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INTRODUCTION
The Argentine Patagonian shelf in the 
southwest Atlantic is one of the most 
productive marine ecosystems in the 
Southern Hemisphere (Gregg et  al., 
2005). There, San Jorge Gulf (SJG; 
45°–47°S, 65°30'W), a shallow semi-open 
basin (~100 m deep), supports a large 
commercial fishing industry (Góngora 
et  al., 2012) and is an important breed-
ing area for marine mammals and sea-
birds (Yorio, 2009). Westerly winds 
(~35 km hr–1; Martin et al., 2016), scarce 
precipitation (229 mm yr–1), and no sig-
nificant river inputs characterize this 
region. Hydrographic properties show 
that waters in the gulf are a mixture of 
shelf waters (SW; salinity ranging from 
33.4 to 33.8) and low-salinity coastal 
waters (LSCW; salinity <33.4; Bianchi 
et al., 2005). Oceanographic models show 
a counterclockwise circulation with two 
intense gyres in the south and north 
extremes that are influenced by bottom 
topography (Tonini et  al., 2006; Matano 
and Palma, 2018, in this issue). Despite 
the SJG’s great economic and ecologi-
cal importance, the influence of physi-
co-chemical processes on its microbial 
ecology is still poorly understood.

The microbial food web contributes to 
ocean biogeochemical cycles by generat-
ing carbon consumed by upper trophic lev-
els or exported to the seafloor (Falkowski 
et al., 2004). The cycling of organic matter 

depends on microorganism size struc-
tures and trophic interactions, which in 
turn lead to the development of different 
types of pelagic food webs (Legendre and 
Rassoulzadegan, 1995). Herbivorous food 
webs, which lead to the sequestration of 
large quantities of carbon (new produc-
tion), are favored in nutrient-rich, well-
mixed environments and are dominated 
by large autotrophic cells (i.e.,  diatoms) 
that are grazed by meso- and macro-
zooplankton. In contrast, the microbial 
loop (Azam et  al., 1983) usually devel-
ops in dynamically stable zones, with lit-
tle or no nutrient inputs from deep waters, 
and is dominated by heterotrophs, includ-
ing bacteria that can remineralize organic 
nitrogen to ammonium. This ammonium 
is readily taken up by small phytoplank-
ton, resulting in regenerated produc-
tion (i.e.,  production supported by recy-
cling of nutrients in the euphotic zone). 
In these systems, organic matter is con-
tinuously recycled and, therefore, little 
or no organic carbon is exported to deep 
waters. Studying the composition and 
size structure of plankton communities 
is essential to understand the functioning 
of pelagic ecosystems. 

Previous SJG plankton research 
focused on the autotrophic component 
of the community, particularly on phyto-
plankton composition (Akselman, 1996), 
biomass (Cucchi Colleoni and Carreto, 
2001), toxic algae (Krock et al., 2015), and 

satellite observations (Glembocki et  al., 
2015). However, research linking com-
munity characteristics with physical and 
chemical parameters in the area is lacking.

In the SJG, the accumulation of phyto-
plankton biomass, which usually peaks in 
spring and fall, is intimately coupled with 
the formation and rupture of the pycno-
cline (Akselman, 1996). As in other tem-
perate ecosystems, high summer water 
column stratification prevents nutrient 
supply to the euphotic zone. However, 
turbulent mixing can promote diapycnal 
(cross-isopycnal) mixing (Thorpe, 2007). 
This mechanism, resulting from the shear 
between water masses that lie on top 
of one another and have different cur-
rent speeds and directions, cause inter-
nal wave breaking and, consequently, tur-
bulence and mixing. This dynamic could 
bring nutrients to the euphotic zone and 
stimulate phytoplankton production. 
Currently, no data exist concerning the 
impact of this process on summer phyto-
plankton productivity in the SJG.

