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Abstract

Male chronic alcohol abuse causes testicular failure and infertility. We analyzed the effects of moderate sub-chronic alcohol intake 
on sperm morphology, capacitation, fertilization and sperm head decondensation. CF-1 male mice were administered 15% ethanol in 
drinking water for 15 days; control mice received ethanol-free water. Similar patterns of tyrosine phosphorylation were observed in 
capacitated spermatozoa of control and treated males. Percentage of hyperactivation (H) and spontaneous (SAR) and progesterone-
induced (IAR) acrosome reaction significantly decreased at 120 and 150 min of capacitation in treated males compared to controls 
(H: 14.1 ± 2.5 vs 23.7 ± 2.6, P < 0.05; SAR-T120 min: 17.9 ± 2.5 vs 32.9 ± 4.1, P < 0.01; IAR-150 min: 43.3 ± 3.5 vs 73.1 ± 1.1, 
P < 0.001, n = 6). During in vitro fertilization (2.5, 3.5 and 4.5 h post-insemination), there was an increased percentage of fertilized 
oocytes (with a decondensed sperm head and one or two pronuclei) in treated males (P < 0.001, n = 7). After 60 min of in vitro 
decondensation with glutathione plus heparin, the percentage of decondensed sperm heads was significantly higher in treated males 
than in controls (mean ± s.d.: 57.1 ± 5.6 vs 48.3 ± 4.5, P < 0.05, n = 5). The percentage of morphologically normal sperm heads was 
significantly decreased in treated males with respect to controls (P < 0.001, n = 9). These results show that short-term moderate 
alcohol consumption in outbred mice affect sperm morphology, hyperactivation, acrosomal exocytosis, and the dynamics of in vitro 
fertilization and in vitro sperm nuclear decondensation.
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Introduction

It is widely known that alcohol abuse produces a variety 
of medical, psycho-sociological and physiological 
disorders at different levels, including the reproductive 
system (Canteros et  al. 1995, Cebral et  al. 1997, 
1998a,b, 2011, Lee et al. 2010). Numerous studies have 
shown the deleterious effects of chronic heavy alcohol 
consumption on testicular function and spermatogenesis 
(Shayakhmetova et al. 2013, 2014), on testosterone serum 
levels (Salonen et al. 1992, Muthusami & Chinnaswamy 
2005, Lee et  al. 2010, Jensen et  al. 2014, Sliwowska 
et  al. 2016) and on hypothalamic-pituitary-testicular 
axis function (Cicero & Badger 1977, Dees et al. 1990, 
Välimäki et al. 1990, Salonen et al. 1992, Zhang et al. 
2005). Clinical manifestations in alcoholic men include 
hypogonadism, testicular atrophy, feminization, sexual 
dysfunction (Van Thiel et  al. 1990, Van Heertum & 
Rossi 2017), infertility and delayed sexual maturation 

(Anderson et  al. 1989). Many studies have suggested 
that one of the most important negative effects of 
chronic alcohol ingestion occur in sperm parameters 
(Rahimipour et al. 2013,Condorelli et al. 2015).

Reproductive function in the ethanol-disrupted male 
depends on alcohol concentration and duration of 
ethanol exposure, issues that remain controversial. A 
decrease in the quality of semen parameters has been 
consistently documented in heavy consumers of alcohol 
(Martini et al. 2004, Muthusami & Chinnaswamy 2005, 
Gaur et  al. 2010, Hansen et  al. 2012). On the other 
hand, the effects of low to moderate consumption of 
alcohol do not appear to be clinically significant. 
Several studies have shown no effect in semen 
parameters with moderate alcohol consumption (Stutz 
et al. 2004, Van Heertum & Rossi 2017). de Jong et al. 
(2014) failed to show a significant relationship between 
alcohol consumption and not only sperm parameters 
but also pregnancy outcome. Others have observed a 
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positive effect of male alcohol intake on fertilization 
rate (Firns et  al. 2015). Regarding duration of alcohol 
exposure, multiple studies have showed altered sperm 
morphology with regular alcohol drinking, correlating 
with low fecundity (Van Heertum & Rossi 2017). 
Chronic consumption of 5% ethanol for 20  weeks or 
6% ethanol for 5 weeks (that produced 45% ethanol-
derived calories (EDC)) led to low caudal sperm content 
in rats (Anderson et  al. 1983, Willis et  al. 1983). 
Consumption of 5% ethanol for 6  weeks induced 
increased percentage of morphologically abnormal 
spermatozoa (Abel & Moore 1987). Most of the studies 
that have analyzed the effects of alcohol intake on 
testicular and sperm parameters have used chronic 
alcohol intake paradigms and alterations in murine male 
fertilizing ability following short-term moderate ethanol 
consumption remain unclear. We have previously 
shown that chronic ingestion of 5% alcohol (in drinking 
water) for 30  days by hybrid (C57/Bl × CBA) F1 adult 
male mice did not affect in vitro fertilization (IVF; Cebral 
et al. 1997). Considering that the CF-1 outbred mouse 
has a high genetic polymorphism and variability in 
terms of biological responses, this mouse colony could 
provide a feasible model to identify effects on sperm 
function and fertility that resemble those observed in 
alcoholic men who consume alcohol in a sub-chronic 
and moderate manner.

The cellular mechanisms underlying the 
morphological and physiological changes in 
spermatozoa and fertility following male alcohol 
ingestion have been little studied. Alcohol consumption 
may affect, directly or indirectly, spermatogenesis, 
differentiation/elongation of spermatids, compaction of 
sperm chromatin and sperm epididymal maturation, and 
thus, negatively alter capacitation, hyperactivation and 
acrosome reaction and ulterior events of fertilization. 
Both acute and chronic alcohol consumption have 
been shown to affect sperm chromatin/DNA integrity 
and apoptosis (Talebi et  al. 2011, Rahimipour et  al. 
2013), and result in the production of sperm with a less 
compacted chromatin, suggesting that these alterations 
could be one of the possible causes of infertility due to 
alcohol consumption.

