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ABSTRACT 

 

In distributed processing systems it is often necessary to 

coordinate the allocation of shared resources that should be 

assigned in the processes in the modality of mutual exclusion; 

in such cases, the order in which the shared resources will be 

assigned in the processes that require them must be decided; in 

this paper we propose an aggregation operator (which could be 

used by a shared resources manager module) that will decide 

the order of allocation of the resources to the processes 

considering the requirements of the processes (shared 

resources) and the state of the distributed nodes where the 

processes operate (their computational load).   
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1.  INTRODUCTION 

 

The proliferation of computer systems, many of them 

distributed in different nodes with multiple processes that 

cooperate for the achievement of a particular function, require 

decision models that allow groups of processes to use shared 

resources that can only be accessed to in the modality of mutual 

exclusion. 

 

The traditional solutions for this problem are found in [1] and in 

[2], which describes the main synchronization algorithms in 

distributed systems; In [3], it presents an efficient and fault 

tolerant solution for the problem of distributed mutual 

exclusion; In [4], [5] and in [6], which present algorithms to 

manage the mutual exclusion in computer networks; In [7], 

which details the main algorithms for distributed process 

management, distributed global states and distributed mutual 

exclusion. 

 

The allocation of resources in processes should be performed 

taking into account the priorities of the processes and also the 

state in terms of workload of the computational nodes in which 

the processes are executed.  

 

Also, solutions (which may be considered classic or traditional) 

have been proposed for very different types of systems 

distributed in [8][9][10][11] and in [12]. Other works focused 

on ensuring mutual exclusion have been presented in [13] and 

in [14]. An interesting distributed solution based on permissions 

is presented in [15] and a solution based on process priorities in 

[16]. 

 

The new decision models for allocating shared resources could 

be executed in the context of a shared resource manager for the 

distributed system, which would receive the shared resource 

requirements of the processes running on the different 

distributed nodes, as well as the computational load state of the 

nodes and, considering that information, the order (priority) of 

allocation of the requested resources for the requesting 

processes should be decided on. Consequently, it is necessary to 

count on aggregation operators specifically designed. 

 

In this paper, a new aggregation operator will be presented 

specifically for the aforementioned problem. This falls under 

the category of OWA operators, more specifically Neat OWA. 

This will present an innovative method for shared resource 

management in distributed systems. 

  

 

2.  DATA STRUCTURES TO BE USED 

 

The following premises and data structures will be used. 

 

These are groups of processes distributed in process nodes that 

access critical resources. These resources are shared in the form 

of distributed mutual exclusion and it must be decided, 

according to the demand for resources by the processes, what 

the priorities to allocate the resources to the processes that 

require them will be (to be assigned in the processes only those 

resources available will be taken into account, that is, those not 

yet allocated in certain processes):  

• The access permission to the shared resources of a 

node will not only depend on whether the nodes are 

using them or not, but on the aggregation value of the 

preferences (priorities) of the different nodes regarding 

granting access to shared resources (alternatives) as 

well. 

• The opinions (priorities) of the different nodes 

regarding granting access to shared resources 

(alternatives) will depend on the consideration of the 

value of variables that represent the state of each of the 

different nodes. Each node must express its priorities 

for assigning the different shared resources according to 

the resource requirements of each process (which may 

be part of a group of processes). 

 

Nodes hosting processes: 1, …. , n. The set of nodes is 

represented as follows: 

nodes = {n1, …. , nn}  

 

Processes housed in each of the n nodes: 1, …. , p. The set of 

processes is represented as follows: 

processes = {pij} with i = 1, …, n (number of nodes in the 

distributed system) and j = 1, …, p (maximum number of 

processes in each node). 

 

Distributed Process Groups: 1, …, g. The set of distributed 

process groups is represented as follows: 

groups = {pij} with i indicating the node and j the process in 

this node. 

 

Size of each of the g process groups. The number of processes 

in each group indicates the group's cardinality and is 

represented as follows: 

card = {card(gi)} with i = 1, …, g indicating the group. 
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Group priority of each of the g processes groups. These 

priorities can be set according to different criteria; in this 

proposal it will be considered to be a function of the cardinality 

of each group and is represented as follows: 

prg = {prgi = card(gi)} with i = 1, …, g indicating the group. 

