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Propagating speed waves in flocks: A mathematical model
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An efficient collective response to external perturbations is one of the most striking abilities of a biological
system. One of the crucial aspect of this phenomenon is given by the information transfer, and resulting
propagation of signals, within the group. In this respect the existence of density waves that propagate linearly on a
flock of birds is well known. However, most aspects of this phenomenon are still not fully captured by theoretical
models. In this work we present a model for the propagation of speed fluctuations inside a flock, which is able to
reproduce the observed density waves. We study the full solution of the model in d = 1, and we find a line in the
parameter space along which the system relaxes as fast as possible without oscillating, resembling a generalized
critical damping condition. By analyzing the parameters plane we show that this “critical damping” line indeed
represents an attractor for a steepest descent dynamics of the return time of the system. Finally we propose a
method to test the validity of the model through future experiments.
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I. INTRODUCTION

Many intriguing phenomena of the living world arise from
the interactions between the components of a biological sys-
tem. When a group of interacting individuals behave very
differently compared to a collection of the same, but noninter-
acting, individuals, one usually speaks of collective behavior
[1–5]. In physics, the emergence of collective behavior has
been extensively investigated. Statistical mechanics proved to
be a very powerful theory for understanding how macroscopic
phenomena arise from the interaction of many microscopic
components [1–3]. This success has reinforced the belief that
it might be possible to use the same concepts and math-
ematical apparatus for describing the collective properties
of biological systems. In addition, due to the technological
progress of recent years, emergent biological phenomena
are now susceptible to quantitative large-scale experiments,
motivating the opening up of new challenges at the interface
between physics and biology [6,7].

An interesting feature of collective behavior in biological
systems lies in the efficiency of the system’s response to
stimuli coming from the external environment. Understand-
ing how a group is able to respond as a whole also has
important consequences for technological developments and
control theory [8–11]. An efficient collective response evi-
dently requires that the system react quickly, but it is also
important that the system does not take too much time to
return to its unperturbed state. In order to transmit a signal
across the group, each individual must be displaced from its
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original state (which is not necessarily a rest state), but then
the question arises: how will it go back to its original state?
The answer depends on the balance between transmitting the
signal in the quickest way and disrupting as little as possible
the state of the system. Here we investigate this problem.

Collective response is an ability shared by many biological
systems at different scales: bird flocks [12], swarms of insects
[13], herds of mammals [14], bacterial clusters [15,16], cells
[17], fish schools [18,19], marching locusts [20], ant trails
[21], etc.; even at the human social level it is possible to find
such features [22,23]. Among biological systems, flocks of
birds have attracted much attention and have been studied
both theoretically and experimentally [12,24–27]. In partic-
ular in Refs. [28–31] the authors highlight the importance
of information propagation for the achieving of an efficient
collective response in flocks: in order for the group to respond
to a perturbation felt only by some individuals, it is necessary
that information flows within the group [32]. A vivid manifes-
tation of propagation phenomena is the occurrence of density
waves: video observations on large flocks of starlings show
the formation of waves in proximity of an arriving predator
and their propagation through the group [30].

The origin of density waves could be due to different mech-
anisms. Models of collective motion and polar active systems
[5,33] display anomalous density fluctuations [34] due to
the nontrivial coupling between directional and positional
degrees of freedom in these systems. In the ordered phase this
coupling gives rise to density waves on the very large scale,
which have been studied using a hydrodynamic approach
[26,35–42]. While these hydrodynamic density waves
(HDWs) are certainly relevant for a variety of active systems,
it is not clear whether they fully account for what is observed
in natural flocks, for the following reasons: (1) HDWs relate
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to the essence of the hydrodynamic approach, which considers
the limit L, t → ∞, while natural systems are often far from
these limits and exhibit important collective phenomena over
medium scales; (2) HDWs have an anisotropic propagation
not shown by experimental observations: in the reference
frame of the flock they propagate mainly in the direction or-
thogonal to the motion of the flock (suppressing longitudinal
modes)1 [26], while experiments suggest that what matters is
the direction of the arriving predator; (3) HDWs are derived
only from the fluctuations in the orientations and are in fact
coupled to these [26,35,36].

There are other possible mechanisms that generate den-
sity waves besides HDWs. As highlighted, for example, in
Refs. [43–45], we can consider fluctuations not only in the ori-
entations of the velocity but also in the speed. Empirical data
show that fluctuations in the speed are long-range, that is, the
correlation is scale-free. To reproduce such correlations one
needs to explicitly allow for speed variability in the individual
equation of motion [43,44,46]. In this context, it is reasonable
to hypothesize that density waves have a contribution also
coming from the speed.

In this work we present a model of collective motion in
flocks of birds that admits the linear propagation of fluctua-
tions in the individual speed of flight. To do this, we follow a
similar theoretical path to the one used for describing turning
waves [29]. We derive a dynamic equation for the speed that
turns out to have an analogous structure as the telegraph
equation, i.e., the equation that describes the propagation
of electromagnetic waves in telegraph cables [47–49]. This
equation has a special point in the space of parameters in
which it assumes a simpler form, very similar to that of a
pure wave equation. We highlight this interesting aspect by
analyzing the dispersion relation and by making an analogy
with critical damping. Then we confirm the presence of a
generalized critical damping mechanism by studying the full
solution of the equation in d = 1. This last feature addresses
the question raised above: minimizing the return time to the
steady state improves the efficiency of the collective response.
Finally we suggest a method by which one can experimentally
verify the fundamental hypotheses of the model.

II. A NEW EQUATION OF MOTION FOR THE SPEED

We look for a simple mathematical model able to repro-
duce a generalized wave equation for the individual speed
vi = |vi |.

