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ABSTRACT 

In many disease-related and functional amyloids, the amyloid-forming regions of proteins are 

flanked by globular domains. When located in close vicinity of the amyloid regions along the 

chain, the globular domains can prevent the formation of amyloids because of the steric 

repulsion. Experimental tests of this effect are few in number and non-systematic, and their 

interpretation is hampered by polymorphism of amyloid structures. In this situation, modelling 

approaches that use such a clear-cut criterion as the steric tension can give us highly 

trustworthy results. In this work, we evaluated this steric effect by using molecular modelling and 

dynamics. As an example, we tested hybrid proteins containing an amyloid-forming fragment of 

A peptide (17-42) linked to one or two globular domains of GFP. Searching for the shortest 

possible linker we constructed models with pseudo-helical arrangements of the densely packed 

GFPs around the A amyloid core. The molecular modelling showed that linkers of 7 and more 

residues allow fibrillogenesis of the A-peptide flanked by GFP on one side and 18 and more 

residues when A-peptide is flanked by GFPs on both sides. Furthermore, we were able to 

establish a more general relationship between the size of the globular domains and the length of 

the linkers by using analytical expressions and rigid body simulations. Our results will find use in 

planning and interpretation of experiments, improvement of the prediction of amyloidogenic 

regions in proteins, and design of new functional amyloids carrying globular domains. 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

3 
 

INTRODUCTION 

Amyloid fibrils are linked to a broad range of human diseases [1]. In the last decade, a growing 

body of evidence demonstrated that in some organisms amyloid structures could also play 

important “beneficial” functional roles [2–7]. Typically, the amyloid fibrils consist of multiple 

copies of the same protein. In most cases, the amyloidogenic regions (ARs) have two structural 

states: (i) an unfolded conformation before the aggregation and (ii) cross- conformation after 

the fibril-formation. The majority of disease-related and naturally occurring functional amyloids 

have a structure with -strands that are stacked one over the other in a parallel and in-register 

manner [8–12].  

Usually, the size of the ARs does not exceed 100 residues [13] while over 90% of proteins are 

longer than 100 residues (UniProt Release 2017_03). Thus, in the majority of cases, the ARs 

coexist with the other sequence motifs including intrinsically unstructured regions and structured 

domains (Fig. 1). Among the examples of proteins containing both ARs and globular structures 

are Sup35, Ure2p, RIP1/RIP3, Prp, huntingtin, Het-s proteins, Pmel-17, TAR DNA-binding 

protein [6,14–21]. In some cases, for example, in -synuclein and A peptide, the ARs are 

flanked only by unstructured regions [22,23].  It is apparent that flanking regions of ARs can 

affect the formation and the stability of cross- amyloid. For example, the effect of domains 

flanking the polyglutamine tract on structure and toxicity of huntingtin was described in several 

papers [21,24]. However, despite considerable interest and importance of this issue, the 

interplay between these regions remains poorly understood.  

In general, we can consider five major situations in AR-containing proteins (Fig. 1).  (1) The 

amyloidogenic region (AR) completely covers the sequence of a protein (Fig. 1a). (2) If an AR 

has very long unfolded flanking regions (Fig. 1b), their motion should slow down the 

amyloidogenesis due to the increase of the entropic barrier [25]. (3) The similar decelerating 
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effect is expected for proteins with ARs that are linked to globular structures by long unfolded 

region (Fig. 1c). (4) If the structures flanking AR tend to interact with each other, this can 

facilitate the amyloidogenesis (Fig. 1d). (5) Finally, in proteins with a very short linker between 

AR and globular domain, the steric repulsion of the globular structures can prevent formation 

the amyloid fibrils (Fig. 1e).  It is especially true for the cross- structures of amyloid fibrils with 

the parallel and in-register arrangements of -strands. It is important to keep in mind that ARs 

can be located not only in the intrinsically unstructured regions but also can be hidden within the 

natively folded structures. In the latter case, the ARs can be exposed to the solvent and form 

cross- amyloids because of the destabilized effect of amino acid mutations or external 

conditions [26,27]. The remaining part of the native structure can be either unfolded, 

corresponding to the situation in Fig. 1b, or continue to form the stable structure fitting one of 

the cases shown in Fig. 1c, d, e.  

