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ABSTRACT 

A better understanding of the current and future distributions of organisms is a 

critical facet of biodiversity conservation, and species distribution models (SDMs) are an 

important framework for achieving this. Despite the potential of SDMs to address an array 

of biogeography questions, they are subject to a number of conceptual and methodological 

uncertainties, such as the role of animal movement processes in determining geographic 

ranges. Movement processes have only recently been incorporated in SDMs, 

predominantly conceptualized as broad-scale movement processes (e.g., dispersal), while 

finer-scale ambulatory movements of mobile animals (e.g., foraging) have been omitted. 

This research addresses this gap by developing a model that simulates the dynamic 

relationship between movement and biotic resources (e.g., food sources) for oilbirds 

(Steatornis caripensis) in Venezuela. This simulation represented the sustainability of an 

oilbird’s neighborhood, based on the connectivity, accessibility, and viability of its biotic 

resources. These dynamic variables improved the accuracy and ecological realism of the 

SDM projection compared to other commonly applied SDM scenarios. Integration of a 

Lagrangian (individual-level) form of movement in SDM with step-selection functions to 

parameterize biased-correlated random walks provides a new empirical framework for 

applying geographic context to simulation.  

Keywords: movement; spatial simulation; species distribution modelling; step-

selection function; Venezuela 

 



3 
 

By understanding the factors that define a species’ geographic range, more precise 

estimations of species’ resilience, range dynamics and potential for extinction can be made. 

Species distribution models (SDMs) are a widely accepted framework for studying the 

geographic distribution of a range of taxa (Franklin 2009; Peterson et al. 2011), and have 

been used extensively for a variety of applications, including assessing the impact of 

climate change on species distributions (e.g., Albouy et al. 2014), testing biogeographical 

hypotheses (e.g., Gavin et al. 2014), and providing recommendations for biodiversity 

conservation (e.g., Platts et al. 2014). Despite the potential of SDMs to address an array of 

biogeography questions, they are subject to a number of conceptual and methodological 

uncertainties. 

The consideration of the different environmental factors that could influence a 

species distribution, and subsequent selection of these variables with which to train the 

model is an enduring issue (Guisan and Zimmermann 2000; van de Pol et al. 2016). To 

illustrate the individual and joint effects of the three factors deemed most important in 

determining species distributions, Soberón and Peterson (2005) developed the heuristic 

‘BAM’ framework. In this framework, biotic factors (B) represent interactions with other 

species (i.e., competition, herbivory), abiotic factors (A) represent the physiological 

tolerances of a species (i.e., temperature, precipitation) and movement (M) refers to the 

area that has been or will be accessible to a species within a certain timeframe (i.e., 

dispersal, connectivity). While the importance of all three factors is well recognized when 
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projecting the actual distribution, rarely are all three considered together, with the majority 

of studies calibrating SDMs using only abiotic variables (Saupe et al. 2012).  

Biotic interactions can vary over time and among populations, and additionally, 

these interactions are characteristically superseded by abiotic factors. As such, biotic 

interactions are typically studied at a local scale; however, research has shown that biotic 

interactions have affected the distribution of species at regional, continental and even 

global extents (Wisz et al. 2013). Similarly, movement has been under-utilized in SDM 

research. When movement has been incorporated in SDM, its almost exclusive 

conceptualization has been to couple the statistical model (e.g., a model of projected 

suitable abiotic habitat based on presence-absence observations) with broad-scale 

movement processes such as dispersal in response to climate change (Franklin 2010; Miller 

and Holloway 2015). Movement has also been incorporated as a measure of accessibility 

(e.g., the extent of the study area that is currently accessible to the species through 

movement) with which to calibrate the model (Barve et al. 2011; Qiao, Soberón, and 

Peterson 2015). However, the causes of animal movement are vast (Nathan et al. 2008), 

with movements ranging from broad-scale dispersal into unknown landscapes to finer-

scale daily movements such as foraging and homing. To-date, these finer-scale movement 

behaviors have yet to be incorporated within SDM, despite the important role they play in 

the maintenance of a mobile species distribution (Holloway and Miller 2017). 

