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Abstract 

Glassy carbon electrodes (GC) were modified with multiwalled carbon nanotubes 

(MWCNT/GC) and electrochemically treated first by applying an oxidation potential and 

then a reduction potential. The resulting electrodes were characterized via scanning electron 

microscopy, Raman spectroscopy, energy dispersive spectroscopy, and electrochemical 

techniques, particularly cyclic voltammetry using the redox probes Fe(CN)6
3-/4- and 

Ru(NH3)
2+/3+ and electrochemical impedance spectroscopy using Fe(CN)6

3-/4-. These 

modified electrodes showed an electrochemical determination selective for dopamine (DA) 
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and serotonin (5HT) in the presence of ascorbic acid (AA) and uric acid (UA), 

simultaneously measured, with a high reproducibility (an RSD of 1.7% for DA and 1.6% 

for 5HT) and a limit of detection (LOD) of 235 nmol L-1 for DA and 460 nmol L-1 for 5HT. 

The GC electrodes modified with oxidized MWCNT, subsequently reduced, showed higher 

selectivity towards the oxidation of DA and 5HT compared with GC bare electrodes or 

modified with MWCNT or oxidized MWCNT. 

Keywords: multiwalled carbon nanotubes; electrochemical treatment; hybrid film; 

dopamine; serotonin 

1. Introduction 

The production of electrodes for electrochemical devices require certain characteristics 

such as high electrical conductivity, mechanical and chemical stability, large surface area 

and a reasonable cost of their mass production. Hence carbon nanotubes and graphene are 

some of the carbon allotropes most intensively explored in materials science for disposable 

electrodes development for the determination of biomolecules [1-3].  

Graphene is a single atom thick, a 2D sheet of sp2 hybridized carbon atoms (double-

bonded), densely packed in a honeycomb crystal lattice. Due to its structure, graphene has 

all of its atoms on the surface, which gives it an excellent biosensing potential in the 

nanoscale [4].  

The most important property of graphene is its excellent electrical conductivity; 

electronically, graphene is a semiconductor with zero bandgap [5,6]. Any modification in 

the crystal lattice will alter the graphene band structure. Particularly, a variation of the 
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hybridization state of carbon atoms [7], other atoms or molecules incorporated in the 

lattice, and/or defects on graphene [8] can directly influence in the electrical properties of 

graphene. Similarly, the introduction of strong edge states and quantum confinement via 

structural constraints (nanoribbons, quantum dots, nanomesh) will have the same effect [9]. 

The methods currently in use to obtain near-perfect graphene sheets are expensive and/or 

time consuming. To overcome these difficulties, a number of methods such as the one 

proposed by Hummer and its modifications have been reported and involve less time and 

effort [10]. Several of these methods involve first an oxidation step, followed by a 

reduction step, to provide a better yield of material at the cost of lattice imperfections; 

hence, the materials as obtained are referred as “graphene-like”. The oxidation step is 

absolutely necessary, since it provides individual layers of graphene oxide (GO) that will 

turn into graphene after reduction [11]. 

Conductivity of GO depends on the extent of oxidation. During oxidation treatment the sp2 

carbons are being continuously modified, with oxygen functionalities, to sp3 carbons. The 

reduction of this GO partially restores the sp2 hybridization, improving the conductive 

behaviour and yielding a graphene-like material [6]. Carbon nanotubes present the structure 

of a sheet of graphene rolled into a well-ordered tube. Hence, an alternative way to obtain a 

graphene-like material consists of unzipping a carbon nanotube.                                     

One of the more successful approaches to convert carbon nanotubes (CNTs) into graphene 

nanoribbons (GNR) is Kosynkin/Tour´s longitudinal unzipping, using a mixture of 

potassium permanganate and concentrated sulfuric acid [12]. However, this method has 

several problems, primarily related to the use of strong oxidizing agents that will create 
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defect sites which could hamper the electronic properties of graphene and diminish electron 

mobility and conductivity, along with waste disposal conditions and the possibility of 

evolution of explosive gases [13].  

Shinde et al. (2011) have reported an electrochemical approach to transform MWCNTs to 

reduced GNRs (rGNRs) under ambient conditions simplifying experimental and waste 

disposal conditions [14]. This approach has not been used, to our knowledge, in the design 

of electrochemical sensors for the determination of dopamine (DA) and serotonin (5HT), 

and seemed a good choice given the mechanical and chemical stability of rGNR, the low-

cost production of the modified electrodes and their large surface area.  

Electrochemical determination of DA and 5HT is of great interest for identification of 

cognitive dysfunctions in neurological diseases such as depression, Parkinson, epilepsy, 

squizofrenia, or senile dementia as early as possible to minimize the deleterious effects and 

production losses by young disabled population [15-18]. The ability to monitor 

physiological changes in levels of DA and 5HT could also benefit the design of better 

therapeutics and the evaluation of their efficacy towards those neurological disorders. 

Due to the redox behaviour of DA and 5HT, the electrochemical methods are suitable for 

their analytical determinations. However, there are electroactive interferences for 

electrochemical measurements such as ascorbic acid (AA) and uric acid (UA) that present 

an overlapping of their anodic peak potentials, between 0.2 and 0.35 V, with a paste carbon 

electrode [19-23]. 

DA, UA and AA have been simultaneously determined using electrodes modified with: 

graphene oxide electrochemically reduced [24], pristine graphene [25], reduced graphene 
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oxide with Pt nanoparticles [23], or GO-porphyrin electrochemically reduced [17]. There 

are few reports in literature about simultaneous determination of DA, 5HT and AA [26]. 

There are works that determine DA, AA, UA, and tryptophan simultaneously [27-29] 

nonetheless, it is still an issue the determination of DA and 5HT simultaneously in the 

presence of UA and AA using only carbon-based electrodes. A recent work has determined 

DA with a high sensibility (1nM) even though in this work DA is measured in different 

concentrations only in presence of AA [30]. 

