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ABSTRACT

The �nite-dimensional simple modules over the Drinfeld double of the
bosonization of the Nichols algebra ufo(7) are classi�ed.
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1. Introduction

1.1. Motivations and context

The purpose of this paper is to compute explicitly all simple �nite-dimensional modules of the Hopf
algebra U introduced by generators and relations in De�nition 1.1. In short, U ≃ D(H) arises as the
Drinfeld double ofH = B(V)#k3, where 3 is an abelian group, V is a braided vector space of diagonal
type of dimension 2 with Dynkin diagram (1) (realized as a Yetter-Drinfeld module over 3) and B(V)

denotes its Nichols algebra.
The general context where our results �t is the following. Let W be a braided vector space of

diagonal type and assume that its Nichols algebraB(W) is �nite-dimensional; see [2] for an introduction
to Nichols algebras and [3] for a survey on Nichols algebras of diagonal type. We recall that �nite-
dimensional Nichols algebras of diagonal type were classi�ed in [13]. It is useful to organize the
classi�cation in four classes:
• Standard type [8], including Cartan type [7].
• Super type [5].
• (Super) modular type [3].
• Unidenti�ed type [9].
Let Γ be an an abelian group such thatW is realized as a Yetter-Drinfeld module over it and letU be the
Drinfeld double ofB(W)#kΓ . The representation theory of such Drinfeld doublesU or slight variations
thereof was treated in many papers, among them [1, 6, 14, 15, 17–19]. Indeed, the �rst two articles deal
with the representation theory of the �nite quantum groups or Frobenius-Lusztig kernels (that roughly
arise fromW of Cartan type), while in the others some general results are established. Presently we know
that the simple U-modules are parametrized by highest weights but we ignore the character formulas
and the dimensions in general, except for Frobenius-Lusztig kernels under appropriate conditions.
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Back to the particular V , the goal of working out this example, establishing the dimensions of all
simple U-modules, is to gain experience for further developments. The algebra U is small enough to
allow an approach by elementary computations. Arguing as in [6, Theorem 3.7], see also [14, Proposition
5.6], it is possible to prove that U is a quasi-triangular Hopf algebra, even a ribbon one by the criterion
in [16, Theorem 3], what makes it susceptible of applications. If 3 is �nite, then the simple U-modules
are just the simple Yetter-Drinfeld H-modules; therefore the classi�cation here might have applications
to the study of basic Hopf algebras. Also, in the organization in classes mentioned above, B(V) is the
smallest Nichols algebra of unidenti�ed type; in the terminology from [3], V is of type ufo(7). Indeed,
dimB(V) < ∞ by [13, Table 1, row 7]; more precisely, cf. (13),

dimB(V) = 2432 = 144.

By [9], a consequence of [10, 11], we know thatB(V)has a presentation by generatorsE1,E2 and relations
(5) below. Thus B(V) is manageable yet does not arise from any Lie algebra, what makes it attractive.

There is another reason to address the representation theory of U . A �nite-dimensional Nichols
algebra of diagonal type admits both a distinguished pre-Nichols algebra [12] and a distinguished
post-Nichols algebra [4]; the representation theories of the corresponding Drinfeld doubles seem to be
very rich. However our B(V) coincides with its distinguished pre-Nichols and post-Nichols algebras,
being therefore of singular interest (the only other Nichols algebra with this feature has diagram

◦ω −ω
◦−1 , ω ∈ G′

3, which is of standard type B2). This peculiar behaviour appeals to the
consideration of V .

1.2. The algebraU

We now introduce formally U . Let us begin with some notation.
If k, ℓ ∈ N0, then we denote Ik,ℓ = {n ∈ N0 : k ≤ n ≤ ℓ}; also Iℓ := I1,ℓ. Let k be an algebraically

closed �eld of characteristic zero and k× = k − 0. Let G12 be the group of 12-roots of unity in k, and
letG′

12 be the subset of primitive roots of order 12.
To de�ne U , we need some data:

◦ A matrix q = (qij)1≤i,j≤2 =

(
ζ 4 q12
q21 −1

)
∈ k2×2 such that q12q21 = ζ 11; that is, its associated

generalized Dynkin diagram is given by

◦
1

ζ 4 ζ 11

◦
2

−1 . (1)

◦ An abelian group 3 whose group of characters is denoted by 3̂. We set Ŵ = 3 × 3̂.

◦ g1, g2 ∈ 3, σ1, σ2 ∈ 3̂ such that

(
σ1(g1) σ2(g1)
σ1(g2) σ2(g2)

)
=

(
ζ 4 q12
q21 −1

)
.

Starting from these data, we consider vector spacesV andW with bases vi, respectivelywi, i ∈ I2 and
de�ne an action and a Ŵ-grading on V andW by

g · vi = σi(g)vi, σ · vi = σ(gi)vi, g · wi = σ−1
i (g)wi, σ · wi = σ(g−1

i )wi; (2)

deg vi = gi, degwi = σi, g ∈ 3, σ ∈ 3̂, i ∈ I2. (3)

Then V ⊕ W is a Yetter-Drinfeld module over kŴ and T(V ⊕ W) is a braided Hopf algebra in kŴ
kŴ
YD.

In particular, V is a braided vector space of diagonal type ufo(7), as said.
It is convenient to start with the auxiliary Hopf algebra U = T(V ⊕W)#kŴ; in particular, T(V ⊕W)

and kŴ are subalgebras of U and

gvi = σi(g)vi, σvi = σ(gi)viσ , gwi = σ−1
i (g)wig, σwi = σ(g−1

i )wiσ ,
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g ∈ 3, σ ∈ 3̂, i ∈ I2. To stress the similarity with quantum groups, we denote in U or any quotient
thereof, as in [6, 14, 15],

Ei = vi, Fi = wiσ
−1
i , i ∈ I2. (4)

Thus

gEi = σi(g)Eig, σEi = σ(gi)Eiσ , gFi = σ−1
i (g)Fig, σFi = σ(g−1

i )Fiσ .

We also need the notation of the so-called root vectors, needed for the relations and for the PBW-
basis:

E12 = E1E2 − q12E2E1, E112 = E1E12 − q12ζ
4E12E1, E11212 = E112E12 − q12ζE12E112,

F12 = F1F2 − q21F2F1, F112 = F1F12 − q21ζ
4F12F1, F11212 = F112F12 − q21ζF12F112.

We are now ready to de�ne U .

De�nition 1.1. The algebra U is the quotient of U by the ideal generated by

E21 = 0, E22 = 0, E11212E12 = ζ 10q12E12E11212, (5)

F21 = 0, F22 = 0, F11212F12 = ζ 4q21F12F11212, (6)

EkFi − FiEk = δki(gi − σ−1
i ). (7)

The algebra U is a Hopf algebra with coproduct given by

1(Ei) = Ei ⊗ 1 + gi ⊗ Ei, 1(Fi) = Fi ⊗ σ−1
i + 1 ⊗ Fi, 1(g) = g ⊗ g, g ∈ Ŵ.

Let U− (respectively U+) be the subalgebra of U generated by F1, F2 (respectively E1,E2). The
following facts are not di�cult to prove and can be derived from general results in the literature cited
above:
◦ U has a triangular decomposition U ≃ U+ ⊗ kŴ ⊗ U−, given by the multiplication map.
◦ U+ ≃ B(V); in what follows we identify these two algebras.
◦ U , U+ and U− admit a Z2-graduation U = ⊕β∈Z2Uβ such that degEi = αi = − deg Fi, i ∈ I2, and

deg x = 0 for x ∈ Ŵ.
Here (αi)i∈I2 is the canonical basis of Z

2.

1.3. Vermamodules

We recall succinctly the description of the simple modules in terms of highest weights.
Let UM be the category of le� U-modules and let IrrU be the set of isomorphism classes of �nite-

dimensional simple U-modules. IfM ∈ UM and λ ∈ Ŵ̂, then

Mλ = {m ∈ M : g · m = λ(g)m ∀g ∈ Ŵ}

is the space of weight vectors with weight λ; ifM = ⊕λ∈Ŵ̂M
λ, then we say thatM is diagonalizable.

Let λ ∈ Ŵ̂. We denote by kλ the kŴ ⊗ U−-module de�ned by λ ⊗ ε (the counit). The Verma module
M(λ) associated to λ is the induced module

M(λ) = IndU
kŴ⊗U−kλ ≃ U/

(
UF1 + UF2 +

∑

g∈Ŵ

U(g − λ(g))
)
. (8)

Let vλ be the residue class of 1 inM(λ); then we have an isomorphism of U+-modules

U+ ≃ M(λ), 1 7−→ vλ.



COMMUNICATIONS IN ALGEBRA® 1773

Hence dimM(λ) = dimB(V) = 144. Thus the PBW-basis of U+ ≃ B(V) becomes via this
isomorphism a basis ofM(λ).

The Z2-grading on U+ ≃ B(V) induces a Z2-grading onM(λ) such that

M(λ)β = Uβ · vλ, β ∈ Z2.

Thus

M(λ)0 = kvλ, Uβ · M(λ)γ ⊂ M(λ)β+γ , β , γ ∈ Z2.

The family of U-submodules ofM(λ) contained in
∑

β 6=0M(λ)β has a unique maximal element N(λ).
We set

L(λ) = M(λ)/N(λ).

Since U satis�es the conditions on [19, Section 2], [19, Corollary 2.6] implies that

The map λ 7→ L(λ) provides a bijective correspondence Ŵ̂ ≃ IrrU . (9)

Alternatively we see that L(λ) is simple arguing as in [18, Theorem 1]; then [18, Theorem 3] gives
(9). Notice that L(λ) inherits the grading from M(λ). Also, it follows that every simple M ∈ UM is
diagonalizable.

Lowest weight modules of weight λ are de�ned as usual;M(λ) covers every lowest weight module of
weight λ, that in turn covers L(λ). Highest weight modules are de�ned similarly.

1.4. Main result

In ourmain theorem, we give the dimension of L(λ) for each λ ∈ Ŵ̂, in terms of certain equalities arising
from the Shapovalov determinant [15] satis�ed by

λi = λ(giσi), i ∈ I2.

Indeed, the Shapovalov determinant in the context of this paper is

Ш = (ζ 4λ−1
1 − ζ 4)(ζ 4λ−1

1 − ζ 8)(ζ 2λ−2
1 λ−1

2 − ζ 8)(ζ 2λ−2
1 λ−1

2 − ζ 4)(λ−3
1 λ−2

2 + 1)

× (ζ 10λ−1
1 λ−1

2 − ζ 9)(ζ 10λ−1
1 λ−1

2 + 1)(ζ 10λ−1
1 λ−1

2 − ζ 3)(λ−1
2 − 1). (10)

Then Ш = 0 if and only if one of the factors in (10) vanishes. Let

S1 = {1, ζ 8}, S2 = {−1, ζ 10}, S3 = {ζ , ζ 4, ζ 7}. (11)

The equalities alluded above can be packed as the conditions:

λ1
?
∈ S1, λ21λ2

?
∈ S2, λ31λ

2
2

?
= −1, λ1λ2

?
∈ S3, λ2

?
= 1. (12)

Toorganize the information,we consider 47 subsets of Ŵ̂, organized in classesCj according to the quantity
j of conditions in (12) satis�ed. The class C0 contains just one family:

I1 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 /∈ S2, λ31λ
2
2 6= −1, λ1λ2 /∈ S3, λ2 6= 1};

Here is the class C1:

I2 = {λ ∈ Ŵ̂ | λ1 = 1, λ21λ2 /∈ S2, λ31λ
2
2 6= −1, λ1λ2 /∈ S3, λ2 6= 1}

= {λ ∈ Ŵ̂ | λ1 = 1, λ2 /∈ {1, ζ , ζ 4, ζ 7, ζ 3, ζ 9,−1, ζ 10}};

I3 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ21λ2 /∈ S2, λ31λ
2
2 6= −1, λ1λ2 /∈ S3, λ2 6= 1}

= {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 /∈ {±1, ζ 2, ζ 3, ζ 5, ζ 8, ζ 9, ζ 11}};
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I4 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 = −1, λ31λ
2
2 6= −1, λ1λ2 /∈ S3, λ2 6= 1}

= {λ ∈ Ŵ̂ | λ21λ2 = −1, λ1 /∈ {±1, ζ 8, ζ 10, ζ 4, ζ 2}};

I5 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 = ζ 10, λ31λ
2
2 6= −1, λ1λ2 /∈ S3, λ2 6= 1}