Moreover, movement and biotic interactions do not act independently of each other. 

In a study investigating the range constraints of Swiss stone pine, Neushulz et al. (2017) 
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found that the upper and lower elevational limits were determined by the intensity of 

nutcracker herbivory and not abiotic factors as previously thought. While biotic 

interactions are typically represented as processes such as herbivory and competition, Wisz 

et al. (2013) argue that these interactions should also include the dependence of animals on 

food plants, as this has been found to be an important biotic determinant of species 

distributions (Kissling, Field, and Böhning-Gaese 2008). The distribution of food plants 

(herein biotic resources) has long been noted as a driver of animal movement (Levin 1992), 

and such is the relationship between the two that the ‘underlying environment’ is 

considered one of the four driving influences of movement in the movement ecology 

paradigm (Nathan et al. 2008).  

The current methodological standard in SDM is to couple the response data (e.g., 

presence-absence of a species) with a set of geospatial variables at the same location (e.g., 

temperature or biotic resources); however, mobile species utilize several patches of biotic 

resources throughout their home range. Figure 1 illustrates some of the landscape 

configuration factors that affect the distribution of an individual or population of mobile 

animals. Individually, these isolated patches of biotic resources do not sufficiently fulfill 

the requirements of an individual animal, but when considered at a neighborhood scale, 

they provide suitable sustenance (Figure 1A). Issues arise when the area through which an 

animal forages is substantially larger than the resolution of the environmental data. In such 

cases, the use of a local correlative model (coupling the response data with the 

environmental data at that location -- Figure 1B-C) assumes that an individual can survive 
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in the area based on only the biotic resources found at that location. Such models will over-

predict (Figure 1B) or under-predict (Figure 1C) the geographic distribution of a species, 

leading to incorrect estimations of resilience and extinction (Sinclair, White, and Newell 

2010). Model calibration in SDM therefore needs to account for the spatial variation of 

biotic resources within the distribution of mobile animals. The use of focal correlative 

models (coupling the response data with the environmental data from a predefined 

neighborhood of n observations -- Figure 1D-E) accounts for the spatial configuration of 

environmental variables. Studies have begun to utilize focal statistics to describe land cover 

indicators of habitat suitability in SDM, reporting equal or higher predictive power than 

local models (Czúcz et al. 2011; Ashcroft and Major 2013; Betts et al. 2014). However, to-

date this concept has not been extended to biotic resources, despite the potential for a focal 

approach to incorporate the relationship between B and M within SDM predictions.  

However, it is not sufficient to consider the relationship between B and M as static. 

Biotic resources deplete when organisms move through an area (e.g., herbivory) and 

subsequently replenish while they are absent (e.g., regeneration), and this dynamic 

relationship is well documented in the natural environment (e.g., the wolf-elk-aspen 

interactions of Yellowstone National Park -- Turner, Gardner, and O’Neill 2001). 

Subsequently, a species distribution could be better explained by an ecological factor that 

integrates the dynamic relationship between ambulatory movements and biotic factors. The 

three BAM factors do not operate in isolation, yet a static representation of biotic factors 
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and movement may not reliably account for the complex relationship that exists between 

them.  

For complex geographic systems, such as the dynamic relationship among the 

BAM factors, modelling is required to link reality with theory in order to explore and 

understand the underlying processes (Manson 2001; 2007). This epistemological approach 

to complexity research in geography is widely adopted (O’Sullivan 2004; Manson 2007; 

Batty 2009), but models (even complex ones) are abstractions of reality. Currently, the 

BAM framework lacks the detail required to model such complex dynamic relationships, 

and further research is needed to identify new methods that can do this. 

Spatial simulation models are increasingly being used to understand animal 

movement and plant dispersal due to their potential to incorporate the inherent relationship 

between movement and the environment (Tang and Bennet 2010), and are a burgeoning 

GIScience research area (Dodge 2016). Three main conceptualizations of spatial 

simulation have emerged within the GIScience discipline; spread models (diffusive 

movement through a neighborhood), random walk (RW) models (simulation of individual 

movement paths), and agent-based models (ABMs; simulation of movement as the 

emergent characteristics of the subcomponent relationships) (O’Sullivan and Perry 2013; 

Holloway and Miller 2018).  