1There are two main reason why they are suppressed. The first one
concerns the fact that, as observed in Ref. [34], longitudinal traveling
bands move with the same velocity of the flock. This means that in
the reference frame of the flocks they are not propagating. The sec-
ond reason is that bands become less sharp, and eventually disappear,
as the noise amplitude is decreased away from the transition point.
Therefore traveling bands are a phenomenon that happens close to
the critical point, for high values of the noise, while in the case of
flocks we are in the deeply ordered phase, which is reached for low
values of the noise. As a consequence in this regime there are no
traveling bands.

A. From speed waves to density waves

The reader may well ask why we want to introduce speed
waves in order to generate density waves. First, we note that
in biological active matter, and in particular in flocks, one of
the most important quantities used to study a system is the
correlation of the velocities. As a consequence the velocity
(and hence the speed) is one of the fundamental degrees of
freedom with which a system is described. Velocity fluctu-
ations in starling flocks are correlated over long distances,
and this applies to fluctuations of speed as well as direction.
Long-range-correlated fluctuations of speed occur only for
values of the control parameter very near a specific value
(i.e., in the close vicinity of a critical point). The question
arises: is there some usefulness to long-range correlations
that can justify this fine-tuning of the system parameters?
It is possible to argue that a scale-free correlation function
is a necessary condition (not sufficient, though) to transfer
information across the group without the need of encoding
or decoding, independently of the group’s size [50]. Hence,
strong correlation seems functional to having an effective in-
formation transfer, suggesting that speed fluctuations are fine-
tuned to achieve information propagation of speed variations,
although up to now only transmission of orientation variations
has been unambiguously observed. That said, we can presume
to link the presence of speed waves to the creation of density
waves. To see this simply, let us put ourselves in d = 1: in this
case there are no directional degrees of freedom (orientations),
then, for the generation of density waves, other sources are
needed. Let us suppose that speed fluctuations u(x, t ) already
satisfy a wave equation, that is, u(x, t ) = f (x − ct ). Now all
we need is just to recall the linearized continuity equation:

∂δρ

∂t
+ ρ0

∂u

∂x
= 0, (1)

where δρ is the density fluctuation and ρ0 the mean com-
ponent. At this point we note that in order to satisfy the
continuity equation with a propagating speed fluctuations, it
is sufficient that the density also satisfies a wave equation:
δρ(x, t ) = ρ0

c
f (x − ct ).

B. Velocity alignment and pseudo-Hamiltonian description

The starting point of any model of collective motion is
some kind of interaction between the components of the
system [25,33,46,51–55]. Here we will consider as the fun-
damental interaction the tendency of each particle to align
its velocity with those of its neighbors. We can describe the
dynamics of the system with a general stochastic equation of
motion for the positions ri and velocities vi of N interacting
individuals (i = 1, . . . , N )

dri

dt
= vi , (2a)

dvi

dt
= Fi + ζ i , (2b)

where Fi is an effective force vector encapsulating the effects
due to the other particles j �= i and ζ i is a stochastic force de-
scribed by a random white noise 〈ζ i (t )ζ j (t ′)〉 = 2ηT δij δ(t −
t ′), where T is a generalized temperature that allows us to tune
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the magnitude of the noise. Since we want an imitation rule at
the base of the model, we can describe Fi as a social force

Fi = J
∑
j �=i

nij vj , (3)

where, for the sake of generality and for future convenience,
we introduced the parameter J setting the scale of such force,
while the matrix nij is the connectivity matrix, which defines
the neighborhood of interaction of i (metric [33,56,57] or
topological [58–60]). We note that the social force can be
written as Fi = −δH/δφi , where

H = −J

2

∑
i,j

nij vi (t ) · vj (t ). (4)

It is tempting to interpret H as a Hamiltonian for a dissipative
Langevin dynamics, but, due to the active nature of the sys-
tem, we have to be careful [61]. Active matter systems are out
of equilibrium, the constituents absorb and dissipate energy,
and therefore detailed balance is not valid. As a consequence,
the stationary probability distribution is not given by the
Boltzmann weight P ({v}) �= e−βH{v}.2

The activity of a system of self-propelled individuals
comes from the rearranging of the interaction network: an-
imals move relative to each other, changing neighbors over
time [65]. Actually the connectivity matrix depends on time
through the positions ri (t ), which change with the velocities
vi (t ), so that nij = nij (t ). The hydrodynamic theory of Toner
and Tu [26,35] takes into account this aspect providing a
continuous description of a coarse-grained velocity field v(x)
where the movement of the network is fully included through
the introduction of a coarse-grained density field ρ(x). How-
ever, since we are interested in characterizing fast information
propagation across finite-size systems, an hydrodynamic de-
scription, relying on asymptotically long times and very long
distances, is not suitable. When considering long times, the
rearrangement of the network cannot be overlooked; however,
experimental data show that the local rearrangement of the
network in natural flocks happens on timescales much larger
than the local updating time of the velocities [65]. As a con-
sequence birds are in a state of local quasiequilibrium where
local changes in the velocities relax very quickly, as if the net-
work were fixed.3 These results indicate that natural flocks—
at least the ones we are able to quantitatively observe—live
in a regime where network rearrangements are slow, i.e., they
are below the hydrodynamic regime. In this case, H gains the
role of a pseudo-Hamiltonian, an effective representation of
the forces and constraints acting on the degrees of freedom
of the system, which effectively determines the probability
distribution.

Hereafter we will explore possible mechanisms giving rise
to speed and density waves even in the absence of network

2Nevertheless, there is evidence that in some cases it is still possible
to have a statistical physics approach [62–64].

3This is the reason why inference methods based on static probabil-
ity distributions give equivalent results to a full dynamical inference
[65].

rearrangements.4 We will proceed in the following way: we
will start from the pseudo-Hamiltonian Eq. (4) and modify it
to allow for fluctuating speeds. Then we will associate to this
Hamiltonian a dynamical equation for the velocities.

