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Abstract 

Background: Newborn infant neurological function can be measured by monitoring 

electrical activity (electroencephalography) or cerebral oxygenation via NIRS (near 

infrared spectroscopy). In practice the clinical applications of electroencephalography 

(EEG) are limited to monitoring infants following moderate to severe hypoxic 

ischemic injury (HIE), and for the detection of seizures in at risk infants. NIRS 

monitoring has been the focus of a number of research trials but has no clinical 

applications in the immediate newborn period to date, and is not routinely performed 

in neonatal units.  

Aim: To assess the feasibility of infant neuromonitoring in the immediate period in 

two important clinical scenarios. Firstly, to assess the feasibility of monitoring brain 

activity during the first minutes of life in healthy term infants. Secondly, to assess the 

feasibility and utility of monitoring newborn preterm infants’ brain activity and 

cerebral oxygenation in the context of an interventional randomized controlled trial.  

Methods:  

1. Healthy term newborn infants had EEG monitoring performed for the first ten 

minutes of life. EEG was assessed both qualitatively and quantitatively. All infants 

had respiratory function monitoring performed simultaneously. 

2. Forty-five infants (< 32 weeks gestation) were randomly assigned to different 

methods of newborn infant cord clamping. All infants had EEG and NIRS monitoring 

for the first 72 hours of life. Quantitative features of EEG and median NIRS values 

were compared between groups at 6 and 12 hours of life as a primary outcome 

measure.   
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Results: 

1. Forty-nine infants had EEG recordings. Median (IQR) age at time of initial EEG 

recording was 3.0  (2·5 to 3·8) minutes. End tidal CO2 and tidal volumes increased 

over the first 3 minutes of life and then stabilized. Good quality EEG, with continuous 

mixed frequency activity with a range of 25-50μV, was observed in all infants. The 

majority of EEG spectral power was within the delta band.  

2. There were 45 infants included. One infant died in the delivery room. Median time 

(IQR) from birth until EEG application was 3.05 (1.85 to 5.38) hrs. For primary 

outcome measures, data was available for 42/44 (95%) at 6 hrs and 44/44 (100%) at 

12 hours. There was no significant difference between groups for measures for EEG 

values or cerebral NIRS.  

Conclusion: Infant neuromonitoring in the immediate newborn period is feasible in 

the first minutes of life in healthy term infants and within the first hours of life in 

preterm infants. Normative quantitative data for electrical activity in healthy newborn 

term infants during the first minutes of life is described for the first time. 

Neuromonitoring during the first day of life as an outcome measure for preterm 

interventional trials is possible and the outcomes from this research is promising for 

further trials.  
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Aims and Objectives 

The primary aim of this thesis is to assess infant neuromonitoring in the immediate 

newborn period. A real time objective measure of brain function is currently not 

readily available in the immediate newborn period. The potential benefits of having 

real time information on infant brain function for clinicians will be explored. 

In this thesis, I will describe the research performed which aimed to assess the 

feasibility of acquiring very early EEG data in term infants, assessing the quality of 

data acquired, and producing normative EEG data in the immediate newborn period. I 

will also describe respiratory physiological parameters in the immediate newborn 

period to clarify the physiological stage of newborn transition that the EEG data 

acquired represented.  

Furthermore, a major objective of this research was to perform neuromonitoring in 

preterm infants as early as possible, in the context of a randomized controlled trial, 

and to utilize measures of brain activity and cerebral oxygenation as outcome 

measures. It had been reported in a large Cochrane review that the incidence of 

intraventricular haemorrhage was lower in preterm infants following delayed cord 

clamping, or umbilical cord milking compared to infants who received immediate 

cord clamping(1, 2). The physiological basis for an increased incidence has been 

supported by work with animal models (3). However, a reduced incidence of 

intraventricular haemorrhage following DCC or UCM has not translated into 

improved neurodevelopmental outcomes to date (1). The objective within this thesis 

was to assess whether different patterns of cerebral function could be identified 

following different cord clamping strategies. 
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In summary the aims were: 

1. To assess the feasibility of EEG monitoring in term infants in the immediate 

newborn period  

2. To produce normative EEG data ranges for term infants in the first 10 minutes 

of life, and assess whether these values correlate with newborn transitioning 

3. To assess the value of preterm infant neuromonitoring  (EEG & NIRS) in the 

immediate newborn period in a randomised controlled preterm infant study on 

different cord clamping strategies 
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Chapter Summary 

Chapter 1: Current modalities for monitoring infants in the immediate newborn 

period and the rationale for neuromonitoring 

Current modalities for physiological monitoring of newborn infants are described. 

Current international guidelines and ongoing research topics are explored. The current 

methods and published research on neuromonitoring in the immediate newborn period 

is described, and a systematic review on EEG monitoring in the delivery room is 

presented. The rationale for investigating the feasibility and utility of EEG monitoring 

in the immediate newborn period for term and preterm infants is discussed.  

 

Chapter 2:  General methodology 

The setting for each study, the subjects and recruitment process, interventions and 

monitoring techniques, principal outcomes measured, ethics, and the type of statistical 

analysis applied are described.   

Chapter 3: Respiratory Adaptation in Term Infants following Elective Cesarean 

Section 

The timeframe for respiratory adaptation in healthy term infants following elective 

cesarean section has not been described in detail previously. Prior to the study 

reported in Chapter 4 members of our research team had recruited fifty term infants in 

a study where respiratory function monitoring was performed following elective 

caesarean section. It was decided to continue the recruitment for this study in parallel 

with the recruitment process described in Chapter 4. This allowed for accurate 

documentation of respiratory adaptation in a larger cohort of infants. Therefore the 

understanding of the EEG recordings obtained in Chapter 4 was enriched as it could 

be clearly seen that our cohort of infants had achieved respiratory adaptation by the 

time EEG recordings were obtained.  

  

 



 17 

Chapter 4:  EEG for the Assessment of Neurological Function of Term Infants in 

the Immediate Newborn Period 

 

The first objective of this research was to assess the feasibility of obtaining EEG 

recordings during the immediate newborn period. This was a prospective study where 

fifty term infants born by elective caesarean section were antenatally recruited and 

had EEG monitoring for the first ten minutes of life. This is the first study to describe 

quantitative features of brain activity in healthy term infants in the immediate 

newborn period.  

 

  

Chapter 5: Neuromonitoring in the immediate newborn period in a preterm 

infant randomized controlled trial: Clamping the Umbilical cord in Premature 

Deliveries (CUPiD)  

 

The second objective of this research was to assess the feasibility of monitoring 

newborn preterm infants’ brain activity and cerebral oxygenation in the context of an 

interventional randomized controlled trial. In this chapter we describe a prospective, 

registered randomized controlled trial in preterm infants designed to incorporate 

measures of EEG and NIRS as primary outcome measures. Different umbilical cord 

clamping interventions was chosen as a study topic as there is currently much debate 

regarding neurological outcomes following different interventions. International 

guidelines advocate performing trials to further assess which approach is superior.   

  

Chapter 6:  Conclusion and future directions 

The results of this research are evaluated and future directions based on the results are 

discussed.  
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Chapter 1  

Current modalities for monitoring infants in the 

immediate newborn period and the rationale for 

neuromonitoring 

1.1 Introduction  

In recent decades, we have witnessed a significant increase in the number of 

monitoring options for newborn infants. Examples include cardiac 

(electrocardiography (ECG), echocardiography and non-invasive cardiac output 

monitoring), respiratory (capnography and respiratory function monitoring), and 

neurological monitoring (electroencephalography and near infrared spectroscopy). 

However, at present, routine monitoring of preterm and term infants requiring 

advanced stabilisation in the immediate newborn period has changed very little over 

time.  

 

As adjuncts to clinical monitoring during initial infant stabilisation in the delivery 

room (DR), the recent 2015 ILCOR recommendations advise the use of two objective 

assessment tools as routine for preterm, and term deliveries where advanced 

stabilisation measures are expected: 1) pulse oximetry (with or without ECG) to 

regulate oxygen delivery, and 2) exhaled carbon dioxide (CO2) detectors for 

confirmation of correct endotracheal (ET) tube placement (4). These two devices 

generate real-time accurate physiological data and, if recorded, document changing 

observations over time. The information provided assists in clinical decision-making 
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in real-time and has the potential to improve both short and long-term outcomes for 

newborn infants.   

 

The relative lack of monitoring options in the DR is both a reflection of the 

difficulties in acquiring the information, and interpreting this data for decision making 

in real-time. As Bradley and Field reflected, “not all that is measurable is of value, 

and not all that is of value can be measured” (5). Monitoring techniques encompass 

simple clinical evaluation to the potential role of newer monitoring devices, including 

monitoring cerebral activity and cerebral oxygenation during the first minutes of life.   

It is important to understand the historical perspective and current available methods 

for monitoring newborn infants in order to understand the rationale for infant 

neuromonitoring in the immediate newborn period. A summary of current newborn 

infant monitoring techniques and newer proposed methods can be seen in Table 1.1. 

 

1.2 Review of non- neurological infant monitoring in the immediate newborn 

period  

 

1.2.1 Historical context and the Apgar score 

Dr. Virginia Apgar, in 1953, was the first to describe newborn monitoring in the 

immediate newborn period in a methodical manner. The Apgar score is the sum of 

values based on the newborn respiratory (respirations, skin colour), cardiovascular 

(heart rate, skin colour) and neurological (muscle tone, reflex irritability) systems (6). 

With the exception of heart rate (HR), all of the variables are based on visual 

inspection of the infant and as such are somewhat subjective. Large cohort studies 

identified that 5 minute Apgar scores of < 7 were associated with increased risk of 
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neonatal death and cerebral palsy in both term and preterm infants, indicating that 

early clinical assessments may be reliable and meaningful for newborn infants (7-9). 

On addressing the inter rater variability of the score, Apgar reported that, “When two 

or more people decide independently, we find a range of one value above or below a 

decided score to be the widest variation” (10, 11).  Currently, Apgar scores remain 

central to our interpretation of a newborn’s condition at birth. They are routinely 

assigned to all infants in the immediate postnatal period and are usually collected as 

part of research trials both to assess baseline characteristics of study participants and 

in some cases as outcome measures. Newborn resuscitation guidelines advise 

initiating support during infants’ transition based on assessment of respirations, tone 

and heart rate, which are all components of the Apgar score (12-14).  

 

However, more recent studies have shown poor inter and intra rater reliability with 

regard to Apgar score assignment, especially when the infant is preterm or ventilated 

(15, 16). The ability of the five minute Apgar score to predict outcome seem less 

likely than previously thought. Singh et al has shown that in very preterm infant 

delivery there is no Apgar score cutoff below which “a burdensome outcome was 

assured or above which an unscathed outcome was likely”. Five minute Apgar score 

and HR values also displayed poor sensitivity and specificity for either survival or 

survival without disability (17). Manley and colleagues asked clinicians to predict the 

outcome of preterm infants (<26 weeks gestation) based on their clinical appearance 

in the DR, at pre-specified time points of 20 seconds, 2 minutes and 5 minutes. This 

study was based on video recordings of the preterm infants, and monitors displaying 

HR and oxygen saturation (SpO2) values were visible. Trainees and staff 

neonatologists predicted infant survival poorly at each time point. The authors 
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concluded that neonatologists’ “reliance on initial appearance and early response to 

resuscitation in predicting survival for extremely premature infants is misplaced” 

(18).    

 

Updated Apgar scoring systems have been proposed and allow for more appropriate 

descriptions of the condition of the preterm infant at birth. The Combined-Apgar 

score reports the infants’ score in each of the five components of the Apgar score 

(specified Apgar score), and the interventions required to achieve this score 

(expanded Apgar score) (19, 20). This Combined-Apgar score has been shown to be 

superior in predicting outcome in preterm infants when compared to the conventional- 

Apgar score (21).  However, this updated scoring system has yet to be universally 

adopted and the relevance of conventional Apgar scores in term ventilated, and 

preterm infants remains limited. Therefore, we can conclude that clinical assessments 

of newborn infants are important but limited, and enhanced monitoring of infants is 

required for improved real time information, which is not subject to inter rater 

variability. Clinical parameters such as oxygen saturation, heart rate, peripheral 

perfusion and respiratory status have received much attention recently.  

 

1.2.2 Oxygen saturation monitoring 

Clinically, infants transition from blue (cyanotic) to pink (normal oxygen saturations) 

in colour during uncomplicated newborn transition. O’ Donnell and colleagues 

assessed clinical perceptions of newborn infant colour in the DR (22). They found 

wide variation in observations and concluded that, “clinical assessment of a newborn 

infant’s colour may be unreliable”. Assessment of arterial oxygen saturation by pulse 

oximetry is based on the Beere-Lambert law that relates the attenuation of light to the 
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properties of the materials through which the light is travelling; and photo-

plethysmography, a non-invasive optical technique used to detect blood volume 

changes in the microvascular bed of the tissue (23). Aoyagi and Kishi, who realized 

that oxygenated hemoglobin absorbs more light at infrared wavelengths and 

deoxygenated hemoglobin absorbs more light at red wavelengths, developed arterial 

oxygen saturation monitoring by pulse oximetry in 1972. The changes during systole 

and diastole in the ratio of red and infrared light energy absorption is used to produce 

the pulse oxygen saturation (24).  

 

The device was first commercialized in 1981, and the use of pulse oximetry for 

continuous oxygen monitoring in newborns was first described in 1986 (25). The 

clinical benefits of pulse oximetry were quickly recognised, and it has become the 

mainstay of non-invasive, continuous SpO2 monitoring in newborns (26). Oxygen 

saturation monitoring of preterm and compromised term infants is now standard in the 

DR and these values serve as a guide to stabilisation (25, 26). The titration of oxygen 

therapy in preterm newborn stabilisation is now routine to achieve targeted saturations 

by 10 minutes of age (27, 28). Dawson and colleagues have published oxygen 

saturation percentile charts for the first 10 minutes of life (27). In their study of over 

450 infants, they observed the SpO2 values of preterm infants increased at a slower 

pace than term infants. At 5 minutes, the median (interquartile range) SpO2 was 86% 

(80-92) in preterm and 92% (83-96) in term infants.  They have published 3 sets of 

percentile charts based on gestation (>37 weeks, 32-37 weeks, and < 32 weeks), 

which may guide neonatal teams in titrating oxygen therapy in the DR. However, 

these ranges were developed in a cohort of infants born when immediate cord 
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clamping was frequently practiced following delivery. These ranges may not be as 

relevant where delayed clamping is practiced.  

 

Pulse oximetry has gained widespread acceptance in neonatal care over the past three 

decades because of its reliability, ease of use and lack of heat-related complications. 

The main physiological limitation of pulse oximetry is the inability to detect 

hyperoxemia in the higher SpO2 range (>90%) because of the shape of the oxygen-

hemoglobin dissociation curve. Thus, relatively small increases in SpO2 can be 

associated with a large increase in PaO2 (29-31). This is particularly important for 

preterm infants receiving supplemental oxygen because of their vulnerability to 

oxygen toxicity and oxidative stress (32).  Despite this limitation, pulse oximetry is 

the gold standard for monitoring oxygen saturation during preterm infant stabilisation, 

and should be used following all preterm and compromised term deliveries.  

 

1.2.3 Heart rate monitoring 

Monitoring HR helps to guide newborn transition and the need for intervention in the 

immediate newborn period. Current recommendations advise that HR should be 

assessed clinically, and if positive pressure ventilation is commenced HR should be 

monitored by pulse oximetry, with the option of additional ECG monitoring (4).  

 

Whilst clinical assessment of HR by auscultation at the apex is more accurate than 

assessment by palpation of the umbilicus, all clinical assessments may misrepresent 

the actual HR (33). Kamlin et al. compared palpation and auscultation of HR to ECG 

determined HR in term newborns in the DR. They found that clinical assessments 

were inaccurate, and infant HR was underestimated when compared with ECG HRs 
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(34). Hawkes et al. studied healthcare professionals as they palpated a simulated 

pulsating umbilicus, listened to a tapping heart rate, or auscultated a simulated HR. 