Phytoplankton production can be 
inferred using information about cells’ 
physiological state. The physical and 
chemical environment not only alters 
phytoplankton species composition 
(Margalef, 1978) but also affects the effi-
ciency of photosynthesis (Litchman and 
Klausmeier, 2008). This fluorescence 
emission can be used as a proxy for cell 
physiological state (Suggett et  al., 2009). 
Biophysical properties of photosystem II 
(PSII), such as the maximum photochem-
ical quantum yield of PSII (estimated as 
the ratio between variable and maximum 
fluorescence, Fv/Fm), and the effective 
absorption cross section of PSII (σPSII) 
can be used to characterize the physiolog-
ical responses of phytoplankton to envi-
ronmental changes (Suggett et al., 2009). 

 In this article, we discuss how turbu-
lent mixing and other physical processes 
that supply nutrients to the surface relate 
to phytoplankton physiological condi-
tion and the microbial food web, with 
the aim of determining whether the 
SJG is a productive system for plankton 
during summer.

ABSTRACT. Little is known about the base of the food web that could support the high 
productivity and marine biodiversity found in San Jorge Gulf, Patagonia, Argentina. 
Here we examine the key components of the microbial food web, including the stand-
ing stock and physiological state of the phytoplankton in the context of key oceano-
graphic variables in the gulf. Water samples were collected at 16 stations for biological 
and chemical analyses, together with measurements of vertical structure and currents. 
The dynamics of the water column and its impact on nutrient availability for primary 
producers was evaluated. Our results show that, in spite of the observed low surface 
nutrient concentrations and low biomass, phytoplankton cells were in good physiolog-
ical state. This is possible because nutrients are replenished at the pycnocline depth, as 
estimated by means of Richardson’s dynamic stability. Turbulence created by tides and 
the shear between overlapping water masses favors the disruption of the pycnocline. 
We suggest that, during summer, San Jorge Gulf maintains not only high primary pro-
ductivity but also high phytoplankton biomass turnover rate, which is supported by 
a high C:N ratio, consistent with strong zooplankton grazing and export of organic 
carbon to deep waters.
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MATERIALS AND METHODS 
Sampling and Assessment of 
Oceanographic Conditions
A grid of 16 stations was sampled 
in February 2014 in the SJG from 
R/V Coriolis II. The expedition was part of 
the MARine ecosystem health of the San 
Jorge Gulf: Present status and RESilience 
(MARES) project (Figure 1a). Water col-
umn structure was characterized using 
a CTD-rosette system (Sea-Bird 9 plus) 
equipped with photosynthetically avail-
able radiation (PAR), dissolved oxy-
gen, and in vivo fluorescence probes. 
Additionally, CTD casts were per-
formed every two hours during a 36-hour 

period at a fixed station (FS) located in 
the gulf ’s center. 

Vertical profiles of currents were 
acquired with a narrowband 150 kHz 
acoustic Doppler current profiler 
(ADCP, RDI Ocean Surveyor) hull-
mounted with a 4 m bin size, from 8 m 
depth to the bottom (~90 m) along the 
cruise track. Water column stability was 
assessed by means of the Brunt-Väisälä 
frequency (N2), defining the pycnocline 
depth as the depth of maximum N2 val-
ues (Mann and Lazier, 2006). We eval-
uated the dynamical stability using the 
Richardson number (Ri) for turbulent 
mixing (Thorpe, 2007). The depth of 

the euphotic zone (Zeu; i.e., depth of 1% 
of surface incident irradiance) was cal-
culated following the Beer-Lambert law 
(Mann and Lazier, 2006). Fluorescence 
data were calibrated against in situ 
chlorophyll-a (Chla) measurements fol-
lowing Parsons et al. (1984).

Chemical Analyses
To determine nutrient availability 
(nitrate+nitrite, phosphate, and silicate), 
seawater samples were collected at four 
depths with of 12 L Niskin bottles: sur-
face to 2 m depth, subsurface Chla max-
imum, just below the pycnocline, and at 
10 m from the seafloor. Analyses were 
performed immediately after the cruise 
using a Skalar Autoanalyzer (Skalar 
Analytical 2005) at Centro Nacional 
Patagónico (CENPAT), Argentina. Only 
nitrate+nitrite data will be analyzed in 
this work (hereafter “nitrates”). See Torres 
et  al. (2018, in this issue) for a detailed 
analysis of nutrients in the SJG.

