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ABSTRACT. We introduce and develop the concept of oblique duality for fusion frames. This
concept provides a mathematical framework to deal with problems in distributed signal process-
ing where the signals, considered as elements in a Hilbert space and under certain consistency

requirements, are analyzed in one subspace and are reconstructed in another subspace.
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1. INTRODUCTION

Fusion frames [2] 3] (see also [I, Chapter 13]) generalize the notion of frames [II [4, [13]. They
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are suitable in applications such as signal processing and sampling theory, in situations where one

has to implement a local combination of data vectors. They allow representations of the elements

arXiv

of a separable Hilbert space using packets of linear coefficients.
Oblique dual frames have been introduced in [§] and studied in [9, 10, 6] B]. Oblique dual
frames are useful in cases in which the analysis of a signal and its reconstruction have to be done

in different subspaces.
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The aim of this paper is to introduce and develop the concept of oblique duality for fusion
frames. This concept arises naturally from the notion of Eldar of oblique dual frames in [8] and
our definition of dual fusion frames in [IT}, [12].

The paper is organized as follows. In Section 2 we give an overview of oblique projections, left
inverses, frames, fusion frames and fusion frame systems.

We begin Section 3 introducing the concept of consistent reconstruction for fusion frames as
a motivation of oblique duality. Then we introduce the definitions of oblique dual fusion frames
and oblique dual fusion frame systems together with its basic properties. We present two classes
of oblique dual fusion frames of special interest: the block-diagonal and, a subclass of them, the
component preserving ones. The advantage of block diagonals is that they lead to a reconstruction
formula that has a simpler expression. Oblique dual fusion frame systems are an example of this
type. Component preserving duals are those that behave more similar to classical vectorial oblique
duals, in particular, in the way that they can be obtained.

In Section 4 we analyze how the concepts of block-diagonal oblique dual frame, oblique dual
fusion frame system and oblique dual frame are connected.

Section 5 presents statements that permit to obtain oblique dual fusion frames from dual fusion
frames and viceversa.

Section 6 includes several results that give methods for constructing oblique dual fusion frames
and oblique dual fusion frame systems. They provide different alternatives to select the most
suitable from the computational point of view.

Finally, in Section 7 we introduce the concept of canonical oblique dual fusion frame. Some
basic properties and a characterization are presented. Then we study when the canonical oblique

dual is the unique dual and the existence of non-canonical oblique duals.

2. PRELIMINARIES
We begin introducing some notation and then we briefly review definitions and properties that

we use later.

2.1. Notation. We consider H, K separable Hilbert spaces over F = R or F = C. The space of
bounded operators from H to K will be denoted by L(H,K) (we write L(H) for L(H,H)). For
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T € L(H,K) we denote the image, the null space and the adjoint of 7" by Im(7"), Ker(7T') and T,
respectively. If 7" has closed range we also consider the Moore-Penrose pseudo-inverse of 7" denoted
by TT. The inner product and the norm in H will be denoted by (-,-) and || - ||, respectively. If
T € L(H,K), then ||T|| and ||T||sp denote the Frobenius and the spectral norms of 7', respectively.

Let I be a countable index set. If {H;};csr is a sequence of Hilbert spaces, we consider the
Hilbert space

®ictMi = {(fi)ier : fi € Hi and {||fi| }ier € ¢2(1)}

with inner product ((fi)icr, (¢i)icr) = Zie]<fi’ Ji)-

For J € Ilet xs: I — {0,1} be the characteristic function of .J. We abbreviate x ;1 = x;.

2.2. Oblique projections and left inverses. In the sequel V and VW will be two closed subspaces
of H such that # =V @ W=. By [6, Lemma 2.1] this is equivalent to H = W @ V.
The oblique projection onto V along W+, is the unique operator that satisfies
mywrf = fforall feV,
Ty wLf =0 forall f e W
Equivalently, Im(my ) = V and Ker(my ) = WE. If W = V we obtain the orthogonal
projection onto W, which we denote by myy. The next properties involving oblique projections will

be used throughout the paper.

Lemma 2.1. Let V and W be two closed subspaces of H such that H =V @ WL, Then

(1) ﬂ'V,WLﬂ'W = 7Tv7wL

(2) 7Tw7TV7WL = TTw.

Proof. (1) my ywrmw = Ty i (Tw + ML) = Tyt

(2) 7TW7TV7WL = ﬂ'W(ﬂ'vij + 7TwL7v) = TTyw. O

Let V and W be two closed subspaces of H such that H = V@ WL, If T € L(H,K) and
Ker(T) = W+, we denote by £¥’WL the set of oblique left inverses of 7" on V along W+ which
image is equal to V, i. e.,

£¥’WL ={UeL(K,H):UT =7y and Im(U) = V}.

The following lemma is useful to obtain oblique left inverses.
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Lemma 2.2. Let V and W be two closed subspaces of H such that H = V@&W=L. Let T € L(H,K)

such that Ker(T) = W. Then Ty is injective.

Proof. Let f,g € V such that Tf = Tg. Since Ker(T) = W+ the last equality is equivalent to
Tmwf = Tmwg. Since Tjyy is injective, my f = myg. Therefore, f — my. f = g — my1g. Since

H=VaW f=g m

One way to get U € E?WL is the following: By Lemma [2.2] if g € T'(V) there exists a unique
f € Vsuch that Tf = g. Set Ug = f. If g ¢ T(V) there are several possibilities, for example,
Ug=U(g1+g2) = Ugy with g1 € T(V) and go € T(V)™.

If V=W, we write £ = {U € L(K,H) : UT = my and Im(U) = W}. This is the set of left
inverses of 7" on W such that Im(U) = W. The next proposition relates the sets £} and £¥’WL.
Proposition 2.3. Let V and W be two closed subspaces of H such that H = V @& WL, Let
T € L(H,K) such that Ker(T) = W*. The map A € €Y — mp A € £¥’WL is a linear

L o , VWt w
bijection, and its inverse is the map B € £, = mwB e L.

Proof. First we will show that the map A € £ +— 7, )y A € 2¥’WL is well defined. Let A € £¥Y.
We have, 7y, ,y1 AT = my, yomy = Ty yyr. On the other hand, Im(my, 2 A) € V. Let f € V.
Since Im(A) = W there exists g € K such that my f = Ag and then f = my, o f = mp pomw f =
7w Ag. Therefore, Im(my 11 A) = V. This shows that 7,y A € £¥’WL.

The linearity is trivial. Now we will prove that it is a bijection showing that the map B &
£¥’WL — mwB € €Y is its inverse. First we note that in a similar manner as before it can be
proved that it is a well defined linear map. Let A € £}Y. Since Im(A4) =W, mpymy i A = my A =
A. Let now B € £¥"V" . Using that Tm(B) = V, myyyomwB = my 4y B = B. This proves that

each map is the inverse of the other. 0

2.3. Frames. The concept of frame has been introduced by Duffin and Schaeffer in [7]. Using a
frame, each element of a Hilbert space has a representation which in general is not unique. This
flexibility makes them attractive for many applications involving signal expansions.

