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The subject of time–band limiting, originating in signal processing, is dominated by the

miracle that a naturally appearing integral operator admits a commuting differential

one allowing for a numerically efficient way to compute its eigenfunctions. Bispectrality

is an effort to dig into the reasons behind this miracle and goes back to joint work

with H. Duistermaat. This search has revealed unexpected connections with several

parts of mathematics, including integrable systems. Here we consider a matrix-valued

version of bispectrality and give a general condition under which we can display a

constructive and simple way to obtain the commuting differential operator. Further-

more, we build an operator that commutes with both the time-limiting operator and the

band-limiting operators.

1 Introduction

The problem of double concentration, that is, localizing a function both in physical and

frequency space cuts across several areas of mathematics, physics, and engineering.

This topic arises in harmonic analysis, signal processing, and quantum mechanics.

Highly elaborate bodies of work, such as wavelet theory, spawn from efforts to find

a good compromise between these two competing goals.
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2 F. A. Grünbaum et al.

In some instances this issue gives rise to a sharply posed question as was done

(at least implicitly) by C. Shannon [29]; if you know the frequency components over a

band [−W, W] for an unknown signal of finite support in [−T, T], what is the best use

you can do of this (noisy) data? It is natural to look for the coefficients of an expansion

of the unknown signal in terms of the singular functions of the problem. However, one

faces a serious computational difficulty; these singular functions are the eigenfunctions

of an integral operator with most of its eigenvalues crowded together.

In a remarkable series of papers written at Bell Labs in the 1960’s, a mathe-

matical miracle was uncovered, and exploited very successfully. We refer to it as the

“time–band limiting phenomenon”. We are alluding to the surprising fact that certain

naturally appearing integral operators admit 2nd order commuting differential ones.

One of us has been looking for the reason that lies behind this miracle for quite

a while and this search has given rise to what we refer to as the “bispectral problem”.

In our context this consists in the search for weights whose orthogonal polynomials are

joint eigenfunctions of some differential operator.

There is a large number of papers dealing with the relations between these two

issues. For a small sample, see [3, 12, 27]. We feel that the true reasons behind this

remarkable algebraic “accident”, see [34, 38], deserves further study.

The phenomenon of a pair of commuting integral and differential operators

plays an important role in at least three areas of applied mathematics; the problem of

time-and-band limiting studied by Slepian, Landau, and Pollak, see [19, 20, 32, 33, 35],

nicely summarized in [18, 34], the problem of limited angle tomography, see [7], and

finally in Random Matrix Theory, see [21, 36, 37]. For other applications of this work,

see [13, 14, 30, 31]. For numerical aspects of this phenomenon, see [22]. All of the work

mentioned above deals with scalar-valued functions.

A much more recent look at the relation between these two topics involves

matrix-valued orthogonal polynomials, a subject started by M. G. Krein, see [16, 17].

Among the papers where this was explored we mention [2, 9].

Back in the scalar case, following [27] there is a short and elegant paper by

Perline, see [26]. One of us was certainly aware of this paper back in the late 1980’s, but

somehow did not pay enough attention to it. It was A. Zhedanov who noticed this long

forgotten paper and brought it to the attention of his coworkers. The very recent paper

[11] shows that the ideas in [26] can be extended to other scenarios.

The aim of this paper is to give a general result on the relation between the

bispectral property for matrix-valued orthogonal polynomials and the existence of a

symmetric operator that commutes with the time-and-band limiting operator and can
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Bispectrality and Time–Band Limiting 3

be used to yield their eigenfunctions. For any value of the relevant parameters we build

explicitly a 2nd order differential operator T and a tridiagonal difference operator L

that commute with both the time-limiting operator and the band-limiting operator. This

proves, in a constructive way, the existence of commuting operators for the integral and

the difference operators.

This general result, as well as those in [11], is inspired by the construction

in [26].

Finally, in Section 4, after a brief mention of scalar cases, we use our general

results to study some particular examples, all of them in the matrix-valued case.

In the 1st example we extend results previously obtained in [9]; in the 2nd

one we verify a result that was conjectured in [2]; in the 3rd example we exploit the

power of our construction to give a commuting differential operator for a case where

the commuting operator problem was not studied before; the last example is included

to indicate that bispectrality may not always guarantee the existence of a commuting

differential operator.

In the scalar case treated in [26], the issue of the use of the commuting

differential operator to obtain the eigenfunctions of the integral one was not dealt in

detail. In this paper we take the same approach and intend to return to this point at a

later time.

2 Preliminaries

Let W(x) be an R×R matrix weight function in the open interval (a, b) and let {Qn(x)}n∈N0

be a sequence of matrix orthonormal polynomials with respect to the weight W(x).

The Hilbert spaces �2(MR,N0) and L2((a, b), W(t) dt) are given by the real-valued

R × R matrix sequences {Cn}n∈N0 such that
∑∞

n=0 tr
(
Cn C∗

n

)
< ∞ and all measurable

matrix-valued functions f (x), x ∈ (a, b), satisfying
∫ b

a tr ( f (x)W(x)f ∗(x)) dx < ∞,

respectively. A natural analog of the Fourier transform is the isometry F : �2(MR,N0) −→
L2(W) given by

{Cn}∞n=0
F�−→

∞∑

n=0

CnQn(x).