= {λ ∈ Ŵ̂ | λ21λ2 = ζ 10, λ1 /∈ {±1, ζ 8, ζ 10, ζ 4, ζ 2}};

I6 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 /∈ S2, λ31λ
2
2 = −1, λ1λ2 /∈ S3, λ2 6= 1}

= {λ ∈ Ŵ̂ | λ31λ
2
2 = −1, λ1 /∈ {±1, ζ 8, ζ 10, ζ 4, ζ 2}};

I7 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 /∈ S2, λ31λ
2
2 6= −1, λ1λ2 = ζ , λ2 6= 1}

= {λ ∈ Ŵ̂ | λ1λ2 = ζ , λ1 /∈ {1, ζ 8, ζ , ζ 4, ζ 9}};

I8 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 /∈ S2, λ31λ
2
2 6= −1, λ1λ2 = ζ 4, λ2 6= 1}

= {λ ∈ Ŵ̂ | λ1λ2 = ζ 4, λ1 /∈ {1, ζ 8, ζ 4, ζ 2,−1, ζ 10}};

I9 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 /∈ S2, λ31λ
2
2 6= −1, λ1λ2 = ζ 7, λ2 6= 1}

= {λ ∈ Ŵ̂ | λ1λ2 = ζ 7, λ1 /∈ {1, ζ 8, ζ 7, ζ 4, ζ 11}};

I10 = {λ ∈ Ŵ̂ | λ1 /∈ S1, λ21λ2 /∈ S2, λ31λ
2
2 6= −1, λ1λ2 /∈ S3, λ2 = 1}

= {λ ∈ Ŵ̂ | λ1 /∈ G12, λ2 = 1};

All the 37 remaining subsets belong to class C2:

I11 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ }, I12 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 4},

I13 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 7}, I14 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 3},

I15 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 9}, I16 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = −1},

I17 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 10}, I18 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 5},

I19 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 8}, I20 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 11},

I21 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 3}, I22 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 9},

I23 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 2}, I24 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = −1},

I25 = {λ ∈ Ŵ̂ | λ1 = ζ 11, λ2 = ζ 8}, I26 = {λ ∈ Ŵ̂ | λ1 = ζ 5, λ2 = ζ 8},

I27 = {λ ∈ Ŵ̂ | λ1 = ζ 4, λ2 = ζ 9}, I28 = {λ ∈ Ŵ̂ | λ1 = ζ 9, λ2 = ζ 4},

I29 = {λ ∈ Ŵ̂ | λ1 = −1, λ2 = −1}, I30 = {λ ∈ Ŵ̂ | λ1 = ζ 2, λ2 = ζ 2},

I31 = {λ ∈ Ŵ̂ | λ1 = −1, λ2 = ζ 10}, I32 = {λ ∈ Ŵ̂ | λ1 = ζ 10, λ2 = −1},

I33 = {λ ∈ Ŵ̂ | λ1 = ζ 2, λ2 = −1}, I34 = {λ ∈ Ŵ̂ | λ1 = ζ 4, λ2 = ζ 3},

I35 = {λ ∈ Ŵ̂ | λ1 = ζ 3, λ2 = ζ 4},

I36 = {λ ∈ Ŵ̂ | λ1 = ζ , λ2 = 1}, I37 = {λ ∈ Ŵ̂ | λ1 = ζ 2, λ2 = 1},

I38 = {λ ∈ Ŵ̂ | λ1 = ζ 3, λ2 = 1}, I39 = {λ ∈ Ŵ̂ | λ1 = ζ 4, λ2 = 1},

I40 = {λ ∈ Ŵ̂ | λ1 = ζ 5, λ2 = 1}, I41 = {λ ∈ Ŵ̂ | λ1 = −1, λ2 = 1},

I42 = {λ ∈ Ŵ̂ | λ1 = ζ 7, λ2 = 1}, I43 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = 1},

I44 = {λ ∈ Ŵ̂ | λ1 = ζ 9, λ2 = 1}, I45 = {λ ∈ Ŵ̂ | λ1 = ζ 10, λ2 = 1},

I46 = {λ ∈ Ŵ̂ | λ1 = ζ 11, λ2 = 1}, I47 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = 1}.

Main Theorem. The dimension and the maximal degree of L(λ) depend on λi, i ∈ I2, and appear in
Table 1.

The paper is organized as follows. We collect some general information about U and the Verma
modules in Section 2, where we also deal with I1. The proof of the Main Theorem for the families in the
class 1, resp. 2, is given in Section 3, respectively 4.

IfM ∈ U , then we write N ≤ M to express that N is a submodule ofM.
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Table 1. Dimensions and highest degrees of simple modules.

Family dim L(λ) max. degree L(λ)ϕ

I1 144 (12, 8) I1
I2 48 (10, 8) I2
I3 96 (11, 8) I3
I4 48 (8, 6) I4
I5 96 (10, 7) I5
I6 72 (9, 6) I6
I7 36 (9, 5) I7
I8 72 (10, 6) I8
I9 108 (11, 7) I9
I10 72 (12, 7) I10
I11 11 (5, 4) I12
I12 11 (5, 4) I11
I13 23 (7, 5) I44
I14 25 (7, 5) I28
I15 37 (9, 6) I41
I16 37 (8, 6) I30
I17 47 (10, 7) I46
I18 11 (5, 3) I38
I19 35 (8, 5) I40
I20 71 (11, 7) I42
I21 61 (9, 6) I32
I22 49 (9, 6) I45
I23 47 (8, 6) I29
I24 85 (10, 7) I35
I25 37 (8, 5) I37
I26 25 (8, 5) I43
I27 35 (9, 5) I36
I28 25 (7, 5) I14
I29 47 (8, 6) I23
I30 37 (8, 6) I16
I31 61 (10, 6) I39
I32 61 (9, 6) I21
I33 71 (9, 6) I34
I34 71 (9, 6) I33
I35 85 (10, 7) I24
I36 35 (9, 5) I27
I37 37 (8, 5) I25
I38 11 (5, 3) I18
I39 61 (10, 6) I31
I40 35 (8, 5) I19
I41 37 (9, 6) I15
I42 71 (11, 7) I20
I43 25 (8, 5) I26
I44 23 (7, 5) I13
I45 49 (9, 6) I22
I46 47 (10, 7) I17
I47 1 (0, 0) I47

2. Preliminaries

2.1. The algebraU

The Nichols algebra B(V) has a PBW-basis given by
{
Ea22 Ea1212 E

a11212
11212E

a112
112 E

a1
1 | a2, a11212 ∈ I0,1; a12 ∈ I0,3; a112, a1 ∈ I0,2

}
. (13)

See [9]. We obtain a new PBW-basis by reordering the PBW-generators:
{
Ea11 Ea112112 E

a11212
11212E

a12
12 E

a2
2 | a2, a11212 ∈ I0,1; a12 ∈ I0,3; a112, a1 ∈ I0,2

}
. (14)

Thus the set of positive roots of B(V) (the degrees of the generators of the PBW-basis) is

1V
+ = {α1, 2α1 + α2, 3α1 + 2α2,α1 + α2,α2} .
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By [11, Theorem 4.9], we have

E3112 = E211212 = E412 = 0. (15)

From the de�ning relations (5), we can deduce that the following are valid in B(V):

E1E112 = q12ζ
8E112E1,

E112E2 = −q212E2E112 + q12ζ
8E212,

E1E11212 = q212E11212E1 + q12ζ
7(1 + ζ )E2112

E1E
2
12 = E11212 + q12ζ(1 + ζ 3)E12E112 + q212ζ

8E212E1

E1E
3
12 = q12ζ

10E12E11212 + q212ζ
5E212E112 + q312E

3
12E1,

E21E2 = E112 + q212ζ
2E12E1 + q212E2E

2
1,

E21E12 = −q212E112E1 + q212ζ
8E12E

2
1,

E112E
2
12 = −q12ζ

4(1 + ζ 3)E12E11212 + q212ζ
2E212E112

E112E
3
12 = q212ζ

11E212E11212 + q312ζ
3E312E112,

E11212E12 = q12ζ
10E12E11212,

E112E11212 = q12ζ
9E11212E112,

E11212E2 = q312E2E11212 + q212ζ
2(1 + ζ )E312,

E12E2 = −q12E2E12.

The following equalities hold by direct computation from (5) and the previous ones:

F1E12 = E12F1 + q12(ζ − 1)E2σ
−1
1 ,

F1E112 = E112F1 + q12ζ
8(1 + ζ 3)E12σ

−1
1 ,

F1E11212 = E11212F1 + q212(ζ
5 − 1)E212σ

−1
1 ,

F1E
2
112 = E2112F1 − q12(1 + ζ 3)(E11212σ

−1
1 + ζ 4E112E12σ

−1
1 ),

F1E
2
12 = E212F1 + q212(3)ζ 5E2E12σ

−1
1 ,

F1E
3
12 = E212F1 + q312ζ

3(ζ − 1)E2E
2
12σ

−1
1 ,

F2E12 = E12F2 + (ζ 11 − 1)E1g2,

F2E112 = E112F2 − (3)ζ 7E
2
1g2,

F2E11212 = E11212F2 − E112E1g2,

F2E
2
12 = E212F2 + q21(1 + ζ 5)E112g2 − (3)ζ 7E12E1g2,

F2E
2
112 = E2112F2 + (3)ζ 7ζ

4E112E
2
1g2,

F2E
3
12 = E312F2 + ζ 8(1 − ζ )(E212E1g2 − q21ζ

3E12E112g2 + q221ζ
3E11212g2),

F11212E11212 = E11212F11212 + σ−3
1 σ−2

2 − g11212,

F12E2 = E2F12 + (1 − ζ 11)F1σ
−1
2 ,

F12E12 = E12F12 + σ−1
1 σ−1

2 − g1g2,

F12E112 = E112F12 + ζ 3(3)ζ 7E1g1g2,

F12E
2
112 = E2112F12 + ζ 11(3)ζ 7E112E1g1g2,

F12E1 = E1F12 + q21(1 − ζ )F2g1,

F12E11212 = E11212F12 + ζ 11E112g1g2,

F112E112 = E112F112 + σ−2
1 σ−1

2 − g21g2,

F112E2 = E2F112 + (ζ − 1)F21σ
−1
2 .
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2.2. Vermamodules

We shall use the notation for q-factorial numbers: for each q ∈ k×,

(n)q = 1 + q + . . . + qn−1, (n)q! = (1)q(2)q · · · (n)q, n ∈ N.

We shall investigate the lattice of submodules of a Verma module. We record the following standard
fact for future use.

Remark 2.1. Let v ∈ M(λ)α be such that Fi · v = 0 for i ∈ I2. By the triangular decomposition of U ,
U · v = U+ · v. In particular, if α 6= 0, then U · v ∩ kvλ = 0.

We consider two families inM(λ), corresponding to PBW-bases (13) and (14). We set

m̃a,b,c,d,e := Ea2E
b
12E

c
11212E

d
112E

e
1 · vλ, ña,b,c,d,e := Ee1E

d
112E

c
11212E

b
12E

a
2 · vλ

for a, b, c, d, e ∈ Z. Clearly, vλ = m̃0,0,0,0,0 = ñ0,0,0,0,0 and

m̃a,b,c,d,e 6= 0 ⇐⇒ a, c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2 ⇐⇒ ña,b,c,d,e 6= 0.

We denote by 〈S〉 the subspace generated by a subset S of a vector space. Let

W1(λ) = 〈m̃a,b,c,d,e | a, c ∈ I0,1, b ∈ I0,3, d ∈ I0,2, e ∈ I1,2〉,

W2(λ) = 〈m̃a,b,c,d,2 | a, c ∈ I0,1, b ∈ I0,3, d ∈ I0,2〉,

W(λ) = 〈̃n1,b,c,d,e | c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2〉.

By a direct computation, we can prove:

Lemma 2.2.

(a) F2 · Wi(λ) ⊆ Wi(λ), i ∈ I2,
(b) F1 · m̃a,b,c,d,i ∈ λ(σ−1

1 )(i)ζ 4(ζ
(i−1)8 − λ1)m̃a,b,c,d,i−1 + Wi(λ), i ∈ I2,

(c) F1 · W(λ) ⊆ W(λ),
(d) F2 · ñ1,b,c,d,e ∈ λ(σ−1

2 )(1 − λ2)̃n0,b,c,d,e + W(λ).
In consequence,

◦ W1(λ) is a U -submodule if and only if λ1 = 1;
◦ W2(λ) is a U -submodule if and only if λ1 = ζ 8;
◦ W(λ) is a U -submodule if and only if λ2 = 1.