We will now recall the concept of frame for a closed subspace of H.
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Definition 2.4. Let W be a closed subspace of H and {f;}ier € W. Then {f;}ics is a frame for

W, if there exist constants 0 < a < 3 < oo such that

(2.1) all FI2 < YIS P < BIfIP for all few.

iel

If the right inequality in (1)) is satisfied, {f;}ics is a Bessel sequence for W. The constants «
and (3 are the frame bounds. In case a = 8, we call {f;}icr an a-tight frame, and if « = 8 =1 it
is a Parseval frame for W.

To a Bessel sequence F = {f;}ies for W we associate the synthesis operator

Tr: 2(I) = H, Tr{citier = > ;c; Cifir
the analysis operator
T3 :H — (1), Trf = {{f. fi) bier,
and the frame operator
Sy = TFT%.
A Bessel sequence F = {f;}ies for W is a frame for W if and only Im(77) = W, or equivalently,
Sr is invertible when restricted to W. Furthermore, F is an a-tight frame for W if and only if
Sr = amy.

If the subspace W is finite-dimensional we will consider finite frames for it, i.e., frames with a
finite number of elements. It is worth to mention that if dim(WV) < oo then {f;}icr C H is a frame
for W if and only span{ f;}ic; = W.

For more details about frames we refer the reader to [Il 4] [13]. The concept of oblique dual
frame [8] 91 [10] is defined as follows:

Definition 2.5. Let W and V be two closed subspaces of H such that H = V @ WT. Let
F = {fi}ier be a frame for W and G = {g;}ic1 be a frame for V. If

TgT;— = 7Tv7wL y

we say that G is an oblique dual frame of F on V.
The sequence {ﬂ'V’WLSTffi}ie] is the canonical oblique dual frame of {f;};cr on V.

Remark 2.6. When V = W we obtain the classical duals and we simply say dual frame instead of

oblique dual frame on W.
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A Riesz basis for VW is a frame for VW which is also a basis. Observe that a Riesz basis has a

unique dual, the canonical one.

2.4. Fusion frames. Fusion frames were introduced by Casazza and Kutyniok in [2] under the
name of frames of subspaces. They turned out to be a useful tool for handling problems in sensor
networking, distributed processing, etc. Throughout the paper we will work with fusion frames for
closed subspaces of H.

Assume {W;}ier is a family of closed subspaces in W, and {w;}ic; a family of weights, i.e.,
w; > 0 for all ¢ € I. We denote {W,},c; with W, {w; };e; with w and {(W;, w;) }ier with (W, w).
If T € L(H,K) we write (TW,w) for {(TW;,w;)}ier-

We consider the Hilbert space Kyy := @1 W;.

Definition 2.7. We say that (W, w) is a fusion frame for W, if there exist constants 0 < a <

B < oo such that

(2.2) Al 1?7 <Y willmw, ()7 < BIfIP for all f €W

iel
We call @ and 3 the fusion frame bounds. The family (W, w) is called an a-tight fusion frame
for W, if in (Z2]) the constants « and /3 can be chosen so that o = 8, and a Parseval fusion frame
for W provided that « = 5 = 1. If (W, w) has an upper fusion frame bound, but not necessarily a
lower bound, it is called a Bessel fusion sequence for VW with Bessel fusion bound g. If w; = ¢ for
all i € I, we write w = ¢. If W is the direct sum of the W; we say that (W, w) is a Riesz fusion
basis for W. We will refer to a fusion frame that is not a Riesz fusion basis as an overcomplete
fusion frame. A fusion frame (W, 1) is an orthonormal fusion basis for W if W is the orthogonal
sum of the subspaces W;.
To a Bessel fusion sequence (W, w) for YW we associate the synthesis operator
Twow:Kw =M, Tww(fi)ier = ic;wifi,
the analysis operator
Tww: "= Kw, Ty of = (wirw,(f))ier
and the fusion frame operator

SW,W = TW,WT{';\LW'
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As it happens for frames, (W, w) is a Bessel fusion sequence for W if and only if Tw v is a
well defined bounded linear operator. A Bessel fusion sequence (W, w) for W is a fusion frame for
W if and only if Im(Tw w) = W, or equivalently, Sw w restricted to W is bijective. Additionally,
(W,w) is an a-tight fusion frame for W if and only if Sw w = amy.

For finite-dimensional subspaces W we will consider finite fusion frames, i.e., fusion frames with
a finite set of indices. Note that if dim(W) < oo then (W,w) is a frame for W if and only
span U;er W; = W.

Having fusion frames allows local processing in each of the subspaces. In view of this, having a

set of local frames for its subspaces is convenient.

Definition 2.8. Let W be a closed subspace of H, let (W, w) be a fusion frame (Bessel fusion
sequence) for W, and let {f;i}icr, be a frame for W; for i € I. Then {(W;, ws, {fiitier,) }ier 18

called a fusion frame system (Bessel fusion system) for W.

Throughout this work we will use the notation F; = {fi 1 }ier,, F = {Fitier, WF = {w;Fi }icr,
and we write (W, w, F) for {(W;, ws, { fiiher,) bier- T € L(H,K) we write TF for {{T fi 1 }icr, ticr
and TJ_'.Z for {Tfi,l}leLi-

Theorem 2.9. [2] Theorem 3.2] Let W be a closed subspace of H. Given (W, w), let F; be a frame
for Wi with frame bounds oy, B; for each i € I such that 0 < o = infijera; < sup;e i = 8 < oo.

The following assertions are equivalents:

(1) wF is a frame for W.
(2) (W,w) is a fusion frame for W.

If (W, w) is a fusion frame for W with fusion frame bounds v and &, then WF is a frame for W
with frame bounds ay and 56. If wF is a frame for W with frame bounds v and §, then (W, w)
is a fusion frame for W with fusion frame bounds % and g.

The previous assertions are wvalid if we replace fusion frame by Bessel fusion sequence and

consider only the upper bounds.

For more details about fusion frames and fusion frame systems we refer the reader to [2, 3] (see

also [T, Chapter 13]).
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3. OBLIQUE DUALITY FOR FUSION FRAMES AND FUSION FRAME SYSTEMS

One reason for considering oblique duality is the so called consistent reconstruction. Based on
the vectorial case [8[I0] and the relation between frames and fusion frames, we next introduce the

concept of consistent reconstruction for fusion frames.

3.1. Consistent reconstruction. Let YW and V be two closed subspaces of H. Let (W, w) be a
fusion frame for W. Assume that the measurements Ty ,, f = (wimw, f)ier of an unknown signal
f € H are given. Our goal is the reconstruction of f from these measurements using a fusion frame
(V,v) for V in such a way that the reconstruction fis a good approximation of f. Specifically the

following two conditions are required:

(i) Uniqueness of the reconstructed signal: If f,g € V and T wl = Ty w9, then f =g.
(ii) Consistent sampling: TV*V7WfA’: Ty v f for all f e H.

Requirement (i) is equivalent to VN W= = {0}. To see this, suppose that (i) holds and consider
feVvnwt. Since f € WH, Ty f =0 =Ty 0. Since f € V, by (i) this implies that f = 0, and
thus VN W+ = {0}. Suppose now that VN W+ = {0}. Let f,g € V such that Ty ,(f —g) = 0.
Thus f —g € Ker(Tyy ) = Im(Tw ,w)®™ = Wt. Consequenlty, f — g = 0. Therefore, (i) holds.

