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1. Introduction
1.1. Motivations and context

The purpose of this paper is to compute explicitly all simple finite-dimensional modules of the Hopf
algebra U introduced by generators and relations in Definition 1.1. In short, i/ >~ D(H) arises as the
Drinfeld double of H = B(V)#kA, where A is an abelian group, V is a braided vector space of diagonal
type of dimension 2 with Dynkin diagram (1) (realized as a Yetter-Drinfeld module over A) and B(V)
denotes its Nichols algebra.

The general context where our results fit is the following. Let W be a braided vector space of
diagonal type and assume that its Nichols algebra 3(W) is finite-dimensional; see [2] for an introduction
to Nichols algebras and [3] for a survey on Nichols algebras of diagonal type. We recall that finite-
dimensional Nichols algebras of diagonal type were classified in [13]. It is useful to organize the
classification in four classes:

o Standard type [8], including Cartan type [7].

« Super type [5].

o (Super) modular type [3].

o Unidentified type [9].

Let I" be an an abelian group such that W is realized as a Yetter-Drinfeld module over it and let U be the
Drinfeld double of B(W)#kI". The representation theory of such Drinfeld doubles U or slight variations
thereof was treated in many papers, among them [1, 6, 14, 15, 17-19]. Indeed, the first two articles deal
with the representation theory of the finite quantum groups or Frobenius-Lusztig kernels (that roughly
arise from W of Cartan type), while in the others some general results are established. Presently we know
that the simple U-modules are parametrized by highest weights but we ignore the character formulas
and the dimensions in general, except for Frobenius-Lusztig kernels under appropriate conditions.
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Back to the particular V, the goal of working out this example, establishing the dimensions of all
simple /-modules, is to gain experience for further developments. The algebra I/ is small enough to
allow an approach by elementary computations. Arguing as in [6, Theorem 3.7], see also [14, Proposition
5.6], it is possible to prove that I/ is a quasi-triangular Hopf algebra, even a ribbon one by the criterion
in [16, Theorem 3], what makes it susceptible of applications. If A is finite, then the simple /-modules
are just the simple Yetter-Drinfeld H-modules; therefore the classification here might have applications
to the study of basic Hopf algebras. Also, in the organization in classes mentioned above, B(V) is the
smallest Nichols algebra of unidentified type; in the terminology from [3], V is of type ufo(7). Indeed,
dim B(V) < oo by [13, Table 1, row 7]; more precisely, cf. (13),

dim B(V) = 2%3% = 144.

By [9],a consequence of [10, 11], we know that B(V) has a presentation by generators E1, E; and relations
(5) below. Thus B(V) is manageable yet does not arise from any Lie algebra, what makes it attractive.
There is another reason to address the representation theory of U{. A finite-dimensional Nichols
algebra of diagonal type admits both a distinguished pre-Nichols algebra [12] and a distinguished
post-Nichols algebra [4]; the representation theories of the corresponding Drinfeld doubles seem to be
very rich. However our B(V) coincides with its distinguished pre-Nichols and post-Nichols algebras,
being therefore of singular interest (the only other Nichols algebra with this feature has diagram

w_ "9 -1

o', w € G}, which is of standard type B,). This peculiar behaviour appeals to the
consideration of V.

o

1.2. The algebrald

We now introduce formally ¢{. Let us begin with some notation.

If k, £ € Ny, then we denote [, = {n € Ny : k < n < £}; also I, := [ 4. Let k be an algebraically
closed field of characteristic zero and k* = k — 0. Let G be the group of 12-roots of unity in k, and
let G/, be the subset of primitive roots of order 12.

To define U, we need some data:

g
g1 -1
generalized Dynkin diagram is given by

o A matrix q = (gij1<ij<2 = < ) € k?*2 such that q2q21 = ¢'%; that is, its associated

o b, 1)

o An abelian group A whose group of characters is denoted by A.Wesetl' = A x A.

. o1(g) o2g)\ _ (¢* aqn
o gl,gzeA,ol,JzeAsuchthat(al(gz) o)) \qu -1)

Starting from these data, we consider vector spaces V and W with bases v;, respectively w;, i € I, and
define an action and a I'-grading on V and W by
g vi=oiQv,  ovi=o@v, gowi=o  @w, o wi=ogws ()
degv; = gi, degw; = o, ge o€ K, iel,. 3)
Then V @ W is a Yetter-Drinfeld module over kI" and T(V @ W) is a braided Hopf algebra in ilt yYD.
In particular, V is a braided vector space of diagonal type ufo(7), as said.

It is convenient to start Vlith the auxiliary Hopf algebra U = T(V® W)#kT; in particular, T(V & W)
and kI are subalgebras of ¢/ and

gvi = oi(@)vi, ov; = o(gi)vio, gwi = Gi_l(g)wig, ow; = U(gi_l)wia,
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ge o€ A, i € I,. To stress the similarity with quantum groups, we denote in I/ or any quotient
thereof, as in [6, 14, 15],
E;i =v;, F; = wio iel,. (4)
Thus
gk =o0i@Eg,  oE=o0(g)Eo, gFi=o0'(QFg  oF =o(g )Fo.

We also need the notation of the so-called root vectors, needed for the relations and for the PBW-
basis:

E\; = E\E; — qiuExEq, Ei1z = E1E12 — qu2¢ *EnaEy, E11212 = E112E12 — q12¢ E12E112,
Fi, = F1F, — g FbF, Fi12 = FiFy — qui¢*FioFy, Fi1212 = Fri2F12 — @218 FioFraa.
We are now ready to define /.

Definition 1.1. The algebra U/ is the quotient of I/ by the ideal generated by

E% =0, E% =0, E11212E12 = §10412512E11212, (5)
Fi =0, F3 =0, FriaiFiz = ¢*qaiFiaFia, (6)
ExF; — FiEx = 8ii(gi — 07 V). )

The algebra U{ is a Hopf algebra with coproduct given by
AE)=E®1+g®E,  AF)=F®o ' +18F Al@=g®g geT.

Let U~ (respectively UT) be the subalgebra of U generated by Fy,F, (respectively Ej, Ep). The
following facts are not difficult to prove and can be derived from general results in the literature cited
above:

o U has a triangular decomposition i/ ~ Ut ® kI' ® U™, given by the multiplication map.

o UT =~ B(V); in what follows we identify these two algebras.

o U, U and U~ admit a Z>-graduation U = ®pez2Up such that deg E; = o; = —degFj,i € Ip, and
degx=0forx eT.

Here (o;)ier, is the canonical basis of Z2.

1.3. Verma modules

We recall succinctly the description of the simple modules in terms of highest weights.
Let 3 M be the category of left Z/-modules and let Irr i/ be the set of isomorphism classes of finite-
dimensional simple /-modules. If M € ;y M and A € T, then

M'={meM:g-m=xr(gmVgeT}

is the space of weight vectors with weight A; it M = &, M?*, then we say that M is diagonalizable.
Let A € I'. We denote by k; the kI ® &/ ~-module defined by A ® ¢ (the counit). The Verma module
M()) associated to A is the induced module

M) = Indf o ko > U/ (U +UF + Y Ug = A(g))). (8)
gel’

Let v;, be the residue class of 1 in M(}); then we have an isomorphism of i/ -modules

Ut~ Mo, 1 — vy
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Hence dimM(A) = dimB(V) = 144. Thus the PBW-basis of U+ =~ B(V) becomes via this
isomorphism a basis of M(A).
The Z2-grading on U+ >~ B(V) induces a Z>-grading on M(}) such that

MA)g =Ug -y, B e 72.
Thus
M) = kv, Ug - ML)y C M(A)py, B,y € 7.

The family of ¢/-submodules of M(A) contained in ) g0 M(A)g has a unique maximal element N(%).
We set

L(L) = M(A)/N(QL).
Since U satisfies the conditions on [19, Section 2], [19, Corollary 2.6] implies that
The map A LX) provides a bijective correspondence T~ Irrld. 9

Alternatively we see that L(A) is simple arguing as in [18, Theorem 1]; then [18, Theorem 3] gives
(9). Notice that L(A) inherits the grading from M(1). Also, it follows that every simple M € 4y M is
diagonalizable.

Lowest weight modules of weight X are defined as usual; M () covers every lowest weight module of
weight A, that in turn covers L()). Highest weight modules are defined similarly.

1.4. Main result

In our main theorem, we give the dimension of L(1) for each A € T, in terms of certain equalities arising
from the Shapovalov determinant [15] satisfied by

)\i = )L(giO'i), i€ Hz.
Indeed, the Shapovalov determinant in the context of this paper is

I = ¢ = eHEe A = @2 = eH @A s = ehor a2+

% (glo)\l—lkz—l _ 59)@10)\1—1)&—1 + 1)@10)‘1—1%—1 _ {3)()»2_1 —). (10)
Then IIT = 0 if and only if one of the factors in (10) vanishes. Let
si={1¢%),  s={-1¢"),  si={,¢h) (11)

The equalities alluded above can be packed as the conditions:

? 2 ? 3.2 ? ? ?
A € Sy, )\.1)\.2 € Sy, )»1)»2 = -1, AAy € S3, Ay =1. (12)

To organize the information, we consider 47 subsets of T, organized in classes Cj according to the quantity
j of conditions in (12) satisfied. The class Cy contains just one family:

Ji=(hel [ A ¢S, A2 ¢Sy, A3 # —1, Aha & S, 4 # 1)
Here is the class C;:
Jy={reT | A1 =1 2A & S2, AA5 # —1, Ahy ¢ S3, A # 1}
=pel | m=Lre{Leehe, e300, 1,00
Js={r el | A =¢% M0 ¢ So, AAS # —1, Mo ¢ S5, Ap £ 1)
=hel | rm=c8 e x10%%05,80, ¢
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Jy={eT | A ¢S, 20 =—1,2322 #—1, LAy ¢ S3, Ay # 1}
={reT [Ma=—1 A ¢ {£1,6501% ¢4, %))
Js={reT | A ¢, A2h =20 A342 # —1, Ay ¢ Sz, Ay # 1)
={reT | A =1¢"a ¢ (£1,65¢ ¢4 ¢
Jo=1{reT | Al ¢S, 230y ¢ Sz, A3A3 = —1, Ayhy ¢ Sz, Ay # 1}
= eT A =—1, ¢ {21,650 ¢4, )
Jr={eT | A ¢S, A2 A ¢80, A2 #£ =1, MAy =0, Ay # 1}
=(heT [mha=0 ¢ {125,040
Jg={reT | A ¢S, A2hs ¢ Sy, A3A3 3£ —1, Ahy = ¢4, 2y # 1)
={neT | mr =% A ¢ (1,65 ¢4 % -1,
Jo={reT | A1 ¢S5, A2ha ¢ So, A3A2 £ —1, Ay = ¢, Ay # 1}
=(el mr =07 A ¢ {157 ¢h ey
Jo={reT | A ¢S1, 23 ¢ S, A2 # —1, Ay ¢ S3, Ay = 1)
={(+eT M ¢Gnha=1}
All the 37 remaining subsets belong to class Cy:
n=el|lhm=Li=¢, Tn={Hel|n=1Lrn=tY,
Ja=0el |m=1r=¢7) Ju={rel|am=1xrn=23%,
Js={elT | m=L1n=¢) Js=Rel |n=1Lrn=-1}
Jy=el | a=1x=C1, Js=el [ A =c0m=¢7
Jo={rel |a =¢850 =208, Jo={rel | a=¢80=C"),
Jn=(el m=¢¢0n=0%  In=(0el|n=50=¢%,
In=el|m=¢n=0  Ju=(el|a=:n=-1
Js=el m=¢"0n=¢%  Te=Rel n=¢%0=2¢5%,
Ty = el |m=cha=20, Ts={rel | a =00 =2C4,
Jw={el |m=-Li=-1), Jp={el |rm=c31=0Y,
T = el | h=—1x =0, T ={rel | A =¢%=—1),
T = el |h =20 =1}, Ju=el | =chi=20%
Js={hel |a =0 =10",
Je=el [m=¢r=1, Jy={Hel|n=¢1=1,
Js=elT | m=¢3=1  Je=Rel |n=ctrn=1}
Jp=el | m=¢=1, Tn=Rel|n=-Ln=1}
Jp=(el|m=¢ =1, Jp=Rel|m=¢¢1n=1),
Ju=Rel | n=¢C=1 Js=Rel n=¢"n=1),
J=Pel | m=¢"N=1, Jy=Hhel|ri=01xr=1.