Considering the lack of information regarding the 
effect of sub-chronic alcohol ingestion on the sperm 
fertility, the aim of this paper was to analyze its effect 
on sperm capacitation and associated functional 
parameters, on the dynamics of oocyte penetration 
and sperm head decondensation, and on its potential 
relationship with altered sperm morphology, in an 
outbred adult mouse model. Our hypothesis is that 
moderate alcohol intake for a short period of time 
negatively affects sperm hyperactivation and acrosome 
exocytosis and that the kinetics of in vitro oocyte 
fertilization is altered by changes in time course of 
sperm head decondensation.

Materials and methods

Animals

Outbred CF-1 sexually mature mice (Mus musculus, 
CrlFcen:CF1, Mouse Genome Informatic (MGI)), produced 
by FCEN (School of Exact and Natural Sciences) of the 
University of Buenos Aires (Buenos Aires, Argentina) were 
housed by sex in groups of three to four mice per cage. They 
were kept in controlled room temperature (22°C) and light 
cycle (14 h light/10 h dark) and were fed commercial mouse 
chow (Alimento ‘Balanceado Cooperación Rata-Ratón’ from 
the Asociación Cooperativa de Alimentos S.A. Buenos Aires, 
Argentina) and tap water ad libitum. At the outset of ethanol 
treatment, CF-1 male and female mice were 60 days old, with 
average body weight between 27 and 30 g.

Ethanol treatment and assessment of ethanol intake and 
blood alcohol concentration

These experiments were carried out in accordance to 
regulations and ethical standards of Institutional Animal Care 
and Use Committee (IACUC, protocol Nr 57), from Facultad 
de Ciencias Exactas y Naturales, Universidad de Buenos Aires 
(FCEN-UBA Argentina), and in accordance with the guidelines 
of the National Institutes of Health (NIH).

Adult male mice were given access to 15% (v/v) ethanol 
in drinking water for 15  days (treated males) ad libitum. In 
a previous study, conditions for short-term moderate alcohol 
ingestion in the male were established by determining 
the ethanol concentration producing an adverse effect on 
morphology and functionality of epididymal spermatozoa. 
5, 10 or 15% ethanol was administered in drinking water 
for 15 days to CF-1 adult mouse. The concentration showing 
deleterious effects on sperm morphology and testes was 
15% (data not shown). Control males received ethanol-free 
drinking water ad libitum. To monitor potential ethanol-related 
nutritional effects on body weight of treated mice, a group of 
animals were pair-fed for 15 days with standard commercial 
food and the same daily percentage of ethanol-derived calories 
(% EDC) in drinking water as in treated animals. Water-control 
and pair-fed control mice consumed the same amount of 
liquid and food during the 15 days of the experiment, and no 
changes in body weight were detected between both groups 
at the end of treatment. Thus, water-control was chosen as the 
control group for subsequent experiments.

Control and treated males were weighed at the beginning 
and at the end of ethanol treatment. Every morning, the 
drinking volume and the quantity of food consumed were 
recorded to monitor the amounts of daily liquid, food, calorie 
intake (estimated by caloric value of the diet used (3976 kcal/
kg) and EDC, estimated as 7.1 kcal/g). From these data, 
the mean calorie intake and the percentage of EDC were 
estimated for each experimental group. At least 5 mice per 
experimental group were used in each experiment. On the 
morning of day 15 of ethanol administration, CF-1 males were 
killed by cervical dislocation and trunk blood was collected 
into heparinized Eppendorf tubes. Blood samples were held 
at 4°C for ethanol measurement using a commercial kit  
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(NAD/NADH enzymatic assay, sensitivity 50.1 mg/dL), within 
4 h of collection. Blood alcohol concentration (BAC) was 
expressed as milligrams per deciliter.

Epididymal sperm preparation

Male mice were killed by cervical dislocation on the morning 
of day 15 of ethanol treatment. The epididymides of each 
male were dissected and both caudae were removed and 
transferred into a dish containing 400 µL of In Vitro Fertilization 
Medium (IVFM: 99.3 mmol/L NaCl, 2.70 mmol/L KCl, 
0.50 mmol/L MgSO4 .6H2O, 1 mg/mL glucose, 0.31 mmol/L 
Na2HPO4.2H2O, 1.80 mmol/L CaCl2.H2O) (Fraser & Drury 
1975), without bovine serum albumin (BSA). pH of the 
medium was adjusted to 7.3 with 25.07 mmol/L NaOH, and 
0.0055 mg sodium pyruvate and 0.35 mL L-Na-lactate (60% 
syrup) were added to a final volume of 100 mL. Spermatozoa 
were obtained by making small incisions in caudae tissue and 
allowing the dense mass of spermatozoa to disperse for 5 min 
at 37°C. Tissue fragments were removed; the sperm suspension 
was homogenized, an aliquot of spermatozoa was collected 
to analyze sperm count and morphology, and spermatozoa 
were then incubated in capacitating conditions (supplemented 
with 3 mg/mL of BSA, Sigma Chemical), for 120 min at a 
final concentration of 2 × 106 spermatozoa/mL, according to 
Visconti et  al. (1995). Another aliquot (2 × 106 spermatozoa) 
was kept in non-capacitating conditions (without BSA).

