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Abstract 

A protocol for harvesting and extracting extracellular metabolites from an in vitro model 

of human renal cell lines was developed to profile the exometabolome by means of a discovery-

based metabolomics approach using ultraperformance liquid chromatography coupled to 

quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned 

media (CM) samples (n=66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with 

different genetic background and a non-tumor renal cell line, were compared with the human 

serum metabolic profile of a pilot cohort (n=10) comprised of stage IV ccRCC patients and 

healthy individuals. Using a cross-validated orthogonal projection to latent structures-

discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate 

classification, allowed differentiating control from tumor cell lines with 100% specificity, 

sensitivity and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-

phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical 

standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset 

of 9 discriminant features, including the identified metabolites except for CYSSG, produced a 

fingerprint of classification value that enabled discerning ccRCC patients from healthy 

individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated to 

ccRCC. Results from this study provide a proof of concept that CM can be used as a serum 

proxy to obtain disease-related metabolic signatures.  

 

Keywords: in vitro cell culture, conditioned media, metabolomics, ultraperformance liquid 

chromatography-mass spectrometry, clear cell Renal Cell Carcinoma, metabolic footprinting. 
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Introduction 

Kidney cancer is fundamentally a disease of dysregulated cellular metabolism.1 Renal cell 

carcinoma (RCC), originated from the renal epithelium, accounts for >90% of cancers in the 

kidney,2 and is among the 10 most common cancers in both men and women worldwide.3, 4
 RCC 

patients are often incidentally diagnosed by imaging procedures. Only 10% of patients exhibit 

the classic triad of hematuria, low back pain, and flank mass symptoms, and nearly 40% of 

patients lack all of these and present with systemic symptoms, including weight loss, abdominal 

pain, anorexia, and fever.5 More than 30% of the patients exhibit locally advanced or metastatic 

RCC at the time of diagnosis.6, 7 Although the disease is inherently resistant to chemotherapy8 

and radiotherapy,9 the survival of advanced RCC patients has improved significantly with the 

advent of tyrosine-kinase inhibitors as standard of care therapy.10 However, the discovery of 

early detection biomarkers is an important priority area to give more opportunities for early 

intervention and improved outcome of ccRCC patients.   

Clear cell RCC (ccRCC) is the most common (75%) histological subtype and accounts 

for most cancer-related deaths.2, 11 At molecular level, 50-80% of all ccRCC patients show 

mutations in Von Hippel Lindau (VHL) gen which is involved in hypoxia inducible factor 1α 

(HIF 1α) expression.3, 12, 13 Overexpression of HIF 1α triggers the transcription of genes involved 

in glucose metabolism.14 In addition, ccRCC is a lipogenic tumor with abnormal cholesterol 

metabolism.15, 16
 In this context, and due to complex pathways contributing to kidney cancer 

progression, a single molecular marker might not be efficient enough as tumor biomarker, 

suggesting the need of a multiple biomarker panel to achieve sufficient clinical information. 

Mammalian cell metabolomics17, 18 has emerged as a promising tool for studying cellular 

biochemistry and investigate altered metabolic networks that contribute to cell proliferation, 
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dissemination and survival in RCC. Metabolomics uses a holistic approach to characterize and 

quantify the metabolome, comprised of all the small molecules (MW<1500) in biological 

systems.19, 20
 Different metabolic fingerprinting studies have shown alterations associated with 

RCC. Mass spectrometry (MS)-based urine untargeted metabolomics approaches have suggested 

alterations in metabolic pathways of tryptophan21 and acylcarnitines.22
 Weiss and collaborators 

showed that serum is a more accurate proxy for tissue changes than urine, using a mouse 

xenograft model of kidney cancer, and suggested that tryptophan degradation is highly 

represented in RCC.23
 Untargeted serum MS-based metabolomics studies from RCC patients 

have also suggested disease-related alterations in the phospholipid catabolism, sphingolipid, 

cholesterol, phenylalanine, and arachidonic acid metabolisms in addition to fatty acid beta-

oxidation.23, 24
 Recently, tumor progression and metastasis have been associated with metabolite 

increases in glutathione and the cysteine/methionine pathways by means of a metabolomic 

profiling study on 138 matched ccRCC/normal tissue pairs.25 

In vitro cell models are of particular interest for understanding the metabolism of cellular 

processes, and allow the study of both intracellular (fingerprint) and extracellular (footprint) 

metabolic profiles,17, 18, 26 being the latter a closer proxy of serum. Cell lines can be used as in 

vitro models for research including biomarker discovery studies and the evaluation of new drugs 

for treatment,17 as recommended by the Food and Drug Administration.27
 Recent genomic 

studies have identified molecular differences between commonly used renal cancer cell lines and 

human tumor samples.28 However, studies comparing the exometabolome of kidney cell lines 

with the human serum metabolome to evaluate the feasibility of using in vitro models for serum 

sample classification have not been reported up to date. 
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In this study, we have optimized a protocol for harvesting, extracting, lyophilizing and 

reconstituting conditioned media (CM) metabolites derived from two human ccRCC cell lines 

786-O (VHL-/-) and Caki-1 (VHL+/+), and the non-tumor human renal cell line HEK-293 (n=22 

for each cell line); and we have profiled the exometabolome using a discovery-based 

metabolomics approach by means of ultraperformance liquid chromatography coupled to 

quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS). Metabolic features (Rt, m/z 

pairs) were analyzed using a cross-validated orthogonal projection to latent structures-

discriminant analysis model, coupled to a genetic algorithm variable selection method. A panel 

of 21 discriminant features, obtained from the binary comparison of control and tumor cells, 

allowed sample classification with 100% specificity, sensitivity and accuracy. In addition, 9 of 

these compounds were present in human serum samples and enabled discriminating stage IV 

ccRCC patients from healthy individuals, which could potentially be relevant in kidney cancer 

diagnosis. 