In this work we report the fabrication and characterization of modified electrodes 

MWCNT/GC electrochemically treated, based on the approach presented by Shinde et al. to 

produce rGNR [14], and its application to the simultaneous determination of DA and 5HT 

in the presence of AA and UA.  

The physicochemical properties of the fabricated sensors were studied by scanning electron 

microscopy (SEM), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), and 

their electrochemical performance was studied by cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS). For the electrochemical characterization, 

we used the inner-sphere redox probe Fe (CN)6
3-/4- and the outer-sphere redox probe 

Ru(NH3)6 
2+/3+. Electrode kinetic parameters have been determined by the Tafel equation in 

order to prove theoretically the obtained results in the CV and DPV studies (calibration 

curves with the four compounds). 

Based on these characterizations, the obtained electrodes were called RoMWCNT/GC, 

rather than rGNR/GC, because they present a hybrid film of MWCNT fused and unzipped 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

6 

 

near the GC electrode surface. In the interface electrode/solution of the electrodes, we 

could see MWCNT similar to those present in the electrodes without treatment.  

To our best knowledge this is the first time that a carbon electrode with graphene-like 

characteristics (RoMWCNT/GC) exhibited excellent electrochemical performance with 

good reproducibility for the determination of DA and 5HT. The results obtained clearly 

show that the electrochemical treatment of MWCNT/GC (an oxidation and then a 

reduction) improves the selective determination of DA and 5HT in presence of UA and 

AA. 

2. Experimental  

2.1. Reagents and instrumentation 

Potassium phosphate monobasic (KH2PO4), potassium phosphate dibasic (K2HPO4), 

potassium ferrocyanide/ferricyanide (Fe(CN)6
3-/4-), potassium chloride (KCl), potassium 

sulphate (K2SO4), sodium sulphate (Na2SO4), sulfuric acid (H2SO4), absolute ethanol, L-

ascorbic acid, and uric acid of analytical grade were used as received.  

MWCNTs (> 98% carbon basis, 10 nm outer diameter, 4.5 nm inner diameter and 3.5 µm 

lenght), DA (3-hydroxytyramine hydrochloride) and 5HT (5-hidroxytryptamine 

hydrochloride) and hexaammine-ruthenium (III) chloride ([Ru(NH3)6]Cl3) (96%) were 

obtained from Sigma Aldrich.  

Phosphate buffered saline solution (PBS) was prepared using K2HPO4 and KH2PO4 (0.1 

mol L-1, pH = 7.0) with KCl 0.1 mol L-1 in milliQ water.  
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All the electrochemical measurements were made with a standard three-electrode system. A 

GC bare electrode (Structure Probe, Inc. PA, USA), or modified with MWCNT, oMWCNT 

or RoMWCNT, were assayed as working electrode. A Pt foil was used as counterelectrode. 

Two different reference electrodes were used, either Ag/Ag2SO4sat or Ag/AgClsat. 

Electrochemical measurements were performed at room temperature (ca. 25 °C) in 

solutions deoxygenated with N2 high purity (O2 content < 0.01 ppm) for 40 min. Solutions 

were used freshly prepared in Milli-Q water. 

Electrochemical measurements were done using a Potentiostat/Galvanostat/ZRA (Series G 

300TM and Interface 1000 from Gamry Instruments Inc. Warminster, USA). 

Sonications were made using an ultrasonic bath (Cole-Parmer Instrument Company, LLC. 

IL, USA).  

Scanning electron microscope (SEM) images were recorded on a SEM Carl Zeiss NTS 

SUPRA 40 (Carl Zeiss NTS GmbH, Oberkochen, Germany). 

An Apollo X EDAX spectrophotometer (AMETEK, NJ, USA) was used for EDS 

measurements. Samples were bombarded with 25 kV electrons and the measuring time was 

50 s.  

Raman measurements were performed in a Confocal Horiba Jobin Yvon Dilor XY 800 

(HORIBA, Ltd. Tokyo, Japan). A 514 nm line of a continuous wave Ar laser (13 mW) was 

used by means of a 100x working distance objective.  

2.2. Electrochemical oxidation and reduction of MWCNT/GC in H2SO4 0.5 mol L-1  
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The GC electrodes (1 mm diameter) were pretreated via a polishing with alumina powder 

on a wet cloth (0.3 µm), obtaining a mirror-like surface, and then washed with copious 

amounts of water. Afterwards the electrodes were sonicated for 5 min in milli-Q water and 

5 min in ethanol and finally dried 15 min at 50 ºC. A dispersion of MWCNT (0.5 mg mL-1 

of MWCNTs in absolute ethanol) was sonicated for 120 min. 5 µL of the dispersion was 

deposited onto a pretreated GC electrode, followed by drying at 50 ºC. 

MWCNT/GC were treated first by applying a fixed oxidation potential of +0.72 V for 6 h  

in 0.5 mol L-1 H2SO4 continuously deoxygenated with N2 to obtain oMWCNT/GC. In the 

second step of the electrochemical treatment oMWCNT/GC was treated by applying a fixed 

reduction potential of -0.75 V for 6 h in 0.5 mol L-1 H2SO4 continuously deoxygenated with 

N2 to obtain RoMWCNT/GC. 

CVs, performed in 0.5 mol L-1 H2SO4 at a scan rate of 100 mV s-1, were made to study the 

modifications of the electrodes after 1, 2, 3, 4, 5, and 6 hours of applying the oxidation 

potential, between 0.1 and 1 V. Similarly, after 1, 3 and 5 h of applying the reduction 

potential, CVs were also performed, this time between -0.8 and 0 V. 

An Ag/Ag2SO4sat was used as reference electrode for these electrochemical treatments of 

MWCNT/GC in H2SO4 to avoid the presence of Cl- that may interfere in modified 

electrodes [31].  

2.3. Electrochemical characterization of the electrodes 
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The electrochemical characterization of the GC, MWCNTs/GC, oMWCNT/GC and 

RoMWCNT/GC electrodes was made through CV and EIS techniques using a Ag/AgClsat 

RE.  