In the case when the matrix polynomials are dense in L2(W), this map is unitary with

the inverse F−1 : L2(W) −→ �2(MR,N0) given by

f
F−1

�−→ Cn =
∫ b

a
f (x) W(x) Q∗

n(x) dx.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019



4 F. A. Grünbaum et al.

If we consider the problem of determining a function f from the following

(typically noisy) data: f has support on the compact set [0, N] and its Fourier transform

F f is known on a compact set [a, �], one concludes that we need to compute the singular

vectors (and singular values) of the operator E : �2(MR,N0) −→ L2(W) given by

E f = χ�Fχ̃Nf ,

where χ̃N is the time-limiting operator on �2(MR,N0) and χ� is the band-limiting

operator on L2(W). At level N, χ̃N acts on �2(MR,N0) by simply setting equal to 0 all

the components with index larger than N. At level �, χ� acts on L2(W) by multiplication

by the characteristic function of the interval (a, �), a < � ≤ b.

We are thus lead to study the eigenvectors of the operators

E∗E = χ̃NF−1χ�Fχ̃N and EE∗ = χ�Fχ̃NF−1χ�.

The operator E∗E, acting on �2(MR,N0), is just a finite-dimensional block matrix

with each R × R block given by

(E∗E)m,n =
∫ �

a
Qm(x)W(x)Q∗

n(x) dx, 0 ≤ m, n ≤ N. (1)

The operator EE∗ acts on L2((a, �), W(t) dt) by means of the integral kernel

k(x, y) =
N∑

n=0

Q∗
n(x)Qn(y). (2)

The integral operator S = EE∗ with kernel k, defined in (2), acting on L2((a, �), W) “from

the right-hand side” is given by

( f S)(x) =
∫ �

a
f (y)W(y)(k(x, y))∗ dy. (3)

For general N and � there is no hope of finding the eigenfunctions of EE∗ and

E∗E analytically. However, there is a strategy to solve this typical inverse problem:

finding an operator with simple spectrum that would have the same eigenfunctions

as the operators EE∗ or E∗E. This is exactly what Slepian, Landau, and Pollak did in
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Bispectrality and Time–Band Limiting 5

the scalar case, when dealing with the unit circle and the usual Fourier analysis. They

discovered the following properties:

• For each N, � there exists a symmetric tridiagonal matrix L, with simple

spectrum, commuting with E∗E.

• For each N, � there exists a self-adjoint 2nd order differential operator T,

with simple spectrum, commuting with the integral operator S = EE∗.

In this paper, which deals with a continuous-discrete version of the bispectral

problem, we give an explicit construction of such symmetric operators L and T given

certain hypothesis (which is automatically satisfied in the scalar case).

Symmetry for an operator T acting on functions defined in [a, �] means that

〈PT, Q〉� = 〈P, QT〉�,

for every P, Q in an appropriate dense set of functions, where

〈P, Q〉� =
∫ �

a
P(x)W(x)Q∗(x) dx. (4)

From [9], given a symmetric differential operator T and an integral operator S,

with kernel k, we have

TS = ST if and only if
(
k(x, y)∗

)
Tx = (k(x, y)Ty)∗. (5)

(Here we use Tx to stress that T acts on the variable x.)

Notice that in principle there is no guarantee that we will find any such T except

for a scalar multiple of the identity. For the problem at hand, namely the efficient

computation of the eigenfunctions of S, we need to exhibit a differential operator T

whose eigenfunctions are also eigenfunctions of the integral operator S. In the scalar

case this is guaranteed by asking that T should have a simple spectrum. In the matrix-

valued case the useful requirement on T is more subtle and will be analyzed in detail in

a future publication.

3 The Symmetric Bispectral Problem

We start with a matrix weight W defined in the interval (a, b) and a 2nd order symmetric

differential operator D with respect to W of the form

D = ∂2F2 + ∂F1 + F0,

with Fj a polynomial of order less than or equal to j, for j = 0, 1, 2.
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6 F. A. Grünbaum et al.

Let {Rn}n≥0 be the monic matrix orthogonal polynomials with respect to W and

{Qn}n≥0 the sequence of orthonormal polynomials defined by Qn = SnRn, with Sn =
‖Rn‖−1 the inverse of the matrix-valued norm of Rn.

We have that these polynomials are eigenfunctions of D, with matrix-valued

eigenvalues,

RnD = �nRn, QnD = �̃nQn, for all n ≥ 0, (6)

with �̃n = Sn�nS−1
n .

They also satisfy the three-term recursion relations

xRn(x) = Rn+1 + BnRn + AnRn−1,

xQn(x) = Ã∗
n+1Qn+1 + B̃nQn + ÃnQn−1,

(7)

where

An = ‖Rn‖2‖Rn−1‖−2, (BnSn) = (BnSn)∗,

Ãn = SnAnS−1
n−1 = ‖Rn‖‖Rn−1‖−1, B̃n = SnBnS−1

n ,

here we adopt the convention that P−1 = Q−1 = 0.