C. Speed as the fundamental degree of freedom

Speed fluctuations are usually neglected, and the modulus
of the velocity is assumed equal to some v0, the average
speed of the flock, which is fixed by the birds’ physiology.
To study fluctuations around this average, the hard constraint
must be abandoned, and an anchoring term must be added to
the pseudo-Hamiltonian, as done in Refs. [43] and [44]. The
pseudo-Hamiltonian describing the system then becomes

H = J

4v2
0

∑
ij

nij |vi − vj |2 + g

2v2
0

∑
i

(vi − v0)2, (5)

where vi = |vi |. The first term describes the tendency of the
individual velocities to adjust both direction and modulus to
their neighbors, while the second forces the speed towards
the mean physiological value v0, introducing a speed control
constant g.

In the highly polarized flocking phase, all the individuals
move approximately in the same direction n. For natural
flocks, for example, the polarization � = 1/N |∑i vi/|vi | is
very large (of order 0.9) and the relative fluctuations both
in flight directions and in speeds are very small [43]. We
can write vi = visi (with |si | = 1) and express both the flight
direction and the speed in terms of the fluctuations: si =
sL
i n + π i and vi = v0 + ui . Assuming that the fluctuations are

small we can expand in the π i and ui ; one can easily see that
to leading order the pseudo-Hamiltonian (5) splits into two
terms:

H = Hor ({π i}) + Hsp({ui}), (6)

Hor = J

2v2
0

∑
ij

nij |π i − π j |2, (7)

Hsp = J

2v2
0

∑
ij

nij (ui − uj )2 + g

2v2
0

∑
i

u2
i , (8)

one involving only orientations and the another involving only
speed fluctuations. This decoupling allows us to concentrate
on the speed part only. From now on, we will therefore forget
about the flight directions and focus on the speed fluctuations
(see Ref. [29] for a description of the orientational dynamics).

We notice that Hsp is formally analogous to the Hamilto-
nian of a chain of harmonic oscillators in which every ele-
ment, in addition to being connected to its nearest neighbors
with strength J , has an additional spring that binds it to a fixed
position (Fig. 1). Of course, in this formal analogy, the degree
of freedom ui is a displacement with respect to a certain
reference position, while in our case ui is a displacement

4Above some crossover scale (i.e., for very large flocks) the system
would eventually enter the hydrodynamic regime. This crossover,
which depends on the microscopic parameters of the system, has
been investigated in Ref. [66].
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FIG. 1. Sketch of a chain of oscillator. Each oscillator, besides
being connected to its first neighbors with strength J (red spring), is
also tied to a base with strength g (black spring), which forces it to
have a determined position.

(or, more properly, a fluctuation) with respect to a certain
reference speed (typically, the physiological speed of the
individual).

Assuming that the speed from bird to bird is smooth, we
can take the continuous limit of this expression, in which the
speed is a continuous function of the position in the flock, x,
and the time, t . First, we rewrite the expression for the speed
Hamiltonian as

Hsp = 1

2v2
0

N∑
i,j=1

(J�ij + gδij )uiuj , (9)

where the matrix �ij has the form

�ij = −nij + δij

N∑
k=1

nik (10)

and represents the discrete version of the (negative) Laplacian
operator. To see this let us suppose that the birds are in a
line, and the relevant neighborhood is just the two nearest
neighbors along the line. Then by labeling the birds by n and
each bird’s neighbor by n + 1 we can rearrange the terms in
the sum (9) to give

Hsp = 1

2v2
0

N∑
n=1

J (un − un+1)2 + g u2
n. (11)

If the speed varies very slowly, we can picture it as a function
of the position x in the flock, u(x), despite the fact that
the birds are located at discrete position xn = na where a

is the typical distance between the nearest birds. Then we
have

Hsp � 1

2v2
0

N∑
n=1

Ja2

[
∂u(x)

∂x

]2

+ g u(x)2. (12)

Since the variations are smooth, we can turn the sum into an
integral

Hsp = 1

2v2
0

∫
dx

a
Ja2

[
∂u(x)

∂x

]2

+ g u(x)2. (13)

By doing the same calculation with birds in a regular lattice in
three-dimensional space rather then along a line, we can write
u(x, t ) = v(x, t ) − v0, and the Hamiltonian (8) finally takes
the form

Hsp =
∫

d3x

a3

{
Ja2nc

2v2
0

[∇u(x, t )]2 + g

2v2
0

u2(x, t )

}
, (14)

where nc is the typical number of first neighbors with which
each particle i directly interacts.

The anchoring or control constant g plays a fundamental
role in determining the speed correlations. To see this we note
that the pseudo-Hamiltonian (14) is Gaussian in the u(x). One
can then easily compute the statistical equilibrium averages
and get [67]

〈u(x)u(x′)〉 ∝ e−|x−x′ |/ξsp , (15)

where the correlation length of speed fluctuations is given by

ξsp ∼ a
√

Jnc/g. (16)

In particular, ξsp becomes infinite (and the correlation scale-
free) at the critical point g = 0. However, g cannot be
exactly zero, otherwise nothing fixes the mean speed of
the birds. Nevertheless for small enough values of g the
system is effectively critical due to the finite size effects
(ξsp ∝ L) [43].

The Langevin dynamics for speed fluctuations following
from the pseudo-Hamiltonian just defined is

∂u(x, t )

∂t
= − δHsp

δu(x, t )
+ ζ (x, t )

= Ja2nc

v2
0

∇2u(x, t ) − g

v2
0

u(x, t ) + ζ (x, t ), (17)

where ζ (x, t ) is a random white noise 〈ζ (x, t )ζ (x′, t )〉 =
2ηT a3δ(x − x′)δ(t − t ′). The structure of this equation of
motion is very different from what we would expect from a
propagating phenomenon. Since u is the fundamental degree
of freedom, this equation is an overdamped first-order equa-
tion of the parabolic type [48,68]. This means that information
travels sublinearly, x ∼ √

Dt , and that a speed of propaga-
tion cannot even be defined. The diffusive structure of this
equation is therefore unsuitable to describe the propagating
phenomenon we expect.