They found that while study participants performed well at identifying HR > 100 

beats per minute (bpm), almost two thirds of participants failed to recognize a HR less 

than 60 bpm for all methods of assessment (35). These findings emphasize the 

importance of early accurate objective HR monitoring during preterm infant transition 

for identification of infants who may require support or active resuscitation (HR less 

than 60 bpm).  

 

Pulse oximetry provides real time accurate information about the HR of infants (36).  

However, pulse oximetry values are not available immediately as the sensor takes 

time to apply correctly and once applied, there is a delay before the monitor provides 

a reading. Limb perfusion will affect the time taken to achieve a pulse oximeter heart 

rate (36).  Studies that have assessed the feasibility of obtaining prompt and reliable 

pulse oximetry readings have reported times to signal acquisition of between 1 and 2 

minutes after delivery (28, 37). There is conflicting evidence as to whether quicker 

signal acquisitions are obtained by applying the sensor cable to the oximeter prior to 

applying the sensor to the infant, or after. Observational studies reported that the 

quickest method involved turning on the pulse oximeter prior to delivery, applying the 

sensor to the infant’s right hand and then connecting the cable of the sensor to the 

oximeter. This results in mean readings within 25 seconds of reaching the 

resuscitation table in a research setting (37, 38). A recent randomized controlled trial 

(RCT) in the DR contradicted these findings and found significantly faster signal 

acquisition times in infants who had the sensor connected to the oximeter first (39). A 

limitation of pulse oximetry HR monitoring is that HRs < 100 bpm are not 
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consistently detected, and in a study by Kamlin et al were only reported 89% of the 

time (36).  

 

 ECG monitoring can provide accurate HR values sooner than pulse oximetry 

following delivery (36, 40). The electrodes can be applied quickly and there is little 

lapse in time waiting for monitor readings to appear. Katheria and colleagues reported 

that median times to acquire a signal from ECG and pulse oximetry were 4 seconds 

and 32 seconds respectively (40). A limitation of ECG monitoring is the risk of 

pulseless electrical activity being misinterpreted as HR on ECG (41).  Doppler 

ultrasound blood flow HR assessments in the DR are accurate compared with clinical 

and pulse oximetry assessments (42). Measurements can be taken through a 

polyethylene bag. However, clinical experience is required for accurate assessments 

and continuous measurements are not practical.  

 

ECG monitoring cannot replace the need for pulse oximetry, which is necessary for 

SpO2 monitoring. However, given that ECG monitoring is more accurate than clinical 

estimations, ECG may prevent unnecessary interventions secondary to false clinical 

estimations of low HR. Alternatively, it could increase interventions, which may or 

may not be appropriate, as a result of earlier accurate bradycardia detection. Whilst 

awaiting further evidence, there are a few important points to be made: initiation of 

ECG monitoring in the DR is easily achievable, is more accurate than clinical 

assessment and provides HR values more expediently than pulse oximetry. Clinical 

trials are required to assess whether ECG monitoring affects the frequency of 

stabilisation interventions, and ultimately whether its use affects stabilisation 

outcomes.   
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1.2.4 Peripheral perfusion monitoring 

Peripheral perfusion is determined by cardiac output and the caliber of the vessels 

transporting blood to the peripheries. Current clinical methodologies for non-invasive 

monitoring of peripheral perfusion include assessments of capillary refill time, 

peripheral temperatures, and palpation of peripheral pulses. Each method relies on 

subjective assessments and continuous measurements are impractical. Blood pressure 

monitoring by Doppler and oscillometric methods are feasible in the DR and 

measurements for term infants have been reported (43).  However, non- invasive 

measurements are not reliably consistent in preterm neonates and invasive BP 

monitoring is not practical within the DR setting. Interpretation of and intervention 

based on non-invasive blood pressure measurements in the immediate newborn period 

is currently not recommended.  

 

A recent review by Baik et al. identified four studies of echocardiographic monitoring 

during newborn stabilisation in term infants (44-48). Left ventricular output and 

stroke volume increased over the first 15 minutes of life and one study reported an 

increase in left to right shunting across the ductus (46-48). The studies did not assess 

echocardiographic measurements of HR.  The authors of the review concluded that 

echocardiographic monitoring in the DR would enhance our knowledge about 

“cardiac function changes” (44). However, it does not add useful clinical information 

during newborn stabilisation, and routine monitoring is not advised.  

 

Non-invasive continuous cardiac output monitoring (NICOM) is now feasible in 

neonates (49). This technology is based on the assumption that changes in the 

resistance to electrical currents captured by electrodes on the thorax are directly 
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related to changes in aortic volume during different stages of the cardiac cycle (32).  

NICOM measurements correlate well with timed echocardiographic measurements 

(49, 50).  However, NICOM may underestimate the actual cardiac output value (49). 

Song and colleagues performed 108 paired NICOM and echocardiography studies in 

40 preterm infants (51). Right and left ventricular output had a high level of 

correlation between the two modalities, even in the presence of a significant ductus 

arteriosus. The level of agreement decreased if the infant was on high frequency 

ventilation. The authors noted that while NICOM was a feasible tool to monitor 

trends in cardiac output, absolute values are not reliable, and they do not support 

routine monitoring.  

 

Perfusion index (PI) monitoring is a non-invasive method of assessing real-time 

peripheral perfusion, derived from, and displayed by the pulse oximeter. Pulse 

oximetry values are derived from red (660nm) and infrared wavelengths (910-940nm) 

(52). By using a third wavelength (800 nm), the overall hemoglobin content can be 

calculated and the pulsatile component of arterial blood can be distinguished from the 

non-pulsatile component (53). Perfusion index has been utilized to monitor preterm 

infants in a number of clinical areas (54).  These include screening for congenital 

cardiac disease (55, 56), predicting low systemic blood flow (57), and assessing 

perfusion following blood transfusion (58). However, while PI values are easily 

obtained in the DR, and normative values for preterm infants in the first day of life 

have been published (59, 60), they are highly variable in the immediate newborn 

period, for both term and preterm infants (61).  There are no trials comparing PI and 

clinical assessments of peripheral perfusion in preterm care, nor trials assessing 
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whether PI monitoring affects preterm outcomes. Therefore, evidence in favour or 

against PI monitoring in the immediate newborn period is lacking.  

 

1.2.5 Respiratory support monitoring 

Lung aeration is a critical point in newborn transition from fetal life. Newborn infants 

are at an increased risk of needing respiratory support following delivery.  Inadequate 

ventilation may result in hypoxia and resultant bradycardia. International guidelines 

advise a stepwise approach to achieving optimal ventilation following delivery and 

prior to escalating cardiovascular support; therefore positive pressure ventilation is 

the cornerstone of neonatal resuscitation (62, 63). It is provided either by mask 

ventilation, single or double nasal prongs or via an endotracheal (ET) tube. Adequate 

airway ventilation is assessed clinically by chest rise, an increase in HR, and 

auscultation for air entry on both sides of the lung fields during DR stabilisation. 

Visual assessments of chest rise are not reliable (64). After initiating mask ventilation 

and if the clinical response is suboptimal, guidelines advise repositioning of the mask 

to optimize the seal and reduce leak, and airway opening manoeuvers to combat 

airway obstruction. If there is no clinical improvement after such interventions a 

definitive airway, in the form of ET intubation is advised (4). The mnemonic 

MRSOPA identifies these methods; improve Mask seal, Re- position the airway, 

Suction and/or Open the mouth, increase the inflation Pressure, and consider an 

Alternative airway.   

 

Monitoring stabilisation efficacy in infants in the NNU is achieved by monitoring 

CO2 levels, which can be achieved by measuring either transcutaneous or exhaled 

CO2 levels. There is very little information on CO2 assessment at birth. Studies in the 
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DR have focused on exhaled CO2 detection, either by qualitative or semi quantitative 

disposable colormetric CO2 detectors that change color upon contact with CO2, or 

quantitative capnography that provides a breath by breath end tidal CO2 measurement 

(65). Quantitative capnography is achieved either by mainstream capnography that 

utilises an infrared absorption technique, or side stream capnography that 

continuously transports a sample of gas to a sampling cell within a monitor. Both 

capnography methods provide a continuous visual display of CO2 values 

(capnometry) (65). 

 

CO2 detectors are routinely used to aid in the assessment of correct ET tube 

placement (12). The use of CO2 detectors reduces the time to confirmation of ET tube 

placement and has been endorsed in resuscitation guidelines (12, 66). Their use may 

be limited by false negative readings, during cardiopulmonary arrest and severe 

airway obstruction (67, 68). Employing quantitative capnography following ET tube 

placement also results in quicker and more accurate confirmation of correct placement 

when compared with clinical assessments (69, 70).  

 

The use of CO2 detectors during face mask ventilation has been shown to help 

determine airway patency on an almost breath-to-breath basis, and can aid 

resuscitation teams in recognizing airway obstruction and leak during DR positive 

pressure ventilation (71-74). However, CO2 monitoring is not routine during mask 

ventilation. Van Os and colleagues displayed the benefits of CO2 detectors in helping 

resuscitation teams to recognize airway obstruction in 24 very low birth weight 

infants during positive pressure support in the DR (71). Quantitative capnography 

during mask ventilation has been shown to improve CO2 elimination with the onset of 
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an infant’s respiratory efforts; however, other authors have not found that it reduces 

the occurrence of hypocapnia or hypercapnia (75, 76). In a recent mannequin study 

quantitative capnography was superior to CO2 detectors in improving efficacy of face 

mask ventilation (77). A recent randomized controlled trial found no significant 

difference in the incidence of normocarbia in the first two hours of life between 

quantitative and qualitative CO2 detection (78). 

 

During newborn stabilisations, the user controls ventilation pressures delivered to the 

infants’ lungs. The lungs of newborn infants are susceptible to injury if exposed to 

high airway pressures. Immature animal models have shown that lung injury can 

occur after a few manual inflations at high pressure (79). On the other hand, face 

mask ventilation can be inadequate secondary to leak, even if the user is highly 

experienced (80, 81). In NNUs ventilation adequacy can be assessed by respiratory 

function monitors (RFMs) which are incorporated into modern ventilators (82). They 

provide information not only on airway pressures, but also on delivered tidal volumes.  

The monitor displays breathing pattern, tidal volumes, flow and pressure waves and 

percentages of gas leak. RFMs have also been used to guide positive pressure 

ventilation in newborn resuscitations (83, 84). Schmolzer and colleagues found that 

RFM use during mask ventilation of preterm infants results in significantly less leak, 

more mask adjustments and a lower rate of excessive tidal volume given (84).  RFMs 

have also been used in a RCT, which displayed improved ventilation with masks 

compared with nasal tubes during stabilisation of preterm infants (85). However, the 

use and interpretation of a RFM can be technically challenging for many 

inexperienced users. Milner and colleagues recently surveyed 51 neonatal trainees 

who had used RFMs during preterm stabilisation (86). They found that the usefulness 
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of respiratory function monitoring was dependent on the trainee’s level of experience, 

and that appropriate responses to the RFM data were more frequent in the hands of 

senior clinicians compared with their junior colleagues. Therefore, although 

beneficial, respiratory function monitoring during facemask ventilation is limited by 

user dependency, and further trials are warranted.  

 

1.2.6 Conclusion 

Objective real time physiological monitors are essential in the care of preterm, and 

term infants requiring advanced stabilisation during the immediate newborn period.  

The monitoring tools described thus far do not provide clinicians with information on 

infant brain health during infant transition, the most vulnerable time for brain injury 

in infancy. Assessing brain health in the immediate newborn period has not been 

prioritized historically nor in current international guidelines for monitoring newborn 

infants. The current methods under investigation for assessing brain health in the 

immediate newborn period are described in the next chapter.  
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Table 1.1 Variables and monitoring tools in the immediate newborn period 

 

1 For preterm infants < 32 weeks gestation in the immediate newborn period 
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1.3 Neuromonitoring in the immediate newborn period  

 

1.3.1 Introduction  

As survival rates continue to improve for term infants following hypoxic ischaemic 

injury (HIE) and preterm infants delivered at the cusp of viability, focus has shifted 

on neuroprotection strategies.  The recent Safeboosc trial suggests that brain 

oxygenation monitoring in the NICU results in a reduction in the percentage of 

cerebral hypoxia sustained by preterm infants (87). At present, assessment of 

neurological wellbeing in the immediate newborn period is based on clinical 

assessment alone. As previously described, assessments of muscle tone and reflex 

irritability are incorporated into the Apgar score (6). The brain is the most vulnerable 

organ in newborn infants. As survival of the most immature infants increase, concerns 

have been raised about increased risks of adverse neurodevelopmental outcomes (88, 

89). Resuscitative measures should aim for the best possible neurological outcomes 

and a non-invasive, continuous measurement of cerebral oxygenation and cerebral 

activity would be ideal, but these currently are not routine and their role in this setting 

has yet to be evaluated. The current and proposed methods for assessing brain health 

are summarised in Table 1.2.  
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Table 1.2 Methods for assessing neonatal brain health 
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1.3.2 Cerebral blood flow 

Studies that sought to introduce neurological monitoring into the DR initially focused 

on cerebral blood flow using doppler measurements of cerebral or carotid arteries (46, 

90-94). Monitoring was found to be technically difficult and did not provide 

continuous data (95). Furthermore, there is conflicting evidence on the role of 

cerebral Doppler in identifying impaired cerebral autoregulation and resultant 

abnormal cranial ultrasound findings (96, 97).  

 

1.3.3.1 Cerebral oxygenation- Background 

More recently, researchers have concentrated on near infrared spectroscopy (98). 

NIRS provides non-invasive monitoring of regional cerebral tissue oxygenation 

(rcSO2) (99-112).  NIRS was first described in 1977 by Jobsis as a technology that 

was capable of non-invasive monitoring of oxygenation in tissues, and its first use in 

neonates as a cerebral oximeter was described by Brazy et al in 1985 (113).  

 

Since its development and introduction into clinical practice, there has been 

progressive device and probe development resulting in a range of readily available 

and easy to apply machines (114). Currently most available devices are Food and 

Drug Authority approved for use in neonates (115).  

 

NIRS utilizes the transparency of biological tissue to light in the near infrared 

spectrum to measure tissue oxygenation (116). Light in the near infra-red range (700-

1000nm) penetrates the soft tissues and bones, in particular thin tissues which 

includes the thin neonatal cranium (117). Circulating haemoglobin (Hb) absorbs this 

near infrared light and absorption of the transmitted light will differ depending on the 
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HB’s oxygenation state (118). Changes in tissue concentration of oxyhaemoglobin 

(O2Hb) and deoxyhaemoglobin (HHb) can be measured in real time (118). Total 

haemoglobin [tHb = O2Hb+HHb] and haemoglobin oxygen saturation [StO2 

=O2Hb/tHb] can also be calculated (34). With these values a regional cerebral 

oxygenation concentration rcSO2 or haemoglobin difference [HbD=O2Hb-HHb] can 

be calculated. The rcSO2 reflects a regional balance between oxygen supply and 

demand for the underlying tissue (31). In addition cerebral blood volume [CBV], 

cerebral blood flow [CBF] and cerebral fractionated tissue oxygen extraction can be 

estimated [cFTOE = (pSaO2-rcSO2)/pSaO2](43). Increased cFTOE reflects higher 

oxygen consumption in relation to oxygen delivery to the brain and decreased cFTOE 

suggest less utilization of oxygen by the brain tissue (119). Naulaers and colleagues 

showed a positive correlation between tissue oxygenation index (TOI- vascular 

haemoglobin oxygen saturation) and cFTOE during a validation study in piglets (120) 

(121).  

 

NIRS monitoring allows neonatologists to monitor regional cerebral oxygenation 

(rcSO2) in real time, and for indirect assessments of cerebral blood flow (CBF) and 

cerebral tissue oxygen extraction (cTOE) (31). These NIRS indices can also be 

utilised in combination with continuous blood pressure measurements to monitor 

cerebral autoregulation. However, despite the impressive evolution of this device over 

time, its use in neonates is currently predominantly limited to clinical research, with 

very few centres using NIRS as a bedside tool to manage preterm infants (117).  