Main Theorem. The dimension and the maximal degree of L(\A) depend on A;, i € I, and appear in
Table 1.

The paper is organized as follows. We collect some general information about &/ and the Verma
modules in Section 2, where we also deal with J;. The proof of the Main Theorem for the families in the
class 1, resp. 2, is given in Section 3, respectively 4.

If M € U, then we write N < M to express that N is a submodule of M.
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Table 1. Dimensions and highest degrees of simple modules.

Family dimL()) max. degree LAY
I 144 (12,8) 74
Ty 48 (10,8) Ty
T3 96 (11,8) I3
T4 48 (8,6) T4
Ts 9% (10,7) Js
Te 72 (9,6) Je
35 36 (9,5) 35
Jg 72 (10,6) Jg
Jg 108 (11,7) Jg
J10 72 (12,7) J10
In " (5,4 J12
J12 1" (5,4) T
J13 23 (7,5 Jaa
J14 25 (7,5) J28
J1s 37 9,6 I
J16 37 (8,6) T30
T17 47 (10,7) Jas
J18 n (5,3 J38
J19 35 (8,5) Ja0
T30 71 (1,7) T
In 61 (9,6) I3
T2 49 (9,6) Jas
J23 47 (8,6) J29
T4 85 (10,7) T35
J2s5 37 (8,5) J37
T2 25 8,5) J43
Tz 35 9,5 J36
J28 25 (7,5) J14
J29 47 (8,6) T3
T30 37 (8,6) J16
T31 61 (10,6) T30
J32 61 (9,6) 21
J33 7 9,6) T34
T34 7 (9,6) J33
J35 85 (10,7) T4
J36 35 9,5 J7
J37 37 (8,5 J2s
J38 n (5,3 J18
T30 61 (10,6) I3t
Ja0 35 (8,5 J19
In 37 (9,6) J1s
T 71 1,7) T2
J43 25 8,5) J26
Jas 23 (7,5) J13
Tas 49 (9,6) T2
Ja6 47 (10,7) J17
J47 1 (0,0) J47

2. Preliminaries

2.1. Thealgebrald

The Nichols algebra B(V) has a PBW-basis given by

{EYEEN S EN S EY | az,ainz12 € log; ap € Ip3; ar a1 € Iop}. (13)
See [9]. We obtain a new PBW-basis by reordering the PBW-generators:
{EV ES EN SR EES | az,a11212 € lo1; arz € los; aiz. a1 € oz}, (14)

Thus the set of positive roots of B(V) (the degrees of the generators of the PBW-basis) is

A_V,'_ = {a1, 201 + an, 301 + 200,01 + o2, 0} .
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By [11, Theorem 4.9], we have
E?lz = E%mz = EA112 = 0.
From the defining relations (5), we can deduce that the following are valid in B(V):
E\E11z = q2¢ EraErs
EinEy = —q,E2En + 9120 *E,
EiE11212 = qhE120E + q12¢’ (14 0)E3,
E\E}, = Eina1z + 9126 (1 + ¢ ) EnaErnz + 91,0 8EL Ex
E1E}, = q12¢ " EnaEna1z + 5, EL En + q3,E,ElL
E{E; = Eip2 + 41,0 EnREr + g, E2E7,
EiE1 = —qLE12E + 95, EnES,
EinE}, = —qu¢* (14 ¢)EnEinn + 45,0 ELEnn
En2E}, = 91,0 " EL B + 41,0 EL B,
Enz12E12 = 912¢ "EEron,
EnzEi212 = 9128 Ernan2Eina,
EinoEr = BB + 46,821+ O ES,,
EnE; = —qi2E2Eq.
The following equalities hold by direct computation from (5) and the previous ones:
FiE1, = EnF) + qua(¢ — 1)Eya) Y,
FiE112 = E1oFy +q12¢8(1 + 43)E120f1,
FiE112 = ErpiFr + 93,8 — DELoy ',
FiE, = BB — (1 + ) (Einoy ' + ¢ EinEnoey ),
FiE}, = ELFy + q1,(3)sE2Enpoy |,
F\E}, = ELFy + 4,0 (¢ — DEEfoy
FEp; = EpF + (¢ — DEig,
FyE11p = EjpF — (3);7E%g2,
F>E11212 = E1212F> — E12E19,
FE}, = ELFs + @1 (1 + £°)Eings — (3)7EnnEig,
FE}, = E1,Fs + (3)7¢ *EinElgn,
BE}, = ELF + 081 — ¢)(ELE1g — 921 EnnEinge + 4510 Erionngn),
Fii12E11212 = E11212F11212 + 01_362_2 — g11212»
FEy = ExFiy + (1= ¢'HFo;
F12E1; = E;pFip + 01_102_1 — 819>
Fi2E112 = EnoFra + §3(3);7E1g1g2,
Fi2E}, = EjpFia + :"(3)7E112E1 81825
Fi2E; = E1Fia + g0 (1 — ¢)Fag1,
F2E11212 = ErniFia + ¢V Enngiges
Fi12E112 = ErpFr12 + 01_202_1 —gfgz,
FinE; = EFi + (C — DFo; L

(15)
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2.2. Verma modules
We shall use the notation for g-factorial numbers: for each g € k*,
Mg=1+qg+...+q"7  (Mg!= D@y (Mg, nel.

We shall investigate the lattice of submodules of a Verma module. We record the following standard
fact for future use.

Remark 2.1. Let v € M(A)y be such that F; - v = 0 for i € [,. By the triangular decomposition of I/,
U-v=UTv.Inparticular, if ¢ # 0, thenl/ - v N kv, = 0.

We consider two families in M (1), corresponding to PBW-bases (13) and (14). We set
~ b d ~ d b
Mapbcde = E3ELE 1512E112E] * Vas Rabede = E1E11,E11212E1E3 - i
fora,b,c,d,e € Z. Clearly, vy = }71(),0,0,0,0 = ﬁo)o,o,o)o and
ﬁ/la,b,c,d,e 7& 0 < a,ce ]10,1, be H0,3,d,€ € Ho)z — ?iu,b,c,d,e 7& 0.
We denote by (S) the subspace generated by a subset S of a vector space. Let

Wl ()") = (ﬁ’la,b,c,d,e | a) ce H0,1> b € ]10,3)(1 € HO,Z,K S Hl,z))
Wo(A) = (Mapean | ac € Lo, b € Ios,d € Ipy),
W) = (Hipede | ¢ € lo,1,b € Loz, d,e € o).

By a direct computation, we can prove:

Lemma 2.2.
(@) Fp - W;(0) € Wi(h), i eIy,
(b) Fy - gpedi € Moy (@) (T8 = A g caior + Wikh), i € I,
(&) Fi- W) € W),
(d) Fy - it pede € Moy (1 — Ao pede + W)
In consequence,
W1 (A) is a U-submodule if and only if A1 = 1;
Wa(A) is a U-submodule if and only if &y = ¢8;
W(A) is a U-submodule if and only if A, = 1. O

We denote by m, b de» Napede the classes of Mg pcde Napcde in L(L). We order lexicographically
the set of all m,p cg,:

Mabede < Ma b ode & a<d,ora=d,b<b,or---. (16)

2.3. Simple modules
Let ¢ : U/ — U be the algebra automorphism such that
oK) =K', o)=L,  eE)=FEL',  @E) =K E

i € I, cf. [14, Proposition 4.9]; this resembles the Chevalley involution. If M is a //-module, then we
denote by M¥ the U{/-module with M? = M as vector space and action given by a>v = ¢(a) -v,v € V,
a € U.If v € M has weight A (with respect the action of I'), then v € M? has weight A~ L. The functor
M — MY preserves simple objects and sends lowest weight modules to highest weight modules, and
vice versa. The following result is standard.
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Lemma 2.3. The subspace X(1) := {x € L(}) : Eix = 0 for all i} of L(X) is one-dimensional and there
~ 2

exists o € T such that X()\) L L(A)u LV (:) L.

Proof. X(1) # 0 because there exists § € N2 maximal such that L(A)g # 0. Since X(A) is I'-stable,

there exists a weight vector 0 # x € X(X) w1th weight u € T.ThusU~x = Ux = L(A) and (1) follows.
Also L(A)¥ = U~ x)? — L(u™') implying (2). O

Lemma 2.4. Let M € 14 M a highest weight module of highest weight i and 0 v € M*. If mgpca. 7 0
in L(™") then z := F{FY, P, Fiv # 0.

There is an analogue statement for n,p ¢ ...

Proof. Indeed M¥ is lowest weight of lowest weight !, hence M¥ — L(1~!); up to a non-zero scalar,
Z> Mypede 7 0, hence z # 0. 0

2.4. Arelative of ug(sly)

We consider for a moment the algebra V constructed as i/ above but starting from a braided vector space
of dimension 1, with braiding given by g = o (g) € Gy>g € A, 0 € A.Thealgebra V is close to u,(sl>)
and has a presentation by generators h € A, T € A, E, F with relations

EN = FN =, hE = o (h)Eh, tE = 1(g)Et,
EF—-FE=g—o0~', hF=o0"'(WFh, tF=1(g YFr,
and ht = thforh € A, 7 € A, and the relations defining A, A. Thus
FF—FE = (j);F Y g—q'To™), jeN (17)
Let i € T Let L(1) be lowest weight V-module of lowest weight A defined in the same usual way. The

same argument as for u,(sl,) gives the following.