D. Hamiltonian dynamics and speed waves

To obtain a theory able to describe propagating speed
waves, we switch to an underdamped Hamiltonian dynamics.
An Hamiltonian dynamics has the advantage of automati-
cally implementing the symmetries present in the system and
proves to be the key ingredient to reproduce propagation
waves in the orientational degrees of freedom [29]. To this
aim, we introduce a canonical pair of coordinates (u,w),
where u are the speed fluctuations and w is the generator
of the transformation parametrized by u. This transforma-
tion corresponds to a translation in the speed, and it is the
fundamental mechanism generating speed waves. Once we
introduce the conjugated momentum w, we can build the
full Hamiltonian for u and w by adding to the interac-
tion term containing the speeds (Hsp), a generalized kinetic
term,

H =
∫

d3x

a3

{
Ja2nc

2v2
0

[∇u(x, t )]2 + g

2v0
u2(x, t ) + w2(x, t )

2μ

}
,

(18)

where μ is the inertia associated to the canonical pair (u,w).
It is important to note that μ is not the standard mass, but a
generalized inertia that embodies the resistance of the bird to a
change of u̇. The symmetry generated by w and parametrized
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by u is a translation in the space of speed, which we may
call a boost. The term gu2 breaks this symmetry, thus giving
to each individual a preferred speed, its physiological value.
The interesting point is that, when a system is highly polar-
ized, the boost transformation we are talking about becomes
conceptually quite close to a Galilean transformation (clearly,
this is far from true if the polarization is low). Since flocks are
highly polarized, this analogy is fair, and in this context we see
then that the gu2 term breaks Galilean invariance. This has the
rather interesting consequence that the scale-free point g = 0
identifies with the point which restores Galilean invariance in
the system.

Having an inertial term allows us to consider a dynamics,
given by the canonical equations of motion:

∂u(x, t )

∂t
= δH

δw(x, t )
, (19a)

∂w(x, t )

∂t
= − δH

δu(x, t )
− η

∂u(x, t )

∂t
+ ζ (x, t ), (19b)

where we have reinstated a friction term η and noise, to get a
set of equations containing both conservative and dissipative
terms. From this pair of equations follows the equation of
motion for the speed,

∂2u(x, t )

∂t2
+ 2γ

∂u(x, t )

∂t
+ ω2

0u(x, t ) − c2∇2u(x, t )

= ζ (x, t ), (20)

where c2 = Ja2nc/μ is the phase velocity of the propagating
waves, γ = η/2μ is the reduced friction. and ω2

0 = g/μ is
the natural frequency (i.e., the frequency with which the
system would oscillate in the absence of the social force). This
is a second-order equation of the hyperbolic type, suitable
to represent propagating phenomena [68] and known in the
literature as the telegraph equation [47,48]. It can be fur-
ther simplified by introducing a new field υ(x, t ) : u(x, t ) =
e−γ tυ(x, t ) so that the terms containing ∂υ/∂t drop out

in the equation for υ. Then for the homogeneous case
we get

∂2υ(x, t )

∂t2
= c2∇2υ(x, t ) + ε2υ(x, t ), (21)

where

ε2 = γ 2 − ω2
0 . (22)

Note that ε2 can be positive or negative depending on whether
the friction dominates over speed control or vice versa; the
use of the square notation derives from the definition given
in the standard telegraphic equation, where ε2 is defined
semipositive. In this form it is clear that ε2 = 0 is a critical
value: if the parameters are such that ε2 = η2/4μ2 − g/μ =
0, Eq. (21) reduces to the classical wave equation. This case
in which the physical constants can be adjusted to eliminate
the dispersion corresponds in literature to the lossless trans-
mission line case [49]. Besides reducing the distortion of the
signal, this point has the interesting property of minimizing
the time required for the system to return to the unperturbed
state. It thus represents an optimal situation for the informa-
tion transfer. From a biological point of view it would be
an extremely useful mechanism. It is therefore important to
examine in depth the working principle and properties of this
mechanism.

III. THE DISPERSION RELATION

In order to better understand the differences between the
Langevin dynamics [Eq. (17)] and the Hamilton dynamics
[Eqs. (19)] and their role in the complete dynamical equation
(20), it is useful to study the dispersion relation (see Fig. 2).

A. Langevin versus Hamilton dynamics

For Langevin dynamics the dynamic equation is of first
order in time, and accordingly the frequency is purely imagi-

(a) (b)

FIG. 2. Sketch of the dispersion law. (a) It is drawn the real part of the frequency ω for different cases. If ε2 < 0 (blue line), we are in the
oscillating phase and there is propagation for every value of k; if ε2 > 0 (orange line), the system is nonoscillating and there is propagation
only for k > k0 = ε

c
; if ε2 = 0 (green line), we are at the critical damping and there is always linear propagation; for Langevin dynamics

(fuchsia line) the real part of the frequency is zero. (b) The imaginary part of the frequency ω for different cases. The green line represents
the oscillating and critically damped situations in which Im(ω) is constant; the orange line represents the nonoscillating regime in which the
Im(ω) is constant only for k > k0 and grows quadratically with k for small values of k.
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nary:

ω = i(Dk2 + ω0), (23)

where

D = (Ja2nc )/
(
v2

0η
)
, ω0 = g/(v0η) . (24)

The vanishing of the real part corresponds to the fact that
there is no propagation but only exponential damping. The
(imaginary) frequency has a gap ω0 plus a quadratic diffusive
term Dk2. As a consequence all the modes are overdamped,
and a disturbance spreads diffusively through the system.