In this work, we focused on the analysis of the steric repulsion of the globular structures which 

can prevent the formation of the parallel and in-register cross- amyloid fibrils (Fig. 1e). The 

experimental examination of these effects is hampered by high polymorphism of amyloid 

structures formed by the AR with the same amino acid sequence depending on the conditions 

[4,28–31]. A majority of the studied disease-related and functional amyloid fibrils have a 

recurring “-arcade” structure produced by stacking of -strand--arc--strand elements called 

‘-arches’ (reviewed in [8]). In a -arch two -strands interact via their side chains, not via H-

bonds of the polypeptide backbone as in a conventional -hairpin. The parallel and in-register 

cross- amyloid fibrils can have either a single -arcade or an arrangement with several 

adjacent -arcades [8,11–13,23].  The polymorphism brings uncertainty in our knowledge about 

the beginning and end of the AR and linker in a given experiment. In this situation, theoretical 

modelling approaches are becoming essential to analyze the steric effects, because in the 

models one can stipulate and fix the boundaries of the AR, linker and globular domain. Correct 
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theoretical estimation of the attraction between globular domains or the entropic effect of the 

flanking regions is a difficult task, but the steric tension is so clear-cut that the modelling 

approaches can give us highly trustworthy results. Earlier, we brought attention to the steric 

effect of the globular domains on amyloidogenesis [32]. Though this phenomenon would 

intuitively seem to be apparent, the exact relationship between the size of the globular domain, 

the length of the linker between this globular structure and ARs, which would allow 

fibrillogenesis, are unknown. As a result of this ignorance, some experimental results may be 

misinterpreted. Furthermore, the knowledge of constraints on amyloid formation imposed by the 

steric exclusion of globular domains must be used in combination with the methods for the 

prediction of ARs based on their amino acid sequences. Indeed, if the predicted AR is located in 

close vicinity of the globular domain, it is not clear whether this region will assemble or not in 

reality. Thus, the goal of this work was to evaluate the steric effect of the neighboring globular 

structures on amyloid formation by using molecular modelling, dynamics, and mesoscopic rigid 

body models. 

 

RESULTS AND DISCUSSION 

Choice of a model  

To demonstrate the constraints on amyloid formation imposed by steric exclusion of globular 

domains we used a hybrid protein containing an amyloid-forming A(17-42) peptide and 

Aequorea Green Fluorescent Protein (GFP) as a globular domain (Fig. 2). The choice of A 

peptide is explained by the fact that this is one of the most studied amyloid-forming peptides 

with well-established 3D structures of the amyloid fibrils. Depending on the conditions, this 

peptide forms different structures consisting of stacks of -arches [23] or the other -arc-

containing blocks [12,33–35]. For our structural model, we selected one of these structures 
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consisting of A(17-42) -arches [23]. As concerns the globular structure, the GFP domain is 

the most frequently fused to different amyloid-forming or aggregating fragments. For example, 

Waldo and colleagues showed that in several hybrid proteins folding of GFP is sensitive to the 

aggregation of the fused proteins [36]. Wurth and colleagues have studied aggregation of 

mutated variants of A42-peptide fused with GFP [37]. Fox and colleagues have used the 

similar approach to study the amyloid formation of amylin (also known as islet amyloid 

polypeptide) [38]. Recently, GFP molecule has also been used as a reporting protein in fusion 

constructs with A peptides for visualizing A oligomers in vivo [39]. However, in these and 

other studies [40–43], the impact of linker length on oligomerization or fibril formation was not 

evaluated. Although some GFPs have a weak dimerization tendency, if necessary, monomeric 

GFPs can be easily obtained by the dimer interface breaking mutations [44]. In addition, GFP 

represents a good choice to extend the conclusions on the other types of globular domains, 

because GFP with its 238 residues is close to the average size of the globular domain (190 

residues in MODBASE) [45]. 

In our model, the linker between these domains contains repetitive sequence of small amino-

acids (Ser-Ser-Pro)n which has a potential of flexible and intrinsically unfolded conformation. Ser 

residue is hydrophilic and flexible, and Pro residue lacks amide hydrogen preventing the 

formation of the secondary structures, leading to unfolded conformations. The analysis of the 

3D structure of GFP showed that the first residue (Ser) does not have any internal structural 

constraints and, therefore, this residue of GFP was assigned to the flexible linker (Fig. 2a).  