Lemma 2.5.
(a) Ifthere exists j € Iy—1 such that A(go) = q*J, then dim L(A) = j.
(b) IfM(go) ¢ {q"|h € Ton—2), then dim L(X) =
(c) L(A) has a basis vy, . . ., Vaim L(\)—1 Such that for all i,
Bvi=vi1,  Fri=()g(q" Moy ) —A@))vie,  htvi = A(hn)a (T @Hvi. (18)

(d) Let M be a lowest weight V-module with lowest weight A € T Ifo#ve M?*, then v, Ev, ..., E" 1y
are linearly independent, where
(1) either n = jif M(go) = q'~ for some (unique) j € In_1,
(2) orelsen =N — 1ifr(go) ¢ {q"|h € Ton_2).
Moreover F'Ely = a;v for some a; € k* wheni € Iy ;. O

2.5. Theclass Cy
The first family is easy to deal with.

Lemma 2.6. IfA € Jy, then M(X) is simple.

Proof. By [15, 5.16] that says: if IIT # 0, then M(}) is simple. O
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3. Simple Z/-modules in class Cq

Here we deal with the class of families satisfying exactly one of the conditions in (12). Recall that
I' = A x A; we introduce y; € T by

Xi(g,d) :O'i(g)d(gi), iel.
For simplicity, we introduce the following notation:
2 32
812 = 81825 8112 = 8182 811212 = £1£2>
2 32
012 = 0102, 0112 = 0102, 011212 = 0103

We outline the method to compute L(A), A € Jj, j € I,10.

(a) As (exactly) one of the factors of the Shapovalov determinant III vanishes, there exists 8 # 0 and
w € M(A)g — 0, such that F;w = 0, i € [, see Remarks 3.5, 3.8, 3.11, 3.14, 3.17, 3.20, or Lemma 2.2.
Thus Uw is a proper submodule.

(b) Assume we are dealing with Jj, j € T 6. Write w = ) Dapcde My p.cde Then there exist a, b, ¢, d, e
such that p,p 4. 7 0 and exactly four of the integers g, . . ., e are zero. The same holds for j € I7 19
exchanging 1,5, ¢ 4. by 71a,p,c.d.. From here we describe a basis B; of the quotient L'(1) of M(%) by
L{w,j € HZ,IO-

(c) Let v be the element of maximal degree of L'(1). A short computation shows that v belongs to every
submodule of L’ (1). Because of the inequalities defining Jj, there exists F € U such that Fv = v;.
Hence L' (L) is simple.

We work out the details for J,, with shorter expositions for the other families in C;.

3.1. The family 73
Recall that

32 = {)‘- € i: | )‘-1 = 1’)\2 ¢ {1’§)§4)§7»§3’C9’_LCIO}}‘

Lemma 3.1. IfA € Jy, then dim L(L) = 48. A basis of L() is given by

By = {mgapcdo:a.c€lpy, belys, delpyl.
Proof. Letw = mp,0,0,1; then Fiw = 0, i € I, hence U Tw = W; (L) < M () is proper by Lemma 2.2.
Let L'(A) = M(A) /U w. Let tig p a0 be the class of 71, .40 in L'(1). Then

By = (Mapedo : arc € o1, b €T3, d € T}

is a basis of L' (A), ordered by (16). Thus, it is enough to show that L’(X) is simple. Let 0 = W < L'(})
and pick u € W — 0. Fix g cd0 € Bz minimal among those whose coefficient in u is non-zero. Then

2—dpl—c p3—bpl— ~ ~
Efny EinnEiy By “u € kXmisip0 = M0 € W.
By abuse of notation, we denote by v, its class in L' (). We claim that
3 2~
FyF{, Fri212F1,mM13,1,20 € K (19)

this implies that v, € W, so L'(}) is simple.
To prove (19), we first consider the subalgebra V; = k(g, o, E112, F112) of U; clearly V; >~ V from
§2.4. Then

~ ~ ~ 2~ 2 6\~
Fiiomy 3,100 = 0, 1120112M1,3,1,00 = —A2111,3,1,0,05 E11,mM1,3,1,00 = 0712(812 ) M1,3,1,2,0-
By Lemma 2.5, we conclude that

2 o~ o~ o~
Fiamizi00 € kKXmizi00 = miz100 € W.
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We next consider V, = k(g, 0, E11212, F11212) = U; again, V, =~ V. Then

o~ o~ 2A
Fri210m1,30,00 = 0, £11212011212M1,3,0,00 = —A51M1,3,0,0,05
~ 3 4~
Ev1212m13,0,00 = 011212(8; & ) M1,3,1,0,0
Lemma 2.5

~ o~ -
Fii212m13,1,00 € K™ mi3000 = mi13000 € W.
Once again, we consider V3 = k(g, 0, E13, F12) — U; thus V3 =~V from §2.4. Then
~ ~ 1~ 3~ 3, 1~
Fiomy0,000 =0, £12012M1,0,0,0,0 = A28 11,0,0,0,05 E{,m1,00,00 = 015(85 )M1,3,000
Lemma 2.5

3~ X~ ~
F,m13,0,00 € K m10000 = mMi1,0000 € W.

Now FZ”A’II,O,O,O,O = )\(0'2)_1()\.2 — vy #0,and (19) follows. ]
Corollary 3.2. IfX € J,, then N(X) =~ L(x1A) and x11 € Js.

Proof. By the proof of the Lemma, N (1) is of lowest weight x;A and dim N(1) = 96. It is easy to see that
X1A € J3; hence dim L(); 1) = 96 by Lemma 3.3 and the claim follows. O]

3.2. The family J3
Recall that
Js={reT | =¢% ¢ (£1,0%,0%,05,¢8,2%, ¢ ).

Lemma 3.3. IfA € J3, then dim L(X) = 96. A basis of L() is given by
Bs = {mapcdela,c €lo1, b €los, d €lgp,e ey}

Proof. Let w = mogo002 and L'(A) = M(X)/UTw. We identify B; with a basis of L'(). Now
FzFszuzuFqulm1,3,1)2,1 € k*v,, hence L' (1) is simple. ]

Exactly as for Corollary 3.2, we conclude:

Corollary 3.4. IfX € J3, then N(A) =~ L(XIZA) and Xlz)\. € J,. O]

3.3. Thefamily J4
Recall that
Ja={nel | A2y =—1, 4 & (1,450 04,2,

We start by a Remark that will be useful elsewhere.

Remark 3.5. LetA € T. Ifk%)\z = —1,thenw = FfEHzE%v;L € M(A) satisfies
F1W = FzW =0. (20)

Proof. By a direct computation,
Fi2E112E v = Moy 205 3,04 03ha + DEv,.
AS M(A) 40, = M(A)3q, = 0, we have that F,E112E2v; = F1E112E2v, = 0, 50
0 = FipEinEv = %q, R EnEy,.
This shows that F,w = 0; on the other hand, Fiw = Ff (Elleka) = 0, since Ff =0. ]
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Lemma 3.6. IfA € J4, then dim L(A) = 48. A basis of L(A) is given by
By = {ma,b,c,o,e ra,celpyy, be Io3,e € Ipyl.

Proof. Let w = F2Ej12E2v;. By Remark 3.5, Uw is a proper submodule. We identify By with a basis
of L'(A) := M(\)/Uw. We check that there exists F € U such that Fm;33102 = vi. Then L'(}) is
simple. O

Exactly as for Corollary 3.2, we conclude:

Corollary 3.7. IfX € J4, then N(X) ~ L(Xlzxzk) and X12X2)\ € Js.

3.4. The family Js
Recall that
Js = (€T [ 20 =10 h ¢ (£1,65,010,¢%,0%)),
Here is another Remark that will be useful later, proved as Remark 3.5.
Remark 3.8. LetA € T. If)»%)»z =10 thenw = F%E%IZE%VA € M(A) satisfies (20).
Lemma 3.9. IfA € Js, then dim L(X) = 96. A basis of L(X) is given by

Bs = {mgapcdela,c,d € lo1,b € lps,e € Iopp}.

Proof. Let w = F2E3,,E2v;. By Remark 3.8, Uw is a proper submodule. We identify Bs with a basis
of L'(A) := M(\)/Uw. We check that there exists F € U such that Fm;3311, = v,. Then L'(}) is
simple. O

Exactly as for Corollary 3.2, we conclude:

Corollary 3.10. IfA € Js, then N(A) >~ L(x{x2}) and x{x3» € Ja.

3.5. The family Jg
Recall that
Jo=1eT A3 =—1, 0 ¢ (£1,¢5,¢1% ¢4, ¢2)).
Still another Remark useful elsewhere, with an analogous proof as above.

Remark 3.11. Let x € T.1f 2342 = —1, then w = F2F2, E11212E2 , E2v; satisfies (20).

Lemma 3.12. IfA € J, then dim L(X) = 72. A basis of L() is given by

Bs = {mapodela € lo1,b € lp3,d,e € Iy}

Proof. Let w be as in Remark 3.11; then Uw is proper. Again B is identified with a basis of L'(A) =
ML) /Uw; since there is F € U such that Fmj 3022 = v;, L' () is simple. O

Exactly as for Corollary 3.2, we conclude:

Corollary 3.13. IfA € Jg, then N(A) = L(x; x31) and x; x2X € Js.
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3.6. The family 3,
Recall that
T=0 el | mra=¢ M ¢ (1,252,045 %))

Again we start by a useful remark.
Remark 3.14. Let A € . If A1Ay = ¢, then w = F,E>Eq,v), € M(A) satisfies (20).

Lemma 3.15. IfA € J7, then dim L(X) = 36. A basis of L() is given by

By = {ng0cdelac € Lo, d, e € Ips).

Proof. Let w = F,E;E12v). By Remark 3.14, Uw C M(A). Let L'(A) = M(L)/Uw, so By is a basis of
L'(%). There exists F € U such that Fnj 122 = vi. Then L'(}) is simple. O

Exactly as for Corollary 3.2, we conclude:
Corollary 3.16. If A € J7, then N(A) = L(x1 x2)) and x1x2A € Jo.
3.7. The family Jg

Recall that
Js={r el [Mra =04 A ¢ (1,25,0% 0% —1,019).

Remark 3.17. Let ) € T. IfAhy = ¢4 thenw = FzEzE%sz € M(A) satisfies (20).
Proof. Analogous to Remark 3.5. O

Lemma 3.18. IfA € Jg, then dim L(X) = 72. A basis of L(A) is given by

Bg = {na,b,c,d,e|as b,ce HO,I) d,ec HO,Z}-

Proof. Letw = FzEzEfsz. By Remark 3.17, Uw C M(1). Now Bg identifies with a basis of L'(%) :

ol

M(\)/Uw. Since there is F € U such that Fny 112, = v;, L'(X) is simple.