 

Materials and Methods 

Chemicals 

LC-MS grade acetonitrile, methanol, isopropanol, acetic acid and formic acid purchased 

from Fisher Chemical (NC, USA) and ultrapure water with 18.2 MΩ·cm resistivity (Thermo 

Scientific Barnstead Micropure UV ultrapure water system, USA) were used to prepare 

chromatographic mobile phases and solutions. Leucine enkephalin was purchased from Waters 

Corp. (Milford, MA, USA). Sodium hydroxide was purchased from EMSURE® ISO (Merck 

Millipore, Burlington, MA, USA). Roswell Park Memorial Institute (RPMI) 1640 and 
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Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) powder culture media 

were purchased from GIBCOTM (Thermo Fisher Scientific, MA USA). Fetal bovine serum (FBS) 

was purchased from Internegocios S.A. (Buenos Aires, Argentina), gentamicin from Laboratorio 

Drewer S.A. (Buenos Aires, Argentina), and L-glutamine from GIBCOTM (Thermo Fisher 

Scientific, MA USA). The analgesic mix comprised of the following standards: acetaminophen, 

2-acetaminophen, acetanilide, acetylsalicylic acid, caffeine, phenacetin and salicylic acid was 

purchased from Waters (Waters Corporation, Manchester, UK). L-cysteine-glutathione disulfide 

(purity ≥95%) was purchased from Cayman Chemical (MI, USA). L-leucine (≥98%) and L-

phenylalanine (≥98%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). L-isoleucine 

(≥98%) was purchased from Fluka (Steinheim, Germany). N-acetyl-phenylalanine and N-

lactoyl-leucine reference compounds were chemically synthesized in our laboratory (Supporting 

Information, Figures S1 and S2). 

In Vitro Model - Cell Culture 

 The in vitro model was comprised of three different kidney cell lines: HEK-293, 786-O 

and Caki-1, which were obtained from the American Type Culture Collection (ATCC). HEK-

293, a non-tumor human embryonic kidney cell line, was used as control and was compared to 

two ccRCC cell lines with different genetic background, 786-O and Caki-1. The 786-O cell line 

derives from primary ccRCC tumor and has a deletion of a gene encoding the VHL protein 

(VHL-/-). The Caki-1 cell line arises from ccRCC skin metastasis, and expresses wild type VHL 

protein (VHL+/+). HEK-293 and 786-O cell lines were cultured in RPMI culture media and Caki-

1 cell line was cultured in DMEM/F12 media; all supplemented with 10% FBS, 2 mM L-

glutamine, and 8 µg mL-1 gentamicin, in a humidified atmosphere of 5% CO2 at 37 ˚C. Cell 

cultures were routinely checked for mycoplasma contamination by DAPI (2-(4-Amidinophenyl)-
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1H-indole-6-carboxamidine) staining. The protocol designed for cell culture and CM harvesting 

generated 24 samples for each cell line (Figure 1, Table S1). Briefly, two cryovials with similar 

cell passage number were thawed for each cell line. Cells from each cryovial were split into two 

flasks (A and B in Figure 1) and were treated independently during the experiments. After cell 

counting, two wells were plated for each cell line. Culture media blanks were obtained by 

incubation of cell culture media with the same protocol used for cell lines (Figure 1). Two CM 

samples from each cell line were used for analytical method development. Thus, 22 samples per 

cell line were used for the untargeted metabolic footprinting study. 

In vitro Model - Conditioned Media Collection 

 In each well of 9.5 cm2 area, 5.00×105, 1.00×105, and 1.25×105 cells were plated for 

HEK-293, 786-O, and Caki-1 cell lines, respectively. Once 80% confluence was reached, cells 

were gently washed 3 times during 10 minutes with the corresponding culture media, without 

FBS. Then, cell monolayers were incubated overnight with 800 µL of their respective cell 

culture media without FBS (starving conditions).29 CM samples and culture media blanks were 

collected, centrifuged at 300 × g for 5 minutes to remove cell debris, and finally supernatants 

were collected and immediately frozen at -80 ºC. 

Serum Samples 

 Serum samples and associated clinical data were provided by the public oncologic serum 

biobank “Biobanco Público de Muestras Séricas Oncológicas” (BPMSO) from “Instituto de 

Oncología A. H. Roffo” (IOAHR), Buenos Aires, Argentina. The patient cohort consisted of 5 

healthy individuals (age range 40−64, mean (SD) age 56(9) years, 20% male) and 5 ccRCC 

patients at stage IV (SIV) (age range 53−72, mean age 64(6) years, 100% male). At the 0.05 
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level, the means of the age populations were not significantly different with the two-sample t-

test. Blood samples were drawn from untreated cancer patients. Serum sample collection 

followed the guidelines approved by the IOAHR Institutional Review Board, and samples were 

drawn after signature of the corresponding informed consent. According to the BPMSO standard 

operating procedure, 20 mL of blood were collected in tubes without any anticoagulant and left 

15 minutes at 25 °C to allow the clot formation and centrifuged at 600 × g for 10 minutes. Then, 

serum was split into aliquots and stored at -80 °C. Serum aliquots were used only once after 

thawing.  

Conditioned Media and Serum Sample Preparation 

 All frozen samples were thawed at 0 ºC on a water-ice bath. Protein precipitation was 

performed by addition of cold (4 ºC) isopropanol to 500 µL of CM or 60 µL of serum samples, 

in a 3:1 solvent:sample volume ratio. Samples were vortex-mixed for 10 seconds and centrifuged 

at 16000 × g for 20 minutes and 4 ºC. Supernatants were frozen and lyophilized at -80 °C and 50 

mTorr for 48 hours using a Telstar LYOQuest-85 freeze dryer (Telstar, Madrid, Spain). Sample 

residues were reconstituted in water/methanol (80:20 v/v) with a concentration factor of 7 for 

CM samples, and 1 for serum samples; and analyzed by UPLC-QTOF-MS. Sample preparation 

blanks containing ultrapure water and culture media blanks also went through the same sample 

preparation procedure. CM and serum samples were analyzed in different batches, with quality 

control (QC) and quality assurance (QA) samples to verify the stability of retention times, peak 

shapes and areas during the analysis.30 QCs consisted in randomly pooled CM samples from the 

3 cell lines studied and were processed in an identical approach as samples; i.e., a small aliquot 

of a subset of the CM samples were pooled into a single QC sample, followed by protein 

precipitation and further sample preparation steps. All CM samples were used to prepare QCs. 
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For each batch a new QC sample was reconstituted and analyzed every 14 sample injections. 

Samples were randomly analyzed by UPLC-QTOF-MS together with QCs, solvent blanks, 

sample preparation blanks and culture media blanks. Additionally, for serum samples, QA was 

verified with the periodical injection of a mix of standards comprised of acetaminophen, 2-

acetaminophen, acetanilide, acetylsalicylic acid, caffeine, phenacetin and salicylic acid. CM 

samples were analyzed along 5 consecutive days and serum samples were analyzed in one day, 

after conditioning the analytical platform. 

