. 2011, Liu et 145 

al. 2013, Jeong et al. 2014, Sahbani & Adiprawita 2016). From this set of data, the model is 146 

represented by the state Xi of the system at the instant i with a given number of degrees of 147 

freedom (Lucena López 2003). Our object’s model consisted only on the head centroid or mass 148 

center coordinates (Gárate Polar 2015) and its velocity components.  As it doesn’t rely on the 149 

geometry of the cell head or on gray levels information, a spermatozoon was treated as a point 150 

particle. The dynamics of the system was studied with a first order model, i.e. positions and 151 

velocities are measured to predict the future positions. The trajectory of the j-the particle was 152 

defined as the discrete collection of positions at all the instants i. The velocity vector of a 153 

particle j between the instants i-1 and i, was determined using (2): 154 
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��,� =  x",# − x"%&,#	, y",# − y"%&,#( = (u",#, v",#)                                                                           (2) 155 

The model of the dynamics offers an a priori distribution of probabilities about all the possible 156 

configurations of the current state of the system p(Xi) having into account the estimated 157 

distributions for the previous instants p(Xi-1) to P(Xi-n). By the other hand, the temporal fusion 158 

method uses the Bayesian framework to integrate the a priori probabilities with the set of 159 

measures Z (coordinates of the centroids of the detected cells in the current frame) to find the 160 

a posteriori distribution (Lucena López 2003) given by (3): 161 

-(.�|0)	1	-(0|.�)	. -(.�)                                                                                                             (3) 162 

The objective was to maximize p(Xi|Z) in order to estimate the new state (Lucena et al. 2010) 163 

or to give the correct labels to the new detected particles according to the previous known 164 

ones. In (3), the value p(Z|Xi) is the observation model.  Despite of its limitations, Kalman filter 165 

is ideal to use with Gaussian and unimodal distributions (Lucena López 2003), assuming 166 

constant or low acceleration rates (Vinaykumar & Jatoth 2014). We associated Kalman Filter to 167 

each detected particle to predict its future position (Catlin 1989, Azari et al. 2011, Jeong et al. 168 

2014), as follows: let the state of a single particle j at the instant i, and the measurement 169 

vector. The state and the measurement are estimated by using (4) and (5):  170 

X",# = A�.�%&,� + 5�                                                                                                                            (4) 171 

Z",# = H�.�%&,� + 8�                                                                                                                            (5) 172 

Where Aj is the transition matrix for the particle j and has the values shown in (6). By the other 173 

hand, Hj is the measurement matrix and for this work it corresponds to the identity matrix 174 

I	∈ :;<;; 5� and 8�; and are vectors corresponding to the process noise and the measurement 175 

noise respectively. The noise vectors are initialized with a constant value and updated during 176 

the execution time. 177 

=� =	>1 00 1 1 00 10 00 0 1 00 1?                                                                                                                       (6) 178 
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We used the built-in functions included in the OpenCV library to create and use Kalman 179 

predictors. Each of them functions in a cyclic process that consists in three stages and each 180 

stage is complemented with a particular routine for our own purposes. First, the system 181 

obtains real measures of the state variables and compares them with the measures predicted 182 

by the Kalman filters in the previous iteration to do the association by a minimal distance 183 

criterion and thus get indirectly the maximization of the a posteriori distribution p(Xi,j,Zj) for 184 

each particle. The result of the first stage gives the cell path over which the motility analysis 185 

described in the following section is performed. In the second stage, the system gives to the 186 

Kalman predictors the new real data to correct the state Xi,j and to update the error vectors εj 187 

and δj and the covariance matrices that are involved in the inner operations. At the third stage, 188 

Kalman filters predict the possible future location of each labeled particle by having its state in 189 

the current instant, i.e. finding the values of Zj that maximize p(Zj|Xi,j) and that is used in the 190 

first stage of the next iteration 191 

 192 

D. Motility Parameters and Motility Analysis 193 

Motility of each spermatozoon was defined by its current head velocity descriptors (Muiño 194 