Exactly as for Corollary 3.2, we conclude:
Corollary 3.19. If A € Jg, then N(A) =~ L(Xlzxzz)») and Xlzxzzk € Js.
3.8. The family Jg
Recall that

Jo={r el [hda =107 hr ¢ (16567, ¢% M)

Remark 3.20. Let A € T.If A4, = ¢7, then w = FyE2E3,v; € M(2) satisfies (20).
Proof. Analogous to Remark 3.5. O

Lemma 3.21. IfA € Jg, then dim L(A) = 108. A basis of L(A) is given by

By = {na,b,c,d,e|aac € HO,la b,d,e e H0,2}-
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Proof. Letw = FZEZEizV)L- By Remark 3.20, Uw C M(L). Let L'(A) = M(A)/Uw, so By is a basis of

=

L’ (). Since there exists F € U such that Fny 1,2 = vy, L'(A) is simple. O
Exactly as for Corollary 3.2, we conclude:

Corollary 3.22. If A € Jo, then N(A) =~ L(x13x23k) and X13X23)~ e J;.

3.9. The family 310
Recall that
Jo={reT | i ¢ G ry =1},

Lemma 3.23. IfA € Jy9, then dim L(A) = 72. A basis of L()) is given by

Bio = {nop,cdelc € Io1, b € o3, d, e € Loy}

Proof. Let w = 10000 and L'(A) = M(X)/UTw. We identify Bjy with a basis of L'(1). Now
F%F%lel1212Fi’21’10,3’1,2,2 € ]kXV)L, hence L,()\.) is simple. O

Exactly as for Corollary 3.2, we conclude:

Corollary 3.24. If 1 € Jyg, then N(1) =~ L(x2A) and x21 € Jo.

4. Simple U/-modules in class C;

We start by the method to compute L(A), A € Jj, j € I11,47. We illustrate by considering J1;, which is
small enough to allow complete details; and J;3, with less explicit yet complete enough arguments. Then
we give the main features of the proofs for the other families in C,. Here are the steps of the method:
(1) We identify easily a proper submodule W = Uw; of M(1) as follows:

if j € 11,17, then wy = mg,0,0,1, 50 W = W7(1), see Lemma 2.2;

o ifj € T84, then wy = Mg0,0,02, 50 W = W3 (1), again by Lemma 2.2;

o ifj € Ip535, then wy is as in one of the Remarks 3.5, 3.8, 3.14, 3.17, 3.20;

o 1f] € ]136,47’ then wy = ’EI,O,O,O,O, soW=W(Q) by Lemma 2.2.

A basis of M())/W is obtained by restriction of the height of a specific PBW generator. Below we
denote by w, an element of M(A) or its class modulo W, indistinctly.

(2) Next we show that there exists 8 # 0 and w, € (M(L)/W)g — 0, such that F;w, = 0, i € I; for this,
we either apply one of Remarks 3.5, 3.8, 3.11, 3.14, 3.17, 3.20, or else proceed by direct computation.
Hence Uw; is a proper submodule of M(A)/W.

(3) Let L'(A) = M(X)/(W 4 Uw,). We consider a suitable set B; inside the image of the PBW-basis
in L'(1) that spans L'(1). To prove that B; is linearly independent, we apply one of the following
procedures:

(a) Forj e J = {11,12, 18,38}, the elements of B; are homogeneous of different degrees.

(b) Assume thatj ¢ J. Then Uw, < M(A)/W projects onto the simple module L(v), where v is
the weight of w,. Also, let u € M(A)/W be the element of maximal degree; then (/u)? projects
onto a simple L(u). Let J and J; be the families containing v and p, respectively. At this point,
we observe that we are proceeding recursively, so that we already know the simple modules in
Jk and J¢. With this information on hand, we check thati/u = Uw, =~ L(v). This isomorphism
provides a basis of Uw,; we conclude that there is a linear complement of U/ w, with a basis B;
projecting onto Bj; thus B; is a basis of L'(1).

<



1784 N. ANDRUSKIEWITSCH ET AL.

(4) Finally we prove that L'(1) is simple. Let v be the element of maximal degree of L'(1). A short
computation shows that v belongs to every submodule of L' (). Applying Lemma 2.5 (or by direct
computation when we have a table for the action), there exists F € I such that Fv = v,. Hence L' (A)
is simple.

As said, we proceed recursively, but with respect to an ad hoc partial ordering of the families in C,.

In the quiver below, we describe this ordering; J;; — J;¢ means that knowledge on J; is used for

J16. As we see, there is no vicious circle.

J17 —— T3 I ——=TJis

\

~

Jy7 ——=T7 ——= T4

T8 —TJ31

/]

J29 J2 T4 T4 T3 -
T \ Jss J39
J24
J38 J2s Ta0 I J20 J12 ——J15 —— T3

§328 J13 T2 / Jse RES Jio J37 J34
\

T30 J45 —— T3

4.1. The family 314
Recall that J;; = {A € T A1 =1, A =1}

Lemma4.1. If1 € Ty, then dim L(X) = 11. A basis of L(X) is given by

Bi1 = {mapo40la € Loy, b €lo1,d e lor} — {mi,1,000}-

The action of E;, F;, i € 1, is described in Table 2.

PTOOf. Let wp = I/A}:l(),(),o)(),l, wy = 7711,1,0,0,0; hence F,‘Wl =0,i¢€ ]Iz,

Fimy 1,000 = 0, Foiii000 = (¢ — DA(g2) 10001 € Wi(A) = Uwy.

Table 2. Simple modules for A € J11.

w Er-w Ey-w Agy DR w Agy VR - w
V0,0 0 vo,1 0 0
V0,1 Vi 0 0 " = voo
via V2,1 0 q12(¢ — Dvo, 0
V2,1 0 V2,2 3122801+ 3vig 0
V2,2 V32 0 0 a2, (1 = Dy
V3,2 V4,2 V33 Q%z (&2 = vy 0
Va2 0 v43 2#2({ 213, 0
V33 412{8(523_1”4,3 0 0 332 =Tz
Va3 V53 0 23,62 — v33 a3,(¢3 — Va2
V53 0 V54 4?24“8(1 — M3 0

V5,4 0 0 0 a3 (" + s
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Thus Uwy + Uw; is a proper submodule. We claim that L' (L) = M(A) /Uw; + Uw; is simple. Consider
the following elements of L' (1):

V0,0 = 110,0,0,0,0> V0,1 = 111,0,0,0,0> V1,1 = 10,1,0,0,0> V2,1 = 10,0,0,1,0>
V2,2 = mM1,0,0,1,0> V3,2 = my,1,0,1,0> V4,2 = 1M0,0,0,2,0> V3,3 = M1,1,0,1,0>
V4,3 = 1M1,0,0,2,0> V5,3 = 10,1,0,2,0> V5,4 = M1,1,0,2,0-

Notice that v;; € L’ (A)ie; +jo, - The action of E;, F; on these vectors is given in Table 2, and we check that
L'(%) is spanned by the v;’s by direct computation.

For each v;; there exists E;; € Z/Ig_ such that E;jv;j = vs4; also, there exists F54 €

Dor+(4—joz

U5, 4, Such that Fs 4vs 4 = v;. This implies that the v;;’s are # 0; hence they are linearly independent,

since they have different degrees, and By, is identified with a basis of L'(}).
Letnow 0 # U < L'(x) and pick v € U — 0. Expressing v in the basis By}, we see that there exists
E € U™ such that Ev = vs 4. But Uvs 4 = L'(1). Hence L' (1) is simple. O

Remark 4.2. If A € Jyy, then N(A)/W1(A) = L(x1x3)), with 1 x3A € Js1 has dimension 37. Now
W1(R) is a lowest weight module of lowest weight 1A € J43; since dim L();A) = 25 by Lemma 4.34,
the kernel of W1(A) — L(x1)) is a submodule of dimension 71.

4.2. The family 313
Recall that J1, = {A € T [ A1 =1, A =24
Lemma 4.3. If\ € J), then dim L(X) = 11. A basis of L(X) is given by
B2 = {map04d0: ab,d €1} U {mo1,1,005 M1,0,1,1,0, 70,0,1,1,0}-

The action of E;, F;, i € 1, is described in Table 3.

Proof. Let wy = mg0,0,0,1, W2 = FzEzE%zv;L; then Fiw; = 0 for i,j € I, so Uw + Wi(A) is a proper
submodule of M(X). Let L' (A) :== M(A)/Uw + W1(1). We label the elements of By, as follows:

10,0 = 110,0,0,0,0> 10,1 = 11,0,0,0,0> V1,1 = 10,1,0,0,0> V2,1 = 10,0,0,1,0>
V2,2 = 11,0,0,1,0 V1,2 = M1,1,0,0,0» V3,2 = 1M0,1,0,1,0> V3,3 = M1,1,0,1,0>
V4,3 = M,1,1,0,0» V5,3 = 10,0,1,1,0> V5,4 = M1,0,1,1,0-

The action of E;, F; on these vectors is given in Table and By, is a basis of L'(1). Looking at the table,
there exists F € U~ such that Fmj 1,10 = v5. Then L'(}) is simple. O

Table 3. Simple modules for & € J1;.

w Er-w Ey-w Agy DFy - w Mgy DR - w
V0,0 0 V0,1 0 0

vo,1 Vi1 0 0 €%+ oo
via V2,1 V12 q12(¢ — Nvo, 0

V2,1 0 V2,2 3128801+ 3vig 0

Vi A+ )aq1v, 0 0 an (1 + ¢t
V2,2 V32 0 31283 + 18y —q%,1 V2,1
V3,2 0 V33 Q%Zs“ 10y,, 0

V33 0 0 0 AU
Va3 2q12vs3 0 q‘ﬁ{@);n V33 0

V53 0 V5,4 —Q%zﬁ +23)va3 0

Vs 0 0 0 31— 0)¢%vs 3
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4.3. The family J13
Recall that J13 = {A € T A =1, =C7).

Lemma 4.4. IfA € Jy3, then dim L(A) = 23. A basis of L()) is given by
Biz = {map04,0lb € Loo} U {map,1,00, 03,040 M1,301,00a € lo1,d € L1}

Proof. Let wy = m90,0,0,1, W2 = FzEzEfzv;L. Then W1(}) = Uw; by Lemma 2.2, and Fiw, = Fowy; =0
by Remark 4.22, so Uwy +Uw, < M(1). We claim that L' (A) :== M(X)/Uw; +Uw,) is simple and By3
is a basis of L' (X).

Let M = M(A)/ W1 (X)) and u = m13,1,2,0 € M. Notice that E%12E11212E2W2 = —q%g u,sou € Uwy.
On the other hand, Eju = 0,i € I, gjo1u = uand goou = ¢u, so (Uu)¥ projects over a simple
module L(u) with i € J14, see Lemma 2.3; in particular there exists F' € U_74, 54, such that F'u # 0.
AsUu C Uw, and Uw, is a lowest weight module,

Fue Uu)sa +30, S UW2)30, 430, = kw.

Hence we may assume that F'u = w,, and Uu = Uw;.

