

Assignment of Resources in Distributed Systems

David L. LA RED MARTÍNEZ, Julio C. ACOSTA, Federico AGOSTINI

 Faculty of Exact and Natural Sciences and Surveying, Northeastern National University

Corrientes, (3400), Argentine

ABSTRACT

In distributed processing systems it is often necessary to

coordinate the allocation of shared resources that should be

assigned in the processes in the modality of mutual exclusion;

in such cases, the order in which the shared resources will be

assigned in the processes that require them must be decided; in

this paper we propose an aggregation operator (which could be

used by a shared resources manager module) that will decide

the order of allocation of the resources to the processes

considering the requirements of the processes (shared

resources) and the state of the distributed nodes where the

processes operate (their computational load).

Keywords: Aggregation Operators, Concurrency Control,

Communication Between Groups of Processes, Mutual

Exclusion, Operating Systems, Processor Scheduling.

1. INTRODUCTION

The proliferation of computer systems, many of them

distributed in different nodes with multiple processes that

cooperate for the achievement of a particular function, require

decision models that allow groups of processes to use shared

resources that can only be accessed to in the modality of mutual

exclusion.

The traditional solutions for this problem are found in [1] and in

[2], which describes the main synchronization algorithms in

distributed systems; In [3], it presents an efficient and fault

tolerant solution for the problem of distributed mutual

exclusion; In [4], [5] and in [6], which present algorithms to

manage the mutual exclusion in computer networks; In [7],

which details the main algorithms for distributed process

management, distributed global states and distributed mutual

exclusion.

The allocation of resources in processes should be performed

taking into account the priorities of the processes and also the

state in terms of workload of the computational nodes in which

the processes are executed.

Also, solutions (which may be considered classic or traditional)

have been proposed for very different types of systems

distributed in [8][9][10][11] and in [12]. Other works focused

on ensuring mutual exclusion have been presented in [13] and

in [14]. An interesting distributed solution based on permissions

is presented in [15] and a solution based on process priorities in

[16].

The new decision models for allocating shared resources could

be executed in the context of a shared resource manager for the

distributed system, which would receive the shared resource

requirements of the processes running on the different

distributed nodes, as well as the computational load state of the

nodes and, considering that information, the order (priority) of

allocation of the requested resources for the requesting

processes should be decided on. Consequently, it is necessary to

count on aggregation operators specifically designed.

In this paper, a new aggregation operator will be presented

specifically for the aforementioned problem. This falls under

the category of OWA operators, more specifically Neat OWA.

This will present an innovative method for shared resource

management in distributed systems.

2. DATA STRUCTURES TO BE USED

The following premises and data structures will be used.

These are groups of processes distributed in process nodes that

access critical resources. These resources are shared in the form

of distributed mutual exclusion and it must be decided,

according to the demand for resources by the processes, what

the priorities to allocate the resources to the processes that

require them will be (to be assigned in the processes only those

resources available will be taken into account, that is, those not

yet allocated in certain processes):

• The access permission to the shared resources of a

node will not only depend on whether the nodes are

using them or not, but on the aggregation value of the

preferences (priorities) of the different nodes regarding

granting access to shared resources (alternatives) as

well.

• The opinions (priorities) of the different nodes

regarding granting access to shared resources

(alternatives) will depend on the consideration of the

value of variables that represent the state of each of the

different nodes. Each node must express its priorities

for assigning the different shared resources according to

the resource requirements of each process (which may

be part of a group of processes).

Nodes hosting processes: 1, …. , n. The set of nodes is

represented as follows:

nodes = {n1, …. , nn}

Processes housed in each of the n nodes: 1, …. , p. The set of

processes is represented as follows:

processes = {pij} with i = 1, …, n (number of nodes in the

distributed system) and j = 1, …, p (maximum number of

processes in each node).

Distributed Process Groups: 1, …, g. The set of distributed

process groups is represented as follows:

groups = {pij} with i indicating the node and j the process in

this node.