 

A disadvantage for many clinicians is the wide range of normative rcSO2 values.  

Although the use of NIRS technology as a cerebral monitor has been available for 
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over 30 years establishing reference normative values for cerebral oxygenation in 

neonates has taken time (32, 33). Values of 55% and 85% are currently being used for 

the INVOS device(119)(Table 1.3). The rcSO2 values below 55% represent cerebral 

hypoxia and above 85% represent cerebral hyperoxia. These values of 55% and 85% 

were determined from an INVOS device, with the adult NIRS probes, but reference 

ranges obtained from the newer small neonatal probes, which tends to overestimate 

rcSO2 values measured by the adult probe, may be more appropriate (122). 

 

Table 1.3 NIRS Reference Values  

 

 

 

 

Initial research which established normative rcSO2 values concentrated on animal 

studies. Hou et al, studied the effects of varying cerebral oxygenation on newborn 

pigs (123). NIRS was used to monitor the rcSO2 of 27 newborn pigs. After 

mechanical ventilation and inhalation of 3-11% oxygen for 30 minutes by the 

newborn pigs, the pigs were grouped according to the rcSO2 in the brain caused by 

inhalation of different concentrations of oxygen. There were six animals each in 

rcSO2< 30%, 30-35%, 35-40%, 40-50% groups and three animals in the rcSO2 > 60% 

group (normal control). This study found that under varying degrees of hypoxia, when 

the rcSO2 is between 30% and 40%, brain injury occurs and the functional zones of 
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the mitochondria are injured. When the rSO2 is less than 30%, there was significant 

impairment in physiologic parameters; the oxygen saturation and pH of blood were 

lower than those of the control group, and the blood lactic acid level was higher than 

that of the control group. Also the mean arterial blood pressure (MAP) of the newborn 

pigs was significantly lower than that of the animals in the control group.  

 

Cerebral hyperoxia on the other hand has also been shown to cause damage to the 

immature brain. Yis et al exposed  rat pups from birth until day five to 21% or 80% 

oxygen (124). The neuronal density and apoptosis in CA1 and dentate gyrus of 

hippocampus, prefrontal cortex, parietal cortex, and retro-splenial cortex were 

assessed by immunohistochemistry and ELISA cell death assay. DNA fragmentation 

was detected by an ELISA that is specific for nucleosome-associated cytosolic DNA. 

Neuronal density of the investigated brain areas were significantly decreased in the 

hyperoxia group. Furthermore, using ELISA cell death and TUNEL assays, they 

observed an increased cell death in the developing brain in the hyperoxia group (124).  

 

Gerstner et al investigated pathways of maturation-dependent oligodendrocyte  death 

induced by hyperoxia in vitro and in vivo. In this study, developing and mature 

oligodendrocytes in vitro were exposed to 80% oxygen from 0 to 24 hours (125). 

Lactate dehydrogenase assay was used to assess cell viability. Furthermore, rat pups 

were subjected to 80% oxygen, and their brains were processed for myelin basic 

protein staining. Significant cell death was detected after 6 to 24 hour incubation in 

80% oxygen in pre- oligodendrocytes but not in mature oligodendrocytes. Cell death 

was executed by a caspase-dependent apoptotic pathway. Accumulation of superoxide 

and generation of reactive oxygen species were detected after two hours of oxygen 
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exposure. The group also extended these studies by testing the effects of hyperoxia on 

neonatal white matter. Postnatal day 3 and day 6 rats showed bilateral reduction in 

myelin basic protein expression with 24 hours exposure to 80% oxygen (125).  

Hyperoxia causes oxidative stress and triggers maturation-dependent apoptosis in pre- 

oligodendrocytes, which involves the generation of reactive oxygen species and 

caspase activation, and leads to white matter injury in the neonatal rat brain. These 

observations may be relevant to white matter injury observed in preterm infants (125). 

 

1.3.3.2 Cerebral oxygenation in the immediate newborn period 

Cerebral NIRS in the immediate newborn period remains limited to research studies, 

but emerging data suggest that it may have a significant role in preterm stabilisation 

in the future (113). Cerebral tissue oxygen saturations in preterm infants have been 

shown to correlate well with superior vena cava flow and left ventricular output in the 

first days of life (126, 127).  A number of studies have displayed the feasibility of 

obtaining cerebral oxygenation values using NIRS during newborn transition (95). 

Normative values for infants (predominantly term) not requiring resuscitation in the 

DR have been published recently (106).  

 

NIRS measurements are readily obtained and in a recent study conducted by this 

group, the NIRS values were obtained within seconds of application of the device in 

the DR, in contrast to the variable time for pulse oximetry saturation readings (128).  

Binder et al performed NIRS on 49 preterm infants in the immediate newborn period 

(103). They reported different rcSO2 transition time courses for infants requiring 

respiratory support and those with normal transitions. Infants requiring respiratory 

support had lower rcSO2 values over the first 10 minutes of life before reaching 
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similar steady state levels as their counterparts. Fuchs et al. reported rcSO2 values for 

51 infants weighing less than 1500g (111). Low median rcSO2 values (37%) were 

reported at 1 minute of life, which continuously rose to steady state levels (61-84%) at 

7 minutes of age. rcSO2 values did not differ in relation to the degree of resuscitation 

required in the DR, but it was noted that 2 infants with subsequent IVHs had rcSO2 

values that were < 10
th

 centile for their cohort. Kenosi et al evaluated transitional 

cerebral NIRS values in preterm infants less than 32 weeks and found that preterm 

infants requiring greater than 30 % oxygen to maintain peripheral saturations had a 

significantly higher degree of cerebral hypoxia (128). All infants initially received a 

FiO2 of 0.3 and oxygen was titrated according to standard resuscitation guidelines. 

There were no differences in cerebral hyperoxia between the two groups. These 

findings suggest that some preterm infants may require a more rapid increase in 

oxygen titration in the DR. At present, NIRS remains in the realm of research for 

infant monitoring in the immediate newborn period, but as more studies emerge, we 

believe that it will have a future role in monitoring preterm infants and guiding 

oxygen titration during DR stabilisations.  

Pichler and colleagues recently performed a pilot RCT, in which infants < 34 weeks 

were randomized in the DR either to cerebral NIRS and SpO2 monitoring, or SpO2 

monitoring alone to guide titration of oxygen therapy (129). They found that 

additional NIRS monitoring significantly reduced the time that infants’ rcSO2 was 

<10th centile in the first 15 minutes of life. There was no difference in rates of 

intraventricular haemorrhage (IVH) or abnormal neurological assessments at 

discharge. The clinical trials where NIRS was performed in the immediate newborn 

period are summarized in Table 1.4. Further trials are required to ascertain how 
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oxygen therapy should be guided when rcSO2 and SpO2 values are both available in 

the DR.  

 

Cerebral NIRS monitoring may also have a future in providing outcome measures for 

neonatal studies. A recent RCT randomized infants (28 – 33+6 weeks gestation) to 

receive either 1-3 sustained lung inflations (30 cm H2O for 15 seconds) followed by 

standard respiratory care, or standard respiratory care only (130). Cerebral tissue 

oxygenation values were similar for both groups over the first 15 minutes of life. 

However, cerebral blood volume patterns differed between groups. Cerebral blood 

volume decreased in the control group over time, but remained static in the 

intervention group who received sustained lung inflations. The authors hypothesized 

that differences may have been caused by impaired venous return secondary to 

increased thoracic pressures during sustained lung inflations, with resultant cerebral 

venous stasis. These findings highlight the importance of assessing cerebral 

haemodynamics during interventional neonatal studies.  

 

Guidelines for the use of NIRS monitoring and EEG in NICUs overlap, and it is 

advised that they should be used simultaneously (131). However, EEG in the 

immediate newborn period has received little attention in the literature.  
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Table 1.4 A summary of neonatal studies assessing cerebral oxygenation in the 

immediate newborn period 
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1.3.4.1 Electroencephalography- Background 

Electroencephalography (EEG) was first discovered in 1875, by an English physician 

Richard Caton, who observed the EEG from the exposed brains of rabbits and 

monkeys. In 1924, Hans Berger, a German neurologist made the first EEG recording 

from the human scalp, by using radio equipment to amplify the electrical activity of 

the brain, and obtained a written output on paper. He claimed that brain activity that is 

observed through the use of EEG can change in a consistent, reliable and recognizable 

fashion when the state of the patient changes, such as going from relaxation to 

alertness, sleep, and lack of oxygen (132). This breakthrough gave rise to further 

research and the varied applications of EEG in use today. 

EEG consists of the summed electrical activities of populations of neurons. The 

neurons are excitable cells with characteristic intrinsic electrical properties, and their 

activity produces electrical and magnetic fields. These fields may be recorded by 

means of electrodes.  

There are two main types of neuronal activity, action potentials and postsynaptic 

potentials (133):   

1. Action potentials are the result of the very rapid depolarization of a neuron 

mediated mainly by changes in permeability of the membrane to sodium and 

potassium ions. They occur when the cell depolarizes to a certain degree from 

its negative resting state potential. Once the threshold is reached, there is a 

rapid firing of the action potential (about 1 ms) from the beginning of the axon 

at the cell body down to the axon terminals. Due to action potentials being 
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very rapid and brief, the electrodes placed on the scalp simply cannot detect 

them, and it is not possible to monitor by EEG. 

2. Postsynaptic potentials are voltages produced when the neurotransmitters bind 

to the receptors on the membrane of the postsynaptic cell, making ion 

channels open or close. They are mediated by a number of neurotransmitter 

systems and generally entail slower changes in membrane potentials. The 

change in electrical charge outside the membrane lasts in the extra-cellular 

space for up to 200 ms. The extra-cellular electrical charge, positive or 

negative, is what is measured with electrodes placed on the scalp. Therefore, 

EEG is a measure of summated postsynaptic neuronal activity in the cortex 

and represents a sum of excitatory and inhibitory postsynaptic potentials.  

 

EEG exhibits a rich variety of frequencies, amplitudes and waveform morphologies 

from all monitored brain regions. The most familiar classification uses EEG 

waveform frequency (Alpha waves - 8-13 Hz, Beta waves - >13 Hz, Theta waves - 

3.5-7.5 Hz, Delta waves - <3 Hz)(134)(Figure 1.1). Neonatal EEG can be assessed 

qualitatively and quantitatively. The neonatal EEG contains complex spatiotemporal 

information and interpretation is more complex than the interpretation of other vital 

sign signals such as heart rate or respiratory rate. Qualitative EEG analysis is mainly 

used for clinical purposes. It is based on visual interpretation of the EEG signal and 

describes such background features as amplitude, frequency, continuity of the EEG 

and sleep–wake cycling (SWC). Quantitative EEG analysis is a method 

predominantly used in research and includes time and frequency domain analysis. 
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Figure 1.1: EEG waveforms of varying frequencies 

 

1.3.4.2 Electroencephalography applications  

EEG has a range of clinical and research applications (135): 

1. Monitor human brain development 

2. Investigate epilepsy, locate seizure origin, and assess response to anti-epileptic 

treatment 

3. Monitor alertness, coma, and brain death 

4. Locate areas of damage following head injury, or pathological processes 

5. Investigate sleep patterns and disorders 

All of the above are relevant to neonatal care and EEG has become more common in 

NICUs over the past two decades in both clinical and research domains. In contrast to 

cerebral blood flow and NIRS, EEG has well documented applications in the clinical 

management of newborn infants (6).  Its usefulness includes monitoring infants with 

perinatal asphyxia (7-10), the diagnosis of seizures (11-13), and more recently in 

assessing the long-term prognosis of premature infants (14). 
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1.3.4.3 EEG in the immediate newborn period- term infants 

The immediate postnatal period is the time when EEG is often performed on critically 

ill term neonates. In infants with hypoxic ischaemic encephalopathy (HIE), multi-

channel and amplitude integrated EEG are increasingly being used to decide 

eligibility for therapeutic hypothermia (136). The EEG is exquisitely sensitive to any 

impairment in oxygen delivery to the brain. EEG is of the order of microvolts and has 

a temporal resolution that is much higher than functional MRI and can display brain 

activity on a millisecond scale. A reduction in oxygen leads to an immediate 

suppression of synaptic transmission with a reduction (often complete suppression) in 

EEG amplitude (137, 138).  This adaptive response, believed to be mediated by 

multiple inhibitory neuromodulators including adenosine, to hypoxia may be 

protective by decreasing energy consumed by the generation of synaptic potentials 

(139). If cerebral hypoxia is sustained however, EEG amplitudes remain severely 

reduced and membrane failure will eventually occur accompanied by energy 

depletion and cell damage (140) . Thus, sustained suppression in the EEG signals a 

risk of impending brain injury.  

Decisions regarding long-term prognosis following neonatal HIE are made based on 

qualitative EEG analysis. Low background amplitude and discontinuity of EEG 

activity (burst suppression) occur following significant hypoxic-ischaemic injury, and 

are associated with a poor prognosis (141). Disruption of sleep wake cycling has been 

described in neonatal post-asphyxial injury, and its absence soon after birth has been 

associated with a poor neurodevelopmental outcome (142). In neonates with hypoxic 

ischaemic encephalopathy (HIE), an EEG showing sustained suppression for hours 

after birth has long been associated with a very poor outcome (143-146). Neonatal 
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EEG monitoring is recommended for all infants with moderate and severe HIE, and 

neonatal teams are now familiar with its application in NICUs.  

Previous studies  have  shown that the EEG of fetal sheep can be recorded during 

labour (137, 147, 148). Thaler and colleagues performed intrapartum EEG on 

fourteen women with uncomplicated pregnancies (149). A clinical trial of EEG 

monitoring during labour is also currently underway 

(https://clinicaltrials.gov/ct2/show/NCT03013569). During normal labour, the fetus is 

exposed to brief but repeated episodes of hypoxia which are balanced by the fetus’s 

striking ability to adapt to these episodes (150). Fetal EEG monitoring in both human 

and animal studies during labour has shown that these episodes are associated with 

rapid EEG amplitude reduction and also with fast amplitude recovery as soon as the 

uterine contraction ends (137, 140). Fetal EEG monitoring has clear benefits for the 

early recognition of hypoxic ischaemic (HI) injury but requires considerable research 

before it is adopted as a routine tool for fetal surveillance. Neontal EEG acquisition in 

the immediate newborn period on the other hand is much more feasible and may 

quickly identify those neonates that have not tolerated labour and delivery very well, 

which will be seen as suppression or disrupted patterning on the EEG.  

An early EEG in the DR of an infant requiring advanced stabilisation will indicate if 

EEG activity is present or not or if EEG activity returns following this stabilisation 

process. We know that EEG activity should recover immediately following 

restoration of oxygen delivery to the brain. If EEG activity does not return 

immediately post resuscitation or activity is severely disrupted, this may indicate that 

the infant is at risk of HI brain injury. This could provide a clear indication for 

immediate passive cooling prior to transfer to the NICU. This early indication of 
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cerebral function is very important as Thoresen et al have shown that infants cooled 

within 3 hours of birth have better neurodevelopmental outcomes when compared to 

infants whose cooling commenced between 3 hours and 6 hours (151). Further 

improvements in outcome are highly likely to arise from earlier improved 

identification of affected infants that would allow earlier initiation of treatment after 

resuscitation.  

1.3.4.4 EEG in the immediate newborn period- Preterm Infants 

EEG is also the gold standard for the accurate detection seizures in preterm infants 

(131, 152). However, electrographic seizures are infrequent within the first few days 

of birth in very preterm infants (153). The EEG can also provide real-time markers of 

cerebral dysfunction, even when it is secondary to systemic disease and macroscopic 

cerebral lesions are not evident (154). EEG monitoring of preterm infants in the 

immediate newborn period may have a role in predicting outcomes and furthering our 

understanding of the multiple factors affecting outcome in the immediate newborn 

period. Prediction of outcome following preterm delivery is more complicated than 

following term asphyxia, but investigations are ongoing (155). We now understand 

how brain activity changes over time in preterm infants, and can develop into mature 

healthy EEG patterns over time following preterm delivery (156). Therefore, a 

knowledge of the gestational age of the infant is essential as the EEG varies 

dramatically with maturity (157). 