Ultraperformance Liquid Chromatography-Mass Spectrometry 

Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) analyses were 

performed using a Waters ACQUITY UPLC I Class system fitted with a Waters ACQUITY 

UPLC BEH C18 column (2.1×100 mm, 1.7 µm particle size, Waters Corporation, Milford, MA, 

USA), coupled to a Xevo G2S QTOF mass spectrometer (Waters Corporation, Manchester, UK) 

with an electrospray ionization (ESI) source. The typical resolving power and mass accuracy of 

the Xevo G2S QTOF mass spectrometer were 32,000 FWHM and 0.2 ppm at m/z 554.2615, 

respectively. Gradient elution was utilized in the chromatographic separation method using water 

with 0.1% acetic acid (mobile phase A) and acetonitrile (mobile phase B), with the following 

program: 0-1 min 10% B; 1-2.5 min 10-15% B; 2.5-4 min 15-22% B; 4-6 min 22-38% B; 6-9 

min 38-65% B; 9-12 min 65-80% B; 12-16 min 80-100% B; 16-19 min 100% B. The flow rate 

was constant at 0.25 mL min-1 for 12 min and was increased to 0.30 mL min-1 between 12 and 19 

min. After each sample injection, the gradient was returned to its initial conditions in 11 min. 

The injection volume was 5 µL for CM and 2µL for serum samples. The column and 

autosampler tray temperatures were set at 35 and 5 °C, respectively. The mass spectrometer was 

operated in negative ion mode with a probe capillary voltage of 2.3 kV, and a sampling cone 
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voltage of 30.0 V. The source and desolvation gas temperatures were set to 120 and 300 °C, 

respectively. The nitrogen gas desolvation flow rate was 600 L h-1, and the cone desolvation flow 

rate was 10 L h-1. The mass spectrometer was daily calibrated before each batch analysis across 

the range of m/z 50-1200 using a 0.5 mM sodium formate solution prepared in isopropanol/water 

(90:10 v/v). Data were drift corrected during acquisition using a leucine enkephalin (m/z 

554.2615) reference spray infused at 2 µL min-1, every 45 seconds. Data were acquired in MSE 

continuum mode31
 in the range of m/z 50-1200, and the scan time was set to 0.5 s. Technical 

duplicates were acquired in all cases. For UPLC-MS/MS experiments, the product ion mass 

spectra were acquired with collision cell voltages between 10 and 30 V, depending on the 

analyte. Ultra-high-purity argon (≥99.999%) was used as the collision gas. Data acquisition and 

processing were carried out using MassLynx version 4.1 (Waters Corp., Milford, MA, USA). 

The mass spectrometry data have been deposited to the MetaboLights public repository 

(https://www.ebi.ac.uk/metabolights/index) with the data set identifier MTBLS737. 

Data Analysis 

Spectral features (retention time (Rt), m/z pairs) were extracted from UPLC-QTOF-MS 

data using Progenesis QI version 2.1 (Nonlinear Dynamics, Waters Corp., Milford, MA, USA). 

The procedure included retention time alignment, peak picking, deisotoping, integration, and 

grouping together adducts derived from the same compound. Subsequently, if a feature had a 

peak area in a CM sample that was 3-fold or less than the mean peak area in the solvent and 

sample preparation blanks of the same feature, then its peak area was set to 0.32 Otherwise, the 

mean peak area in those blanks was subtracted from the feature peak areas in the CM samples. 

After blank subtraction, feature abundances from technical duplicates were averaged, and only 

those that were present in at least 80% of one group class were retained. Since Caki-1 cell lines 
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were cultured with a different culture medium, only features from HEK-293 or 786-O were 

considered to build the feature matrix for multivariate statistical analysis to avoid influence of 

culture media on the detected exometabolome (cell secretome).33
 Chromatographic peak shape 

and signal intensity of each feature was further evaluated for data curation. Features with signal 

intensity <103 in the continuum mass spectra or with a mass difference larger than 10 mDa along 

the sample list were discarded. The feature matrix obtained after this procedure was normalized 

to the number of plated cells for each cell line and to the total peak area for each sample. This 

matrix (Data Set S1 in the Supporting Information) was then utilized to build unsupervised and 

supervised multivariate statistical analysis models using MATLAB R2012b (The MathWorks, 

Natick, MA, USA) with the PLS Toolbox version 8.1 (Eigenvector Research, Inc., Manson, WA, 

USA). Principal component analysis (PCA) was used to track data quality, reduce the 

dimensionality, identify and remove outliers in the dataset, as well as to identify sample clusters. 

Two samples were identified as outliers by PCA (data not shown), one from a HEK-293 CM and 

another from 786-O CM, and were not further considered for data analysis. Orthogonal 

projection to latent structures-discriminant analysis (oPLS-DA)34, 35 coupled with a genetic 

algorithm (GA) variable selection method was applied to find a feature panel that maximized 

classification accuracy for the binary comparison of HEK-293 and 786-O. A panel of 23 

discriminant features had the lowest root-mean-square error of cross-validation (RMSECV) at 

the conclusion of the GA variable selection process; however, only 21 features were retained for 

statistical analysis (see Metabolite Identification Procedure). The parameters for genetic 

algorithm variable selection were as follows: population size: 112, variable window width: 1, % 

initial terms (variables): 10, target minimum # of variables: 1, target maximum # of variables: 

30, penalty slope: 0.05, maximum generations: 100, % at convergence: 80, mutation rate: 0.005, 
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crossover: double, regression choice: PLS, # of latent variables: 2, cross-validation: random, # of 

splits: 4, # of iterations: 10, replicate runs: 20. The oPLS-DA model was cross-validated using 

venetian blinds with 10 data splits. Data were preprocessed by autoscaling prior to PCA or 

oPLS-DA analysis. PCA was also performed to inspect data before and after GA variable 

selection (i.e., on the curated spectral feature matrix and on the discriminant feature panel). 

Feature abundances of QC samples for each batch were averaged before PCA.  

Fold changes were calculated as the ratio of median peak areas between CM from 786-O 

and HEK-293, Caki-1 and HEK-293, and Caki-1 and 786-O samples. Mann-Whitney U tests 

were used to calculate statistical significance, and p values were corrected using the Benjamini-

Hochberg36 procedure for multiple comparisons with a FDR of 0.1.   