Particulate organic carbon and nitro-
gen (POC and PON) were determined 
by first taking 500 ml water samples and 
passing them through Whatmann GF/F 
filters (pre-combusted at 450°C, 5 hr) and 
storing the residue at −80°C in aluminum 
foil until analysis. Analyses were then 
performed with continuous-flow iso-
tope ratio mass spectrometry (CF-IRMS) 
using a DeltaPlus XP mass spectrom-
eter (Thermo Scientific) coupled with 
an ECS 4010 (Costech Analytical) for 
elemental analysis.

Microbial Community 
Composition, Abundance, 
and Biomass
Samples for picoplankton (bacteria 
and cyanobacteria) and chlorophyll- 
containing nanoplankton (2–20 µm) 
were preserved for flow cytometry in 
1% final v/v glutaraldehyde and stored 
at −80°C. Water samples for microplank-
ton (20–200 µm) analysis were preserved 
in Lugol solution (final concentration 
4%) and stored at 4°C for enumeration 
and identification with the Utermöhl 
(1958) method, using a Zeiss Axiovert 

FIGURE 1. (a) San Jorge Gulf (SJG) area with circles indicating CTD casts (G01 to G16) and dotted 
lines showing inner (1), middle (2), and outer (3) transects. FS = Fixed station. Red circles correspond 
to stations where water samples were collected with Niskin bottles (n = 11). (b) Temperature-salinity 
diagram showing the presence of two water masses, low-salinity coastal waters (LSCW) and shelf 
waters (SW). (c) Vertical profiles of temperature (°C, blue), practical salinity (red), Brunt-Väisälä fre-
quency (N2, s–1, cyan), and nitrates (µM, black dashed lines) at stations G03, G07, and G12.
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100 inverted microscope. Taxonomic 
identification to the genus level was done 
following Tomas (1997). Cell biovolume 
was calculated following Hillebrand 
et  al. (1999) and transformed into car-
bon, separating diatoms and dinoflagel-
lates according to Menden-Deuer and 
Lessard (2000) and ciliates according to 
Verity and Langdon (1984) and Putt and 
Stoecker (1989). For more detail on its 
calculation, see Supplementary Material 1.

Pico- and nanoplankton counts were 
performed with an EPICS ALTRA flow 
cytometer (Beckman Coulter Inc.) fol-
lowing Belzile et  al. (2008) for hetero-
trophic bacteria (H-BACT) and Tremblay 
et  al. (2009) for cyanobacteria (Pico-
CYAN) and eukaryotic phytoplankton 
(Pico-EUK and nanophytoplankton). The 
carbon content was calculated according 
to Zubkov et al. (2000) and Tarran et al. 
(2006) (see Supplementary Material 1).

The relationships between the micro-
bial community and environmental vari-
ables were evaluated with a canonical 
transformation-based redundancy analy-
sis (tb-RDA) in RStudio© 2015 (Oksanen 
et  al., 2017). Details of this analysis are 
presented in Supplementary Material 2.

Physiological State of 
Phytoplankton
The PSII biophysical properties of phyto-
plankton assemblages were estimated 
using a Chelsea Instruments (UK) fast 
repetition rate fluorometer, following the 
methodology of Kolber et al. (1998), for 
each station based on 10 replicates col-
lected from the subsurface Chla maxi-
mum, as in Sugget et al. (2001). 

RESULTS
Characterization of the 
Water Column 
Figure 1b shows that the deepest waters, 
with density anomalies (σθ, gray dotted 
lines) >25.8 kg m–3, have relatively homo-
geneous thermohaline characteristics, 
with low temperatures (~8°C) and high 
salinities (>33.4). Conversely, heteroge-
neous thermohaline conditions charac-
terize the two surface water masses, with 
σθ <25.8 kg m–3: low-salinity coastal water 
(LSCW) and shelf water (SW), separated 
by the 33.4 isohaline. Salinity was lowest 
(33.1, Figure 1c, station G12) where the 
LSCW enters in the southern part of the 
gulf, then slowly increased as it mixed 
with inner gulf waters (SW; Figure 1c, sta-
tion G07). Surface temperatures ranged 
between 13°C and 15°C across the gulf, 
with the lowest values recorded in the 
southern region. 