Protein extraction and immunodetection of 
phosphotyrosine residues after capacitation

After capacitation, sperm suspensions from 5 control and 
5 treated males were centrifuged at 2800 g for 1 min. 
Supernatants were discarded and pellets washed once 
with 1 mL PBS, for 2 min at 5000 rpm at 37°C. Supernatants 
were discarded leaving the cells in about 20 µL. Following 
addition of enough 6× Laemmli’s loading buffer, containing 
5% β-mercaptoethanol and Bromophenol blue, samples were 
heated at 100°C, for 5 min and centrifuged at 11,200 g for 
5 min. Supernatants were kept at −20°C until further processed.

Sperm extracts, equivalent to 2 × 106 cells, were analyzed 
in 10% SDS-PAGE, with a 4% stacking gel, according to 
Laemmli (1970), at a constant current of 25 mA per gel, at 
room temperature. Molecular weight markers were loaded in 
one of the lanes.

Following electrophoresis, proteins were transferred onto 
a PVDF membrane, according to the method of Towbin 
et  al. (1979), at a constant voltage of 110 V, for 1 h at 4°C. 
Transfer efficiency was checked by Ponceau Red staining. 
Phosphotyrosine containing bands were detected using 
an anti-phosphotyrosine antibody (Upstate Biotechnology 
Incorporated, NY, EEUU, Cat # 05-321). Following incubation 
in blocking solution (0.1% BSA, 0.4% Tween-20, 1 mM EDTA 
in TBS), for 1 h, the membrane was incubated in monoclonal 
anti-phosphotyrosine antibody at a 1:1000 dilution in blocking 
solution, for 1 h, at room temperature. After 4 washes, 5 min 
each, with PBS-0.1% Tween-20, the membrane was incubated 
with second antibody (peroxidase-labeled rabbit mouse anti 
IgG, in a 1:5000 dilution), for 1 h, at room temperature, in 

blocking solution. The membrane was finally washed as 
previously described and reactive bands were detected using 
an ECL kit (Amersham Life Science).

Sperm morphology determination

To evaluate sperm head and flagellum morphology, 10 µL of 
caudal sperm suspension was placed on a slide. Immediately 
after drying, slides were fixed for 15 min in 5% formaldehyde 
in phosphate buffer (v/v), washed in distilled water and stained 
with the Spermac staining procedure (Spermac Stain Enterprises, 
Onderstepoort, South Africa), according to the manufacturer’s 
instructions. Slides were examined at ×100 under an Axiophot 
Zeiss microscope (Carl Zeiss) equipped with a camera driven 
by Olympus DP71 using an image analyzer Olympus cell 
Sens software (Olympus). Head morphology, acrosomal 
and post-acrosomal regions, cytoplasmic droplet, midpiece 
and flagellum were examined. The criteria for abnormal 
sperm morphology used were as follows: (1) abnormal head: 
increased or decreased size, flat head, partial or completely 
abnormal shape (round, small, large, double head), and/or 
abnormal acrosome (acrosome more than 30% smaller or 70% 
larger than sperm head); (2) neck and midpiece defects: debris 
around the neck, thickened neck, midpiece measuring more 
than 30% of spermatozoa; (3) abnormal flagellum: double, 
coiled or broken flagellum, incorrect insertion of flagellum, 
presence of a cytoplasmic droplet. The mean percentage ± s.d. 
(over a total 1000 spermatozoa evaluated/mouse) of abnormal 
sperm heads, neck-midpieces and flagella was calculated for 9 
control and 9 treated males (Cebral et al. 2011).

Sperm motility and hyperactivation assessment

Sperm motility and hyperactivation were evaluated at 0, 
60 and 120 min of in vitro capacitation. Immotile, motile 
and hyperactivated spermatozoa were determined using 
a Neubauer chamber. Motility was expressed as the 
mean percentage of motile spermatozoa/total number of 
spermatozoa, and hyperactivation was expressed as the mean 
percentage of hyperactivated spermatozoa over the total 
number of motile spermatozoa ± standard error of the mean 
(s.e.m.). 6 males were evaluated in each group.

Acrosomal reaction analysis

The HOS-Spermac assay allows simultaneous detection of 
acrosome-reacted spermatozoa and motile spermatozoa. 
Briefly, different aliquots of sperm suspension were collected 
every 60 min from time zero (t = 0) up to 120 min of capacitation 
(time course of spontaneous acrosomal reaction). At 120 min, 
15 µM progesterone (final concentration) (Sigma Chemical 
Company) was added to the sperm suspension and incubated for 
an additional 30 min to evaluate induced acrosomal exocytosis 
at 150 min. At each time point, acrosomal status (presence 
(blue band stained in sperm head) or absence of acrosome 
(pink head)) was evaluated by the HOS-Spermac method in 
motile spermatozoa (Herrero et  al. 1998). Briefly, 20 µL of 
the sperm suspensions was transferred to Eppendorf tubes 
containing 200 µL hypoosmotic medium (HOSM = 0.735 g 
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sodium citrate and 1.351 g fructose in 100 mL distilled water) 
and incubated for one hour at 37°C. Then, spermatozoa were 
pelleted by centrifugation at 500 g for 5 min and resuspended 
in 20 µL HOSM. Ten microliters of this suspension were placed 
on a microscope slide and allowed to dry. Immediately after 
drying, slides were fixed for one hour in 5% formaldehyde 
in phosphate buffer (v/v), washed with distilled water, stained 
with the Spermac procedure and allowed to dry. Slides 
were examined in a bright field microscope at ×100, under 
immersion. Viability and the presence of the acrosomal cap 
were assessed in at least 200 spermatozoa per control and 
treated males (6 mice per group). Results were expressed as 
mean percentage reacted spermatozoa ± s.e.m.