Accurate neonatal EEG interpretation requires a thorough appreciation of the 

appropriate maturational features for neonates of all gestational ages (GA) as baseline 

EEG patterns evolve in line with the rapid maturational changes taking place in the 
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brain (158). The EEG develops in the most immature neonates at 23/ 24 weeks GA 

through to full-term age with four major trends (156):  

1. Increasing continuity, with defined periods of EEG quiescence for specific 

GAs:  

Early preterm EEG exhibits an intermittent or discontinuous pattern (tracé discontinu) 

consisting of low-voltage activity, known as inter-bursts, followed by short-duration 

higher-voltage activity, known as bursts or spontaneous activity transients (159). This 

pattern differs to the burst-suppression pattern found in the EEG of full-term infants 

following severe brain injury (160). From a physiological perspective, this feature can 

be explained from animal experiments that have shown that the cortex produces 

spontaneous, intermittent activity that is a crucial endogenous driver for the 

development of brain connectivity before cortical networks are modulated by external 

sensory input (161-163). Furthermore, early in development, GABAergic 

transmission is not effectively inhibitory and may allow the generation of these 

endogenous events (164). With the maturation of normal inhibitory GABAergic 

transmission, spontaneous events are gradually abolished and ‘continuous’ 

oscillations emerge at different frequencies due to the increasing influence of 

exogenous sensory driven input (165). Consequently, the overall amount of 

discontinuity decreases and continuity increases with GA. 

Analysis of this discontinuous pattern includes measurements of interburst interval 

(IBI) duration which  decrease with increasing  GA (166) (Figure 1.2). Normative 

values for different GAs have been now reported as follows:  

23- 27 weeks GA: <60 seconds 
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28–29 weeks GA: ≤30 seconds (40 seconds accepted if occasional) 

30–31 weeks GA: ≤20 seconds 

32–34 weeks GA : ≤10–15 seconds 

35–36 weeks GA: <10 seconds 

Aside from the duration of IBIs, their amplitude also changes over time, becoming 

less suppressed with increasing GA (167). 

Figure 1.2 Example of Interburst Interval in infant 26/40 weeks gestation 

 

2. The appearance of sleep cycling 

Differentiation of sleep is detectable in preterm infants <30 weeks GA (168-170). 

Sleep-wake cycling relies on the maturation of interconnected neural networks 

located throughout the cortex, diencephalon and brainstem and is recognisable in 

younger preterm infants because of the influence of deeper brain structures, before 

proper thalamo-cortical connectivity has developed (171-173). In the normal preterm 

EEG, different sleep states and cyclicity are increasingly evident overtime and at 35 

weeks all sleep stages are clearly recognisable (Figures 1.3 and 1.4). 
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Figure 1.3 Example of active sleep with continuous activity in infant 31 weeks 

gestation 

 

Figure 1.4  Example of quiet sleep with discontinuous activity in infant 31 weeks 

gestation 

 

3. Changes in synchrony between hemispheres 

Synchrony in the EEG is present when all EEG features occur simultaneously in 

homologous areas over both hemispheres. Although interhemispheric synchrony has 

been shown to increase with increasing GA, synchronous bursts/IBI activity between 

the two hemispheres is present in preterm infants <30 weeks GA (174, 175). 

Synchrony is an important feature of EEG maturation and reflects the development of 

the corpus callosum and, therefore, the interconnections between the two hemispheres 

(175). Asynchrony decreases with increased maturity, disappearing at term age (175).  
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4. The appearance of several transient waveforms of prematurity.  

Delta activity (0–3.5 HZ), a common background feature < 28 weeks gestation is high 

amplitude, low frequency (0.3–1 Hz) smooth activity organised as unilateral or 

bilateral bursts in centro-occipital or temporal regions, or as short sequences (<80 

seconds) mainly in the occipital regions bilaterally (167). Delta brushes are one of the 

most important features of the preterm EEG. Delta brushes consist of a slow delta 

wave with fast rhythms superimposed (in the alpha-beta range) mainly on the 

ascending slope of the slow wave. They have been reported in all GAs but have a 

peak between 32 and 35 weeks and tend to disappear between 38 and 42 weeks (167). 

Theta activity (4–7.5 HZ), ‘Sharp theta on the occipitals of premature infants’ occur at 

earlier GAs, with a peak at 25 weeks (176).  

Analysis of preterm EEG at a given GA allows for real time monitoring of cerebral 

function and brain health. Several studies have shown that early background EEG 

suppression correlates with severity of periventricular haemorrhage (177-179). The 

most common EEG biomarkers associated with poor outcomes are seizures, positive 

rolandic sharp waves, EEG suppression/increased interburst intervals, mechanical 

delta brush activity, and other deformed EEG waveforms, asymmetries, and 

asynchronies (154).  A continuous display of inter-burst interval duration has been 

cited as a useful prognostic measure in preterm infants in the near future (171, 180).  

Accurate and early prediction of neurodevelopmental outcome in the preterm infant 

provides important clinical information that can be used to guide early intervention, 

assist clinical management, and ensure appropriate long-term needs are identified. 

Predicting outcome at 2 years or more, in the first few days after birth is ambitious 
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however, as preterm infants are vulnerable to brain injury during their entire stay in 

the NICU (181). 

Many studies have attempted to predict short-term outcome. Early clinical 

information, including Apgar scores, gender, birthweight, GA, and illness severity 

scores, such as SNAP-II and SNAPPE-II have been used to predict short-term 

outcome (182-184). Quantitative analysis of multiple risk factors combined in a 

multivariate model can improve outcome prediction (185). Saria et al. showed that a 

combination of quantitative features of early physiological measurements, including 

HR, RR, and SpO2, could predict short-term outcome with a high level of accuracy 

(sensitivity of 86% and specificity of 96%) (186).  Medlock et al. found that 

multivariate models of early clinical information predicted mortality in preterm 

infants better than birthweight or GA alone. Studies implementing the commonly 

used SNAP-II and SNAPPE-II scores showed a range of AUC values for the 

prediction of neonatal mortality, from 0.66 to 0.78 in SNAP-II studies and 0.60 to 

0.91 in SNAPPE-II studies (185). The absence of a reliable measure of neurological 

function, however, may limit the ability of these approaches to predict 

neurodevelopment in the longer term, beyond the early intensive care stage.  

Previous studies have shown that early measurements of EEG can predict long-term 

neurodevelopmental outcome, with high specificity and low sensitivity ranging from 

88 to 96% and 25 to 61%, respectively (187-190). Other studies have shown that the 

amplitude integrated EEG (aEEG) can predict long-term outcome, with specificity 

ranging from 73 to 89% and sensitivity ranging from 56 to 87% (190-192).  

Multimodal prediction models, which include EEG, have shown promise in predicting 

outcome.  A recent study which utilized quantitative analysis of physiological signals, 
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combined with GA and graded EEG, displayed potential for predicting mortality or 

delayed neurodevelopment at 2 years of age (193). In this study infants <32 weeks 

gestation had simultaneous multichannel EEG, peripheral SpO2, and HR monitoring. 

EEG grades were combined with GA and quantitative features of HR and SpO2 in a 

logistic regression model to predict outcome. Bayley Scales of Infant Development-

III assessed 2 year neurodevelopmental outcome. A clinical course score, grading 

infants at discharge as high or low morbidity risk, was used to compare performance 

with the model. While performance of the model was similar to the clinical course 

score graded at discharge, with an AUC of 0.83 (95% confidence intervals (CI): 0.69–

0.95) vs. 0.79 (0.66–0.90) (P  = 0.633), the model was able to predict 2 year outcome 

days after birth. Early EEG grade alone demonstrated low sensitivity (50%) and high 

specificity (89%), compared to clinical course score sensitivity (88%) and specificity 

(70%). The multimodal model which included EEG provided a more balanced 

sensitivity–specificity result (75–74%) (193).  
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1.3.4.5 The rationale for EEG in the immediate newborn period 

EEG is not a new technique but its application in neonatology in the past has been 

hampered by a lack of appropriate technology for recording and analysis. This has 

changed dramatically in the last decade and there are now high quality digital 

amplifiers available that can record excellent EEG signals even in very noisy 

environments. The time is now right to re-explore the use of EEG as a valuable 

biomarker of neurological function in the delivery room; an environment where 

previously, it was just not possible.  

EEG monitoring in the immediate newborn period, for term and preterm infants, 

could provide neonatal teams with valuable, much needed, information about the 

neurological status of the newborn infant, immediately after birth. Following preterm 

delivery EEG monitoring could also enhance our understanding of preterm infant 

outcomes. Thus, a systematic review was performed to assess whether any studies had 

already attempted to measure the human EEG in the immediate newborn period.  

1.3.4.6 Results of a systematic review of EEG in the immediate newborn period 

The initial search identified 215 articles (methodology available section 2.9). After 

assessment of these articles, two original studies were identified that described EEG 

monitoring of the newborn infant within the delivery room (Fig 1.5). One study also 

contributed to a review article identified by our search, which was excluded from our 

study to avoid duplication (95).  Table 1.5 summarises the 2 studies identified. 
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Figure 1.5 Flow Diagram of Literature Search  

 

Pichler et al.  performed a prospective observational study of infants born by elective 

cesarean section over 34 weeks gestational age (105). Infants at lower gestational ages 

were excluded due to concerns about their small head size, and the feasibility in 

applying EEG leads and NIRS to a small surface area. Four gold electrodes (2 frontal 

and 2 parietal) were applied with contact gel, along with a NIRS pad to the left 

forehead, and overlying elastic bandages for support. Amplitude integrated EEG 

(aEEG), a rectified, filtered and compressed form of EEG was acquired and stored. 

Overall they found that aEEG monitoring of the newborn infant in the DR is feasible, 

but it is difficult to obtain continuous reliable data. Of a total number of 63 infants, 17 

(27%) were excluded due to unreliable data. Of the remaining 46 infants, no data was 
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recorded prior to 3 minutes of delivery, 25% had data available at 3 minutes, and just 

over 50% were available at 5 minutes.  aEEG data was analyzed for mean minimum 

and mean maximum voltages every minute, and then correlated with cerebral 

oxygenation, heart rate and pre-ductal oxygen saturations. Findings were then 

compared between infants who were uncompromised at birth (n= 47) and infants who 

required neonatal resuscitation (n=16).  

 

Different cerebral activity patterns were identified between uncompromised newborns 

and those requiring resuscitation. They reported that infants in the uncompromised 

transition group started with initially high voltages on aEEG, followed by a 

significant decrease to baseline voltages at 4-5 minutes. In contrast, infants in the 

group requiring respiratory support did not show this pattern. However, there were no 

significant differences between minimum and maximum voltages when the 2 groups 

were compared, which the authors attribute to low numbers in the respiratory support 

group.  

 

Tamussino et al. recorded simultaneous aEEG and NIRS in 244 term neonates during 

the first 15 minutes after delivery (194).  Similar to the study of Pichler et al.  aEEG 

data was analyzed for mean minimum and mean maximum voltages every minute, 

and then correlated with cerebral oxygenation, heart rate and pre-ductal oxygen 

saturations. Neonates with initial low voltages, which normalized during transition, 

were compared to neonates with normal aEEG values throughout the monitoring 

period. Nine neonates had low initial aEEG voltages and were compared to 50 
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neonates with normal aEEG voltages throughout. Therefore, of 244 infants recruited, 

59 aEEG recordings were included in the analysis. Neonates with initially low 

cerebral activity during immediate transition after birth displayed lower cerebral 

saturations (<10th percentile) on NIRS, but increased cerebral oxygen extraction 

(cFTOE > 90th percentile). The authors concluded that neuro-monitoring with aEEG 

and NIRS might provide useful information on the neonates’ condition during 

immediate transition.  

Table 1.5 Summary of neonatal EEG studies in the immediate newborn period 
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1.3.5 Summary 

The brain is the most vulnerable organ in newborn infants. Birth asphyxia and 

preterm brain injury account for the vast majority of neonatal brain injuries, and are a 

major cause of disability. A non-invasive, continuous method to measure cerebral 

activity (EEG) is already available but it has not progressed to the immediate newborn 

period. As the importance of the early instigation of neuroprotective strategies for 

term newborns with perinatal asphyxia has become evident, EEG monitoring (usually 

aEEG) has become more common in NICUs (195, 196). In contrast to cerebral blood 

flow and NIRS, EEG has well documented applications in the clinical management of 

newborn infants. It is the gold standard method for the accurate detection of all 

neonatal seizures in term and preterm infants (131, 152).  It has well proven efficacy 

in predicting outcomes following perinatal asphyxia, based on patterns of poor 

background activity and the timing of sleep wake cycling reestablishment (143, 197-

199). Prediction of outcome following preterm delivery is more complicated but 

investigations are ongoing (155). This is important as assessing preterm infant 

neurological outcomes is challenging.  

Despite its importance in monitoring the newborn brain in the NICU, EEG monitoring 

in the immediate newborn period is currently not recommended. Stabilisation of 

newborn infants in the delivery room occurs without any objective measure of brain 

activity and we found only two studies that have assessed the feasibility of obtaining a 

newborn EEG recording in the DR. Both studies used the aEEG trend and both found 

it possible to obtain aEEG tracings within 3 minutes in some cases, but obtaining 

continuous reliable data was generally difficult (105). The studies did not include 

infants less than 34 weeks due to technical challenges. Within these limitations the 
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authors describe different patterns in brain activity for infants that required respiratory 

support and infants that transitioned independently. Also, aEEG was correlated with 

different cerebral oxygenation patterns.  

 

Both studies analyzed brain activity by interrogating the aEEG mean minimum and 

mean maximum voltages. However, the aEEG trend alone is a high level summary 

measure of the EEG with poor time resolution due to compression in the aEEG 

algorithm and it does not display the second by second activity of the brain; as a 

result, it is not optimal for application in the DR. Digital aEEG machines obtain one 

or two channels of EEG signal, which is then amplified and passed through an 

asymmetric band-pass filter that strongly attenuates activity less than 2 Hz and more 

than 15 Hz, to minimize artifacts. Additional processing includes semilogarithmic 

amplitude compression, rectification, and time compression (200). Heavy signal 

processing used in the aEEG algorithm eliminates much of the detail (e.g. frequency 

band content) available in the EEG and many clinically important features are lost. 

Furthermore, there is no clear definition for aEEG and most EEG machines 

implement different versions of the aEEG algorithm (201). The mean and maximum 

of the aEEG voltage needs to be plotted and displayed for a number of minutes before 

any assessment of the overall baseline EEG activity can be made. In addition, it is 

well known that interpretation of the background aEEG pattern can be problematic 

due to baseline drift and other artefacts (202, 203). This is not optimal for DR EEG 

recording when real-time second by second information would be advantageous. For 

example, a recording of approximately 30 seconds duration alone using standard EEG 

would be enough to establish the presence of continuous EEG activity in a term 
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newborn. This information would be hugely beneficial in the DR to help guide 

resuscitation and to determine the need for immediate passive cooling. Thoresen et al 

coined the phrase ‘time is brain’ in relation to the timing of cooling for 

neuroprotection (151).  

EEG in its raw format (not a modified aEEG) can be assessed both qualitatively and 

quantitatively. Qualitative EEG analysis is mainly used for clinical purposes. It is 

based on visual interpretation of the EEG signal and describes background features 

such as amplitude, frequency, and continuity of the EEG, symmetry, synchrony, and 

sleep–wake cycling. Quantitative EEG analysis is a method predominantly used in 

research and includes time and frequency domain analysis. Neither study identified in 

our review analyzed the EEG in its raw format, either for qualitative or quantitative 

purposes.  

 

EEG has long been considered just too difficult to deploy in environments like the DR 

and NICU. There have been major recent advances to the adoption of EEG in the 

NICU primarily due to advances in technology (204). The application of EEG in 

preterm infants has also progressed, and many technical barriers overcome (205). 