Figure 1c shows profiles of tempera-
ture, salinity, Brunt-Väisälä frequency 
(N2), and nitrate from the inner, mid-
dle, and outer parts of the gulf. Density is 
not shown because it is highly tempera-
ture dependent in this region and its dis-
tribution is similar to that of tempera-
ture (see Figure S1). At stations located in 
the central gulf, the thermocline was evi-
dent between 40 m and 50 m depth, cor-
responding to the highest N2 and coin-
ciding with the position of the nitracline 
(Figure 1c, stations G03 and G07). Nitrate 
concentration in deep water (14–17 µM) 
was higher than in the surface waters 
(0–5.98 µM), closely following the iso-
therm profiles. In contrast, both tem-
perature and nitrate concentrations in 

the southeast zone were homogeneous 
over the entire water column (Figure 1c, 
station G12) and related to the LSCW. A 
remnant signal of this LSCW was detected 
as a wedge at the pycnocline depth in the 
inner gulf (Figure 1c, station G07). 

The average Chla concentration in 
the gulf was relatively low (1.03 µg L–1 
± 0.53), but showed higher values at the 
coastal station G01 (maximum value of 
2.67 µg L–1) in the western part of the gulf 
(Figure 2a). Chlorophyll maxima were 
observed at 20–50 m depth (Figure 2a–c). 
Station G13 (Figure 2c) was an exception, 
because Chla (1.70 µg L–1 ± 0.085) was 
uniformly distributed over the first 23 m 
(25 m pycnocline depth). At all daytime 
stations where PAR could be measured, 
Zeu coincided with the pycnocline (white 
lines in Figure 2). 

Particulate Organic Carbon 
The mean POC concentration observed 
for the Gulf was 276 mg m–3 ± 98. Highest 
concentrations were measured through-
out the southern coastal waters of the gulf 
(366–486 mg m–3), with the maximum 
occurring at station G01. In addition, there 
was a clear difference between the C:N 
ratio in coastal stations (values between 2 
and 4) and the mouth of the Gulf (>6 at 
G11–G16), where values approached the 
Redfield ratio (see Table S1).

Water Column Characteristics 
During the Time Series 
Observations 
A time series of CTD casts following 
a diurnal tidal cycle was performed at 
the fixed station (see Figure 1a for the 

FIGURE 2. Vertical profiles of chlorophyll-a (µg L–1). White lines indicate Zeu (depth of the euphotic zone). Transect 1: Inner gulf. Transect 2: Middle gulf. 
Transect 3: Outer gulf.
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location in the central gulf). Only 13 casts 
from a total of 15 were completed due to 
weather limitations on marine operations. 
The vertical white rectangles in Figure 3 
indicate no data for CTD cast 5, which 
was not sampled, and between CTD 
casts 7 and 8. No significant changes were 
observed in surface layer temperature and 
salinity, although the depth of the ther-
mocline varied between low tide (1, 2, 3) 
and high tide (4, 6), from 46 m to 32 m 
(Figure 3a,b). By contrast, temperature 
and salinity changed below the pycno-
cline. Salinity profiles show that a tongue 
of low-salinity water (33.2) entered the 
gulf below the pycnocline when the tide 
was rising (stations 4, 6, 8, 12, 14) and 
when the tide was falling (Figure 3b). 
Chla concentration during one ebb tide 
had a mean value of 1.03 μg L–1 ± 0.18 
as in the rest of the gulf. Figure 3d shows 
how the surface (red) and bottom (blue) 
current speeds change during one tidal 
cycle. The different current speed between 
the two layers can cause shearing and 
affect the entry of nutrients from the bot-
tom to the top layer.