In vitro decondensation

After 120 min of capacitation, in vitro sperm nuclear 
decondensation was induced in the presence of 100 µmol/L 
glutathione (GSH) plus 4.6 µmol/L heparin (Hep, 13,500 kDa, 
170 IU/mg) for 30 and 60 min. Controls consisted of parallel 
incubations with GSH or heparin alone. After each time 
period, a 30-µL aliquot of the sperm suspension was removed 
and fixed with an equal volume of 2.5% glutaraldehyde in 
phosphate-buffered saline (PBS). Aliquots of 5 µL spermatozoa 
were stained (Hoechst 33342, 0.5 μg/mL, Sigma) or not, 
and transferred onto a slide to assess nuclear status under 
phase contrast and fluorescence microscopy (Olympus CH2 
microscope at 40×). Spermatozoa were classified as unchanged 
(U), moderately decondensed (M) or grossly decondensed 
(G) (Sanchez et  al. 2013). At least 200 cells were evaluated 
in each category. Total sperm decondensation achieved was 
determined as the total % M plus % G (% M+G) and data were 
expressed as mean % values ± standard deviation of the mean 
(s.d.m.) for 5 males per group.

In vitro fertilization (IVF)

Male mice were killed by cervical dislocation on the morning 
of day 15 of ethanol treatment, to perform IVF-experiments 
(Cebral et  al. 1997). The epididymides of one male were 
dissected and the caudae placed into 300 μL drop of IVFM-
3% BSA, overlaid with mineral oil to collect the sperm 
suspension, as described earlier. Spermatozoa were then 
incubated for 90 min at 37°C and 5% CO2 in air, to allow 
for capacitation.

Adult female mice were induced to superovulate with 5 IU 
of pregnant mare’s serum gonadotrophin (PMSG, Sigma) given 
at 18:00 h on day 12 of ethanol treatment, and 5 IU of human 
chorionic gonadotrophin (hCG, Sigma) 48 h later. Females 
were killed by cervical dislocation 16–17 h after hCG injection 
when ethanol treatment was stopped (day 15 of treatment). 
Both oviducts were removed and placed in PBS. One oocyte-
cumulus complex (OCC) was released from each ampulla into 
a 50-µL drop of IVFM-BSA (one cumulus mass per drop) and 
overlaid with mineral oil.

One OCC from one female was inseminated with 1–2 × 105 
spermatozoa/mL from a control male, and the second OCC of 
the same female was inseminated with the same concentration 
of spermatozoa from a treated male. With this experimental 

design, 7 IVF-experiments were performed, with a total of 3 
females and one control and one ethanol-treated male per 
experiment, and with a final number of 21 females and 7 
control and 7 treated males.

The timing of IVF events was evaluated in control and 
treated males after examination of oocytes at 2.5, 3.5 
and 4.5 h of in vitro insemination. Oocytes were washed 
to remove cumulus cells and adherent spermatozoa and 
were then fixed with 2% paraformaldehyde and incubated 
for 10 min with Hoechst 33342 (0.5 µg/mL) in PBS. After 
washing (PBS), oocytes were examined under phase 
contrast and fluorescence microscopy (Nikon ActurusXT 
microdissection microscope) and classified as follows 
(Fig.  1): (a) fertilized oocytes: Telophase II (Te II) oocytes 
with second polar body (2PB’s) and a decondensed head in 
the ooplasm (DH); oocytes with 2PB’s + female pronucleus 
(fPN) + male pronucleus (mPN); (b) unfertilized oocytes: 
metaphase II-arrested oocytes (Me II); Me II-arrested oocytes 
with adhered spermatozoa (As); oocytes with 2PB’s and fPN 
(spontaneously activated oocytes with second polar body 
and one female pronucleus); fragmented oocytes.

The number of fertilized and unfertilized oocytes, the 
number of oocytes with a decondensed sperm head and the 
number of oocytes with 2PB’s and 2PN’s were recorded for 
each control and treated male at each time point studied. 
Results were expressed as the mean % oocytes in each 
category ± s.d.m.

Statistical analyses

Reported values of control and treated derived samples were 
expressed as mean ± standard deviation of the mean (s.d.m.) or 
standard error of the mean (s.e.m.), as stated in text. Differences 
between group means were statistically analyzed by one-way 
analysis of variance (ANOVA) and Student’s t test. Differences 
between groups were considered statistically significant when 
P < 0.05. Analyses were performed with GraphPad InStat 
v2.05a (GraphPAD Software).

Results

Male mouse body weight, food and liquid 
consumption and blood alcohol concentration after 
sub-chronic ethanol treatment

Given that changes in body weight and patterns of liquid 
and food intake have not been previously monitored in 
a model of male sub-chronic 15% alcohol intake, and 
since ethanol consumption could alter these parameters, 
they were monitored daily for the whole duration of the 
treatment. Treated males consumed significantly lower 
quantities of food than controls (P < 0.05, Table 1), but the 
total calorie intake was similar in both groups. Treated 
males consumed 30 g/kg/day ethanol and had 30.3% 
EDC (Table 1). No differences in body weight between 
treated males and controls were registered either at the 
beginning or at the end of ethanol treatment. The level of 
BAC in treated males was 15–60 mg/dL, and no alcohol 
was detected in control males.
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Figure 1 CF-1 murine oocyte evaluation after in vitro fertilization. After in vitro fertilization (IVF), oocytes were examined under phase contrast 
and fluorescence microscope and classified as: telophase oocytes (Te II) with second polar body and a decondensed sperm head in the ooplasm 
(2PB’s + Te II + DH); oocytes with female and male pronucleus (2PB’s + fPN + mPN); metaphase II-arrested oocytes (Me II); Me II-arrested oocytes 
with adhered spermatozoa (Me II + As); spontaneously activated oocytes (2PB’s + fPN) and fragmented oocytes. First column: nuclear Hoechst 
fluorescence; second column: phase contrast; third column: merge.
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Capacitation, hyperactivation and acrosomal exocytosis 
after sub-chronic alcohol consumption