Otero 2008, Muiño 2008, Buzón Cuevas 2014):  195 

• Curvilinear Velocity (VCL): Velocity over the total distance moved in the path length, 196 

i.e., including all oscillations that occur in the head track. A ram spermatozoon is 197 

considered immotile if it has a curvilinear velocity less to 10 μm/s, according to (7). 198 

•  Average Path Velocity (VAP): Velocity over a calculated, smoothed (low pass filtered) 199 

path, i.e., a shorter distance than that used for calculating VCL. 200 

• Straight-Line Velocity (VSL): Velocity calculated using the straight-line (Euclidean) 201 

distance between the beginning and end of the sperm track. 202 

• Amplitude of Lateral Head Displacement (ALH): The average value of amplitude of the 203 

oscillatory movement of the sperm head in each beat cycle. 204 
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• Beat Cross Frequency (BCF)-The frequency with which the actual track crosses the 205 

smoothed track (regardless of the oscillation direction). 206 

• Straightness (STR, %): Measure of the oscillation of the curvilinear path with respect to 207 

the average trajectory, calculated as VSL /VCL × 100. Indicates the straightness of the 208 

middle path. 209 

• Linearity (LIN, %): Relationship between the straight-line velocity and the curvilinear 210 

velocity expressed as VSL/VCL x 100) 211 

• Oscillation (WOB, %): It is a measure of the oscillation of the curvilinear trajectory with 212 

respect to the average trajectory, calculated as VAP / VCL × 100). 213 

• Total motility (%): percentage of sperm having a curvilinear velocity (VCL)> 10 μm / s. 214 

• Progressive motility (MP, %):  percentage of sperm presenting movement with a 215 

straightness index (STR) ≥ 80% within the sample. 216 

o Statics:  VCL <10 μm/s. 217 

o Low progressive:  10 < VCL <45 μm/s. 218 

o Mid progressive:  45 < VCL <75 μm/s. 219 

o Rapid: VCL > 75 μm/s. 220 

As described by other state of the art works (Rojas et al. 2012, Liu et al. 2013, Gárate Polar 221 

2015, Hidayatullah et al. 2015), the discrete set of positions for each spermatozoon head (j-th 222 

particle), VCLj was obtained as the mean curvilinear velocity, as described by (7), using the 223 

notation defined in the previous sections: 224 

�@A� =	 (�.&�	).BC�	(�D%&) 	∑ EF�,�G + H�,�G�D%&�I&                           (7) 225 

 226 

where Fr refers to the frame rate in frames per second, L is the side length of the grid square 227 

given in pixels used in (1), nj is the number of points of the j-th particle path, ui,j and vi,j are 228 

the components of the velocity defined in (2), for the nj-1 intervals. 229 
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VAP calculation depends on the particular method used for obtaining the smoothed path. Our 230 

proposed system uses the method mentioned in Hidayatullah et al. (2015) for smoothing the 231 

path and accordingly ALH and BCF parameters. 232 

 233 

Manual validation 234 

 The variables considered were the number of total trajectories, the precision defined as the 235 

number of correct paths over total paths detected (8) and the percentage of fragmented 236 

trajectories.  237 

Precision=                TP                                                                                                                                          238 

(8) 239 

                             TP + FP 240 

Where TP represents the number of true positives or good tracks and FP is the number of false 241 

positives or wrongly assigned tracks. To classify a track as good or bad we used the criterion of 242 

three independent expert biologists that performed the manual validation for each path 243 

considering whether the labels were correctly conserved during occlusion states. 244 

The percentage of correctly detected particles is defined as the number of detected sperm 245 

over the total particles labeled by each software according to the criteria of three experts. 246 

