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Abstract—A Wireless Sensor Network (WSN) is composed
of many sensor nodes which transmit their data wirelessly over
a multi-hop network to data sinks. Since WSNs are subject to
node failures, the network topology should be robust, so that
when a failure does occur, data delivery can continue from
all surviving nodes. A WSN is k-robust if an alternate length-
constrained route to a sink is available for each surviving node
after the failure of up to k-1 nodes. Determining whether a
network is k-robust is an NP-complete problem. We develop
a Constraint Programming (CP) approach for solving this
problem which outperforms a Mixed-Integer Programming
(MIP) model on larger problems. A network can be made
robust by deploying extra relay nodes, and we extend our CP
approach to an optimisation problem by using QuickXplain
to search for a minimal set of relays, and compare it to a
state-of-the-art local search approach.

I. INTRODUCTION

Rapid improvements in wireless communication and elec-

tronics have led to the development of Wireless Sensor

Networks (WSNs) for monitoring in many diverse appli-

cations, including environmental assessment, fire detection,

personal health management, and surveillance. A sensor

node is a device with integrated sensing, processing and

communication capabilities, and is typically battery pow-

ered. A WSN is composed of many nodes, which transmit

their data wirelessly over a multi-hop network to data sinks.

These networks are prone to failures: the wireless devices

are often unreliable, they have limited battery life, trans-

missions may be blocked by changes in the environment,

and the devices may be damaged, e.g. by weather, wildlife

or human intervention. For dealing with failures, reliable

routing protocols [2], [4], [7], [16] have been proposed, but

they rely on a network topology in which alternative routes

to a sink are available.

Therefore, one key objective in the planning of a WSN

is to ensure some measure of robustness in the topology, so

that when failures do occur routing protocols can continue to

offer reliable delivery, giving time to the operator to identify

and repair the failed nodes. In particular, one standard

criterion is to ensure routes to the sink are available for

all remaining sensor nodes after the failure of up to k−1
other nodes. In addition, since there are sometimes data

latency requirements, there may be a limit on the path length

from sensor node to sink. Therefore every node in the initial

design should have k node-disjoint paths to the sink of length

less than the length bound.

To ensure that sensor nodes have sufficient paths, it may

be necessary to add relay nodes, which do not sense, but

only forward data from other nodes. The possible positions

of the relay nodes may be limited, and each position can

communicate with only a subset of the other nodes in the

network. Finally, installing additional relays comes at a

cost thus motivating solutions that minimise the number of

additional relays.

In this paper, we present constraint-based solutions to

these robust WSN topology design problems. First, we

consider the decision problem of whether it is possible, for a

given network and a set of candidate relay positions, to find

k length-bounded node-disjoint paths to the sink for a single

sensor. We classify the problem as being NP-complete, and

present Constraint Programming (CP) and Mixed-Integer

Programming (MIP) models, and compare to a previously

published local search method [14]. We show that the CP

model solves the problems in less time than it takes to

generate the MIP models. We then consider the extended

decision problem, in which we must find qualifying paths for

all sensors in the same network. We demonstrate that the CP

solution is able to solve these problems in reasonable time,

but that the MIP model does not scale. Finally, we consider

the optimisation problem, in which the aim is to minimise

the number of relays. The MIP model is fastest on small

problems but again does not scale up to larger problems.

We use QuickXplain [10] to develop an approximate CP

solution, which we show is competitive in time with the

local search method on the larger problems, although with

lower quality solutions.

II. BACKGROUND AND RELATED WORK

A WSN can be modelled as a graph G= (V,E), where

V is a set of nodes and E is a set of edges. Each edge

connects two nodes that are within transmission range of

each other1, and the two nodes are said to be adjacent. A

1For simplicity we assume bi-directional links, but this could be easily
relaxed by specifying a more complex connectivity graph.
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path of length t between two nodes v and w is a sequence

of nodes v = v0, v1, . . . , vt = w, such that vi and vi+1 are

adjacent for each 0 ≤ i < t. Two nodes are connected if

there is a path between them. A graph is connected if every

pair of nodes is connected.