Metabolite Identification Procedure 

Metabolite identification was attempted for the 23 discriminant features resulting from 

the GA variable selection process. Mass spectral adduct ions and elemental formula generated 

based on accurate masses and isotopic patterns, were searched against the Human Metabolome 

Database (HMDB).37 Based on the list of tentative candidates, metabolite identification was 

performed considering the accurate mass, isotopic pattern, and the fragmentation pattern 

obtained from tandem QTOF-MS experiments. Tandem MS spectra were compared to the Metlin 

database,38 and MassBank,39 and for cases where MS/MS spectra were not available in 

databases, fragmentation patterns were manually interpreted for metabolite annotation. Putative 

identifications were validated with chemical standards. Though Progenesis performed adduct 

grouping, the software did not account for NaCl adduct ions, which were evidenced by isotopic 

pattern analysis of the selected features. Out of the 23 features, 2 features were identified as 

different NaCl adduct ions of the same compound; i.e. different [M+xNaCl-H]- ionic species, and 
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one of the features was identified as paraben, which is a non-endogenous metabolite. Therefore, 

only 21 features were considered for further statistical analysis. Chemical standards were 

prepared in ultrapure water, and were analyzed under identical conditions as CM and serum 

samples to validate putative metabolite identities by chromatographic retention time and MS/MS 

fragmentation pattern matching. Spiking experiments were also conducted with the standards on 

CM and serum samples as well as on cultured media blanks, to address retention time differences 

caused by matrix effects. 

 

Results and Discussion 

 
Metabolic Footprint & CM Sample Classification 

A protocol for harvesting and extracting extracellular metabolites from an in vitro model 

of 3 different human renal cell lines was developed (Figure 1, Table S1) and implemented to 

profile the cell secretome33
 with a UPLC-QTOF-MS-based method. In addition, serum samples 

from 5 healthy individuals and 5 SIV ccRCC patients were analyzed with the same optimized 

analytical method to evaluate the use of CM as a serum proxy to obtain a disease-related 

metabolic signature from the detected metabolomes. 

A total of 6002 features (Rt, m/z pairs) were extracted by Progenesis software from the 

UPLC-MS negative ion mode data from the three studied cell lines. The number of features was 

reduced to 5030 after deconvolution, to group together adducts derived from the same 

compound. Following solvent blank deduction, feature abundances from technical replicates 

were averaged, and only features that were present in at least 80% of one group class were 

retained. Since Caki-1 cell line was cultured with a different culture media, features that were 
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only present in Caki-1 CM were excluded for further analysis to avoid bias in sample 

classification by the media composition.33 This data set, comprised of 2358 features, was further 

manually filtered to keep only those features with signal intensity, peak shape and mass variance 

within the established thresholds that would allow accurate identification, leaving 755 spectral 

features. This matrix was normalized (Data Set S1 in the Supporting Information) and utilized to 

build a PCA model. The 2D score plot illustrated in Figure 2A shows distinguishable separation 

between the three classes, mainly achieved by the contribution of the first PC. In addition, QC 

data points clustering around the origin of the PCA score plot indicates reproducibility in the 

sample preparation method, high data quality and adequate performance of the analytical 

platform. The PCA model consisted of 5 PCs with 70.67% total captured variance, with the first 

two PCs accumulating 47.44% of the total variance. Figure 2B shows the score plot for CM 

samples from the non-tumor control cell line HEK-293 and the tumor cell line 786-O, which 

were cultured and incubated with the same culture media. The model, which consisted of 2 PCs 

with 53.38% total captured variance, provided a clear degree of class separation, mainly 

achieved by the contribution of the first PC. The loadings plot associated to PC1 showed similar 

contribution from all spectral features to sample separation in the score plot (figure not shown). 

Thus, sample discrimination was further analyzed by means of oPLS-DA coupled to a GA 

variable selection method to find a reduced metabolic feature set that would allow sample 

classification and class membership prediction. A panel of 23 metabolic features with the lowest 

RMSECV was selected through the GA process; although 2 of them were removed for further 

statistical analysis (see Metabolite Identification Procedure). Figure 2C shows the cross-

validated prediction plot using the 21 discriminant metabolic features. The model consisted of 1 

latent variable that interpreted 50.55% and 99.47% variance from the X- (feature peak areas) and 
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Y- (class membership) blocks, respectively. This oPLS-DA model resulted in 100% cross-

validated accuracy, sensitivity, and specificity; therefore, no CM samples were misclassified.  

Comparison of in vitro Exometabolome with Serum Metabolome 

Figure S3 shows the different base peak intensity (BPI) chromatograms obtained for CM 

samples of each cell line, and for serum samples of a healthy individual and a SIV ccRCC 

patient. Differences observed were probably associated to metabolite concentration levels, and 

matrix effects. Additionally, human serum metabolic profiles are influenced by the presence of 

the disease, lifestyle, diet, environmental exposures, i.e. the exposome,40, 41
 and molecules 

derived from the interactions with associated microorganisms (the microbiome),42
 demonstrating 

the need for multivariate statistical analysis to extract a disease-related metabolic signature from 

the detected metabolomes. 

To evaluate the ccRCC in vitro exometabolome as a good proxy to study metabolic 

changes in serum, the 755 features of the CM matrix were searched in the feature matrix 

extracted from human serum sample analysis. A total of 163 features were found to be common 

to both CM and sera. In addition, out of the 21 metabolic features that perfectly classified CM 

samples of the renal in vitro model, 9 were present in serum samples. These feature sets were 

further utilized to build unsupervised models to explore sample clustering in both types of 

biological samples, i.e. CM and sera. Figures 3A and 3B show the 2D PCA score plots of serum 

samples using the 163 common feature set and the smaller subset of 9 common features from the 

CM discriminant panel, respectively. Using the former set, the PCA model composed of 2 PCs 

with 57.97% total captured variance did not show sample separation (Figure 3A). However, the 

PCA model based on the subset of 9 common CM discriminant features utilized 2 PCs that 

captured a larger percentage of total variance (70.87%) after dimension reduction, and was able 
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to provide a good degree of sample separation between SIV ccRCC patients and healthy 

individuals (Figure 3B).The overlapping of two samples from both classes in the score plot was 

not associated to gender, even if the latter was not balanced between sample classes. Therefore, 

the metabolic footprint of the ccRCC in vitro model assisted in differentiating human individuals 

based on the presence of disease.  