Up to date, there is no evidence on the effects of sub-
chronic moderate alcohol consumption on sperm 
capacitation and associated parameters in the adult mouse 
model. Initially, we analyzed protein phosphorylation 
on tyrosine residues, considered by several authors as 
a possible indicator of sperm capacitation (Jabbari et al. 
2009). Accordingly, we analyzed the pattern of tyrosine 
phosphorylation in spermatozoa from alcohol-treated 
mice and controls, following incubation in capacitating 
conditions. Figure 2A shows a Western blot analysis of 
the protein pattern for phosphotyrosine expression, after 
120 min of incubation under capacitating conditions. 
A different pattern of phosphorylated bands could be 
observed between non-capacitated and capacitated 
spermatozoa from both control and treated groups. 
However, the same bands of MW p95/116 (hexokinase), 
72/73, 50/51, 26/27 and 20/21 kDa, were observed 
under capacitating conditions in both control and 
treated animals, indicating that alcohol consumption 
did not affect the expression of phosphorylated proteins 
after capacitation.

Although we did not find noticeable differences 
in the pattern of protein tyrosine phosphorylation 
between control and treated animals, we decided 
to study hyperactivation and acrosome reaction, 
both capacitation-related phenomena, since other 
factors could be involved in their regulation. We first 
analyzed sperm motility following incubation in 
vitro in capacitating conditions. In treated males, the 
percentage of motile spermatozoa was not significantly 
different than that of control animals (Fig. 2B). However, 
hyperactivation was significantly reduced in spermatozoa 
from treated males as compared to controls, at 60 and 

120 min of capacitation (T60 min: P < 0.05, T120 min: 
P < 0.05, Fig. 2C).

Subsequently, we analyzed acrosomal exocytosis 
in motile spermatozoa in both groups. The percentage 
of spermatozoa that underwent spontaneous loss of 
acrosomal content was significantly reduced in treated 
males at 120 and 150 min of capacitation as compared to 
control males (T120 min: P < 0.01; T150 min: P < 0.001, 
Fig. 2D). In addition, while control-derived spermatozoa 
showed an increase (P < 0.05) in acrosomal exocytosis 
after exposure to 15 µM progesterone at 150 min of 
capacitation, the percentage acrosome reaction in 
spermatozoa from treated males was significantly 
reduced in comparison to control value (P < 0.001, 
Fig. 2D).

In vitro oocyte penetration and sperm head 
decondensation kinetics after sub-chronic 
alcohol consumption

IVF studies allow for a detailed analysis of sperm 
penetration and kinetics of head decondensation at 
early post-insemination times. The frequencies of 
fertilized and unfertilized oocytes at 2.5, 3.5 and 4.5 h 
post-in vitro insemination were studied following 
15  days of 15% alcohol administration to CF-1 male 
mice. The mean percentage of fertilized oocytes (with 
2PB’s and female PN plus decondensed head or with 
2PNs, Fig.  1) significantly increased from 2.5 to 3.5 h 
but not from 3.5 to 4.5 h after in vitro insemination, both 
in control and treated males. However, at each IVF time 
point evaluated, the percentage of fertilized oocytes 
was significantly higher in treated vs control males 
(P < 0.001, Fig. 3A). Consequently, at each time point, 
the percentage of unfertilized oocytes was significantly 
reduced in treated vs control males (P < 0.001, Fig. 3B).

To elucidate whether the increased percentage of 
fertilized oocytes of treated males was due to a change in 
the time-pattern of sperm decondensation, we analyzed 
sperm decondensation kinetics after IVF in both control 
and treated groups. The percentage of fertilized oocytes 
with a decondensed head (Fig. 1) significantly increased 
in treated males at 2.5 h of in vitro insemination 
(P < 0.001), but reduced at 3.5 h, when compared to 
control animals (P < 0.001, Fig.  4A). However, at 3.5 
and 4.5 h after insemination, the mean percentage of 
fertilized oocytes with 2PB’s and 2PN’s (Fig. 1) in treated 
males was significantly increased compared to control 
males (P < 0.001, Fig. 4B).

We have previously shown (Sanchez et  al. 2013) 
that mouse sperm decondensation can be achieved, in 
vitro, using glutathione (GSH) and heparin and, thus, we 
further analyzed in vitro decondensation kinetics in both 
control and treated males. Figure 5 shows the percentage 
of decondensed spermatozoa from control and treated 
males in the presence of GSH and/or 4.6 µM heparin. 
As expected, the addition of GSH or heparin alone did 

Table 1  Alcohol intake pattern and body weight in control and 
treated males.

 Control males 
(n = 15)

 
Treated males 

(n = 15)

Food intake (g/kg/day) 200.0 ± 16.9 163.0 ± 11.2*
Liquid intake (mL/kg/day) 222.5 ± 33.8 200.1 ± 19.7
Food calories (kcal/kg/day) 610.1 ± 50.7 479.0 ± 33.6*
Liquid calories (kcal/kg/day) – 213.1 ± 20.9
Total calories (kcal/kg/day) 610.1 ± 51.7 692.0 ± 54.6
Ethanol intake (g/kg/day) – 30 g/kg/day
% EDC 30.3%
Body weight
Initial weight (g) 34.4 ± 0.56 34.1 ± 0.8
Final weight (g) 35.2 ± 0.5 34.0 ± 1.0

Mean daily food and liquid intake (g, mL/kg/day) and body weight (g) 
were assessed at the beginning, during and at the end of sub-chronic 
15% ethanol administration, in both, control (no ethanol 
administration) and treated males. Energy intake was calculated from 
food and ethanol consumption (kcal/kg/day). Mean ethanol intake is 
expressed in g/kg/day and % EDC (percentage of ethanol-derived 
calories). Values are expressed as mean ± s.e.m.
*P < 0.05 vs control males, Student’s t test, 15 animals per group.
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not produce decondensation, but GSH plus heparin 
induced sperm decondensation in both control and 
treated males. At 60 min of incubation, the percentage 
of decondensed spermatozoa from treated males was 
significantly increased as compared to control animals 
(P < 0.05, Fig. 5).