In case that (ii) is satisfied we say that fe V is a consistent reconstruction of f € H on V along
w.

From (i) and (ii), we deduce that if f € V then J? = f. So in this case, f can be perfectly
reconstructed.

The next result shows that consistent reconstruction is linked to oblique projections.

Theorem 3.1. Let W and V be two closed subspaces of H such that H =V & W+. Let (W, w)

be a fusion frame for W. Then J? € V is a consistent reconstruction of f € H if and only if

~

[= 7Tv,vwf-

Proof. Suppose that fe V is a consistent reconstruction of f € W, i.e. (ii) holds. Then fA’f fe
Ker(T5y ) = Im(Tw w)" = W, Thus f = f + (f — f) where f € V and f — f € W', Taking
into account that H =V @ W, this implies that J?: Ty e f and f— f=mwryf.

Assume now that f: Ty wif. Since H =V @ w, j?f f=mwiyfe Wt = Im(Tw w)t =

Ker(T3y ). Therefore T3 o, (f — f) = 0 and (ii) holds. O
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3.2. Oblique dual fusion frames. In [T1l [12] the concepts of dual fusion frame and dual fusion
frames system are introduced and studied. Motivated by these concepts and by Definition we
introduce now the definition of oblique dual fusion frame and later the one of oblique dual fusion

frame system.

Definition 3.2. Let W and V be two closed subspaces of H such that H =V & W, Let (W, w)
be a fusion frame for W and (V,v) be a fusion frame for V. We say that (V,v) is an oblique dual

fusion frame of (W, w) on V if there exists Q € L(K)y, Ky) such that
(3.1) Tv QT W = Ty W -

The operator @ is actually important in the definition. If we need to do an explicit reference to
it we say that (V,v) is a Q-oblique dual fusion frame of (W, w). Note that if (V,v) is a Q-oblique
dual fusion frame of (W, w) on V, then (W, w) is a Q*-oblique dual fusion frame of (V,v) on W.
As we will see in Lemma [34] Bessel fusion sequences (W, w) for W and (V,v) for V that satisfy
(1), are automatically fusion frames.

As a consequence of Definition and Theorem B, we obtain the following result which

establishes that oblique duality yields consistent reconstruction.

Corollary 3.3. Let W and V be two closed subspaces of H such that H = VWL, Let (W, w) be a
fusion frame for W, (V,v) be a fusion frame forV and Q € L(Kw, Ky). Then f= v QT o f
is a consistent reconstruction of f for all f € H if and only if (V,v) is a Q-oblique dual fusion

frame of (W, w) on V.

It is worth to mention that one reason to introduce first a general class of oblique dual fusion
frames as in Definition B.2] requiring only boundedness of the operator @, is to ask for the minimal
conditions needed to obtain the different desired properties for oblique dual fusion frames. In
particular, for this general class we have consistent reconstruction as Corollary B3] shows and the
following lemma, which generalizes the basic properties that are valid for dual and oblique dual
frames. Tt is analogous to [11, Lemma 3.2] and gives equivalent conditions for two Bessel fusion

sequences to be oblique dual fusion frames.
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Lemma 3.4. Let W and V be two closed subspaces of H such that H =V SW=. Let (W, w) be a
Bessel fusion sequence for W, (V,v) be a Bessel fusion sequence for V, and let Q € L(Kyw, Ky).

Then the following statements are equivalent:

(1) Ty QTiy o f = f for all f € V.

(2) TwwQ* Ty  f = f for all f € W.

(3) mywif =Tv QT o f for all f € H.

(4) mw oy f =TwwQ"Ty  f for all f € H.

(5) <7rW,V¢f,g> = <Q*T\*,7vf, T{,“V,wg> for all f,g € H.

(6) <7rV,WLf,g> = <QT{§V,Wf, T\*,’Vg> for all f,g € H.

(7) Ty wlv is injective, Ty vQ is surjective and (T\*,“,J)‘,T\/7\,C,2)2 =T wIv Q-

(8) Ty |w is injective, Tw wQ* is surjective and (T\*,’vTWNVQ*)2 =Ty TwwQ".

In case any of these equivalent conditions are satisfied, (W, w) is a fusion frame for W, (V,v) is
a fusion frame for V, (V,v) is a Q-oblique dual fusion frame of (W,w) on V, and (W, w) is an
oblique Q*-dual fusion frame of (V,v) on W.

Proof. (1) < (3) and (2) < (3) are immediate.
(3) = (4) : Ty v QT3 o, = Ty Taking adjoint Tw w@ 15, =75 0. But @5 0 = myy
hence (3) follows.
(4) = (5) is clear as well as (3) = (6).
(5) = (4): For f € H, TwwQ Ty ,f = TwwQ"Ty; ,mvf is well defined since (W, w) is a
Bessel fusion sequence for W and (V,v) is a Bessel fusion sequence for V. By (5),
<7rW,V¢f — TwﬁwQ*T\*,,Vf,g> =0 forall g eH,
and so we obtain (4). Analogously (6) = (3).
(1) & (7): By (1), Tyy v is injective, Ty vQ is surjective and
(T wTvn @)’ = Ty (Tv v QT ) TvnQ = Ty Ty v Q-
(1) = (1): I (T W Tvn@)? = Tiy W T @ then Kyy = Ker(Ty o Ty v Q) @ (T Ty v Q).
Since Tyy |v is injective we have Ker(Tyy ,,Tv,vQ) = Ker(Tv vQ) and so Ky = Ker(Tv vQ) ©
Im(Tyy o Tv vQ). Therefore, since Im(Tv,vQ) =V,
V=ATvaQ{fi}ier : {fitier € Ty W Tv.vQ)} -
Let now f € V with f = Tv vQ{fi};c; for some {f;},.; € Im(T3y ,Tv vQ). Then
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TV,vQTV*V,wf = TV,vQT\};V,wTV,VQ {fi}iel = TV,VQ {fi}iel = f
In a similar way it can be proved that (3) < (8).
If (1) is satisfied then Ty v is onto and hence (V,v) is a fusion frame for V. Similarly (W, w)

is a a fusion frame for W. O

We will now present two special types of linear transformations @) that make the reconstruction
formula that follows from (B simpler. In order to do that we need the selfadjoint operator
Miw : Kw — Kw, Myw(fi)ier = (x7(9) fi)ier. We just write M if it clear to which W we refer

to. We use the notation Myj w = M;w and My, = M;.

Definition 3.5. Let Q € L(Kw, Ky).
(1) If QM;wEKw C M;vKy for each j € I, Q is called block-diagonal.

(2) If QM; wEKyw = M; v Ky for each j € I, Q is called component preserving.

Note that @ is block-diagonal if and only if QM ;w = M;vQ for each J C I, or equivalently,
QM;~w = M;vQ for each j € I. Observe that if @ is block-diagonal, then @* is block-diagonal. If
in Definition B2 @ is block-diagonal (component preserving) we say that (V,v) is a block-diagonal
dual fusion frame (component preserving dual fusion frame) of (W, w).