The RW framework is a well-established stochastic representation of movement 

trajectories (Miller 2015); however, within complex systems, RWs are too simplistic to 

represent the actual trajectories of moving objects, meaning RWs have been advanced to 
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include directional persistence (correlation) and a consistent bias towards a given target 

(bias) (Codling, Plank, and Benhamou 2008). Simulation models have been successfully 

implemented to explore the relationship between movement and biotic resources in non-

SDM contexts (e.g., South 1999; Van Moorter et al. 2009) and the reliability of such 

models to accurately simulate movement in response to the underlying dynamic biotic 

environment has led to biased correlated random walks (BCRWs) being proposed as the 

most flexible and discrete-step simulation model (Benhamou 2014). 

A criticism of BCRWs is the subjective nature of parameter estimation, and 

subsequently the development of simulations based on quantitative analysis of real 

movement observations have been proposed (Dodge 2016). Recently, Ahearn et al. (2017) 

used the Chi-square distribution derived from the relationship between a tiger’s Global 

Positioning System (GPS) location and the underlying environment to determine the next 

probable move made by an individual, identifying the importance of incorporating 

geographic context into BCRWs. The use of movement observations to increase the 

robustness in simulation models is promising, but more methods of incorporating such 

information need to be explored. 

Recently Duchesne, Fortin, and Rivest (2015) showed that BCRW and step-

selection function (SSF) provided similar insights into the environmental factors 

influencing bison movement in Canada. SSF is a spatial statistic that uses telemetry data to 

analyze movement patterns and resource use based on the underlying environment 

(Thurfjell, Ciuti, and Boyce 2014). SSF considers the landscape variables associated with 
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a discrete movement step between two successive locations, and statistically compares 

these to a set of alternatively generated steps that the animal theoretically could have taken 

(Fortin et al. 2005). SSF has been used to evaluate the influence of the landscape features 

and biotic factors on a variety of species (Holloway and Miller 2014), with spatial memory 

recently incorporated into the statistical model (Oliveira-Santos et al. 2016). SSF models 

the choices actually presented to the animal as it traverses through the landscape, and would 

be a powerful input in spatial simulation. 

The simulations developed herein improve upon diffusion and RW models by 

adopting a Lagrangian approach that incorporates SSF parameter coefficients to inform 

geographic context from empirical telemetry data. The incorporation of discrete movement 

steps to simulate movement at an individual level within an ABM will inform animal-

movement decisions. When integrated within the SDM framework, this model will provide 

researchers with an improved understanding of the relationship between biotic interactions 

and movement factors (something that has been absent in previous studies) and an 

enhanced awareness of which factors contribute to a species distribution. 

METHODOLOGY 

Study Species 

The oilbird (Steatornis caripensis Humboldt 1817) is a nocturnal avian frugivore 

that inhabits northern South America, roosting in caves or crevices during the day, and 

foraging for fruit at night. In a recent study tracking oilbirds in Venezuela, Holland et al. 
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(2009) found that the birds often roosted near their foraging sites rather than returning 

nightly to a cave. These findings have had important ecological consequences for the 

oilbird ecosystem, as the oilbirds are now seen as a primary disperser of many seeds 

throughout the Amazon. The oilbird has an extensive home range (mean foraging distance 

of 44km -- Holland et al. 2009), and a varied diet of fruit (from both natural forests and 

cropland plantations -- Bosque, Ramíerez, and Rodríguez 1995). Telemetry data for 40 

individual oilbirds in Venezuela were obtained from Holland et al. (2009) via Movebank 

(Holland et al. 2012), which resulted in a total of 5,353 locations. Data filtering using the 

‘best daily location’ method (Abecasis, Afonso, and Erzini 2014) was undertaken to 

account for a number of new conceptual issues related to telemetry data structure and use 

in SDM, including spatial and temporal autocorrelation and measurement error (see 

Hebblewhite and Haydon 2010 for a discussion). This resulted in a total of 302 points from 

25 oilbirds for use as response data, with each oilbird contributing between 1-6 percent of 

the total observations. 