In general, the cross- amyloid fibrils can vary in the number of protofibrils [8,46,47]. Here, the 

term “protofibril” is used for a structurally independent fibrillar entity that usually consists of one 

peptide (or protein) per increment.  It is important to mention that the known amyloid domains 

fused with globular domains form single-protofibrils  because the subsequent association of the 

protofibrils is inhibited by these globular domains surrounding the protofibril [29]. Therefore, in 
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our model, the A(17-42) fragments fused with GFP form a  structure with a single-protofibril. In 

this amyloid structure, each polypeptide chain is folded into -arches and stacked in a parallel 

and in-register manner to form a -arcade (see Methods). 

 

Establishment of the minimal length of the linker that allows the formation of A(17-42)-linker-

GFP amyloid fibrils  

To find the shortest possible linker for the infinite amyloid fibrils of A(17-42)-linker-GFP 

molecule we used the following consideration. The shorter is the linker the closer is the packing 

of GFPs around the core of the fibril. In this case, the densest packing of GFPs can be achieved 

by a regular pseudo-helical arrangement of the GFP domains. Furthermore, the size of the GFP 

protein and the location of its N-termini allowed us to determine the optimal orientation and 

position of the GFP (Fig. 2) relative to the cross- structure of the amyloid core. This fact, in 

turn, made possible to determine the number of GFPs in the repetitive unit, which, by translation 

along the fibril axis can generate infinite fibril. For a diameter of about 30 Å for the -barrel of 

GFP, this repetitive unit should contain ~30 Å /4.8 Å = 6 monomers, where 4.8 Å corresponds to 

the monomer axial rise (Fig. 2b). 

In the axial projection, these six GFPs and the core of the fibril should wind around an axis 

crossing the last residue of the amyloidogenic region (residue 42 of the A-fragment) (Fig. 2c). 

The globular structures form a helical arrangement with the monomer axial rise of 4.8 Å and the 

angle of rotation equal to about  51° (360°/(6 GFPs + A core). Following this arrangement, the 

repetitive unit of 6 monomers was constructed by molecular modelling and manual adjustment 

to avoid strong overlaps of the monomers. Then, this hexamer unit was multiplied along the fibril 

axis with a translation step of 28.8 Å, i.e. 6 x 4.8 Å, to generate an infinite fiber. Having obtained 
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this structure, we can generate the corresponding atomic model for the shortest possible linker 

connecting residues 42 of A to the first residue of the corresponding GFP.  

It is known that the amyloid/prion protofibrils usually have a slight left-handed twist [29,48]. This 

axial twist per 4.8-Å step of the stack is the same for a given fibril and range from about 0.5° to 

4° in different fibrils. Therefore, we also constructed these hybrid amyloid fibrils with the twist 

angle at the mean value of 2° (Fig. 2d) using a procedure described in Methods section. The 

analysis of both flat and twisted fibrils led to the conclusion that the twist does not affect the 

results and the shortest possible linker of infinite A-GFP fibril has 7 residues.  Obviously, in 

reality, the number of residues in the shortest possible linker may be slightly bigger due to the 

imperfection of the GFP packing within the cylinder and larger dimensions of the GFP domain 

due to the ordered shell of water around the protein structures.  

Our conclusions about the GFP-containing fibrils can be extended to a big number of the other 

globular structures as the size and shape of GFP structures represents the most typical case 

[45]. However, it is still desirable to be able to establish the relationship between the length of 

the linkers and the size/shape of any globular domains. The molecular modelling is not 

appropriate in this general case as it requires an insurmountable amount of work. In the next 

sections, we will first overview situations with possible different sizes of the globular structures 

then we will describe mesoscopic rigid body simulation procedure that can provide a rapid and 

reliable estimation of constraints on amyloid formation imposed by any type of the globular 

structures.  

 

Extension of the conclusions to a general case by using analytical representation  