Electrochemical surface areas (ECSA) were calculated by CV of 5 mmol L-1 Fe(CN)6
3- in 1 

mol L-1 KCl and performed by scanning the potential between -0.3 and 0.7 with a scan rate 

of 50 mV s-1. CV were also performed in KCl 0.1 mol L-1 containing 1 mmol L-1 Ru 

(NH3)6
2+/3+

 scanning the potential between -0.5 and 0.2 V with a scan rate of 50 mV s-1. 

CV measurements were performed in PBS containing 5 mmol L-1 Fe(CN)6
3-/4-  scanning the 

potential between -0.3 and 0.7 V with a scan rate of 50 mV s-1.  

Electrochemical impedance spectroscopy (EIS) measurements were performed to a 5 mmol 

L-1 Fe(CN)6
3-/4- in PBS at 5 mVAC, 0.24 VDC, between 0.1 to 105 Hz, and 10 points/decade.  

2.4. CV and DPV measurements of 5HT, AA, DA, and UA  

Different concentrations of 5HT, AA, DA and UA were prepared in PBS. CVs were 

performed scanning the potential at a scan rate of 50 mV s-1. DPV were performed scanning 

the potential with a pulse size of 50 mV, step size of 5 mV, sample period of 0.35 s and 

pulse time of 0.05 s. CV and DPV were made using a Ag/AgClsat RE. 

Graphical models of DA, 5HT, UA and AA that appears in the graphical abstract were 

made using Avogadro 1.2 [32] 

3. Results and Discussion 

3.1. SEM characterization 
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It can be seen in Fig. 1 SEM images of GC modified electrodes with MWCNT, oMWCNT, 

and RoMWCNT. In oMWCNT/GC and RoMWCNT/GC a mesh or matrix made with fused 

nanotubes and partially unzipped nanotubes can be seen (fused nanotubes circled in black 

and unzipped nanotubes circled in white). 

In Fig.1d it can be seen a RoMWCNT/GC with a high density of MWCNTs with no 

differences to those MWCNTs without treatment (in Fig. 1a can be seen MWCNT/GC), 

and a little zone (squared in black) with apparently fused nanotubes in an inner layer. The 

zoom made in the squared region show clear differences in the morphology of the 

nanotubes near the GC surface (Figs. 1e and f). It has to be noted that the dispersion of 

MWCNT used to prepare the modified electrodes presented nanotubes without fusion and 

or unzipping, as those observed in the MWCNT/GC electrodes. 

If we compare Fig. 1a with Figs. 1b and c it can be seen fused (circled in black) and 

unzipped nanotubes (circled in white) in MWCNT/GC after the electrochemical oxidation 

treatment. We can also see a significant difference in the width of the isolated nanotubes 

between oMWCNT/GC (Fig. 1c) and RoMWCNT/GC (Fig. 1f). The width of the CNT 

varies with oxygen content (present here as surface functionalities) then, the nanotubes in 

oMWCNT/GC will have wider diameters than their reduced counterparts (as in, surface 

functionalities free). In fact, the loss of width of the nanotubes after the reduction treatment 

is used by some authors as criteria for effective reduction [33].  

Nanotubes fused and unzipped can be clearly seen in regions where a less concentration of 

MWCNT treated is present, nearby the GC surface. Shinde et al. [14] did not mentioned the 

fusion between nanotubes, but it should be noted that the nanotubes used in this work are 
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smaller than those used by Shinde (we used MWCNT of 10 nm diameter and Shinde has 

used MWCNT of approximately 100 nm diameter). This fact can be explained as follows: 

since the oxidation potential applied may lead to an increase of local temperature in some 

MWCNTs [34] and keeping in mind that this fact is probably magnified by the relatively 

large surface area of the MWCNTs, these combined factors probably lead to the fusion 

between nanotubes (apart from the unzipping) near the GC surface.  

Thus, our modified electrodes present an inner layer with nanotubes fused and unzipped 

near the GC electrode surface, and an outer layer with MWCNTs mostly (Fig. 1d). 

3.2. Raman spectroscopy analysis 

Raman spectroscopy is a powerful tool and a non-destructive technique to distinguish 

between different types of ordered and disordered bonding environments of sp2 and sp3. In 

our electrodes, Raman spectroscopy revealed that the density of defects increased from 

MWCNT/GC to RoMWCNT/GC after the electrochemical treatments (oxidation and 

reduction) as shown in Fig. 2. 

The intensity of the defects (sp3) related peak at 1350 cm-1 (peak D) vs. the intensity of the 

peak related to sp2 hybridization (characteristics of graphitic-like materials) at 1560 cm-1 

(peak G) is a common tool among carbon based raman spectra to determine the graphene 

character. The ratio ID/IG increased from 1 to 1.3 after the electrochemical oxidation of 

MWCNT. The concomitant electrochemical reduction process lowers that ratio down to 1.2 

for the RoMWCNT/GC electrode. 
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The ratio ID/IG increased upon oxidation of the MWCNT/GC owing to the unzipping of the 

carbon nanotubes, which generated a massive number of defects (increasing peak D) 

coupled with the oxygen functionalization, which decreases peak G due to the loss of 

graphitic characteristics. 

It should be noted that the two processes are not necessarily coupled, nor the variations of 

the peaks are proportional [35], hence the decrease from 1.3 to 1.2 during reduction is an 

important criterion for the restitution of sp2 features (there are evidences that graphene-like 

materials could have strong peaks D even after thorough reduction, since many defects do 

not disappear under reducing conditions) [33].  

Additionally, despite the importance of the ratio ID/IG as a diagnostic tool, it must be kept in 

mind that the sharp peak 2D at 2700 cm-1 is only present in graphitic materials and is, at 

least, also a proof of graphene-like features [35]. In our case, peak 2D increases its intensity 

going from MWCNT to either their oxidized or reduced forms, which is a strong sign of 

graphitization, in very good agreement with the intended transformation to a graphene-like 

material. Thus, despite the semiconductive nature of our modified electrodes, 

RoMWCNT/GC would be expected to be more conductive than oMWCNT/GC, based on 

the lower ratio ID/IG that they present hence a good candidate for further characterizations.  