Another motivation for introducing the notion of oblique duality as in Definition B.2]is to obtain
flexibility, therefore asking for restrictions only when needed. The general framework provided
by Definition allows to adjust to the problem at hand. This is another reason to start with
the most general class and then naturally arise the particular classes with which we work here:
block-diagonal and component preserving oblique dual fusion frames. As we will see in Lemma[6.2]
@ is component preserving for oblique dual fusion frames obtained from the oblique left inverses
of Tiy - Also, @ is block-diagonal for oblique dual fusion frame systems (see Definition and
Remark B7).

If @ is block-diagonal, from (B we obtain the following reconstruction formula:

(3.2) mowef =Y vjwiQ;f , VfEH,

jel
where Q; : H — Vj is given by Q,f := (QM, (7w, f)icr);. For each j € I, Q; is a bounded linear
operator. Observe that W3- C ker(Q;) and we can recover the block-diagonal (or component

preserving) mapping @ as Q = &,c1Q);.
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Note that (V, v) is a Q-oblique dual fusion frame of (W, w) if and only if (V,cv) is a %Q—oblique
dual fusion frame of (W, w), where cv = {c;w; };c; and %Q = @jej(ciij), with 0 < inf;e;¢; <
sup,c;¢; < oo. Both oblique dual fusion frames lead to the same reconstruction formula. This
freedom for the weights is desirable because we can select those v such that the pair (V,v) is the
most suitable to treat simultaneously another problem not related with the reconstruction formula.

We observe that in each term of (8.2]) we can think the product v;w;||Q,|| as the weight that

accompanies the pair of subspaces W; and V;, determining their importance in the reconstruction.

3.3. Oblique dual fusion frame systems. We will define and study in this section the concept
of oblique dual fusion frame systems. In order to do that, we will need the following operator,
which we introduced in [12], and which establishes the connection between the synthesis operator
of a fusion frame system and the synthesis operator of its associated frame.

Let (W, w) be a Bessel fusion sequence for W and F; be a frame for W; with frame bounds
oy, B; for each 7 € I such that sup;c;3; = 8 < oo. Let

Cr: @®icrl*(Li) = Kw, Cr((zi1)ier:)ier = (TF,(wi1)ier: )icr-

Note that Cr is a surjective bounded operator with ||[Cr|| < . Its adjoint is C% : Ky —
®iert®(Li), given by Cx(gi)ier = (TF,9i)ier and satisfies ||C%(gi)ier|| < Bll(gi)ierl|- I 0 <
a = inficray, we also have o||(gi)ier|| < ||Cx(gi)icr||. The bounded left inverses of C'% are all
Cz e L(®ierf?(L;), Kyy) such that ]t'z is a dual frame of F; with upper frame bound Ez for each
1 € I such that supielﬁi < 00. Observe that

Twr =TwwCr and Tww = TW;C}.

We define oblique dual fusion frame systems as follows:

Definition 3.6. Let W and V be two closed subspaces of H such that H = V @ Wt. Let
(W,w,F) be a fusion frame system for W with upper local frame bound g; for each i € I such
that sup;c;3; < 0o, (V,v,G) be a fusion frame system for V with local upper frame bound Ez for
each i € I such that supielgi < oo and | F;| = |G;| for each i € I. Then (V,v,G) is an oblique dual
fusion frame system of (W, w, F) on V if (V,v) is a CgC%-oblique dual fusion frame of (W, w)
on V.

Remark 3.7. It is easy to see that the operator CgC% : Ky — Ky, CgC%(fi)ier = (1g, 1%, fi)ier

is block-diagonal.
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If CgC% in Definition is component preserving, we call (V,v,G) a component preserving

oblique dual fusion frame system of (W, w, F).

Remark 3.8. If W =V we have in Definition and in Definition the concepts of dual fusion
frame and dual fusion frame system, respectively, considered in [I1} [12]. In this case, we simply
say that (V,v) is a Q- dual fusion frame of (W, w) or that (V,v,G) is a dual fusion frame system
of (W, w,F).

4. RELATION BETWEEN BLOCK-DIAGONAL OBLIQUE DUAL FRAMES, OBLIQUE DUAL FUSION

FRAME SYSTEMS AND OBLIQUE DUAL FRAMES

We defined oblique dual fusion frame systems in terms of (block-diagonal) oblique dual fusion
frames (see Definition B.6land Remark[B.7)). Conversely, we can always associate to a block-diagonal
oblique dual fusion frame pair an oblique dual fusion frame system pair. In order to see this we

need the following two auxiliary results.

Lemma 4.1. If A € L(H,K), then there exists a frame F for H and a frame G for K such that
|F| = |G| and A =TgT3. We can choose F and G in such a way that their frame bounds are 1,2

and 1,1+ ||A|[?, respectively.

Proof. Let F be any frame for H and F be any dual frame of F. Then AT is a frame for Im(A),
|AF| = |F|and A=T,T%.

If Im(A) # K let G = {gi}ics be any frame for Im(A)L. If G is the family indexed by J with
all its elements equal to the zero of H, then TgTéﬁ = 0. We can also construct G with not all
of its elements equal to zero that has this property. For this, we consider a frame G = {g;};jes
for Tm(A)* that is not a basis. Let {c,,}mem be an orthonormal basis for Ker(Tg) C ¢2(J)
where M = N or M = {1,...,M}. Let {e;};e be an orthonormal basis for H where L = N or

L ={1,...,L}. Let I any finite subset of M NIL and g; = >,y ci(j)e; for each j € J. By the

linear independence of {e;}ier. and {cm }mem, the vectors g; can not be all equal to 0. We have

Yies K1) < e l{f enl? Xjes la(@)I? < [IfII*. Therefore, {g;} e is a Bessel sequence with

Bessel bound 1. Note that if d € £*(J) and f € H, then (Tgd, f) = (> jesd) Xicralien ) =

Z_je,] d(4) Zleﬂ a(j)len f) = <deleH<f7 er)cr), and then TQTgif = Zle]l<f7 er)Tger = 0 since ¢ €
Ker(Tg) for each [ € 1.
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Finally, {F,G} is a frame for H, {AF,G} is a frame for K, |[{F,G}| = |[{AF,G}| and A =
T{Aﬁg}Tff,é}'

If we choose F, F and G to be Parseval, the frame bounds of {F, 5} and {A]t', G} are 1,2 and

1,1+ ||A|[?, respectively. O

Corollary 4.2. If Q € L(Ky, Ky) is block-diagonal then there exists a frame F; for W; with
frame bounds ay, B; for each i € I, satisfying 0 < inf;cra; < sup;c;fi < 00, and a frame G; for V;
with |F;| = |Gi| and frame bounds &i,ﬁi for each i € I, satisfying 0 < inf;cra; < supielﬁi < oo

such that Q = CgC%.

Proof. By Lemma [£1] for each i € I there exists frames F; for W; with frame bounds «a; = 1,
B; = 2 and G; for V; with frame bounds o; = 1, EZ- = 1+ [|Q4]|? such that Q; = Tg,T%, . Thus,
Q = CgC%. Moreover, ||Q;|| < |Q|| for each i € I. O

The next theorem asserts that a block-diagonal oblique dual fusion frame pair can always be

viewed as an oblique dual fusion frame system pair.