The problem of deploying relay nodes for increased

reliability has long been acknowledged as a significant

problem [3], [12], [9], [11]. Greedy Randomised Adaptive

Search Procedure for Additional Relay Placement (GRASP-

ARP) [14], a recently published local search approach, has

been shown to deploy fewer relay nodes with faster runtime

compared to the closest known approach [3], [12]. It uses

the GRASP stochastic local search method [5], [6], [13]

to deploy additional relay nodes for ensuring (k,l)-sink-

connectivity, where all sensor nodes have k node-disjoint

paths of length ≤ l to the sinks. GRASP-ARP works by (i)

generating an initial feasible solution by adding relays until

sufficient paths are found, (ii) exploring the neighbourhood

of the initial solution by adding and removing relays to

reduce the number of required relays, and (iii) iterating

until a stopping criterion is satisfied [14]. Within each stage,

GRASP-ARP uses a CountingPaths algorithm based on the

Ford Fulkerson algorithm with node splitting to find k node-

disjoint paths. When searching for a new augmenting path,

CountingPaths uses a best-first approach, but with a higher

priority for nodes already used in a previously obtained path,

with the intention of balancing the lengths of the resultant

path set. CountingPaths is guaranteed to find k node-disjoint

paths if they exist.

If we restrict the Additional Relay Placement decision

problem to ensuring robustness for just one of the sensors

in the network, it is equivalent to the Bounded Vertex

Undirected Disjoint Paths problem (BVUP), i.e., the problem

of finding k vertex-disjoint paths in an undirected graph for

a given pair of nodes where the paths have bound length,

which is known to be NP-Complete [8], although fixed

parameter tractable. Additionally, the problem of minimising

the number of additional nodes needed to disjointly connect

two nodes, given a bound on the length of the paths, is a

specific case of the Generalised Constrained Shortest Link-

Disjoint Paths Selection, which is also known to be NP-

Hard [15].

III. THE BOUNDED VERTEX UNDIRECTED DISJOINT

PATHS PROBLEM

The main focus of this paper is the decision problem:

given a sensor and a sink in a network, do there exist k
node-disjoint paths of length no greater than l to the sink?

We saw above that this problem is the same problem as the

Bounded Vertex Undirected Disjoint Paths problem, which is

NP-complete. At first sight, GRASP-ARP offers a solution,

since its initialisation phase will continue adding relays

until qualifying paths are found, relying on CountingPaths

Figure 1. A network for which CountingPaths fails to find two disjoint
paths between nodes 1 and 10 of length at most 4.

to check the paths. However, CountingPaths is a heuristic

algorithm, and does not guarantee to meet the length bound.

Consider the problem shown in Figure 1, where the

problem is to find two node-disjoint paths of length less than

5 from node 1 to node 10. Counting paths uses a breadth-first

search, with nodes ordered by smallest ID. During the first

iteration, it finds path A = (1,3,9,10) of length 3. The second

search then finds path B = (1,2,5,6,8,10), and the algorithm

terminates with the two path lengths of 3 and 5, and thus fails

to satisfy the length bound. However, there are two node-

disjoint paths of length 4: (1,3,6,8,10) and (1,4,7,9,10). To

obtain this solution, the second search would have had to

return path C = (1,4,7,9,3,6,8,10), which would produce the

correct output when A and C are merged and overlapping

segments removed. Path C is not returned, since the breadth-

first search reaches node 6 earlier in path B. Similar counter-

examples exist for different ordering heuristics.

A. CP approaches

Model. As shown in Figure 2, we model the problem

of finding k disjoint paths between a pair of nodes by

cloning the source node k times. Finding k disjoint paths is

equivalent to finding a tree whose leaf nodes are the clones

of the source node, and the root is the target node. Table I

shows the constants and variables used in the CP model.

Table II shows a CP flow based model for the problem of

finding k length-bounded disjoint paths for a sensor s.

�

�

�
�

�

�
�

Figure 2. Cloning the source.

As the source node is cloned k times, we use the z
variables where zi denotes the successor of the i-th clone.

We post an ALLDIFFERENT constraint on the zi variables

to enforce that we end up with k different paths (Constraint
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Table I
CONSTANTS AND VARIABLES USED IN THE CP MODELS

Constants Variables
• V is the set of nodes in the network.
• S is the set of sensors.
• R = V − S is the set of relays.
• k is the lower bound on the connectivity.
• s is the sensor (the source).
• t is the target.
• λ is the upper bound on the length of the paths.

• yv ∈ V is an integer variable referring to the successor of node v.
• zi ∈ V −{s} is an integer variable referring to the successor of the i-th clone of s.
• fuv ∈ {0, 1} is a Boolean variable referring to the flow on edge 〈u, v〉.
• lv ∈ {0, . . . , λ} is an integer variable referring to the length of the path from node

s to node v.