The fact that the symmetry of D implies that we have a bispectral situation as

above has been established in [4, 10], where the pairs (W, D) are called “classical pairs”.

Recall the setup in the section on Preliminaries.

We fix a natural number N and � ∈ (a, b) and consider the following operators χ� and

χN in L2(W): χ� acts on L2(W) by multiplication by the characteristic function of the

interval (a, �) and χN = F χ̃NF−1 is the “projection” on the (left) module (over the ring of

matrices) spanned by {Q0, Q1, . . . , QN}. Explicitly,

χN( f ) =
N∑

n=0

〈 f , Qn〉Qn. (8)

Hence, the band-time-band limiting operator EE∗, that now can be rewritten as

EE∗ = χ�χNχ�, is an integral operator acting from the right-hand side as in (3), with

kernel

k(x, y) =
N∑

n=0

Q∗
n(x)Qn(y).
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Bispectrality and Time–Band Limiting 7

The operator E∗E is the finite-dimensional block matrix given in (1). Also, now

we have that the action of the time-band-time limiting operator FE∗EF−1 = χNχ�χN is

given by

χNχ�χN(f ) =
N∑

i=0

(∫ �

a
f (x)W(x)Q∗

i (x) dx
)

Qi,

for f ∈ L2(W).

The main result of this section is a simple proof of the existence of a commuting

symmetric operator for both of these time and band limiting operators EE∗ and

FE∗EF−1. For this purpose, we will construct an operator T that commutes with each of

χN and χ�. This important idea already appears in [26]. It is also used in the later

paper [38].

While this will clearly imply the commutativity with both EE∗ and FE∗EF−1 we

do not look into the possibility of finding a local operator that commutes with these

ones but fails to commute with both χN and χ�.

We assume the following hypothesis on the weight W and the differential oper-

ator D; there exists a matrix M, independent of the variables x, n, and the parameter �,

but possibly dependent on N, such that

(
M − x(�N+1 + �N)

)
W(x) − W(x)

(
M − x(�N+1 + �N)

)∗ = 0. (9)

In the expression above the dependence on the differential operator D is hidden

in the eigenvalues �N of the monic orthogonal polynomials. Explicitly if the differential

operator D is of the form D = ∂2F2 + ∂F1 + F0 and we write F2 = F22x2 + F21x + F20,

F1 = F11x + F10, we have that

�n = �n(D) = n(n − 1)F22 + nF11 + F0. (10)

From the symmetric differential operator D, the eigenvalues of the monic

orthogonal polynomials, and this matrix M, we build the following differential operator,

acting on the “right-hand side”

T = xD + Dx − 2�D − (�N+1 + �N)x + M. (11a)

Let us observe that if D = ∂2F2 + ∂F1 + F0 then xD = Dx + 2∂ F2 + F1. Therefore,

1
2T = D(x − �) + ∂ F2(x) + 1

2

(
F1(x) − x(�N+1 + �N) + M

)
. (11b)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019



8 F. A. Grünbaum et al.

Proposition 3.1. The differential operator T is a symmetric operator with respect to W,

in [a, b] and also in [a, �].

Proof. Since D is symmetric with respect to W in [a, b] it is clear that xD + Dx and

2�D are also symmetric operators in [a, b]. Hence, from (11a), for any smooth enough

functions f , g ∈ L2(W) we have

〈 f T, g〉 − 〈 f , gT〉 =
∫ b

a
f (x) (M − x(�N+1+�N)) W(x) − W(x) (M − x(�N+1+�N))∗ g(x) dx.

Thus, we have that T is a symmetric operator in [a, b] if and only if the operator

of order zero M − x(�N+1 + �N) satisfies (9).

Now we will prove that T is symmetric with respect to W in [a, �].

From [10] or [4] we have that a differential operator D = d2

dx2 F2(x) + d
dx F1(x) + F0

is symmetric with respect to a weight W defined in (a, b) if and only if it satisfies, for

a < x < b, the symmetry equations

F2W = WF∗
2,

2(F2W)′ − F1W = WF∗
1,

(F2W)′′ − (F1W)′ + F0W = WF∗
0,

(12)

and the boundary conditions

lim
x→a,b

F2(x)W(x) = 0, lim
x→a,b

(
F1(x)W(x) − WF∗

1(x)
) = 0. (13)

We have the following relations among the coefficients of the differential

operators D = ∂2F2 + ∂F1 + F0 and T = ∂2F̃2 + ∂F̃1 + F̃0,

F̃2 = (x − �)F2,

F̃1 = (x − �)F1 + F2,

F̃0 = (x − �)F0 + 1
2 (F1(x) − x(�N+1 + �N) + M) .