Potential Vertical Flux of 
Nutrients Associated with 
Dynamical Stability
As inorganic nitrogen is the main lim-
iting factor in most temperate marine 
coastal waters (i.e.,  Blomquvist et  al., 
2004), we evaluated mechanisms that 
could potentially inject nitrate from 
deeper waters through the pycnocline. 
We computed the gradient of nitrate 
(∆N) in the waters between the surface 
and below the pycnocline (∆N/∆z) and 
plotted it as a function of the Richardson 
number (Ri). In this study, we consid-
ered that values between 0.2 and 1.0 indi-
cate turbulent mixing (as in Galperin 
et  al., 2007). Although the Ri was >1 in 
most cases, an exponential decline of the 
∆N/∆z was observed with a decreasing 
Ri (Figure 4a), suggesting nitrate pump-
ing toward surface waters. Ri <1 values 
were associated with the southern zone 
and with one coastal station (G02). Note 
that our data, based on stations separated 
in space and time, represent a snapshot 
of physico-chemical conditions through-
out the gulf. Conversely, turbulence is 

highly intermittent (Carr et  al., 1995). 
We attempted to overcome these lim-
itations using data from the fixed sta-
tion, where we found the same pattern. 
In this case, the instability was more evi-
dent, with Ri values following the tidal 
cycle (Figure 4b). 

The Relationships of Microbial 
Community Composition 
and Physiological State to 
Environmental Conditions
Phototrophic picoplankton dominated 
the microbial community biomass, high-
lighting their importance for summer 
primary production in the SJG. Pico-
EUK comprised the main component of 
picoplankton (30%), with values ranging 
between 5.4 and 108.4 µg C L–1, and max-
ima at stations G01 (64.4 µg C L–1) and 
G13 (108.4 µg C L–1). Pico-CYAN ranged 
between 2 and 35.6 µg C L–1, with high-
est concentrations at G01 and G14 sta-
tions (31.2 and 35.9 µg C L–1, respec-
tively). H-BACT varied between 7.23 and 
35.5 µg C L–1, with maxima reaching 
35.2 and 28.9 µg C L–1 at G01 and G14 
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FIGURE 3. Time series at the fixed station (see 
Figure 1a for location) of (a) temperature (°C), (b) salinity, 
(c) chlorophyll-a (µg L–1). Numbers across the top x-axes 
denote each CTD cast and bottom x-axes the tidal cycle 
stage, where LT = low tide, HT = high tide. Vertical white 
rectangles indicate the lack of data. (d) Horizontal cur-
rent velocity averaged in surface waters (12–40 m of 
depth, red) and in bottom waters (40 m to the seafloor, 
blue). Numbered vertical lines correspond to CTD casts. 
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stations, respectively (Figure 5a–c).
In the microplankton size class, ciliates 

were found in all SJG samples, with values 
between 0.9 and 12.9 µg C L–1. Diatoms 
(0–24 µg C L-1) were mostly observed in 
the southern area. Dinoflagellates were 
detected at the mouth of the gulf, mainly 
in the northern zone, with values rang-
ing from 0–23 µg C L–1 (Figure 5d–f). A 
complete list of the taxa identified is pre-
sented in Table S2. Nanophytoplankton 
were excluded from the results because 
their total carbon contribution was 
negligible (0.003–0.2 µg C L–1) com-
pared to the other groups. This may be 
due in part to a methodological limita-
tion in the estimation of cellular biovol-
ume (see Supplementary Material 1 for a 
detailed explanation). 

The relationships between the micro-
bial community and environmental vari-
ables in the transformation-based redun-
dancy analysis (tb-RDA) suggests that 
temperature (associated with stratifica-
tion and, hence, N2), nutrient availabil-
ity, and dynamic stability (>Ri) were the 
main factors controlling the microbial 
biomass distribution (tb-RDA results 
p = 0.002, Figure 6).