We denote by ma,b,c,d,e, na,b,c,d,e the classes of m̃a,b,c,d,e, ña,b,c,d,e in L(λ). We order lexicographically
the set of allma,b,c,d,e:

ma,b,c,d,e < ma′,b′,c′,d′,e′ ⇐⇒ a < a′, or a = a′, b < b′, or · · · . (16)

2.3. Simplemodules

Let ϕ : U → U be the algebra automorphism such that

ϕ(Ki) = K−1
i , ϕ(Li) = L−1

i , ϕ(Ei) = FiL
−1
i , ϕ(Fi) = K−1

i Ei,

i ∈ I2, cf. [14, Proposition 4.9]; this resembles the Chevalley involution. If M is a U-module, then we
denote byMϕ the U-module withMϕ = M as vector space and action given by a� v = ϕ(a) · v, v ∈ V ,
a ∈ U . If v ∈ M has weight λ (with respect the action of Ŵ), then v ∈ Mϕ has weight λ−1. The functor
M 7→ Mϕ preserves simple objects and sends lowest weight modules to highest weight modules, and
vice versa. The following result is standard.
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Lemma 2.3. The subspace X(λ) := {x ∈ L(λ) : Eix = 0 for all i} of L(λ) is one-dimensional and there

exists µ ∈ Ŵ̂ such that X(λ)
(1)
= L(λ)µ, L(λ)ϕ

(2)
≃ L(µ−1).

Proof. X(λ) 6= 0 because there exists β ∈ N2
0 maximal such that L(λ)β 6= 0. Since X(λ) is Ŵ-stable,

there exists a weight vector 0 6= x ∈ X(λ) with weight µ ∈ Ŵ̂. Thus U−x = Ux = L(λ) and (1) follows.
Also L(λ)ϕ = (U−x)ϕ ։ L(µ−1) implying (2).

Lemma 2.4. Let M ∈ UM a highest weight module of highest weight µ and 0 6= v ∈ Mµ. If ma,b,c,d,e 6= 0
in L(µ−1) then z := Fa2F

b
12F

c
11212F

d
112F

e
1v 6= 0.

There is an analogue statement for na,b,c,d,e.

Proof. IndeedMϕ is lowest weight of lowest weight µ−1, henceMϕ
։ L(µ−1); up to a non-zero scalar,

z 7→ ma,b,c,d,e 6= 0, hence z 6= 0.

2.4. A relative of uq(sl2)

We consider for amoment the algebraV constructed asU above but starting from a braided vector space
of dimension 1, with braiding given by q = σ(g) ∈ G′

N , g ∈ 3, σ ∈ 3̂. The algebra V is close to uq(sl2)

and has a presentation by generators h ∈ 3, τ ∈ 3̂, E, F with relations

EN = FN = 0, hE = σ(h)Eh, τE = τ(g)Eτ ,

EF − FE = g − σ−1, hF = σ−1(h)Fh, τF = τ(g−1)Fτ ,

and hτ = τh for h ∈ 3, τ ∈ 3̂, and the relations de�ning 3, 3̂. Thus

EjF − FEj = (j)qE
j−1(g − q1−jσ−1), j ∈ N. (17)

Let λ ∈ Ŵ̂. Let L(λ) be lowest weight V-module of lowest weight λ de�ned in the same usual way. The
same argument as for uq(sl2) gives the following.

Lemma 2.5.

(a) If there exists j ∈ IN−1 such that λ(gσ) = q1−j, then dim L(λ) = j.
(b) If λ(gσ) /∈ {qh|h ∈ I0,N−2}, then dim L(λ) = N.
(c) L(λ) has a basis v0, . . . , vdim L(λ)−1 such that for all i,

Evi = vi+1, Fvi = (i)q(q
1−iλ(σ−1

1 ) − λ(g1))vi−1, hτvi = λ(hτ)σ i(h)τ (gi)vi. (18)

(d) Let M be a lowest weight V-module with lowest weight λ ∈ Ŵ̂. If 0 6= v ∈ Mλ, then v,Ev, . . . ,En−1v
are linearly independent, where
(1) either n = j if λ(gσ) = q1−j for some (unique) j ∈ IN−1,
(2) or else n = N − 1 if λ(gσ) /∈ {qh|h ∈ I0,N−2}.

Moreover FiEiv = aiv for some ai ∈ k× when i ∈ I0,n−1.

2.5. The class C0

The �rst family is easy to deal with.

Lemma 2.6. If λ ∈ I1, then M(λ) is simple.

Proof. By [15, 5.16] that says: if Ш 6= 0, thenM(λ) is simple.
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3. SimpleU -modules in class C1

Here we deal with the class of families satisfying exactly one of the conditions in (12). Recall that
Ŵ = 3 × 3̂; we introduce χi ∈ Ŵ̂ by

χi(g, σ) = σi(g)σ (gi), i ∈ I2.

For simplicity, we introduce the following notation:

g12 = g1g2, g112 = g21g2, g11212 = g31g
2
2 ,

σ12 = σ1σ2, σ112 = σ 2
1 σ2, σ11212 = σ 3

1 σ 2
2 .

We outline the method to compute L(λ), λ ∈ Ij, j ∈ I2,10.
(a) As (exactly) one of the factors of the Shapovalov determinant Ш vanishes, there exists β 6= 0 and

w ∈ M(λ)β − 0, such that Fiw = 0, i ∈ I2, see Remarks 3.5, 3.8, 3.11, 3.14, 3.17, 3.20, or Lemma 2.2.
Thus Uw is a proper submodule.

(b) Assume we are dealing with Ij, j ∈ I2,6. Write w =
∑

pa,b,c,d,e m̃a,b,c,d,e. Then there exist a, b, c, d, e
such that pa,b,c,d,e 6= 0 and exactly four of the integers a, . . . , e are zero. The same holds for j ∈ I7,10
exchanging m̃a,b,c,d,e by ña,b,c,d,e. From here we describe a basis Bj of the quotient L

′(λ) of M(λ) by
Uw, j ∈ I2,10.

(c) Let v be the element of maximal degree of L′(λ). A short computation shows that v belongs to every
submodule of L′(λ). Because of the inequalities de�ning Ij, there exists F ∈ U such that Fv = vλ.
Hence L′(λ) is simple.
We work out the details for I2, with shorter expositions for the other families in C1.

3.1. The family I2

Recall that

I2 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 /∈ {1, ζ , ζ 4, ζ 7, ζ 3, ζ 9,−1, ζ 10}}.

Lemma 3.1. If λ ∈ I2, then dim L(λ) = 48. A basis of L(λ) is given by

B2 = {ma,b,c,d,0 : a, c ∈ I0,1, b ∈ I0,3, d ∈ I0,2}.

Proof. Let w = m̃0,0,0,0,1; then Fiw = 0, i ∈ I2, hence U
+w = W1(λ) ≤ M(λ) is proper by Lemma 2.2.

Let L′(λ) = M(λ)/U+w. Let m̂a,b,c,d,0 be the class of m̃a,b,c,d,0 in L′(λ). Then

B̂2 = {m̂a,b,c,d,0 : a, c ∈ I0,1, b ∈ I0,3, d ∈ I0,2}

is a basis of L′(λ), ordered by (16). Thus, it is enough to show that L′(λ) is simple. Let 0 6= W ≤ L′(λ)

and pick u ∈ W − 0. Fix m̂a,b,c,d,0 ∈ B̂2 minimal among those whose coe�cient in u is non-zero. Then

E2−d
112 E

1−c
11212E

3−b
12 E1−a

2 u ∈ k×m̂1,3,1,2,0 H⇒ m̂1,3,1,2,0 ∈ W.

By abuse of notation, we denote by vλ its class in L′(λ). We claim that

F2F
3
12F11212F

2
112m̂1,3,1,2,0 ∈ k×vλ; (19)

this implies that vλ ∈ W, so L′(λ) is simple.
To prove (19), we �rst consider the subalgebra V1 = k〈g, σ ,E112, F112〉 of U ; clearly V1 ≃ V from

§2.4. Then

F112m̂1,3,1,0,0 = 0, g112σ112m̂1,3,1,0,0 = −λ2m̂1,3,1,0,0, E2112m̂1,3,1,0,0 = σ 2
112(g

−6
12 )m̂1,3,1,2,0.

By Lemma 2.5, we conclude that

F2112m̂1,3,1,2,0 ∈ k×m̂1,3,1,0,0 H⇒ m̂1,3,1,0,0 ∈ W.
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We next consider V2 = k〈g, σ ,E11212, F11212〉 →֒ U ; again, V2 ≃ V . Then

F11212m̂1,3,0,0,0 = 0, g11212σ11212m̂1,3,0,0,0 = −λ22m̂1,3,0,0,0,

E11212m̂1,3,0,0,0 = σ11212(g
−3
1 g−4

2 )m̂1,3,1,0,0,

Lemma 2.5
H⇒ F11212m̂1,3,1,0,0 ∈ k×m̂1,3,0,0,0 H⇒ m̂1,3,0,0,0 ∈ W.

Once again, we consider V3 = k〈g, σ ,E12, F12〉 →֒ U ; thus V3 ≃ V from §2.4. Then

F12m̂1,0,0,0,0 = 0, g12σ12m̂1,0,0,0,0 = λ2ζ
11m̂1,0,0,0,0, E312m̂1,0,0,0,0 = σ 3

12(g
−1
2 )m̂1,3,0,0,0

Lemma 2.5
H⇒ F312m̂1,3,0,0,0 ∈ k×m̂1,0,0,0,0 H⇒ m̂1,0,0,0,0 ∈ W.

Now F2m̂1,0,0,0,0 = λ(σ2)
−1(λ2 − 1)vλ 6= 0, and (19) follows.

Corollary 3.2. If λ ∈ I2, then N(λ) ≃ L(χ1λ) and χ1λ ∈ I3.

Proof. By the proof of the Lemma,N(λ) is of lowest weight χ1λ and dimN(λ) = 96. It is easy to see that
χ1λ ∈ I3; hence dim L(χ1λ) = 96 by Lemma 3.3 and the claim follows.

3.2. The family I3

Recall that

I3 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 /∈ {±1, ζ 2, ζ 3, ζ 5, ζ 8, ζ 9, ζ 11}}.

Lemma 3.3. If λ ∈ I3, then dim L(λ) = 96. A basis of L(λ) is given by

B3 = {ma,b,c,d,e|a, c ∈ I0,1, b ∈ I0,3, d ∈ I0,2, e ∈ I0,1}.

Proof. Let w = m̃0,0,0,0,2 and L′(λ) = M(λ)/U+w. We identify B3 with a basis of L′(λ). Now
F2F

3
12F11212F

2
112F1m1,3,1,2,1 ∈ k×vλ, hence L

′(λ) is simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.4. If λ ∈ I3, then N(λ) ≃ L(χ2
1λ) and χ2

1λ ∈ I2.

3.3. The family I4

Recall that

I4 = {λ ∈ Ŵ̂ | λ21λ2 = −1, λ1 /∈ {±1, ζ 8, ζ 10, ζ 4, ζ 2}}.

We start by a Remark that will be useful elsewhere.

Remark 3.5. Let λ ∈ Ŵ̂. If λ21λ2 = −1, then w = F21E112E
2
1vλ ∈ M(λ) satis�es

F1w = F2w = 0. (20)

Proof. By a direct computation,

F112E112E
2
1vλ = λ(σ−2

1 σ−1
2 )q221ζ

4(λ21λ2 + 1)E21vλ.

AsM(λ)4α1 = M(λ)3α1 = 0, we have that F2E112E
2
1vλ = F1E112E

2
1vλ = 0, so

0 = F112E112E
2
1vλ = ζ 8q212F2F

2
1E112E

2
1vλ.

This shows that F2w = 0; on the other hand, F1w = F31(E112E
2
1vλ) = 0, since F31 = 0.
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Lemma 3.6. If λ ∈ I4, then dim L(λ) = 48. A basis of L(λ) is given by

B4 = {ma,b,c,0,e : a, c ∈ I0,1, b ∈ I0,3, e ∈ I0,2}.

Proof. Let w = F21E112E
2
1vλ. By Remark 3.5, Uw is a proper submodule. We identify B4 with a basis

of L′(λ) := M(λ)/Uw. We check that there exists F ∈ U such that Fm1,3,1,0,2 = vλ. Then L′(λ) is
simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.7. If λ ∈ I4, then N(λ) ≃ L(χ2
1χ2λ) and χ2

1χ2λ ∈ I5.