Simplification of the model may allow extending our conclusions to molecules having globular 

structures of any sizes. For example, the globular structures can be approximated by spheres, 
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spheroids or ellipsoids. In the fibril formed by an AR with a linker and globular structure on one 

side, the spheres having minimal linkers form densely packed pseudo-helical arrangement. The 

number of the spheres (n) in one coil of this pseudo-helical arrangement can be calculated as 

n=d/4.8, where d is a diameter of the sphere in Å and 4.8 Å corresponding to the monomer axial 

rise (Fig. 3). The amyloid core can be represented by axially stacked rectangular 

parallelepipeds. Considering the A(17-42) amyloid core with dimensions 22 Å x 40 Å x 4.8 Å 

depending on the diameter of the spheres we can distinguish 3 cases. First, when the diameter 

of the spheres is less than 40 Å, the core of the amyloid fibril will be a part of the cylinder formed 

by the circular arrangement of congruent spheres (Fig. 3). In this case, the length of the minimal 

liker (L) can be expressed by the equation: L=(d×n+W)/2-d/2, where d×n+W  is a 

circumference of the circle passing through the centers of the congruent spheres, and W is the 

width of the amyloid core (Fig. 3). It is, for example, the case for the GFP with about 30 Å in 

diameter. The graph in Figure 3 has W = 22 Å, as in the amyloid core of the A(17-42)-linker-

GFP molecule. To obtain the number of amino acid residues in the linker, we divide L to 3.15 Å 

that corresponds to the average length per residue of the unfolded polypeptide chain. It was 

interesting to compare the linker lengths obtained from our molecular modelling for the A(17-

42)-linker-GFP molecule with the ones derived from the previous analytical expression. The 

modelling proposes 7 residues in the minimal linker while the calculated number is 6 residues. 

The difference can be explained by the fact that the modelled linkers cannot adopt any 

extended conformation due to the covalent and steric limitations in the polypeptide chain. The 

difference in the shape of the real GFP domain and its spherical approximation may also be an 

origin of some discrepancy.  

Second, if the diameter of the spheres is over 40 Å, the number of the densely-packed spheres 

in the cylinder coil increases to 8 or more and, at the minimal linkers, the cross- core of the 

amyloid can completely enter the space inside of the cylinder of the densely-packed spheres 
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(Fig. 3). In this situation, the width of the amyloid core (W) disappears from the equation and 

this leads to a formula L=d×n/2-d/2. Finally, when the diameter of the spheres is more than 60 

Å, some spheres can enter in the linker space inside of the cylinder, and this makes the 

situation with the analytical estimations of the packing more complicated (Fig. 3). In the next 

section, we will describe an approach to mesoscopic modelling that can be used in this case.  

 

Rigid body simulation by using Low Poly 3D models 

The atomic resolution modelling can provide the most reliable answer on the relationship 

between the size of the globular domains and the length of the minimal linkers in the amyloid 

fibrils (see previous sections). However, this approach is time and resource consuming. The 

analytical expression derived in the previous section can give a general estimate about the 

situation with globules of different sizes. However, this estimation is approximate and needs to 

be verified by the other approaches. In this section, we analyzed several examples of amyloid 

fibrils with the globules by rigid body simulation using Low Poly 3D models implemented in 

Blender package (www.blender.org).  

The amyloid core A(17-42) was approximated by axially stacked and left-hand twisted (2°) 

rectangular parallelepipeds with dimensions of 22 x 40 x 4.8 units (Fig. 4). In the hybrid proteins 

containing A(17-42)-linker-globular domain, the linker was built of the chain of small spheres, 

and the globular structure was represented as a bigger sphere. In different tested models the 

diameter of the globular domain was either 30, 40, 50 or 60 units (for details see Methods and 

https://ab-linker-globula.github.io/). The modelling showed that the minimal linker for the 

globule-sphere of 30 units is 8 residues, for 40 units is 12, for 50 units is 16 and for 60 units is 

21 residues. The established minimal linkers for the analyzed models were mapped on the 

graph with the analytical dependencies (Fig. 3). The relationship between the diameters of the 
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spheres and the linker lengths is almost linear. In general, the comparison demonstrated a good 

fit with the results obtained by the other approaches. At the same time, the linkers for the 

smaller globular structures of 30 and 40 Å that were obtained by the rigid body simulations is 

slightly longer (8 and 12 residues) than the ones deduced from molecular modelling of GFPs (7 

residues) and analytic expressions (6 and 11 residues). The visual analysis of the fibrils 

generated by Blender showed that the globular structures are not packed in a perfectly regular 

manner (Fig. 4c). This observation suggests that with the short linkers allowing only one layer of 

globular domains around the protofibril, we do not reach the optimal packing due to the limited 

space, probably leading to the “kinetic traps”.  Importantly, for the larger globular domains (50 

and 60 Å), the one layer analytical estimations are not appropriate anymore. In these cases, the 

packed globular structures are located at different distances from the protofibril (Fig. 3). For 

these molecules, the mesoscopic modelling is becoming the only suitable approach to evaluate 

the packing and the minimal linkers. Thus, the mesoscopic modelling demonstrates its efficiency 

to rapidly get a reasonable estimation of the structure of amyloid fibrils with globular domains of 

different size and shapes.  