Theorem 4.3. Let W and V be two closed subspaces of H. Let (W, w) be a fusion frame for VW
and let (V,v) be a block diagonal Q-oblique dual fusion frame of (W, w) on V. Then there exists a
frame F; for W with frame bounds o, B; for each i € I such that 0 < inf;croy < sup;erfB; < oo and

a frame G; for V; with frame bounds o, EZ- for each i € I such that 0 < inf;crq; < supielgi < 00,

such that (V,v,G) is a dual fusion frame system of (W, w,F) and Q = CgC%.

Proof. Tt is a consequence of Definition B.2] Corollary .2 and Definition O

The following theorem establishes the connection between the notions of oblique dual fusion

frame system and oblique dual frame.

Theorem 4.4. Let W and V be two closed subspaces of H such that H =V @& W=L. Let (W, w, F)
be a Bessel fusion system for W such that F; has upper frame bound f; for each i € I with
sup;e;Bi < oo, and let (V,v,G) be a Bessel fusion system for V such that G; has upper frame
bound EZ for each i € I with Supiejﬁi < oo. If |F;| = |Gi| for each i € I then the following

conditions are equivalent:

(1) wF and vG are oblique dual frames for H.
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(2) (V,v,G) is an oblique dual fusion frame system of (W, w,F) on V.

Proof. 1t follows from Theorem 2.9} the equality TvgTy » = Tv vCgCFTRy o, 4 Lemma 6.3.2]
and Lemma [3.4] O

5. DUALS AND OBLIQUE DUALS

Oblique duality is a generalization of duality. The results in this section provide methods to

obtain dual fusion frames from oblique dual fusion frmaes and viceversa.

Proposition 5.1. Let W and V be two closed subspaces of H such that H = V & WL, Let
(W, w, F) be a fusion frame system for W with local upper frame bounds B; for each i € I such
that sup;c ;B < 00, (V,v,G) be a fusion frame system for V with local upper frame bounds B; for
each i € I such that Supiefgi < o0 and |F;| = |Gi| for each i € I. If (V,v,G) is an oblique dual
fusion frame system of (W, w, F) on V, then (mw(V), v, mw(G)) is a dual fusion frame system of

(W, w,F) for W and (my(W), w,my(F)) is a dual fusion frame system of (V,v,G) for V.

Proof. Since VN W+ = {0}, if f € V is such that my f = 0, then f = 0. So, mw (V) # {0}. By
[, Proposition 5.3.1], mw (G;) is a frame for my (Vi) with upper frame bound ; for each i € I and
mw(G) is a frame for mpy (V). By Theorem 29 (my(V), v, mn(G)) is a Bessel fusion sequence for
mw (V). We have Ty vCgCETy o = Ty i Also Tryy vy vCryy () = mwTvg. Hence,
Ty (V) vCrn (©) CF T w w = ™ IvgCFINy o = TWIv vCoCE TRy o = Ty e = Ty,
By [II, Lemma 3.2], (myw(V), v, mn(G)) is a dual fusion frame system of (W, w, F) for W.

The other assertion is proved in a similar way. 0

By Theorem [£3] and Definition we obtain the following Corollary:

Corollary 5.2. Let W and V be two closed subspaces of H such that H =V ®W=L. If (V,v) is a
block-diagonal ®;cQ;-oblique dual fusion frame of (W, w) on V), then (myw(V),v) is a ®;crmpyQi-
block-diagonal dual fusion frame of (W, w) for W and (m,(W),w) is a @;ec1mpQ;-block-diagonal
dual fusion frame of (V,v) for V.

The following two results can be proved in a similar way as Proposition [5.1] and Corollary [5.2]

respectively.
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Proposition 5.3. Let W and V be two closed subspaces of H such that H = V & WL, Let
(W, w,F) be a fusion frame system for W with local upper frame bound (; for each i € I such
that sup;c;B; < oo, (W, w, ]?) be a fusion frame system for W with local upper frame bound B; for
each i € I such that sup,c;B; < oo and |Fi| = |Fi| for each i € I. If (W,w,F) is a dual fusion
frame system of (W, w,F), then (7TV7WLVA\7,W,7TV1WL]?) is an oblique dual fusion frame system

of ( W,w,F) onV.

Corollary 5.4. Let W and V be two closed subspaces of H such that H =V oW, If (VA\7, W) is a

block-diagonal ®;c1Q;-dual fusion frame of (W, w) for W, then (my 1 (W), W) is a block-diagonal

Sicrmy wrQi-oblique dual fusion frame of (W, w) on V.

6. OBLIQUE DUAL FAMILIES

In [111 2] it is shown that component preserving dual fusion frames are related to the left
inverses of the analysis operator. In this section we will show that analogous results are valid for
component preserving oblique dual fusion frames.

The following Lemma can be deduced from Corollary (2] [T1, Lemma 3.4], Lemma [Z1] and

Proposition Nevertheless, we include a short direct proof of it.

Lemma 6.1. Let W and V be two closed subspaces of H such that H =V & W=, Let (W, w) be
a fusion frame for W. If (V,v) is a Q-component preserving oblique dual fusion frame of (W, w)

onV then V; = AM;Kyy for each i € I for A="1Ty Q) € £¥$VWL.

Proof. Let Q € L(Ky,Ky) be component preserving such that Tv vQT Ry w = Ty and let A =
Tv Q. Clearly, A € EV",;VWL. Using that @ is component preserving, AM, Ky = Ty vQM; Ky =

V; for each i € I. O

A reciprocal of the previous result is:

Lemma 6.2. Let W and V be two closed subspaces of H such that H =V @ W+, Let (W, w) be
a fusion frame for W, A € )3;\1;\/L and V; = AM;KCyy for each i € 1. If (V,v) is a Bessel fusion

sequence for V and
Qav:Kw— Ky, Qav(fi)jer = (U%.AMi(fj)jeI) ;

iel
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is a well defined bounded operator, then (V,v) is a Q~-component preserving oblique dual fusion

frame of (W, w) on V.

Proof. From the hypotheses, span|J,.; Vi = Im(A4) = V, Qa v is component preserving and A =
€
Tv vQa,v. Since A € £¥WW s Tv vQavTiy w = Tyt So (V,v) is a Q4 y-component preserving

oblique dual fusion frame of (W, w) on V. O

See [I1l Remark 3.6] for sufficient conditions for (V,v) being a Bessel fusion sequence for V and
for @ a,, being a well defined bounded operator in Lemma [6:21 For the case in which W and V are

finite-dimensional, Lemma [6.] and Lemma [6.2] lead to the following characterization:

Theorem 6.3. Let W and V be finite-dimensional subspaces of the Hilbert space H such that
H=VEWL. Let W and V be two subspaces of H such that H =V SW=L. Let (W, w) be a fusion
frame for W. Then (V,v) is a Q-component preserving oblique dual fusion frame of (W, w) on V
if and only if Vi = AM; Ky for each i € I and QQ = Qa v, for some A € 2;\;:\}: with Tm(A) = V.
Moreover, any element of £¥$VW: with Im(A) =V is of the form Ty vQ where (V,v) is some

Q-component preserving oblique dual fusion frame of (W, w) on V.