Also gijo1wy = ow, S0awy = ¢*wy, so Uw; projects over a simple module L(v) with v € Jg. For
any v € M, v # 0, there exists E € U such that Ev = u. Thus we conclude that {w, =~ L(v), and then
dimL'(A) = 48 — 25 = 23 by Lemma 4.19.

Applying Lemma 2.5, there exists F € U/~ such that Fmg 30,0 = v,. Note that

Exmo3020 = m13020 =0

since 0 = Ejamg 3,100 and kmi 11,0 = kmy3020. Also Eymo30.2,0 = 0 because it is a scalar multiple
of mo,1,1,2,0 » which is 0. Using this fact and previous relations, we are able to prove that B;3 spans L' ()),
but as By3 has 23 elements, it is a basis.

Let0 # W < L'(L), w € W — 0. Arguing as before, there exists E € U™ such that Ew = mg3,0.2,0, SO
mo 3,020 € W, but then v, € W, so L'(}) is simple. O

4.4. The family 314
Recallthat Ty = {A € T [ Ay = 1, Ay = £3).

Lemma 4.5. If A € Jy4, then dim L(X) = 25. A basis of L(X) is given by
By = {map040 | a€lor,belys,delpa} Um0 Mo,1,200 — {M1,3020}-

Proof. Let wi = 10,0001, w2 = (1 + £)M10,100 + q12¢° (1 + £)my1,10,1,0- Then Wi (1) = Uw; and
Fiwy = Fow, = 0 by direct computation.

Let M = M(A)/Wi(X), L'(A) = M(\)/Uw, + W1 (A) and u = my 3120 € M. Then (Uu)? projects
over L(p) for some p € Jy3. Also, Uw, projects over L(v) for some v € Ju4. Hence Uu = Uw,, and
moreover Uw; is simple, so dim L'(A) = 48 — 25 = 23 by Lemma 4.35. By direct computation L'(}) is
spanned by B4, so By4 is a basis of L' (A).

Moreover there exists F € U~ such that Fm o120 = vi, so L' (%) is simple. O

4.5. The family J15
Recall that J15 = {A € T | =1, 4 =%
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Lemma 4.6. If A € J;5, then dim L(X) = 37. A basis of L(X) is given by
Bis = {mgapcapola,c € I, b € Iz, d € Iy}
—{map1dao0la € o1, b € Ih3,d € lloy, (a,b,d) # (0,2,2)).
PT’OOf Let wp = 7?10,0,0)0,1, u= 7711)3,1,2,0, Wy = F2F12F%12u. Then W1 ()\) = Z/{wl.
Let M = M(A)/W1(X), so Eyu = Eou = 0in M, and (Uu)? — L(v) for some v € Jyy; thus wy # 0.
By direct computation, F;w, = 0, i € I, so Uw, projects over a simple module L(uw), for u € J;5. From
here, Uw, >~ L(w).

Let L'(A) = M(L)/Wi(X) + Uw,. Then dim L' (1) = 37 by Lemma 4.3, and By is a basis of L' ()).
There exists F such that Fmg,1,,0 = v», and L' () is simple. O

4.6. The family J16
Recall that ;g = (A € T | A; = 1, Ay = —1}.

Lemma4.7. If 1 € Jy6, then dim L(X) = 37. A basis of L(X) is given by
Bis = {mapcaolac € oy, b € los,d € lop}
— ({magcaolac € Toy,d € T2} U {m1 2,120, M0,2,1,2,00 M1,2,02,0})-
Proof. Let wy = Mg ,00,1, 4 = M13,1,2,0, W2 = FaF11212F112u. Then W1 (L) = Uw.
Let M = M(X)/W1(L), s0 Eyu = E;u = 0in M’, and Uu)? — L(v) for some v € Jyp; thus wy # 0.
By direct computation, F;w, = 0, i € I, so Uw; projects over a simple module L(w), for & € J;;. From
here, Uw, >~ L(u).

Let L'(A) = M(1)/W1(X) + Uw,. Then dim L' (1) = 37 by Lemma 4.1, and By is a basis of L' ()).
There exists F such that Fmj 1120 = v;, and L'()) is simple. O

4.7. The family 347
Recall that J17 = {A € r |h =12 ="

Lemma 4.8. IfA € Jy7, then dim L(A) = 47. A basis of L(}) is given by

B17 = {ma,b,c,d,0|a, (S HO,I’ b € H0,3) d> ec HO,Z) (a> b’ [ d) 75 (1’ 3) 17 2)}
Proof. Let wy = mg0,0,0,1, W2 = M13,1,20- Then W1(1) = Uwy, and Fiw = 0, i € I, so Uw projects
over a simple module L(u), for u € Jy47. Let M = M(1)/W;(L), hence Uw, =~ L(u). Let L'(A) =

M)/ W1(A) + Uw,. Then dim L'(A) = 47 by Lemma 4.38, and By7 is a basis of L' (). There exists F
such that Fmg 3120 = v, and L'()) is simple. O

4.8. The family J1g
Recall that J13 = {A € T |2 =28 2 =2°)
Lemma 4.9. IfA € Jy3, then dim L(A) = 11. A basis of L(}) is given by
Big = {map,1,01la,b € o1} U {mopo0.ele € lo,1,b € Ios} U {my00,00}

— {m1,1,1,0,1, M3,0,00,1}-

The action of E;, Fj, i € 1, is described in Table 4.
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Table 4. Simple modules for A € J1g.

w Er-w E)-w AoDF1 - w Ag) - w
V0,0 V1,0 V0,1 0
V1,0 0 32127 @)¢vin O+ oo
vo,1 @i 0 0 @ —1voo

antt @,z
via V21 0 q12(& — Mvo1 " =i
Va1 0 03,01%4)v22 (a=¢Hm, 0

—-(1+¢H3),7

V2,2 (1 =¢MHvs, 0 0 ———va
V32 V4,2 312¢"%@v33 0@ vap 0
V4 0 Va3 L& + s 0

4 .7

q16° 4 8_1
V33 A2 yys 0 0 s,
y 0 3.1 4 1y(4)2 41
43 V53 q7,(& " +DA);v33 a3 (¢ Va2
vs3 0 0 0358 %va3 0

Proof. W»(L) < M(A) by Lemma 2.2 and w := F,E,E); satisfies Fyw = F,w = 0 by Remark 3.14. Let
L'(x) = M(X)/Uwy + W5 ()). We fix the following notation for B;g:

V0,0 = 10,0,0,0,0> V1,0 = 10,0,0,0,1> V0,1 = M1,0,0,0,0» V1,1 = M0,1,0,0,0»

V2,1 = mM0,1,0,0,1> V2,2 = 10,2,0,0,0> V3,2 = 1M0,2,0,0,1> V4,2 = 1M0,0,1,0,1>

V3,3 = 110,3,0,0,0>
We check that L'(%) is spanned by Big. From Table 4 there exist E;; € U(Jg—i)a1+(3—j)a2’
Uu- such that E;jv;; = vs 3, Fs3v53 = v;. Thus L’ (%) is simple. O

—50{1 —30{2

V4,3 = M1,0,1,0,1» V5,3 = Mo,1,1,0,1-

Fs3 €

4.9. The family J19
Recall that J19 = {A € T | 2 =8 A =¢8).

Lemma 4.10. If A € Jy9, then dim L(X) = 35. A basis of L() is given by

Bio = {mop0,delb € lo3,d € o, e € Lo} U{mypooel bre € loi} U{mopio0l b €113}

U {mip00,1 | b €lz3}U{mioo,1,1,m00,1,1,0}

Proof. Letw; = ﬁ’lo)o)o,oyz, wy = FzEgE%ZV)L. Then W5(A) = Uw; and Fiw, = Fow, = 0. Set M =
M)/ Wa(A), u = my3121. Hence Uw, —» L(u) for u € T3y, and there exists E € U such that
Ew, = u. Moreover, there exists F € U such that Fu = w», so Uwy = Uu >~ L(u). Let L'(A) =
M) /Uwy + Wi (A), so dim L'(X) = 96 — 61 = 35 by Lemma 4.23, and By is a basis of L'(A). As in
previous cases, L’ (1) is simple. O

4.10. The family 3,9
Recall that Jrg = {A € T | A =28 a =)

Lemma 4.11. If A € Tz, then dim L(A) = 71. A basis of L(X) is given by
By = {mapcdela.c,e € o1, b € lo3z,d € Iy}

- <{m1,h,1,d,e|b € lps,d €llop, e €lly, (b,d,e) #(2,2,1)} U {ml,o,o,z,l,m1,3,o,o,0})-
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P?’OOf. Let w; = 17’1(),0)0,(),2, Wy = FZEZE'I)zVA- Then W5 (L) = Uw; and Fiw, = Fow, = 0. Set M =
M)/ Wa(A), u = my3121. Hence Uw, —» L(u) for u € Jpg, and there exists E € U such that
Ew, = u. Moreover, there exists F € U such that Fu = w», so Uwy = Uu >~ L(u). Let L'(A) =
M) /Uwy + Wi (A), so dimL'(A) = 96 — 25 = 71 by Lemma 4.17 and By is a basis of L'(X). As in
previous cases, L’ (1) is simple. O

4.11. The family 734
Recall that J5; = {A € T | A =1¢8 a0 =03

Lemma 4.12. IfA € J1, then dim L(A) = 61. A basis of L()) is given by
Ba1 = {Mapcde | @b, ce € o1, d € o} U{mancoe | a.ce €1}
U {m1300e | € € To1} U {mo3,1,01>M1,31,0,1, 102010}
Proof. Let wi = 0,002, 4 = 113121, W2 = F1F11212F12u. Then Wy (1) = Uw.
Let M’ = M(L)/W3(L), s0 Eju = E;u = 0in M’, and Uu)? — L(v) for some v € Jyg; thus wp # 0.
By direct computation, F;w, = 0, i € I, so Uw, projects over a simple module L(uw), for 1 € Jao. From
here, Uw, >~ L(u).

Let L'(A) = M(A)/W2(X) + Uw,. Then dim L’ (1) = 61 by Lemma 4.31, and By; is a basis of L' ()).
There exists F such that Fmj 1121 = v;, and L'()) is simple. O

4.12. The family 3,3
Recall that J,, = {A € T | A1 = Cg, Ay = {9}-

Lemma 4.13. If A € Jy, then dim L(X) = 49. A basis of L() is given by

Bo = {mapcdel ac € o1, b €los,d,e ey}
— {Map 1,00 M131,1 Map 110 | @ €Lo1, b € los, b €T3}
Proof. Let wy = g,00,02, W2 = FfE%lelv,\. Then Wo (L) = Uw; and Fiwy, = Fowy, = 0. Set M/ =
M)/ Wy(A), u = my3121. Hence Uw, — L(u) for u € Jpg, and there exists E € U such that
Ew, = u. Moreover, there exists F € U such that Fu = w», so Uwy = Uu >~ L(u). Let L'(A) =

M) /Uwy + Wi (A), so dim L'(A) = 96 — 47 = 49 by Lemma 4.20, and By, is a basis of L'(A). As in
previous cases, L’ (1) is simple. O

4.13. The family J,3
Recall that Jy; = {A € T | A; = ¢8, Ay = ¢2).
Lemma 4.14. IfA € J,3, then dim L(A) = 47. A basis of L()) is given by
By = (Imaboaelare € Io1,b € Toz,d € To) U lmapi00 | @b € Io)

U {mo2,1,0,05 m1,3,1,0,o}) - ({ml,b,o,l,e|b €lop,eelh}U {mo,z,o,z,o})-

PT‘OOf. Let wp = 17’10)(),0)0)2, u= 7711)3)1,2,1, Wy = F%ZF11212F112F11/L Then Wz()») = Z/[Wl.