Modern machine learning techniques are also advancing rapidly and will soon be able 

to provide non-EEG experts with the help needed to assist in the interpretation of 

EEG patterns on a 24/7/365 basis. These difficulties should no longer be a barrier to 

the adoption of EEG in the immediate newborn period.  
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In conclusion, the time is now right to advance the objective monitoring of 

neurological function of newborn infants in the immediate newborn period, and 

specifically brain activity, measured by EEG.  
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Chapter 2   

General methodology 

 

2.1 Introduction 

This chapter provides an outline of the general methods used in the studies described 

in this thesis. The chapter describes how and where the patients were recruited, the 

devices used, data collection and storage, and the statistical methods used to analyze 

the data. Other specific methods used in certain studies presented in this thesis are 

outlined in the relevant chapters.  

 

2.2 Subjects and Settings  

This research was performed in the delivery room and neonatal unit of the Cork 

University Maternity Hospital (CUMH). This is a level three maternity unit with up to 

8500 deliveries per annum. Infant cohorts were recruited between July 2015 and 

January 2017. 

 

2.3 Patient Recruitment  

Antenatal recruitment was used for all studies. For studies in term infants (Chapters 3 

and 4), recruitment occurred during daytime working hours as all infants included 

were delivered by elective caesarean delivery. Recruitment for preterm infants 

(Chapter 5) was more challenging as they are by nature emergency deliveries. 

Therefore, a number of measures were taken to optimize patient recruitment. Firstly, 

the medical and nursing staff of the neonatal unit and the obstetric and midwifery 

staff in the labour ward were informed of the study, its aims and recruitment criteria. 
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Laminated posters stating the recruitment criteria were placed in the NICU, the labour 

ward, antenatal ward, and medical staff on- call rooms (Figure 2.1). All staff were 

encouraged to contact me if there was a possibility of a preterm infant being  

delivered < 32 weeks gestation. There was a dedicated research phone which could be 

contacted 24/7. This phone was carried by me or by one my research colleagues, AP 

and DHR. AP and DHR were Clinical Research Fellows in the INFANT Research 

Centre in CUMH and were both ethically approved to consent and randomize infants 

for this trial.  

 

Figure 2.1 Poster for Preterm Infant Trial 

 

 

Despite these measures a number of challenges to recruitment persisted. The time 

period prior to delivery is a stressful time for parents. It is difficult to find an 

appropriate time where a sensitive and thorough antenatal consent consult can be 

performed. The clinical needs of the mother always took precedence, and parents 

were only approached if there was adequate time for consultation, and parents were 

happy to proceed. It was a priority that all parents were fully informed and had read 

the appropriate parent information leaflet before consenting. Many deliveries during 
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the study period occurred under emergency circumstances and it was not possible for 

a researcher to attend in a timely fashion.  Flow diagrams detailing patient recruitment 

are available in the relevant chapters.  

 

2.4 The Consent Process  

For trials in term infants parents were approached on the day of admission prior to 

elective caesarean delivery. For trials in preterm infants parents were approached 

where possible on the antenatal ward or in the case of imminent delivery on the labour 

ward.  

The reasons, the risks and the benefits for the study were explained to both parents. 

Any concerns relating to the study were also discussed with the parents. It was 

emphasized that the current study might not be of any benefit to their infant but that 

the data collected could be an important source of information in our quest to improve 

care and survival of infants in the future.  

 

A written detailed information leaflet explaining each study and outlining the 

rationale for doing such research was provided to the parents. The information leaflet 

also mentioned any potential risks and benefits. The information leaflet was for 

parents to keep and to read in their own time if they needed time to make up their 

mind on whether to participate or not. Along with the information leaflet, parents 

were given a consent form that they could sign if they agreed to participate in our 

study. Both documents are included in the Appendices.  

 

Parents were given an opportunity to think about the information provided, and opt in 

or out of participation in the study as they wish and at any stage of the study. It was 
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also made clear that they could opt out of the study at any later time and that any data 

that had been collected would be deleted. Parents who agreed to participate in the 

study were given a copy of the signed consent form as evidence of the agreement to 

participate in the study. 

 

2.5 Ethics  

Ethical permission to carry out all studies was obtained from the Clinical Research 

Ethics Committee (CREC) of the Cork University Hospital Teaching Hospitals prior 

to study commencement. The ethics acceptance letter and consent forms and parent 

information leaflet are provided in the Appendices.   
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2.6 Infant monitoring 

2.6.1 EEG monitoring 

2.6.1.1 EEG devices 

For term infants included in this thesis, all recordings were performed and stored 

using the Unique EEG system (Inspiration Healthcare, Leicester, UK). For preterm 

infants, recordings were obtained either with the NicoletOne (CareFusion Co., San 

Diego, USA)(Figure 2.2) or Moberg (Moberg Research Inc., PA, USA) EEG systems.  

 

Figure 2.2 Nicolet 1 EEG operating system  

 

 

2.6.1.2 EEG application 

A member of the research team performed all EEG studies following a standardized 

protocol. For term infants the aim was to capture brain activity as soon as possible 

after birth. All EEG recordings were obtained in the DR as soon as possible after 

birth.  For preterm EEG was applied in the DR or in the NICU. When EEG was 

applied in the DR, recordings were commenced at that time, were discontinued during 

transfer to NICU and commenced again on arrival to NICU.  



 71 

 

For term infants the infants’ scalp was first cleaned using an alcohol wipe. As per 

usual clinical practice previously described in our NICU, the hair was then parted at 

EEG sensor sites, and the skin gently abraded three to four times using a sterile cotton 

bud and skin preparation gel (Nuprep)(205). Six sterile disposable flat surfaced EEG 

electrodes were then attached to the infants’ scalp over frontal and central regions 

(F4, C4, F3, C3, ground, and reference) bilaterally using the 10-20 system of 

electrode placement and the EEG was recorded for up to ten minutes. Two channels 

of a bipolar recording were displayed (F4-C4, F3-C3) on the monitor. The study was 

designed to obtain 2 channels as applying more electrodes would have delayed the 

onset of recordings. 

 

The method for electrode placement in preterm infants in our unit has previously been 

described (205). Depending on infant size, 4- 11 electrodes were positioned according 

to the international 10–20 system of electrode configuration over the frontal, central, 

temporal, and occipital regions, a reference electrode at Fz, and a ground electrode 

behind the left ear (Figure 2.3). Although the aim was to obtain as many channels of 

EEG as possible, infant stability and the length of time to apply extra electrodes was 

taken into account at all times.  
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Figure 2.3 Example of EEG electrode placement in a preterm infant 

 

 

 

2.6.1.3 EEG data collection and analyses  

EEG data was sampled at 256 Hz and stored on computer hard disk for off-line 

anlysis. Firstly, the recordings were assessed for quality and periods of artefact-free 

EEG were identified for analysis.  All EEG recordings for term infants were initially 

anotated for 3 minute artefact free segments. All EEG recordings for preterm infants 

had one hour segments at 6 and 12 hours annotated.  They were then visually 

analyzed by GBB for quality, overall voltage, continuity and frequeny (206). 

Annotated segments of EEG were then analysed for quatitative measures. Different 

quantitative measures for term and preterm recordings were applied and are described 

in the relevant chapters.  

 

 All quantitative measures were performed using the software package NEURAL, a 

neonatal EEG feature set in matlab (v0.3·0), which runs within the Matlab 

environment (The MathWorks, Inc., Natick, Massachusetts, United States). NEURAL 
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was developed to standardize quantitative analysis of newborn EEG by including full 

implementation details(206).  

 

Quantitative EEG analysis provides an alternative to visual interpretation, and 

provides consistency without the varying degrees of inter-rate agreement associated 

with visual interpretation. Quantitative analysis can also uncover attributes not 

accessible with visual analysis alone, and can facilitate reproducible research for 

clinical and scientific studies.  

 

2.6.2 NIRS monitoring  

The INVOS 5100 near infrared spectrometer (Somanetics Corporation, Troy, MI, 

USA)(Figure 2.4) was used to measure rcSO2. A NIRS neonatal probe, OxyAlertTM 

NIRSensor (Covidien IIc, Mansfield, MA, USA) was applied in a fronto temporal 

location (Figure 2.5). The INVOS machine recorded and stored rcSO2 throughout the 

DR and NICU periods with a sampling period of five and six seconds. This device’s 

rcSO2 measurements are limited to a specific lower and upper limit of 15% and 95% 

respectively, therefore no measurements below 15% and above 95% can be measured 

(207). 
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Figure 2.4 INVOS NIRS System 

 

 

 

Figure 2.5 OxyAlert TM NIRS sensor 

 

 

 

2.6.3 Respiratory function monitoring 

A Respironics NM3 Monitor (Philips, Amsterdam, Netherlands)(Figure 2.6) was 

used, which is a non-invasive respiratory function monitor with combined mainstream 
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capnography and flow monitoring (Capnostat 5 sensor, Philips, Amsterdam, 

Netherlands). The dead space volume as reported by the manufacturer is ~ 1 ml. The 

CO2 / flow sensor was attached to a facemask (Laerdal infant mask; Stavanger, 

Norway) and placed over the infants’ mouth and nose on arrival to the resuscitator. 

End tidal CO2 was measured by infrared absorption spectroscopy, while RR, TVs, and 

airway pressures were measured by a gas flow sensor (Capnostat 5 sensor). 

 

  Figure 2.6 Respironics NM3 Monitor 

 

2.6.4 Echocardiography 

Echocardiographic measurements were performed using the GE Vivid I ultrasound 

machine (KPI Healthcare, CA, USA). Measurements were taken to assess systemic 

blood flow, by superior vena cava (SVC) flow (ml/kg/min), right ventricular output 

(208) (ml/kg/min), and left ventricular output (LVO)(ml/kg/min). All measurements 

were performed by a member of the research team following a standardized protocol 

previously described (209).  
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2.7 Delayed cord clamping with bedside resuscitation  

Delayed cord clamping with bedside resuscitation was the experimental interventional 

arm in the preterm infant trial which will be described in detail in chapter 5. A mobile 

resuscitation trolley (Lifestart, Inspiration Healthcare, UK)(Figure 2.7) designed 

specifically to facilitate newborn bedside  resuscitation, with an intact cord was 

introduced to CUMH. 

A key element in the design is flexibility to allow the baby to be placed on the trolley 

while the umbilical cord is still intact. This required the trolley platform to be easily 

manoeuvrable.  Thermal support is provided by the CosyTherm electric heated 

mattress. Fixed around the central pillar are two universal Medirails which 

accommodated a Tom Thumb Infant Resuscitator (Viamed, Keighley, UK), oxygen 

blender (Inspiration Health Care Ltd., Leicestershire, UK), a suction bottle driven by 

the wall-supplied air supply (Oxylitre Ltd., Manchester, UK) and the control unit for 

the CosyTherm heated mattress (Inditherm, Rotherham, UK). It was connected with 

hoses to the air and oxygen wall supply. Infants were placed on a mobile resuscitation 

trolley with the cord intact, and at or below the level of the placenta. Routine neonatal 

care was provided and the cord clamped at 60 seconds following delivery. 

Figure 2.7 Lifestart bedside resuscitation trolley 
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2.8 Statistical analysis  

SPSS version 22, and PROC MIXED in SAS, version 9.4 (SAS Institute Inc., Cary, 

NC, USA) were used along with the Matlab programming environment to perform 

statistical tests. Patient characteristics were compared using the t-test or Mann-

Whitney U test, as appropriate. A p-value <0.05 was considered to be statistically 

significant. Specific statistical models are described in detail in the relevant chapters.  

 

2.9 Search Strategy and Study selection for Systematic review- EEG in the 

Immediate Newborn Period 

A systematic stepwise search of PubMed was performed as per the Preferred 

Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) (210). 

Articles up to and including February 2017 were included. Studies had to involve 

EEG monitoring in the DR. Search terms included: infant, newborns, neonate, 

delivery room, afterbirth, transition and electroencephalography. Only human studies 

were included and this was incorporated into the initial search. Additional published 

reports identified in review articles, or referenced in articles screened were also 

included.  

 

Articles identified by our search strategy were screened for inclusion by one author 

(211). Titles and abstracts were initially screened. Articles had to pertain to EEG 

monitoring immediately after birth. Studies that focused on infants post birth 

asphyxiation or infants who had intra cranial pathology were excluded as the subjects 

were, by nature, recruited post-delivery and not relevant to our search. Studies that 

specified a time frame for initial EEG monitoring outside of the first fifteen minutes 
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of life, or initial recruitment outside of the delivery room were also excluded.  Where 

uncertainty remained regarding eligibility for inclusion the full text was reviewed. 

Studies that were not available in English were excluded.  

 

2.10 Work undertaken for this MD 

I was the lead clinical research fellow on all studies included in this thesis. I worked 

with my supervisors, EMD and GBB, in designing each study. I obtained ethical 

approval from University College Cork for the studies described in Chapters 3 and 5, 

and designed the consent and parent information leaflets. I registered the randomized 

controlled trial CUPID which is described in Chapter 5 with an international registry. 

I led the recruitment phase for each study and obtained the majority of informed 

ethical consents for all studies, and when I was not available members of the INFANT 

research team (EMD, DRH, AP, JDM) obtained consent.  

I performed data collection in all studies:  

Chapter 2: I performed the systematic review of EEG in the immediate newborn 

period.  

Chapter 3: I performed all EEG studies. 

Chapter 4: I performed 50/100 respiratory function monitoring. Fifty patients 

recruited had monitoring performed by research team members JDM and LD.  

Chapter 5: I introduced delayed cord clamping with bedside resuscitation to CUMH. 

This involved liaising with obstetricians, neonatologists, theatre nurses, midwives, 

neonatal nurses, infection control and clinical engineering. I designed standard 

operating procedures for the use and maintenance of the resuscitation trolley.  I 

trained all necessary staff in the use of the mobile resuscitation trolley.  I performed 

bedside resuscitation in the majority of infants randomized to delayed cord clamping. 
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I performed the EEG, NIRS and echocardiography in the majority of patients. When I 

was not available EEG and NIRS was performed by research team members (AP, RL, 

CA, EP, LK) and echocardiography by EMD.  

IH research nurse aided in the recruitment and data collection for all studies.  

 

I collected the data for each study and performed initial data analysis. I was aided in 

the analysis of data. JOT performed quantitative analysis of EEG and NIRS data for 

all studies. GBB performed visual analysis of EEG data. VL aided with all statistical 

analysis. I interpreted the data for all studies, and drafted the initial manuscripts for 

each study.  The manuscript for each study was reviewed by all authors who are listed 

on pages 18-20. I drafted the manuscript for this thesis which has been reviewed, 

edited and approved for submission by GBB, and EMD.  
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Chapter 3 

Respiratory Adaptation in Term Infants following 

Elective Cesarean Section 

3.1 Introduction 

In the next chapter brain activity in the first minutes of life will be discussed. 

However, it is important to first explore newborn respiratory adaptation. Our 

understanding of newborn respiratory adaptation is the result of many innovative 

clinical trials and collaborative efforts over the past 60 years (212-219). Lung aeration 

and the establishment of functional residual capacity (FRC) is critical in newborn 

transition from fetal life (212).  

  

In recent years, technological advances in neonatal monitoring have facilitated real 

time monitoring of physiological parameters during newborn transition (220, 221). As 

previously described, Dawson and colleagues produced centile charts detailing the 

normalisation of oxygen saturations over time during newborn adaptation (27). More 

recently Schmolzer and colleagues utilized respiratory function monitors (RFM) to 

document exhaled CO2, and tidal volumes (TV) for term infants immediately after 

vaginal deliveries (222).  

 

However, gaps in our understanding of newborn adaptation remain.  Respiratory 

function monitoring values in infants born by ECS and thus not exposed to the 

mechanical and hormonal adjustments that occur during labour and vaginal delivery 

have not been reported. The aim of this study is to define newborn physiological 
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ventilation parameters (RR, TV, EtCO2) over the first minutes of life in healthy term 

infants following ECS, and also to assess the time at which these parameters stabilise.  