Effects of sub-chronic alcohol consumption on 
sperm morphology

Given that the changes in sperm functional parameters, 
oocyte penetration and sperm decondensation during 
fertilization could result from morphological alterations 
of the sperm head, we evaluated changes in acrosome 
morphology, head and midpiece shape and assessed the 
frequency of abnormal spermatozoa after sub-chronic 
ethanol intake. In contrast to morphologically normal 
sperm heads (Fig.  6A), an abnormal neck insertion 
(Fig.  6B), a sperm head with abnormal (smaller or 
absent) acrosome (Fig. 6C), a decreased head size and 
altered head shape (round; Fig. 6C) and a spermatozoon 
with cytoplasmic droplet and abnormal head shape 
(Fig.  6D) were recorded as morphological abnormal. 
Treated males had a significantly higher percentage 
of abnormal sperm head morphology as compared to 
controls (P < 0.001, Table 2).

Discussion

The aim of the present study was to analyze the effects 
of short-term moderate alcohol consumption on sperm 

Figure 2 Sperm capacitation following sub-chronic alcohol 
consumption in CF-1 mice. (A) Analysis of tyrosine protein 
phosphorylation in spermatozoa from control and treated males. 
Protein tyrosine phosphorylation of caudal epididymal mouse sperm 
was evaluated after incubating 2 × 106 spermatozoa/mL in 
capacitating conditions for 120 min. Proteins were extracted and 
separated by 10% SDS-PAGE and identified using a specific 
anti-phosphotyrosine antibody. Both control and treated males 

showed a similar pattern of protein phosphorylation when sperm 
cells were incubated under capacitating conditions for 120 min. Left 
lane: molecular weight markers. T0: non-capacitated spermatozoa. A 
representative Western blot membrane is shown. The experiment was 
performed 5 times, with similar results. A total of 5 animals per group 
were used. (B and C) Motility and hyperactivation during capacitation 
in control and treated males. Murine spermatozoa were recovered 
from epididymal caudae of control (continuous line) and treated 
males (dotted line) and sperm motility % (B) and hyperactivation % 
(C) were determined. Values are expressed as mean ± standard error 
of the mean (s.e.m.). Percentages of hyperactivated spermatozoa were 
significantly diminished in treated males vs controls at 60 and 
120 min of capacitation (*P < 0.05, 6 males per group, Student’s t 
test). (D) Spontaneous and induced acrosomal exocytosis in control 
and treated males. The presence or absence of acrosomal vesicle was 
evaluated at 0, 60, 120 and 150 min of capacitation by the HOS-
SPERMAC procedure, as indicated in Materials and methods. At 
120 min, progesterone (15 µM final concentration) was added to 
sperm incubation to induce acrosome reaction (150 + P). Acrosome 
reaction % was calculated as number of acrosome-reacted sperm 
over total number of vital spermatozoa (hypoosmotic test). Results are 
expressed as mean ± s.e.m. Spermatozoa from treated males (dotted 
line) presented a significant decrease in spontaneous acrosome 
reaction at 120 and 150 min of capacitation (**P < 0.01) and 
progesterone-induced acrosome reaction at 150 min (***P < 0.001) as 
compared to control values (continuous line) (6 males per group, 
Student’s t test).
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capacitation and IVF events in the outbred adult mouse, 
with emphasis on sperm head decondensation.

The effects of alcohol consumption in humans are not 
easy to assess because of the difficulties in comparison 
of populations, mainly due to variations in the pattern of 
alcohol intake. Because of intrinsic differences between 
humans and mice, no single mouse model can represent 
all features of a complex human trait such as alcoholism. 
Our results in an outbred mouse model demonstrated 
that short-term moderate ethanol consumption leads to 
altered sperm fertility, in accordance with other ethanol 
mouse models (Anderson et  al. 1983, Morton et  al. 
2014, Wieczorek et al. 2015). One important feature of 
the present ethanol intake model in drinking water is 
that CF-1 mice reliably drank ethanol to moderate BAC 
levels (range 15–60 mg/dL) and consumed 30 g ethanol/
kg body weight daily, similar to other paradigms of 

ethanol drinking intake with 10, 20 or 30% ethanol that 
produce an average BAC of approximately 1.6 mg/mL 
(Rhodes et al. 2005). With this value of moderate BAC 
levels, we found changes in fertilization outcome even 
though other authors did not find effects on reproductive 
parameters (Ogilvie et  al. 1997, Bonthius et al. 2002, 
Zhang & Chong 2016). Furthermore, although the value 
of 30.3% EDC obtained was relatively low compared 
to value ranges previously reported (Willis et  al. 
1983, Abel & Moore 1987, Shirai & Ikemoto 1992, 
Mittleman et al. 2003), we observed not only an effect 
on fertilization but also altered sperm morphology and 
capacitation parameters.