The above results show that component preserving oblique dual fusion frames can be obtained

in a similar manner as in the vectorial case (see [4, Lemma 6.3.5]).

Remark 6.4. By Proposition 2.3] Theorem and [I2] Theorem 3.5], if W and V are finite-
dimensional, there is a bijection between component preserving dual and component preserving

oblique dual fusion frames.

Remark 6.5. As a consequence of Theorem [6.3] if VW and V are finite-dimensional we can always
associate to any @-oblique dual fusion frame (V,v) of (W, w) the ()4 g-component preserving
oblique dual fusion frame {(AM;Kw,v;)}ier with A = Ty Q and {v;};e; arbitrary weights.

Furthermore, if @ is block-diagonal, then Qv ,qv(fi)ier = Q(fi)ier for each (fi)ier € Kw.
Remark 6.6. It is easy to see that
€1
S = (s Sly W Tw s+ Bl — Ty Sty T ) : B € LK, V)

= {myw: Sy wIw.w + B : B € L(Kw,V) and BTy, = 0}.
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In addition, by [5, Lemma 4],
sﬁvj — {B(T{yB)" : B € L(H, Ky) and Tm(B) = V}
= {mywe (BT ) B : B € L(Kw,H), Im(B) = Im(B) and Ky, = Ker(H) & Im(T3y ) }-

As a consequence of Theorem we obtain the following alternative characterization of com-

ponent preserving oblique dual fusion frames.

Theorem 6.7. Let W and V be finite-dimensional subspaces of the Hilbert space H such that
H=VOW. Assume (W, w) is a fusion frame for W. Then the Q-component preserving oblique

dual fusion frames of (W, w) on V are the families

(6.1) {(Vi,vi) }ier = {(mpwe (HTy o) Zi, vi) Yier,

where (Z, w) is a fusion frame sequence that satisfies H1vy o, = Tz,w(HM; Ty \)ie1, for some H €
L(Kw,H) with Im(H) = Im(H) and Ker(H) & Im(Tyy ,) = Kw and Q = Q,
Also,

v L (HTG )T H v

{(Vi,vi) Yier = {(B(Tyy wB) "im(ry, ,).s MiKw, vi) Yier,
where B € L(Kw,H) is such that Im(B) = V, and S is a subspace of Ky such that Ky, =

Im(Tyy o) © S.

Proof. By Theorem and Remark [6.6] the Q-oblique component preserving oblique dual fusion
frames of (W, w) on V are
{(Vi,vi)Yier = {(my w (HTy o) THM;(Kw), vi) }ier,
where H € L(Ky,H) is such that Im(H) = Im(H) and Kyy = Ker(H) @ Im(Tyy ). Taking
Z; = HM;(Ky) we get (6.1)).
From Remark 6.6 my 1 = R1yy ,, where R = B(T{,“V,WB)T with B € L(H, Ky) and Im(B) =

V. So we can write, by (G.1I),
Vi = RT3y o (H Ty ) HMi(Kw) = Ritcry, ). sMi(Ew),
where S = Ker(H). O

We will show now that we can construct component preserving oblique dual fusion frame systems
from a given fusion frame for a closed subspace of H via local dual frames and an oblique left inverse

of its analysis operator.
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Proposition 6.8. Let V and W be two closed subspaces of H such that H =V WL, Let (W, w)
be a fusion frame for W, A € £¥$VW: and v be a collection of weights such that inf;c;v; > 0. For
each i € I let {fiiter, and {.]Ei,l}leLi be dual frames for Wy, i upper frame bound of {fii}ier,
for each i € I such that sup,c; B; < 0o, &; and B; frame bounds of {J;i,l}leLi for each i € I such
that sup;e; Bi < 00, G = {U%A(Xi(j)fi,l)jel}leh and V; = spangG;. Then

(1) Gi is a frame for V; with frame bounds ||AT||’2% and HAHQ%

(2) (V,v,G) is a component preserving Qa v-oblique dual fusion frame system of (W, w,F)
on V.

Proof. By [4 Proposition 5.3.1], (1) holds.

Let g € H. We have Eie] ZleLi <9aA(Xi(j)ﬁ,l)jeI>|2 = Eie] ZleLi
Yicr Bil MiAg|* < supicy Bi 3oieq IMiA™g|? = [|A*gl|* supie; Bi <
consequence of Theorem 29, (V,v,G) is a Bessel fusion system for H with upper frame bound

||A||25upiel Bi-

(A*g, (xi(G) fin)jen)? <
gllP[|Al|? sup;e; Bi. As a

LAl

If (hi)ier € Kw, then Qa4 is a well defined bounded operator with [|Qav|| < ooz and
Qav(hiier = (- AM;(hy)jer)ier = (5-AM(Xcp, < hy, f} > Mijen)ier = Ciep, < his fin >
U%A(Xi(j)ﬁﬁl)jg)ig = CgC%(h;)icr. Hence (3) follows from (1), (2) and Lemma [6.2 O

The next proposition presents a way to construct component preserving oblique dual fusion
frame systems from a given frame for a subspace, using an oblique left inverse of its analysis

operator.

Proposition 6.9. Let V and W be two closed subspaces of H such that H =V & W=. Let w and
v be two collections of weights such that inf;c;v; > 0. Let wF be a frame for VW with local upper
frame bound B; for each i € I such that sup;,c;B; < 0o, A € 2}%sz and {{eii}ier, }ier be the
standard basis for @;el*(L;). For eachi € I, set W; = span{ fi i }ier, and V; = WL{%Aei,l}leLy

Let G = {{U%Aei,l}leLi}ieI- Then

(1) {LAeishier, i Vi with bounds 1412 gpq 1412
o Aeiitier,; is a frame for V; with frame bounds “—>— and *5-.

(2) (V,v,G) is an oblique dual fusion frame system of (W, w,F) on V.

Proof. Part (1) is a consecuence of [4, Proposition 5.3.1].
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If g € H, ZieIZleLi <97A€i,l>|2 = Eie] ElELi

Theorem 29 (V,v,G) is a Bessel fusion system for H with upper frame bound || A||?.

(A*g.ei)” = [|A"g)* < [AIPllgl?. By

By [6, Lemma B.1], vG is an oblique dual frame of wF on V. So, part (2) follows from
Theorem 4] O

7. THE CANONICAL OBLIQUE DUAL FUSION FRAME

Let (W,w) be a fusion frame for W. Let A = 7Tv7wLS~I;V,WTW,W € 2%\;‘2‘: and v be a se-
quence of weights such that (my 1 S$V7WW,V) is a Bessel fusion sequence for V. Assume that
Qayv : Kw — @iermp i S\T;v,wWi given by Qav(fi)ier = (52mywe Si}vwai)iel is a well defined
bounded operator (see [IT, Remark 3.6]). By Lemmal[G.2] (), - SI,V,WW, v) is a 4 y-component
preserving dual of (W,w) on V. In particular we can take v .= w. In fact, (Si,V,WW,W) is
a QS‘TNYWTWYWW-component preserving dual of (W, w) (see [II, Example 3.7]). Then, by Corol-

lary B4, (7 - S$V1WW, w) is a @ 4,w-0blique component preserving dual of (W, w) on V.