 247 

Statistical analysis 248 

Data were analyzed by GLMM (generalized linear mixed effect model) to determine statistical 249 

significance between both software (Zuur et al. 2009). Data associated to cell percentages 250 

were analyzed through models with binomial distribution, whereas the number of trajectories 251 

were analyzed by models with Poisson distribution. Velocities were analyzed with Gaussian 252 

error distribution. Normality of residuals was assessed by plotting theoretical quantiles versus 253 

standardized residuals (Q–Q plots). Homogeneity of variance was evaluated by plotting 254 

residuals versus fitted values. All analyses were performed using R software version 3.3.3 255 
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(RCoreTeam 2017), with the “lme4” package for Poisson and binomial models and the “nlme” 256 

package for Gaussian models (Bates et al. 2015, Pinheiro et al. 2017). For all analyses, 257 

statistical significant differences were determined at p<0.05. 258 

 259 

Sperm motility tracker software V 1.0 260 

The software is free and an executable version will be provided upon request 261 

(acesari@mdp.edu.ar).  The software’s user interface provides a step-by-step guide for users. 262 

Important instrumental considerations and settings for users are also included (Table 1). 263 

Running times are suitable for standard laptop computers with i3 processor and at least 3 GB 264 

of memory. Screen resolution can vary between 1280x800 and 1920x1080. 265 

The input to our algorithm software is a sequence of time-lapse images currently encoded 266 

either as an MP4, AVI or MOV video file of 5 s acquired at 25 fps. The output of the algorithm 267 

is a database (.XLSX) containing the set velocity parameters, population parameters and sperm 268 

concentration; a movie (.AVI) with the complete tracks and an image (.BMP) of the tracks. 269 

 270 

Results 271 

Particles firstly detected and localized with the highest possible accuracy were linked to form 272 

particle trajectories. Detected particles had a near elliptical shape although their areas had a 273 

low number of pixels (Fig. 1). The small size let us to approximate the spermatozoa heads as 274 

point particles and not to consider their shapes as shown within the region in which we could 275 

observe centroids detection (Figure 2). As shown, the intensity degradations avoided the 276 

complete detection of the particles’ shape and thus, this supported the idea of working with 277 

the point particle model. It was possible to measure sperm concentration by using (1), having a 278 

range of particle concentrations between12.64 x 10
6
 cells/ml (38.83 cells/frame) and 42.29 x 279 

10
6
 cells/ml (129.92 cells/frame) for the considered samples (Table 2) consistent with sample 280 

adjustment (Material and Methods, Sample collection). 281 
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In order to evaluate the tracking performance, the trajectories detected by our proposed 282 

algorithm were compared to the ones found by Microptic’s – SCA for two kind of sperm 283 

samples: buck and ram fresh ejaculates. A high percentage of the paths tracked by SCA were 284 

also followed by our algorithm, and moreover the number of cells followed by the sperm 285 

tracker software was higher than the one obtained with the SCA motility software for both 286 

kind of samples (Table 2), suggesting that several sperm particles were only tracked by our 287 

method (Fig. 3). The percentage of tracked particles that do not correspond to spermatozoa 288 

can vary depending on the quality of the sample, on how clean is the media or on the image 289 

quality. In this case, the percentage of correctly detected particles of our proposed method 290 

was even higher than the percentage for SCA (Table 2, χ2= 489.61, Df= 1, p<0.0001 for ram 291 

and χ2= 6.19, Df= 1, p=0.0128 for buck). Even it is indeed an error, it must be considered as 292 

possible and for this reason provided that the percentage of undesirable particles is low, both 293 

software are equipped with a tool allowing manually curation or elimination of these labels.  294 

Regarding the number of evaluated cells, i.e. those automatically detected and also visually 295 

tracked by each expert; the proposed method was higher than the SCA module for both 296 

species (χ2= 450.75, Df= 1, p<0.0001 for ram samples and χ
2
= 56.66, Df= 1, p<0.0001 for buck 297 

samples analysis, Table 2).  298 

There are in the literature some measures that allow the performance evaluation for tracking 299 

systems, but the ideal disparity test should be given by the comparison with a ground truth or 300 

the point to point comparison of each instant for all the tracks, as done by Fang et al. (2017) , 301 

Philip et al. (2014)   or Chau et al. (2004). Unfortunately, the SCA module does not offer that 302 

information to compare the differences between each path with the one obtained by our 303 

proposed method. According to the criterion of the experts, trajectories were classified as 304 

good or bad considering whether the labels were correctly conserved during occlusion states. 305 