Introducing the conjugate momentum of the speed and the
generalized inertia gives, as we saw, an equation of second
order in time and space [Eq. (21)]. The dispersion polynomial
associated to it is of second order in both frequency and
momentum,

ω = iγ ±
√

c2k2 − ε2. (25)

From this dispersion law it is clear that the parameter ε2 plays
a fundamental role in determining the type of propagation. If
ε2 < 0 the argument of the square root is always positive, and
ω has a real part even for k = 0, Re ω(k = 0) = ±|ε|. This
is the oscillating zone: there is propagation for every k, and
the dispersion relation is quadratic for small k, approaching
a linear behavior at large k. On the other hand, if ε2 > 0, the
argument of the square root changes sign with k. In this case
the system is nonoscillating, and there is propagation only for
k > k0 = ε/c. However, for large values of k we recover again
a linear dispersion law.

It is crucial to note that the particular value ε2 = 0 guar-
antees linear propagation at all values of k, Re ω = ±ck, but
with some damping γ , independent of k. In this case the real
parts of the two roots coincide since the damping factor γ and
the natural frequency ω0 of the system perfectly balance. We
have already noticed that the speed Hamiltonian is analogous
to the one of a chain of oscillators. The picture we have just
described, for ε2 = 0, has an interesting connection with what
happens even in a single damped harmonic oscillator, and in
particular with the definition of critical damping. It is useful to
explore the meaning of this toy case in order to simply catch
the fundamental properties of this particular value.

B. Toy model: Critical damping and minimum return time

The damped harmonic oscillator (DHO) represents well
many different physical situations (mechanical oscillator,
RLC circuit, etc.). We would like to use it as a paradigmatic
situation for what happens in the speed waves model we
derived. The well-known equation of motion can be written
as [69]

ẍ(t ) + 2γ ẋ(t ) + ω2
0x(t ) = 0, (26)

where we have introduced the damping constant γ = η/2m

and the natural frequency ω0 = √
k/m, while m is the inertia,

η the viscosity, and k the elastic constant or stiffness. The
dispersion polynomial reads

ω = iγ ±
√

ω2
0 − γ 2 = iγ ±

√
−ε2. (27)

The shape of the solution depends crucially on the value of ε2,
that is, on the balance between reduced viscosity γ and natural
frequency ω0. There are two solutions separated by a critical
point. For ε2 < 0 we are in the underdamped regime, meaning
that inertia (and stiffness) dominate over viscosity; here the
solution displays a clear oscillatory behavior. For ε2 > 0 the
DHO enters in the overdamped regime, where the two roots
are purely imaginary. In this regime viscosity dominates,
and the solution does not show oscillations but falls to zero
exponentially. At precisely γ = ω0, namely, ε2 = 0, one has
critical damping, which represents the boundary between un-
derdamping and overdamping. As in the overdamped case, the
solution shows no oscillations, but for this particular condition
the system minimizes the return time τ to the rest position. A
critically damped system therefore relaxes a perturbation as
fast as possible, without oscillating [69].

There are many situations in which one wants passing
disturbances to end as quickly as possible (shock absorbers
of a car, closing system of a door, etc.). In all these cases it
is necessary to adjust the parameters so that the damping is
as close as possible to critical. Regarding collective response,
it could be very important that the reaction to external pertur-
bations is performed in the shortest possible time, spending
as little energy as possible. In particular, such an optimization
seems sensible in the case of a flock in motion: it would appear
reasonable to avoid situations where, after responding to a
perturbation, a particular bird would start oscillating around
the cruising speed, or take a very long time to return to
that value. A critical damping on the propagation of speed
fluctuations would ensure a cohesive and efficient movement.
However, our full equation for the speed is more complicated
than this simple case because we have a field (infinite degrees
of freedom), rather than one degree of freedom; this is why the
extra term k2 arises in the full dispersion relation (25). Next
we will investigate if this intuition is supported by the solution
of the speed waves model.

IV. EXACT SOLUTION OF THE SPEED
WAVE EQUATION IN d = 1

We now study the full solution of the speed waves model.
We start from the simplest case, that is, from the solution
in dimension d = 1. Again for reasons of simplicity we will
assume that the system is infinite. Although this may seem
an unrealistic approximation, it has no consequences for the
purpose of the study, since our interest here is the way the
signal propagates through space, and this propagation does
not rely on the infinite nature of the system. In particular, we
would like to understand if and how a critical damping regime
is reflected by the mathematics of the problem.

A. Wave and wake

The solution for general initial conditions,

u(x, t )|t=0 = φ(x),
∂u(x, t )

∂t

∣∣∣∣
t=0

= ψ (x), (28)
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is given by [47,48]

u(x, t ) = e−γ t

{
φ(x − ct ) + φ(x + ct )

2
+ 1

c

∫ x+ct

x−ct

dx ′[γφ(x ′) + ψ (x ′)] I0

[ε
c

√
c2t2 − (x ′ − x)2

]

− εt

2

∫ x+ct

x−ct

dx ′ φ(x ′) I1
[

ε
c

√
c2t2 − (x ′ − x)2

]
√

c2t2 − (x ′ − x)2

}
, (29)

where I0 and I1 are modified Bessel function of the first kind. Since we are interested in the way a localized perturbation
propagates, we consider the initial conditions with a pulse at x = 0:

u(x, t )|t=0 = u0δ(x),
∂u(x, t )

∂t

∣∣∣∣
t=0

= 0. (30)

In this case we can write the solution as

u(x, t ) = u0e
−γ t

{
δ(x − ct ) + δ(x + ct )

2
+
[

γ

c
I0

(ε

c

√
c2t2 − x2

)
− εt

2

I1
(

ε
c

√
c2t2 − x2

)
√

c2t2 − x2

]
θ (ct − |x|)

}
. (31)

For ε2 < 0 the modified Bessel functions can be replaced by Bessel functions of the first kind J0 and J1. Finally, for ε2 = 0 the
solution reduces to

u(x, t ) = u0e
−γ t

{
δ(x − ct ) + δ(x + ct )

2
+ γ

c
θ (ct − |x|)

}
. (32)

The main effect of viscosity is the presence of the overall
damping factor e−γ t . Looking at the terms within braces,
we see that the first two terms represent pulses propagating
left and right with speed c; this term would be present also
without anchoring (standard wave equation). The remaining
term instead introduces another phenomenon: the wave leaves
a wake. Even after the wave front has passed, an effect that
originates from all the points where the initial condition is
different from zero is present at all points within a distance
t/c from them. This wake vanishes exponentially in time
[47,48]. As a consequence a given point does not return
instantaneously to its equilibrium position (as it would in a
d’Alembert wave), but there is a tail in time, whose structure
depends on the value of the parameters (see Fig. 3).