Table II
CP I: FLOW BASED DECOMPOSITION OF THE TREE CONSTRAINT

ALLDIFFERENT([z1, . . . , zk]) (1)
zi = v ⇒ fsv = 1 ∀1 ≤ i ≤ k,∀v ∈ V (2)
yu = v ⇔ fuv = 1 ∀u ∈ V − {s, t}, v ∈ V if u 	= v (3)∑

v∈in(u) fvu =
∑

v∈out(u) fuv ∀u ∈ V − {s, t} (4)

fuv = 1⇒ lv ≥ lu + 1 ∀〈u, v〉 ∈ E (5)

(1)). Constraints (2) and (3) connect the successor variables

to the flow variables. We remark that Constraint (2) is an

implication and not a double implication since we do not

want zi to be set to v when zj is set to v (assuming i �= j).

That is, having a double implication would be inconsistent

with the fact that the z variables need to be set to different

values. Notice that Constraint (3) is only posted in those

cases where u �= v thus allowing the successor of an unused

node to be bound to itself. In Constraint (4) we use in(v)
and out(v) to denote the incoming and outgoing nodes of

v. Constraint (4) ensures that the number of used incoming

edges of a node is equal to the number of used outgoing

edges. In order to ensure that no node is used twice we

constrain the incoming and outgoing degrees of each internal

node to be at most one. This is implicitly enforced by the

yv variables since a successor variable can only be bound

to one value, in conjunction with Constraint (4). Constraint

(5) connects the length variables to the flow variables2. A

solution of the decision problem at hand can be expressed

in terms of the y and z variables. The determination of

these variables determines the other variables so these are

the decision variables in this model.

In what follows, we will call the model of Table II CP

I. Alternatively, we can model our decision problem by

using one single Tree constraint [1] since both the degree

of the nodes and the length of the path in the tree can

be constrained through the interface of the constraint. We

use CP II to refer to the model obtained using the Tree

constraint.

Labelling strategy. During the backtracking search process

we construct the paths in a systematic way: we pick one of

the clones of the source and decide its successor, then the

successor of its successor and we continue this way until

2We use ≥ instead of = because the paths from the source to the target
may have different lengths.

we reach the target. Then we pick another clone and do the

same until the paths of all clones are found. When all paths

have been found, the remaining successor variables are set to

their self values. We remark that in constraint programming

labelling is interleaved with propagation. During propagation

some successor variables may get determined thus avoiding

the consideration of those variables during labelling.

In order to implement this dynamic variable ordering,

we use the lower bound of the l variables: we pick the yi
variable whose li has the highest lower bound. If the highest

lower bound is 0, we know that the node is not participating

in any path and therefore the value that we pick for yi is i.
Otherwise, the value that we pick for yi is the one associated

with the closest distance to the target aiming at minimising

the length of the path3.

B. MIP approaches

In this section we present our MIP approaches to BVUP.

We remark that in MIP we are forced to express all

constraints in terms of linear equations, which leads us

to models that are more verbose with respect to the CP

models. The set of constants and variables of the model

is contained in the set of constant and variables of CP. The

only difference is that, in MIP, we replicate the set of flow

variables per path. More concretely, instead of fuv , we have

f i
uv . We also use variables xv , which are Boolean variables

referring to the usage of the nodes.

The model is presented in Table III. Constraints (1) and

(2) ensure that flow emanating from the source is 1, for each

value of k (i.e., k paths start from the source). Constraints

(3) and (4) disable the flow on a given arc if their nodes are

not used. Constraint (5) ensures the conservation of the flow.

We enforce disjointness by constraining the outgoing flow

3The distance matrix is not updated during search so it might happen
that the chosen successor is not the closest to the target.
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Table III
MIP IV: HANDLING THE UPPER BOUND ON THE LENGTH OF THE PATH VIA REPLICATION OF THE GRAPH

Minimize obj
Subject to

∑
v∈in(s) f

i
vs = 0 ∀1 ≤ i ≤ k (1)

∑
v∈out(s) f

i
sv = 1 ∀1 ≤ i ≤ k (2)

f i
uv ≤ xu ∀1 ≤ i ≤ k,∀〈u, v〉 ∈ E (3)

f i
uv ≤ xv ∀1 ≤ i ≤ k,∀〈u, v〉 ∈ E (4)∑
v∈in(u) f

i
vu =

∑
v∈out(u) f

i
uv ∀1 ≤ i ≤ k,∀u ∈ V − {s, t} (5)