Size of each of the g process groups. The number of processes

in each group indicates the group's cardinality and is

represented as follows:

card = {card(gi)} with i = 1, …, g indicating the group.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/247956684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Group priority of each of the g processes groups. These

priorities can be set according to different criteria; in this

proposal it will be considered to be a function of the cardinality

of each group and is represented as follows:

prg = {prgi = card(gi)} with i = 1, …, g indicating the group.

Shared resources in distributed mutual exclusion mode

available on n nodes: 1, …., r, The set of resources is

represented as follows:

resources = {rij} with i = 1, …, n (number of nodes in the

distributed system) and j = 1, …, r (maximum number of

resources at each node).

These available shared resources hosted on different nodes of

the distributed system may be required by the processes

(clustered or independent) running on the nodes:

Possible states of each process:

• Independent process.

• Process belonging to a group of processes.

Possible state of each of the nodes:

• Number of processes.

• Priorities of the processes.

• CPU usage.

• Main memory usage.

• Use of virtual memory.

• Additional memory required for each resource

requested by each process (depending on the

availability of the data).

• Additional estimated processor load required for each

resource requested by each process (depending on data

availability).

• Additional estimated input / output load required for

each resource requested by each process (depending on

data availability).

• Status of each of the shares in the distributed mutual

exclusion mode in the node:

o Assigned to a local or remote process.

o Available.

• Predisposition (nodal priority) to grant access to each

of the r shared resources in the modal of distributed

mutual exclusion (will result from the consideration of

the variables representative of the node status, the

priority of the processes and the additional

computational load which would mean allocating the

resource to the requesting process).

• Current load of the node, which can be calculated as

the average CPU, memory and input / output usage

percentages at any given time (these load indicators

may vary depending on the case, some may be added or

changed); the current load categories, for example,

High, Medium and Low, should also be defined, with

value ranges for each category being indicated.

3. DESCRIPTION OF THE AGGREGATION

OPERATOR

The proposed operator consists of the following steps:

1. Calculation of the current computational load of

the nodes.

2. Establishment of the categories of computational

load and the vectors of weights associated with

them.

3. Calculation of the priorities or preferences of the

processes considering the state of the node (they

are calculated in each node for each process).

4. Calculation of the priorities or preferences of the

processes to access the shared resources available

(calculated in the centralized manager of shared

resources) and determination of the order and to

which process the resources will be allocated.

Each of the steps above is described below.

Calculation of the current computational load of the nodes

To obtain an indicator of the current computational load of each

node, different criteria can be adopted; in this proposal the

criteria will be the percentage of CPU usage, the percentage of

memory usage and the percentage of use of input / output

operations, as will be seen in the example.

The computational load of each node will be calculated as

follows:

Establishment of the number of criteria to determine the load of

the nodes:

card({criteria}) = c

Establishment of the criteria that apply (may differ from one

node to another):

criteria = {cij} with i = 1, …, n (number of nodes in the

distributed system) y j = 1, …, c (maximum number of criteria

for each node).

Eventually, all nodes could use the same set of criteria.

Calculation of the computational load of each node:

loadi = (value(ci1) + … + value(cic)) / c with i = 1, …, n

Establishment of the categories of computational load and of

the vectors of weights associated thereto

Different criteria can be adopted to establish the current

computational load categories of each node; in this proposal the

categories will be: High (if the load is more than 70%), Medium

(if the load is between 40% and 70% inclusive) and Low (if the

load is less than 40%), as you will see in the example.

Establishment of the number of categories to determine the load

of the nodes:

card({categories}) = a

Establishment of the categories that apply (they may differ from

one node to another):

categories = {catij} with i = 1, …, n (number of nodes in the

distributed system) and j = 1, …, a (maximum number of

categories for each node).

Eventually all nodes could use the same set of categories.