Let M’ = M(L)/W,(L),s0 Eju = Eou = 0in M’, and (Uu)? — L(v) for some v € Jyy; thus wy # 0.
By direct computation, F;w, = 0, i € I, so Uw; projects over a simple module L(u), for 0 € J45. From
here, Uw, >~ L(u).
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Let L'(A) = M(A)/W1(X) + Uw,. Then dim L' (1) = 47 by Lemma 4.36, and By is a basis of L' ()).
There exists F such that Fmj 3021 = v;, and L'()) is simple. O

4.14. The family J,4
Recall that 3oy = (A € T | A; = ¢8, Ay = —1}.

Lemma 4.15. IfA € Jy4, then dim L(A) = 85. A basis of L()) is given by

By = {mapcdela.c,e € o1, b € Ios,d e lpy}

— ({mazcoemiseiilace€loi} U{mosii}).

PT‘OOf. Let wp = 17’10)0,0)0)2, u= 7711)3)1,2,1, wy = F12F11212F1u. Then Wz()») = Z/{Wl.

Let M’ = M(L)/W,(L),s0 Eju = Eou = 0in M’, and (Uu)? — L(v) for some v € Jyg; thus wy # 0.
By direct computation, F;w, = 0, i € I, so Uw; projects over a simple module L(u), for u € J3g. From
here, Uw, >~ L(u).

Let L'(A) = M(A)/W1 (%) + Uw,. Then dim L'(A) = 85 by Lemma 4.29, and B,y is a basis of L' ().
There exists F such that Fmj 51,1 = v), and L' (}) is simple. O

4.15. The family J;5
Recall that Jy5 = {A € T | A= ap =8

Lemma 4.16. If A € J,s5, then dim L(L) = 37. A basis of L(X) is given by

Bys = Bjs — ({mo,s,o,o,e le€lo1}U{mizcoemaioelce€loee ]10,2}>, where

/
Bys = {mapcoe | ac€lo1, b ellgs, e clpy).

Proof. Let w; = FiE12E}v;. By Remark 3.5, Fw; = 0, € Ip. Let M’ = M()A)/Uwy, so B is a basis
of M’. Notice that w, = EzEfzv;L satisfies Fyw, = F,w, = 0. Hence Uw, — L(u) for u € Jag, and
there exists E € U such that Ew, = mj 310,. Moreover, there exists F € U such that Fm) 310, = wa,
and then Uw, = Umy 31,02 = L(w). Let L'(L) = M(L)/Uwy + Uw,, so dim L'(A) = 48 — 11 = 37 by
Lemma 4.29 and Bs is a basis of L’(X). As in previous cases, L' (1) is simple. O

4.16. The family J,¢
Recall that J,s = {A € T | M =2° A =8

Lemma 4.17. If A € Jy6, then dim L(A) = 25. A basis of L()) is given by
Bas = {mop,co.elc € Lo, b € Ioz, e € Ton} U {m1,0,0,0,0, 71,0002} — {70,3,1,00]}-

Proof. Letw; = F%EHzE%v;L, so Fiwy = 0,i € I,. Let M’ = M(A)/Uw;. Then B as in Lemma 4.17 is
a basis of M’. Notice that w, = F,E,E1,v;, satisfies Fiw, = Fow, = 0. Hence Uw, — L(u) for u € J13,
and there exists E € U such that Ew, = mj 3102. Moreover, there exists F € U such that Fm; 3102 = w,
and then Uw, = Umy 31,02 = L(w). Let L'(L) = M(L)/Uw; + Uw,, so dim L' (X)) = 48 — 23 = 25 by
Lemma 4.4, and By is a basis of L'(1). As in previous cases, L' (1) is simple. O
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4.17. The family 7,7
Recall that J,7 = {A € T |2 =¢% A =20

Lemma 4.18. IfA € Jy7, then dim L(A) = 35. A basis of L()) is given by

By; = B, — {no0,122} where By, = {ngocde | a,c € Io1,d, e € Ipp).
Proof. Letw; = F2E;nEavy, 0 Fiwy = 0,i € Ip. Let M = M()/Uw;. Then B), is a basis of M'. Notice
that wy = E11212E%12E%V)L satisfies Fyw, = Fyw, = 0. Hence UUw, — L(u) for u € J47; as also Eyw, =

E;w, = 0, we have that Uw, >~ L(w). Let L'(A) = M(A)/Uw; + Uw,, sodim L' (L) = 36 — 1 = 35 by
Lemma 4.38, and B,7 is a basis of L' (). As in previous cases, L’ (1) is simple. O

4.18. The family J,g
Recall that Jrg = {A € T | a =% A =)

Lemma 4.19. If A € Jag, then dim L(A) = 25. A basis of L(X) is given by

Bys = B}, — <{710,0,1,1,e, no,0,c2.elc €lo1,e € Top} U{nioiele€ ]11,2})-

Proof. Letw; = F2E12Eyvy,s0 Fwy = 0,i € I. Let M = M()/Uw;. Then B); is a basis of M'. Notice
that wy = F%E%E%lzvk satisfies Fiw, = Fyw, = 0. Hence Uw, — L(u) for u € Jsg, and there exists
E € U such that Ew, = my,12,2. Moreover, there exists F € U such that Fmj 9122 = w», and then
Uwy = Umig122 >~ L(). Let L'(A) = M(L)/Uw; + Uws, so dim L' (1) = 36 — 11 = 25 by Lemma
4.29, and Byg is a basis of L’(1). As in previous cases, L' (1) is simple. O

4.19. The family J,9
Recall that Jy9 = {A € T | A1 =—1, A = —1}.

Lemma 4.20. IfA € Jy9, then dim L(A) = 47. A basis of L()) is given by

Byg = Bhg — {m131,00}> where By = {mapcoela.c € Io1,b € Tos, e € Ioy).
Proof. Letw; = F%EHzE%V)L, so Fw; = 0,i € I,. Let M' = M(X)/Uw;. Then B, is a basis of M'.
Notice that w, = E2E31}2E11212V)L satisfies Fywy = Fyw, = 0. Hence Uwy —» L(p) for u € J47; as also

Eyw; = Eywy = 0, we have that idw, >~ L(u). Let L'(A) = M(L) /Uw; +Uw,, sodim L' (L) =48 —1 =
47 by Lemma 4.38, and B,y is a basis of L'(A). As in previous cases, L' (1) is simple. O

4.20. The family T3¢
Recall that J30 = {A € T | A =22 0 =)

Lemma 4.21. If A € J3, then dim L(L) = 37. A basis of L() is given by
B3g = Blg — {mypcoe | c €lo1,b € Ir3,e € Ig, (bc,e) # (3,1,2)).
Proof. Let w; = F3E112Ev;, s0 Fwy = 0,i € Ip. Let M' = M())/Uw,. Then B), is a basis of M.

Notice that w, = EzE%ZVA satisfies Fyw, = Fow, = 0. Hence UUw, — L(u) for ;& € Jsg, and there exists
E € U such that Ew, = my 3,0,2. Moreover, there exists F € U such that Fmj 3102 = wa, and then
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Uwy = Umiz102 > L(). Let L'(A) = M(X)/Uw; + Uw,, so dim L' (1) = 48 — 11 = 37 by Lemma
4.29, and Bs is a basis of L'(A). As in previous cases, L' (1) is simple. O

4.21. The family 33,
Recall that J3; = {A € T | A= —1, Ay =10},

Lemma 4.22. IfA € J3;, then dim L(A) = 61. A basis of L()) is given by
B3 = B — ({no0,02.e | € € Ioi} U {noo,1,1,e:10,0,1,200 M0,1,1.2el€ € Toa}),  where

B/31 - {nu,b,c,d,e|a> bs [SS ]10,1’ da ec HO,Z}'

Proof. Let w; = FE;E2,v;. By Remark 3.17, Fw; = 0,1 € I,. Let M’ = M(X)/Uwy, so B}, is a basis of
M. Notice that

wy = no0021 + B+ 7)1+ ¢ (00,102 + £*n0,1012)

satisfies Fw, = F,w, = 0. Hence Uw, — L(u) for u € J1g, and there exists E € U such that Ew, =
n11,12,2- Moreover, there exists F € U such that Fny 122 = wy, and then Uw, = Uny 1122 =~ L(w).
Let L'(A) = M(L)/Uw; +Uw,, so dim L' (L) = 72 — 11 = 61 by Lemma 4.9, and B3, is a basis of L' ()).
As in previous cases, L' (1) is simple. U

4.22. The family J3;
Recall that 33, = (A € T | A1 = ¢10, Ay = —1}.

Lemma 4.23. IfA € J3;, then dim L(A) = 61. A basis of L()) is given by

B3, =B, — <{ﬂa,b,1,d,z |a,bely;,delplu {ﬂo,o,l,o,z,n1,o,1,0,2,ﬂ1,0,o,2,z}>-

Proof. Letw; = FzEzE%ZVA- By Remark 3.17, Fw; = 0,i € I,. Let M’ = M(L)/Uwy, so B/31 is a basis
of M. Moreover u = 111,122 € Viow,+6a, satisfies that Eju = Eyu = 0, g1o1u = u, gr00u = c8u, so
UW)? — L(v), v € Jqz. Also Uu is a proper submodule. Set L' () = M (1) /Uw; + Uu. By Lemma 4.3,

61 =dimL(}) < dimL'(A) = dim W — dimUw < dim W — dim L(v) = 61,

so L(A) = L'(A) andUUw =~ L(v)?. In particular wy := FoF11212F112u # 0, Fiwy, = 0 and Uw, = Uu.
Moreover Bs; is a basis of L(A4). O

4.23. The family J33
Recall that J33 = {A € T [ A1 =1¢2 Ay = —1).

Lemma 4.24. If A € J33, then dim L(X) = 71. A basis of L(A) is given by

B33 = {mapcde | a,6,d € 1o,1,b,e € Iga} U {m13000} — {10,0,1,005 71,2,0,1,2}-

Proof. Letw; = F%E%HE%VA- By Remark 3.8, Fiw; = Fow; = 0. By a direct computation, Uw; >~ L(u),
with u € Jp3,and B’ = {myp g | d # 2}U{mg02,2} is a basisof W = ML) /Uw. Now Umg 0,22 =
kmo 0,022 1in W, s0B = {mypca. | d# 2} isabasis of M' = W' /kmg 02,2