3.4. The family I5

Recall that

I5 = {λ ∈ Ŵ̂ | λ21λ2 = ζ 10, λ1 /∈ {±1, ζ 8, ζ 10, ζ 4, ζ 2}}.

Here is another Remark that will be useful later, proved as Remark 3.5.

Remark 3.8. Let λ ∈ Ŵ̂. If λ21λ2 = ζ 10, then w = F21E
2
112E

2
1vλ ∈ M(λ) satis�es (20).

Lemma 3.9. If λ ∈ I5, then dim L(λ) = 96. A basis of L(λ) is given by

B5 = {ma,b,c,d,e|a, c, d ∈ I0,1, b ∈ I0,3, e ∈ I0,2}.

Proof. Let w = F21E
2
112E

2
1vλ. By Remark 3.8, Uw is a proper submodule. We identify B5 with a basis

of L′(λ) := M(λ)/Uw. We check that there exists F ∈ U such that Fm1,3,1,1,2 = vλ. Then L′(λ) is
simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.10. If λ ∈ I5, then N(λ) ≃ L(χ4
1χ2

2λ) and χ4
1χ2

2λ ∈ I4.

3.5. The family I6

Recall that

I6 = {λ ∈ Ŵ̂ | λ31λ
2
2 = −1, λ1 /∈ {±1, ζ 8, ζ 10, ζ 4, ζ 2}}.

Still another Remark useful elsewhere, with an analogous proof as above.

Remark 3.11. Let λ ∈ Ŵ̂. If λ31λ
2
2 = −1, then w = F21F

2
112E11212E

2
112E

2
1vλ satis�es (20).

Lemma 3.12. If λ ∈ I6, then dim L(λ) = 72. A basis of L(λ) is given by

B6 = {ma,b,0,d,e|a ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2}.

Proof. Let w be as in Remark 3.11; then Uw is proper. Again B6 is identi�ed with a basis of L′(λ) =

M(λ)/Uw; since there is F ∈ U such that Fm1,3,0,2,2 = vλ, L
′(λ) is simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.13. If λ ∈ I6, then N(λ) ≃ L(χ3
1χ2

2λ) and χ3
1χ2

2λ ∈ I6.
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3.6. The family I7

Recall that

I7 = {λ ∈ Ŵ̂ | λ1λ2 = ζ , λ1 /∈ {1, ζ 8, ζ , ζ 4, ζ 9}}.

Again we start by a useful remark.

Remark 3.14. Let λ ∈ Ŵ̂. If λ1λ2 = ζ , then w = F2E2E12vλ ∈ M(λ) satis�es (20).

Lemma 3.15. If λ ∈ I7, then dim L(λ) = 36. A basis of L(λ) is given by

B7 = {na,0,c,d,e|a, c ∈ I0,1, d, e ∈ I0,2}.

Proof. Let w = F2E2E12vλ. By Remark 3.14, Uw ( M(λ). Let L′(λ) = M(λ)/Uw, so B7 is a basis of
L′(λ). There exists F ∈ U such that Fn1,0,1,2,2 = vλ. Then L′(λ) is simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.16. If λ ∈ I7, then N(λ) ≃ L(χ1χ2λ) and χ1χ2λ ∈ I9.

3.7. The family I8

Recall that

I8 = {λ ∈ Ŵ̂ | λ1λ2 = ζ 4, λ1 /∈ {1, ζ 8, ζ 4, ζ 2,−1, ζ 10}}.

Remark 3.17. Let λ ∈ Ŵ̂. If λ1λ2 = ζ 4, then w = F2E2E
2
12vλ ∈ M(λ) satis�es (20).

Proof. Analogous to Remark 3.5.

Lemma 3.18. If λ ∈ I8, then dim L(λ) = 72. A basis of L(λ) is given by

B8 = {na,b,c,d,e|a, b, c ∈ I0,1, d, e ∈ I0,2}.

Proof. Let w = F2E2E
2
12vλ. By Remark 3.17, Uw ( M(λ). Now B8 identi�es with a basis of L′(λ) :=

M(λ)/Uw. Since there is F ∈ U such that Fn1,1,1,2,2 = vλ, L
′(λ) is simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.19. If λ ∈ I8, then N(λ) ≃ L(χ2
1χ2

2λ) and χ2
1χ2

2λ ∈ I8.

3.8. The family I9

Recall that

I9 = {λ ∈ Ŵ̂ | λ1λ2 = ζ 7, λ1 /∈ {1, ζ 8, ζ 7, ζ 4, ζ 11}}.

Remark 3.20. Let λ ∈ Ŵ̂. If λ1λ2 = ζ 7, then w = F2E2E
3
12vλ ∈ M(λ) satis�es (20).

Proof. Analogous to Remark 3.5.

Lemma 3.21. If λ ∈ I9, then dim L(λ) = 108. A basis of L(λ) is given by

B9 = {na,b,c,d,e|a, c ∈ I0,1, b, d, e ∈ I0,2}.
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Proof. Let w = F2E2E
3
12vλ. By Remark 3.20, Uw ( M(λ). Let L′(λ) = M(λ)/Uw, so B9 is a basis of

L′(λ). Since there exists F ∈ U such that Fn1,2,1,2,2 = vλ, L
′(λ) is simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.22. If λ ∈ I9, then N(λ) ≃ L(χ3
1χ3

2λ) and χ3
1χ3

2λ ∈ I7.

3.9. The family I10

Recall that

I10 = {λ ∈ Ŵ̂ | λ1 /∈ G12, λ2 = 1}.

Lemma 3.23. If λ ∈ I10, then dim L(λ) = 72. A basis of L(λ) is given by

B10 = {n0,b,c,d,e|c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2}.

Proof. Let w = ñ1,0,0,0,0 and L′(λ) = M(λ)/U+w. We identify B10 with a basis of L′(λ). Now
F21F

2
112F11212F

3
12n0,3,1,2,2 ∈ k×vλ, hence L

′(λ) is simple.

Exactly as for Corollary 3.2, we conclude:

Corollary 3.24. If λ ∈ I10, then N(λ) ≃ L(χ2λ) and χ2λ ∈ I10.

4. SimpleU -modules in class C2

We start by the method to compute L(λ), λ ∈ Ij, j ∈ I11,47. We illustrate by considering I11, which is
small enough to allow complete details; and I13, with less explicit yet complete enough arguments. Then
we give the main features of the proofs for the other families in C2. Here are the steps of the method:
(1) We identify easily a proper submoduleW = Uw1 ofM(λ) as follows:

⋄ if j ∈ I11,17, then w1 = m̃0,0,0,0,1, soW = W1(λ), see Lemma 2.2;
⋄ if j ∈ I18,24, then w1 = m̃0,0,0,0,2, soW = W2(λ), again by Lemma 2.2;
⋄ if j ∈ I25,35, then w1 is as in one of the Remarks 3.5, 3.8, 3.14, 3.17, 3.20;
⋄ if j ∈ I36,47, then w1 = ñ1,0,0,0,0, soW = W(λ) by Lemma 2.2.

A basis ofM(λ)/W is obtained by restriction of the height of a speci�c PBW generator. Below we
denote by w2 an element ofM(λ) or its class moduloW, indistinctly.

(2) Next we show that there exists β 6= 0 andw2 ∈ (M(λ)/W)β − 0, such that Fiw2 = 0, i ∈ I2; for this,
we either apply one of Remarks 3.5, 3.8, 3.11, 3.14, 3.17, 3.20, or else proceed by direct computation.
Hence Uw2 is a proper submodule ofM(λ)/W.

(3) Let L′(λ) = M(λ)/(W + Uw2). We consider a suitable set Bj inside the image of the PBW-basis
in L′(λ) that spans L′(λ). To prove that Bj is linearly independent, we apply one of the following
procedures:
(a) For j ∈ J = {11, 12, 18, 38}, the elements of Bj are homogeneous of di�erent degrees.
(b) Assume that j /∈ J. Then Uw2 ≤ M(λ)/W projects onto the simple module L(ν), where ν is

the weight of w2. Also, let u ∈ M(λ)/W be the element of maximal degree; then (Uu)ϕ projects
onto a simple L(µ). Let Ik and Iℓ be the families containing ν and µ, respectively. At this point,
we observe that we are proceeding recursively, so that we already know the simple modules in
Ik and Iℓ. With this information on hand, we check that Uu = Uw2 ≃ L(ν). This isomorphism
provides a basis of Uw2; we conclude that there is a linear complement of Uw2 with a basis B̃j
projecting onto Bj; thus Bj is a basis of L

′(λ).
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(4) Finally we prove that L′(λ) is simple. Let v be the element of maximal degree of L′(λ). A short
computation shows that v belongs to every submodule of L′(λ). Applying Lemma 2.5 (or by direct
computation when we have a table for the action), there exists F ∈ U such that Fv = vλ. Hence L

′(λ)

is simple.
As said, we proceed recursively, but with respect to an ad hoc partial ordering of the families in C2.

In the quiver below, we describe this ordering; I11 // I16 means that knowledge on I11 is used for
I16. As we see, there is no vicious circle.

I17 // I43

I47 //

66mmmmmm

((Q
QQ

QQ
Q

!!
B
B
B
B
B
B
B
B

I27 // I41

I29 // I22 // I44 //

((Q
QQ

QQ
Q I14 // I33

I42 I35

I11 // I16

I18 //

((Q
QQ

QQ
Q I31

I39

I24

I38 //

66mmmmmm

((Q
QQ

QQ
Q

!!
B
B
B
B
B
B
B
B

I25 // I40 // I21 I20

I28 // I13 //

((Q
QQ

QQ
Q I26 //

66mmmmmm
I46

I30 I45 // I23

I12 //

((Q
QQ

QQ
Q I15 // I36

I32 // I19 // I37 // I34

4.1. The family I11

Recall that I11 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ }.

Lemma 4.1. If λ ∈ I11, then dim L(λ) = 11. A basis of L(λ) is given by

B11 = {ma,b,0,d,0|a ∈ I0,1, b ∈ I0,1, d ∈ I0,2} − {m1,1,0,0,0}.

The action of Ei, Fi, i ∈ I2 is described in Table 2.

Proof. Let w1 = m̃0,0,0,0,1, w2 = m̃1,1,0,0,0; hence Fiw1 = 0, i ∈ I2,

F1m̃1,1,0,0,0 = 0, F2m̃1,1,0,0,0 = (ζ 11 − 1)λ(g2)m̃1,0,0,0,1 ∈ W1(λ) = Uw1.

Table 2. Simple modules for λ ∈ I11 .

w E1 · w E2 · w λ(g−1
1 )F1 · w λ(g−1

2 )F2 · w

v0,0 0 v0,1 0 0

v0,1 v1,1 0 0 (ζ 11 − 1)v0,0

v1,1 v2,1 0 q12(ζ − 1)v0,1 0

v2,1 0 v2,2 q12ζ
8(1 + ζ 3)v1,1 0

v2,2 v3,2 0 0 q221(1 − ζ )v2,1

v3,2 v4,2 v3,3 q212(ζ
2 − 1)v2,2 0

v4,2 0 v4,3 2q212(ζ
2 − 1)v3,2 0

v3,3 q12
ζ 8(ζ 3−1)

2 v4,3 0 0 q321(ζ
2 − 1)v3,2

v4,3 v5,3 0 2q212(ζ
2 − 1)v3,3 q421(ζ

3 − 1)v4,2

v5,3 0 v5,4 q312ζ
8(1 − ζ 11)v4,3 0

v5,4 0 0 0 q521(ζ
11 + 1)v5,3
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Thus Uw1 + Uw2 is a proper submodule. We claim that L′(λ) = M(λ)/Uw1 + Uw2 is simple. Consider
the following elements of L′(λ):

v0,0 = m̃0,0,0,0,0, v0,1 = m̃1,0,0,0,0, v1,1 = m̃0,1,0,0,0, v2,1 = m̃0,0,0,1,0,

v2,2 = m̃1,0,0,1,0, v3,2 = m̃0,1,0,1,0, v4,2 = m̃0,0,0,2,0, v3,3 = m̃1,1,0,1,0,

v4,3 = m̃1,0,0,2,0, v5,3 = m̃0,1,0,2,0, v5,4 = m̃1,1,0,2,0.

Notice that vi,j ∈ L′(λ)iα1+jα2 . The action of Ei, Fi on these vectors is given in Table 2, and we check that
L′(λ) is spanned by the vi,j’s by direct computation.