In order to establish the vectors of weights associated with the

current computational load categories of each node, different

criteria can be adopted; in this proposal, the criteria will be:

number of processes in the node, percentage of CPU usage,

percentage of memory usage, percentage of virtual memory

usage, process priority (process priority in the node where it is

executed), memory overhead (additional memory that will

require the requested resource to be available, if the data is

available), processor overhead (additional processor use that

will require the requested resource if the data is available), and

input / output overhead (input / additional output that will

require to arrange the requested resource, if the data is

available), as will be seen in the example.

Establishment of the number of criteria to determine the priority

or preference that will be granted in each node according to its

load to each order of a shared resource made by each process:

card({critpref}) = e

Establishment of the criteria that apply (same for all nodes):

criteria for preferences = {cpij} with i = 1, …, a (number of

categories of computational load) and j = 1, …, e (maximum

number of criteria).

Eventually, all nodes could use different sets of criteria

applicable to the different categories of computational load; in

this proposal and as will be seen in the example, the same

criteria are used for all nodes.

First, the categories to indicate the load of the nodes and the

criteria that will be applied to evaluate the priority to be given

to each request of resources of each process are determined.

Then the values corresponding to the criteria that constitute the

vectors of weights for the different categories of load are

established.

Establishment of vectors of weights (same for all nodes):

weights = {wij} con i = 1, …, a (categories number of

computational load) y j = 1, …, e (maximum number of

criteria).

The assignment of weights to the different criteria will be a

function of previously performed statistical studies about the

distributed system; there will then be a weight assignment

function to the criteria for constituting the weight vectors of

each load category:

wij = norm(function(cpij)) con i = 1, …, a (numbers of category)

y j = 1, …, e (numbers of criteria); norm indicates that the

values must be normalized (in the range of 0 to 1 inclusive) and

with the constraints that the sum of the elements of a vector of

weights must give 1:

Σ {wij} = 1 with j = 1, …, e for each constant i.

This means that the sum of the weights assigned to the different

criteria will be 1 for each of the categories, or equally, that the

sum of elements of the vector of weights of each category is 1.

Calculation of the priorities or preferences of the processes

taking into account the status of the node (they are calculated in

each node for each process and could be called nodal

priorities)

These priorities are calculated at each node for each resource

request originated in each process; the calculation considers the

corresponding weight vector according to the current load of the

node and the vector of the values granted by the node according

to the evaluation criteria of the request. The range of values is

between 0 and 1, where a value close to 0 means that the related

criterion will contribute little to the calculation of the priority of

the request, while a value close to 1 means otherwise. Thus a

node can influence a request for a resource by a process

according to its state and the additional impact or burden that

would mean assigning the requested resource to the requesting

process, e.g., if accessing the request means increasing the

memory usage and the node has little memory available, then it

could assign to that criterion a value close to 0, in turn, if the

additional processor consumption is considered low and the

CPU usage of node is little, then a value close to 1 would be

assigned to that criterion.

The valuation vectors that will be applied for each request of a

resource by a process, according to the criteria established for

the determination of the priority that in each case and moment

will fix the node in which the request occurs, are the following:

valuations (rij pkl) = {cpm} con i = 1, …, n (node where the

resource resides), j = 1, …, r (resource on node i), k = 1, …, n

(node where the process resides), l = 1, …, p (process at node k)

and m = 1, …, e (valuation criteria of the requirement priority).

To sum up, the nodal priority (to be calculated at the node

where the request occurs) of a process to access a given

resource (which can be at any node) is calculated by the scalar

product of the mentioned vectors:

nodal priority (rij pkl) = Σ wom * cpm indicating the weights

vector according to the load of the node, keeping the other

subscripts the meanings explained above.

Calculation of process priorities or preferences to access

available shares (it is calculated in the centralized manager of

the shared resources). In addition, determining the order in

which the resources will be allocated and to which process each

resource will be allocated

At this stage, the nodal priorities calculated in the previous

stage are considered for each requirement of access to resources

by the processes. The global or final priorities must be

calculated from these nodal priorities, that is, with what priority,

or in what order, the requested resources will be provided and to

which processes the allocation will be made. The requirements

that cannot be attended because they result in low priorities,

will be considered again in the next iteration of the method.