Since T is a symmetric operator with respect to the weight W in the interval

(a, b) we have that {F̃0, F̃1, F̃2} satisfy (12) and (13). Then, to prove that T is symmetric in

(a, �) it suffices to prove that

lim
x→�

F̃2(x)W(x) = 0, lim
x→�

(
F̃1(x)W(x) − WF̃∗

1(x)
)

= 0. (14)
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Bispectrality and Time–Band Limiting 9

Since D is symmetric with respect to the weight W in the interval (a, b) we have

that {F0, F1, F2} also satisfy (12), thus

lim
x→�

F̃2W = lim
x→�

(x − �)F2W = 0,

and

lim
x→�

(
F̃1(x)W(x) − WF̃∗

1(x)
)

= lim
x→�

(
(x − �)(F1W − WF∗

1) + F2W − WF∗
2

) = 0,

completing the proof. �

Proposition 3.2. The differential operator T commutes with the band-limiting

operator χ�.

Proof. Let us observe that Tχ� = χ�T if and only if ( f T)χ� = ( f χ�)T, for all smooth

enough f ∈ L2(W). Since the operator T is symmetric with respect to W in [a, b] and also

in [a, �] we have

〈(χ� f )T, g〉 = 〈χ� f , gT〉 =
∫ b

a
χ�(x)f (x)W(x)(gT)∗(x) dx =

∫ �

a
f (x)W(x)(gT)∗(x) dx

= 〈 f , gT〉� =〈 f T, g〉� =
∫ �

a
( f T)(x)W(x)g∗(x) dx=

∫ b

a
( f T)(x)χ�(x)W(x)g∗(x) dx

= 〈 f Tχ�, g〉,

for all smooth enough f and g. Hence, T commutes with χ�. �

Remark 3.3. We observe that if T is a symmetric operator with respect to W in [a, b]

then T commutes with χ� if and only if T is symmetric with respect to W in [a, �].

Proposition 3.4. For any n ≥ 0, there exist matrices Xn, Yn, and Zn such that

QnT = XnQn+1 + YnQn + ZnQn−1.

Moreover, X∗
n = Zn+1 and Y∗

n = Yn, with the convention Q−1 = 0.
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10 F. A. Grünbaum et al.

Proof. For any n, QnT is a polynomial of degree n + 1 or less, since M is a matrix

independent of x. Hence, QnT = ∑n+1
j=0 Kn,jQj, for some matrices {Kn,j}.

It is easy to see that, since T is symmetric, we have

〈QnT, Qj〉 = 〈Qn, QjT〉 = 0, for all j < n − 1.

hence

QnT =
n+1∑

j=n−1

Kn,jQj = XnQn+1 + YnQn + ZnQn−1.

Now we observe that Xn = 〈QnT, Qn+1〉 = 〈Qn, Qn+1T〉 = Z∗
n+1 and that Yn =

〈QnT, Qn〉 = 〈Qn, QnT〉 = Y∗
n. This concludes the proof. �

Corollary 3.5. We have

Xn = ‖Rn‖−1 (�n+1 + �n − �N+1 − �N) ‖Rn+1‖,

where {Rn}n is the sequence of monic orthogonal polynomials.

In particular XN = ZN+1 = 0.

Proof. From (11a), by using the three-term recursion relation (7) and (6), we have

〈RnT, Rn+1〉 = 〈(Rn)(xD + Dx − 2�D − (�N+1 + �N)x + M), Rn+1〉

= 〈(Rn)(xD + Dx − (�N+1 + �N)x), Rn+1〉

= 〈Rn+1D + Rn�nx − Rn+1(�N+1 + �N), Rn+1〉

(and since {Rn} is the monic sequence of orthogonal polynomials)

= 〈Rn+1�n+1 + Rn+1�n − (�N+1 + �N)Rn+1, Rn+1〉

= (�n+1 + �n − �N+1 − �N)〈Rn+1, Rn+1〉.

Hence, by using that Qn = ‖Rn‖−1Rn we get

〈QnT, Qn+1〉 = ‖Rn‖−1(�n+1 + �n − �N+1 − �N)〈Rn+1, Rn+1〉‖Rn+1‖−1

= ‖Rn‖−1(�n+1 + �n − �N+1 − �N)‖Rn+1‖.
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Bispectrality and Time–Band Limiting 11

By Proposition 3.4 we know that 〈QnT, Qn+1〉 = 〈XnQn+1, Qn+1〉 = Xn. Thus, the proof is

complete. �

Proposition 3.6. The differential operator T commutes with the time-limiting

operator χN .

Proof. Let f be a smooth enough function in L2(W), by using Proposition 3.4, the fact

that T is symmetric and the explicit expression in (8) we have

f TχN =
N∑

n=0

〈 f T, Qn〉Qn =
N∑

n=0

(
〈 f , Qn+1〉X∗

n + 〈 f , Qn〉Y∗
n + 〈 f , Qn−1〉Z∗

n

)
Qn.

On the other hand,

( f χN)T =
N∑

n=0

〈 f , Qn〉QnT =
N∑

n=0

〈 f , Qn〉 (XnQn+1 + YnQn + ZnQn−1)

=
N+1∑

n=1

〈 f , Qn−1〉Xn−1Qn +
N∑

n=0

〈 f , Qn〉YnQn +
N−1∑

n=0

〈 f , Qn+1〉Zn+1Qn,

by Corollary 3.5 XN = 0, thus

( f χN)T =
N∑

n=0

(
〈 f , Qn−1〉Xn−1 + 〈 f , Qn〉Yn + 〈 f , Qn+1〉Zn+1

)
Qn.