 

Establishment of the minimal linkers that allows the formation of GFP-linker-A(17-42)-linker-

GFP amyloid fibrils  

In the previous sections, we analyzed molecules with the AR flanked by a single C-terminal 

globular domain. A similar relationship between the linkers and the size of the globules is 

expected for the globular domains connected N-terminally to the amyloid region. At the same 

time, the ARs can be located between two globular domains of a protein. By using a molecular 

modelling approach, we analyzed the A(17-42) fragment containing two flanking GFP domains 

at both sides. There are two distinct cases for this type of hybrid molecules: (1) one linker is 
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significantly longer than another one, (2) two linkers are of a similar length.  

Our modelling showed that in the first case the length of the minimal shorter linker did not 

change much in comparison with the molecule having GFP on one side (see the previous 

section). The GFPs with the long linker are located far apart from the fibril and its closely packed 

GFPs with the minimal linker. The only difference is that the longer linkers go throughout the 

pores within these packed GFPs and slightly increase the density of the packing (Fig. 5a). 

Modelling showed that the more dense packing might lead to a one-residue increase of the 

minimal short linker (from 7 to 8 residues). The minimal length of the long linker (for example, at 

the N-terminus of A) is determined by the steric clash between the N- and C-terminal GFPs, 

not between the N-terminal GFPs. The minimal long linker can be established by reducing it 

until the N-terminal GFPs start to clash with the layer of the C-terminal GFPs (Fig. 5a). The 

modelling showed that the minimal long linker is 24 residues, taking into account residues 

between the C-atom of the C-terminal GFP residue and the C-atom of A residue 17 in the 

amyloid core.  

In the second case, when two linkers are of a similar length, the GFPs from both the C-termini 

and the N-termini will be located at more or less the same distance from the center of the fibril 

(Fig. 5b) and as a result, they may interact with each other side by side. Therefore, at the 

minimal lengths of the linkers, all GFPs together will be densely packed around the amyloid 

core. The modelling showed that the free space between the core and the GFP-wall is not large 

enough to accommodate at least one GFP. It means that all GFPs must be located within the 

closely packed layer (Fig. 5b). The minimal length of the linkers for this GFP-linker-A(17-42)-

linker-GFP molecule is 18 residues.  

Our modelling also revealed that there are a number of the intermediate GFP packings between 

two described cases when the shorter linker is more than 8 residues and less than 18 residues. 
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These cases require additional investigations. Our rough estimation proposes that the sum of 

two linkers in a given GFP-linker-A(17-42)-linker-GFP molecule should be more than 34 

residues. This conclusion can be further verified by the rigid-body simulation implemented in 

Blender.  

 

CONCLUSIONS 

In this work, we demonstrated the importance of the steric effects imposed by the globular 

structures located near ARs on the fibrillogenesis. In particular, we tested hybrid proteins 

containing an amyloid-forming A(17-42) fragment linked to one or two globular domains of 

GFP and found that linkers of 7 and more residues allow fibrillogenesis of the A-peptide 

flanked by GFP on one side and 18 and more residues when A-peptide is flanked by GFPs on 

both sides. Furthermore, we were able to establish a more general relationship between the 

size of the globular domains and the length of the linkers by using analytical expressions and 

mesoscopic protein modelling. In reality, the established values can be slightly bigger due to, for 

example, the presence of the ordered layers of water around the proteins that increase the 

effective volumes of the structures. Our modelling also showed that in the fibrils with the minimal 

linkers the globules are packed so densely that can protect the linkers from the intermolecular 

interaction including the interaction with proteases.   