Next, it is necessary to calculate the vector of final weights that

will be used in the process of aggregation to determine the order

or priority of access to the resources.

final weights = {wfkl} con k = 1, …, n (number of nodes) y l =

1, …, p (Maximum number of processes per node), where np is

the number of processes in the system and prgi is the priority of

the process group to which the process belongs (explained in

the previous section).

The next step is to normalize the newly obtained weights by

dividing each by the sum of all of them.

Thus a normalized weight vector (in the range of 0 to 1

inclusive) is obtained and with the restriction that the sum of the

elements of the vector must give 1:

Σ {nwfkl} = 1 with k = 1, …, n (number of nodes) and l = 1, …,

p (maximum number of processes per node).

The nodal priorities taken row by row for each resource will be

scalar multiplied by the normalized final weight vector. In this

way it is possible to obtain the final global access priorities of

each process to each resource. It is indicated below how the

order or priority with which the resources will be allocated is

obtained and to which process each one will be assigned.

overall final priority (rij pkl) = nwfkl * pkl with rij indicating the

resource j of node i, pkl the process l of node k and the product

of the overall final priority of the process to access such

resource. The greater of these products made for the different

processes in relation to the same resource will indicate which of

the processes will have access to the resource.

The addition of all these products in relation to the same

resource will indicate the priority that will have that resource to

be assigned, in relation to the other resources that will also have

to be assigned. This is what will be called Distributed Systems

Assignment Function (DSAF):

DSAF(rij) = Σ nwfkl * pkl = resource allocation priority rij.

By calculating the DSAF for all resources a vector will be

obtained, and by ordering its elements from highest to lowest,

the priority order of allocation of resources will be obtained. In

addition, as already indicated, the largest of the products nwfkl *

pkl for each resource will indicate the process to which the

resource will be assigned.

Considerations for Aggregation Operations

The characteristics of the aggregation operations described

allow to consider that the proposed method belongs to the

family of aggregation operators Neat-OWA, which are

characterized by the following:

The definition of OWA operators indicates that

 1 2

1

, , ,
n

n j j

j

f a a a w b

 (1)

(1)

where bj is the jth highest value of the an, with the restriction for

weights to satisfy

 1,0iw (2)

n

i

iw
1

1

(3)

For the Neat OWA operator family the weights will be

calculated according to the elements that are added, or more

exactly of the values to be added orderly, the bj, maintaining

conditions (2) and (3). In this case the weights are

wi=fi(b1,…,bn), defining the operator

1 1(,...) (,...,)·n i n i

i

F a a f b b b

(4)

For this family, where the weights depend on the aggregation,

the satisfaction of all properties of OWA operators is not

required.

In addition, in order to be able to assert that an aggregation

operator is neat, the final aggregation value needs to be

independent of the order of the values. A=(a1,…,an) being the

entries to add, B=(b1,…,bn) being the ordered entries and

C=(c1,…,cn)= Perm(a1,…,an) a permutation of the entries. An

OWA operator is defined as neat if

 1 2

1

, , ,
n

n i i

i

F a a a w b

(5)

It produces the same result for any assignment C = B.

One of the characteristics to be pointed out by Neat OWA

operators is that the values to be added need not be sorted out

for their process. This implies that the formulation of a neat

operator can be defined by directly using the arguments instead

of the orderly elements.

In the proposed aggregation operator, the weights are calculated

according to context values. From this context arise the values

to be aggregated.

4. EXAMPLE AND DISCUSSION OF RESULTS

This section will explain in detail an example of application of

the proposed aggregation operator. The distributed processing

system has three nodes:

nodes = {1, 2, 3}

The processes running on the nodes are as follows: three

processes on node 1, five processes on node 2 and seven

processes on node 3.

processes = {pij} with i indicating the node y j indicating the

process.

Several processes are independent and others constitute groups

of cooperative processes. In this example four groups will be

considered.