The PCA model that used the 163 common features provided similar class separation in 

CM samples (Figure 3C) as the one based on 755 features (Figure 2A). The first PC of the scores 

plot allowed sample separation between tumor (786-O and Caki-1) and non-tumor (HEK-293) 

cell lines, whereas the second PC provided separation between 786-O and Caki-1 cell lines. 

Interestingly, an improved CM class separation with larger captured variance (65.02%) was 

observed in the score plot of the PCA model using the subset of 9 discriminant features (Figure 

3D) compared with 755 and 163 features (Figure 2A and 3C, respectively). Actually, this 

reduced panel provided an improved class separation for the binary comparison of HEK-293 vs. 

786-O cell lines (Figure S4A) than with 755 features (Figure 2B) and also a clear separation 

between tumor cells with different genetic background (Figure S4B). Considering that these 9 

features provide a good simplified ccRCC metabolic signature, and allow serum sample 

classification, their analysis could potentially offer useful information in studies of diagnosis 

purposes, and drug discovery for cancer treatment. 

Discriminant Metabolite Identification 

Metabolite identification was attempted for the 21 features of the discriminant panel, as 

illustrated in Figure 4 for N-lactoyl-leucine (N-Lac-Leu). First, extracted ion chromatograms 

(EICs) and the corresponding mass spectra were obtained for each feature in CM and serum 

samples. Mass spectral detected adduct ions and elemental formula of possible candidates were 
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searched in the HMDB37 database. Subsequently, fragmentation patterns obtained from tandem 

MS experiments were compared to MS/MS spectra in the HMDB37 or Metlin database,38 or 

manually interpreted. Finally, the tentatively identified metabolites were confirmed by matching 

retention times and fragmentation patterns in CM and serum samples with chemical standards, 

whenever possible. Chemical standards also aided to discard non matches with putatively 

identified compounds, leaving several features with no ID (Table 1). The identity of some 

candidate molecules could not be confirmed due to i) co-elution with similar molecular weight 

compounds that interfered in the quadrupole selection process of the precursor ion, providing 

product ion overlap with the target feature in the tandem MS spectra, ii) insufficient precursor 

ion intensity for MS/MS experiments, or iii) limitations associated to metabolite databases.  

The isotopic pattern analysis of the discriminant features suggested the presence of 

several ionic species being the product of non-specific binding caused by the matrix 

composition, which occurs when chemical species that are trapped in the same ionization 

droplets start to interact during solvent evaporation in the ESI mechanism.43, 44 Out of the 21 

features, 6 were identified as [M+xNaCl-H]- ionic species, with x between 1and 7, for different 

compounds (M), which were not accounted by Progenesis software. These type of adduct ions 

were detected for N-acetyl-phenylalanine (N-Ac-Phe); phenylalanine (Phe); isoleucine/leucine 

(Ile/Leu), and for hydroxyprolyl-valine (OHPro-Val) (Table 1, Figures S5-S8). Since the 

chemical composition of the culture media utilized to incubate the cell lines favored this type of 

nonspecific ion pairing, spiking experiments were conducted with the standards on CM and 

serum samples, as well as on cultured media blanks, to validate metabolite identity, and address 

retention time shifts caused by matrix effects (Figure 4, Figures S5-S7). The salt content of CM 

samples due to the culture media formulation and the concentration factor optimized for 
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metabolite detection (7 for CM samples vs. 1 for serum samples), was actually translated, in 

some cases, into 3-5 seconds shorter retention times compared to metabolites detected in serum 

samples or in standard solutions (Figure 4 and Figures S5-S7).  

Matrix composition mainly affected Ile/Leu identification, since the chromatographic 

gradient implemented for sample analysis was not able to separate these isomers, but instead 

provided partial resolution for a Ile+Leu standard aqueous solution (Figure S7A, S7B). A 

different chromatographic initial gradient was utilized in combination with different spiking 

experiments to illustrate the presence of both Ile and Leu in CM samples, as expected from the 

culture media composition (Figure S7B). Since neither the chromatographic separation nor 

tandem MS experiments allowed identifying the discriminant amino acid (Figure S7D), for 

further discussion both isomers will be considered together as Ile+Leu.  

Both [M-H]- and [M+NaCl-H]- adduct ions were detected for M = OHPro-Val. To 

distinguish between the two possible isomers of this dipeptide, i.e., OHPro-Val or valyl-

hydroxyproline (Val-OHPro), tandem MS experiments were conducted both in negative and 

positive ESI modes, and the product ions detected in the corresponding mass spectra suggested 

OHPro-Val being the discriminant metabolite (Figure S8). Since no chemical standard was 

analyzed for this compound, its identification was given a different confidence level (Table 1). 

For cysteine glutathione disulfide (CYSSG), only the [M-H]- ion was detected, and both a spiked 

CM sample and a CYSSG aqueous standard solution provided identical retention times (Figure 

S9). 

Overall, 6 of the 21 CM discriminant metabolic features were successfully identified by 

MS and MS/MS experiments, while 5 were further chromatographically confirmed by chemical 
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standards (Table 1). In addition, 5 out of 6 identified features were detected in human serum 

samples (Table 1). 

Biological significance of Identified Discriminant Metabolites in ccRCC  

Metabolic patterns are powerful tools for sample classification, though understanding 

their biological significance can become more challenging.45 Changes in gene expression do not 

necessarily correlate with changes in metabolites of a given pathway during ccRCC tumor 

progression.25
 Table 1 summarizes the identification of the 6 discriminant endogenous 

metabolites, discussed below based on their level change in CM and serum samples and the 

affected pathways,  many of which have been reported to be involved in RCC progression. Fold 

changes were calculated as the ratio of median peak areas between CM samples, and p values 

were corrected using the Benjamini-Hochberg36 procedure for multiple comparisons with a FDR 

of 0.1. Though no significant fold changes were obtained for serum samples, probably due to the 

small cohort, trends between classes are shown in Table 1. 