 

3.2 Methods 

3.2.1 Study participants 

Infants > 37 weeks’ gestational age, born by ECS, were eligible for inclusion in the 

study. Infants with major congenital abnormalities affecting newborn respiratory 

adaptation were excluded. Infants requiring intervention to support stabilisation 

beyond being warmed, dried, and stimulated, or Apgar scores < 7 at 1 minute were 

also excluded from the study.  

 

3.2.2 Data acquisition 

Following delivery, infants were brought immediately to a Panda Resuscitator (GE 

Healthcare, Laurel, MD, USA) which has a continuous-flow, pressure-limited, T-

piece device with a built-in manometer and a PEEP valve. A  Respironics NM3 

Monitor (Philips, Amsterdam, Netherlands) was used, which is a non-invasive 

respiratory function monitor with combined mainstream capnography and flow 

monitoring (Capnostat 5 sensor, Philips, Amsterdam, Netherlands). The dead space 

volume as reported by the manufacturer is ~ 1 ml. The CO2 / flow sensor was attached 

to a facemask (Laerdal infant mask; Stavanger, Norway) and placed over the infants’ 

mouth and nose on arrival to the resuscitator. Each infant was monitored for up to 10 

minutes. End tidal CO2 was measured by infrared absorption spectroscopy, while RR, 

TVs, and airway pressures were measured by a gas flow sensor (Capnostat 5 sensor).  

All infants included in the study were breathing spontaneously without additional 

flow or oxygen. As all infants were born by cesarean section, monitoring did not 
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interfere with skin-to-skin time or initiation of breastfeeding. Follow up RFM was 

performed, where appropriate, for 2 minutes at 2 hours of age using the same RFM. 

All measurements were performed by one of the research team following a 

standardized protocol. Each infant was video recorded during study measurements. 

Recordings were commenced once an infant’s whole body was delivered and captured 

infants once they were placed on the resuscitaire. This allowed for future accurate 

documentation of the age (in seconds) when monitoring commenced. There is no 

hospital protocol on the timing of umbilical cord clamping following ECS, and timing 

of clamping was not influenced by this research study. The time of cord clamping was 

not recorded. Maternal and infant demographics were recorded. 

 

3.2.3 Data Collection and Statistical analyses  

For the duration of each recording a breath-by-breath analysis was exported from the 

Respironics NM3 Monitor (Philips, Amsterdam, Netherlands) to SAS, version 9.4 

(SAS Institute Inc., Cary, NC, USA).  Respiratory rates, TV, inflation time, and 

EtCO2  means were calculated for each minute of the recording, starting from time of 

birth. In the initial study design the aim was to record all infants for the first ten 

minutes of life. However, the practical needs requiring infants to be weighed, dressed 

and brought to their parents within the time constraints of a busy obstetric theatre led 

to many recordings being terminated early. Breaths were excluded if mask leak was 

>30%. At each minute time point, the data for the features were summarized 

descriptively using the number of observations (n), mean and standard deviation 

(223).  
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To investigate how each feature (RR, TV and EtCO2) changed over time, a mixed 

modeling approach was used. The optimal functional form of the trajectory over time 

was identified by considering the family of polynomial functions (a straight line, a 

quadratic curve and a cubic curve), and identifying the best fitting model (224). A 

bottom-up strategy was used, beginning with an empty random intercepts model (no 

fixed effects and individual as a random effect) and then adding each fixed time effect 

(linear, quadratic, cubic), followed by its corresponding random time effect  (linear, 

quadratic, cubic), in turn (225). Likelihood ratio tests were used to compare the 

difference between the deviance statistics across consecutive models to test the impact 

of each new term. Model fit was evaluated using the deviance statistic (-2 log 

likelihood) and the Akaike Information Criterion (AIC). For each feature, the 

predicted values from the best-fitting mixed model and their corresponding standard 

errors were used to construct a 95% reference range, assuming a normal distribution. 

For all analysis, time was centred at one minute (start of study). To investigate if 

changes over time differed by admission group (admitted/not admitted), the fixed 

effects of admission group and the interactions of admission group by time (linear, 

quadratic and cubic, as appropriate) were added to the mixed model. Pearson’s 

correlation coefficient was calculated between RR, TV and EtCO2 for each time point 

and between the first minutes of EtCO2 and the 2-hour values. All statistical analysis 

was performed using PROC MIXED in SAS, version 9.4 (SAS Institute Inc., Cary, 

NC, USA). All tests were two-sided and a p-value <0.05 was considered to be 

statistically significant. 
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3.3 Results 

 

3.3.1 Study Participants 

One hundred and four infants born by ECS at term were recruited. Ninety-five infants 

were included in the analysis (Figure 3.1). One infant was excluded due to unexpected 

congenital malformation noted following delivery, and one infant due to the need for 

positive pressure ventilation (PPV) during newborn stabilisation. The Respironics 

RFM stored measurements sequentially for each infant breath. However, for seven 

infants, measurements were not automatically saved from the beginning of the 

recording and the timing of subsequent values recorded could not be fully ascertained. 

Therefore, these infants were excluded from the data analysis. The median (IQR) 

gestation was 39 weeks (38.2- 39.1) and median (IQR) birth weight was 3420g (3155-

3740).  Forty-seven (49%) infants were male. Indication for ECS were; prior 

caesarean section n=81 (85%), breech presentation n= 8 (8%), prior traumatic vaginal 

delivery n=5 (5%), IVF pregnancy n=1 (1%).  Median time from birth until initiation 

of monitoring was 26.5 (range: 20-39) seconds.  Nine infants were admitted to the 

NICU. The discharge diagnosis for all nine infants was transient tachypnea of the 

newborn (226).  
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Figure 3.1 Flow Diagram  

 

 

 

 

3.3.2 Measures of TV, RR and EtCO2 

It was intended for measurements to be performed on all infants (n=95) for the first10 

minutes of life. However, for practical reasons many recordings were terminated early 

and values are not reported beyond the first seven minutes of life. The mask was 



 86 

removed and replaced on a number of occasions for each baby due to loss of seal, 

movement of newborn and/or  presence of secretions. These values (12% of all 

breaths) were omitted from the analysis and the mixed model effect analysis was 

utilised to account for these over time.  

 

Descriptive statistics for RR, TV and EtCO2  at each time point are presented in Table 

3.1. Mean RR increased for each time point between 1 minute (44.31) and 7 minutes 

(61.62) of life. Mean TV increased over the first 3 minutes (5.18mls/kg- 6.44mls/kg) 

and then decreased over time (5.07mls/kg at 7 minutes). Mean EtCO2 measurements 

also increased over the first 3 minutes (4.32kPa-5.64kPa) and then stabilised (5.74kPa 

at 7 minutes). The mixed modelling approach found that the trajectories for mean RR, 

TV and EtCO2 changed significantly over the first minutes of life. The best fitting 

models included fixed cubic time effects and random cubic time effects for TV and 

EtCO2 and a fixed quadratic time effect and a random quadratic time effect for RR. 

Trends over time can be appreciated in Figures 3.2, 3.3, and 3.4. 

 

Table 3.1 Descriptive statistics of features at each time point  
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Figure 3.2 Respiratory Rate (breaths per minute) between 1 and 7 minutes after 

birth 

 

 

Figure 3.3 Tidal volume (mls/kg) between 1 and 7 minutes after birth 
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Figure 3.4 EtCO2 (kPa) between1 and 7 minutes after birth 

 

 

 

3.3.3 Correlations between RR, TV and EtCO2  

Pearson’s correlation coefficients between pairs of features were calculated for each 

time point (minutes 1-7 separately). TV and EtCO2 are positively correlated, whilst no 

correlation between TV/RR nor EtCO2/RR exist.  
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3.4 Discussion 

This study describes changes in RR, TV and EtCO2 over the first minutes following 

elective cesarean section in a large number of healthy term infants. Following 

delivery, the trajectories of TV and EtCO2 correlated, with both increasing over the 

first 3 minutes before stabilizing. This is important, as median (IQR) age at time of 

initial EEG recordings in Chapter 3 was 3.0 (2·5 to 3·8) minutes. This implies that 

functional residual capacity had been established for the majority of infants when 

brain activity was measured, and that the values reported represent brain activity at a 

time when respiratory adaptation has been achieved. It was also noted that respiratory 

rates increased continuously from birth until recordings ceased.  

 

Over the past 50 years a number of novel studies have informed our understanding of 

how newborn infants’ clear fluid from their lungs and establish FRC to facilitate gas 

exchange (213, 216, 218, 227, 228).  Schmolzer et al performed RFM in 20 term 

infants during the first 2 minutes of life following vaginal delivery (222). They found 

that FRC is partially established soon after delivery and exhaled CO2 can be detected 

within 1-8 breaths after birth. Similar to our findings, CO2 levels were closely 

associated with TVs and increased as FRC was established over the first few minutes. 

Similar absolute values for TV and EtCO2 are also reported in their study, but peak 

levels were reached earlier in their cohort of infants following vaginal delivery. End 

tidal CO2 peaked at 3 minutes in our cohort at mean values of 5.69kPa, whilst 

Schmolzer et al reported exhaled CO2 values of 5.73kPa at 2 minutes. Tidal volumes 

of 6.3ml/kg were reached at 2 minutes in Schmolzer’s cohort. Similar volumes (when 

corrected for mean weights) were reached at 3 minutes in our infant cohort.  These 
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findings are not surprising, as previous studies have described variations in transition 

between infants born by cesarean section and vaginal delivery (215, 219).   

 

Newborn transition begins prior to delivery for infants born following spontaneous 

vaginal labour (229)(230).  Functional residual capacity was established later in 

infants following cesarean section compared with vaginally delivered infants in 

studies using plethysysmography (215). Our findings in infants born by cesarean 

section support this work. Increased interstitial pulmonary fluid in these infants may 

delay the establishment of FRC and time to reach optimum gas exchange levels. 

However, our cohort had peak levels of EtCO2 at 3 minutes whilst Palme-Kilanders’ 

cohort of infants born by caesarean section had increasing levels of CO2 over the first 

5 minutes, which is delayed compared to our findings. Comparisons between 

historical studies may not be appropriate as they all had small study numbers, high 

levels of intervention in the DR, and relied on chart based analog equipment 

compared to current digital RFM. It also highlights the importance of having 

documented respiratory adaptation in a cohort of infants following ECS in order to 

interpret newborn brain activity following ECS.  

 

RRs increased continuously over time during our study and plateau levels were not 

captured during the first 7 minutes. However, respiratory patterns were not studied, 

and may be more important than the actual rate. Different respiratory patterns such as 

expiratory braking, which is common in newborn infants occurs when expiratory flow 

is followed by a period of low or absent flow and results in short or multiple 

expiratory flow peaks (212).   
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This study has a number of limitations. The Respironics RFM recorded values on a 

breath-by-breath basis, which allowed for accurate documentation of values and to 

monitor the progression of physiological parameters over time. However, an intrinsic 

error within the monitoring system resulted in the monitor failing to record all 

measurements, with up to 3% of breaths being missed in an individual baby. A mixed 

model analysis was performed to allow for missing data entries. The mixed model has 

the advantage over other statistical tests (such as a repeated one way ANOVA) as it 

uses all available data, and infants are not excluded from the analysis if they are 

missing data at some of the time points. However, seven infants were excluded as 

initial breaths were not recorded and the timing of the values that were recorded could 

not be ascertained. Also, many recordings were terminated early for practical reasons 

and we were unable to report findings beyond the first seven minutes of life. These 

limitations highlight the challenges in performing such studies in the immediate 

newborn period. It must also be noted that monitoring is associated with additional 

dead space, which may theoretically increase the work of breathing and confound 

results.   

 

In conclusion, this study documents for the first time values for RR, TV and EtCO2 

during newborn transition following elective cesarean section in a large cohort of 

healthy term infants. These findings provide valuable information pertaining to 

physiological respiratory parameters during newborn transition to extrauterine life 

following elective cesarean section.  
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Chapter 4 

EEG for the Assessment of Neurological Function of 

Term Infants in the Immediate Newborn Period 

 

4.1 Introduction 

Neonatal electroencephalography (EEG) monitoring has well documented 

applications in the management of infants with hypoxic ischemic encephalopathy 

(HIE) (131, 231-234). EEG is essential for the diagnosis of neonatal seizures (200, 

235, 236). Hypoxic ischemic encephalopathy is a leading cause of neonatal death and 

long-term neurological disability, with an estimated incidence of 1·5 per 1000 live 

births (237). Therapeutic hypothermia (TH) is now the standard treatment for infants 

with moderate or severe HIE, and results in a significant reduction in mortality, 

without an increase in major disability amongst survivors (238). The optimal timing 

to commence TH is within 6 hours of birth and thus eligibility for TH should be 

decided as soon as possible (239, 240). 

 

Information about newborn electrocortical activity to date is almost exclusively based 

on EEG recordings performed after six hours of age, or occasionally from around 

three hours in infants that are unwell (241, 242). Infants are stabilised in the delivery 

room following potentially severe hypoxic ischemic events without objective 

information about brain activity. Clinical assessments of newborn wellbeing are 

limited and liable to inter and intra rater variability (15, 16). Therefore, the 

introduction of EEG monitoring in the immediate newborn period may be a useful 
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adjunct in certain circumstances. The first step in evaluating its use is to assess 

whether it is feasible to perform, and if so, to establish normative reference values.  

 

This study assesses qualitative and quantitative features of the EEG during newborn 

transition and aimed to produce reference values for healthy term infants during this 

vulnerable time period. 

 

4.2 Methods 

 

4.2.1 Study participants 

Infants born in Cork University Maternity Hospital, Ireland were recruited over two 

months between September- October 2015. Infants > 37 weeks’ gestational age, born 

by elective caesarean section (ECS), were eligible for inclusion in the study. Infants 

with major congenital abnormalities were excluded. Infants requiring intervention to 

support stabilisation beyond being warmed, dried, and stimulated, or with Apgar 

scores < 7 at one minute were also excluded from the study. 

 

4.2.2 EEG acquisition  

Following delivery, infants were brought immediately to a Panda Resuscitator (GE 

Healthcare, Laurel, MD, USA). All EEG studies were performed by DF following a 

standardized protocol. The infants’ scalp was first cleaned using an alcohol wipe. As 

per usual clinical practice previously described in our NICU, the hair was then parted 

at EEG sensor sites, and the skin gently abraded three to four times using a sterile 

cotton bud and skin preparation gel (Nuprep)(205). Six sterile disposable flat surfaced 

EEG electrodes were then attached to the infants’ scalp over frontal and central 
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regions (F4, C4, F3, C3, ground, and reference) bilaterally using the 10-20 system of 

electrode placement and the EEG was recorded for up to ten minutes. Two channels 

of a bipolar recording were displayed (F4-C4, F3-C3) on the monitor. All recordings 

were performed and stored using the Unique EEG system (Inspiration Healthcare, 

Leicester, UK). Each EEG study was video recorded and recordings commenced after 

delivery of the infant. This allowed for future accurate documentation of infant age 

(in seconds) when monitoring commenced, and to correlate recordings with infant 

movements and newborn care. As all infants were born by caesarean section, 

monitoring did not interfere with skin-to-skin time or initiation of breastfeeding.  

Maternal and infant demographics were recorded, including type of anaesthesia used 

and Apgar scores.  Newborn admissions to the NICU, and discharge diagnosis on 

chart review were also documented.  

 

4.2.3 Data Collection and analyses  

EEG data was sampled at 256 Hz and stored on computer hard disk for off-line 

analysis. All EEG recordings were visually analyzed. Firstly, the recordings were 

assessed for quality and periods of artefact-free EEG were identified for analysis.  

The EEG was then assessed for overall voltage, continuity, frequency, and maturity.   