Let wp, = F%F%MEHZHE%IZE%W. By Remark 3.11, Fiwy = 0,i € I, and Uwy — L(u), with & € J14,
and there exists E € U such that Ew, = mj 3,1,1,2. Moreover, there exists F € U such that Fm; 3112 = wa,
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and then Uw, = Umi3112 =~ L(w). Let L'(A) = M(A)/Uwy + Umgp22 + Uws, so dimL'(L) =
96 — 25 = 71 by Lemma 4.5, and B33 is a basis of L'(1). As in previous cases, (1) is simple. O

4.24. The family J34
Recall that 34 = {A € T | Ay = ¢4, Ap = ¢3).

Lemma 4.25. If A € J34, then dim L(A) = 71. A basis of L()) is given by
B3y = {ngpcdela c.d € oy, b,e € oo} U{noo0.2e | € € o2}
— ({noo,1.0le € To2} U {no1,1,1,0})-

Proof. Letw; = FzEszzv;L. By Remark 3.20, F;w; = Fow; = 0. By a direct computation, w; =~ L(p),
with J7AS 336, and B/ = BéS U {n1,3,0,0,0} is a basis of W/ = M(A)/le. Now un1,3,0,o,0 = kn1,3,0,0,0 in
W', so B} is a basis of M = W' /kny 30,00

Let wy = F2F2,E11212E3 ,E3v;.. By Remark 3.11, Fywy = 0, € Ip, and Uwy — L(p), with € J37,
and there exists E € U such that Ew, = n7,1,2,2. Moreover, there exists F € U such that Fnj 122 = wa,

and then Uw, = Unjz122 =~ L(w). Let L'(M) = M) /Uwy + Unyz122 + Uwy, so dim L' (L) =
108 — 37 = 71 by Lemma 4.28, and By is a basis of L' (). As in previous cases, L' (1) is simple. O

4.25. The family J35
Recall that J35 = {A € T | A =23 A =)

Lemma 4.26. If A € J3s, then dim L(A) = 85. A basis of L()) is given by

/
B3s = B35 — ({nO,b,c,2,6|C € o1, b,e € Top} U{nini,2,2, 11,0022 11,012l € H0,2}) where

B/35 = {na,b,c,d,e | a,C € ]10,1) b) d’ ec HO,Z}

Proof. Letw; = FzEzE?zvb so Fiw; = 0,i € I,. Let M’ = M()/Uw;. Then BY; is a basis of M'. Notice
that wy = F%E%IZE%V,\ satisfies Fiw, = Fyw, = 0. Hence Uw, — L(u) for . € Ja4, and there exists
E € U such that Ew, = nj;12,. Moreover, there exists F € U such that Fny,122 = wp, and then
Uwy = Unia102 > L(w). Let L'(A) = M(A) /Uwy + Uws, so dim L'(X) = 108 — 23 = 85 by Lemma
4.35, and Bss is a basis of L'(A). As in previous cases, L' (1) is simple. O

4.26. The family J3¢
Recall that J35 = {A € T |A1=2¢, Ay =1}

Lemma 4.27. If A € J36, then dim L(X) = 35. A basis of L(X) is given by Bzg =

{10,6,0,d,e> 10,0,1,2,>10,0,1,0,¢|b € lo3,d e € o2} — {10,1,0,1,10,2,0,2,¢» M0,1,0,0.2]€ € Tp2}.

Proof. Let wi = 11,0000 W2 = E%Elzm. Then W(A) = Uw; and Fiw, = Fow, = 0. Set M =
M)/ Wa(A), u = 793122. Henceldw, — L(p) for o € J1s, and there exists E € U such that Ew, = u.
Moreover, there exists F € U such that Fu = w,,and thenUwy = Uu >~ L(u).Let L' (L) = ML) /Uw,+
W(R), so dim L'(A) = 72 — 37 = 35 by Lemma 4.6, and B3 is a basis of L'(1). As in previous cases,
L’ () is simple. O



1794 N. ANDRUSKIEWITSCH ET AL.

4.27. The family J37
Recall that J37 = {A € T | Ay = ¢2, Ay = 1}.

Lemma 4.28. IfA € J3y, then dim L(A) = 37. A basis of L()) is given by

B37 = {n0,b,0,d,e> 10,0,1,0,0> 10,3,1,0,¢|0 € o3, d, e € Iga} — {no302.le € Io2}.
Proof. Let wi = 71,0000, W2 = Mo,1,011 — {02,002 — £'°(1 — £)*7o0,1,0,1. Then W(A) = Uw,; and
F1W2 = F2W2 = 0. Set M = M()\.)/Wz()»), u = %0,3’1)2,2. Hence qu - L(/,L) for J7ANS] 319, and
there exists E € U such that Ew, = u. Moreover, there exists F € U such that Fu = wj,, and then
Uwy = Uu ~ L(u). Let L'(A) = M(X) /Uw, + W(A), so dim L'(1) = 72 — 35 = 37 by Lemma 4.10,
and Bs; is a basis of L'(1). As in previous cases, L' (1) is simple. O

4.28. The family J3g

Recall that J3s = {L € T | A; = ¢3, Ay = 1}.

Lemma 4.29. IfA € Jsg, then dim L(A) = 11. A basis of L()) is given by
Bsg = {n0,,c0.lb, ¢ € Io1, € € loa} — {n0,1,1,02}-

The action of E;, F;, i € 1, is described in Table 5.

PTOOf. Let w; = %1,0,0,0’0, wy = F%EHzE%V)L. Then W(A) = Uwy and Fiw, = Fow, = 0. Let L/()») =
M) /Uw, + W(L). We label the elements of Bsg as follows:

V0,0 = 10,0,0,0,0» V1,1 = 10,1,0,0,0 V3,2 = 10,0,1,0,0 V4,3 = 10,1,1,0,0
V1,0 = 10,0,0,0,1> V2,1 = 10,1,0,0,1> V4,2 = 10,0,1,0,1> V5,3 = 10,1,1,0,1>
V2,0 = 10,0,0,0,2> V3,1 = 10,1,0,0,2> V52 = 10,0,1,0,2-

We check that the action of Ex, Fy on v;j is given by Table 5 and L' (1) is spanned by B3g. Moreover there
exists F € U~ such that Fvs3 = v, and for each pair (i, ) there is E;; € Us—ia;+(3—j)a, sSuch that
Ei,jvi,j = V53. Thus L/()\.) is simple. ]

Table 5. Simple modules for & € J3s.

w Er-w E-w Mgy DFy - w rgy R - w
V0,0 V1,0 0 0 0

V1,0 V2,0 ¢’ gnvin (= ¢3voo 0

V2,0 0 33,1+ 3y ¢+ ovio 0

via V2,1 0 0 " =i
V2,1 V3,1 0 q12¢81 1 @M =Ty
V3,1 0 CI% {v3n q12¢%v2 0

V32 Va3 0 0 a1 (1 =3
V4,2 V52 q%ﬁ 10y, 5 Q%z(f T, 0

V5,2 0 431 (3)¢vs3 a8 + ¢)va 0

Va3 V53 0 0 7, C1O(3)c” (Z¥)
V53 0 0 07,6801+ ¢Hvas 93,¢"°3),11vs2
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4.29. The family J39
Recall that J30 = {L € T | A; = ¢4, Ay = 1).

Lemma 4.30. IfA € J39, then dim L(A) = 61. A basis of L()) is given by

Big = {nopcdelc € lo1,b € Iz, d, e € I}

- <{”0,3,c,2,e, no2,1,2,elc € Io1,e € Ipa} U {npo02e | € € H1,2}>-

PVOOf. Let wp = ﬁ170,o,0,0, u= ﬁ0)3,1,2)2, wy = F1F11212F%2u. Then Wz()\) = L{wl.

Let M = M(L)/W (L), so Eyu = E;u = 0in M’, and (U{u)? — L(v) for some v € J3g; thus w, # 0.
By direct computation, F;w, = 0, i € I, so Uw; projects over a simple module L(u), for u € J;5. From
here, Uw, >~ L(u).

Let L'(A) = M(A)/W1(X) + Uw,. Then dim L'(1) = 61 by Lemma 4.9, and By is a basis of L' ().
There exists F such that Fu = v,, and L'(}) is simple. O

4.30. The family J49
Recall that J49 = {A € T | A1 =2 A =1}

Lemma 4.31. If A € Jy, then dim L(X) = 35. A basis of L(A) is given by
Byo = {nopcoelc € lo1,b € Tz, e € o} U{ngpete | ¢ € Toa, b € Lo, e € Ioo}
U {no3,02¢ | € €lo1} — {no3,1,0ecle € lop}.
Proof. Let wi = 11,0000, W2 = F%E%HE%V)L. Then W(A) = Uw; and Fiwy, = Fowy, = 0. Set M/ =
M) /Wy (L), u = 7g31,2,2. Henceldw, — L(p) for o € Jos, and there exists E € U such that Ew, = u.
Moreover, there exists F € U such that Fu = w,,and thenUwp = Uu =~ L(u). Let L' (L) = M(L) /Uw,+

W (L), so dim L' (L) = 72 — 37 = 35 by Lemma 4.16, and By is a basis of L'()A). As in previous cases,
L'(%) is simple. O

4.31. The family 34,
Recall that J4; = {A € T | A1 =—1, Ap = 1}

Lemma 4.32. If A € Jy1, then dim L(A) = 37. A basis of L(A) is given by
By = {nopcaolc € o, b, d € Ioa} U {ngpcdelc,b € o1, d € Ipa, e € I 5}
—{no,1,cd2- 10,0122l € Io1d € 112}
Proof. Let w; = ﬁl,o,o,o,o, wy = F%F%lellzle%le%VA. Then W(A) = Uw; and Fiw, = Fow, = 0.
Set M' = M(A)/Wa(X), u = 7ig3,12,2. Hence Uwy — L(w) for i € Jy7, and there exists E € U such
that Ew, = u. Moreover, there exists F € U such that Fu = w;, and then Yw, = Uu >~ L(u). Let

L'(A) = M(A)/Uw, + W(A), so dim L' (A) = 72 — 35 = 37 by Lemma 4.18, and By is a basis of L'(1).
As in previous cases, L' (1) is simple. O

4.32. The family 343
Recall that J4p = {A € T | A =¢7, A =1},
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Lemma 4.33. If A € Jyp, then dim L(X) = 71. A basis of L() is given by

B42 = {nO,Ia,c,d,e|C S ]10,1, b S ]10,31 da ec ]IO,Z) (bx (o d; e) 7é (3, 1, 2, 2)}
PT’OOf Let w1 = %1)0,0,0)0, Wy = ,1’70,3,1)2,2. Then W()u) = Z/{wl and F] Wy = F2W2 = E1W2 = E2W2 =0,
soUwy >~ L(p) for uw € Tyy. Let L'(L) = M(L)/W(L) + Uwy, so By, is a basis of L'(A). There exists