In this way, our system allows to identify and draw each sperm trajectory frame to frame, 306 

representing an advantage over other commercial systems (see Sperm tracking videos).  In 307 
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terms of performance, a 5 s video showing 120 cells/field acquired at 25 fps is enough to 308 

produce a complete data sheet by this algorithm in 30 ms using a 1.3 GHz Intel Core i3 309 

processor with 3 GB 1600 MHz DDR3 RAM. Precision and percentages of fragmented paths 310 

were evaluated to compare each system through a manual tracking by three independent 311 

experts (Table 2, Fig. 4). We showed that the performance of our method is similar to the one 312 

measured for the Microptic’s SCA Motility module, with a better occlusion handling 313 

evidenced by the higher precision (χ2= 151.03, Df= 1, p<0.0001, Fig. 4A) and a similar 314 

percentage of fragmented ram sperm tracks (χ2= 3.26, Df= 1, p=0.0709, Fig. 4C). On the 315 

contrary, for buck sperm samples, Microptic’s SCA Motility module showed better precision 316 

and lower fragmented tracks that our method (χ2= 16.99, Df= 1, p<0.0001 and χ2= 95.95, Df= 317 

1, p<0.0001 respectively, Fig. 4B and E). When the precision of each system or the percentage 318 

of fragmented trajectories is plotted depending on the particles concentration, the better 319 

precision of our algorithm can be observed at higher concentrations, while SCA® was more 320 

successful for low concentrations ranges (Fig. 4C and F).   321 

The dataset of kinetic values obtained by using both methods over the same ram recorded 322 

samples showed that our method reported higher average speed values (χ2= 592.53, Df= 1, 323 

p<0.0001 for VCL, χ2= 118.19, Df= 1, p<0.0001 for VSL and χ2= 112.33, Df= 1, p<0.0001 for 324 

VAP, Fig. 5A), average AHL (amplitude of the lateral displacement of the head, χ2= 102.55, Df= 325 

1, p<0.0001, Fig. 5B), BCF (wavelengths of the flagellar beat, χ2= 157.09, Df= 1, p<0.0001, Fig. 326 

5B) and also a higher motile population (χ2= 85.17, Df= 1, p<0.0001, Fig. 5C) compared to 327 

SCA reports. Similar results were observed for these kinetic values when buck samples were 328 

analyzed (Fig. 5 D-F, χ2= 23.49, Df= 1, p=0.0004 for VCL, χ2= 12.81, Df= 1, p=0.0003 for VSL, 329 

χ2= 17.55, Df= 1, p<0.0001 for VAP, χ2= 76.20, Df= 1, p<0.0001 for BCF, χ2= 6.39, Df= 1, 330 

p=0.0115 for ALH and χ2= 18.52, Df= 1, p<0.0001 for total motility). Manual validation showed 331 

that SCA failed in tracking and reporting sperm with very high speeds often rendering in non-332 

detected cells (e.g., sperm indicated with yellow arrows in Fig. 3) or otherwise fragmenting the 333 
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trajectories with low speed assigned to a little stretch (e.g., sperm indicated with yellow 334 

arrows in Fig. 6). Accordingly, the report of kinetic values obtained by using both methods over 335 

the same cells (i.e. cells tracked by both softwares) showed comparable values (Fig. 6, green 336 

arrows). Consequently, differences can be explained on the basis of the better performance of 337 

our sperm tracker to report speed parameters for very fast motile sperm and to the increment 338 

in the number of tracks (Table 2) mainly corresponding to motile spermatozoa (Fig. 5C and F). 339 

 340 

Discussion 341 

 342 

In this work, we presented a new detection and tracking algorithm that can effectively identify 343 

immotile as well as motile and progressive sperm heads from two different species, with 344 

different concentration ranges and bearing different proportions of motile sperm. We 345 

demonstrated that the proposed approach can successfully handle challenges such as cell 346 

collision and occlusion, succeeding in multiple sperm tracking, when the spermatozoa 347 

concentration up to 42.29 x 10
6
 cells/ml. Our free access tool was validated against CASA 348 