Now the proposition follows from the fact that X∗
n = Zn+1 and Y∗

n = Yn, see Corollary 3.5.

�

Theorem 3.7. The 2nd order differential operator T is symmetric and commutes with

the time-band-limiting operators EE∗ and FE∗EF−1.

Proof. The symmetry of T is proved in Proposition 3.1. Recalling that EE∗ = χ�χNχ�

and FE∗EF−1 = χNχ�χN , the proof follows from Proposition 3.2 and Proposition 3.6. �

So far the operators D, S, T act in L2(W). Conjugating with F you get difference

operators acting in �2(MR,N0). If we define

L = F−1TF ,

the following result is straightforward.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019



12 F. A. Grünbaum et al.

Corollary 3.8. The difference operator L is given by a tridiagonal hermitian semi-

infinite matrix, with R × R-block entries, and it commutes with the time-band-limiting

operators F−1EE∗F and E∗E. The operator L, in the standard basis of �2(MR,N0), is

explicitly given by

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y0 X∗
0 0 0 0 · · ·

X0 Y1 X∗
1 0 0 · · ·

0 X1 Y2 X∗
2 0 · · ·

0 0 X2 Y3 X∗
3 · · ·

0 0 0 X2 Y4 · · ·
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with Xj and Yj given in Proposition 3.4 and Corollary 3.5.

Remark 3.9. From Corollary 3.5 it is clear that L breaks into two blocks, an upper-left

block of size (N + 1) × (N + 1) yielding a matrix such as the one displayed in [8] and a

lower-right block that is semi-infinite.

4 Examples

4.1 Scalar cases

In the scalar case, condition (9) is automatically satisfied. For several examples of a

commuting differential operator given by (11a) one can see [11].

4.2 Matrix Gegenbauer weight

In [23] we study 2 × 2 matrix-valued orthogonal polynomials associated with spherical

functions in the q-dimensional sphere Sq ( originally q was a natural number, but these

results were later extended to any real positive number). The weight matrix, depending

on parameters 0 < p < q, is given by

W(x) = (1 − x2)
q
2 −1

(
px2 + q − p −qx

−qx (q − p)x2 + p

)

, x ∈ [−1, 1].

In this case there exist four linearly independent symmetric differential operators of

degree 2 in the algebra D(W), namely D1, D2, E3, and E4. See Section 5 in [23], and the

last paragraph in this example.
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Bispectrality and Time–Band Limiting 13

In [9] we considered the time-band limiting operators E∗E and EE∗ for this exam-

ple. For given N and �, we found a symmetric tridiagonal matrix L, with simple spec-

trum, commuting with the block matrix E∗E and a self-adjoint differential operator D̃

commuting with the integral operator EE∗.

The results on the present paper give a unified way to obtain such a commuting

operators in both situations; starting with a symmetric differential operator of order

two, we search for a matrix M such that condition (9) is satisfied and we build up the

operator T by the formula (11a).

The monic orthogonal polynomials {Rn} are eigenfunctions of the differential

operators D1 and D2, whose eigenvalues are respectively

�n(D1) =
(

(n+p)(n+q−p+1) 0
0 0

)
and �n(D2) =

(
0 0
0 (n+p+1)(n+q−p)

)
.

For the differential operators D1 and D2, the matrices M1 and M2 given by

M1 = (−2N(N+p+1)(N+q−p+1)+q−2p)
q−2p

(
0 q − p

p 0

)

,

M2 = (2N(N+p+1)(N+q−p+1)+q−2p)
q−2p

(
0 q − p

p 0

)

,

satisfy the requirement that

(
M1 − x(�N+1(D1) + �N(D1))

)
W(x) and

(
M2 − x(�N+1(D2) + �N(D2))

)
W(x)

are symmetric matrices and therefore they give two differential operators, T1 and T2,

commuting with the time and band-limiting operators.

The differential commuting operator D̃, given in [9], is a scalar combination of

T1 + T2 and the identity, namely T1 + T2 = −2D̃ + 2�(q − p). Notice that for T1 + T2 the

expression (11a) involves a matrix M that does not depend on N, namely

M = M1 + M2 = −2

(
0 q − p

p 0

)

.

On the other hand, the matrices L1, L2, L3 given in [8] are in the span of

{F−1T1F ,F−1T2F , I}. Furthermore, L1 and L2 scalar multiples of F−1T2F and F−1T1F ,

respectively, and

L3 = p(q + p + 1)

q + 2
(L1 + L2).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019



14 F. A. Grünbaum et al.

In [8] we proved that L1 and L2 have a simple spectrum.

It is worth to notice that for the symmetric differential operators E3 and E4 in

[9] there is no matrix M satisfying condition (9). This phenomenon, namely that given a

weight W one should look at the algebra D(W) introduced in [1], and for each differential

operator in it see if a matrix M satisfying condition (9) exist will reappear later in

example (4.4). When M exists our general result yields a commuting operator T.

4.3 Completing the proof of the result stated in [2]

In [2] one looks at matrix-valued polynomials that are orthogonal in the interval [0, 1]

with respect to the weight density matrix originating in [24, 25] and given by

W(x) = (1 − x)αxβ

(
β + 1 − kx (β + 1 − k)x

(β + 1 − k)x (β + 1 − k)x2

)

.