These results have a number of applications. In particular, they can improve the understanding 

of the factors that enable a protein to form amyloids. When an AR, which is predicted based on 

its amino acid sequence, is located in close vicinity from the globular domain, it is not clear 

whether this AR will trigger assembly of the fibrils or not. Therefore, the constraints on amyloid 

formation imposed by the steric exclusion of globular domains must be used in combination with 

these prediction methods. Our study also points out on a possible mechanism of the control of 
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the amyloid formation by the programmed cleavage of the globular domains located in close 

vicinity of the ARs. We expect that this mechanism can be used to regulate the formation of 

functional amyloids.  The other application of the established constraints is in the design of new 

functional amyloids not yet produced by natural evolution with applications in 

nanobiotechnology, material science, and synthetic biology. Finally, this knowledge will be used 

in the structural interpretation of the experimental results and planning of the experiments.  Due 

to the high polymorphism of the amyloid fibrils, the experimental test of this effect is hampered, 

however, with the structural insight provided here, it is possible, now, to design future 

experimental studies refining our theoretical estimations.  

The other result of this work is development and comparison of different theoretical approaches 

allowing the determination of the relationship between the structure of the amyloid core, the 

length of the linkers and the size of the globular domain.  Our analysis showed that the amyloid 

fibrils with large (over 50 Å) globular domains (Fig. 3) could be exclusively tested by the 

mesoscopic modelling. The rigid body approximation can also be used to examine the steric 

exclusion of globular domains in the fibrils formed by proteins with two globular domains on both 

sides of the amyloidogenic region. Previously, Blender software package has been successfully 

used in BioBlender project [49]. In future, we will improve this approach by taking into 

consideration more exact shapes of the protofibrils and globular domains using the atomic 

coordinates of the structures in a module “Atomic Blender”. It will also allow us to analyze all 

known fibril polymorphs of a given AR. In addition to the shapes, the amyloid fibrils can have 

different structural arrangements. Here we considered the most common parallel and in-register 

arrangement of naturally occurring amyloids, but in some amyloids, the monomers can be also 

packed in an anti-parallel manner [50], or via -solenoidal structures [51,52]. Some amyloid 

fibrils are formed by the co-aggregation of two different proteins [6]. The structures of the 

amyloid core can consist of stacks of -arches, -serpentines or the other -arc-containing 
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structures [8,11–13,23]. All these arrangements can be analyzed and compared by the 

mesoscopic modelling and will be the subject of the next work. Finally, with this approach, we 

envisage the creation of the web-based tool that could analyze the user-defined structure of the 

amyloid, connected globular domain(s) and the length of the linker.  

 

 

MATERIALS  AND  METHODS 

Molecular modelling of fibril with a pseudo-helical packing of GFPs  

We used the 3D structure of  A(17-42) amyloid fibril determined by solid-state NMR 

spectroscopy (model 1 of PDB entry 2BEG) [23] as a template for the amyloid core fibril. Two 

types of the core fibril were built: untwisted and left-hand twisted. The untwisted fibril was 

created by positioning stacks of three successive chains B, C and D of 2BEG model with a 

mean translation of 14.4 Å (3x4.8 Å) along the Z-axis. The axial 4.8 Å translation of monomers 

was chosen based on the analysis of several known crystal structures of -solenoids. The Z-

axis corresponds to main inertia axis of the fibril. The left-hand twisted fibril was built with 2° 

angle between the monomers. The twisting operator was imposed around a Z-axis located at 

the center of mass of the main-chain atoms from the two -strands of the A(17-42) fragment 

(residues 17 to 25 and 32 to 40).  A 180-mer fibril that corresponds to one complete helix turn 

(360°) was then built. The infinite fibril can be obtained by the translation along the Z-axis by the 

helical pitch of 864 Å.  

To build models of hybrid protein A(17-42)-linker-GFP we used the crystal structure of GFP 

from Aequorea victoria protein (pdb entry 1GFL) [53] and a linker with SPSSPSS sequence 

(Fig. 2a). To position the GFP structures around the amyloid core and evaluate their packing, 

we built a model of two successive hexameric layers of the subunits. The first GFP subunit was 
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manually docked on one side of the fibril stack while keeping the axis of the GFP -barrel 

perpendicular to the Z-axis. The five other subunits were positioned by applying the successive 

rotation of ~51° around an axis that intersects the X-Y plane at the C atom of residue 42 of the 

first monomer and their successive translations of 4.8 Å along the Z-axis (Fig. 2b). The rotation 

angle 51° and the distance between the C-atom of A residue 42 and the C-atom of the GFP 

N-terminus were chosen so that they provide the most optimal close packing of the GFP 

molecules within the hexamer (Fig. 2c). To evaluate the packing of GFP domains between the 

hexameric units, an adjacent hexameric layer was generated by a 28.8 Å translation along the 

Z-axis.  The 28.8 Å distance agrees well with the corresponding distance between the GFPs 

from Aequorea victoria in the crystal packing (pdb entry 1GFL) [53].  