 Three minutes of artefact-free continuous EEG segments were then selected from 

each infant’s recording for quantitative analysis. All quantitative measures were 

performed using the software package NEURAL, a neonatal EEG feature set in 

matlab (v0.3·0), which runs within the Matlab environment (The MathWorks, Inc., 

Natick, Massachusetts, United States). NEURAL was developed to standardize 

quantitative analysis of newborn EEG by including full implementation details (206), 

and is freely available as open-source software 
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(https://github.com/otoolej/qEEG_feature_set).  Quantitative measures that capture 

amplitude and frequency characteristics were used. Features of spectral power were 

calculated within 4 frequency bands, to quantify specific activity at delta (0·5-4 Hz), 

theta (4-7 Hz), alpha (7-13 Hz), and beta (13-30 Hz) bands.  

 

Features reported are: 

 Total and relative spectral power for the four frequency bands.  

 Range-EEG (rEEG): median, lower and upper margins, and asymmetry(243).  

 Spectral edge frequency and fractal dimension over the total 0·5-30 Hz 

frequency band.  

A comprehensive description of each measure, including implementation details, is 

available in reference (206). Spectral power and rEEG features capture amplitude 

characteristics of the EEG; spectral edge frequency and fractal dimension features 

capture the spectral characteristics. The edge frequency estimates the extent of 

spectral spread: higher values indicating a more disperse spectrum and lower values 

indicating a more condensed spectrum around the lower frequencies. Fractal 

dimension captures the shape of the spectrum.  Within a frequency band, typically 

0·5-30 Hz, neonatal EEG is known to follow a spectral power law, with a linear log-

log spectral relation defined as , where α represents the slope of  

spectrum (244). The fractal dimension estimate D provides an estimate of this slope, 

as  (245). 

 

Range-EEG (rEEG) gives a measure of peak-to-peak voltage (243). rEEG was 

proposed as an alternative to amplitude-integrated EEG (aEEG) as there is no clear 

definition of aEEG and most EEG machines implement different versions of the 
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aEEG algorithm (246). A 1-20 Hz bandpass filter was applied to the EEG before 

generating the rEEG.  

 

All features, except for the rEEG, are computed on a 32 second epoch of EEG with a 

50% overlap. The median value over all epochs is used to summarize the feature. The 

median value is also used to summarize across the two channels.  

 

Mean values, standard deviation, minimum, and maximum values were used to 

describe symmetrical data. Median, interquartile range, minimum and maximum 

values were reported on non-Gaussian data.  

 

4.3 Results 

 

4.3.1 Study Participants 

Fifty- two infants born by ECS at term were recruited.  Forty-nine infants were 

included in the analysis.  Three infants were excluded: one infant due to unexpected 

congenital malformation noted following delivery, one infant due to the need for 

positive pressure ventilation during newborn stabilisation, and another infant due to 

insufficient length of recording because of technical difficulties during recording.  

Thus, 49 infants were included in the analysis (Figure 4.1). The median (IQR) 

gestation was 39 (38·7 to 39·1) weeks and median (IQR) birth weight was 3500 (3245 

to 3742) g. Twenty-nine (59%) infants were male. Indication for ECS were prior 

caesarean section in the majority of cases n=43 (88%), breech presentation n= 2 (4%), 

prior traumatic vaginal delivery n=2 (4%), and maternal reasons 2(4%). Two 

caesarean sections were performed under general anaesthesia and the remaining 47 
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under spinal anaesthesia (morphine, and fentanyl). Median (IQR) age at time of initial 

EEG recording was 3.0 (2·5 to 3·8) minutes. No infant was compromised at birth. 

Five infants were admitted to the neonatal unit. The discharge diagnosis for all five 

infants was transient tachypnea of the newborn, and all infants were discharged within 

the first three days of birth. Infant characteristics are summarised in Table 4.1 

 

Figure 4.1 Flow diagram  

 

Table 4.1 Infant characteristics 
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4.3.2 Visual analysis 

Good quality continuous and symmetric mixed frequency EEG activity, appropriate 

for gestational age was seen in all infants with a range of 25-50µV, see example in 

Figure 4.2. Movement artefact contaminated many recordings but continuous EEG 

activity without artefact was measurable for a minimum of 3 minutes in all infants.  

 

Figure 4.2 Example EEGs from 2 infants 
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4.3.3 Quantitative analysis 

Quantitative features are summarized in Table 4.2. Total power decreased at the 

higher-frequency bands:  median (IQR) relative delta power of 87·8% (83·7 to 90%) 

indicated that the majority of power is within the delta band, with 95% of power 

(spectral edge frequency) below a median of 7·56 Hz (IQR: 6·17 to 9·76 Hz).  Total 

power was highest at lower frequencies. The highest values were in the 0·5-4 Hz 

band, with median (IQR) spectral power measuring 70·5 (42·8 to 171·4) µV
2
. The 

lowest values for total power and relative power were in the 13-30 Hz band, 

measuring 2·5 (1·2 to 4·6) µV
2
 and 2·5% (1·8 to 3·6%) respectively. Figure 4.3 

illustrates a power-law spectrum, with decreasing power for increasing frequency, 

within the 0·5-30 Hz range for all infants’ EEG. The median (IQR) fractal dimension 

of 1·1 (1·1 to 1·1) equates to a power law slope α of 2·8 (2·7 to 2·8). Median power-

law slope, in turn, equates to a log-log spectral slope of -28 dB/decade, as highlighted 

in Figure 4.3.  

 

For the median values over all EEGs, lower and upper margins of the rEEG spanned 

from 14·5 to 63·3 µV with a median rEEG of 24·4 µV. 

 

 

 

 

 

 

 

 



 100 

Table 4.2 Quantitative features of the EEG 
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Figure 4.3 Power spectral density (PSD) estimates for both channels of the EEG 
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4.4 Discussion 

This study describes, for the first time, detailed features of continuous neonatal EEG 

during newborn transition. Continuous mixed frequency EEG was obtained within the 

first few minutes of birth, and quantitative EEG reference values for healthy newborn 

infants during the immediate newborn period have been produced.   

 

Over the past 30 years neonatal EEG monitoring has become an essential tool for the 

assessment of neurological function in infants with perinatal asphyxia (231-234), 

seizures (200, 235, 236, 247), and more recently in the care of premature infants 

(248). Approximately 20 per 1000 deliveries will require significant stabilisation 

measures, with biochemical and clinical evidence of perinatal asphyxia (249). Of 

these only 1.5 per 1000 deliveries will go on to develop signs of evolving 

encephalopathy consistent with HIE (250). Given the potential benefit of early 

treatment with therapeutic hypothermia, the need to identify infants with HIE in the 

immediate newborn period is becoming increasingly important (251-253). However, 

to date our understanding of early newborn brain activity is based on studies in unwell 

infants, or in well infants after 3-6 hours of age (131, 221, 241, 245, 253).  Many 

infants with HIE are born at regional hospitals which do not offer TH and require 

transfer to a tertiary facility, resulting in a delay in the initiation of TH. To address 

this, many infants are cooled passively during transport from the regional hospitals 

(254). It is therefore important that the correct infants are transferred and passively 

cooled. A simple method of assessing brain health at regional hospitals would also 

help to accurately identify those infants that require transfer to a tertiary centre.    
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Pichler et al. performed aEEG in infants > 34 weeks gestation following elective 

caesarean section (105). Recordings were feasible after three minutes in some infants. 

However, continuous reliable data was difficult to obtain in their initial study (105). 

The upper and lower limits of the aEEG were correlated with simultaneous values 

obtained from near infrared spectroscopy recordings (98). Low EEG values during 

immediate transition after birth concurrently showed low cerebral oxygenation values, 

but with associated increased cerebral oxygen extraction (194). These studies, along 

with the current study, show that EEG   monitoring is feasible immediately after 

delivery. However, second by second EEG information was not reported in the 

previous studies, and importantly, the EEG was not analysed using objective 

quantitative measures. As mentioned previously, heavy signal processing used in the 

aEEG algorithm eliminates much of the detail (e.g. frequency band content) available 

in the EEG and many clinically important features are lost.  

 

Continuous neonatal EEG can be assessed both qualitatively and quantitatively. 

Qualitative EEG analysis is mainly used for clinical purposes. It is based on visual 

interpretation of the EEG signal and describes such background features as amplitude, 

frequency, and continuity, symmetry and synchrony of the EEG. Reference values 

within the first 12 hours of age are available for healthy term newborns (241). 

Quantitative EEG analysis is a method predominantly used in research and includes 

time and frequency domain analysis. Quantitative analysis allows for standardized 

reporting of EEG values, which is imperative when establishing new reference ranges. 

Crucial to this standardization process is a precisely defined set of quantitative 

features, including implementation and parameter details. These details are available 

in reference (206). Quantitative analysis can also be used to objectively grade baseline 
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EEG activity in sick newborn infants and can provide decision support with EEG 

analysis when clinical neurophysiologists are not available (255).  

 

Continuous mixed frequency EEG can be obtained in infants during the immediate 

newborn period. Activity with an amplitude of 25-50μV was seen in all healthy term 

infants immediately after birth. Early EEG suppression has been reported in infants 

following hypoxic-ischaemic injury and is associated with long-term outcomes (143, 

197). Quantitative analysis has value in differentiating between HIE grades (256). 

Quantitative values for amplitude, power, and range EEG during newborn transition 

are now reported.  As this is the first study to provide such values it is difficult to 

make comparisons. Total and relative spectral power change over time in infants as 

they mature and we found that the majority of power was in the delta EEG band 

during newborn transition (257). 
 
A prior study by our research group reported 

quantitative features for healthy term infants during active and quiet sleep in the first 

day of life (241). Mean relative delta power was 73% (5%) and 79·5 (4%) during 

active and quiet sleep respectively, displaying again that the majority of power was in 

the delta band.  

 

This study has a number of limitations. We did not include data on the exact timing of 

cord clamping in each baby. Infants were monitored for relatively short periods of 

time. Longer EEG monitoring and serial studies within the early postnatal period 

might be useful. However, such studies are challenging in the immediate newborn 

period and we were reluctant to interfere with newborn bonding and the establishment 

of newborn feeding.  The number of infants recruited was small. However, 

quantitative analysis produced values, which had narrow ranges in our homogenous 
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study group.  Further studies are required to assess whether brain activity differs by 

mode of delivery, delivery room interventions and stabilisation methods utilized. EEG 

monitoring in the delivery room may have a key role to play in identifying those 

infants with mild perinatal asphyxia who may benefit from immediate intervention 

but again, significantly larger studies are required.  Whilst EEG may also have the 

potential to direct therapy in the delivery room, in particular cessation of resuscitative 

efforts, there is an absolute lack of data in this regard and we would not advocate such 

an approach.  

 

To our knowledge, this study is the first to describe normative quantitative EEG data 

in healthy full term infants during transition. These findings are relevant and clinically 

important. Therapeutic hypothermia must be administered to newborn babies with 

HIE within the first few hours of birth and delivery room EEG may help identify 

those babies that are most suitable for treatment, especially infants with clinically 

suspected mild encephalopathy. However, further trials are now warranted to assess 

the utility of EEG recordings during newborn transition.  

 

In conclusion, EEG acquisition in the delivery room is feasible and brain activity in 

the first minutes of life can be recorded. Normative quantitative values for EEG 

during newborn transition have been produced for the first time. Future trials will 

need to assess EEG in the first minutes of life following in infants at risk for 

encephalopathy to assess its clinical utility. 
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Chapter 5  

Neuromonitoring in the immediate newborn period in 

a randomized controlled trial of cord clamping in 

preterm infants less than 32 weeks: Clamping the 

Umbilical cord in Premature Deliveries (CUPiD) 

5.1 Introduction 

Preterm brain injury is a major worldwide public health problem. Approximately one 

in 70 babies (1.4%) are born before 32 week gestation; however as a group they 

account for over half  (51%) of infant deaths (258). Of very preterm infants who 

survive, 5- 10% develop cerebral palsy, and those without severe disability have a 

twofold-increased risk for developmental, cognitive, and behavioural difficulties (259, 

260).  

 

Following delivery, the umbilical cord may be clamped immediately, or as an 

alternative procedure placental transfusion may occur, either by delaying cord 

clamping (DCC) for a period of time, or by milking the umbilical cord (UCM) (261). 

Allowing for placental transfusion of blood following preterm delivery, either by 

DCC or UCM, has been shown to decrease the incidence of intraventricular 

haemorrhage (IVH) by 50%, but has not affected neurodevelopmental or mortality 

outcomes (262). Although not fully understood, animal models suggest that a reduced 

incidence of IVH may be explained by a smoother cardiovascular transition when 

ventilation precedes cord clamping (263, 264). 
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Current recommendations on timing of cord clamping are not explicit (13).  American 

and European guidelines have recommended a delay before clamping the umbilical 

cord to facilitate placental fetal transfusion in preterm infants who are not 

compromised at birth (265)(266). For compromised infants, ICC is still 

recommended, although it is postulated that compromised preterm infants may benefit 

the most from placental-fetal transfusion. The RCOG have highlighted the need for 

research centres to actively explore the feasibility of bedside resuscitation to allow for 

delayed cord clamping in compromised infants, and to consider UCM, although 

neither approach should be considered routine until more evidence is available (267). 

  

Umbilical cord clamping is an important intervention in preterm infant health and 

gaps in our knowledge exist. It is surprising that a reduction in IVH following DCC or 

UCM has not translated into superior developmental outcomes compared to ICC 

(262). This study aims to investigate how different cord clamping strategies affect 

preterm infant short-term neurological wellbeing, and improve our understanding of 

how different cord clamping strategies affects cerebral activity and oxygenation. By 

design, EEG and NIRS monitoring in the immediate newborn period have been 

incorporated as primary outcome measures. The feasibility of monitoring cerebral 

activity (EEG) and oxygenation in preterm infants in the immediate newborn period 

following an interventional DR study will be assessed. Also, the benefits and 

limitations of using infant neuromonitoring as a primary outcome in a preterm 

randomized controlled trial will be determined.   
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5.2 Methods 

5.2.1 Study Design and Population 

This prospective randomized controlled trial was conducted in Cork University 

Maternity Hospital (CUMH), Ireland over a nine-month period from December 2015 

– September 2016. Infants born at less than 32 weeks gestational age (from 23+0 

weeks’ up to and including 31+6 weeks’ gestational age) based on the earliest 

ultrasound or last menstrual period were eligible for inclusion. Exclusion criteria 

included inability to obtain informed consent from parent, major congenital anomaly, 

bleeding from placenta praevia, clinical suspicion of placental abruption or accreta, 

monochorionic multiples with known or suspected twin to twin transfusion syndrome, 

with significant growth discordance (>10%), Rh sensitization, hydrops, and cord 

prolapse.   

There were three arms - ICC, UCM and DCC with bedside respiratory support.  A 

designated member of the neonatology research team started the Apgar timer at the 

time of delivery, and recorded the time of cord clamping. ICC was defined as 

clamping the infants’ umbilicus within 20 seconds of delivery, and routine neonatal 

care commenced immediately. For UCM the obstetrician held the infant at or below 

the level of the placenta, and his/her assistant stripped the cord 3 times in the direction 

of the infant. Each stripping aimed to cover a maximum 20 cm of cord, at a speed of 

20cm/2seconds, and 2 seconds were allowed in between each milking to allow the 

cord to refill.  For DCC, infants were placed on a mobile resuscitation trolley 

(Lifestart, Inspiration Healthcare, UK) with the cord intact, and at or below the level 

of the placenta. Routine neonatal care was provided and the cord clamped at 60 

seconds following delivery. All members of the resuscitation team were Neonatal 
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Resuscitation Program (NRP) trained and followed current NRP guidelines in the 

management of preterm infants in the delivery room. All infants were wrapped in 

sterile towels at the time of delivery until they were transferred to the Panda 

Resuscitator (GE Healthcare, Laurel, MD, USA). 

 

5.2.2 Randomisation 

Randomisation was performed using a computer based randomisation program and 

allocation concealment was achieved by using opaque, sequentially numbered, sealed 

envelopes. Randomisation was stratified by age (23+0 to 27+6 and 28+0 to 31+6 

weeks) to ensure equal numbers of neonates born at <28 weeks’ gestation in each arm 

with a 1:1:1 allocation ratio between the three groups using random block sizes of 3 

or 6. Multiples received the same group allocation. Immediately before delivery, the 

investigator opened the envelope and made the obstetrician aware of the group 

allocation of the infant. 