3.3. EDS studies 

EDS analysis was used to confirm the C/O ratio in different modified electrodes (Table 1). 

The EDS spectrum showed that the O element contained in oMWCNT/GC was (3.89 ± 

0.18) at%, in accordance with results from Raman after that the electrochemical oxidation 

process generated oxygen functional groups. RoMWCNT/GC contained (2.05 ± 0.12) at% 
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of O element revealing a very high extent of reduction of those oxygen functional groups 

after the electrochemical reduction process. There were minimum differences between the 

at% of the O element contained in the MWCNT/GC (1.72 ± 0.21) at% from the one 

contained in the RoMWCNT/GC, but there were big differences in the images of SEM 

between both modified electrodes (Fig.1).  

It should be noted that, the MWCNT dispersions used presented a 0.2 at% of the O 

element, therefore, it could be considered that the at % present in the MWCNT/GC and 

RoMWCNT comes from the GC electrode.  

The ratio C/O is an additional, albeit complementary, tool used to monitor the extent of the 

process of graphitization [33]. In our case the ratio C/O of the oMWCNT/GC increased 

from 25:1 to 48:1 in the RoMWCNT/GC, confirming a high degree of reduction after the 

corresponding electrochemical step. This ratio increase is in good agreement with the 

change in the ratio ID/IG seen in the Raman results and the concept that the extent of 

reduction and restitution of the sp2 hybridization does not mean that the defects generated 

in the oxidation step disappear after reduction. 

3.4 Electrochemical oxidation of MWCNT/GC and reduction of oMWCNT/GC   

In order to study the electrochemical oxidation of MWCNT/GC and reduction of 

oMWCNT/GC, we followed the process through cyclic voltammetry. We could see an 

oxidation peak approximately at 0.63 V that increased its height along with the oxidizing 

process of the MWCNTs (Fig. 3a). The presence of this peak, together with the increase in 

the D band in Raman spectra in comparison with the MWCNT/GC, and the EDS higher 
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content of O element in the oMWCNT/GC, strongly suggest that the MWCNTs are 

oxidized after applying a potential of 0.72 V for 6 h. 

Fig. 3b shows that an increase in current (in absolute values) takes place as long as the 

reduction potential is being applied (in the range from 0 to -0.8 V). These moderately 

strong cathodic currents show an effective reduction, which is in accordance with the lower 

ID/IG ratio for the RoMWCNT/GC, as well as the high C/O ratio obtained by means of 

EDS.  

3.5. Electrochemical studies using Fe(CN)6
3-/4- or Ru(NH3)6

2+/3+ redox probes 

To study the electrochemical properties of GC, MWCNT/GC, oMWCNT/GC and 

RoMWCNT/GC, we used Fe(CN)6
3-/4- and Ru(NH3)6

2+/3+ as an inner-sphere and outer-

sphere electron transfer redox probe respectively [36,37]. In both cases, smaller ∆Ep values 

are taken as a sign of increased reversibility and better electron transfer kinetics, since any 

change in the voltammetric response is ascribable to the nature of the electrode and not due 

to the redox probes involved, which are electrochemically reversible. This way, we 

purposely focus on the electrode much more than on the redox couple itself. 

3.5.1 Inner-sphere electrochemical characterization 

Fig. 4a shows the CV of Fe(CN)6
3-/4- in PBS at GC, MWCNT/GC, oMWCNT/GC and 

RoMWCNT/GC electrodes. A higher ∆Ep is seen with the RoMWCNT/GC electrode when 

comparing with the GC electrode, which could be seen as a significant decrease in 

reversibility. It should be noted that RoMWCNT/GC presented a lower ∆Ep value than 
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oMWCNT/GC (Table 2 and Fig. 4a), which means that the reduced modified electrode still 

shows increased reversibility.  

Being a classical example of an inner-sphere electrode reaction, Fe(CN)6
3-/4- is known to 

have a surface-sensitive response, which can be ascribed to the increase in ∆Ep values 

going from naked GC electrodes to the MWCNT activated ones. The next section will 

further explore this idea complementing it with an outer-sphere redox probe. 

The values of electrochemical surface area (ECSA) of GC, MWCNTs/GC, oMWCNT/GC 

and RoMWCNT/GC were calculated based on the Randles-Sevcik equation (1), assuming 

mass transport only by diffusion process (i.e reversible process, hence the utilization of the 

Fe(CN)6 
3-/4- couple) (Table 2) [38,39]. 

Ip = 0.4463 A c γ 1/2 D1/2 RT-1/2 n3/2 F3/2 (1) 

where n is the number of electrons participating in the reaction, A is the electroactive 

surface area, D is the diffusion coefficient of the molecule (6.7 ± 0.02 10-6 cm2 s-1), c is the 

analyte concentration (mol cm-3), and γ is the scan rate (V s-1). Table 2 shows that the 

values of ECSA are approximately one order of magnitude after the GC electrode were 

modified with MWCNT and further electrochemical treatments were applied.  

EIS was chosen to further characterize the modification process of GC electrodes and their 

capacity of electron transfer, once again using Fe(CN)6 
3-/4-. 

The Nyquist plots for all the electrodes are presented in Fig. 4b. It can be seen that when 

the electrodes are activated by plain or modified MWCNT deposition a huge improvement 

takes place. Also, the RoMWCNT showed a better response. The higher electrocatalytic 
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performance of RoMWCNT/GC was confirmed by the reduction of charge transfer 

resistance (RCT), the semicircle diameter in the Nyquist plot (the inset in Fig. 4b shows that 

the semicircle is practically absent for RoMWCNT/GC, which is a strong indicator that 

only mass transfer effects are present, which in this context implies the better 

electrocatalytic activity for this redox couple).   