The monic orthogonal polynomials Rn(x), associated to this weight W are

eigenfunctions of the symmetric differential operator

D = ∂2x(1 − x) + ∂(C − xU) − V

with

C =
(

β + 1 1

0 β + 3

)

, U =
(

α + β + 3 0

0 α + β + 4

)

, V =
(

0 0

k − β − 1 α + β + 2 − k

)

.

This operator acts on the right and we have RnD = �nRn, with

�n =
(

−n(α + β + n + 2) 0

1 + β − k −(n + 1)(α + β + n + 2) + k

)

.

The main take-home message in [2] is that the differential operator D̃ given by

D̃ = (x − �)D − d

dx
x(1 − x) + PN(x),
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with

PN(x) =
(

x(N2 + (α + β + 3)(N + 1)) α + β + N + 2

x(k − β − 1) x(N2 + (α + β + 4)N + 2α + 2β − k + 6) + β

)

,

commutes with the integral operator S given by (3).

The argument given in [2] consists in verifying certain identities depending on

an index n. These have been checked with the use of the computer algebra package

Maxima up to very large values of n, but no analytical proof is given. We will see below

that the results above complete the arguments in [2].

One can see that the matrix

M =
(

1 + β 2(α + β) + 2N + 5

0 3(1 + β)

)

,

is such that

(M − x(�n+1 + �n))W(x)

is a symmetric matrix. Therefore, the assumption in (9) is verified and one can check

that the commuting operator in [2] is given according to the recipe in (11b)

D̃ = D(x − �) + ∂ F2(x) + 1
2 (F1(x) − x(�N+1 + �N) + M) .

4.4 An example violating condition (9)

Consider the matrix-valued polynomials that are orthogonal in the interval [0, 1] with

respect to the weight density matrix originating in [6], Section 3.3, with parameters

α = β = 0, κ = 1/2, t0 = 0, and given by

W(x) =
(

1 + x2 1 − x

1 − x (1 − x)2

)

.

We have that

D+ = ∂2

(
2(x2 − x) 2x

0 0

)

+ ∂

(
8x − 7 7 − x

x − 1 1

)

+ 1

2

(
3 −5

1 3

)

is a symmetric differential operator with respect to W(x), (φ+ = 1 in the notation of [6]).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019



16 F. A. Grünbaum et al.

The monic orthogonal polynomials Rn(x) satisfy Rn(x)D+ = �n(D+)Rn(x), where

the eigenvalues are given by

�n(D+) =
(

2n2 + 6n + 3/2 −n − 5/2

n + 1/2 −3/2

)

,

see (10). One can check that in this case condition (9) is not satisfied.

We have ample evidence that, for a given N and �, the corresponding integral

operator commutes with the differential one given by

D̃ = ∂2x(x − 1)(x − �) + ∂X + Y

with

X =
(

5x2 − 4�x − 4x + 3� 2(x − �)

0 5x2 − 4�x − 2x + �

)

,

Y =
(

�/2 − 3 − N(N + 4)x (� + 5)/2

(� − 1)/2 −N(N + 4)x − �/2

)

.

Clearly this differential operator does not have the form advertised in (11a). We

will see below that our explicit construction yields an interesting result.

The weight matrix W(x) admits another symmetric differential operator (with

φ− = 1/3)

D− = ∂2

(
0 2x

0 2x(1 − x)

)

+ ∂

(
−1 3 − x

x − 1 −8x + 3

)

+ 1

2

(
5 −3

3 −5

)

.

For D− condition (9) is, once again, not satisfied.

Nevertheless for the symmetric differential operator

1
2 (D+ − D−) = ∂2x(x − 1) + ∂

(
4x − 3 2

0 4x + 1

)

+ 1

2

(
−1 −1

−1 1

)

,

condition (9) is satisfied with M =
(

3 −3

1 −1

)

.

We observe that in this case, the eigenvalues of the monic polynomials Rn are

given by

�n = n(n + 3) + 1

2

(
1 1

1 −1

)

.
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Now it easy to verify that the differential operator D̃ above is exactly the differential

operator T given in (11a) for D = 1
2 (D+ − D−), therefore it commutes with the integral

operator EE∗ (see Theorem 3.7).

At the end of example (4.2), we alluded to the phenomenon seen above; our

method can be applied to some of the operators in the algebra D(W) but not necessarily

to all of them. When the algebra has several generators this increases our chances of

being able to use our construction. The next example features a case when there is only

one generator of order two.

4.5 An example showing that bispectrality may not be enough to produce a commuting

differential operator

In this section we discuss an example with a behavior quite different from the ones seen

so far. This example has appeared in [1].

The weight density on the real line is given by

W(x) = e−x2−2x

(
e4x + x2 x

x 1

)

.

This weight gives rise to a bispectral family of polynomials and as observed in [1] the

algebra of differential operators going with this weight has just one generator of order

two. See also [5].

One can easily check that condition (9) does not hold in this case for the operator

of order two that generates the algebra.