The number of processes in each group indicates the cardinality

of the group and is represented as follows:

card = {card (gi)} = {3, 2, 2, 3} with i indicating the group.

The priority of the groups of processes will be considered the

cardinality of each group and is represented as follows:

prg = {prgi = card(gi)} = {3, 2, 2, 3} with i indicating the

group.

The shared resources available in the nodes are as follows: three

resources in node 1, four resources in node 2 and three

resources in node 3.

resources = {pij} with i indicating the node y j indicating the

process.

Each of the calculation steps will now be described. Calculation

of the current computational load of the nodes to obtain an

indicator of the current computational load of each node, the

same three criteria will be adopted in the three nodes:

card ({criteria}) = 3

criteria = {% CPU usage, % of memory usage, % use of input /

output operations}.

Establishment of the categories of computational load and of

the vectors of weights associated thereto.

In this proposal, the categories will be the same for all nodes:

High (if the load is greater than 70%), Medium (if the load is

between 40% and 70% inclusive) and Low (if the load is less

than 40%).

card ({categories}) = 3

categories = {High, Medium, Low}

To establish the weight vectors associated with the current

computational load categories of each node, the following

criteria will be used for all nodes and for all load categories:

Number of processes in the node,% CPU usage,% memory

usage,% virtual memory usage, process priority (process

priority in the node where it is executed), memory overhead

(additional memory that will require (additional processor use

that will require the requested resource to be available, if the

data is available) and input / output overhead (additional input /

output that will require the requested resource to be available) ,

if the data is available).

card ({critpref}) = 8

criteria for preferences = {Node of processes in the node, % of

CPU usage, % of memory usage, % of virtual memory usage,

process priority, memory overhead, processor overload, input /

output overhead}. Next, the values corresponding to the criteria

must be established, constituting the vectors of weights for the

different categories of load, which will be the same for all

nodes. The sum of the weights assigned to the different criteria

is 1 for each of the categories, i.e. the sum of elements of the

vector of weights of each category is 1.

Calculation of the priorities or preferences of the processes

taking the status of the node into account (they are calculated in

each node for each process and could be called nodal

priorities)

The valuation vectors are applied for each requirement of a

resource made by a process, according to the criteria established

for the determination of the priority that in each case and

moment fixes the node in which the request occurs; each vector

of evaluations of each requirement is scalar multiplied by the

vector of weights corresponding to the current load category of

the node to obtain the priority according to each criterion and

the nodal priority granted to each requirement.

Calculation of the priorities or preferences of the processes to

access the shared resources available (calculated in the

centralized resource manager) and determining the order in

which the resources will be allocated and which process each

resource will be assigned.

From the nodal priorities, the global or final priorities must be

calculated, that is, with what priority, in what order, the

requested resources will be awarded and to which processes

such grant will be made. Next it is necessary to calculate the

vector of final weights that will be used in the final process of

aggregation to determine the order or priority of access to the

resources. The nodal priorities taken row by row, that is, for

each resource, will be scalar multiplied by the normalized final

weight vector to obtain the final global access priorities of each

process to each resource, and from there, the order or priority

with which the resources will be allocated and to which process

each one will be assigned. The greatest of these products made

for the different processes in relation to the same resource will

indicate which of the processes will have access to the resource

(in the case of ties the process identified with the smallest

number could be chosen). The addition of all these products in

relation to the same resource will indicate the priority of such

resource to be assigned. This is the Distributed Systems

Assignment Function (FASD).

The next step is to reiterate the procedure, but removing from

the requests for resources the assignments already made; it

should also be taken into account that the allocated resources

will be available when the processes have released them and

can therefore be assigned to other processes. In this way, all the

requests for resources of all the processes have been taken care

of, respecting the mutual exclusion and the priorities of the

processes, the nodal priorities and the final priorities.