Isoleucine and leucine (Ile+Leu), Phe, N-Lac-Leu and N-Ac-Phe exhibited significant 

higher levels in CM of 786-0 cells (CM-7) than HEK-293 cells (CM-H) with fold changes 

between 1.6 and 7.3 (Table 1, Figure 5). In contrast, CYSSG showed decreased levels in CM-7 

compared to CM-H with the highest significant fold change equal to 18. Regarding the binary 

comparison between CM from non-tumor cells (CM-H) and Caki-1 cells (CM-C), CYSSG and 

OHPro-Val presented significant decreased levels in CM-C, with fold changes of 270 and 10, 

respectively; whereas N-Lac-Leu levels were 1.7 higher (Table 1, Figure 5). Significantly 

decreased levels of Ile+Leu, Phe, N-Ac-Phe and OHPro-Val were detected in CM-C compared to 

CM-7 with fold changes between 1.7 and 200, while CYSSG levels were 1.8-fold higher in CM-

C (Table 1, Figure 5). Ile and Leu concentration was equivalent in both culture media 
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formulations, but Phe concentration was doubled in DMEM/F12 compared to RPMI. Therefore, 

comparisons between CM-C and CM-H or/and CM-7 should be cautiously interpreted for Phe.  

Cysteineglutathione disulfide (CYSSG) – Redox state  

CYSSG can be endogenously produced via a thiol-disulfide exchange reaction between γ-

glutamyl-cysteinyl-glycine (GSH) and L-cystine or gluthathione disulfide (GSSG) and Cys.46
 

The balance between GSH and GSSG is crucial for regulating the redox potential of the cell.47, 48
 

GSH counteracts the increased ROS production, thus minimizing oxidative damage to tissues 

and cells.47, 49 GSH is synthesized from amino acid precursors (Cys, Glu, and Gly) in the cell 

cytosol, and it is primarily regulated by GCS (glutathione-S-transferase), Cys availability, and 

GSH feedback inhibition.50, 51
 The intracellular GSH concentration depends on a dynamic 

balance between its synthesis and consumption inside the cell, and its efflux.52 Since oxidative 

stress occurs in kidney cancer,53 as well as in RCC cell lines including 786-O and Caki-1 cells,54 

it is not surprising to find that CYSSG levels in CM-7 and CM-C were lower than those in CM-

H. Even if we do not have information about the ratio GSH/GSSC, our results suggest an 

alteration in the cell redox state. Along these lines, higher GSH levels were detected in tumor 

tissue of ccRCC patients compared to normal tissue,55
 while levels of GSH, GSSG, Cys-Gly and 

α-hidroxibutyrate, all involved in the GSH biosynthetic pathway, were increased in late-stage 

tumors compared to early stages.25
 As well, higher levels of CYSSG were detected in tumor 

tissue of a mouse xenograft model characterized by implantation of Caki-1 cells in the kidney, 

compared to control, presenting the highest fold change among all measured metabolites.23 We 

were not able to detect CYSSG in the patient cohort, probably due to the relatively lower GSH 

levels reported in human plasma, compared to intracellular GSH content.47 
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Isoleucine, Leucine, Phenylalanine, N-Lactoyl-Leucine, N-Acetyl-Phenylalanine and 

Hydroxyproline-Valine –Metabolism of Amino acids and Proteins  

The identified amino acids, Ile+Leu and Phe, and the amino acid derivatives N-Lac-Leu 

and N-Ac-Phe, exhibited significantly increased levels in CM-7 compared to CM-H, while 

similar levels of Ile+Leu, Phe and N-Ac-Phe were detected between CM-H and CM-C (Table 1, 

Figure 5). However, as mentioned above, the biological interpretation of Phe fold changes in 

CM-C could be biased by the different culture media composition. A different trend was 

obtained for OHPro-Val, which showed decreased levels in CM-7 and CM-C, with significant 

differences between CM-H and CM-C (Table 1, Figure 5). These compounds are all involved in 

the metabolism of amino acids and proteins. In this regard, Hakimi et al. identified that most of 

the pathways significantly decreased in ccRCC tumor tissue were involved in amino acid 

metabolism, including Ile, Leu and Phe metabolism.25 

Previous evidence showed that a large number of dipeptides were detected in higher 

levels in tumor tissue of patients with SIV ccRCC compared to early stages.25 Our in vitro model 

analysis showed lower OHPro-Val levels in CM from tumor cell lines compared to the non-

tumor cell line (with significant decrease for CM-C vs. CM-H), and serum samples exhibiting 

the same trend (Table 1, Figure 5). A possible explanation for this result is that Caki-1 cells may 

reuse dipeptides as a source of intracellular amino acids so that, even if they are exported to the 

extracellular milieu they could be internalized faster than in normal cells. In this sense, it is well 

known that peptides can penetrate into the cells by endocytosis.56 

Lower serum amino acid levels can be expected if biosynthetic requirements are 

enhanced in tumor cells. Our results showed no change in Phe levels and reduced levels of 

Ile+Leu in serum samples from SIV ccRRC patients (Table 1, Figure 5). Nevertheless, there are 
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some contradictory results in the literature. Non-significant changes in the levels of Ile, Leu, and 

Phe were reported in a serum sample cohort with 65% ccRCC (out of RCC) American patients 

by means of ion exchange chromatography with post derivatization57
 whereas increased levels of 

Ile, Leu and Phe were detected in a cohort with 100% ccRCC Chinese patients using an LC-

MS/MS-based method, demonstrating the possible influence of ethnicity, histology, and/or to the 

techniques used in the results obtained.58 

Regarding N-Ac-Phe, its levels were increased in CM from 786-O cells compared to CM-

H, and a similar trend was observed for SIV ccRCC serum samples in relation to healthy 

individuals (Table 1, Figure 5). Elevated N-Ac-Phe in ccRCC serum has already been reported 

coupled to a tyrosine decline,24
 associating this alteration either to the inhibition of the 

phenylalanine hidroxylase, the enzyme necessary to metabolize phenylalanine to tyrosine,59 or to 

impaired glycine N-acyltransferase activity.60
 Interestingly, the loss of VHL in ccRCC, among 

other changes, leads to elevated levels of citrate and cytosolic AcetylCoA,25, 61 that may favor 

Phe acetylation. Higher level of acetylated proteins and/or amino acids could lead to higher 

levels of N-Ac-Phe, among others, in the extracellular compartment. A similar process may 

explain the experimentally observed higher levels of N-Ac-Phe in CM of 786-O cells, which lack 

VHL. 