The values of RCT, determined by fitting the data using an appropriate equivalent circuit, 

are shown in Table 2. This data demonstrates the enhancement of electron transfer rate for 

redox species Fe (CN)6
3-/4- at RoMWCNT/GC. It should be noted that despite the ECSA of 

MWCNT/GC, oMWCNT/GC or RoMWCNT/GC are similar, RCT values for the 

RoMWCNT/GC are half the RCT values of MWCNT/GC and almost 4 times lower from the 

values of oMWCNT/GC. Furthermore, RoMWCNT/GC presents lower RSD values 

demonstrating the reproducibility of the electrochemical treatments and stability of the 

electrochemical properties of these electrodes.  

3.5.2 Outer-sphere electrochemical characterization 

In the prior section, we proposed the idea of an activated RoMWCNT/GC, precisely due to 

the reduction process itself, evaluated with the typical Fe(CN)6
3-/4- inner-sphere redox 

probe. In order to add further analysis to this idea, it is necessary to evaluate the electrode 

response with an outer-sphere redox probe, eliminating any interference due to surface-

sensitive processes. Precisely, since this probe is ideally independent of surface related 

mechanisms, one can ascribe the observed differences between electrodes, entirely to the 

electrochemical treatments administered upon them. 
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Fig. 4c shows the CV of Ru(NH3)6
2+/3+ in KCl at GC, MWCNT/GC, oMWCNT/GC and 

RoMWCNT/GC electrodes. It can be clearly seen that the ∆Ep values show better responses 

going from bare GC to modified GC electrodes. More importantly, ∆Ep decreases going 

from oMWCNT/GC to RoMWCNT/GC, which means better reversibility and thus better 

electrochemical activation. 

The use of Ru(NH3)6
2+/3+ allows to better display the improved behavior given by the 

treatment of the modified electrodes itself, which can be seen in the values of  ∆Ep almost 

constant between the  of MWCNT/GC, oMWCNT/GC and RoMWCNT/GC, since all of 

those values approach fairly well the theoretical ∆Ep value of 59 mV, typical for a 

reversible couple. With Fe(CN)6
3-/4- all the  results of ∆Ep obtained with this redox probe 

are much higher than the theoretical 59 mV value, proving the importance of the use of an 

outer-sphere probe, since it provided clear evidence of a true reversible behavior for the 

electrode processes once they have been activated by the addition of MWCNT. 

To further evaluate the impact of the usage of an outer-sphere probe, the values of ECSA 

were calculated for all the electrodes, once again based on the Randles-Sevcik equation, 

using D as the diffusion coefficient of the Ru(NH3)6
3+ molecule (9.1 10-6 cm2 s-1 in 0.1 mol 

L-1 KCl supporting electrolyte) [40]. 

The values of ECSA obtained with both redox probes were different; althought in one key 

aspect, the relation between them was alike: using either Fe(CN)6
3-/4- or Ru(NH3)6

2+/3+ the 

values of ECSA were approximately one order of magnitude higher after the GC electrode 

were modified with MWCNT and further electrochemical treatments were applied, 

showing the importance of the activation process. 
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It is important to notice that the Ru(NH3)6
2+/3+ case provide the values of ECSA which 

present only small variations once the GC electrode have been modified by MWCNT, in 

agreement with the narrow ∆Ep values so obtained, so the outer-sphere probe points toward 

a true reversible process taking place in the electrode surface. This fact could never be 

pointed out based in the inner-sphere probe results alone. 

The effective heterogeneous electron transfer (HET) rate constant, k°eff, was determined 

utilizing a method developed by Nicholson [41], applicable for quasi-reversible systems, 

and calculated for each modified electrode, plotting ψ against [πDnνF/(RT)]-1/2 as 

suggested by Brownson et al. [40] where ψ is a kinetic parameter, D is the diffusion 

coefficient for Ru(NH3)6
3+, n is the number of electrons involved in the process, F is the 

Faraday constant, R the gas constant, T the temperature, and n the scan rate used (we used a 

range between 0.025 and 0.15 V).  

The kinetic parameter ψ was calculated following equation (2) 

ψ = (-0.6288+0.0021 X) / (1-0.017 X) (2) 

X being ∆Ep. 

The k°eff calculated for bare GC was 3.17 10-2, this value is in agreement with Brownson´s 

result for GC [40]. Our modified electrodes presented k°eff of 3.2 10-1, 5.54 10-2, 4.51 10-2 

for RoMWCNT/GC, oMWCNT/GC, and MWCNT/GC, respectively. These values are 

higher than those calculated by Brownson with the EPPG electrode, therefore these results, 

coupled with the structural differences seen in Raman and EDS studies discussed 

previously for RoMWCNT/GC, as well as the changes in EIS after the electrochemical 

process indicating that RoMWCNT/GC presents an improved conductivity (Table 2 and 
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section 3.5.1) and the value of ∆Ep of 60 mV using Ru(NH3)6
2+/3+, are strong evidence that 

these modified electrodes exhibit favorable electrochemical properties to be explored with 

biological molecules. 

3.6. Electrochemical measurements of AA, DA, UA and 5HT and kinetic analysis of the 

modified electrodes  

We have studied the electrochemical behaviour of modified electrodes obtained by 

following the protocol stated by Shinde [14]. CV measurements were made in samples 

containing 5HT, AA, DA, and UA, employing either a GC, MWCNT/GC, oMWCNT/GC 

or RoMWCNT/GC electrodes. As expected and in agreement with previously published 

work, Fig. 5 show that the four compounds of the mixture were not identified using GC, 

MWCNT/GC, or oMWCNT/GC. 

At bare GC electrodes only one clear anodic peak was obtained near 415 mV (inset in Fig. 