The first hybrid and GFP-linker- A(17-42)-linker-GFP model with a short linker of the C-terminal 

GFP and a long linker of the N-terminal GFP was built using as a template the previously 

described A-linker-GFP fibril. The additional N-terminal GFP domains were symmetrically 

positioned around an axis crossing X, Y coordinates of the C-atom of residue 17 of A-

fragment. Then, the subunits were translated in the X-Y plane towards the fibril until they 

contacted the C-terminal GFPs using a similar docking protocol. The second hybrid GFP-linker- 

A-linker-GFP model containing two linkers of equivalent length was built using the same 

strategy.   In this case, the successive translation of GFP monomers along the Z-axis was 4.8/2 

Å. 

MOLEMAN [54] and CHIMERA [55] programs were used for the symmetrical positioning of 

GFPs and molecular modelling procedures. The linkers connecting A-peptides to GFPs were 

generated using MODLOOP [56,57].  

 

Molecular dynamics simulations of fibrils  
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The initial models were further fine-tuned using short all-atom molecular dynamics (MD) 

simulations. The large size of these systems was challenging for MD. Thus, we used an implicit 

solvent model combined with periodic boundary conditions. For the untwisted fibril, our periodic 

box contains a layer constituted of the hexamer occupying a rectangular cell of c=28.8 Å and 

a=b=250 Å. The c axis is parallel to the pseudo-helical (or segmented helical) symmetry axis. 

For the left-hand twisted model, the box dimension along c was 864 Å corresponding to the twist 

pitch. The MD simulations of the implicitly solvated proteins were performed using NAMD2 

program [58] with the CHARMM27 force field [59]. First, an energy minimization step was used 

to relax strained conformations of linkers and remove side-chain steric clashes created during 

GFP docking and linker building procedures. The temperature was maintained at 310°K using 

the Langevin thermostat with a damping coefficient 5ps-1. The van der Waals interactions were 

modeled with a Lennard-Jones potential using a smooth cutoff (switching distance of 14 Å and 

cutoff radius of 16 Å). The generalized Born implicit solvent (GBIS) method [60] was used with 

dielectric constants 80 for solvent and 1 for protein, and ion concentration at 0.3 M.l-1. The 

solvent molecular electrostatics was calculated by the Poisson-Boltzmann equation, which 

models water as a dielectric continuum. All the production runs were performed with 2 fs time 

step in conjunction with the SHAKE algorithm to constrain covalent bond lengths between heavy 

and hydrogen atoms [61]. Positional restraints (force constants of 1000 kcal/mol/Å2) were 

applied to the main chain atoms of the A(17-42) core domain during all simulations to 

guarantee that conformation of the A arches and the interlayers backbone hydrogen bonds 

were maintained along the fibril axis. The overall conformation of the GFP -barrel domain was 

preserved using harmonic restraints for dihedral angles of amino acid residues in -sheets or -

helices, as well as restraints for hydrogen bonds involving backbone atoms from the same 

residues (force constants of 50 kcal/mol/rad2 for backbone angles and 20 kcal/mol/Å2 for H-

bonds distances). Two independent short 2 ns simulations were performed on an Intel Xeon 
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cluster including a Tesla M2090 GPU card for the untwisted models. For the twisted models, the 

simulation ran for only 0.2 ns due to the large size of the system. Trajectory data from the 

simulations were recorded every 2 ps and analyzed in VMD [62]. The final snapshots from the 

simulations were subjected to an idealization step using REFMAC5 program [63] for fine 

refinement. The quality and consistency of the generated models were checked with the 

PROCHECK program [64]. The analysis of buried surface areas was done using the 

AREAIMOL [65] program in CCP4 package [66]. To analyze the structural quality of the twisted 

180-subunit models, a system of eighteen adjacent subunits was chosen. 

 

Rigid Body Simulation  

The Rigid Body Simulation by using the Low Poly 3d models of the amyloid fibrils formed by 

hybrid proteins A(17-42)-linker-globula was performed by using Blender software package [67]. 