∑
v∈out(u),1≤i≤k f i

uv ≤ 1 ∀u ∈ V − {s, t} (6)
∑

〈u,v〉∈E f i
uv ≤ λ ∀1 ≤ i ≤ k (7)

for every internal node (for every value of k) to be at most

1 (Constraint (6)). Because of Constraint (5), Constraint (6)

indirectly enforces that the incoming flow for every internal

node is at most one (for every value of k). As we are keeping

a separate graph per path, the length constraint is enforced

by imposing that the used edges in each graph is less than

λ (see Equation (7)). As BVUP is a decision problem, the

objective (obj) is 1 (i.e., we are just interested in a solution

that satisfy the constraints).

� �
��

�
���

Figure 3. Splitting relay nodes.

Here we are describing the MIP approach that provided

us with the best results (MIP IV). However, three other

approaches were tried: MIP I, MIP II and MIP III. MIP I is

actually an approach to a relaxed version of BVUP where

we ignore the length constraint. In MIP II we encode the

length constraint by associating an integer variable with each

node representing its distance to the source and constraining

those variable through conditional constraints. In MIP III

we encoded disjointness by splitting the nodes (as shown in

Fig 3). That is, instead of constraining the incoming degree

and the outgoing degree of the node to be 1, we split each

node and set the capacity of the new edge to 1 to enforce

that the node only participates in one path (i.e., used once).

IV. EXTENDING TO MULTI-SENSOR BVUP

The problem of finding disjoint paths for a selection

of sensors to a single target (multi-sensor BVUP) can be

decomposed into a set of BVUPs (one per sensor) that can be

solved independently. Both the CP and the MIP models can

be extended by applying them individually to each sensor.

Results: The instances used in the empirical eval-

uation are connectivity graphs. To generate them, firstly

we generate WSN topologies similar to the technique used

in [14]. The two-dimensional network area is divided into

grid cells, where one sensor node is placed inside one

unit grid square of 8 m × 8 m and the coordinates are

randomly perturbed. This is an approximation of manual

deployment of sensor nodes, such as in a building or a city

that has regular symmetry. In this simulation, we want the

original topologies, i.e. topologies without relays as sparse

as possible, because sufficiently dense networks do not need

additional relays to guarantee the existence of disjoint paths.

In order to get sparse networks (average degree 2–3), we

generate more grid points than the number of sensor nodes.

For example, we use 6 × 6 and 11 × 11 grid squares to

randomly deploy 25 and 100 nodes, respectively. Candidate

relays are also distributed in a grid area, where a candidate

occupies a unit grid square of 6 m × 6 m. For n25 and n100

topologies, we use 49 and 196 candidate relays, respectively.

Both sensor and relay nodes use the same transmission

range, i.e. 10 metres. The location of the sink was fixed

at the top-left corner of the network. The maximum path

length is set to 10 for n25 and 20 for n100 networks.

When it comes to the platforms used for the experiments

of this section and the next one, the MIP experiments were

obtained using CPLEX 12.3 and the version of Choco used

in the CP experiments is 2.1.5. The experiments were run on

Linux 2.6.25 x64 on a Dual Quad Core Xeon CPU machine

with overall 11.76 GB of RAM and processor speed of 2.66

GHz.

The CP approach solves all the n100 instances with

average solution time of 511 sec. The MIP models do not

scale so well, with the time taken to generate the instances

being longer than the solution time for the CP model.

Figure 4 presents the performance of our BVUP approach

measured over a set of 7474 instances generated during

an execution of our QuickXplan based approach to the

Additional Relay Placement problem (explained in the next

section), when solving the optimisation problem associated

with an instance of 100 sensor nodes and 196 candidate

relays. As it can be observed in Figure 4(a), close to 99%

of the instances are solved with 10 or less failures. In

Figure 4(b) we are comparing the time distribution with

the failure distribution. As expected, there is almost a direct

correlation between time and failures (ignoring the few cases

where we time out). Figure 4(c) relates the time to the
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Figure 4. A summary of the performance of our CP approach to BVUP over a selection of 7474 instances generated during an execution of our QuickXplain
based approach to the Additional Relay Placement problem when solving an instance of 100 sensor nodes and 196 candidate relays.

cardinality of the set of candidate relays. When focussing

on the hard cases, we can observe that there is a high

variance with respect to the cardinality thus suggesting

that the difficulty of the instances is not correlated to the

cardinality of the set. The relation between failures and

cardinality (shown in 4(d)) suggests that the speed (i.e.,

number of failures per unit of time) reduces when we have

more relays, which is not surprising since the time spent in

propagation increases with the number of relays.