5). With MWCNT/GC and oMWCNT/GC two defined peaks were found when different 

concentrations of 5HT, AA, DA, and UA were assayed (Fig. 5). The peaks were found 

almost at the same potentials with both electrodes (250.8 ± 18 mV and 367 ± 30 mV, n=3) 

and higher currents were obtained with oMWCNT/GC. It can be seen that there is a 

significant improvement in the signals going from bare GC electrodes to the modified ones, 

a fact that is in accordance with the evidence of electrode activation mentioned in the above 

sections. Nevertheless, it is clear that these three electrodes presented poor selectivity and 

sensitivity. 
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In contrast, four well-defined peaks of oxidation, corresponding to AA, DA, UA and 5HT 

from left to right, were observed using the RoMWCNT/GC electrode in samples with 

different concentrations of AA, DA, UA and 5HT (inset Fig. 6a). The peaks of oxidation 

found were (101 ± 24) mV for AA, (233 ± 4) mV for DA, (363 ± 10) mV for UA and (683 

± 11) mV for 5H; with an RSD of 1.7% for DA and 1.6% for 5HT (values of SD were 

calculated using three different electrodes, n=3). 

The presence of noticeable peaks in the reverse cathodic region of any of these four 

biological compounds (but much weaker than those from the anodic region) are an 

indication of a kinetic moderately favorable, clearly not irreversible, but also not fully 

reversible. These biological molecules show slow to moderate kinetics, due to a non-trivial 

molecular rearrangement and resolvation that takes place in every one of the four redox 

reactions evaluated here, a fact that points towards a probable quasireversible kinetic, a 

hypothesis that will be further explored in the subsequent sections; besides the fact that they 

tend to adsorb in the electrode surface, which in turn will also affect the observed kinetics.  

Nevertheless, the fact that the RoMWCNT/GC electrode can resolve these four peaks is 

strong evidence of its improved selectivity towards these compounds. DPV responses using 

a RoMWCNT/GC electrode in mixtures of different concentrations of AA, DA, UA, and 

5HT are shown in Fig. 6a. The peak separation between the four peaks (AA-DA: 132 mV, 

DA-UA: 130 mV, UA-5HT: 320 mV) allows the selective determination of these four 

molecules. A linear range was obtained for DA between 5 and 240 µmol L-1 (y = 1.271 + 

0.068 x. r2: 0.976) (Fig. 6b) and between 5 and 210 µmol L-1 for 5HT (y = 0.750 + 0.021 x. 

r2: 0.996) (Fig. 6c), both in presence of AA and UA (Figs. 6d and e).  
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In DPV, the shape and height of the peaks are criteria for kinetic capabilities of the redox 

reactions, with high and symmetric peaks corresponding to reversible or quasirevesible 

kinetics [42,43]. It can be seen that DA and UA present higher peaks, attributable to more 

favorable kinetics; while AA and 5HT show peaks lower and broader, which means that 

they present kinetics less favourable. It was mentioned above that the molecular 

rearrangements during each one of the redox reactions must be taken into account. Hence, 

DPV results can be seen as evidence for the different extent of the molecular rearrangement 

involved in each case. 

In order to explore quantitatively this hypothesis of molecular rearrangement, kinetical and 

molecular interpretations were further taken, for each one of the four compounds, based on 

Tafel´s plot and its equation (the Tafel equation, shown in equation (3), is a special case of 

the Butler-Volmer model for electrode kinetics, which in turn is derived from the full 

mathematical treatment of current-potential characteristics, for electrode kinetics).  

y = (1-α) F (2,303 RT)-1 (3) 

where F is the Faraday constant (96.485 kJ mol-1), R is the gas constant (8.314 10-3 kJ K-1 

mol-1), and α the transfer coefficient. 

In such cases, a plot of log current vs. overpotential displays a linear region near the half-

wave potential where both molecular forms, reduced and oxidised, are present in similar 

concentrations. The resulting Tafel plots can provide a value for the exchange current 

density (j0) from the extrapolated intercept at zero overpotential [42,43]. From j0 can be 

easily calculated the value for the standard rate constant (k0) which is a direct measure of 
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the kinetic ability of the electrochemical processes, with a higher value that indicates a 

more favourable electrochemical reaction [43].  

According to the extensive literature on the subject [42,43], the chosen region of potential  

must be the linear section in the plot of log current vs. potential (taken from the positive 

scan of the voltammetry potential sweep), since non-linear regions are owed to depletion of 

either reduced or oxidized species and/or mass transfer limitations, which would invalidate 

the Tafel equation of theoretical electrode kinetics (i.e, at very low overpotentials, one of 

the terms in the Butler-Volmer equation will no longer be negligible and the linearity falls 

off. At very large overpotentials, mass transfer effects arise and the linearity once again 

falls off). 

The k0 values obtained for each case are shown in Table 3. They are in very good 

agreement with the results and interpretations of the preceding CV and DPVs, providing a 

quantitative explanation for their behaviour. UA and DO have the highest k0 values, with 

5HT showing slower kinetics. It should be reminded that Tafel plots only give linear 

relationships when the electrochemical process evaluated is not totally reversible. A degree 

of quasireversibility must be present in order to obtain good Tafel plots, which in turn 

provides extra criteria for good but not totally reversible kinetics, precisely such as the four 

compounds examinated in the present work.  

Furthermore, Matsuda and Ayabe [44] provide excellent criteria for reversibility in CV, 

which takes into account the scan rate velocity. For our scan rate (50 mV s-1), the criteria 

result in: 

Reversible kinetics: k0 > 1.5 10-2 cm s-1 
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Quasireversible kinetics: 1.5 10-2 > k0 > 10-6 cm s-1 

Totally irreversible kinetics: k0 < 10-6 cm s-1 

As can be seen in Table 3, our values for k0 are in excellent agreement with these criteria, 

since UA and DO are quasireversible, but have the highest values (and are the most 

favorable process, as can be seen in both CV and DPV since they show the highest current 

peaks), while 5HT and AA fall behind in their values, and have lower current peaks in CV 

and DPV. This quasireversible behaviour, can be possibly explained since the structural 

changes that take place during the redox reactions examined in this work are not simple 

electron transfer processes: several changes in bond angles and lengths are inevitably 

involved, as well as resolvation processes, and those molecular alterations are clearly 

relevant from an energy point of view [43]. 