There is evidence showing that N-lactoyl-amino acids are synthetized from lactic acid 

and amino acids, catalyzed by cytosolic non-specific dipeptidase 2, and then exported by ATP-

binding cassette subfamily C member 5 to the extracellular compartment.62 High levels of lactate 

and certain amino acids have been shown to correlate with high levels of N-lactoyl-amino acids 

in plasma.62 This has been observed in healthy individuals subjected to exercise, and patients 

with phenylketonuria, with high levels of Phe and N-lactoyl-phenylalanine. ccRCC exhibits high 
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rates of glycolisis and activation of lactate dehydrogenase,61 leading to high cytosolic lactate 

content. Based on this evidence, we hypothesized that elevated N-Lac-Leu levels in the CM from 

tumor cells could result from the intracellular reaction of lactate and Leu, followed by N-Lac-

Leu release. N-lactoyl-amino acids might represent useful extracellular biomarkers for 

intracellular amino acid concentration because they are only formed inside cells.62
 Interestingly, 

N-Lac-Leu exhibited the same increasing trend in CM-7 and CM-C as well as in SIV ccRCC 

serum samples compared to CM-H and healthy individuals, respectively (Table 1, Figure 5). 

Thus, it could be a more robust potential biomarker to be evaluated in a larger human serum 

cohort including different stages of disease.  

 

Conclusions 

In the present study, we developed a protocol for harvesting and extracting extracellular 

metabolites from an in vitro model of human renal cell lines. The exometabolome was profiled 

using a discovery-based metabolomics approach via UPLC-QTOF-MS. The metabolic footprints 

of ccRCC cell lines and a non-tumor renal cell line were compared with the human serum 

metabolic profile of SIV ccCRR and healthy individuals. A panel of 21 discriminant features 

obtained from the binary comparison of control HEK-293 and tumor 786-O cells allowed 

differentiating kidney cell lines with 100% specificity, sensitivity and accuracy. A subset of 9 

discriminant features from CM samples was detected in human serum, and produced a 

fingerprint that enabled discerning stage IV ccRCC patients from healthy individuals. Identified 

discriminant metabolites suggest alterations in amino acid metabolism, and the redox status of 

cells. To our knowledge, this is the first time that N-lactoyl-leucine is associated to ccRCC. Even 

if results in serum need to be validated in a larger cohort, our study highlights the utility of RCC 

Page 23 of 38

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24 

 

in vitro models for finding disease-related discriminant metabolites capable of human serum 

classification.   
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Figure Captions 

 

Figure 1. Scheme of conditioned media (CM) incubation and collection for the different cell 

lines studied. O/N: overnight. 

 

Figure 2. (A) Principal Component Analysis (PCA) scores plot of conditioned media (CM) 

samples using the set of 755 spectral features for HEK-293 non-tumor control cell line (blue 

squares), 786-O cell line (red triangles), Caki-1 cell line (black circles); and quality controls 

(green diamonds), with a model that consisted of 5 PCs with 70.67% total captured variance. (B) 

PCA scores plot for HEK-293 (blue squares) and 786-O cell line (red triangles), with a model 

that consisted of 2 PCs with 53.38% total captured variance. (C) Cross-validated prediction plot 
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from the orthogonal projection to latent structures-discriminant analysis model of CM samples 

from a tumor cell line 786-O (red triangle) versus a non-tumor control cell line HEK 293 (blue 

squares) using the 21 discriminant metabolic feature panel obtained from genetic algorithm 

variable selection.  

 

Figure 3. Principal Component Analysis (PCA) scores plot of serum (top panel) and CM (low 

panel) samples using the set of 163 common spectral features (left) and the set of 9 discriminant 

features of CM samples (right) that were also present in serum samples. The model consisted of 

(A) 2 PCs with 57.97% total captured variance; (B) 2 PCs with 70.87% total captured variance; 

(C) 4 PCs with 69.29% total captured variance, and (D) 2 PC with 65.02% total captured 

variance. Serum samples from healthy individuals (blue squares) and stage IV ccRCC patients 

(magenta diamonds); CM samples from the non-tumor control cell line HEK-293 (blue squares); 

and tumor cell lines 786-O (red triangles), and Caki-1(black circles). 

 

Figure 4. (A) Extracted ion chromatograms for [N-lactoyl-leucine-H]- ion at m/z 202.1079 ± 

0.0500 generated from conditioned media (CM, dotted line) and serum (solid line), non-spiked 

(blue), and 150 µM spiked (red) samples; and a 15 µM N-lactoyl-leucine (N-Lac-Leu) standard 

solution (red dashed-dotted line). (B) Mass spectrum for [N-Lac-Leu-H]- ion with m/z 202.1079 

in CM sample (red), and its simulated isotopic pattern (black). (C) Product ion mass spectra of 

[N-Lac-Leu-H]- precursor ion for a CM sample (red), and for a 15 µM N-Lac-Leu standard 

(green) using a collision cell voltage of 20 V.    
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Figure 5. Box plots for discriminant metabolites in CM and serum samples. Comparisons are 

shown for CM of HEK-293 (n= 21), 786-O (n= 21) and Caki-1 (n=22) cell lines; and between 

stage IV ccRCC patients and healthy individuals. Mean values are represented by a filled circle 

in the box; median values are represented by a line in the box; the upper and lower edges of the 

box are the 25th and 75th percentiles; the whisker extends to the most extreme values in data, not 

including outliers defined as 1.5 of the interquartile range and represented by colored crosses. 

Fold changes are calculated as the ratio of median peak areas between CM from 786-O and 

HEK-293 (CM-7/CM-H), Caki-1 and HEK-293 (CM-C/CM-H), and Caki-1 and 786-O (CM-

C/CM-7) samples. Mann-Whitney U tests were used to calculate statistical significance, and p 

values were corrected using the Benjamini-Hochberg procedure for multiple comparisons with a 

FDR of 0.1. Statistically significant differences after correction for multiple comparisons 

between classes are indicated on top of the boxes with i) * for CM-7 or CM-C vs CM-H; and ii) 

# for CM-C vs CM-7. Metabolite identities are indicated for each case. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Table 1. Identification of discriminant feature panel, based on accurate mass (a), isotopic pattern (b), MS/MS experiments (c), and retention time 

match with standards (d). Compounds and features highlighted in bold are detected in serum and metabolites chromatographically confirmed by 

chemical standards are indicated in italics. ∆m is calculated as the mass difference between the m/z value obtained from Progenesis and the 

theoretical mass. Fold changes are calculated as the ratio of median peak areas between CM from 786-O and HEK-293 (CM-7/CM-H), Caki-1 

and HEK-293 (CM-C/CM-H), and Caki-1 and 786-O (CM-C/CM-7) samples; except for cases with median value equal to zero. p values were 

calculated using Mann-Whitney U tests. NS: non-significant differences after correction with the Benjamini-Hochberg procedure for multiple 

comparisons with a FDR of 0.1. Trends in binary comparisons are indicated with arrows, (↑): increased levels, and (↓): decreased levels. For CM 

samples, fold changes of 1-9.9, 10-99.99 and >100 are indicated with one, two or three arrows, respectively.  Non-statistically significant trends 

are indicated for serum samples in the comparison of SIV ccRCC patients and healthy individuals (HI).   