SCA , providing similar values of sperm parameters but was more efficient in the number and 349 

precision of detected tracks at high concentration ranges, as well as in relation to the lower 350 

number of fragmented trajectories. 351 

Some single particle tracking algorithms have been developed, however they mostly failed in 352 

following them simultaneously when more than 10 cells co-exist (Imani et al. 2014, Tinevez et 353 

al. 2017). Recently, an automated multi-sperm tracking algorithm capable to detect and track 354 

simultaneously hundreds of human sperm cells from two samples was presented with the 355 

limitations of long time required to process each video at low acquisition speed and lack of 356 

validation against a standardized method (Urbano et al. 2017).  357 

Many cells segmentation methods have been proposed in literature for microscopy image 358 

sequences. Some works first binarize the images and others use a matching template. 359 
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Hidayatullah et al. (2015), Gárate Polar (2015) and Rojas et al. (2012) proposed a fixed 360 

threshold and then a binary morphological filter; Buchelly et al. (2016) applied a mathematical 361 

morphology gray filter to highlight sperm heads and a later threshold; Liu et al. (2013) , 362 

Vinaykumar and Jatoth (2014) applied temporal frame differencing, a fixed threshold and a 363 

binary morphological filter and others use background subtraction, thresholding and binary 364 

filtering (Azari et al. 2011, Jeong et al. 2014). Other approaches also exist that use 365 

simultaneous detection and tracking with their own considerations (Karthikeyan et al. 2012, 366 

Boryshpolets et al. 2013). 367 

It is consensus that standardization is needed to avoid variations in semen analysis (Palacín et 368 

al. 2013). One of the most important settings of the assay is cell concentration. In this sense, 369 

Wilson-leedy and Ingermann (2007)  have studied the effect of the cells concentration upon 370 

motility measurements, as well as we do, finding that the main limitation is particle density. 371 

The widest dynamic range allowed the higher plasticity of the tool, which is critical when 372 

considering working with sperm from different species For example, the VCL range for ram 373 

motile sperm is between 189.8 ± 40.7 and 39.8 ± 21.0 µm/s (Ledesma et al. 2017), while for 374 

fish the VCL range is between 330 ± 70 and 20 ± 15.0 µm/s for a variety of species (Fauvel et al. 375 

2010, Fabbrocini et al. 2016). This is an advantage when compared to commercial systems that 376 

are specie-specific. On the other hand, there should be some other adjustments needed for 377 

correct sperm identification in other species associated to differences in sperm morphology 378 

and size.  379 

According to Lucena (2003), a typical tracking scheme has four basic essential elements: image 380 

features, model of the objects, model of the dynamics, and a temporal fusion method. The 381 

most of the works in the state of the art use intensity distribution (Karthikeyan et al. 2012, 382 

Rojas et al. 2012, Jeong et al. 2014, Gárate Polar 2015, Hidayatullah et al. 2015); however 383 

there also exist more features that can be used like color (Lucena et al. 2010, Fang et al. 2017), 384 

motion history (Liu et al. 2013), optical flow (Lucena et al. 2015), frequency descriptors (Pei et 385 
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al. 2006), and others. As mentioned before, we used the intensity distribution as the image 386 

feature required to detect the spatial distribution of cells at each instant, because of the high 387 

contrast obtained between foreground and background in the scene. 388 

A common trouble in tracking systems is the occlusions handling. In this situation, two or more 389 

objects in the 2D scene get very close to each other and the detection module often considers 390 

them as a single object, giving to the system the ambiguity of which label corresponds to this 391 

new object and how to treat the absence of the missing others. The tracking scheme must lead 392 

with this situation and take a proper decision. The method (Azari et al. 2011) applied template 393 

matching in the region of occlusion and used correlation to identify the parts corresponding to 394 

each merging individual object. In Jeong et al. (2014) the aspect ratio or width/height is 395 

considered to detect when object are merging or splitting. In Lucena et al. (2010), authors use 396 

a combined model of the mean-shift and the CAM-Shift algorithms to improve robustness to 397 

occlusion. The occlusion handler of Sahbani and Adiprawita (2016) uses the statistics of the 398 

blob size (standard deviation) to find an occlusion situation by means of an occlusion 399 