Given v we will refer to this dual as the canonical oblique dual with weights v and to
ZVYWLSIN,WTW,W,V ;VYWLS‘TN’WW,vf:T"’FVaWS%WWWWvV*f
as the oblique fusion frame coefficients of f € H with respect to (W, w) on V. We note that if
YV = W, the canonical oblique dual fusion frames reduce to the canonical dual fusion frames as
defined in [IT] [12].
Furthermore, if in Definition (V,v) is a canonical oblique dual fusion frame of (W, w) we
say that (V,v,G) is a canonical oblique dual fusion frame system of (W, w, F).

The theorem below follows from Theorem It gives a characterizations of canonical oblique

dual fusion frames and can be proved in a similar way as [5, Theorem 2.

Theorem 7.1. Let V and W be two finite-dimensional subspaces of H such that H =V © W+,
Assume (W, w) is a fusion frame for a subspace W C H. Then the canonical Q-oblique dual fusion
frames of (W,w) onV are

{(Vi,vi) Yier = {(my e (HTy ) Zi, vi) Yier,
where (Z,w) is a fusion frame sequence that satisfies HTyy o, = Tzw(HM;Ty o )ier, for some
H e L(Kw,H) with Ker(H) = Ker(Tw,w) and Q = Q,

ol (HT\);V,W)THVV. AlSO

{(Vi,vi)Yier = {(B(T3y wB)  Mi(Kw), vi) }ier,
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where B € L(Kyw, H) is such that Im(B) = V.

The following lemma implies that oblique fusion frame coefficients are those which have minimal

norm among all other coefficients.

Lemma 7.2. Let W and V be two closed subspaces of H such that H =V ®@W-=. Let (W, w) be a
Jusion frame for W and f € H. For all (f;)ic1 € Kw satisfying Tw w(fi)ier = mwyr f, we have

(f)ietl? = 1Ty w St wmw v FI + 1 (F)ier — Ty wStr wmwov FII2.

Proof. Suppose that (f;)icr € Ky satisfies Tw w(fi)ier = Ty y+ f. Then
(fidier = T wSw wiw s f € Ker(Tw w) = In(Ty )

Since TV*V7WS€}V7W7TW1];Lf € Im(Tyy ), the conclusion follows. O

Remark 7.3. Let WW and V be two closed subspaces of H such that % =V @ W=. Let (W, w) be
a fusion frame for W and (V,v) be a fusion frame for V.

Since H = V @ W+, the operator Ty wlvy + Kv — Ky given by T{;V7WTV,V(gi>’L'€I =
Dicr Vil i = (wi Y ;e viTw, 9i)ie1, satisfies Ker(T\*;Vﬁwva) = Ker(Tv v) and Im(T‘*;VﬁwTVN) =
Im(Tyy & )-

If fewt= Ker(Tv*Vyw), TV,v(Tv*vwaV,v)TT\*;v,wf =0. If g € V =Im(Ty,y), there exists
(gi)ier € Ky suchthat g = Ty v(gi)icr. Then Ty o (Tyy o Tv V) Ty w9 = TV v TKer(1y ) (9i)icT =
Tv v (gi)ier = g- Thus Ty v (Tiy «Tv v) Ty o = Ty, and consequently, (V, v) is a (Ty o Tv.v) -
oblique dual fusion frame of (W, w) on V.

This shows that given (W, w) a fusion frame for W and (V,v) a fusion frame for V we can
always do the analysis with one of them and the synthesis with the other leading to a consistent
reconstruction. Note that this happens in the general framework of Definition where we do not
impose any additional condition on ).

We note that the component preserving oblique duals associate with Tvﬁv(T{,“V,V‘,TVN)Jf €

v wt
L1k

W

obtained applying Lemma are the canonical ones. To see this we will prove that
TV,V(T{;WWTV,V)T =Ty e SI}V,WTwaW' We have on one hand

Ty v (T TV ) Ty e = oo Sty o TW Ty e = T
Let now (g;)ier € Im(TV*WW)J‘ = Ker(Tw,w) = Ker((T{,“V,WTVVV)T). Then TV,v(Tv*vMTV,v)T(gi)ieI =

LAVRVVES S{L)VNVTW,w(gi)ieI =0.
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7.1. Existence of non-canonical oblique dual fusion frames. A Bessel fusion sequence
(W, w) is a Riesz fusion basis for W if and only if Tw v is injective, or equivalently, S{LNVWTwyw
is the unique element in EIJWGV,W' In this case, by Proposition Z3] my, yy 1 S{L,V7WTW7W is the unique
element in 2%\)3:\}: So, by Lemma [61] if (W, w) is a Riesz fusion basis for W the only component
preserving duals of (W, w) are (my, - S$V7WW,V). It is easy to see that if QFV,WLS\TN,WTW,W,V is

well defined and bounded for the weights v, this component preserving oblique dual coincides with

the canonical one with weights v, i.e. the operator @ for this dual is Q_ v We also
v, w,

w-l S;(N,WTW,

have:

Proposition 7.4. Let W and V be two closed subspaces of H such that H =V OW=L. Let (W, w)

be a Riesz fusion basis for W and v a family of weights. The following assertions hold:

(1) (my e S&LWW,W) is a Riesz fusion basis for V.

(2) If (V,v) is a Riesz fusion basis for V, then T5; ,Tw w is invertible.

(3) Let (V,v) be a block-diagonal oblique dual fusion frame of (W,w) on V. Then, for each
i €1, mywiSly Wi C Vi

(4) If (V,v) is a Riesz fusion basis for V which is a block-diagonal oblique dual fusion frame
of (W,w) onV, then Vi = my yy1 S$V7WW¢ foriel

Proof. (1) Let (fi)ier € K. Since (W, w) is a Riesz fusion basis for W, there exists f € H such

that (fi)ie] = T{;kv,wf Then

T, .Sk ww,w(ﬁv,wLSxT;vwai)iel =Ty i S\Tzv,wTW,w(fz‘)z'eI

= Wywa SIN,WTW,WTV*V,Wf = T‘-V,WLﬂ-Wf = T‘-V,WL f

Thus T, o s (moweSly wfidier = 0 if and only if f € W = Ker(Tyy ,,), that is,
v,wlLPw,w ’ ’ ’

(fi)ier = 0. Tt follows that va is injective, or equivalently, (7 - S&LWW,W) is

,WLSIN,wwvw
a Riesz fusion basis for V.

(2) Let (fi)ie[ S KW such that T\77VTW,w(fi)i€I = 0 SO7 TW,w(fi)iGI S Ker(T\*,N) n
Im(Tw.w) = VENW = {0}. Since (W,w) is a Riesz fusion basis for W, this implies that

(fi)ier = 0. Therefore, Ty Tw,w is injective. In the same manner it results that (T‘*,vaw,w)* =

T\ wIv,v is injective. Consequently, 75, ,Tw w is bijective.
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@) Let (fi)ier € Ky and i € I fixed. From Ty vQTyy o = Ty and Ty oSty wTww = Iiyy
the last equality holds since : — Kyy 18 bijective an W.w = Ty), we
he 1 lity holds since (T3 ) : W — Ky is bijective and Sty o Tw w5y v
obtain

« "
LAVRVVES S{L)V7wfi = TV,VQTW,WS$V7WTW,wMi(Xi (J)Efj)je]
J

1 1
= TV,vQMi(Xi(j)Efj)jeI = TV,vMiQ(Xi(j)Efj)jel eV
J J

So Tyt S@V,WWZ- cV.