F € U™ such that Fng3,12,1 = vi. If Nopcde € Baz, then E}_EE%I_ZdE%l_ZCIZE:I)Z_hnO,b,c,d,e € k*np3,1.2.1, 80
L'(%) is simple. O

4.33. The family J43
Recall that J43 = {A € T | A =28 A =1}

Lemma 4.34. If A € J43, then dim L(A) = 25. A basis of L()) is given by
Bys = {nopcdelc,e € log, b € los,d € lop} — ({no,z,l,z,o}

U {nopedilc € Loy, b elizdely}Ulngscdaolc € lo,d € H1,2}>-

Proof. Let wi = 71,0000 W2 = E%vk. Then W(A) = Uwj and Fiw, = Fowp, = 0. Set M =
M)/ Wa(A), u = o312 Hence Uw, — L(u) for o € J17, and there exists E € U such that
Ew, = u. Moreover, there exists F € U such that Fu = w,, and then Uw, = Uu =~ L(u). Let
L'(A) = M(A)/Uw, + W(A), so dimL'(A) = 72 — 47 = 25 by Lemma 4.8, and By is a basis of
L’(A). As in previous cases, L' (1) is simple. O

4.34. The family Ja4
Recall that Jus = {L € T | A; = ¢2, Ay = 1}.

Lemma 4.35. If A € J44, then dim L(A) = 23. A basis of L()) is given by

Bys = {nop0,d.elb € lo3,d € Iop,e € I} U {nop00:2} — {103,0,1,1> 103,021}

Proof. Let w; = ';111,(),0)0,0, wy = ;4%0,0,0,1,1 + %0,1,0,0,2. Then W(A) = Uwy and Fiw, = Fow, = 0.
Set M/ = M(L)/W,(A), u = 7p3122. Hence Uwy — L(u) for o € Jpp, and there exists E € U such
that Ew, = u. Moreover, there exists F € U such that Fu = w,, and then Uw, = Uu =~ L(u). Let
L'(A) = M(A) /Uwy, + W(A), so dim L' (L) = 72 — 49 = 23 by Lemma 4.13, and Byq is a basis of L' (1).
As in previous cases, L' (1) is simple. O

4.35. The family J45
Recall that Jy5 = {A € ’1: | A1 = {10, Ay =1L

Lemma 4.36. If A € J4s, then dim L(A) = 49. A basis of L()) is given by
Bis = {nopcdelc € o, b € los, dye € Lo}

— ({nop,celc € Log, b € Iiz,e € Ioo} U {ngp12.ele € Toa} U {noo,1,02, m0,3,1,1,2})-

PTOOf: Let w1 = %1)0,0’0)0, w2 = 1N0,1,0,1,2 — {11(3)§7 10,0,1,0,2- Then W()\) = L{w1 and F] wy = F2W2 =0.
Set M/ = M(L)/W(A), u = 1p3122. Hence Uwy — L(w) for & € J13, and there exists E € U such
that Ew, = u. Moreover, there exists F € U such that Fu = w;, and then Yw, = Uu =~ L(u). Let
L'(A) = M(A)/Uwy + W(A), so dim L' (1) = 72 — 23 = 49 by Lemma 4.4, and Bys is a basis of L'(%).
As in previous cases, L' (1) is simple. O
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4.36. The family J46
Recall that Jug = {L € T | A; = ¢!1, 2y = 1}.
Lemma 4.37. If A € Jye, then dim L(X) = 47. A basis of L(}) is
Bas = {nop,cdes 16:d € Io1, b € Loz, e € Ion} U {np,1,0,2,0, 10,3,1,2,0)

—{n0,1,1,0,2> 10,3,0,0,1> 10,1,1,0,1}-

Proof. Let wi = 11,0000, W2 = F%E%IZE%V;L. Then W(A) = Uw; and Fiwy, = Fowy, = 0. Set M/ =
M)/ Wy(A), u = 7p31.22. Hencelw, — L(p) for o € Ja6, and there exists E € U such that Ew, = u.
Moreover, there exists F € U such that Fu = w;,and thenUw, = Uu >~ L(u).Let L' (L) = M(\) /Uw,+
W(L), so dim L'(L) = 72 — 25 = 47 by Lemma 4.17, and By is a basis of L'()A). As in previous cases,
L'(2) is simple. O

4.37. The family J47
Recallthat Jy; = (A € T [ A1 =1, Ay = 1}.

Lemma 4.38. IfA € Jy7, then dim L(A) = 1 and E;v), = 0, Fivy, = 0, govy = A(go)v;.

Proof. Let N'(L) = W(A)+ Wi(1). By adirect computation, N'(A) = Zﬁ £0 M) g = N(1). Therefore
L'(A) = M(X)/N’(%) is one-dimensional and simple. O
Example 4.39. Take A =Z15 = (@), @1 = g§ and 01,07 € A such that

o1(g) = ¢, o(g) = —1; hence o1(g1) = ¢4, o2(g) = L. (21)

Applying the Main Theorem, we see that there is one simple module of dimension one and exactly #
different isoclasses of a given dimension as in Table 6:

Table 6. Quantity of simple modules of dimension > 1.

# dimension # dimension # dimension # dimension
67 144 7 108 10 96 2 85
6 72 4 71 4 61 2 49
10 48 4 47 6 37 7 36
4 35 4 25 2 23 4 11

Note that Jg and J;¢ are empty.

Acknowledgements

The authors would like to the referee for pointing out several changes which improved the paper. The results are part of
PhD thesis of C. Renz, defended at the Universidade Federal do Rio Grande do Sul.

Funding

The work of N. A.,I. A. and A. M. was partially supported by CONICET, Secyt (UNC), the MathAmSud project GRZHOPE.
The work of I. A. was partially supported by ANPCyT (Foncyt).

References

[1] Andersen, H. H., Jantzen, J. C., Soergel, W. (1994). Representations of quantum groups at a p-th root of unity and of
semisimple groups in characteristic p: independence of p. Astérisque 220:321 (Paris: Soc. Math. France).

[2] Andruskiewitsch, N. An introduction to Nichols algebras. In: Cardona, A., Morales, P., Ocampo, H., Paycha, S., Reyes,
A., eds. Quantization, Geometry and Noncommutative Structures in Mathematics and Physics. Mathematical Physics
Studies. Springer (to appear.)



1798

N. ANDRUSKIEWITSCH ET AL.

Andruskiewitsch, N., Angiono, I. On finite-dimensional Nichols algebras of diagonal type. Available at: http://www.
famaf.unc.edu.ar/~andrus/articulos.html. arXiv:1707.08387.

Andruskiewitsch, N., Angiono, L., Rossi Bertone, F. The quantum divided power algebra of a finite-dimensional
Nichols algebra of diagonal type. Math. Res. Lett. arXiv:1501.04518 (in press).

Andruskiewitsch, N., Angiono, I., Yamane, H. (2011). On pointed Hopf superalgebras. Contemp. Math. 544:123-140.
Andruskiewitsch, N., Radford, D., Schneider, H.-J. (2010). Complete reducibility theorems for modules over pointed
Hopf algebras. J. Algebra 324:2932-2970.

Andruskiewitsch, N., Schneider, H.-J. (2000). Finite quantum groups and Cartan matrices. Adv. Math. 154:1-45.
Angiono, I. (2009). On Nichols algebras with standard braiding. Algebra Number Theory 3:35-106.

Angiono, I. (2013). Nichols algebras of unidentified diagonal type. Comm. Algebra 41:4667-4693.

Angiono, I. (2013). On Nichols algebras of diagonal type. J. Reine Angew. Math. 683:189-251.

Angiono, . (2015). A presentation by generators and relations of Nichols algebras of diagonal type and convex orders
on root systems. J. Eur. Math. Soc. 17:2643-2671.

Angiono, I. (2016). Distinguished Pre-Nichols algebras. Transf. Groups 21:1-33.

Heckenberger, I. (2009). Classification of arithmetic root systems. Adv. Math. 220:59-124.

Heckenberger, I. (2010). Lusztig isomorphism for Drinfeld doubles of bosonizations of Nichols algebras of diagonal
type. J. Algebra 323:2130-2182.

Heckenberger, 1., Yamane, H. (2010). Drinfeld doubles and Shapovalov determinants. Rev. UMA 51:107-146.
Kauffman, L., Radford, D. (1993). A necessary and sufficient condition for a finite dimensional Drinfeld Double to
be a ribbon Hopf algebra. J. Algebra 159:98-114.

Lusztig, G. (2010). Introduction to quantum groups. Reprint of the 1994 edition. Modern Birkhduser Classics.
Birkhiduser/Springer, New York, xiv+346 pp. ISBN: 978-0-8176-4716-2.

Pogorelsky, B., Vay, C. (2016). Verma and simple modules for quantum groups at non-abelian groups. Adv. Math.
301:423-457.

Radford, D., Schneider, H.-J. (2008). On the simple representations of generalized quantum groups and quantum
doubles. J. Algebra 319:3689-3731.


http://www.famaf.unc.edu.ar/~andrus/articulos.html
http://www.famaf.unc.edu.ar/~andrus/articulos.html

	1.  Introduction
	1.1.  Motivations and context
	1.2.  The algebra U
	1.3.  Verma modules
	1.4.  Main result

	2.  Preliminaries
	2.1.  The algebra U
	2.2.  Verma modules
	2.3.  Simple modules
	2.4.  A relative of uq(sl2)
	2.5.  The class C0

	3.  Simple U-modules in class C1
	3.1.  The family I2
	3.2.  The family I3
	3.3.  The family I4
	3.4.  The family I5
	3.5.  The family I6
	3.6.  The family I7
	3.7.  The family I8
	3.8.  The family I9
	3.9.  The family I10

	4.  Simple U-modules in class C2
	4.1.  The family I11
	4.2.  The family I12
	4.3.  The family I13
	4.4.  The family I14
	4.5.  The family I15
	4.6.  The family I16
	4.7.  The family I17
	4.8.  The family I18
	4.9.  The family I19
	4.10.  The family I20
	4.11.  The family I21
	4.12.  The family I22
	4.13.  The family I23
	4.14.  The family I24
	4.15.  The family I25
	4.16.  The family I26
	4.17.  The family I27
	4.18.  The family I28
	4.19.  The family I29
	4.20.  The family I30
	4.21.  The family I31
	4.22.  The family I32
	4.23.  The family I33
	4.24.  The family I34
	4.25.  The family I35
	4.26.  The family I36
	4.27.  The family I37
	4.28.  The family I38
	4.29.  The family I39
	4.30.  The family I40
	4.31.  The family I41
	4.32.  The family I42
	4.33.  The family I43
	4.34.  The family I44
	4.35.  The family I45
	4.36.  The family I46
	4.37.  The family I47

	Acknowledgements
	Funding
	References