V. DEALING WITH THE MINIMISATION OF RELAYS

Modelling the minimisation of relays in MIP is straight-

forward: we just set the objective to the sum of used

relays (
∑

v∈V−(S∪{t}) xv) and replicate the constraints per

sensor. In CP we could do something similar: replicate the

constraints per sensor, set the objective as done in MIP

and use Branch and Bound. However, neither of the two

approaches work in practice due to the size complexity of

the models. For this reason, we explore another alternative

in CP: to compute an approximation to an optimal set

of relays by mapping solution of the multi-sensor BVUP

problem to conflicts and computing minimal conflicts using

QuickXplain.

QuickXplain is an algorithm designed to compute pre-

ferred explanations and relaxations for over-constrained

problems [10]. In its basic form the algorithm receives a set

of inconsistent constraints S and returns a subset C, which

corresponds to a conflict of S. C is a minimal set in the

sense that C is still inconsistent but the removal of any of

its constraints will make it consistent. QuickXplain outper-

forms related approaches for computing minimal conflicts

by applying a divide-and-conquer strategy.

We approximate the minimisation of the number of used

relays by mapping solutions of the optimisation problem to

conflicts. We say that a conflict is a set of relays that allows
us to find disjoint paths for all the sensors.

Under this interpretation, we have as many constraints in

S as candidates relays. That is, for each relay r we have

a constraint in S stating that r is available to be used

in a path from a sensor to the target. Relays that are not
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constrained are unavailable. Notice that the more constraints

we add to the set the more likely it is to have a conflict.

To put it differently, if a subset C ′ of S is consistent any

subset of C ′ is consistent too thus showing that our model

holds monotonicity, which is required to use a minimal

conflict approach. Following this interpretation, we have that

a minimal conflict corresponds to a minimal set of relays

needed to ensure disjointness.

We remark that the solution that we get from our Quick-

Xplain based method is an approximation to the objective

of finding a minimum set of relays since the solution is

a minimal set and not a minimum set. That is, it could be

very well the case that there is another minimal set of relays

of smaller cardinality. Moreover, as we are using a timeout

for the satisfiability checks, minimality is also approximated

since a set of relays might be discarded (i.e., flagged as a

non conflict) due to the timeout.

Results: Tables IV and V present the results that we

have obtained with the different approaches on the n25 and

n100 instances introduced in Section III. For each approach

we report the best cost found (the number of chosen relays)

and the time (in seconds) spent in finding it. The results of

the local search approach (LS), already published in [14],

were reproduced using GCC 4.4.4.

Our first observation is that the problem becomes very

easy when the length constraint is disregarded. Indeed,

BVUP without the length constraint is a mere flow prob-

lem. We suspect that the problem is still polynomial when

minimising the number of relays (see column MIP I in

Table IV) but this still remains to be proved. On the n25

instances [14], MIPs II and III failed almost completely

because of the encoding of the length constraint, timing out

after 30 minutes. MIP IV solved almost all instances in less

than 10 seconds, faster than the local search, but on a few

instances was significantly slower. CP I outperformed CP II.

As mentioned before, in CP II we use the Tree con-

straint [1]. The Tree constraint (as presented in [1]) is

in the process of being migrated to the latest version of

Choco. The experiments of the CP II approach were carried

out using a preliminary version kindly provided by Jean-

Guillaume Fages. In this version, the constraints on the

degree of the nodes are handled independently using oc-

currence constraints4. There is no pruning taking advantage

of the structure of the graph to filter the degree of each node.

This is important in our problem since we can early detect

failures by discovering articulation points.

We noticed that one issue with our CP approach is the

high number of BVUP instances that need to be solved dur-

ing the execution of QuickXplain. In general, we spend very

little time but the number of instances is high. In CP I and

CP II we are recreating and reading the models associated

with the sensors every time. CP III is an optimisation of

4http://www.emn.fr/z-info/choco-solver/

CP I where we keep the models in memory to avoid their

recreation. In CP IV we enhance CP III by ordering the

relays for QuickXplain by increasing distance from the sink,

and reducing the timeout for solving each BVUP instance.