For each vi,j there exists Ei,j ∈ U
+
(5−i)α1+(4−j)α2

such that Ei,jvi,j = v5,4; also, there exists F5,4 ∈

U
−
−5α1−4α2

such that F5,4v5,4 = vλ. This implies that the vi,j’s are 6= 0; hence they are linearly independent,
since they have di�erent degrees, and B11 is identi�ed with a basis of L′(λ).

Let now 0 6= U ≤ L′(λ) and pick v ∈ U − 0. Expressing v in the basis B11, we see that there exists
E ∈ U+ such that Ev = v5,4. But Uv5,4 = L′(λ). Hence L′(λ) is simple.

Remark 4.2. If λ ∈ I11, then N(λ)/W1(λ) ≃ L(χ1χ
2
2λ), with χ1χ

2
2λ ∈ I41 has dimension 37. Now

W1(λ) is a lowest weight module of lowest weight χ1λ ∈ I43; since dim L(χ1λ) = 25 by Lemma 4.34,
the kernel ofW1(λ) ։ L(χ1λ) is a submodule of dimension 71.

4.2. The family I12

Recall that I12 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 4}.

Lemma 4.3. If λ ∈ I12, then dim L(λ) = 11. A basis of L(λ) is given by

B12 = {ma,b,0,d,0 : a, b, d ∈ I0,1} ∪ {m0,1,1,0,0,m1,0,1,1,0,m0,0,1,1,0}.

The action of Ei, Fi, i ∈ I2 is described in Table 3.

Proof. Let w1 = m̃0,0,0,0,1, w2 = F2E2E
2
12vλ; then Fiwj = 0 for i, j ∈ I2, so Uw + W1(λ) is a proper

submodule ofM(λ). Let L′(λ) := M(λ)/Uw + W1(λ). We label the elements of B12 as follows:

v0,0 = m0,0,0,0,0, v0,1 = m1,0,0,0,0, v1,1 = m0,1,0,0,0, v2,1 = m0,0,0,1,0,

v2,2 = m1,0,0,1,0, v1,2 = m1,1,0,0,0, v3,2 = m0,1,0,1,0, v3,3 = m1,1,0,1,0,

v4,3 = m0,1,1,0,0, v5,3 = m0,0,1,1,0, v5,4 = m1,0,1,1,0.

The action of Ei, Fi on these vectors is given in Table and B12 is a basis of L
′(λ). Looking at the table,

there exists F ∈ U− such that Fm1,0,1,1,0 = vλ. Then L′(λ) is simple.

Table 3. Simple modules for λ ∈ I12 .

w E1 · w E2 · w λ(g−1
1 )F1 · w λ(g−1

2 )F2 · w

v0,0 0 v0,1 0 0

v0,1 v1,1 0 0 (ζ 10 + 1)v0,0

v1,1 v2,1 v1,2 q12(ζ − 1)v0,1 0

v2,1 0 v2,2 q12ζ
8(1 + ζ 3)v1,1 0

v1,2 ζ 11(1 + ζ 3)q12v2,2 0 0 q21(1 + ζ 3)ζ 4v1,1

v2,2 v3,2 0 q12(ζ
3 + 1)ζ 8v1,2 −q22,1v2,1

v3,2 0 v3,3 q212ζ
10v2,2 0

v3,3 0 0 0 q321ζ
3(1 − ζ )v3,2

v4,3 ζ 9q12v5,3 0 q412ζ(3)ζ 11 v3,3 0

v5,3 0 v5,4 −q212(1 + ζ 3)v4,3 0

v5,4 0 0 0 q521(1 − ζ )ζ 4v5,3
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4.3. The family I13

Recall that I13 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 7}.

Lemma 4.4. If λ ∈ I13, then dim L(λ) = 23. A basis of L(λ) is given by

B13 = {ma,b,0,d,0|b ∈ I0,2} ∪ {ma,0,1,0,0,m0,3,0,d,0,m1,3,0,1,0|a ∈ I0,1, d ∈ I1,2}.

Proof. Let w1 = m̃0,0,0,0,1, w2 = F2E2E
3
12vλ. ThenW1(λ) = Uw1 by Lemma 2.2, and F1w2 = F2w2 = 0

by Remark 4.22, so Uw1 +Uw2 � M(λ). We claim that L′(λ) := M(λ)/(Uw1 +Uw2) is simple and B13
is a basis of L′(λ).

LetM = M(λ)/W1(λ) and u = m1,3,1,2,0 ∈ M. Notice that E2112E11212E2w2 = −q1812 u, so u ∈ Uw2.
On the other hand, Eiu = 0, i ∈ I2, g1σ1u = u and g2σ2u = ζ 9u, so (Uu)ϕ projects over a simple
module L(µ) with µ ∈ I14, see Lemma 2.3; in particular there exists F′ ∈ U−7α1−5α2 such that F′u 6= 0.
As Uu ⊆ Uw2 and Uw2 is a lowest weight module,

F′u ∈ (Uu)3α1+3α2 ⊆ (Uw2)3α1+3α2 = kw.

Hence we may assume that F′u = w2, and Uu = Uw2.
Also g1σ1w2 = ζ 9w2, g2σ2w2 = ζ 4w2, so Uw2 projects over a simple module L(ν) with ν ∈ I28. For

any v ∈ M, v 6= 0, there exists E ∈ U such that Ev = u. Thus we conclude that Uw2 ≃ L(ν), and then
dim L′(λ) = 48 − 25 = 23 by Lemma 4.19.

Applying Lemma 2.5, there exists F ∈ U− such that Fm0,3,0,2,0 = vλ. Note that

E2m0,3,0,2,0 = m1,3,0,2,0 = 0

since 0 = E12m0,3,1,0,0 and km1,2,1,1,0 = km1,3,0,2,0. Also E1m0,3,0,2,0 = 0 because it is a scalar multiple
ofm0,1,1,2,0 , which is 0. Using this fact and previous relations, we are able to prove that B13 spans L

′(λ),
but as B13 has 23 elements, it is a basis.

Let 0 6= W ≤ L′(λ), w ∈ W − 0. Arguing as before, there exists E ∈ U+ such that Ew = m0,3,0,2,0, so
m0,3,0,2,0 ∈ W, but then vλ ∈ W, so L′(λ) is simple.

4.4. The family I14

Recall that I14 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 3}.

Lemma 4.5. If λ ∈ I14, then dim L(λ) = 25. A basis of L(λ) is given by

B14 = {ma,b,0,d,0 | a ∈ I0,1, b ∈ I0,3, d ∈ I0,2} ∪ {m0,0,1,0,0,m0,0,1,2,0} − {m1,3,0,2,0}.

Proof. Let w1 = m̃0,0,0,0,1, w2 = (1 + ζ 3)m̃1,0,1,0,0 + q12ζ
3(1 + ζ )m̃1,1,0,1,0. Then W1(λ) = Uw1 and

F1w2 = F2w2 = 0 by direct computation.
LetM = M(λ)/W1(λ), L′(λ) = M(λ)/Uw2 + W1(λ) and u = m1,3,1,2,0 ∈ M. Then (Uu)ϕ projects

over L(µ) for some µ ∈ I13. Also, Uw2 projects over L(ν) for some ν ∈ I44. Hence Uu = Uw2, and
moreover Uw2 is simple, so dim L′(λ) = 48 − 25 = 23 by Lemma 4.35. By direct computation L′(λ) is
spanned by B14, so B14 is a basis of L

′(λ).
Moreover there exists F ∈ U− such that Fm1,0,1,2,0 = vλ, so L

′(λ) is simple.

4.5. The family I15

Recall that I15 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 9}.
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Lemma 4.6. If λ ∈ I15, then dim L(λ) = 37. A basis of L(λ) is given by

B15 = {ma,b,c,d,0|a, c ∈ I0,1, b ∈ I0,3, d ∈ I0,2}

− {ma,b,1,d,0|a ∈ I0,1, b ∈ I2,3, d ∈ I0,2, (a, b, d) 6= (0, 2, 2)}.

Proof. Let w1 = m̃0,0,0,0,1, u = m̃1,3,1,2,0, w2 = F2F12F
2
112u. ThenW1(λ) = Uw1.

LetM = M(λ)/W1(λ), so E1u = E2u = 0 inM, and (Uu)ϕ ։ L(ν) for some ν ∈ I11; thus w2 6= 0.
By direct computation, Fiw2 = 0, i ∈ I2, so Uw2 projects over a simple module L(µ), for µ ∈ I12. From
here, Uw2 ≃ L(µ).

Let L′(λ) = M(λ)/W1(λ) + Uw2. Then dim L′(λ) = 37 by Lemma 4.3, and B15 is a basis of L
′(λ).

There exists F such that Fm0,2,1,2,0 = vλ, and L′(λ) is simple.

4.6. The family I16

Recall that I16 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = −1}.

Lemma 4.7. If λ ∈ I16, then dim L(λ) = 37. A basis of L(λ) is given by

B16 = {ma,b,c,d,0|a, c ∈ I0,1, b ∈ I0,3, d ∈ I0,2}

−
(
{ma,3,c,d,0|a, c ∈ I0,1, d ∈ I1,2} ∪ {m1,2,1,2,0,m0,2,1,2,0,m1,2,0,2,0}

)
.

Proof. Let w1 = m̃0,0,0,0,1, u = m̃1,3,1,2,0, w2 = F2F11212F112u. ThenW1(λ) = Uw1.
LetM = M(λ)/W1(λ), so E1u = E2u = 0 inM′, and (Uu)ϕ ։ L(ν) for some ν ∈ I12; thus w2 6= 0.

By direct computation, Fiw2 = 0, i ∈ I2, so Uw2 projects over a simple module L(µ), for µ ∈ I11. From
here, Uw2 ≃ L(µ).

Let L′(λ) = M(λ)/W1(λ) + Uw2. Then dim L′(λ) = 37 by Lemma 4.1, and B16 is a basis of L
′(λ).

There exists F such that Fm1,1,1,2,0 = vλ, and L′(λ) is simple.

4.7. The family I17

Recall that I17 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = ζ 10}.

Lemma 4.8. If λ ∈ I17, then dim L(λ) = 47. A basis of L(λ) is given by

B17 = {ma,b,c,d,0|a, c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2, (a, b, c, d) 6= (1, 3, 1, 2)}.

Proof. Let w1 = m̃0,0,0,0,1, w2 = m̃1,3,1,2,0. Then W1(λ) = Uw1, and Fiw = 0, i ∈ I2, so Uw projects
over a simple module L(µ), for µ ∈ I47. Let M = M(λ)/W1(λ), hence Uw2 ≃ L(µ). Let L′(λ) =

M(λ)/W1(λ) + Uw2. Then dim L′(λ) = 47 by Lemma 4.38, and B17 is a basis of L
′(λ). There exists F

such that Fm0,3,1,2,0 = vλ, and L′(λ) is simple.

4.8. The family I18

Recall that I18 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 5}.

Lemma 4.9. If λ ∈ I18, then dim L(λ) = 11. A basis of L(λ) is given by

B18 = {ma,b,1,0,1|a, b ∈ I0,1} ∪ {m0,b,0,0,e|e ∈ I0,1, b ∈ I0,3} ∪ {m1,0,0,0,0}

− {m1,1,1,0,1,m3,0,0,0,1}.

The action of Ei, Fi, i ∈ I2 is described in Table 4.
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Table 4. Simple modules for λ ∈ I18 .

w E1 · w E2 · w λ(σ1)F1 · w λ(g2)
−1F2 · w

v0,0 v1,0 v0,1 0 0

v1,0 0 q21ζ
9(4)ζ v1,1 (1 + ζ 2)v0,0 0

v0,1 ζ 8(4)ζ v1,1 0 0 (ζ 7 − 1)v0,0

v1,1
q12ζ

4(4)
ζ7

3 v2,1 0 q12(ζ − 1)v0,1 (ζ 11 − 1)v1,0

v2,1 0 q221ζ
10(4)ζ v2,2 (1 − ζ 4)v1,1 0

v2,2 (1 − ζ 4)v3,2 0 0
−(1+ζ 2)(3)

ζ7

3 v2,1

v3,2 v4,2 q12ζ
10(4)ζ v3,3 ζ 10(4)ζ v2,2 0

v4,2 0 v4,3 q212ζ(ζ + 1)v3,2 0

v3,3
q412ζ

7(4)ζ
3 v4,3 0 0

ζ 8−1
3 v3,2

v4,3 v5,3 0 q312(ζ
11 + 1)(4)2

ζ
v3,3 q421(ζ

11 − 1)v4,2

v5,3 0 0 q312ζ
4v4,3 0

Proof. W2(λ) ≤ M(λ) by Lemma 2.2 and w := F2E2E12 satis�es F1w = F2w = 0 by Remark 3.14. Let
L′(λ) = M(λ)/Uw2 + W2(λ). We �x the following notation for B18:

v0,0 = m0,0,0,0,0, v1,0 = m0,0,0,0,1, v0,1 = m1,0,0,0,0, v1,1 = m0,1,0,0,0,

v2,1 = m0,1,0,0,1, v2,2 = m0,2,0,0,0, v3,2 = m0,2,0,0,1, v4,2 = m0,0,1,0,1,

v3,3 = m0,3,0,0,0, v4,3 = m1,0,1,0,1, v5,3 = m0,1,1,0,1.