FIG. 3. Different solutions of the speed equation in d = 1. De-
pending on the value of ε2 the solution will go to zero differently:
at ε2 = 0 (green line) it reaches zero in the fastest way without
oscillating; in the nonoscillating regime (orange line), ε2 > 0 the
solution goes to zero more slowly, while in the oscillating case (blue
line) the field displays oscillations before going to the original value.

B. Return time

To understand how the field returns to its unperturbed
value, it is necessary to define the return time τ . Up to this
point we have not considered the effect of noise. We can
suppose that, in the limit of small noise, the shape of the full
solution will not differ much from the homogeneous one (31).
On the other hand, it is legitimate to assume that the unper-
turbed state will be different from that of the homogeneous
case where it is equal to zero, but that the solution will decay
to a certain averaged value due to noise fluctuations. Hence
we will define τ as the time it takes for the solution to decay
to a certain level 1/q after the arrival of the wavefront. Since
the signal arrives at x� at a position-dependent time t0 = x�/c,
our definition for the return time at x = x� reads

u(x�, t0(x�) + τ ) = 1/q. (33)

This definition is appropriate for the nonoscillating phase,
but when ε2 < 0, the solution oscillates and has an infinity
of zeros, and the above definition would not give a unique
value of τ ; on the other hand, taking the smallest solution is
not appropriate because it will be dominated by the period of
the oscillations (at high frequency at least). Therefore in the
oscillating case we simply disregard oscillations and assume
that the return time is determined by the exponential decay
envelope. Hence for ε2 < 0 we ignore the oscillating Bessel
functions and find

τ = −t0 + 1

γ
log
(u0qγ

c

)
. (34)

This solution is also good for the critical line ε2 = 0 as can be
seen from Eq. (32).

Along the critical line, the return time τ is characterized
by a first region where it is zero, followed by a zone in which
it grows up to a maximum at γ = ce/u0q and then decreases
until it vanishes again. However, the two regions of vanishing
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(a)

(b)

FIG. 4. (a) Level lines of τ (γ, ω0) are drawn with colors from blue for lower values to green for the higher ones. The vector field is given
by the negative gradient of the function; here as well the color is the intensity of the field, ranging from yellow for lower values to dark red
for the highest ones. The violet line represents the critical line. (b) Zoom of the gradient flow near the saddle point dividing the transparent
zone from the intermediate zone [the region inside the black rectangle of panel (a)]. The green line represents the separatrix, which divides the
steepest descent dynamics.

τ are qualitatively different. The first region, which we call the
transparent zone, is characterized by very small values of γ .
Since the height of the wake is proportional to γ , when this is
small all the wake falls below the noise fluctuation level, and
the only relevant perturbation is the traveling δ(x ± ct ), which
has τ = 0. The second region where the return time is zero is
instead characterized by very large values of the damping γ

or large value of t0. This we call the opaque zone: here t0 
1/γ , and therefore the signal is strongly damped and cannot
reach the position x�, since the amplitude of all the terms is
below the noise threshold. A return time is not even definable
(we would have negative values of τ ); we conclude that in the
transparent region, the propagation is effectively d’Alembert.

We do not have an analytic expression for τ for ε2 > 0, but
close to the critical line we can expand the Bessel functions for
small values of the argument and solve Eq. (33) recursively to
get

τ = τ0 + ε2

2γ 2

(
t0

2
+ τ0

2
+ γ t0τ0 + γ

τ 2
0

2

)

= t0 + 1

γ
log
(u0qγ

c

)

+ ε2

4γ 3

{
log
(u0qγ

c

)[
1 + log

(u0qγ

c

)]
− γ 2t2

0

}
.

(35)

This expression shows that τ grows when ε2 grows at fixed
γ . Hence, ε2 = 0 minimizes the return time at fixed γ . Let us
clarify this point further.

C. The critical line as an attractor of return time minimization

To better understand the significance of the critical line,
ε2 = 0, we consider the contour lines of τ and the gradient

field

−∇τ =
(

− ∂τ

∂γ
,− ∂τ

∂ω0

)
(36)

in the (γ, ω0) plane [Fig. 4(a)]. The figure shows that the
ε2 = 0 line is an attractor for a gradient descent dynamics
of τ . Although there are points outside the critical line that
have a return time lower than some points on it, the gradient
flows toward the critical line, so that a dynamic that tries to
minimize the return time with local moves will end up along
the line ε2 = 0. For example, the point P3 in Fig. 4(a) has a
return time lower than P1. However, the gradient flow does
not take P1 towards P3; it rather takes both toward the point
P2. To see this, consider the plane (γ, ω0) and call (A) the
oscillating and (B) the nonoscillating regions [see Fig. 4(a)].
For the critical line to be an attractor, the gradient lines in its
neighborhood must point towards it. Therefore one must have

−∂τA

∂γ

∣∣∣∣
ε2=0

> − ∂τA

∂ω0

∣∣∣∣
ε2=0

, (37)

− ∂τB

∂ω0

∣∣∣∣
ε2=0

> −∂τB

∂γ

∣∣∣∣
ε2=0

. (38)