The limit of detection (LOD) was calculated using the formula 3SD b-1, where SD is the 

standard deviation of 4 consecutive readings of the blank response and b is the slope of the 

calibration plot of DA or 5HT. LOD for DA was calculated as 235 nmol L-1 and 460 nmol 

L-1 for 5HT. These detection limits are higher than other recently reported (Table 4), but 

many of those reports do not inform the simultaneous determination of DA and 5HT under 

the presence of AA and UA. 

It is extremely important to note that the experiments made in samples with AA, DA, UA 

and 5HT have been made consecutively, i.e. the assays of CV of three samples of different 

concentrations and DPV of six samples of different concentrations of the four compounds 

have been measured with the same RoMWCNT/GC modified electrode. These 

measurements were repeated with three different electrodes (n=3) three different days 
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under the same experimental conditions to evaluate the inter-electrode reproducibility (Fig. 

6f). This fact strongly evidence that the RoMWCN/GC modified electrodes are suitable for 

the simultaneous determination of DA and 5HT in presence of AA and UA. 

4. Conclusions 

In this work, an electrochemical treatment has been applied to GC electrodes modified with 

MWCNT in order to determine in a simultaneous way dopamine (DA) and serotonin (5HT) 

in presence of ascorbic acid (AA) and uric acid (UA). 

Raman spectroscopy revealed that the density of defects increased upon electrochemical 

treatment but decreased between the oxidation and reduction steps. Thus, despite the fact 

that our modified electrodes are both functioning as semiconductors, the RoMWCNT/GC 

electrodes has better conductive properties than the oMWCNT/GC electrodes. The 

experimental evidence shows that the electrochemical reduction process has restored the 

sp2 hybridization. Based on EDS studies, we found a higher amount of atomic percentage 

of the O element after the electrochemical oxidation process, confirming the oxidation step 

of MWCNTs, and a reduction of O level after electrochemical reduction, confirming the 

extent of the reduction step of oMWCNT. 

RoMWCNT/GC electrodes present a clear lower RCT when using Fe(CN)6
3-/4- and a lower 

∆Ep using Ru (NH3)6
3+/2+ (near the theoretical value of 59 mV) when compared with the 

other modified electrodes (MWCNT/GC, or oMWCNT/GC). These overall results show 

that the RoMWCNT/GC electrode facilitated the electron transfer rate, and this might be 
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attributed to the higher electric conductivity, and a higher electrocatalytic activity of the 

RoMWCNT/GC, despite the similar calculated ECSA for all the modified electrodes. 

SEM images showed fused and unzipped MWCNT in an inner layer, closer to the GC 

surface electrode, after the oxidation potential treatment applied to a MWCNT/GC; while 

MWCNT with similar morphology of those found in the untreated MWCNT/GC can be 

seen in the solution interface of the electrodes. 

These modified electrodes may expose different morphologies to a sample, guaranteeing 

mass transport and, as a consequence, performance enhancement of the electrodes 

increasing selectivity of DA and 5HT [2,45]. The performance enhancement is reached 

using RoMWCNT/GC electrodes, given their favourable electrochemical properties 

evidenced by its high k°eff value. The fact that RoMWCNT/GC can determine four peaks in 

samples with different concentrations of AA, DA, UA, and 5HT is strong evidence of its 

improved selectivity towards these compounds. 

These results were in very good agreement with the analysis of kinetics made through the 

Tafel equation providing a quantitative explanation for their behaviour. Although UA and 

DA present the highest k0 values, 5HT showed slower kinetics, but still a quasireversible 

behaviour in RoMWCNT/GC electrodes. These behaviour, can be possibly explained since 

the structural changes that take place during the redox reactions examined in this work are 

not simple electron transfer processes: several changes in bond angles and lengths are 

unavoidable, coupled with the fact that adsorption of biomolecules to the electrodes is 

always an issue. 
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To the best of our knowledge we report for the first time modified electrodes, with higher 

selectivity towards the oxidation of DA and 5HT in presence of UA and AA, with 

differences between peaks higher than 130 mV, great reproducibility with an RSD of 1.7% 

for DA and 1.6% for 5HT, and LOD of 235 nmol L-1 for DA and 460 nmol L-1 for 5HT. 

Future work will be focused in the improvement of sensibility of DA and 5HT in order to 

reach the clinical needs for the determination in urine and/or blood samples. A more 

detailed characterization of the modified electrodes and the fabrication of a disposable 

modified electrode, for selective determination of DA and 5HT in presence of different 

interferences is another of our goals. 
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Captions to illustrations 

Fig. 1. SEM images of modified GC electrodes with MWCNT without any treatment (a), 

with oMWCNT (b and c), and with RoMWCNT (d, e and f).  

Fig. 2. Comparisons of Raman spectra of GC (black), MWCNT/GC (red), oMWCNT/GC 

(blue) and RoMWCNT/GC (green) (n=2). Ratios ID/IG are showed in the inset.  

Fig 3. (a) Oxidation CV after 0 h (black), 1 h (red), 2 h (green), 3 h (blue), 4 h (cyan), 5 h 

(magenta), 6 h (yellow) of the electrochemical oxidation of MWCNT/GC. (b) Reduction 

CV after 0 h (black), 3 h (blue), and 5 h (magenta), of the electrochemical reduction of 

oMWCNT/GC in 0.5 mol L-1 of H2SO4 at 100 mV s-1 scan rate. Regions marked with a star 

indicate the potentials at which the modified GC electrodes have been selectively oxidized 

or reduced.  

Fig. 4. (a) CV of Fe(CN)6
3-/4- in PBS at GC (black), MWCNT/GC (red), oMWCNT/GC 

(blue), and RoMWCNT/GC electrodes (green). (b) Nyquist plots of Fe(CN)6
3-/4- in PBS at 

GC (black), MWCNT/GC (red), oMWCNT/GC (blue) and RoMWCNT/GC (green) 

electrodes. In the inset, the high frequency zone of the Nyquist plots has been magnified. 