In addition to ethanol concentration and routes of 
administration, ethanol effects on male reproductive 
function depend on the duration of exposure. In this 
work, we evaluated whether a moderate 15% ethanol 
concentration in the drinking water administered for 
15 days had a deleterious effect on sperm morphology, 

Figure 4 Sperm head decondensation and pronuclear formation 
during in vitro fertilization in control and treated males. At 2.5, 3.5 
and 4.5 h after insemination, fertilized oocytes stained with Hoechst 
33342 were analyzed for nuclear evaluation, as described in 
Materials and methods. (A) Kinetics of sperm head decondensation in 
each group was determined by calculating the percentage of oocytes 
with 2PB’s, female pronucleus and a decondensed sperm head. (B) 
Kinetics of pronuclear formation in each group was determined by 
calculating the percentage of oocytes with 2PB’s and 2PN’s. 
***P < 0.001 vs control males, Student’s t test, n = 7 males. Results are 
expressed as mean ± s.d.m.

Figure 3 Frequency of fertilized and unfertilized oocytes after IVF in 
control and treated males. (A) Fertilized oocytes: oocytes with 2PB’s, 
female PN and a decondensed sperm head. At 2.5, 3.5 and 4.5 h 
after insemination, percentage of fertilized oocytes in the alcohol-
treated group was significantly increased with respect to control 
(***P < 0.001, Student’s t test). (B) Unfertilized oocytes: metaphase 
II-arrested oocytes, activated oocytes with 2PB’s and a female 
pronucleus or with adhered spermatozoa. Percentage of unfertilized 
oocytes in the alcohol-treated group was significantly reduced with 
respect to control (***P < 0.001, Student’s t test). Different letters 
above group bars denote significant differences between groups (A vs 
B: P < 0.01, ANOVA, Student–Newman–Keuls test; 7 males per 
group). Results are expressed as mean ± standard deviation of the 
mean (s.d.m.).
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sperm functional parameters and IVF dynamics. 
Considering that during mouse spermatogenesis 
(35  days duration) (Creasy & Chapin 2014), the 
spermatid elongation phase is about 8.5 days long , and 
that it takes an additional 4–5 days for sperm to reach 
the caudal epididymis (De Grava Kempinas & Klinefelter 
2014), epididymal caudal spermatozoa were exposed to 
ethanol intake during the spermatid elongation phase 
in the seminiferous epithelium for about 10  days and 
during sperm maturation for an additional 5  days of 
epididymal transit, accounting for a 15-day ethanol 
exposure. Since chromatin head condensation takes 
place both during spermatid elongation in the testis and 

epididymal sperm maturation (Fujii & Imai 2014), the 
present short period of ethanol exposure could affect 
sperm head condensation.

The mechanisms involved in ethanol-induced infertility 
regarding alterations in sperm motility, capacitation 
or nuclear decondensation during IVF remain poorly 
understood (Pajarinen et  al. 1996, Auger et  al. 2001, 
Martini et al. 2004, Muthusami & Chinnaswamy 2005). 
Contrary to other reports found in literature, in which 
a decrease in sperm motility from alcohol-treated 
animals is usually described (Condorelli et  al. 2015), 
in the present model, ethanol ingestion was not able to 
reduce sperm motility. However, in treated males, there 
was a lower percentage of hyperactivated spermatozoa 
than in controls at 60 and 120 min of capacitation. 
Such an observation would indicate that sperm from 
treated males show alterations in the biochemical 
and physiological events, leading to hyperactivated 
motility, probably related to the increased frequency of 
morphological abnormalities of the flagellum, possibly 
associated to abnormal axoneme and periaxoneme.

Since tyrosine phosphorylation of different proteins 
is usually associated with sperm capacitation (Visconti 
et  al. 1995, 2011, Bailey et  al. 2010), we monitored 
the pattern of tyrosine phosphorylation in control and 
treated males. Under our experimental conditions, 
tyrosine phosphorylated proteins were detected in 
capacitated CF-1 mouse spermatozoa, but there was no 
evident difference between phosphorylation patterns in 
control and treated groups.

When acrosomal exocytosis was evaluated following 
120 min of capacitation, spontaneous acrosome 
reaction was lower in spermatozoa from treated males 
in comparison to control animals. The decrease in 
spontaneous acrosomal exocytosis persisted at 150 min 
when spermatozoa were challenged with progesterone 
to evaluate induced acrosomal exocytosis. This reduced 

Figure 5 Sperm head decondensation in control and treated males. In 
vitro nuclear decondensation was analyzed following incubation of 
spermatozoa from each group in glutathione (GSH) plus heparin 
4.6 µM (Hep) at 120 min of capacitation and visualized by Hoechst 
staining. Negative controls: spermatozoa incubated with GSH or 
heparin alone. The percentage of moderately decondensed and 
grossly decondensed spermatozoa was analyzed at 30 and 60 min of 
incubation. At 60 min, sperm head decondensation in treated males 
was significantly higher than in controls (*P < 0.05, n = 8 males, 
Student’s t test). Results are expressed as mean ± s.d.m.

Figure 6 Morphological sperm abnormalities in CF-1 mouse. (A) Normal head and flagellum. (B) Abnormal head shape with abnormal neck 
insertion. (C) Abnormal round head with a very small and delocalized abnormal acrosome formation (arrow). (D) Abnormal sperm head with 
cytoplasm droplet (arrow head) and absence of acrosome. Scale bar: 10 μm.
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acrosomal reaction could be indicative of modifications 
in the sperm membrane, with possible alteration of 
progesterone receptors, and/or modification of sperm 
membrane stability that renders the spermatozoon 
resistant to the action of progesterone. Ethanol can 
interfere with membrane permeability by disturbing lipid 
fluidity due to direct oxidation of proteins (Christova 
et al. 2004), and changes in sperm cholesterol content, 
among other factors, are known to be involved in 
capacitation (Florman & Ducibella 2006, Bailey et  al. 
2010, Evans et  al. 2012). The short-term moderate 
ethanol exposure in these experiments could be 
inducing similar molecular alterations in the sperm head 
that could in turn result in a reduced acrosome reaction. 
Furthermore, we believe that both reduced acrosomal 
exocytosis and increased percentage of morphologically 
abnormal sperm heads are alcohol-associated effects in 
treated mice.