Species Distribution Modelling 

Figure 2 is a conceptual diagram that highlights the main steps involved within this 

SDM framework. Five different BAM scenarios were modelled (expanded upon below). 

Each scenario incorporates different methodologies to derive inputs and subsequently 

distribution projections (Figure 2). Maximum entropy (MaxEnt) was chosen as the 

statistical method to model the species-environment relationships for all five scenarios. 

MaxEnt selects suitable environmental conditions by measuring how well they delineate 
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recorded presence and pseudo-absence observations, and choosing the split that records the 

purest distribution of response variables. Other presence-only methods, such as genetic 

algorithms for rule prediction (GARP) and ecological niche factor analysis (ENFA) were 

explored, but MaxEnt provided the most accurate preliminary results. Furthermore, 

MaxEnt has been used extensively in SDM applications, and has been found to generate 

accurate predictions of species distributions using presence-only data (Elith and Graham 

2009). The maximum number of iterations was set to 5,000 to allow model convergence; 

the number of pseudo-absences was set at 10,000 (following Barbet-Massin et al. 2012), 

and the model incorporated only linear and quadratic features to avoid over-fitting the 

model. SDMs were generated at a 10km resolution (the same scale many bird atlases are 

collected at, e.g., Balmer et al. 2013). As Holland et al. (2009) deployed GPS tags on 

individuals from the Cueva del Guácharo in Northeastern Venezuela, there was unequal 

survey coverage of oilbirds across the entire country, which could violate the assumption 

of independence in the response data and increase the likelihood of type I errors (Fourcarde 

et al. 2014). Following Elith, Kearney, and Phillips (2010), a bias grid was created with the 

method outlined in Supplementary Information 1.  

Scenario A 

Abiotic factors represent the physiological tolerances of species (i.e., temperature, 

precipitation) meaning climate variables best represent these factors. WorldClim has 

interpolations of observed data from ~1950-2000, with 19 bioclimatic variables derived 
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from the monthly temperature and rainfall values (see Hijmans et al. 2005 for a list). The 

19 bioclimatic variables were the abiotic factors used in the statistical model. 

Scenario B 

Biotic factors represent interactions with other species (i.e., competition, 

herbivory). The oilbird is a frugivore, suggesting that the most important biotic interactions 

are those with the fruit bearing trees that make up its diet. Bosque, Ramíerez, and 

Rodríguez (1995) identified five widespread (naturally occurring and/or cultivated) trees 

whose fruit made up a substantial part of the oilbird’s diet: Euterpe precatoria, Nectandra 

membranacea, Ocotea floribunda, Persea caerulea and Prestoea acuminata. The 

distribution of these five species was predicted using observed locations from the Global 

Biodiversity Information Facility (GBIF 2015a; 2015b; 2015c; 2015d; 2015e), the 19 

bioclimatic variables (Hijmans et al. 2005), and projected using MaxEnt with default 

settings (with the exception of 5,000 minimum iterations to allow model convergence -- 

see Phillips, Anderson, and Schapire 2006). Maximum sensitivity plus specificity was used 

as the threshold for presence (the probability value above which a case is predicted to be 

positive), and distribution maps were generated at a 1km resolution. Categorical variables 

representing presence-absence of the five species within the 10km grid were used as the 

biotic factors in the statistical model. 
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Scenario BA 

This scenario projects the invadable distribution in the BAM framework. The 19 

bioclimatic variables and the five presence-absence predictions of the food species were 

used as the input variables in the statistical model. 

Scenario Classic BAM (cBAM) 

Movement factors refer to the area that has been or will be accessible to a species 

within a certain timeframe.  Accessibility to biotic resources was identified by using a 

distance buffer. The mean foraging distance of oilbirds is 44.4km (Holland et al. 2009).  