Pico-EUK were associated with 
low-temperature areas (weak stratifica-
tion) where nitrate concentrations were 
high. Interestingly, we found that the 
Ri was associated with several plank-
ton groups, accompanied by a particu-
lar nitrate dynamic: Pico-CYAN were 
associated with dynamically stable areas 
(>Ri) where nutrient concentrations were 
low and temperatures higher (high N2), 
while diatoms and dinoflagellates were 
related to a low Ri and high nutrient 
availability (Figure 6).

In our results, Fv/Fm and σPSII were 
inversely correlated. In areas domi-
nated by picoplankton, Fv/Fm was low 
(0.4–0.29), with high values of σPSII 
(325–355 Å quanta–1; Figure 7a,b). 
Additionally, this combination of physi-
ological parameters was accompanied by 
the highest values of Chla. In the south-
east area where diatoms were found, 
physiological growth conditions were 

FIGURE 5. Horizontal distribution of carbon content (µg L–1) of (a) picocyanobacteria (Pico-CYAN), 
(b) picoeukaryotes (Pico-EUK), (c) heterotrophic bacteria (H-BACT), (d) ciliates (CIL), (e) diatoms 
(DIAT), and (f) dinoflagellates (DINO), estimated using cell biovolume and different carbon conver-
sion factors in the subsurface chlorophyll-a maximum.

Carbon Content (µg L–1)

FIGURE 4. Gradient of nitrate (N; ∆N/∆z) vs. Richardson number (Ri) at (a) grid sta-
tions (orange dots) and the fixed station (blue dots). (b) Repeated CTD cast at the 
fixed station (FS). The dotted line shows the logarithmic relationship between the 
two variables.
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optimal, with the highest values of 
Fv/Fm (0.44–0.56) and lowest of σPSII 
(300–220 Å quanta–1). 

DISCUSSION
In summer, San Jorge Gulf is character-
ized by strong water column stratifica-
tion and low nitrate concentrations, con-
ditions related to heavy consumption 
of nutrients by phytoplankton during 
the spring bloom (Krock et  al., 2015). 
Picoplankton dominate the area, as they 
do oligotrophic seas (Lewandowska et al., 
2014). However, integrated Chla was 
higher (>40 mg m–2, data not shown) 
than in other summer marine ecosystems 
(i.e.,  the North Atlantic, 17–27  mg  m–2; 

Mojica et  al., 2015) and of the same 
order as the Gulf of Alaska (39 mg m–2; 
Childers et  al., 2005). We hypothesize 
that the gulf remains a productive area 
even during summer, but with a high 
phytoplankton turnover rate that masks 
phytoplankton production and avoids its 
biomass accumulation. 

The Role of LSCW in Nitrate 
Supply to the SJG
Based on salinity, the inner gulf was alter-
natively dominated by SW and LSCW 
(Bianchi et  al., 2005). LSCW plays an 

important role in sustaining the high lev-
els of Chla recorded along the Patagonian 
coast (Romero et al., 2006). Even if nitrate 
concentration in LSCW were lower (6 µM) 
than in central bottom waters (16 µM), its 
significance lies in that this nitrate would 
be available for phytoplankton uptake in 
the upper layer due to vertical mixing at 
the pycnocline. We found that surface 
nitrate concentrations were higher than 
those of other coastal (Paparazzo et  al., 
2010) and shelf break areas at the same 
latitude (Valiadi et al., 2014). 

It is well known that vertical strati-
fication affects the availability of nutri-
ents and light that enable phytoplankton 
growth (Behrenfeld et al., 2006). Because 
the euphotic depth coincided with the 
pycnocline during our study, phytoplank-
ton remained in well-illuminated condi-
tions, so that light was not a limiting fac-
tor for growth. Thermal stratification was 
strong all over the inner gulf (Torres et al., 
2018, in this issue). However, some physi-
cal processes, such as wind, eddy forma-
tion, and internal waves, can disrupt the 
pycnocline and allow nutrients to be sup-
plied to surface waters (Dave and Lozier, 
2013). We analyzed the vertical mixing 
through the estimation of the dynami-
cal stability by means of the Richardson 