 

Shared resources in distributed mutual exclusion mode 

available on n nodes: 1, …., r, The set of resources is 

represented as follows: 

resources = {rij} with i = 1, …, n (number of nodes in the 

distributed system) and j = 1, …, r (maximum number of 

resources at each node). 

 

These available shared resources hosted on different nodes of 

the distributed system may be required by the processes 

(clustered or independent) running on the nodes: 

Possible states of each process: 

• Independent process. 

• Process belonging to a group of processes. 

Possible state of each of the nodes: 

• Number of processes. 

• Priorities of the processes. 

• CPU usage. 

• Main memory usage. 

• Use of virtual memory. 

• Additional memory required for each resource 

requested by each process (depending on the 

availability of the data). 

• Additional estimated processor load required for each 

resource requested by each process (depending on data 

availability). 

• Additional estimated input / output load required for 

each resource requested by each process (depending on 

data availability). 

• Status of each of the shares in the distributed mutual 

exclusion mode in the node: 

o Assigned to a local or remote process. 

o Available. 

• Predisposition (nodal priority) to grant access to each 

of the r shared resources in the modal of distributed 

mutual exclusion (will result from the consideration of 

the variables representative of the node status, the 

priority of the processes and the additional 

computational load which would mean allocating the 

resource to the requesting process). 

• Current load of the node, which can be calculated as 

the average CPU, memory and input / output usage 

percentages at any given time (these load indicators 

may vary depending on the case, some may be added or 

changed); the current load categories, for example, 

High, Medium and Low, should also be defined, with 

value ranges for each category being indicated. 

 

 

3.  DESCRIPTION OF THE AGGREGATION 

OPERATOR  

 

The proposed operator consists of the following steps: 

1. Calculation of the current computational load of 

the nodes. 

2. Establishment of the categories of computational 

load and the vectors of weights associated with 

them. 

3. Calculation of the priorities or preferences of the 

processes considering the state of the node (they 

are calculated in each node for each process). 

4. Calculation of the priorities or preferences of the 

processes to access the shared resources available 

(calculated in the centralized manager of shared 

resources) and determination of the order and to 

which process the resources will be allocated. 

 

Each of the steps above is described below. 

 

Calculation of the current computational load of the nodes 

 

To obtain an indicator of the current computational load of each 

node, different criteria can be adopted; in this proposal the 

criteria will be the percentage of CPU usage, the percentage of 

memory usage and the percentage of use of input / output 

operations, as will be seen in the example. 

 

The computational load of each node will be calculated as 

follows: 

Establishment of the number of criteria to determine the load of 

the nodes: 

card({criteria}) = c 

 

Establishment of the criteria that apply (may differ from one 

node to another): 

criteria = {cij} with i = 1, …, n (number of nodes in the 

distributed system) y j = 1, …, c (maximum number of criteria 

for each node). 

 

Eventually, all nodes could use the same set of criteria. 

 

Calculation of the computational load of each node:    

loadi = (value(ci1) + … + value(cic)) / c with i = 1, …, n   

 

Establishment of the categories of computational load and of 

the vectors of weights associated thereto 

 

Different criteria can be adopted to establish the current 

computational load categories of each node; in this proposal the 

categories will be: High (if the load is more than 70%), Medium 

(if the load is between 40% and 70% inclusive) and Low (if the 

load is less than 40%), as you will see in the example. 

 

Establishment of the number of categories to determine the load 

of the nodes: 

card({categories}) = a 

 

Establishment of the categories that apply (they may differ from 

one node to another): 

categories = {catij} with i = 1, …, n (number of nodes in the 

distributed system) and j = 1, …, a (maximum number of 

categories for each node). 

 

Eventually all nodes could use the same set of categories. 

 

In order to establish the vectors of weights associated with the 

current computational load categories of each node, different 

criteria can be adopted; in this proposal, the criteria will be: 

number of processes in the node, percentage of CPU usage, 

percentage of memory usage, percentage of virtual memory 

usage, process priority (process priority in the node where it is 

executed), memory overhead (additional memory that will 

require the requested resource to be available, if the data is 



available), processor overhead (additional processor use that 

will require the requested resource if the data is available), and 

input / output overhead (input / additional output that will 

require to arrange the requested resource, if the data is 

available), as will be seen in the example. 