Therefore, presence-absence of the five fruit-bearing tree species was calculated within a 

focal neighborhood of 50km for each 10km grid. This was incorporated into the statistical 

model as a binary presence-absence value with the resolution held consistent at 10km. 

Scenario Dynamic BAM (dBAM) 

A variable which summarizes the dynamic relationship between movement and 

biotic resources within the 50km focal area was created using spatial simulation. 

Movement was simulated in NetLogo 5.05 (Wilensky 1999) as a BCRW parameterized on 

an SSF model with factors including land cover, presence of resources, and memory (see 

Supplementary Information 2). Identifying the survival of individual agents in spatial 

simulation by the amount of energy consumed is common (e.g., Ahearn et al. 2001; Silby 

et al. 2013), and captures the dynamic relationship between movement and biotic resources. 

Individuals move in response to the spatial configuration of biotic resources parameterized 
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by the SSF model, consuming resources and energy as they move. Biotic resources 

subsequently deplete if consumed. If an individual does not obtain enough energy, it dies. 

The agent-based model was run three times for a one-year period with 1,000 oilbirds (the 

90th percentile of oilbird population size in Venezuela -- Herrera 2003). The mean survival 

rate (see Supplementary Information 2 for details) of the three simulations was the input 

along with the abiotic factors into the statistical model. A high value represents a landscape 

with a large amount of accessible and sustainable biotic resources, while a low value 

indicates insufficient or inaccessible resources.  In following with the current standard for 

modelling, a thorough account of the design of the model is outlined using the Overview, 

Design Concepts and Details (ODD) protocol (Grimm et al. 2006; 2010) in Supplementary 

Information 2, and the model code for the SSF parameterized BCRW is presented in 

Supplementary Information 3.  

Model Evaluation 

Over thirty unique oilbird presence observations in Venezuela (GBIF 2016) were 

used as the independent test dataset. Multiple evaluation metrics should be used when 

reporting the evaluation of SDM projections due to the potential differences reported 

among metrics (Liu et al. 2005; Franklin 2009). The lowest possible threshold (LPT) is the 

value that would result in zero omission errors. The minimum predicted area (MPA) is the 

threshold value that minimizes omission errors, but at the same time minimizes the area of 

the map predicted to be suitable (Franklin 2009). The MPA represents the threshold value 

that encompasses a predefined proportion of observed species occurrences (in this case 90 
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percent). The Boyce Index is based on a moving window analysis across the range of 

predicted values, and uses Spearman rank correlation coefficient to measure the monotonic 

increase in the predicted-to-expected frequency ratio with increasing habitat suitability 

(Boyce et al. 2002). The Boyce Index was implemented using the ecospat package 

(Broenniman et al. 2014) in R 3.3.0 (R Development Core Team 2008), and ranges from -

1 to 1, with 0 indicating predictions indifferent from a random model. 

RESULTS 

Step-Selection Function 

The final SSF model recognized several significant variables that identified the 

landscape, resource and memory factors associated with oilbird movement (Table 1). 

Positive coefficients represent the probability of selecting steps into that habitat compared 

to reference habitats (for binary variables this is the opposite of what is modelled and for 

continuous variables this is compared to the current value), while negative coefficients 

represent the probability of selecting the reference habitat. Oilbirds preferentially chose 

movement paths into landscapes which they have previously visited and knew to have 

resources (Memory*Resources), and also favorably selected steps into unknown habitat 

rather than returning to a location which they had visited, but knew not to have resources. 

Oilbirds also favored movement steps into evergreen broadleaf forests and croplands over 

movement steps into other land cover classes, while selecting steps away from rivers. The 

results of the SSF model (Table 1) parameterized a BCRW. The BCRW trajectory 
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consisted of several smaller movement steps, followed by a few longer steps, with a high 

return rate to previous locations where the interaction between memory and resources 

positively influenced the step. Furthermore, the difference in the spatial configuration of 

the underlying landscape also influenced the movement path, with oilbirds preferentially 

choosing evergreen forests (and to a lesser extent, croplands) over other land cover types. 