5. CONCLUSIONS

The proposed model makes it possible for the distributed

system to self-regulate repeatedly according to the local state of

the n nodes, resulting in an update of their local states, as a

consequence of the evolution of their respective processes and

the decisions of access to resources: the distributed system in

whose groups of processes access to critical resources is

executed, produces access decisions to resources that modify

the state of the system and readjusts it repetitively, also

guaranteeing the mutual exclusion in access to the shared

resources, indicating the priority of granting access to each

resource and the process to which it is assigned. This process is

repeated as long as there are processes that request access to

shared resources.

For future work, it is planned to develop variants of the

proposed method considering other aggregation operators

(especially the OWA family) and the possibility of being used

by a resource manager shared (instead of centralized as in the

proposed method).

Acknowledgement. This work has been supported by the

Project: “Decision models and aggregation operators for

process management in distributed systems”, code 16F001 of

Northeastern National University (Argentine).

6. REFERENCES

[1] A. S. Tanenbaum, Sistemas Operativos Distribuidos.

Prentice - Hall Hispanoamericana S.A., México, 1996.

[2] A. S. Tanenbaum, Sistemas Operativos Modernos. 3ra.

Edición. Pearson Educación S. A., México, 2009.

[3] D. Agrawal, A. El Abbadi, “An Efficient and Fault-Tolerant

Solution of Distributed Mutual Exclusion”. ACM Trans. on

Computer Systems. Vol. 9, pp. 1-20, USA, 1991.

[4] G. Ricart, A. K. Agrawala, “An Optimal Algorithm for

Mutual Exclusion in Computer Networks”. Commun. of the

ACM. Vol. 24, pp. 9-17, 1981.

[5] G. Cao, M. Singhal, “A Delay-Optimal Quorum-Based

Mutual Exclusion Algorithm for Distributed Systems”.

IEEE Transactions on Parallel and Distributed Systems.

Vol. 12, no. 12, pp. 1256-1268. USA, 2001.

[6] S. Lodha, A. Kshemkalyani, “A Fair Distributed Mutual

Exclusion Algorithm”. IEEE Trans. Parallel and

Distributed Systems. Vol. 11, no. 6, pp. 537-549, USA,

2000.

[7] W. Stallings, Sistemas Operativos. 5ta. Edición. Pearson

Educación S.A., España, 2005.

[8] G. Andrews, Foundation of Multithreaded, Parallel, and

Distributed Programming. Reading, MA: Addison-

Wesley. USA, 2000.

[9] R. Guerraoui, L. Rodrigues, Introduction to Reliable

Distributed Programming. Berlin, Springer-Verlag, 2006.

[10] N. Lynch, Distributed Algorithms. Morgan Kauffman,

San Mateo, CA, USA, 1996.

[11] G. Tel, Introduction to Distributed Algorithms.

Cambridge University Press, 2nd ed. Cambridge, UK, 2000.

[12] H. Attiya, J. Welch, Distributed Computing

Fundamentals, Simulations, and Advanced Topics, John

Wiley, 2nd ed., New York, USA, 2004.

[13] P. Saxena, J. Rai, “A Survey of Permission-based

Distributed Mutual Exclusion Algorithms”. Computer

Standards and Interfaces, vol. (25)2, pp 159-181, 2003.

[14] M. Velazquez, “A Survey of Distributed Mutual Exclusion

Algorithms”. Technical Report CS-93-116, University of

Colorado at Boulder, 1993.

[15] S.-D. Lin, Q. Lian, M. Chen, Z. Zhang, “A Practical

Distributed Mutual Exclusion Protocol in Dynamic Peer-to-

Peer Systems”. Proc. Third International Workshop on

Peer-to-Peer Systems, vol. 3279 of Lect. Notes Compo Sc.,

(La Jolla, CA). Springer-Verlag, Berlin, 2004.

[16] L. Sha, R. Rajkumar, J. P. Lehoczky, “Priority inheritance

protocols: An approach to real-time synchronization”.

Computers, IEEE Transactions on, vol. 39(9), pp1175–

1185, 1990.