number. The Ri showed a significant, neg-
ative exponential correlation with the ver-
tical nitrate gradient, suggesting that ver-
tical flux of nutrients was possible across 
the pycnocline. Tidal changes in pycno-
cline depth (at the fixed station, Figure 3) 
further suggest that nutrients may reach 
depths close the surface (10 m above their 
original position), as we observed during 
one cycle (time 1 to 7). As shown in the 
temperature- salinity profiles, nutrient- 
rich LSCW flows below the pycnocline 
(Figure 3b). In contrast, Paparazzo et al. 
(2017) found low nitrate concentra-
tions in LSCW during fall, although they 
remained high in deep waters (Krock 
et al., 2015). These results suggest that the 
contribution of these waters to the nutri-
ent supply is highly variable and probably 
a key factor during the summer season 
for the SJG phytoplankton population.

The low vertical resolution of our nutri-
ent data limits our ability to adequately 
evaluate nitrate fluxes. High-resolution 
nutrient sampling at the pycnocline, 
where changes in nutrient concentra-
tions are intense, is recommended to cal-
culate nitrate fluxes (Agusti et al., 2001). 
Nevertheless, our approach allowed us to 
highlight the underlying processes asso-
ciated with vertical nutrient input.

Is the SJG a Productive System 
During Summer? 
The environmental characteristics that 
describe the distribution of pico-EUK and 
pico-CYAN in the SJG fit nicely with those 
established in the revision of Margalef ’s 
mandala proposed by Glibert (2016). 
Briefly, it explains that pico-CYAN may 
grow under low turbulence and warm 
temperature conditions by using ammo-
nium as a source of nitrogen, while pico-
EUK are in the transition between organic 
and inorganic nitrogen sources. In our 
study, pico-CYAN dominate in nitrate-
poor waters that are highly stratified while 
pico-EUK dominate in an intermediate 
area with weak stratification and relatively 
high nitrate concentrations. We could 
not analyze ammonium to determine the 
nitrogen source preferred by each group. 

FIGURE 6. Canonical transformation-based redundancy analy-
sis (tb-RDA) triplot of the SJG microbial community represented 
in terms of carbon content (µg L–1) (red) and environmental vari-
ables (green) with samples in blue. The two first axes represent 
27% (RDA1) and 17% (RDA2) of total community variability.
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However, it is well known that in ecosys-
tems dominated by small cells, the micro-
bial loop is important for nutrient recy-
cling (Legendre and Rassoulzadegan, 
1995). Indeed, the H-BACT and ciliates 
were closely associated with pico-CYAN, 
indicating this type of trophic food web. 

From a functional-traits perspec-
tive, small cells require less nutrient 
availability to survive and are more effi-
cient at nutrient uptake (Litchman and 
Klausmeier, 2008). Variations in physi-
ological traits rather than cell size alone 
allow them to survive in a dynamically 
stable and nutrient-impoverished envi-
ronment (Litchman and Klausmaier, 
2008). Typically, Fv/Fm is higher in 
nutrient- replete than in nutrient-poor 
environments, and is further correlated 
with higher primary productivity rates 
(Falkowski and Kolber, 1995). Our cell 
physiology results agree with values 
recorded in pico-CYAN or pico-EUK 
cultures and natural communities, with 
Fv /Fm ranging between 0.1 and 0.4, and 
0.4 and 0.55, respectively (Moore et  al., 
2006; Sugget et  al., 2009). Additionally, 
these physiological parameters were 
accompanied by the highest values of 
Chla. Therefore, in our study, low Fv /Fm 
seems to be an effect of high pico-CYAN 
density and their taxonomic signature 
rather than related to nutrient stress of 
cells. The community appeared to be in 
good physiological condition, photosyn-
thetically active and able to accumulate 
biomass that could eventually be trans-
ferred to higher trophic levels. 