In region A τ is given by (34), therefore

−∂τA

∂γ

∣∣∣∣
ε2=0

= 1

γ 2

[
log(αγ ) − 1

]
> 0 = − ∂τA

∂ω0

∣∣∣∣
ε2=0

, (39)

where α = u0q/c. This condition is verified for γ > e/α, i.e.,
outside the transparent zone. In region B the return time is
given by (35), so that the gradient is

− ∂τB

∂ω0

∣∣∣∣
ε2=0

= 1

2γ 2

[
log(αγ ) + log2

(u0qγ

c

)
− γ 2t2

0

]
,

−∂τB

∂γ

∣∣∣∣
ε2=0

= 1

2γ 2

[
log(αγ ) − log2(αγ ) + γ 2t2

0 − 2
]
,
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yielding

log2(αγ ) + 1 > γ 2t2
0 , (40)

which is certainly verified if τ0 > 0, that is for log(αγ ) >

γ t0. This means that every point close to the part of the
critical line with a positive return time will flow to the critical
line. We conclude that the critical line is an attractor for the
gradient dynamics of τ . We may metaphorically view the
(rather complicated) function τ (γ, ω0) as the main rib of a
leaf, which is an attractor for a water drop [Fig. 4(c)], although
the situation here is a bit more complicated because of the
nontrivial critical line structure.

The maximum of τ on the critical line is a very special
saddle point, because the flow field is not analytic at it: there
is a separatrix that divides the basins of attraction of the
transparent and of the opaque zone [Fig. 4(b)]. So, depending
on whether one starts to the left or to the right of the separatrix,
the gradient flow will drive one to the transparent zone or
in the opaque zone of the critical line, respectively. Clearly
in a biological system the parameters are fixed and there is
no gradient dynamics of τ . However, if we admit that the
condition of critical damping is an advantage for biological
systems, we could speculate that in the course of evolution the
parameters describing these systems are being pushed towards
the critical damping line. We expect that a real system, and
in particular the one we want to describe, lies close to the
transparent zone: here the signal passes with weak attenuation
and arrives still strong in every part of the system.

V. HOW TO LOOK FOR EVIDENCE OF SPEED
WAVES IN EXPERIMENTAL DATA?

To analyze how information propagates in a biological
system directly, one has to observe an actual disturbance
propagating in space and time. However, naturally occurring
disturbances may be relatively rare, and it is not always fea-

sible to generate and artificial disturbance. Another, indirect,
way, is to analyze the spontaneous fluctuations of the system,
that is, to study dynamical correlations. Indeed, qualitative
features of the structure of the dynamical equations should
leave identifiable traces in the shape of time correlations.
We have seen that the dynamic equations are quite different
depending on the presence or absence of inertial terms; let us
show how this is reflected in the dynamic correlation function.

A. Spatiotemporal correlations

We will focus on the intermediate scattering function,
which is quite easy to compute at the experimental level
[70,71],

C(k, t ) =
∫

dx e−ik·x C(r, t )

=
∫

dx e−ik·x〈u(x, t0)u(x + r, t0 + t )〉,
(41)

The spatiotemporal correlation function is a very useful tool,
because its properties are entirely determined by the dis-
persion relation, which in turn mirrors the structure of the
dynamical equation [70]. Hence, one can infer from the
behavior of C(k, t ) a lot of information about the dynamics
of a system. For the technical mathematical steps connecting
the correlation function to the dispersion relation we refer the
reader to Ref. [70].

In the case of Langevin dynamics (no speed waves)
[Eqs. (17) and (23)], C(k, t ) has the form [see Fig. 5(a)]

C(k, t ) = 2T

Dk2 + ω0
e−(Dk2+ω0 ) t , (42)

where T is the generalized temperature, and D and ω0 have
been defined in (24). One can easily read the Langevin disper-
sion relation (23) from the form of the correlation.

(a)

(b)

(c)

FIG. 5. (a) Ck (t ) in the nonoscillating regime (ε2 > 0) of the inertial dynamics for k < k0 and for every value of k in the Langevin
dynamics. The colors represent different values of k, ranging from dark red for small values of k, to yellow for high k. (b) Ck (t ) in the inertial
case for every value of k if ε2 � 0 and only for k > k0 if ε2 > 0. The colors represent different values of k, ranging from dark blue for small
values of k to aquamarine for high k. (c) To better quantify the difference between inertial and noninertial system we define the function h(x )
(see Ref. [71]), which has a different form depending on whether the function is exponential-like or has a vanishing first derivative.
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On the other hand, for the inertial dynamics of the speed
wave equation (ε2 < 0) the correlation function is given by
[see Fig. 5(b)]

C(k, t ) = ηT(
J̃ k2

μ
+ ω2

0

) e−γ t

×

⎧⎪⎨
⎪⎩

sin
(√

J̃ k2

μ
− ε2 t

)
√

J̃ k2

μ
− ε2

+
cos
(√

J̃ k2

μ
− ε2 t

)
γ

⎫⎪⎬
⎪⎭,

(43)

where J̃ = Ja2nc. In the overdamped regime (k < k0 = ε/c,
ε2 > 0) the trigonometric functions must be replaced by the
respective hyperbolic functions of argument [

√
ε2−(J̃ k2 )/μ t].

The form of the correlation function is considerably simpler
than that of the full solution of the equation [Eq. (31)]. The
correlation function refers only to a specific k mode, while in
the total solution all the modes are added giving rise to the
Bessel functions.

B. The fingerprint of inertial dynamics

We see that Langevin dynamics displays plain exponen-
tial relaxation, while inertial systems have a nonexponential
oscillating correlation function. At first sight this may seem
an obvious difference, very easy to detect from empirical
data. However, the situation is more complex. First, empirical
data typically derive from real three-dimensional trajectories,
which normally are not available for long times (the flock
gets out of the field of view of our apparatus); if we have the
correlation only for medium-short times, it may be impossible
to detect the oscillations, even if inertia (and therefore speed
waves) are present. Second, if the system is close to critical
damping, then there are no oscillations, even if speed waves
are present! Hence, using oscillations as an empirical land-
mark of inertia and propagating waves is not a good idea.