One could still be able to produce, for each value of the parameters N, �, a

(nontrivial) symmetric 2nd order differential operator that would commute with the

kernel

kN(x, y) =
N∑

n=0

Q∗
n(x)Qn(y),

acting on (−∞, �], even if this operator is not given by the nice prescription for T above.

We have plenty of evidence that such an operator does not exist, at least if we

insist that our operator should have polynomial coefficients (this is the case of all known

examples so far). Some of this evidence is described below.

We postulate a commuting symmetric 2nd order differential operator of the form

D = ∂2F2 + ∂F1 + F0,

where we allow F0, F1, F2 to be polynomials of degree not higher than 6.
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18 F. A. Grünbaum et al.

By imposing the necessary condition

kN(x, y)∗Dx = (kN(x, y)Dy)∗,

see (5), we deduce that with arbitrary constants r1, r2, r3 one has

F2(x) =
(

(Nr2 − r1)/(2N) r1x/(2N)

0 r2/2

)

,

as well as

F1(x) =
(

(Nr2 − r1)(1 − x)/N −(r1x2 + 2Nr2x − r1x − Nr2)/N

0 −r2(x + 1)

)

,

and finally

F0(x) =
(

−r1 + r3 r1x − r2

0 r2 + r3

)

.

When we look at one of the boundary conditions, we get that up to a nonzero scalar the

value of

F2(�)W(�)

is given by
(

((Nr2 − r1)e4� + Nr2�2)/(2N) r2�/2

r2�/2 r2/2

)

,

and from here it follows that r1, r2 both vanish. This implies that D is a scalar multiple

of the identity.

We have not given a proof that a nontrivial commuting differential operator with

more complicated coefficients may not exist. However, we are confident that this is the

case, since looking at the finite-dimensional block matrix given by E∗E we can verify

that the only block-tridiagonal matrix that commutes with it is the identity matrix.

Funding

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas grant

[PIP 112-200801-01533]; Secretaría de Ciencia y Tecnología - Universidad Nacional de Córdoba

number [30720150100255CB]; Fondo Nacional de Desarrollo Científico y Tecnológico [grant

number 3160646]; and Air Force Office of Scientific Research through [FA9550-16-1-0175].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019



Bispectrality and Time–Band Limiting 19

References

[1] Castro, M. and F. A. Grünbaum. “The algebra of differential operators associated to a family

of matrix-valued orthogonal polynomials: five instructive examples.” IMRN Int. Math. Res.

Not. 2006: 1–33.

[2] Castro, M. and F. A. Grünbaum. “Time-and-band limiting for matrix orthogonal poly-

nomials of Jacobi type.” Random Matrices Theory Appl. 6, no. 4 (2017): 1740001–12.

10.1142/S2010326317400019

[3] Duistermaat, J. J. and F. A. Grünbaum. “Differential equations in the spectral parameter.”

Commun. Math. Phys. 103 (1986): 177–240.

[4] Durán, A. J. and F. A. Grünbaum. “Orthogonal matrix polynomials satisfying second-order

differential equations.” Int. Math. Res. Not. 10 (2004): 461–84.

[5] Durán, A. J. and F. A. Grünbaum. “Matrix orthogonal polynomials satisfying second-order

differential equations: coping without help from group representation theory.” J. Approx.

Theory 148 (2007): 35–48.

[6] Durán, A. J. and M. D. de la Iglesia. “Second-order differential operators having several

families of matrix orthogonal polynomials.” Int. Math. Res. Not. (2008): Art. ID rnn 084, 24.

10.1093/imrn/rnn084.

[7] Grünbaum, F. A. “The limited angle reconstruction problem in computed tomography.” In

Proc. Symp. Appl. Math. 27, edited by L. Shepp, 43–61. AMS, 1982.

[8] Grünbaum, F. A., I. Pacharoni, and I. Zurrián. “Time and band limiting for matrix valued

functions, an example.” SIGMA 11 (2015): 044, 14 pages.

[9] Grünbaum, F. A., I. Pacharoni, and I. Zurrián. “Time and band limiting for matrix valued

functions: an integral and a commuting differential operator.” Inverse Problems 33, no. 2

(2017): 025005.

[10] Grünbaum, F. A., I. Pacharoni, and J. A. Tirao. “Matrix valued orthogonal polynomials of the

Jacobi type.” Indag. Math. 14, nos. 3, 4 (2003): 353–66.

[11] Grünbaum, F. A., L. Vinet, and A. Zhedanov. “Algebraic Heun operator and band-time

limiting.” To appear in Communications in Mathematical Physics. arXiv:1711.07862.

[12] Grünbaum, F. A. and M. Yakimov. “The prolate spheroidal phenomenon as a consequence

of bispectrality.” Superintegrability in Classical and Quantum Systems, 301–12. CRM Proc.

Lecture Notes 37. Providence, RI: Amer. Math. Soc., 2004.

[13] Jahn, K. and N. Bokor. “Revisiting the concentration problem of vector fields within a

spherical cap: a commuting differential operator solution.” J. Fourier Anal. Appl. 20 (2014):

421–51.