threshold. When an occlusion condition occurs due to merging objects, the label of the new 400 

particle corresponds to the label of the previous object that presented the closer prediction 401 

point to the measured mass center. Meanwhile, the position of the hidden object is predicted 402 

during a test interval of 6 frames with an increasing search radius. Then, if the particle appears 403 

during the test interval and inside the search region, it will recover its original label and its path 404 

will be completed with the previous estimated locations. 405 

Many similar works have developed solutions to make an automatic motility analysis, both for 406 

human and other animals’ sperm. In this work, we take the known methods to determine the 407 

motility parameters and own considerations, but we put our major interest in the system 408 

performance evaluation. An important fact to consider is the objectivity of the curvilinear 409 

velocity (VCL) measurement and the subjectivity of the average path velocity (VAP). The VAP 410 

parameter depends of the smoothness degree of the spermatozoon trajectory and there is no 411 
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information about a unified criterion to perform that low pass filtering operation and, in 412 

consequence, each system performs it in a different way giving probably different results for 413 

the same sample video. The subjectivity in the method to measure the VAP parameter also 414 

carries subjectivity in measuring the other ones that depends on it: Amplitude of Lateral Head 415 

Displacement (ALH) and Beat Cross Frequency (BCF). 416 

By the other hand, the VAP calculation depends on the particular method used for obtaining 417 

the smoothed path. In Hidayatullah et al. (2015), authors showed the implementation of a 418 

moving average filter with a fixed size of 5 elements. Rojas et al. (2012) used an approximation 419 

based on the Bezier Plane method. Wilson-Leedy and Ingermann (2007) used a moving 420 

average filter which size depends on the frame rate. The Microptic’s - SCA establishes VAP as 421 

one of the modifiable parameters by the user and thus makes it more inter subjective. 422 

Sperm kinetic parameters determined by our software compared with the values offered by 423 

the reference software (Microptic’s - SCA) over the same samples were able to get 424 

comparable output data when measuring the same sperm particles. However due to the 425 

better performance of our software to correctly track high speed sperm, a higher percentage 426 

of rapid sperm and consequently average higher speed values were reported by our algorithm. 427 

It is important to consider that the measure of VSL depends only on the final and initial points 428 

of each path, so it could be directly validated by the tracking performance. Moreover, for 429 

different samples and laboratories comparisons between available CASA systems should be 430 

carefully done since several factors inherent to motility acquisition settings affect the 431 

standardization. The other parameters (VAP, ALH, BCF) depend on which smooth filter was 432 

applied to the original path and currently there is no standardized criterion to select one as the 433 

best choice, as mentioned before. 434 

Finally, whereas most of the studies conducted nowadays to boost standardization of sperm 435 

motility assessment systems are focused on the software capacities, in this study we also 436 

analyze the equipment requirements. It is known that commercial systems have been 437 
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improving their software and also associated cameras according to users’ demand. However, 438 

in the research field labs acquire commercial CASA systems that cannot be often modernized 439 

and furthermore, publications are based on available equipment. In this sense, the choice of 440 

the velocity parameter describing the motility also depends on the video camera used. 441 

According to Wilson-leedy and Ingermann (2007) , low speed recording will hide the 442 

modifications of tracks during large time intervals (1/25 s for example) so that VCL and VAP 443 

would be quite similar. Our tool can be adapted to a range of acquisition speed (fps), 444 

suggesting that the tracking system could manage different number of frames in the same 445 

time lapse.  This is particularly useful for species with high speed sperm, complex trajectories 446 

or unusual head/flagella movements. 447 

As a conclusion, this work presented new an-open-source sperm tracker software to sperm 448 

motility analyze at a range of different cell concentrations, taking ram and buck sperm as 449 

models. The tool has the possibility to be adapted by the creators to any other sperm species. 450 
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 601 

 602 

Legends and Tables 603 

 604 

Sperm tracking videos. Each line indicates the spermatozoa tracked by our sperm tracker 605 

software frame to frame. Numbers identify each spermatozoa.  Different colors of paths 606 

indicate the different sperm velocities (static, low, medium or rapid sperm). 607 