On the other hand, there is a feature of the correlation that
is visible also for short times and that depends exclusively on
the order of the dispersion relation (first versus second order),
namely, on the number of poles in the complex ω plane of the
the correlation function. This feature is the first time derivative
of the correlation for t → 0 [71]. If the dispersion relation
is of the first order, as in the Langevin case, then the derivative
of the correlation in zero is finite, while if the dispersion
relation is of the second order, as in the speed waves case, the
derivative must go to zero. In order to quantitatively perform
this analysis we can define the function,

h(x) = − 1

x
log

[
C(x)

C(0)

]
, x ≡ t/tk, (44)

where tk is the characteristic timescale of the correlation, and
study it in the interval x ∈ [0, 1], that is, for times t < tk .
For purely exponential relaxation h(x) → 1 for x → 0, while
a flat time correlation gives h(x) → 0 in the same limit.
Furthermore, this function prevents us from calculating the
derivative of data at a particular point that can have a large
error. Once we have computed this function for experimental
data, if one has h(x) → 0, then it is quite fair to say that the
data have been generated by a dynamical equation that has

inertial terms, and therefore they are in a good agreement
with the speed wave model. An experimental effort towards
collecting this kind of data is currently under way.

VI. WHAT KIND OF CRITICAL DAMPING?

The concept of critical damping in the context of collective
behavior was first introduced and studied in 2010 by Paley and
coworkers [72], which we now compare with our approach.

The first and most crucial difference between the two
studies is that Paley and coworkers propose a one-dimensional
mathematical model directly for the position, rather than for
the speed; hence, in Ref. [72] the mechanism of imitation, typ-
ical of collective behavior, amounts to imitating the position of
the neighbors rather than their speed. This is clearly visible in
the mathematical expression of the model that they proposed,
which is a second-order dynamics for the positions,

q̈i =
∑
j∈ni

−J [qi − qj − (i − j )q0] − 2ξ
√

J (q̇i − q̇j ), (45)

where qi is the position of the individual i, q̇i its velocity, J

is the spring constant, |i − j |q0 the rest length, while 2ξ
√

J

is the damping coefficient and ξ > 0 [the inertia in (45) is
the normal mechanical mass, which is set to one]. Instead
of an anchoring term breaking the translational symmetry
(translation in the speed in our case), (45) has a linear damper
connecting the particles. In order to make the comparison with
our equation, we rewrite (45) in the continuous limit,

∂2q(x, t )

∂t2
+ 2ξc∇2 ∂q(x, t )

∂t
− c2∇2q(x, t ) = ζ (x, t ), (46)

where q(x, t ) is the displacement field of the particles, c =
Ja2nc, and ζ is a noise. This equation must be compared to
our Eq. (20). The dispersion relation associated to (46) has the
solution

ω = iξck2 ± ck
√

1 − ξ 2k2. (47)

For k < 1/ξ the frequency has a real part (propagating
modes), while for k > 1/ξ the equation is overdamped; these
two regimes are separated by a critical damping value, k =
1/ξ , and in Ref. [72] it is discussed how this edge is influenced
by the connectivity of the network. Our dispersion relation
(25) can be rewritten as

ω = iγ ± ck

√
1 − ε2

c2k2
. (48)

Here too there is a critical damping edge, k = ε/c, but its role
is the opposite than in (47): the frequency is real for large k

and purely imaginary for low k.
To conclude, in the context of Ref. [72] critical damping

does not concern the balance between inertia and dissipation,
as in our study, but a transition between propagating and
nonpropagating modes in k space. This type of definition
of critical damping is not what impacts the general solution
of the dynamical equation in real space, which is found by
summing over all k modes: solutions (31) depend only on ε,
that is, on the balance between inertia and dissipation, and the
critical damping value corresponds to ε = 0, of which there is
no analog in the model developed in Ref. [72].
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VII. CONCLUSIONS

We proposed a model for characterizing the propaga-
tion of speed fluctuations within highly polarized biologi-
cal systems (flocks). The resulting second-order dynamical
equation involves inertia, dissipation, interaction strength,
and a symmetry-breaking term anchoring each individual to
its physiological speed value. In general this equation has
both underdamped and overdamped modes, giving rise to
a complex structure of the general solution. However, we
found that along a certain line in the space of parameters,
when dissipation and inertia balance, the return time to the
unperturbed state after a signal has passed is minimized. This
is the critical damping line. We solved the equation exactly in
one dimension and showed that the critical damping line is an
attractor for a steepest descent dynamics of the return time.
Finally, we proposed a method with which to assess, through
an analysis of the experimental data, the validity of this model:
by studying the dynamic correlations for speed, it should be
possible to verify the presence or absence of inertial terms in
the dynamics and to refute or validate our model accordingly.

Critical damping is quite a compelling concept at the
biological level, especially in the case of speed waves. Let
us consider a flock traveling unperturbed at a certain cruising
speed. At some point an individual at the back of the flock de-
tects a perturbation (as a predator), hence it changes its speed

suddenly, giving rise to the propagation of a signal across the
whole flock, which turns into a collective escaping maneuver.
After the signal has passed, each individual will eventually go
back to its physiological cruising speed. It seems reasonable
to expect that this happens without oscillating back and forth
around the cruising speed, but also quite swiftly, in order to
restore as quickly as possible the original dynamical state.
If our theory is correct, such a sensible way to go back to
normal is achieved at critical damping. However, we cannot
exclude the possibility of overdamped or oscillatory recovery,
and more realistically we expect the system to be close to
critical damping. Experiments should detect whether inertial
(second-order) terms are present in the dynamics. Whether or
not the dynamics is critically damped, though, will require
working out the different parameters, which with our current
experimental resolution seems harder, but not necessarily
hopeless. Experimental efforts in this direction are under way.
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