(c) CV of Ru (NH3)6
2+/3+ 1 mmol L-1 in KCl 1 mol L-1 at GC (black), MWCNT/GC (red), 

oMWCNT/GC (blue), and RoMWCNT/GC electrodes (green).  

Fig. 5. CV at 50 mV s-1 using an oMWCNT/GC (in blue) or a MWCNT/GC (in red) in 

samples containing 350 µmol L-1 AA, 25 µmol L-1 DA, 85 µmol L-1 UA, 30 µmol L-1 5HT 

(solid line); 980 µmol L-1 AA, 100 µmol L-1 DA, 360 µmol L-1 UA, 100 µmol L-1 5HT 

(dashed line); or 1100 µmol L-1 AA, 240 µmol L-1 DA, 600 µmol L-1 UA, 220 µmol L-1 
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5HT (dotted line). In the inset it can be seen a CV at 50 mV s-1 using a GC electrode in a 

sample containing 980 µmol L-1 AA, 100 µmol L-1 DA, 360 µmol L-1 UA, 100 µmol L-1 

5HT.  

Fig. 6. (a) DPV curves of samples with different concentrations of AA (from 15 to 1100 

µmol L-1), DA (from 5 to 240 µmol L-1), UA (from 50 to 600 µmol L-1) and 5HT (from 5 to 

220 µmol L-1) using a RoMWCNT/GC electrode (it can be seen in the inset CV 

corresponding to concentration of curves blue and cyan). Linear responses obtained for DA 

(b), 5HT (c), AU (d), and AA (e). (f) Inter-electrode reproducibility between three 

electrodes made the same way in different days.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 1 

Elemental compositions of the GC modified electrodes determined by EDS (n=3). 

 C at% O at% S at% 

MWCNT/GC 98.1 ± 0.5 1.72 ± 0.21 0.20 ± 0.03 

oMWCNT/GC 95.4 ± 0.5 3.89 ± 0.18 0.46 ± 0.01 

RoMWCNT/GC 97.7 ± 0.2 2.05 ± 0.12 0.22 ± 0.02 
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Table 2 

Values of ECSA and ∆Ep obtained in the electrochemical characterization using Fe (CN)6 
3-/4- or 

Ru(NH3)6 
2+/3+ of GC and modified electrodes. The values of RCT were only calculated using Fe 

(CN)6 
3-/4. The relative standard deviation, RSD (in parenthesis), was calculated for all 

measurements, n=3.  

Redox Couple Electrode ECSA / cm2  ∆Ep / mV RCT /Ω  

 

 

Inner-sphere        

Fe (CN)6
3-/4- 

 

GC 0.0073 ± 0.0006 

(8.2%) 

72 ± 7  

(9.7%) 

2097 ± 676 

(32.2%) 

MWCNT/GC 0.087 ± 0.006 

(6.9%) 

96 ± 9  

(9.4%) 

146 ± 38  

(26%) 

oMWCNT/GC 0.071 ± 0.005 

(7%) 

103 ± 6  

(5.8%) 

276 ± 19  

(6.9%) 

RoMWCNT/GC 0.080 ± 0.006  

(7.5%) 

95 ± 1  

(1.1%) 

73 ± 6 

(8.2%) 

 

 

Outer-sphere     

Ru(NH3)6 
2+/3+ 

GC 0.0061 ± 0.0005 

(8.2%) 

68 ± 2  

(2.9%) 

--- 

MWCNT/GC 0.049 ± 0.003 

(6.1%) 

62 ± 2  

(3.2%) 

--- 

oMWCNT/GC 0.048 ± 0.003 

(6.3%) 

61.9 ± 1.8  

(2.9%) 

--- 

RoMWCNT/GC 0.051 ± 0.003 

(5.9%) 

60 ± 1  

(1.7%) 

--- 
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Table 3 

 j0 and k0 values obtained from Tafel plots made from CV assays, measuring each 

compound individually, with RoMWCNT/GC electrode at 50 mV s-1.  

 AA DA UA 5HT 

j0 2.626 10-8 1.673 10-6 1.811 10-5 7.328 10-7 

k0 3 x 10-6 1 x 10-3 6 x 10-3 4 x 10-4 
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Table 4  

Comparison of RoMWCNT/GC analytical performance with some modified GC electrodes 

previously reported. 

Electrode Linear range (µmol L-1) LOD (µmol L-1) Reference 

AA DA UA 5HT AA DA UA 5HT 

PGa 9-2300 5-710 6-1300 -- 6.45 2 4.82 -- [25] 

MWCNT/MGFb 100-6000 0.3-10 5-100 -- 18.28 0.06 0.93 -- [27] 

Pt/RGO/GCEc -- 5-150 10-130 -- -- 0.45 0.70 -- [23] 

ERGO/GCEd 500-2000 0.5-60 0.5-60 -- 200 0.5 0.5 -- [24] 

ERGO-Pe -- 0.1-500 -- 0.1-300 -- 0.035 -- 0.0049 [17] 

RoMWCNT/GC 120-1150 5-240 10-600 5-210 6.28 0.235 0.11 0.46 Our work 

aPG: pristine graphene 

bMWCNT/MGF: MWNTs bridged mesocellular graphene foam 

cPt/RGO/GCE: Pt/reduced graphene oxide modified glassy carbon electrode 

dERGO/GCE: glassy carbon electrode modified with electrochemically reduced graphene oxide.  

eERGO-P: Electrochemically reduced GO-P (is a GC modified electrode). 
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List of changes: 

 

We have thoroughly revised the manuscript according to the reviewers’ suggestions: 

We have made new assays using a new batch of Ru(NH3)6
2+/3+ and we have changed Fig 

4c, and section 3.5. 

We have added values of ECSA of all the electrodes, calculated from using Ru(NH3)6
3+ in, 

Table 2 calculated.   

We have exchanged tables 3 and 4 because they were wrongly numbered according to the 
order of appearance in the text. 

We have highlighted the changes in the revised manuscript. 

 

 

 

 