Species Distribution Modelling 

The five BAM scenarios differed substantially in terms of the area predicted present 

(Figure 3A-E) and their accuracy when evaluated against an independent test dataset (Table 

2).  The general trend observed was that an increase in the number of BAM factors 

incorporated in the SDM reduced the area predicted as present, with Scenarios B (Figure 

3B) and dBAM (Figure 3E) predicting 394,100km2 and 211,100km2 respectively. The 

dBAM scenario removes the distribution projected within the center of the country by 

scenarios A, B, BA, and cBAM, and projects a more fragmented distribution around the 

boundary of the country compared to the continuous distribution projected by scenarios A, 

BA, and cBAM. The B scenario projected the largest distribution of 394,100km2 with a 

relatively continuous surface of oilbird presence around the whole country (Figure 3B), 

and this is a likely explanation for the higher accuracy metrics of LPT and MPA (Table 2) 

as there is no penalization for over-prediction. 

Precipitation of the coldest quarter was the environmental variable that contributed 

the largest percentage to all scenarios that included abiotic factors with the exception of 

the dBAM scenario, where it was the second highest contributor in the MaxEnt selection 
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process. For dBAM, the spatial simulation representing the dynamic relationship between 

B and M accounted for the highest relative contribution (36.7 percent) to the delineation 

between oilbird presence and pseudo-absences (almost double precipitation of the coldest 

quarter). The use of an ABM to simulate this complex relationship identified a number of 

locations of biotic resources that are actually unsustainable compared to modelling 

presence-absence at a focal neighborhood (Figure 3F-H). The difference between the 

presence of the five tree species at a 10km resolution (used in Scenarios B and BA -- Figure 

3F) compared to when presence-absence is viewed at a 50km neighborhood scale at a 10km 

resolution (Scenario cBAM -- Figure 3G) is apparent. Representing presence-absence at a 

50km focal area overestimates the distribution across Venezuela, particularly in the south 

of the country, and it is this methodological artefact that accounts for the higher Boyce 

Index score recorded for BA compared to cBAM (Table 2). When the results of the ABM 

are explored (Figure 3H), many locations of biotic resources are unsustainable for 1,000 

oilbirds, with large areas of the projected tree species distributions from Figures 3F-G 

disappearing. This better represents the dynamic relationship between biotic resources and 

movement, and does well to identify core areas of oilbird suitability, sustainability and 

accessibility. 

DISCUSSION 

The aim of this research was to investigate how spatial simulation could be used to 

represent the relationship between movement and biotic factors. The inclusion of these 

simulated data, which account for the dynamic relationship between movement and biotic 
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resources, improved the accuracy (when measured as the Boyce Index) of the SDM (Table 

2), as well as better explaining the factors that affect the distribution of oilbirds in 

Venezuela. The Boyce Index is considered the most robust presence-only accuracy metric 

due to its ability to measure the monotonic increase in the predicted-to-expected frequency 

ratio with increasing habitat suitability, with a higher value representative of a more valid 

model (Hirzel et al. 2006). The Boyce Index was highest for the dBAM model, suggesting 

that incorporating a variable that measured the relationship between M and B was 

advantageous to the SDMs projection capacity. This argument is furthered by the fact that 

this layer had the highest relative percentage contribution of all the BAM variables used in 

delineating between the environmental and geographic distribution of oilbird presence and 

pseudo-absence in the final statistical model (37.6 percent). The use of a dynamic 

environmental layer of biotic resources and movement removed the assumption of 

homogeneity across the distribution of food species, and delineated between accessible and 

sustainable areas of biotic resources from isolated and unsustainable areas.  