Thus far, our results suggested that sub-chronic 
moderate ethanol ingestion affected two crucial events 
prior to fertilization, hyperactivation and acrosomal 
exocytosis, and also sperm head morphology. It was 
tempting to hypothesize that this ethanol ingestion 
paradigm could also alter later events in fertilization, 
such as ZP penetration, sperm adhesion and fusion 
to the oolemma, oocyte penetration, and even sperm 
nuclear decondensation and male pronucleus formation 
in the ooplasm. Spermatozoa from sub-chronic-ethanol-
treated males showed an increased fertilization rate, from 
the earliest time point examined up to 4.5 h following 
in vitro insemination. Previous reports suggested that 
ethanol exposure in males negatively affects fertility 
parameters through the inhibition of capacitation and 
acrosomal exocytosis (Anderson et  al. 1983, Rossi 
et al. 2011, Nicolau et al. 2014, Wdowiak et al. 2014) 
or by alteration of both in vitro and in vivo fertilization 
(Cebral et  al. 1997). In this study, moderate ethanol 
administration for 15  days to CF-1 mice produced an 
increase in the number of oocytes with a decondensed 
sperm head at 2.5 h of insemination which descended 
abruptly at 3.5 h of IVF when the decondensed nucleus 
developed into the male pronucleus. These differences 
in nuclear decondensation kinetics during IVF between 
control and treated males suggest an acceleration of the 
process of sperm nuclear decondensation and formation 
of the male pronucleus in mice sub-chronically treated 
with 15% ethanol.

Sperm head decondensation seems to be one of main 
fertility parameters affected in treated males. Differences 

found in sperm head decondensation kinetics during IVF 
between treated males and controls led us to analyze the 
possible effects of ethanol exposure on in vitro sperm 
decondensation of capacitated spermatozoa in the 
presence of GSH plus heparin. Percentage of decondensed 
sperm was higher in treated males compared to controls, 
suggesting once more that ethanol exposure leads to an 
acceleration of sperm nuclear decondensation.

Chromatin remodeling, which occurs during 
differentiation of elongating spermatids and sperm 
maturation, involves the replacement of histones by 
protamines, and is a prerequisite for adequate sperm 
nuclear function and structure. Redox reactions 
contribute to this process by sulfoxidation of protamines 
with the participation of glutathione peroxidase (GPX), 
enzyme that specifically catalyzes the detoxification 
of hydrogen peroxide. This enzyme, which is present 
at a considerable quantity in the sperm midpiece, 
is the main contributor to sperm chromatin stability 
and the maintenance of mitochondrial membrane 
potential. Spermatozoa of mice lacking sperm nuclear 
GPX activity display an abnormal nucleus, showing 
delayed and/or defective nuclear compaction, nuclear 
instability and DNA damage. Sperm from nuclear 
GPX4-knockout mice are more prone to decondense 
during epididymal maturation than those from wild-
type mice and also show significant reductions in 
forward motility and mitochondrial membrane potential 
and a structurally abnormal flagellum at the midpiece 
with swelling of the mitochondria (Fujii & Imai 2014). 
Given that the present ethanol treatment resulted in an 
increase in morphologically abnormal spermatozoa, 
decreased hyperactivation and acrosomal reaction and 
dysregulation of sperm head decondensation kinetics, 
we propose that ethanol exposure is hindering the 
expression and/or activity of GPX in the developing 
ethanol-exposed spermatozoon. Our laboratory has 
recently reported an increase in reactive oxygen species 
and oxidative stress, similar to a high oxidative status, 
in reproductive-gestational tissues following alcohol 
exposure (Coll et  al. 2018). A similar effect could 
be also induced by ethanol exposure during sperm 
development/maturation in the testis and epididymis 
and thus contribute to altered sperm compaction. Our 
present findings go along with previous reports in the 
literature stating that ethanol consumption produced 
spermatozoa with a less compacted chromatin (Talebi 
et al. 2011), and induced abnormalities in external and 
acrosomal membranes, in chromatin packaging and 

Table 2  Frequency of abnormal spermatozoa in control and treated males.

Groups Normal sperm (mean % ± s.d.m.) Abnormal head (mean % ± s.d.m.) Abnormal flagellum (mean % ± s.d.m.)

Control males (n = 9) 84.13 ± 1.63 6.9 ± 0.07 8.9 ± 0.8
Treated males (n = 9) 72.5 ± 2.6*** 10.5 ± 1.52** 16.8 ± 2.1***

Abnormal spermatozoa from control and treated mice were classified as having amorphous head, neck, and/or midpiece defects and/or an 
abnormal flagellum. Values are expressed as mean ± s.d.m.
**P < 0.01, ***P < 0.001, vs control males, Student’s t test.
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altered the nuclear integrity of spermatozoa (Eid et al. 
2002, Lewis-Jones et al. 2003, Gaur et al. 2010, Cebral 
et al. 2011, Joo et al. 2012, Anifandis et al. 2014).

Taken together, the results presented in this paper 
suggest that sub-chronic ingestion of alcohol negatively 
affects sperm morphology, capacitation parameters 
and IVF dynamics. The identification of changes in 
sperm morphology and function and fertilization 
events, following short-term ethanol consumption in 
the male mouse, will allow us to develop new studies 
aimed at understanding the mechanisms underlying 
the short-term ethanol-induced sperm effects and their 
consequences on early embryo development.
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