The A(17-42) amyloid protofibril was represented as a stack of parallelepipeds having the size 

of 40x22x4.8 units (Fig. 4). In our case, 1 unit means 1 Å and the dimension of 4.8 corresponds 

to the axial stacking of the parallelepipeds. The neighboring parallelepipeds were twisted 2° 

relative to each other around the fibril axis that crosses the centers of the parallelepipeds. The 

linker was modeled as a chain of connected spheres with the diameter of 3.5 units that 

corresponds to the dimension of an amino acid residue along the polypeptide chain. The links 

between the spheres of linkers had constraints “Limit Distance” and “Connect Rigid Bodies” 

(type point). The globular protein structures were represented as spheres of bigger sizes. In 

different tested models their diameters were 30, 40, 50 or 60 units. All these objects were 

placed in Rigid Body World of Blender as “rigid bodies”. The following properties of collision 

between the objects were set up: Shape “Mesh”, Source “Final”, Friction 0.0, Bounciness 0.5, 

Collision margin 0.001.  
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The positions of the parallelepipeds were fixed, and all the other elements could move 

preserving their connections. We analyzed a large fragment of the fibril consisting of 100 

molecules. The estimations of the minimal number of spheres-residues in the linker with given 

size of the globular part were made as follows: at the beginning of the procedure all linkers were 

straight and protruded perpendicularly to the fibril axis in an equivalent manner (Fig. 4b). The 

globular parts had the diameter of 0.7 units. During the 5-second simulation, the diameters of 

the globular parts gradually grew up to the given size. As a result, the globular parts moved 

apart from each other to avoid the overlaps (Fig. 4c). The final structures were checked for the 

absence of intersections between the elements of models with Mesh Analysis tool of Blender. 
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FIGURE LEGENDS 

Fig. 1. General scheme of amyloid fibrils with different types of the flanking regions. The fiber 

axis is indicated by vertical thin arrow. (a) Stack of ARs (as boxes of green color) without 

flunking regions. (b) Stack of ARs with intrinsically disordered regions (as black lines). (c) Stack 

of ARs with globular domains that are displayed as spheres of brown color. (d) Stack of ARs 

with globular domains that interact with each other. (e) Situation when the stacking of ARs is 

hampered by the steric repulsion of globular domains. 

Fig. 2. Model of amyloid fibril formed by hybrid molecule A(17-42)-linker-GFP with minimal 

allowed linker and pseudo-helical packing of GFPs. (a) Sequence and 3D structure of A(17-

42)-linker-GFP monomer with A(17-42) peptide (PDB entry 2BEG) (in red), a linker 

(underlined) composed of SerProSerSerProSer sequence (in green) and one additional residue 

from the N-terminus of GFP, and GFP domain from Aequorea victoria (PDB entry 2Y0G) (in 

blue). (b) Lateral projection of the repetitive structural element of the fibril containing six A(17-

42)-linker-GFP molecules. For the sake of clarity, only two GFP domains (in green) are shown 

(1st and 7th). The fibril can be generated by the 28.8 Å translation of this hexameric element 

along the fibril axis. (c) Axial projection of the repetitive element. (d) Model of the fibril with 2° 

twist (A(17-42) is in blue and GFPs are in green). Image is generated by VMD software [62]. 
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Fig. 3. Dependences between the minimal length of the linker and the size of the globular 

domain obtained by analytical estimation (blue and red stepped lines), by molecular modelling 

of A(17-42)-linker-GFP fibrils (green circle) and by rigid body simulation (black rectangles).

Fig. 4. Models used in the rigid body simulation. An example with globular domain diameter of 

50 Å is shown. (a) Monomer. (b) Fibril before the simulation with extended linkers and small 

spheres of globular domains. (c) Fibril after the simulation. 

Fig. 5. Axial projection of molecular models of amyloid fibrils formed by GFP-linker-A(17-42)-

linker-GFP molecules.  (a)  Molecules with one linker significantly longer than another one. The 

minimal short linker has 8 residues, and the minimal length of the long linker (at the N-terminus 

of A) is 24 residues.  (b)  Two linkers are of a similar length. The minimal length of the linkers 

for this GFP-linker-A(17-42)-linker-GFP molecule is 18 residues. Images were generated by 

using PyMol software [68]. 
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Highlights 

We show the importance of steric effect of globular structures on amyloidogenesis. 

Amyloid-forming region and folded globular structure need to be separated by linker. 

We established the relationship between the sizes of globular structures and linkers. 

It was demonstrated by using different modelling approaches. 

Results can be used for molecular design of new functional amyloids. 
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