 608 

 609 

Figure 1: Signal processing for the detection process. Upper panel, a region of interest in a 610 

sample frame is selected to explain the detection process. Lower panel, Top-Hat 611 

transformation of the selected area (left),  binary image obtained by applying a fixed threshold 612 

(center), and binary morphological opening to obtain only the heads(right). Bar= 25 µm. 613 

 614 

Figure 2: Zoom of a region with detected spermatozoa heads and their centroids. Bar= 10 615 

µm. 616 

 617 

 618 

Figure 3: Visual comparison between trajectories detected by the SCA versus the 619 

trajectories detected by the purposed sperm tracker software.  The images correspond to the 620 

same video acquired at 25 fps (Video 5 of Table 2, https://vimeo.com/264485794), showing 621 

the totality of paths detected by the SCA module (upper panel) or our tracker software 622 

(lower panel). Bar= 25 µm. Curvilinear Velocity (VCL, µm/s) of some sperm that were not 623 

detected with SCA software (yellow arrows) are indicated with labels and arrows in the 624 

bottom panel corresponding to our software. 625 

 626 
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Figure 4: Performance of the sperm tracker software. Percentage of fragmented paths (A, B 627 

and C) or precision (D, E and F) for our Sperm tracker system (SMT software) compared to 628 

SCA (SCA software)  at 25 fps. Ram (A and D) or buck (B and E) sperm were analyzed. C and F 629 

panels gather results of all the analysis consider cell concentration as a variable. Data 630 

assemble the reports of three independent experts that analyzed 10 videos for each species. * 631 

Value significantly different with respect to SCA ®software (p< 0.05). 632 

 633 

Figure 5: Report of Kinetic parameters analyzed by the commercial CASA system (SCA) and 634 

the sperm motility tracker software (SMT) purposed by us. Sperm velocities: VAP, VSL and 635 

VCL (A and D), ALH and BCF (B and E) as well as total motility (C and F) were analyzed by both 636 

methods (SCA and SMT software) over the same samples. Analysis of ram samples are shown 637 

in A-C whereas analysis of buck samples are shown in D-E. . * Value significantly different with 638 

respect to SCA® software (p< 0.05). VAP: Average Path Velocity, VSL: Straight-Line Velocity, 639 

VCL: Curvilinear Velocity, ALH: Amplitude of Lateral Head Displacement, BCF: Beat Cross 640 

Frequency. 641 

 642 

Figure 6: Visual comparison between trajectories detected by the SCA (upper panel) versus 643 

the trajectories detected by the purposed sperm tracker software (bottom panel).  The 644 

images correspond to the same video (Video 2 of Table 2, https://vimeo.com/264482322) 645 

acquired with 25 fps, showing the totality of paths detected with the SCA module (upper 646 

panel) and our tracker software (bottom panel). Bar= 25 µm. Curvilinear Velocities (VCL, µm/s) 647 

of some paths fragmented by SCA software but tracked correctly by SMT are indicated with 648 

labels (1-9) and yellow arrows in the corresponding panels. Tracks with similar VCL (µm/s) 649 

comparing SMT to SCA are indicated with labels (10-13) and green arrows in the 650 

corresponding panels.  651 

 652 
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Figure 1: Signal processing for the detection process. Upper panel, a region of interest in a sample frame is 
selected to explain the detection process. Lower panel, Top-Hat transformation of the selected area 

(left),  binary image obtained by applying a fixed threshold (center), and binary morphological opening to 
obtain only the heads(right). Bar= 25 µm.  
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Figure 2: Zoom of a region with detected spermatozoa heads and their centroids. Bar= 10 µm.  
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Figure 3: Visual comparison between trajectories detected by the SCA® versus the trajectories detected by 
the purposed sperm tracker software.  The images correspond to the same video acquired at 25 fps (Video 5 

of Table 2, https://vimeo.com/264485794), showing the totality of paths detected by the SCA® module 

(upper panel) or our tracker software (lower panel). Bar= 25 µm. Curvilinear Velocity (VCL, µm/s) of some 
sperm that were not detected with SCA® software (yellow arrows) are indicated with labels and arrows in 

the bottom panel corresponding to our software.  
 