Rt 
(min) 

m/z Ion Type 
Elemental 
Formula 

∆m 
(mDa) 

CM-7/CM-H CM-C/CM-H CM-C/CM-7 
Serum 

ccRCC/HI 
Metabolite Identification 

ID 
Confirmation 

p  Trend 
Fold 

Change 
p  Trend 

Fold 
Change 

p  Trend 
Fold 

Change 
Trend 

0.92 425.0825 [M-H]
-

 C13H22N4O8S2 0.2 2.5x10-8 ↓↓ 18 2.1x10-8 ↓ 9.9 6.6x10-2 ↑ 1.8 - Cysteineglutathione-disulfide a, b, c, d 

1.09 225.9854 [M+NaCl-H]
-

 - - 2.2x10-8 - - - - - 1.7x10-8 ↓ 3.8 - NO ID - 

1.30 303.9641 [M+3NaCl-H]
-

 C6H13NO2 1.4 1.4x10-6 ↑ 1.8 NS - 1.0 3.7x10-8 ↓ 1.7 ↓ Isoleucine+Leucine a, b, c, d 

1.67 569.7810 [M+7NaCl-H]
-

 C9H11NO2 -0.5 3.5x10-4 ↑ 3.4 NS ↑ 1.2 3.4x10-5 ↓ 2.8 - Phenylalanine a, b, c, d 

2.07 287.0872 [M+NaCl-H]
-

 C10H18N2O4 9.7 NS ↓ 1.4 1.3x10-6 ↓↓↓ 270 5.4x10-7 ↓↓↓ 200 ↓ Hydroxyprolyl-valine a, b, c 

2.52 142.0687 [M-H]
-

 - - 2.0x10-6 ↑ 3.1 2.1x10-8 ↑ 5.7 1.0x10-5 ↑ 1.8 ↓ NO ID - 

3.19 558.9097 [M+4NaCl-H]
-

 - - 2.1x10-8 - - 2.5x10-7 - - 1.2x10-3 ↓ 1.9 - NO ID - 

3.38 230.9961 [M-H]
-

 - - 7.9x10-8 - - 1.3x10-5 ↓ 3.6 1.0x10-6 - - - NO ID - 

3.97 180.0137 [M-H]
-

 - - NS ↑ 1.6 8.7x10-8 - - 2.6x10-6 - - - NO ID - 

4.38 283.0891 [M-H]
-

 - - 2.0x10-8 - - 1.0x10-8 - - 4.3x10-3 ↑ 1.3 ↑ NO ID - 

4.91 202.1104 [M-H]
-

 C9H17NO4 2.5 3.9x10-2 ↑ 1.6 6.7x10-2 ↑ 1.7 NS - 1.0 ↑ N-lactoyl-leucine a, b, c, d 

5.03 264.0427 [M+NaCl-H]
-

 C11H13NO3 2.4 3.6x10-8 ↑ 7.3 NS ↓ 1.1 2.8x10-8 ↓ 7.8 ↑ N-acetyl-phenylalanine a, b, c, d 

5.40 319.0772 [M+Cl]
-

 - - 3.0x10-8 ↑↑ 39 9.4x10-8 ↑↑ 14 2. 8x10-5 ↓ 2.8 - NO ID - 

6.34 206.0815 [M-H]
-

 - - 2.1x10-8 - - 1.9x10-8 ↓↓↓ 200 - - - - NO ID - 

6.58 138.0199 [M-H]
-

 - - 3.1x10-8 ↓ 5.4 2.1x10-8 ↓ 6.3 7.4x10-2 ↓ 1.2 ↓ NO ID - 

6.81 213.1167 [M-H]
-

 - - 4.1x10-5 ↓ 2.2 1.9x10-7 ↓ 5.1 1.9x10-2 ↓ 2.4 - NO ID - 

7.90 420.0948 [M-H]
-

 - - 9.6x10-3 ↑ 1.6 1.8x10-9 - - 1.8x10-9 - - - NO ID - 

8.36 333.1066 [M-H]
-

 - - 4.8x10-3 ↑ 2.4 NS ↓ 1.6 3.1x10-4 ↓ 3.9 - NO ID - 

8.41 211.1355 [M-H]
-

 - - 7.2x10-7 ↑ 7.6 2.6x10-4 ↑ 3.0 1.1x10-4 ↓ 2.5 ↓ NO ID - 

9.44 177.0970 [M+Cl]
-

 - - 4.1x10-5 ↓ 1.5 8.7x10-7 ↓ 2.1 7.8x10-2 ↓ 1.4 - NO ID - 

11.29 291.1608 [M-H]
-

 - - 7.2x10-7 ↓ 4.3 2.3x10-6 ↓ 3.4 NS ↓ 1.3 - NO ID - 
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Supporting Information 

The following Supporting Information is available free of charge at ACS website 

http://pubs.acs.org. 

Data Set S1. Metabolic feature matrix for conditioned media samples. 

Materials and Methods. Organic Synthesis of N-acetyl-phenylalanine and N-lactoyl-leucine. 

Figure S1. 
1H NMR and 13C NMR spectra (500 MHz, D2O) of N-acetyl-phenylalanine. 

Figure S2. 
1H NMR and 13C NMR spectra (500 MHz, D2O) of N-lactoyl-leucine. 

Figure S3. Representative base peak intensity chromatograms obtained for conditioned 

media and serum samples. 

Figure S4. Principal Component Analysis scores plot of conditioned media (CM) samples 

using the set of 9 metabolic features from the discriminant CM panel that were present in 

serum samples.  

Figure S5. Identification of N-acetyl-phenylalanine.  

Figure S6. Identification of phenylalanine.  

Figure S7. Identification of isoleucine/leucine.   

Figure S8. Identification of hydroxyprolyl-valine.  

Figure S9. Identification of cysteineglutathione disulfide.  

Table S1. Conditioned media samples collected at different time points based on the cell 

culture protocol. 
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