@ By @), FvﬁwLSI}Vwai C V; for each i € I. Suppose that there exists ig € I such that
Ty Sty wWio C Vig. Set {0} # Uy, C Vi, such that Vi, = my i Sty Wi, @ Uy, Take 0 # uy, €
Uiy~ By (1), ui, = Y ;¢ 9i Where g; € WV,WLSI,V,WWi for each ¢ € I. Since ﬂ'V,WLS%V’WWi cV;
for each i € I and (V,v) is a Riesz fusion basis for V, u;, = gi, € mp e LS”{L,VNVVVZ-U nU,, = {0}.

This is absurd. Thus the conclusion follows. O

Remark 7.5. Let W and V be two closed subspaces of H. Let (W, w) be a fusion Riesz basis
for W and (V,v) a fusion Riesz basis for V. If T5; Tw w is injective, then W N V+ = {0}. To
see this, consider f € W N VL. Since f € W = Im(T\w w), there exists (fi)icr € Ky such that
f = Tww(fi)icr. Since f € V+ = Ker(Ty ), Ty f = 0. Therefore, T3 ,Tw w(fi)icr = 0.

Taking into account that 75, Tw,w is injective, we deduce that (fi)ier =0, and then f = 0.

To prove Proposition about the existence of non canonical oblique duals, we will need the
following Corollary which is a consequence of the next lemma that generalizes Lemma 5.5.5 in [4],

and can be proved in a similar way.

Lemma 7.6. Let W be a closed subspace of H. A pair (W, w) is a fusion frame for W with
bounds A, B if and only if the following conditions are satisfied:

(1) (W,w) is complete in W

(2) The operator Tw w is well defined on Ky and

All(fi)ierll? < 1 Tw w(fi)ierlI> < Bl (fi)ier|® V(fi)ier € Ker(Tw w)*

Corollary 7.7. Let W be a closed subspace of H and (W, w) be a fusion frame for W. Let (VA\7, w)
be a sequence such that W1 C W; for alli € I. Then (W,w) is either a fusion frame for YW or

incomplete in VY.
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Proof. Assume that (W,w) is complete in W. Since m5; = 7y mw, It is clear that (W,W) isa
Bessel sequence, so the operator TW,w is well defined on k3.
Considering everything inside Ky;; we can decompose

Ker(TW,W)l = Ker(TVV,w)L @ (Ker(TVV,w)L)L = Ker(TVV,w)l © Ker(Tw,w)-
Hence, by Lemma [Z.6]

(7.1) TG v (fi)ier|? = AllTker(ru w) - (fi)ier|* V(fi)ier € Ker(Tg )"

Since span|J;¢; W; C Im(T ) € spanU;c; W; = W, we only have to prove that Im(Tg )
is closed. Let g € Im(Tyg ). Then there exists a sequence (fi)ir; € Ker(Tw )" such that
T{fv,w(fi)?el converges to g. By (1)) (fi)j<; is a Cauchy sequence, so it converges to some (f;)ier

in Ky;; which satisfies, by continuity, that TW,W( fidier = g. O

The next proposition shows that if (W, w) is an overcomplete fusion frame with non trivial
subspaces there always exist component preserving oblique dual fusion frames which are not the
canonical ones. For V = W this result is a generalization of [I2, Proposition 3.9] to the infinite

dimensional case.

Proposition 7.8. Let (W,w) be a fusion frame for a closed subspace W C H and let V be a
closed subspace such that H =V @ WL, Let (W, w) be an overcomplete fusion frame for W such

that W; # {0} for every i € I. Then there exist component preserving oblique dual fusion frames
(V,w) of (W,w) different from (WV,WLS$V7WW,W).

Proof. Since (W, w) is not a Riesz fusion basis, there exists ig € I such that W;, Nspan{W; : i #
io} # {0}. Let us first prove that (W, w) given by W; = W; for i # io and Wi, = Wi, N (Wi, N
span{W; : i #ip})" is a fusion frame for W.

Let us first see that (W, w) given by W; = W; for i # ig and Wi, = Wy, N (Span{W; : i #
io} N Wi, )t is a fusion frame for W.

Let f € W. Then f = >,/ fi, with fi € W for all i € I. So, f = >, fi + fi, =
D itio Ji + Tapan{Wisizio Wiy, (fio) + Tapan{w izio}nwiy )+ (fio)-

But then 7 span{w, izioyrwi, ) (fio) € Wiy, hence m(spaniw, izioynwi, )+ (fio) € Wio. So f €
span({J;~, Wz) It follows that (W, w) is complete. By Corollary [.7] (W, w) is a fusion frame for
W.
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Now define V; = 7y yy1 S%vvw(wz) fori € I. Consider the component preserving Q € L(Kw, Ky),
given by Q(fi)ier = (my S%,Wﬂwifi)iel-

Let f € H. Since T, wi, f = T, f, we obtain TV7W@T{§V1Wf =i WiTy e SI;T/,WW% (f) =
7w (f). This shows that (V, w) is a component preserving Q-oblique dual fusion frame of (W, w)
on V.

Note that W;, C W;,. Assume that W;, = W;,. Then W;, C (pan{W; : i # io} N Wy, )+
which is a contradiction since W;, Nspan{W; : i # io} # {0}. To see that my 1 S%,W(Wi ) #
Ty Wi S{LMW(WiO), take f € S@V,W(Wio N WZJO-), [ # 0. Assume, by contradiction, that m, . f €
WvﬁwLS%vvﬁw(Wio). We have

Ty (f) =Ty e S%ﬁwsw,w(f) =Ty, w- S%V’w(Ziel,i;éio wimw, (f) + w?ﬂ’mo (£))-
Then WVVWLS%’W(Z%L#% wimw, (f)) € WvﬁwLS%nw(Wio), i.e. there exists g € Wj, such that
Ty wi S\ifv,w(ZieI,i#io wimw, (f)) = Ty e S%V’W(g). Hence S%VWW(ZieI,i;éio wimw, (f)—g) € W
But then S\i)\vij(zief,i#io wimw, (f) —g) = 0 ie. Yoy witw,(f) —g € Ker(Sfov,w) =Wt
and 50 3o wiTw, (f) = g. Then 35, ;. wimw,(f) € Wi,. So Dicrizio WiTw, (f) €
(W;, Nspan{W; : i # ip})" and D ieLivtio winw, (f) € Wi, Nspan{W; : i # ig}. It follows that
Sierizi, Wimw, (f) = 0. So f = S%;,WSW,W( f) = s%7ww§0wwio (f). Therefore f € 5%7W(Wi e
Sty wWig "W, e f = S%7w(h) = Sy w(s), where h € W, and s € Wi, N W;-. But then

Sxifv,w(w%oﬂwio (WL%)) = SI;V,W(UJ%OWW% (wi?o)), hence o~ = % and so h = s = f = 0, which

i0 i0

is a contradiction. O
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