[14] Jamming, P., A. Karoui, and S. Spektor. “The approximation of almost time and band

limited functions by their expansion in some orthogonal polynomial bases.” Journal of

Approximation Theory. 212 (2016): 41–65 10.1016/j.jat.2016.08.002.

[15] Krein, M. G. “Infinite J-matrices and a matrix moment problem.” Dokl. Akad Nauk SSSR 69,

no. 2 (1949): 125–8.

[16] Krein, M. G. “Fundamental aspects of the representation theory of Hermitian operators with

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019



20 F. A. Grünbaum et al.

deficiency index (m, m).” Ukraine. Math. Z. 1 (1949), 3–66. American Math. Soc. Transl. (2) 97

1970: 75–143.

[17] Landau, H. “An overview on time and frequency limiting (J. F. Price ed.).” Fourier Techniques

and Applications, Boston, MA: Springer, 1985.

[18] Landau, H. J. and H. O. Pollak. “Prolate spheroidal wave functions, Fourier analysis and

uncertainty, II.” Bell Syst. Tech. J. 40, no. 1 (1961): 65–84.

[19] Landau, H. J. and H. O. Pollak. “Prolate spheroical wave functions, Fourier analysis and

uncertainty, III.” Bell Syst. Tech. J. 41, no. 4 (1962): 1295–336.

[20] Mehta, M. L. Random Matrices. 3rd ed. Elsevier Inc., Amsterdam: New York, 2004.

[21] Osipov A., V. Rokhlin, and H. Xiao. Prolate Spheroidal Wave Functions of Order Zero.

Mathematical Tools for Bandlimited Approximation. Springer, 2014.

[22] Pacharoni, I. and I. Zurrián. “Matrix Gegenbauer polynomials: the 2 × 2 fundamental cases.”

Constr. Approx. An International Journal for Approximations and Expansions. 43, no. 2

(2016): 253–271. doi:10.1007/s00365-015-9301-7.

[23] Pacharoni, I. and J. A. Tirao. “Matrix valued orthogonal polynomials arising from the

complex projective space.” Constr. Approx. 25, no. 2 (2007): 177–92.

[24] Pacharoni, I. and P. Román. “A sequence of matrix valued orthogonal polynomials associated

to spherical functions.” Constr. Approx. 28, no. 2 (2008): 127–47.

[25] Perline, R. K. “Discrete time–band limiting operators and commuting tridiagonal matrices.”

SIAM J. Algebraic Discrete Methods 8, no. 2 (1987): 192–5.

[26] Perlstadt, M. “A property of orthogonal polynomial families with polynomial duals.” SIAM J.

Math. Anal. 15, no. 5 (1984): 1043–54.

[27] Plattner, A. and F. Simons. “Spatiospectral concentration of vector fields on a sphere.” Appl.

Comput. Harmon. Anal. 36, no. 1 (2014): 1–22.

[28] Shannon, C. “A mathematical theory of communication.” Bell Tech. J. 27 (1948): 379–423 (July)

and 623–56 (Oct).

[29] Simons, F. J. and F. A. Dahlen. “Spherical Slepian functions on the polar gap in geodesy.”

Geophys. J. Int. 166 (2006): 1039–61.

[30] Simons, F. J., F. A. Dahlen, and M. A. Wieczorek. “Spatiospectral concentration on a sphere.”

SIAM Rev. 48, no. 3 (2006): 504–36.

[31] Slepian, D. “Prolate spheroidal wave functions, Fourier Analysis and Uncertainty, IV.” Bell

Syst. Tech. J. 43, no. 6 (1964): 3009–58.

[32] Slepian, D. “Prolate spheroidal wave functions, Fourier Analysis and Uncertainty, V.” Bell

Syst. Tech. J. 57, no. 5 (1978): 1371–430.

[33] Slepian, D. “Some comments on Fourier analysis, uncertainty and modeling.” SIAM Rev. 25,

no. 3 (1983): 379–93.

[34] Slepian, D. and H. O. Pollak. “Prolate spheroidal wave functions, Fourier analysis and

uncertainty, I.” Bell Syst. Tech. J. 40, no. 1 (1961): 43–64.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019

https://dx.doi.org/10.1007/s00365-015-9301-7


Bispectrality and Time–Band Limiting 21

[35] Tracy, C. A. and H. Widom. “Level spacing distribution and the Airy kernel.” Phys. Lett. B 305

(1993): 115–8.

[36] Tracy, C. A. and H. Widom. “Level spacing distribution and the Bessel kernel.” Commun.

Math. Phys. 161 (1994): 289–309.

[37] Walter, G. “Differential operators which commute with characteristic functions with appli-

cations to a lucky accident.” Complex Variables 18 (1992): 7–12.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny140/5040784 by guest on 21 June 2019


	Bispectrality and Time--Band Limiting: Matrix-valued Polynomials
	1 Introduction
	2 Preliminaries
	3 The Symmetric Bispectral Problem
	4 Examples
	4.1 Scalar cases
	4.2 Matrix Gegenbauer weight
	4.3 Completing the proof of the result stated in [2]
	4.4 An example violating condition (9)
	4.5 An example showing that bispectrality may not be enough to produce a commuting differential operator