In order to appreciate the impact of ordering the relays

in CP IV, in Figure 5 we compare this heuristic with its

corresponding anti-heuristic on the n25 instances. That is, in

the anti-heuristic we order the relays by decreasing distance

from the sink. As can be observed in Figure 5, the choice of

heuristic makes a significant difference to the performance

of the model. The closest-first heuristic reduces the runtime

over the anti-heuristic by more than 80% (199 sec to 1072

sec), and yet generates solutions with fewer relays (7.95 to

9.25).

For the n100 instances (Table 4), the MIP model did not

scale up, failing to find a feasible solution in 1 hour. The CP

approach is competitive in time with the local search method,

although with lower quality solutions. It is important to

remark that most of the time is spent re-reading models. In

Table V we show both: the time spent by Choco solving the

models and the total time. We attempted to keep the solvers

in memory to avoid the re-reading of the models using the

notion of worlds in Choco, but run out of memory for the

big instances.

VI. CONCLUSION AND FUTURE WORK

Designing wireless sensor network topologies that are

robust to failures is an important task for a wide range

of different monitoring applications, and is solved in the

literature by local search approaches that add additional

relay nodes to achieve robustness. We have identified that

the underlying decision problem – do there exist k node-

disjoint paths of length at most l from a sensor to a sink –

is known to be NP-complete. We have developed complete

constraint programming and mixed integer programming

models for solving the problem. For larger problems, the

CP model, implemented in Choco, outperforms the MIP

approach, implemented in CPLEX, returning the solutions

while the MIP model is still generating the problems. This

provides an important tool for network operators, enabling

them to evaluate proposed deployments in real time. We then

presented the first approach to extending the CP solution to

the minimisation problem, where the aim is to minimise

the number of additional relays to ensure robustness. We

implemented an approach based on QuickXplain, which

searches for a minimal set of relays, producing solutions

in faster time than the local search, but with higher cost.

Future work will focus on both the decision problem and

the optimisation problem. For the decision problem, we will

study the performance of the CP model for a wider range of

networks. For the optimisation problem, we will implement

the following Large Neighbourhood Search (LNS) approach.

A LNS approach to the Additional Relay Placement
problem: once we have a solution of multi-sensor BVUP, we
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Table IV
RESULTS WITH THE DIFFERENT APPROACHES FOR 25 SENSOR NODES AND 49 CANDIDATE RELAYS

LS MIP I MIP II MIP III MIP IV CP I CP II
instance cost time cost time cost time cost time cost time cost time cost time
scen-n25-01 6 29.48 4 0.63 4 407 4 608 4 1.56 4 433 6 673
scen-n25-02 7 10.74 4 0.47 - 1800 5 1800 5 3.07 5 106 6 301
scen-n25-03 8 20.29 4 0.58 - 1800 - 1800 5 14.68 8 505 9 651
scen-n25-04 6 18.76 5 0.64 5 49 5 577 5 1.78 9 145 11 666
scen-n25-05 9 11.73 3 0.77 - 1800 - 1800 4 5.82 7 558 8 841
scen-n25-06 10 14.56 5 1.06 - 1800 24 1800 8 359.90 9 298 9 428
scen-n25-07 7 47.25 6 1.02 - 1800 - 1800 7 9.15 7 732 7 320
scen-n25-08 11 19.87 5 0.70 - 1800 30 1800 7 117.36 9 466 9 779
scen-n25-09 9 23.72 6 1.36 - 1800 - 1800 7 33.44 7 229 7 235
scen-n25-10 7 17.02 5 0.53 - 1800 - 1800 6 9.46 6 107 6 199
scen-n25-11 9 12.86 6 1.10 - 1800 - 1800 7 19.04 10 240 11 575
scen-n25-12 3 19.57 3 0.52 - 1800 3 1255 3 3.07 8 432 5 474
scen-n25-13 10 20.81 6 0.94 - 1800 - 1800 8 205.16 10 215 10 634
scen-n25-14 7 18.52 6 0.96 - 1800 - 1800 6 3.08 10 562 11 1172
scen-n25-15 7 1.83 5 0.48 - 1800 6 1640 6 2.02 8 154 6 158
scen-n25-16 6 40.24 5 0.51 - 1800 - 1800 5 2.12 7 173 7 174
scen-n25-17 9 14.79 5 0.92 - 1800 - 1800 6 23.83 9 96 9 373
scen-n25-18 9 10.74 7 0.84 - 1800 - 1800 7 6.76 7 295 7 259
scen-n25-19 8 16.84 5 1.07 - 1800 - 1800 6 4.68 7 537 7 636
scen-n25-20 10 30.08 5 0.65 - 1800 - 1800 7 150.98 10 592 12 1532