 

Establishment of the number of criteria to determine the priority 

or preference that will be granted in each node according to its 

load to each order of a shared resource made by each process: 

card({critpref}) = e 

 

Establishment of the criteria that apply (same for all nodes): 

criteria for preferences = {cpij} with i = 1, …, a (number of 

categories of computational load) and j = 1, …, e (maximum 

number of criteria). 

 

Eventually, all nodes could use different sets of criteria 

applicable to the different categories of computational load; in 

this proposal and as will be seen in the example, the same 

criteria are used for all nodes.  

 

First, the categories to indicate the load of the nodes and the 

criteria that will be applied to evaluate the priority to be given 

to each request of resources of each process are determined. 

Then the values corresponding to the criteria that constitute the 

vectors of weights for the different categories of load are 

established. 

 

Establishment of vectors of weights (same for all nodes): 

weights = {wij} con i = 1, …, a (categories number of 

computational load) y j = 1, …, e (maximum number of 

criteria). 

 

The assignment of weights to the different criteria will be a 

function of previously performed statistical studies about the 

distributed system; there will then be a weight assignment 

function to the criteria for constituting the weight vectors of 

each load category: 

wij = norm(function(cpij)) con i = 1, …, a (numbers of category) 

y j = 1, …, e (numbers of criteria); norm indicates that the 

values must be normalized (in the range of 0 to 1 inclusive) and 

with the constraints that the sum of the elements of a vector of 

weights must give 1: 

Σ {wij} = 1 with j = 1, …, e for each constant i.  

 

This means that the sum of the weights assigned to the different 

criteria will be 1 for each of the categories, or equally, that the 

sum of elements of the vector of weights of each category is 1. 

 

Calculation of the priorities or preferences of the processes 

taking into account the status of the node (they are calculated in 

each node for each process and could be called nodal 

priorities) 

 

These priorities are calculated at each node for each resource 

request originated in each process; the calculation considers the 

corresponding weight vector according to the current load of the 

node and the vector of the values granted by the node according 

to the evaluation criteria of the request. The range of values is 

between 0 and 1, where a value close to 0 means that the related 

criterion will contribute little to the calculation of the priority of 

the request, while a value close to 1 means otherwise. Thus a 

node can influence a request for a resource by a process 

according to its state and the additional impact or burden that 

would mean assigning the requested resource to the requesting 

process, e.g., if accessing the request means increasing the 

memory usage and the node has little memory available, then it 

could assign to that criterion a value close to 0, in turn, if the 

additional processor consumption is considered low and the 

CPU usage of node is little, then a value close to 1 would be 

assigned to that criterion. 

 

The valuation vectors that will be applied for each request of a 

resource by a process, according to the criteria established for 

the determination of the priority that in each case and moment 

will fix the node in which the request occurs, are the following: 

valuations (rij pkl) = {cpm} con i = 1, …, n (node where the 

resource resides), j = 1, …, r (resource on node i), k = 1, …, n 

(node where the process resides), l = 1, …, p (process at node k) 

and m = 1, …, e (valuation criteria of the requirement priority). 

 

To sum up, the nodal priority (to be calculated at the node 

where the request occurs) of a process to access a given 

resource (which can be at any node) is calculated by the scalar 

product of the mentioned vectors: 

nodal priority (rij pkl) = Σ wom * cpm indicating the weights 

vector according to the load of the node, keeping the other 

subscripts the meanings explained above. 

 

Calculation of process priorities or preferences to access 

available shares (it is calculated in the centralized manager of 

the shared resources). In addition, determining the order in 

which the resources will be allocated and to which process each 

resource will be allocated 

 

At this stage, the nodal priorities calculated in the previous 

stage are considered for each requirement of access to resources 

by the processes. The global or final priorities must be 

calculated from these nodal priorities, that is, with what priority, 

or in what order, the requested resources will be provided and to 

which processes the allocation will be made. The requirements 

that cannot be attended because they result in low priorities, 

will be considered again in the next iteration of the method. 

 

Next, it is necessary to calculate the vector of final weights that 

will be used in the process of aggregation to determine the order 

or priority of access to the resources. 

final weights = {wfkl} con k = 1, …, n (number of nodes) y l = 

1, …, p (Maximum number of processes per node), where np is 

the number of processes in the system and prgi is the priority of 

the process group to which the process belongs (explained in 

the previous section). 