Diatoms and dinoflagellates were 
found in turbulent, low Ri regions with 
high nutrient availability in the north-
ern and the southern parts of the gulf 
(Figure 6). Our results are consistent 
with those reported by Akselman (1996) 
on microplankton distribution related 
to nutrient availability in the SJG during 
summer. The physiological conditions of 
phytoplankton assemblages in this area 
were optimal. Although our analysis was 
carried out with a natural microbial com-
munity, where the taxonomic signature 
of each group would be masked by the 

presence of others, our values are con-
sistent with those reported in the litera-
ture for microphytoplankton in culture 
(Sugget et  al., 2009). However, despite 
high nutrient availability and good 
physiological conditions, phytoplankton 
did not reach high concentrations. This 
could be due to the presence of intense 
larval (commercial shrimp) and zoo-
plankton grazing, which would pre-
vent phytoplankton accumulation. The 
high herbivorous zooplankton density 
observed in the mouth and center of the 
gulf (Giménez et al., 2018, in this issue) 
supports this hypothesis. This means that 
large cells such as diatoms and dinoflagel-
lates would play a key role in sustaining 
herbivorous food webs in this zone. 

This conclusion is further supported by 
the C:N ratio (Table S1). Phytoplankton 
C:N ratios usually range between 6 and 
10, zooplankton and bacteria between 3 
and 6, and values >12 characterize detri-
tal organic matter (Savoye et  al., 2003, 
and references therein). In the gulf, the 
ratio was generally <6, highlighting the 
importance of the heterotrophic compo-
nents of the system. In addition, results 
from sediment traps deployed during the 
same cruise included large concentrations 
of fecal pellets (Massé-Beaulne, 2017). 
Furthermore, these pellets contained high 
amounts of microphytoplankton cells. 
Consequently, both observations support 
our hypothesis that high secondary pro-
duction prevents phytoplankton accumu-
lation (especially microphytoplankton).

SUMMARY AND CONCLUSIONS
Through functional analysis of key com-
ponents of the microbial food web 
(i.e.,  considering size class and physio-
logical condition) and their relationships 
to prevailing environmental conditions 
during austral summer, we attempted to 
better understand the functioning and 
potential productivity of San Jorge Gulf 
plankton. The structure of the micro-
bial assemblages typically depended on 
stratification and inorganic nitrate avail-
ability, as previously documented for the 
gulf (Akselman, 1996; Cucchi Colleoni 
and Carreto, 2001) and other sectors of 
the Argentine shelf (Gonçalves-Araujo 
et al., 2016). For the first time for South 
Atlantic coastal waters, we detected and 
described how turbulent processes linked 
to tides and the entry of the nutrient-rich 
water masses such as the LSCW favor 
rupture of the pycnocline and modify the 
N-limiting conditions, providing a mech-
anism for nutrient supply to surface waters 
that could support phytoplankton—and 
hence, ecosystem—productivity.

Nutrient inputs linked to tides appear 
to be rapidly consumed by autotrophic 
cells, resulting in depleted nutrient con-
centrations in the euphotic zone. The 
good physiological state of gulf phyto-
plankton suggests that light and nutri-
ent availability were adequate for growth. 
Picoplankton have a relevant role during 
summer because they are the dom-
inant biomass. The presence in the 
southern zone of large cells in optimal 

FIGURE 7. (a) Maximum photochemical quantum yield (Fv/Fm) and (b) the effective absorption cross 
section (σPSII) at the subsurface chlorophyll-a maximum.
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physiological state showed that condi-
tions were adequate for their growth. 
However, high turnover rates, a result of 
coupled production and grazing, prevent 
phytoplankton biomass accumulation. 
The C:N ratios reported here, the high 
biomass of zooplankton measured during 
the same cruise (Giménez et  al., 2018, 
in this issue), and sediment trap results 
(Massé-Beaulne, 2017) are all consistent 
with the presence of an intense herbiv-
orous food web. The transition between 
the two extremes of trophic relationships, 
the herbivorous food web and the micro-
bial loop (Legendre and Rassoulzadegan, 
1995), also occurs during summer, con-
tributing to high productivity in San Jorge 
Gulf during this season. 

SUPPLEMENTARY MATERIALS
Supplementary materials are available online at 
https://doi.org/10.5670/oceanog.2018.410.
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