Table V
RESULTS WITH THE DIFFERENT APPROACHES FOR 100 SENSOR NODES AND 196 CANDIDATE RELAYS

LS CP III CP IV
instance cost time cost solve time total time cost solve time total time
scen-n100-01 9 22108.70 19 4038.98 6723.31 17 1411.00 3845.96
scen-n100-02 11 13144.90 20 4541.52 6787.96 18 1244.68 3486.35
scen-n100-03 5 997.63 19 3357.86 6014.40 15 1447.18 4214.37
scen-n100-04 5 174.95 15 3273.79 6268.68 13 1515.62 4421.60
scen-n100-05 12 15699.70 20 2896.29 5876.92 20 1532.72 4451.92
scen-n100-06 7 4905.40 20 5042.72 8241.95 19 1473.99 4122.45
scen-n100-07 6 1974.81 21 4255.08 7169.11 16 1653.99 4725.40
scen-n100-08 11 14462.00 17 3092.81 5523.46 19 1697.22 4816.48
scen-n100-09 8 1751.50 14 2534.82 5013.07 13 1383.42 4042.70
scen-n100-10 8 17362.70 20 4133.57 7122.75 18 1278.03 3872.07
scen-n100-11 6 12237.10 14 3762.80 6394.02 12 1376.92 4029.24
scen-n100-12 9 2043.61 17 3305.84 6377.01 18 1582.52 4574.32
scen-n100-13 9 1623.28 15 3964.06 6763.79 19 1563.62 4523.04
scen-n100-14 6 14761.90 15 4080.36 7045.69 16 1521.96 4283.17
scen-n100-15 7 15098.70 11 2101.22 4129.03 10 883.64 2909.79
scen-n100-16 5 14958.10 11 1930.22 3884.59 11 871.12 2921.89
scen-n100-17 8 2291.31 21 3290.02 5959.84 16 1524.06 4466.98
scen-n100-18 8 33180.30 21 3828.45 6463.51 14 1164.11 3527.96
scen-n100-19 7 15476.90 16 3129.26 6001.84 14 1365.71 3972.77
scen-n100-20 10 16516.90 14 2985.34 5776.93 15 1287.88 3877.77

can use CP for implementing moves that iteratively improve

the quality of the solution. More precisely, suppose that the

set of relays used by the current multi-sensor BVUP solution

is R1 ⊆ R. We want to find an R2 ⊆ R1 that can be replaced

with a set R3 (subset of R) such that (R1 − R2) ∪ R3 is

still a solution and |R3| < |R2|.
Let us assume that we set the cardinalities of R2 and R3

to α and β (which are parameters to be tuned). The task

now is to find a set R2 of cardinality α to be replaced with

an R3 of cardinality β such that (R1 − R2) ∪ R3 is still a

solution. That is, we have α + β decisions variables where

the domain of those variables in R2 is R1 and the domain

of those variables in R3 is R−R1.

Our plan is to use CP for solving this decision problem.

It is easy to show that the decision problem to be solved by

CP is NP-complete. We prove this by reducing multi-sensor

BVUP to this problem. Let R be the universe of relays for

the LNS decision problem. We set R to R∪R1 where R1 (in

the reduction) is a set of dummy relays ensuring connectivity

such that |R1| = |R| + 1. We constraint |R2| to be equal

to |R1| and |R3| to be equal to |R|. Finding R2 and R3

would be equivalent to solving the given multi-sensor BVUP

problem.

The intuition behind the reduction is that checking

whether the newly added relays can reconnect the sensors

can be complex since, in the worst case, it can be as complex
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Figure 5. Comparing two heuristics for selecting the next relay during the
execution of QuickXplain. In closest we select the relay that is closest to
the target while in furthest we do the opposite

as solving a multi-sensor BVUP instance from scratch.

Even though the LNS decision problem is NP-complete, the

practicality of the approach would rely on the fact that α
and β will be set to small numbers.
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