We check that L′(λ) is spanned by B18. From Table 4 there exist Ei,j ∈ U
+
(5−i)α1+(3−j)α2

, F5,3 ∈

U
−
−5α1−3α2

such that Ei,jvi,j = v5,3, F5,3v5,3 = vλ. Thus L
′(λ) is simple.

4.9. The family I19

Recall that I19 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 8}.

Lemma 4.10. If λ ∈ I19, then dim L(λ) = 35. A basis of L(λ) is given by

B19 = {m0,b,0,d,e|b ∈ I0,3, d ∈ I0,2, e ∈ I0,1} ∪ {m1,b,0,0,e| b, e ∈ I0,1} ∪ {m0,b,1,0,0| b ∈ I1,3}

∪ {m1,b,0,0,1 | b ∈ I2,3} ∪ {m1,0,0,1,1,m0,0,1,1,0}.

Proof. Let w1 = m̃0,0,0,0,2, w2 = F2E2E
2
12vλ. Then W2(λ) = Uw1 and F1w2 = F2w2 = 0. Set M′ =

M(λ)/W2(λ), u = m̃1,3,1,2,1. Hence Uw2 ։ L(µ) for µ ∈ I32, and there exists E ∈ U such that
Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, so Uw2 = Uu ≃ L(µ). Let L′(λ) =

M(λ)/Uw2 + W2(λ), so dim L′(λ) = 96 − 61 = 35 by Lemma 4.23, and B19 is a basis of L
′(λ). As in

previous cases, L′(λ) is simple.

4.10. The family I20

Recall that I20 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 11}.

Lemma 4.11. If λ ∈ I20, then dim L(λ) = 71. A basis of L(λ) is given by

B20 = {ma,b,c,d,e|a, c, e ∈ I0,1, b ∈ I0,3, d ∈ I0,2}

−
(
{m1,b,1,d,e|b ∈ I0,3, d ∈ I0,2, e ∈ I0,1, (b, d, e) 6= (2, 2, 1)} ∪ {m1,0,0,2,1,m1,3,0,0,0}

)
.
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Proof. Let w1 = m̃0,0,0,0,2, w2 = F2E2E
3
12vλ. Then W2(λ) = Uw1 and F1w2 = F2w2 = 0. Set M′ =

M(λ)/W2(λ), u = m̃1,3,1,2,1. Hence Uw2 ։ L(µ) for µ ∈ I26, and there exists E ∈ U such that
Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, so Uw2 = Uu ≃ L(µ). Let L′(λ) =

M(λ)/Uw2 + W2(λ), so dim L′(λ) = 96 − 25 = 71 by Lemma 4.17 and B20 is a basis of L
′(λ). As in

previous cases, L′(λ) is simple.

4.11. The family I21

Recall that I21 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 3}.

Lemma 4.12. If λ ∈ I21, then dim L(λ) = 61. A basis of L(λ) is given by

B21 = {ma,b,c,d,e | a, b, c, e ∈ I0,1, d ∈ I0,2} ∪ {ma,2,c,0,e | a, c, e ∈ I0,1}

∪ {m1,3,0,0,e | e ∈ I0,1} ∪ {m0,3,1,0,1,m1,3,1,0,1,m0,2,0,1,0}.

Proof. Let w1 = m̃0,0,0,0,2, u = m̃1,3,1,2,1, w2 = F1F11212F12u. ThenW2(λ) = Uw1.
LetM′ = M(λ)/W2(λ), so E1u = E2u = 0 inM′, and (Uu)ϕ ։ L(ν) for some ν ∈ I19; thusw2 6= 0.

By direct computation, Fiw2 = 0, i ∈ I2, so Uw2 projects over a simple module L(µ), for µ ∈ I40. From
here, Uw2 ≃ L(µ).

Let L′(λ) = M(λ)/W2(λ) + Uw2. Then dim L′(λ) = 61 by Lemma 4.31, and B21 is a basis of L
′(λ).

There exists F such that Fm1,1,1,2,1 = vλ, and L′(λ) is simple.

4.12. The family I22

Recall that I22 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 9}.

Lemma 4.13. If λ ∈ I22, then dim L(λ) = 49. A basis of L(λ) is given by

B22 = {ma,b,c,d,e| a, c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,1}

− {ma,b′,1,0,0,m1,3,1,1,1,ma,b,1,1,0 | a ∈ I0,1, b
′ ∈ I0,3, b ∈ I1,3}.

Proof. Let w1 = m̃0,0,0,0,2, w2 = F21E
2
112E1vλ. Then W2(λ) = Uw1 and F1w2 = F2w2 = 0. Set M′ =

M(λ)/W2(λ), u = m̃1,3,1,2,1. Hence Uw2 ։ L(µ) for µ ∈ I29, and there exists E ∈ U such that
Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, so Uw2 = Uu ≃ L(µ). Let L′(λ) =

M(λ)/Uw2 + W2(λ), so dim L′(λ) = 96 − 47 = 49 by Lemma 4.20, and B22 is a basis of L
′(λ). As in

previous cases, L′(λ) is simple.

4.13. The family I23

Recall that I23 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = ζ 2}.

Lemma 4.14. If λ ∈ I23, then dim L(λ) = 47. A basis of L(λ) is given by

B23 =
(
{ma,b,0,d,e|a, e ∈ I0,1, b ∈ I0,3, d ∈ I0,2} ∪ {ma,b,1,0,0 | a, b ∈ I0,1}

∪ {m0,2,1,0,0,m1,3,1,0,0}
)

−
(
{m1,b,0,1,e|b ∈ I0,2, e ∈ I0,1} ∪ {m0,2,0,2,0}

)
.

Proof. Let w1 = m̃0,0,0,0,2, u = m̃1,3,1,2,1, w2 = F312F11212F112F1u. ThenW2(λ) = Uw1.
LetM′ = M(λ)/W2(λ), so E1u = E2u = 0 inM′, and (Uu)ϕ ։ L(ν) for some ν ∈ I22; thusw2 6= 0.

By direct computation, Fiw2 = 0, i ∈ I2, so Uw2 projects over a simple module L(µ), for µ ∈ I45. From
here, Uw2 ≃ L(µ).



1790 N. ANDRUSKIEWITSCH ET AL.

Let L′(λ) = M(λ)/W1(λ) + Uw2. Then dim L′(λ) = 47 by Lemma 4.36, and B23 is a basis of L
′(λ).

There exists F such that Fm1,3,0,2,1 = vλ, and L′(λ) is simple.

4.14. The family I24

Recall that I24 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = −1}.

Lemma 4.15. If λ ∈ I24, then dim L(λ) = 85. A basis of L(λ) is given by

B24 = {ma,b,c,d,e|a, c, e ∈ I0,1, b ∈ I0,3, d ∈ I0,2}

−
(
{ma,3,c,2,e,m1,3,c,1,1|a, c, e ∈ I0,1} ∪ {m0,3,1,1,1}

)
.

Proof. Let w1 = m̃0,0,0,0,2, u = m̃1,3,1,2,1, w2 = F12F11212F1u. ThenW2(λ) = Uw1.
LetM′ = M(λ)/W2(λ), so E1u = E2u = 0 inM′, and (Uu)ϕ ։ L(ν) for some ν ∈ I18; thusw2 6= 0.

By direct computation, Fiw2 = 0, i ∈ I2, so Uw2 projects over a simple module L(µ), for µ ∈ I38. From
here, Uw2 ≃ L(µ).

Let L′(λ) = M(λ)/W1(λ) + Uw2. Then dim L′(λ) = 85 by Lemma 4.29, and B24 is a basis of L
′(λ).

There exists F such that Fm1,2,1,2,1 = vλ, and L′(λ) is simple.

4.15. The family I25

Recall that I25 = {λ ∈ Ŵ̂ | λ1 = ζ 11, λ2 = ζ 8}.

Lemma 4.16. If λ ∈ I25, then dim L(λ) = 37. A basis of L(λ) is given by

B25 = B′
25 −

(
{m0,3,0,0,e | e ∈ I0,1} ∪ {m1,3,c,0,e,m1,2,1,0,e | c ∈ I0,1, e ∈ I0,2}

)
, where

B′
25 = {ma,b,c,0,e | a, c ∈ I0,1, b ∈ I0,3, e ∈ I0,2}.

Proof. Let w1 = F21E112E
2
1vλ. By Remark 3.5, Fiw1 = 0, i ∈ I2. Let M

′ = M(λ)/Uw1, so B′
25 is a basis

of M′. Notice that w2 = E2E
3
12vλ satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I38, and

there exists E ∈ U such that Ew2 = m1,3,1,0,2. Moreover, there exists F ∈ U such that Fm1,3,1,0,2 = w2,
and then Uw2 = Um1,3,1,0,2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Uw2, so dim L′(λ) = 48 − 11 = 37 by
Lemma 4.29 and B25 is a basis of L

′(λ). As in previous cases, L′(λ) is simple.

4.16. The family I26

Recall that I26 = {λ ∈ Ŵ̂ | λ1 = ζ 5, λ2 = ζ 8}.

Lemma 4.17. If λ ∈ I26, then dim L(λ) = 25. A basis of L(λ) is given by

B26 = {m0,b,c,0,e|c ∈ I0,1, b ∈ I0,3, e ∈ I0,2} ∪ {m1,0,0,0,0,m1,0,0,0,2} − {m0,3,1,0,0}.

Proof. Let w1 = F21E112E
2
1vλ, so Fiw1 = 0, i ∈ I2. LetM

′ = M(λ)/Uw1. Then B′
25 as in Lemma 4.17 is

a basis ofM′. Notice that w2 = F2E2E12vλ satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I13,
and there exists E ∈ U such that Ew2 = m1,3,1,0,2. Moreover, there exists F ∈ U such that Fm1,3,1,0,2 = w,
and then Uw2 = Um1,3,1,0,2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Uw2, so dim L′(λ) = 48 − 23 = 25 by
Lemma 4.4, and B26 is a basis of L

′(λ). As in previous cases, L′(λ) is simple.
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4.17. The family I27

Recall that I27 = {λ ∈ Ŵ̂ | λ1 = ζ 4, λ2 = ζ 9}.

Lemma 4.18. If λ ∈ I27, then dim L(λ) = 35. A basis of L(λ) is given by

B27 = B′
27 − {n0,0,1,2,2}, where B′

27 = {na,0,c,d,e | a, c ∈ I0,1, d, e ∈ I0,2}.

Proof. Let w1 = F2E12E2vλ, so Fiw1 = 0, i ∈ I2. LetM
′ = M(λ)/Uw1. Then B′

27 is a basis ofM
′. Notice

that w2 = E11212E
2
112E

2
1vλ satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I47; as also E1w2 =

E2w2 = 0, we have that Uw2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Uw2, so dim L′(λ) = 36 − 1 = 35 by
Lemma 4.38, and B27 is a basis of L

′(λ). As in previous cases, L′(λ) is simple.

4.18. The family I28

Recall that I28 = {λ ∈ Ŵ̂ | λ1 = ζ 9, λ2 = ζ 4}.

Lemma 4.19. If λ ∈ I28, then dim L(λ) = 25. A basis of L(λ) is given by

B28 = B′
27 −

(
{n0,0,1,1,e, n0,0,c,2,e|c ∈ I0,1, e ∈ I0,2} ∪ {n1,0,1,2,e | e ∈ I1,2}

)
.

Proof. Let w1 = F2E12E2vλ, so Fiw1 = 0, i ∈ I2. LetM
′ = M(λ)/Uw1. Then B′

27 is a basis ofM
′. Notice

that w2 = F21E
2
1E

2
112vλ satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I38, and there exists

E ∈ U such that Ew2 = m1,0,1,2,2. Moreover, there exists F ∈ U such that Fm1,0,1,2,2 = w2, and then
Uw2 = Um1,0,1,2,2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Uw2, so dim L′(λ) = 36 − 11 = 25 by Lemma
4.29, and B28 is a basis of L

′(λ). As in previous cases, L′(λ) is simple.