 

The next step is to normalize the newly obtained weights by 

dividing each by the sum of all of them. 

 

Thus a normalized weight vector (in the range of 0 to 1 

inclusive) is obtained and with the restriction that the sum of the 

elements of the vector must give 1: 

Σ {nwfkl} = 1 with k = 1, …, n (number of nodes) and l = 1, …, 

p (maximum number of processes per node).  

 

The nodal priorities taken row by row for each resource will be 

scalar multiplied by the normalized final weight vector. In this 

way it is possible to obtain the final global access priorities of 

each process to each resource. It is indicated below how the 

order or priority with which the resources will be allocated is 

obtained and to which process each one will be assigned.  

 



overall final priority (rij pkl) = nwfkl * pkl with rij indicating the 

resource j of node i, pkl the process l of node k and the product 

of the overall final priority of the process to access such 

resource. The greater of these products made for the different 

processes in relation to the same resource will indicate which of 

the processes will have access to the resource. 

 

The addition of all these products in relation to the same 

resource will indicate the priority that will have that resource to 

be assigned, in relation to the other resources that will also have 

to be assigned. This is what will be called Distributed Systems 

Assignment Function (DSAF): 

DSAF(rij) = Σ nwfkl * pkl = resource allocation priority rij. 

 

By calculating the DSAF for all resources a vector will be 

obtained, and by ordering its elements from highest to lowest, 

the priority order of allocation of resources will be obtained. In 

addition, as already indicated, the largest of the products nwfkl * 

pkl for each resource will indicate the process to which the 

resource will be assigned. 

 

Considerations for Aggregation Operations 

 

The characteristics of the aggregation operations described 

allow to consider that the proposed method belongs to the 

family of aggregation operators Neat-OWA, which are 

characterized by the following: 

 

The definition of OWA operators indicates that 
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For the Neat OWA operator family the weights will be 

calculated according to the elements that are added, or more 

exactly of the values to be added orderly, the bj, maintaining 

conditions (2) and (3). In this case the weights are 

wi=fi(b1,…,bn), defining the operator 
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For this family, where the weights depend on the aggregation, 

the satisfaction of all properties of OWA operators is not 

required. 

 

In addition, in order to be able to assert that an aggregation 

operator is neat, the final aggregation value needs to be 

independent of the order of the values. A=(a1,…,an) being the 

entries to add,  B=(b1,…,bn)  being the ordered entries and  

C=(c1,…,cn)= Perm(a1,…,an)   a permutation of the entries. An 

OWA operator is defined as neat if 
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It produces the same result for any assignment C = B. 

One of the characteristics to be pointed out by Neat OWA 

operators is that the values to be added need not be sorted out 

for their process. This implies that the formulation of a neat 

operator can be defined by directly using the arguments instead 

of the orderly elements. 

 

In the proposed aggregation operator, the weights are calculated 

according to context values. From this context arise the values 

to be aggregated. 

 

 

4.  EXAMPLE AND DISCUSSION OF RESULTS 

 

This section will explain in detail an example of application of 

the proposed aggregation operator. The distributed processing 

system has three nodes:  

nodes = {1, 2, 3}   

 

The processes running on the nodes are as follows: three 

processes on node 1, five processes on node 2 and seven 

processes on node 3.  

 

processes = {pij} with i indicating the node y j indicating the 

process. 

 

Several processes are independent and others constitute groups 

of cooperative processes. In this example four groups will be 

considered. 

 

The number of processes in each group indicates the cardinality 

of the group and is represented as follows:  

card = {card (gi)} = {3, 2, 2, 3} with i indicating the group.  

 

The priority of the groups of processes will be considered the 

cardinality of each group and is represented as follows:  

prg = {prgi = card(gi)} = {3, 2, 2, 3} with i indicating the 

group. 

 

The shared resources available in the nodes are as follows: three 

resources in node 1, four resources in node 2 and three 

resources in node 3.  

 

resources = {pij} with i indicating the node y j indicating the 

process.  