As the distribution of the five plant species was based on the 19 bioclimatic 

variables, it could be argued that the B scenario was actually representative of the BA 

scenario. However, by its definition in the BAM framework, A represents the physiological 

tolerances of the studied species, meaning that the abiotic conditions that define the food 

species may not be the same as those of the oilbird. Nevertheless, this is still an important 

aspect of the BAM framework that should be acknowledged. None of the three factors are 

completely independent of each other. While this study focused on the dynamic 
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relationship between M and B, interactions among all three BAM factors occur, and it may 

be theoretically difficult to parse out the influence of each individual factor. For example, 

abiotic factors have been found to influence the movement of animals, with Delattre, 

Vernon, and Burel (2013) finding that the dispersal distances of meadow brown butterflies 

were greater across fragmented landscapes at cooler temperatures, but greater across 

continuous landscapes at warmer temperatures. Therefore, future BAM research should not 

only focus on the individual and combined effects of the three factors, but also identify a 

clear methodology with which to successfully model the dynamic relationships among all 

three factors. The results from this study suggest that spatial simulation could be an 

effective framework to achieve this. 

Oilbirds are particularly appropriate for studying issues related to incorporating 

geographic context into a Lagrangian simulation of movement. The specialized habitat and 

feeding preferences of the oilbird, coupled with the high metabolic rate incurred from large 

movements between nesting and feeding locations made it conceptually easier to model 

than more generalist species. Moreover, oilbirds feed on fruit from a variety of trees 

including those naturally occurring in the Amazon, as well as commercial plantations of 

oil palm. Multiple food sources found across different land cover types meant that the SSF 

model and subsequent BCRW did not favor only one land cover type, and more realistic 

movement choices were presented to the oilbirds. Despite this, such a modelling 

framework should scale from specialist to generalist species, although each model should 

be underpinned by domain experts. 
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While the SSF and ABM developed have increased our understanding of the 

oilbird’s spatial ecology, there is still a lot we do not yet understand about this elusive 

animal. Edge habitat is an important driver of animal movement with species using the 

border between two land cover types to maximize foraging opportunities, and has been 

used in previous SSF studies (Holloway and Miller 2014). While edge habitat was not used 

in the calibration of this SSF model due to differences in the spatial resolution, it could 

have a large effect on the movement patterns of oilbirds. Given the preferential disposition 

for oilbirds to move into both evergreen forest and cropland, simulations appeared to favor 

edge habitat (results not shown); however, whether this preference is actually a driver of 

oilbird movement or a methodological artefact warrants further investigation. Moreover, 

cropland and evergreen forest edge habitat represents a new biotic interaction between 

humans and oilbirds. In reality, oilbirds will most likely interact with multiple other species 

confounding the difficulty to parse out the individual influence of one biotic factor on the 

projected distribution. This further reiterates the importance of spatial simulation to model 

the dynamic and complex relationships that exist among all BAM factors.  

The incorporation of SSF within a spatial simulation model is novel, and the 

movement paths of the individual oilbirds (Supplementary Information 3) were distinctive 

of home range movements (e.g., Lévy walk -- Plank and Edwards 2011). The benefit of 

using SSF model coefficients (Table 1) to parameterize a BCRW over subjective 

implementations is that it includes the results of conditional logistic regression. With 

simulated movement underpinned by a statistical model generated from empirical 
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observations, more realistic movement behaviors are computed compared to a model 

specified solely on subjective assumptions. This means that any subsequent results better 

illustrate the influences of the environment on actual movements (Duchesne, Fortin, and 

Rivest 2015). The SSF framework would also allow further environmental variables to be 

included. For example, a variable representing locations of caves across the Amazon could 

be incorporated in the SSF and may improve the predictive ability of these models; 

however, to-date no dataset exists that accurately describes such a phenomenon.  

 A recent criticism of SSF has been the lack of methodology with which to 

incorporate a measure of memory (Fagan et al. 2013; Duchesne, Fortin, and Rivest 2015). 

To ignore the effects of memory when analyzing movement decisions made by animals 

can lead to biased estimates of resource-selection coefficients (Oliveira-Santos et al. 2016). 