4.19. The family I29

Recall that I29 = {λ ∈ Ŵ̂ | λ1 = −1, λ2 = −1}.

Lemma 4.20. If λ ∈ I29, then dim L(λ) = 47. A basis of L(λ) is given by

B29 = B′
29 − {m1,3,1,0,0}, where B′

29 = {ma,b,c,0,e|a, c ∈ I0,1, b ∈ I0,3, e ∈ I0,2}.

Proof. Let w1 = F21E112E
2
1vλ, so Fiw1 = 0, i ∈ I2. Let M

′ = M(λ)/Uw1. Then B′
29 is a basis of M

′.
Notice that w2 = E2E

3
12E11212vλ satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I47; as also

E1w2 = E2w2 = 0, we have that Uw2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 +Uw2, so dim L′(λ) = 48− 1 =

47 by Lemma 4.38, and B29 is a basis of L
′(λ). As in previous cases, L′(λ) is simple.

4.20. The family I30

Recall that I30 = {λ ∈ Ŵ̂ | λ1 = ζ 2, λ2 = ζ 2}.

Lemma 4.21. If λ ∈ I30, then dim L(λ) = 37. A basis of L(λ) is given by

B30 = B′
29 − {m1,b,c,0,e | c ∈ I0,1, b ∈ I2,3, e ∈ I0,2, (b, c, e) 6= (3, 1, 2)}.

Proof. Let w1 = F21E112E
2
1vλ, so Fiw1 = 0, i ∈ I2. Let M

′ = M(λ)/Uw1. Then B′
29 is a basis of M

′.
Notice that w2 = E2E

2
12vλ satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I38, and there exists

E ∈ U such that Ew2 = m1,3,1,0,2. Moreover, there exists F ∈ U such that Fm1,3,1,0,2 = w2, and then
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Uw2 = Um1,3,1,0,2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Uw2, so dim L′(λ) = 48 − 11 = 37 by Lemma
4.29, and B30 is a basis of L

′(λ). As in previous cases, L′(λ) is simple.

4.21. The family I31

Recall that I31 = {λ ∈ Ŵ̂ | λ1 = −1, λ2 = ζ 10}.

Lemma 4.22. If λ ∈ I31, then dim L(λ) = 61. A basis of L(λ) is given by

B31 = B′
31 −

(
{n0,0,0,2,e | e ∈ I0,1} ∪ {n0,0,1,1,e, n0,0,1,2,e, n0,1,1,2,e|e ∈ I0,2}

)
, where

B′
31 = {na,b,c,d,e|a, b, c ∈ I0,1, d, e ∈ I0,2}.

Proof. Let w1 = F2E2E
2
12vλ. By Remark 3.17, Fiw1 = 0, i ∈ I2. LetM

′ = M(λ)/Uw1, so B
′
31 is a basis of

M′. Notice that

w2 = n0,0,0,2,1 +
q21
3 ζ(1 + ζ 3)(1 + ζ 2)

(
n0,0,1,0,2 + ζ 4n0,1,0,1,2

)

satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I18, and there exists E ∈ U such that Ew2 =

n1,1,1,2,2. Moreover, there exists F ∈ U such that Fn1,1,1,2,2 = w2, and then Uw2 = Un1,1,1,2,2 ≃ L(µ).
Let L′(λ) = M(λ)/Uw1 +Uw2, so dim L′(λ) = 72− 11 = 61 by Lemma 4.9, and B31 is a basis of L

′(λ).
As in previous cases, L′(λ) is simple.

4.22. The family I32

Recall that I32 = {λ ∈ Ŵ̂ | λ1 = ζ 10, λ2 = −1}.

Lemma 4.23. If λ ∈ I32, then dim L(λ) = 61. A basis of L(λ) is given by

B32 = B′
31 −

(
{na,b,1,d,2 | a, b ∈ I0,1, d ∈ I1,2} ∪ {n0,0,1,0,2, n1,0,1,0,2, n1,0,0,2,2}

)
.

Proof. Let w1 = F2E2E
2
12vλ. By Remark 3.17, Fiw1 = 0, i ∈ I2. Let M

′ = M(λ)/Uw1, so B′
31 is a basis

of M′. Moreover u = n1,1,1,2,2 ∈ V10α1+6α2 satis�es that E1u = E2u = 0, g1σ1u = u, g2σ2u = ζ 8u, so
(Uw)ϕ ։ L(ν), ν ∈ I12. Also Uu is a proper submodule. Set L′(λ) = M(λ)/Uw1 + Uu. By Lemma 4.3,

61 = dim L(λ) ≤ dim L′(λ) = dimW − dimUw ≤ dimW − dim L(ν) = 61,

so L(λ) = L′(λ) and Uw ≃ L(ν)ϕ . In particular w2 := F2F11212F112u 6= 0, Fiw2 = 0 and Uw2 = Uu.
Moreover B32 is a basis of L(λ).

4.23. The family I33

Recall that I33 = {λ ∈ Ŵ̂ | λ1 = ζ 2, λ2 = −1}.

Lemma 4.24. If λ ∈ I33, then dim L(λ) = 71. A basis of L(λ) is given by

B33 = {ma,b,c,d,e | a, c, d ∈ I0,1, b, e ∈ I0,2} ∪ {m1,3,0,0,0} − {m0,0,1,0,0,m1,2,0,1,2}.

Proof. Let w1 = F21E
2
112E

2
1vλ. By Remark 3.8, F1w1 = F2w1 = 0. By a direct computation, Uw1 ≃ L(µ),

withµ ∈ I23, and B
′ = {ma,b,c,d,e | d 6= 2}∪{m0,0,0,2,2} is a basis ofW

′ = M(λ)/Uw1. NowUm0,0,0,2,2 =

km0,0,0,2,2 inW′, so B = {ma,b,c,d,e | d 6= 2} is a basis ofM′ = W′/km0,0,0,2,2.
Let w2 = F21F

2
112E11212E

2
112E

2
1vλ. By Remark 3.11, Fiw2 = 0, i ∈ I2, and Uw2 ։ L(µ), with µ ∈ I14,

and there existsE ∈ U such thatEw2 = m1,3,1,1,2.Moreover, there exists F ∈ U such that Fm1,3,1,1,2 = w2,
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and then Uw2 = Um1,3,1,1,2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Um0,0,0,2,2 + Uw2, so dim L′(λ) =

96 − 25 = 71 by Lemma 4.5, and B33 is a basis of L
′(λ). As in previous cases, L′(λ) is simple.

4.24. The family I34

Recall that I34 = {λ ∈ Ŵ̂ | λ1 = ζ 4, λ2 = ζ 3}.

Lemma 4.25. If λ ∈ I34, then dim L(λ) = 71. A basis of L(λ) is given by

B34 = {na,b,c,d,e|a, c, d ∈ I0,1, b, e ∈ I0,2} ∪ {n0,0,0,2,e | e ∈ I0,2}

−
(
{n0,0,1,0,e|e ∈ I0,2} ∪ {n0,1,1,1,0}

)
.

Proof. Let w1 = F2E
3
12E2vλ. By Remark 3.20, F1w1 = F2w1 = 0. By a direct computation, Uw1 ≃ L(µ),

with µ ∈ I36, and B′ = B′
35 ∪ {n1,3,0,0,0} is a basis ofW

′ = M(λ)/Uw1. Now Un1,3,0,0,0 = kn1,3,0,0,0 in
W′, so B′

35 is a basis ofM
′ = W′/kn1,3,0,0,0.

Let w2 = F21F
2
112E11212E

2
112E

2
1vλ. By Remark 3.11, Fiw2 = 0, i ∈ I2, and Uw2 ։ L(µ), with µ ∈ I37,

and there exists E ∈ U such that Ew2 = n1,2,1,2,2. Moreover, there exists F ∈ U such that Fn1,2,1,2,2 = w2,
and then Uw2 = Un1,2,1,2,2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Un1,2,1,2,2 + Uw2, so dim L′(λ) =

108 − 37 = 71 by Lemma 4.28, and B34 is a basis of L
′(λ). As in previous cases, L′(λ) is simple.

4.25. The family I35

Recall that I35 = {λ ∈ Ŵ̂ | λ1 = ζ 3, λ2 = ζ 4}.

Lemma 4.26. If λ ∈ I35, then dim L(λ) = 85. A basis of L(λ) is given by

B35 = B′
35 −

(
{n0,b,c,2,e|c ∈ I0,1, b, e ∈ I0,2} ∪ {n1,2,1,2,2, n1,0,0,2,2, n1,0,1,2,e|e ∈ I0,2}

)
where

B′
35 = {na,b,c,d,e | a, c ∈ I0,1, b, d, e ∈ I0,2}

Proof. Let w1 = F2E2E
3
12vλ, so Fiw1 = 0, i ∈ I2. LetM

′ = M(λ)/Uw1. Then B′
35 is a basis ofM

′. Notice
that w2 = F21E

2
112E

2
1vλ satis�es F1w2 = F2w2 = 0. Hence Uw2 ։ L(µ) for µ ∈ I44, and there exists

E ∈ U such that Ew2 = n1,2,1,2,2. Moreover, there exists F ∈ U such that Fn1,2,1,2,2 = w2, and then
Uw2 = Un1,2,1,2,2 ≃ L(µ). Let L′(λ) = M(λ)/Uw1 + Uw2, so dim L′(λ) = 108 − 23 = 85 by Lemma
4.35, and B35 is a basis of L

′(λ). As in previous cases, L′(λ) is simple.

4.26. The family I36

Recall that I36 = {λ ∈ Ŵ̂ | λ1 = ζ , λ2 = 1}.

Lemma 4.27. If λ ∈ I36, then dim L(λ) = 35. A basis of L(λ) is given by B36 =

{n0,b,0,d,e, n0,0,1,2,e, n0,0,1,0,e|b ∈ I0,3, d, e ∈ I0,2} − {n0,1,0,1,e, n0,2,0,2,e, n0,1,0,0,2|e ∈ I0,2}.

Proof. Let w1 = ñ1,0,0,0,0, w2 = E21E12vλ. Then W(λ) = Uw1 and F1w2 = F2w2 = 0. Set M′ =

M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) forµ ∈ I15, and there exists E ∈ U such that Ew2 = u.
Moreover, there exists F ∈ U such that Fu = w2, and thenUw2 = Uu ≃ L(µ). Let L′(λ) = M(λ)/Uw2+

W(λ), so dim L′(λ) = 72 − 37 = 35 by Lemma 4.6, and B36 is a basis of L
′(λ). As in previous cases,

L′(λ) is simple.



1794 N. ANDRUSKIEWITSCH ET AL.

4.27. The family I37

Recall that I37 = {λ ∈ Ŵ̂ | λ1 = ζ 2, λ2 = 1}.

Lemma 4.28. If λ ∈ I37, then dim L(λ) = 37. A basis of L(λ) is given by

B37 = {n0,b,0,d,e, n0,0,1,0,0, n0,3,1,0,e|b ∈ I0,3, d, e ∈ I0,2} − {n0,3,0,2,e|e ∈ I0,2}.

Proof. Let w1 = ñ1,0,0,0,0, w2 = ñ0,1,0,1,1 − ζ ñ0,2,0,0,2 − ζ 10(1 − ζ )2̃n0,0,1,0,1. Then W(λ) = Uw1 and
F1w2 = F2w2 = 0. Set M′ = M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) for µ ∈ I19, and
there exists E ∈ U such that Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, and then
Uw2 = Uu ≃ L(µ). Let L′(λ) = M(λ)/Uw2 + W(λ), so dim L′(λ) = 72 − 35 = 37 by Lemma 4.10,
and B37 is a basis of L

′(λ). As in previous cases, L′(λ) is simple.

4.28. The family I38

Recall that I38 = {λ ∈ Ŵ̂ | λ1 = ζ 3, λ2 = 1}.

Lemma 4.29. If λ ∈ I38, then dim L(λ) = 11. A basis of L(λ) is given by

B38 = {n0,b,c,0,e|b, c ∈ I0,1, e ∈ I0,2} − {n0,1,1,0,2}.

The action of Ei, Fi, i ∈ I2 is described in Table 5.