 

Each of the calculation steps will now be described. Calculation 

of the current computational load of the nodes to obtain an 

indicator of the current computational load of each node, the 

same three criteria will be adopted in the three nodes:  

card ({criteria}) = 3  

criteria = {% CPU usage, % of memory usage, % use of input / 

output operations}. 

 

Establishment of the categories of computational load and of 

the vectors of weights associated thereto. 

 

In this proposal, the categories will be the same for all nodes: 

High (if the load is greater than 70%), Medium (if the load is 

between 40% and 70% inclusive) and Low (if the load is less 

than 40%).  

 

card ({categories}) = 3  

 

categories = {High, Medium, Low} 

 



To establish the weight vectors associated with the current 

computational load categories of each node, the following 

criteria will be used for all nodes and for all load categories: 

Number of processes in the node,% CPU usage,% memory 

usage,% virtual memory usage, process priority (process 

priority in the node where it is executed), memory overhead 

(additional memory that will require (additional processor use 

that will require the requested resource to be available, if the 

data is available) and input / output overhead (additional input / 

output that will require the requested resource to be available) , 

if the data is available). 

 

card ({critpref}) = 8 

 

criteria for preferences = {Node of processes in the node, % of 

CPU usage, % of memory usage, % of virtual memory usage, 

process priority, memory overhead, processor overload, input / 

output overhead}. Next, the values corresponding to the criteria 

must be established, constituting the vectors of weights for the 

different categories of load, which will be the same for all 

nodes. The sum of the weights assigned to the different criteria 

is 1 for each of the categories, i.e. the sum of elements of the 

vector of weights of each category is 1. 

 

Calculation of the priorities or preferences of the processes 

taking the status of the node into account (they are calculated in 

each node for each process and could be called nodal 

priorities) 

 

The valuation vectors are applied for each requirement of a 

resource made by a process, according to the criteria established 

for the determination of the priority that in each case and 

moment fixes the node in which the request occurs; each vector 

of evaluations of each requirement is scalar multiplied by the 

vector of weights corresponding to the current load category of 

the node to obtain the priority according to each criterion and 

the nodal priority granted to each requirement. 

 

Calculation of the priorities or preferences of the processes to 

access the shared resources available (calculated in the 

centralized resource manager) and determining the order in 

which the resources will be allocated and which process each 

resource will be assigned. 

 

From the nodal priorities, the global or final priorities must be 

calculated, that is, with what priority, in what order, the 

requested resources will be awarded and to which processes 

such grant will be made. Next it is necessary to calculate the 

vector of final weights that will be used in the final process of 

aggregation to determine the order or priority of access to the 

resources. The nodal priorities taken row by row, that is, for 

each resource, will be scalar multiplied by the normalized final 

weight vector to obtain the final global access priorities of each 

process to each resource, and from there, the order or priority 

with which the resources will be allocated and to which process 

each one will be assigned. The greatest of these products made 

for the different processes in relation to the same resource will 

indicate which of the processes will have access to the resource 

(in the case of ties the process identified with the smallest 

number could be chosen). The addition of all these products in 

relation to the same resource will indicate the priority of such 

resource to be assigned. This is the Distributed Systems 

Assignment Function (FASD). 

 

The next step is to reiterate the procedure, but removing from 

the requests for resources the assignments already made; it 

should also be taken into account that the allocated resources 

will be available when the processes have released them and 

can therefore be assigned to other processes. In this way, all the 

requests for resources of all the processes have been taken care 

of, respecting the mutual exclusion and the priorities of the 

processes, the nodal priorities and the final priorities. 

 

 

5.  CONCLUSIONS 

 

The proposed model makes it possible for the distributed 

system to self-regulate repeatedly according to the local state of 

the n nodes, resulting in an update of their local states, as a 

consequence of the evolution of their respective processes and 

the decisions of access to resources: the distributed system in 

whose groups of processes access to critical resources is 

executed, produces access decisions to resources that modify 

the state of the system and readjusts it repetitively, also 

guaranteeing the mutual exclusion in access to the shared 

resources, indicating the priority of granting access to each 

resource and the process to which it is assigned. This process is 

repeated as long as there are processes that request access to 

shared resources. 

 

For future work, it is planned to develop variants of the 

proposed method considering other aggregation operators 

(especially the OWA family) and the possibility of being used 

by a resource manager shared (instead of centralized as in the 

proposed method). 
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