85x126mm (300 x 300 DPI)  

 

 

Page 26 of 34



  

 

 

Figure 4: Performance of the sperm tracker software. Percentage of fragmented paths (A, B and C) or 
precision (D, E and F) for our Sperm tracker system (SMT software) compared to SCA® (SCA software)  at 
25 fps. Ram (A and D) or buck (B and E) sperm were analyzed. C and F panels gather results of all the 

analysis consider cell concentration as a variable. Data assemble the reports of three independent experts 
that analyzed 10 videos for each species. * Value significantly different with respect to SCA ®software (p< 

0.05).  
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Figure 4: Performance of the sperm tracker software. Percentage of fragmented paths (A, B and C) or 
precision (D, E and F) for our Sperm tracker system (SMT software) compared to SCA® (SCA software)  at 
25 fps. Ram (A and D) or buck (B and E) sperm were analyzed. C and F panels gather results of all the 

analysis consider cell concentration as a variable. Data assemble the reports of three independent experts 
that analyzed 10 videos for each species. * Value significantly different with respect to SCA ®software (p< 

0.05).  
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Figure 5: Report of Kinetic parameters analyzed by the commercial CASA system (SCA®) and the sperm 
motility tracker software (SMT) purposed by us. Sperm velocities: VAP, VSL and VCL (A and D), ALH and 
BCF (B and E) as well as total motility (C and F) were analyzed by both methods (SCA and SMT software) 
over the same samples. Analysis of ram samples are shown in A-C whereas analysis of buck samples are 

shown in D-E. . * Value significantly different with respect to SCA® software (p< 0.05). VAP: Average Path 
Velocity, VSL: Straight-Line Velocity, VCL: Curvilinear Velocity, ALH: Amplitude of Lateral Head 

Displacement, BCF: Beat Cross Frequency.  
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Figure 6: Visual comparison between trajectories detected by the SCA® (upper panel) versus the 
trajectories detected by the purposed sperm tracker software (bottom panel).  The images correspond to the 
same video (Video 2 of Table 2, https://vimeo.com/264482322) acquired with 25 fps, showing the totality of 

paths detected with the SCA® module (upper panel) and our tracker software (bottom panel). Bar= 25 µm. 
Curvilinear Velocities (VCL, µm/s) of some paths fragmented by SCA® software but tracked correctly by 

SMT are indicated with labels (1-9) and yellow arrows in the corresponding panels. Tracks with similar VCL 
(µm/s) comparing SMT to SCA® are indicated with labels (10-13) and green arrows in the corresponding 

panels.  
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Figure 6: Visual comparison between trajectories detected by the SCA® (upper panel) versus the 
trajectories detected by the purposed sperm tracker software (bottom panel).  The images correspond to the 
same video (Video 2 of Table 2, https://vimeo.com/264482322) acquired with 25 fps, showing the totality of 

paths detected with the SCA® module (upper panel) and our tracker software (bottom panel). Bar= 25 µm. 
Curvilinear Velocities (VCL, µm/s) of some paths fragmented by SCA® software but tracked correctly by 

SMT are indicated with labels (1-9) and arrows in the corresponding panels. Tracks with similar VCL (µm/s) 
comparing SMT to SCA® are indicated with labels (10-13) and arrows in the corresponding panels.  
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Table 1. Requirements for motility acquisition and analysis 

Parameter Characteristics  

Chamber depth 10 µm 

Maximum number of cells per field ≤ 120 

Optimal sperm concentration   ~ 35*10
6 

cells/ml 

Acquisition frame velocity with the 

camera 
 ≥ 25 fps/sec* 

Video recording time 5 sec 

Microscope setting Phase contrast, 10 x 

Input to the software 
Sequence of time-lapse images 

(MP4, AVI or MOV video) 

System requirements to run 

software 

I3 processor, 3 GB RAM, 1280x800 

screen resolution.  

* In this work, the kinetic values were compared between methods for 25 

fps/sec due to camera limitations.  
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