Proof. Let w1 = ñ1,0,0,0,0, w2 = F21E112E
2
1vλ. Then W(λ) = Uw1 and F1w2 = F2w2 = 0. Let L′(λ) =

M(λ)/Uw2 + W(λ). We label the elements of B38 as follows:

v0,0 = n0,0,0,0,0, v1,1 = n0,1,0,0,0, v3,2 = n0,0,1,0,0, v4,3 = n0,1,1,0,0,

v1,0 = n0,0,0,0,1, v2,1 = n0,1,0,0,1, v4,2 = n0,0,1,0,1, v5,3 = n0,1,1,0,1,

v2,0 = n0,0,0,0,2, v3,1 = n0,1,0,0,2, v5,2 = n0,0,1,0,2.

We check that the action of Ek, Fk on vi,j is given by Table 5 and L′(λ) is spanned by B38. Moreover there
exists F ∈ U− such that Fv5,3 = vλ, and for each pair (i, j) there is Ei,j ∈ U(5−i)α1+(3−j)α2 such that
Ei,jvi,j = v5,3. Thus L

′(λ) is simple.

Table 5. Simple modules for λ ∈ I38 .

w E1 · w E2 · w λ(g−1
1 )F1 · w λ(g−1

2 )F2 · w

v0,0 v1,0 0 0 0

v1,0 v2,0 ζ 7q21v1,1 (1 − ζ 3)v0,0 0

v2,0 0 ζ 8q221(1 + ζ 3)v2,1 ζ 7(1 + ζ )v1,0 0

v1,1 v2,1 0 0 (ζ 11 − 1)v1,0

v2,1 v3,1 0 q12ζ
8v1,1 (ζ 11 − 1)v2,0

v3,1 0 q221ζ v3,2 q12ζ
2v2,1 0

v3,2 v4,3 0 0 q21ζ
11(1 − ζ 3)v3,1

v4,2 v5,2 q221ζ
10v4,3 q212(ζ

11 − 1)v3,2 0

v5,2 0 q321(3)ζ v5,3 q212ζ
8(1 + ζ )v4,2 0

v4,3 v5,3 0 0 q221ζ
10(3)ζ 11v4,2

v5,3 0 0 q312ζ
8(1 + ζ 2)v4,3 q221ζ

10(3)ζ 11v5,2
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4.29. The family I39

Recall that I39 = {λ ∈ Ŵ̂ | λ1 = ζ 4, λ2 = 1}.

Lemma 4.30. If λ ∈ I39, then dim L(λ) = 61. A basis of L(λ) is given by

B39 = {n0,b,c,d,e|c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2}

−
(
{n0,3,c,2,e, n0,2,1,2,e|c ∈ I0,1, e ∈ I0,2} ∪ {n0,2,0,2,e | e ∈ I1,2}

)
.

Proof. Let w1 = ñ1,0,0,0,0, u = ñ0,3,1,2,2, w2 = F1F11212F
2
12u. ThenW2(λ) = Uw1.

LetM′ = M(λ)/W(λ), so E1u = E2u = 0 inM′, and (Uu)ϕ ։ L(ν) for some ν ∈ I38; thus w2 6= 0.
By direct computation, Fiw2 = 0, i ∈ I2, so Uw2 projects over a simple module L(µ), for µ ∈ I18. From
here, Uw2 ≃ L(µ).

Let L′(λ) = M(λ)/W1(λ) + Uw2. Then dim L′(λ) = 61 by Lemma 4.9, and B39 is a basis of L
′(λ).

There exists F such that Fu = vλ, and L′(λ) is simple.

4.30. The family I40

Recall that I40 = {λ ∈ Ŵ̂ | λ1 = ζ 5, λ2 = 1}.

Lemma 4.31. If λ ∈ I40, then dim L(λ) = 35. A basis of L(λ) is given by

B40 = {n0,b,c,0,e|c ∈ I0,1, b ∈ I0,3, e ∈ I0,2} ∪ {n0,b,c,1,e | c ∈ I0,1, b ∈ I0,1, e ∈ I0,2}

∪ {n0,3,0,2,e | e ∈ I0,1} − {n0,3,1,0,e|e ∈ I0,2}.

Proof. Let w1 = ñ1,0,0,0,0, w2 = F21E
2
112E

2
1vλ. Then W(λ) = Uw1 and F1w2 = F2w2 = 0. Set M′ =

M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) forµ ∈ I25, and there exists E ∈ U such that Ew2 = u.
Moreover, there exists F ∈ U such that Fu = w2, and thenUw2 = Uu ≃ L(µ). Let L′(λ) = M(λ)/Uw2+

W(λ), so dim L′(λ) = 72 − 37 = 35 by Lemma 4.16, and B40 is a basis of L
′(λ). As in previous cases,

L′(λ) is simple.

4.31. The family I41

Recall that I41 = {λ ∈ Ŵ̂ | λ1 = −1, λ2 = 1}.

Lemma 4.32. If λ ∈ I41, then dim L(λ) = 37. A basis of L(λ) is given by

B41 = {n0,b,c,d,0|c ∈ I0,1, b, d ∈ I0,2} ∪ {n0,b,c,d,e|c, b ∈ I0,1, d ∈ I0,2, e ∈ I1,2}

− {n0,1,c,d,2, n0,0,1,2,2|c ∈ I0,1d ∈ I1,2}.

Proof. Let w1 = ñ1,0,0,0,0, w2 = F21F
2
112E11212E

2
112E

2
1vλ. Then W(λ) = Uw1 and F1w2 = F2w2 = 0.

Set M′ = M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) for µ ∈ I27, and there exists E ∈ U such
that Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, and then Uw2 = Uu ≃ L(µ). Let
L′(λ) = M(λ)/Uw2 + W(λ), so dim L′(λ) = 72 − 35 = 37 by Lemma 4.18, and B41 is a basis of L

′(λ).
As in previous cases, L′(λ) is simple.

4.32. The family I42

Recall that I42 = {λ ∈ Ŵ̂ | λ1 = ζ 7, λ2 = 1}.
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Lemma 4.33. If λ ∈ I42, then dim L(λ) = 71. A basis of L(λ) is given by

B42 = {n0,b,c,d,e|c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2, (b, c, d, e) 6= (3, 1, 2, 2)}.

Proof. Let w1 = ñ1,0,0,0,0, w2 = ñ0,3,1,2,2. ThenW(λ) = Uw1 and F1w2 = F2w2 = E1w2 = E2w2 = 0,
so Uw2 ≃ L(µ) for µ ∈ I47. Let L

′(λ) = M(λ)/W(λ) + Uw2, so B42 is a basis of L
′(λ). There exists

F ∈ U− such that Fn0,3,1,2,1 = vλ. If n0,b,c,d,e ∈ B42, then E1−e
1 E2−d

112 E
1−c
11212E

3−b
12 n0,b,c,d,e ∈ k×n0,3,1,2,1, so

L′(λ) is simple.

4.33. The family I43

Recall that I43 = {λ ∈ Ŵ̂ | λ1 = ζ 8, λ2 = 1}.

Lemma 4.34. If λ ∈ I43, then dim L(λ) = 25. A basis of L(λ) is given by

B43 = {n0,b,c,d,e|c, e ∈ I0,1, b ∈ I0,3, d ∈ I0,2} −
(
{n0,2,1,2,0}

∪ {n0,b,c,d,1|c ∈ I0,1, b ∈ I1,3, d ∈ I0,2} ∪ {n0,3,c,d,0|c ∈ I0,1, d ∈ I1,2}
)
.

Proof. Let w1 = ñ1,0,0,0,0, w2 = E21vλ. Then W(λ) = Uw1 and F1w2 = F2w2 = 0. Set M′ =

M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) for µ ∈ I17, and there exists E ∈ U such that
Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, and then Uw2 = Uu ≃ L(µ). Let
L′(λ) = M(λ)/Uw2 + W(λ), so dim L′(λ) = 72 − 47 = 25 by Lemma 4.8, and B43 is a basis of
L′(λ). As in previous cases, L′(λ) is simple.

4.34. The family I44

Recall that I44 = {λ ∈ Ŵ̂ | λ1 = ζ 9, λ2 = 1}.

Lemma 4.35. If λ ∈ I44, then dim L(λ) = 23. A basis of L(λ) is given by

B44 = {n0,b,0,d,e|b ∈ I0,3, d ∈ I0,2, e ∈ I0,1} ∪ {n0,0,0,0,2} − {n0,3,0,1,1, n0,3,0,2,1}.

Proof. Let w1 = ñ1,0,0,0,0, w2 = ζ 4̃n0,0,0,1,1 + ñ0,1,0,0,2. Then W(λ) = Uw1 and F1w2 = F2w2 = 0.
Set M′ = M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) for µ ∈ I22, and there exists E ∈ U such
that Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, and then Uw2 = Uu ≃ L(µ). Let
L′(λ) = M(λ)/Uw2 + W(λ), so dim L′(λ) = 72 − 49 = 23 by Lemma 4.13, and B44 is a basis of L

′(λ).
As in previous cases, L′(λ) is simple.

4.35. The family I45

Recall that I45 = {λ ∈ Ŵ̂ | λ1 = ζ 10, λ2 = 1}.

Lemma 4.36. If λ ∈ I45, then dim L(λ) = 49. A basis of L(λ) is given by

B45 = {n0,b,c,d,e|c ∈ I0,1, b ∈ I0,3, d, e ∈ I0,2}

−
(
{n0,b,c,2,e|c ∈ I0,1, b ∈ I1,3, e ∈ I0,2} ∪ {n0,0,1,2,e|e ∈ I0,2} ∪ {n0,0,1,0,2, n0,3,1,1,2}

)
.

Proof. Let w1 = ñ1,0,0,0,0, w2 = n0,1,0,1,2 − ζ 11(3)ζ 7n0,0,1,0,2. ThenW(λ) = Uw1 and F1w2 = F2w2 = 0.
Set M′ = M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) for µ ∈ I13, and there exists E ∈ U such
that Ew2 = u. Moreover, there exists F ∈ U such that Fu = w2, and then Uw2 = Uu ≃ L(µ). Let
L′(λ) = M(λ)/Uw2 + W(λ), so dim L′(λ) = 72 − 23 = 49 by Lemma 4.4, and B45 is a basis of L

′(λ).
As in previous cases, L′(λ) is simple.
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4.36. The family I46

Recall that I46 = {λ ∈ Ŵ̂ | λ1 = ζ 11, λ2 = 1}.

Lemma 4.37. If λ ∈ I46, then dim L(λ) = 47. A basis of L(λ) is

B46 = {n0,b,c,d,e, |c, d ∈ I0,1, b ∈ I0,3, e ∈ I0,2} ∪ {n0,1,0,2,0, n0,3,1,2,0}

−{n0,1,1,0,2, n0,3,0,0,1, n0,1,1,0,1}.

Proof. Let w1 = ñ1,0,0,0,0, w2 = F21E
2
112E

2
1vλ. Then W(λ) = Uw1 and F1w2 = F2w2 = 0. Set M′ =

M(λ)/W2(λ), u = ñ0,3,1,2,2. Hence Uw2 ։ L(µ) forµ ∈ I26, and there exists E ∈ U such that Ew2 = u.
Moreover, there exists F ∈ U such that Fu = w2, and thenUw2 = Uu ≃ L(µ). Let L′(λ) = M(λ)/Uw2+

W(λ), so dim L′(λ) = 72 − 25 = 47 by Lemma 4.17, and B46 is a basis of L
′(λ). As in previous cases,

L′(λ) is simple.

4.37. The family I47

Recall that I47 = {λ ∈ Ŵ̂ | λ1 = 1, λ2 = 1}.

Lemma 4.38. If λ ∈ I47, then dim L(λ) = 1 and Eivλ = 0, Fivλ = 0, gσvλ = λ(gσ)vλ.

Proof. LetN′(λ) = W(λ)+W1(λ). By a direct computation,N′(λ) =
∑

β 6=0M(λ)β = N(λ). Therefore

L′(λ) = M(λ)/N′(λ) is one-dimensional and simple.

Example 4.39. Take 3 = Z12 = 〈g2〉, g1 = g82 and σ1, σ2 ∈ 3̂ such that

σ1(g2) = ζ 11, σ2(g2) = −1; hence σ1(g1) = ζ 4, σ2(g1) = 1. (21)

Applying the Main Theorem, we see that there is one simple module of dimension one and exactly #
di�erent isoclasses of a given dimension as in Table 6:

Table 6. Quantity of simple modules of dimension> 1.

# dimension # dimension # dimension # dimension

67 144 7 108 10 96 2 85
6 72 4 71 4 61 2 49
10 48 4 47 6 37 7 36
4 35 4 25 2 23 4 11

Note that I6 and I10 are empty.
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