The results in this study agree with Oliveira-Santos et al. (2016); memory is an important 

factor to consider within an SSF (Table 1). Furthermore, the importance of considering 

memory of biotic resources rather than simply spatial memory irrespective of the landscape 

should now be considered. Memory does not operate independently of information or 

events, and when memory was the only factor considered, oilbirds avoided moving into 

habitats that they had previously visited, but when modelled as an interaction with 

awareness of biotic resources, oilbirds conversely selected locations they had previously 

visited and knew had resources. Memory can be modelled in a number of ways, and the 

assumption of memory in this study relied on the theory that time spent in an area 

contributed to the spatial memory of that individual. While this description of memory is a 
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simplified approximation, it does illustrate that this is an important process which should 

be accounted for when simulating movement, and as such should help foster future SSF 

studies which look to incorporate spatial memory.  

CONCLUSION 

The three ‘BAM’ factors used in projecting species distributions do not operate in 

isolation, meaning a traditional static representation does not reliably account for the 

complex dynamic relationships that exist among them. Simulations that adopted a 

Lagrangian approach (individual-level) to movement, while incorporating SSF parameter 

coefficients to integrate geographic context from empirical telemetry data, informed 

oilbird-movement decisions and improved the accuracy and ecological realism of oilbird 

SDM projections compared to other widely used BAM scenarios. The use of SSF as an 

input into the spatial simulation was novel, and an interaction term between memory and 

biotic resources aided in the interpretation of how oilbirds were selecting movement steps. 

The application of empirical movement data in informing spatial simulation is a promising 

avenue of GIScience research, and the results of this study have highlighted how it 

improves our understanding of both the geographic distribution and movement ecology of 

the biogeographically important oilbird.   
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FIGURES 

Figure 1: Conceptual diagram to illustrate the importance of the surrounding 

landscape configuration when developing variables to represent biotic 

resources in SDM. A) represents a sustainable and connected landscape for a 

hypothetical species; B-C) illustrate a local model approach, whereby the 

species observation is correlated with the environmental data within only the 

corresponding grid cell represented in red; D-E) illustrate a focal model 

approach, whereby the species observation is correlated with the 

environmental data within a predefined neighborhood represented in red (n.b., 

habitat suitability is still projected at the original resolution of the central 

grid).   
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Figure 2: Conceptual diagram of the main steps in data analysis.  
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Figure 3: Spatial distribution of oilbirds in Venezuela projected from the five BAM 

scenarios and the data layers that represent the biotic resources and movement factors. 

Different scenarios are A) Scenario A, B) Scenario B, C) Scenario BA, D) Scenario cBAM, 

and E) Scenario dBAM. A threshold of 0.0302 delineated between presence and absence. 

This represents the proportion of presences compared to pseudo-absences.  The B and M 

layers are represented by F) the number of plant species present within a 10km resolution, 
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G) the number of plant species present within a 50km focal area at a 10km resolution, and 

H) the number of oilbirds that can be sustained within a 50km focal area at a 10km 

resolution (the dynamic B and M layer).   

 

Table 1: The results of the conditional logistic regression model used for step-selection 

function scores. Positive coefficients represent the probability of selecting 

steps into that habitat compared to reference habitats (e.g., for binary variables 

this is the opposite of what is modelled and for continuous variables this is 

compared to the current value), while negative coefficients represent the 

probability of selecting the reference habitat. * represents significant at α < 

0.1, and ** represents significant at α < 0.05. 

Variables Coefficient (Standard Error) 

Evergreen Forest 0.906 (0.466)** 

Cropland 0.792 (0.547)** 

Rivers  < -0.000 (0.000)** 

Memory -3.115 (0.973)** 

Resources -1.340 (0.504)**  

Memory*Resources 3.393 (0.987)** 
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Table 2: The three accuracy metrics of the five BAM scenarios using an independent 

test dataset: Lowest possible threshold (LPT), minimum predicted area 

(MPA), and the Boyce index (BI). Values in bold highlight the highest score 

that was recorded across the five BAM scenarios for each accuracy metric. 

 LPT MPA BI 

A  0.0002 0.0197 0.8210 

B 0.0172 0.0296 0.0580 

BA 0.0001 0.0256 0.7600 

CBAM 0.0004 0.0220 0.6350 

dBAM 0.0002 0.0271 0.8920   
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