5.2.3 Ethical approval and consenting procedure 

Antenatal written informed consent was obtained prior to delivery. The Cork 

Teaching Hospitals’ Research Ethics Committee approved this study. This trial was 

registered on the ISRCTN registry with trial number ISRCTN92719670. 

 

5.2.4 Neuromonitoring 

All infants had cerebral near infrared spectroscopy and electroencephalography 

(EEG) monitoring commenced as soon as possible following delivery, which was 

dependent on infant stability, and monitoring continued until 72 hours of age. A NIRS 

neonatal probe, OxyAlertTM NIRSensor (Covidien IIc, Mansfield, MA, USA) was 
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applied in a fronto temporal location. EEG was recorded with the NicoletOne 

(CareFusion Co., San Diego, USA) or Moberg (Moberg Research Inc., PA, USA) 

EEG systems. Depending on infant size 4- 11 electrodes were positioned according to 

the international 10–20 system of electrode configuration over the frontal, central, 

temporal, and occipital regions, a reference electrode at Fz, and a ground electrode 

behind the left ear. The method for electrode placement in preterm infants in our unit 

has previously been described (205). A consultant radiologist (unaware of group 

assignment) performed a cranial ultrasound within 48 hours of delivery and then 

according to our neonatal unit’s practice.   

 

5.2.5 Outcome Measures 

Primary neonatal outcome was standard quantitative measures of preterm newborn 

EEG and NIRS median values collected over 1 hour time frames at both 6 and 12 

hours of life. The authors analyzing NIRS and EEG were blinded to randomization 

allocations. Primary outcome for maternal outcome was maternal hemoglobin at 24-

36 hours post-partum. 

All EEGs were assessed visually for quality and any epoch with poor signal was not 

used further. In addition, each EEG was visually assessed for overall discontinuity, 

amplitude and also symmetry and synchrony (where possible i.e. for recordings that 

utilized multiple channels of EEG). One channel of EEG, common to all recordings 

(C4-C3) was then assessed using a set of quantitative EEG measures to represent the 

complex waveforms of the preterm EEG (206). Before generating the feature set, an 

automated method removed segments of EEG corrupted by artefact (206). The feature 

set included spectral power, relative spectral power, and spectral flatness measures. 

These spectral measures were calculated in 4 frequency bands: 0.5–3, 3–8, 8–15, 15–
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30 Hz (206). Features of the range-EEG and burst duration were also included in the 

feature set. The range-EEG used a 1–20 Hz bandpass filter and median, lower- and 

upper-margins were calculated (206). Features of the temporal organization of bursts 

included burst percentage and the 95
th

 percentile of the duration of inter-burst 

intervals (IBI). Bursts and IBI were identified on the EEG using an automated method 

(268). IBI are the periods of relative quiescence (low voltage activity) that occur in 

between consecutive bursts of activity. Their duration has been shown to reflect brain 

maturation, being associated with the development of cortical folding (269). IBI 

duration decreases with GA and the EEG burst ratio is a standard quantitative 

measure used to characterize maturation (166). All quantitative measures were 

calculated  using the software package NEURAL (v0.3.3), a neonatal EEG feature set 

in Matlab (206). NEURAL was developed to standardize quantitative analysis of 

newborn EEG by including full implementation details with freely available open 

source code (206). Cerebral oxygenation values were averaged over a one-hour period 

at 6 and 12 hrs of age.  

 

Secondary neonatal outcome measures included mean blood pressure over 48 hours, 

temperature on admission, haemoglobin at 12 hours, IVH and BPD.  Severe IVH was 

defined as Grade III/IV according to Papile classification (270). BPD was defined as 

oxygen requirement at 36 weeks corrected gestational age. 

Echocardiographic measurements were performed on all infants at 12 hours +/-3 

hours of age. Measurements were taken to assess systemic blood flow, by superior 

vena cava (SVC) flow (ml/kg/min), right ventricular output (ml/kg/min), and left 

ventricular output (LVO)(ml/kg/min) (208).  
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5.2.6 Sample Size 

As this was a pilot study and preterm infants have not been previously studied in this 

context, a formal sample size calculation was not performed. During the 9-month 

study period, all infants who were assessed, met the eligibility criteria and consented 

were enrolled in the study. 

 

5.2.7 Data Collection and Statistical analyses  

All information was collected by research fellows or a research nurse and stored in a 

password-protected database. Categorical data was described numerically using 

frequency and percentage (%) and continuous data using median (interquartile range, 

IQR). Differences in categorical variables between the three groups were investigated 

using Fisher’s exact test. Differences in continuous variables between the three 

groups were investigated using the Kruskal-Wallis test and if statistically significant 

differences were found between the three groups, pairwise comparisons were 

performed using the Mann-Whitney U test, with Bonferroni correction. All tests were 

two-sided and a p-value<0.05 was considered to be statistically significant.  

The primary analysis was intention-to-treat (ITT).  A linear mixed-model was used to 

test for differences among the 3 groups (DCC, UCM, and ICC) in each quantitative 

measure of the EEG and NIRS. Fixed effects included gestational age, time after birth 

(either 6 or 12 hours), group membership, and the interaction between group and 

time. Gestational age was included as many quantitative measures of the EEG are 

dependent on maturation (271). A backwards selection procedure was used to test to 

the significance of each fixed effect in the linear model; for more details on this 
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process, see example (272). All statistical analysis was performed using IBM SPSS 

Statistics version 22. 

5.3 Results 

5.3.1 Study Participants 

There were 77 patients assessed for eligibility over the 9-month study period. A total 

of 45 participants were enrolled. A total of 12 infants (12/45, 27%) were randomized 

to ICC, 19 to UCM (19/45, 42%), and 14 to DCC with bedside resuscitation (14/45, 

31%). Two infants randomized to DCC received ICC, both being delivered prior to 

the resuscitation trolley being prepared in time. There was no statistical difference in 

median gestation or birthweight between groups (Table 5.1). All infants received 

antenatal steroids and all but one (in ICC group) received antenatal magnesium. One 

infant was excluded at delivery as the infant was noted to be dysmorphic and 

subsequently died in the DR (see Figure 5.1).  

Figure 1 Flow Diagram  

 

 

 

 

 

 

 

 

 

 

 

Assessed for eligibility 
 (n=77) 

Randomized (n=45) 

Excluded (n=32) 
 To participate (n=8) 
 Insufficient time to consent 

(n=17) 
 Placental Abruption (n=2) 
 Suspected twin to twin 

transfusion (n=4) 
 Known Congenital Anomaly 

(n=1) 

Allocated to ICC 
(n=12) 
Received allocated 
intervention n=12 

Allocated to DCC 
(n=14) 
Received allocated 
intervention n=12 

Allocated to UCM 
(n=19) 
Received allocated 
intervention n=19 
Excluded in DR as RIP 
n=1 

Analyzed (n=12) 
 
Excluded from 
analysis (n=0) 

Analyzed (n=14) 
 
Excluded from 
analysis (n=0) 

Analyzed (n=18) 
Excluded from 
analysis as monitoring 
not possible n=1 
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Table 5.1 Infant characteristics  

median (IQR)1 median (IQR)1 median (IQR)1 p-value2

Gestation (weeks) 28.5 (25.7 to 30.5) 28.0 (26.4 to 29.6) 28.4 (25.7 to 29.6) 0.889

Birthweight (g) 1080 (755 to 1613) 925 (630 to 1490) 930 (700 to 1545) 0.798

Multiples: n(%) 2 (16.7) 4 (28.6) 13 (72.2) 0.0053

Antenatal steroids: n(%) 12 (100) 14 (100) 18 (100) 13

Magnesium: n(%) 11 (91.7) 14 (100) 18 (100) 0.2733

1unless otherw ise stated; 2from Kruskal-Wallis test unless otherw se stated; 3from Fisher's exact test

ICC

(n=12)

DCC

(n=14)

UCM

(n=18)

 

5.3.2 Primary Outcome Measures 

A summary of primary outcome measures can be seen in Table 5.2. Tables 5.3 and 

5.4 include a complete list of EEG features analyzed at 6 hour and 12-hour time 

points. 

 

5.3.2.1 EEG Outcome 

Application of EEG and acquisition of data was performed as early as possible. Seven 

infants had EEG monitoring commencing in the DR. Median (IQR) age at EEG 

application was 3.05 (1.85 to 5.38) hrs. For primary outcome measures, data on 42/44 

(95%) was available at 6 hours and 44/44 (100%) at 12 hours. All but one EEG was 

deemed appropriate for age in terms of amplitude and continuity. One infant had a 

very immature EEG pattern for age and was not used in quantitative analysis. As 

Tables 5.3 and 5.4 show, no significant differences were found between the three 

groups at either time point in the unadjusted and adjusted analysis. Also, in the linear 

mixed models, the interaction of group by time (or group) was not significant for any 

of the 17 EEG features. GA was significant for some (7/17) features, as was time 

(8/17), but not group or group-by-time interaction (0/17).  Figure 5.2a-c highlights the 

dependency of 3 EEG features on gestational age but not on intervention group.  
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Figure 5.2 EEG features (a. – c.) highlighting the dependency on gestational age. 

Mixed-effect models for the 3 features included gestational age as a fixed effect 

(lines in a. – c.). Time (either the 6 or 12 hour time point) was significant (P value 

<0.05) in the rEEG-median feature plotted in c. but not for the features in a. and 

b. The fixed effects of intervention group 
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5.3.2.2 NIRS Outcome 

NIRS data was available for all 44 infants at both time points. There was no 

significant difference in rcSO2 values among the 3 groups at 6 or 12 hour time points 

(Table 5.2). Also, in the linear mixed model, the interaction of group by time (or 

group) was not significant.  

 

5.3.2.3 Maternal haemoglobin 

There were no significant differences between maternal haemoglobin values between 

groups (p=0.36). Median (IQR) values were highest in the ICM group (10.8, 10.3-

11.6g/dL), and lowest in the UCC group (10.15, 9.5-11.9). 

 

Table 5.2 Primary Outcome Measures  

 UCM DCC ICC p-value p-value 

     (adjusted) 

burst ratio [6-hours] (%) 83 (69 to 89) 68 (59 to 86) 76 (67 to 91) 0.27 0.16 

burst ratio [12-hours] (%) 83 (72 to 93) 81 (66 to 90) 82 (73 to 89) 0.95 0.96 

rEEG: median [6-hours] (μV) 30 (21 to 33) 22 (18 to 30) 28 (22 to 33) 0.60 0.56 

rEEG: median [12-hours] (μV) 31 (27 to 37) 30 (23 to 40) 28 (24 to 34) 0.61 0.57 

rcSO2 [6 hours] (%) 83 (76 to 88) 85 (74 to 87) 87 (72 to 89) 0.94 0.97 

rcSO2 [12 hours] (%) 

Maternal Hb (g/dL)
 

80 (76 to 87) 

10.2 (9.5 to 

11.9) 

81 (75 to 89) 

10.3 (9.4 to 

11.4) 

79 (74 to 82) 

10.8 (10.3 to 

11.6) 

0.91 

0.36 

0.88 
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Table 5.3 Quantitative EEG analysis at 6 hours 
 

 

qEEG feature UCM DCC ICC P-value P-value 

 mean (SD) mean (SD) mean (SD)  (adjusted) 

rEEG: median (μV) 28.8 (7.4) 25.9 (10.5) 28.9 (9.7) 0.60 0.56 

rEEG: lower margin (μV) 11.1 (3.8) 9.5 (4.0) 10.8 (4.6) 0.55 0.48 

rEEG: upper margin (μV) 134 (42) 140 (50) 118 (36) 0.45 0.43 

burst ratio (%) 79 (13) 70 (19) 79 (15) 0.27 0.16 

maximum IBI (seconds) 9.7 (4.2) 13.2 (7.6) 9.7 (5.3) 0.42 0.35 

SP [0.5–3 Hz] (μV
2
) 440 (270) 453 (305) 372 (173) 0.94 0.94 

SP [3–8 Hz] (μV
2
) 29 (14) 30 (15) 25 (15) 0.63 0.64 

SP [8–15 Hz] (μV
2
) 6.5 (2.6) 6.9 (3.2) 6.0 (2.4) 0.85 0.81 

SP [15-30 Hz] (μV
2
) 2.2 (1.2) 2.0 (1.0) 2.2 (1.3) 0.89 0.90 

relative SP [0.5–3 Hz] (%) 90.8 (4.6) 91.4 (2.5) 91.6 (2.9) 0.81 0.81 

relative SP [3–8 Hz] (%) 6.6 (2.6) 6.3 (1.7) 6.0 (2.5) 0.75 0.75 

relative SP [8–15 Hz] (%) 1.66 (0.90) 1.65 (0.82) 1.68 (0.67) 0.97 0.97 

relative SP [15–30 Hz] (%) 0.69 (0.74) 0.50 (0.25) 0.63 (0.32) 0.70 0.70 

SF [0.5–3 Hz] 0.292 (0.087) 0.295 (0.038) 0.290 (0.042) 0.98 0.99 

SF [3–8 Hz] 0.749 (0.064) 0.749 (0.060) 0.765 (0.055) 0.75 0.74 

SF [8–15 Hz] 0.830 (0.031) 0.814 (0.028) 0.834 (0.036) 0.30 0.29 

SF [15–30 Hz] 0.657 (0.072) 0.631 (0.036) 0.669 (0.044) 0.28 0.28 

qEEG: quantitative EEG; SP: spectral power; SF: spectral flatness; UCM: umbilical 

cord milking; DCC: delayed cord clamping; ICC: immediate cord clamping 
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Table 5.4 Quantitative EEG analysis at 12 hours 

 

qEEG feature UCM DCC ICC P-value P-value 

 mean (SD) mean (SD) mean (SD)  (adjusted) 

rEEG: median (μV) 31.5 (9.4) 31.7 (10.7) 28.3 (7.2) 0.61 0.57 

rEEG: lower margin (μV) 11.0 (3.0) 11.0 (4.0) 10.1 (3.6) 0.77 0.67 

rEEG: upper margin (μV) 150 (58) 156 (54) 127 (40) 0.38 0.35 

burst ratio (%) 80 (16) 78 (14) 80 (14) 0.95 0.96 

maximum IBI (seconds) 10.0 (6.8) 10.6 (6.4) 9.1 (3.3) 0.92 0.93 

SP [0.5–3 Hz] (μV
2
) 610 (384) 615 (503) 446 (227) 0.79 0.79 

SP [3–8 Hz] (μV
2
) 36 (20) 35 (24) 27 (19) 0.64 0.65 

SP [8–15 Hz] (μV
2
) 7.1 (3.1) 8.4 (4.8) 6.1 (2.3) 0.48 0.44 

SP [15-30 Hz] (μV
2
) 2.3 (1.0) 3.3 (3.3) 2.1 (0.7) 0.56 0.55 

relative SP [0.5–3 Hz] (%) 92.2 (2.4) 92.1 (2.4) 92.3 (3.5) 0.99 0.98 

relative SP [3–8 Hz] (%) 5.7 (1.5) 5.5 (1.4) 5.5 (2.8) 0.69 0.69 

relative SP [8–15 Hz] (%) 1.37 (0.67) 1.59 (0.76) 1.51 (0.74) 0.63 0.53 

relative SP [15–30 Hz] (%) 0.55 (0.41) 0.61 (0.52) 0.57 (0.37) 0.87 0.86 

SF [0.5–3 Hz] 0.284 (0.062) 0.307 (0.047) 0.275 (0.040) 0.28 0.28 

SF [3–8 Hz] 0.745 (0.068) 0.762 (0.061) 0.767 (0.052) 0.59 0.54 

SF [8–15 Hz] 0.836 (0.024) 0.810 (0.048) 0.830 (0.031) 0.11 0.10 

SF [15–30 Hz] 0.631 (0.077) 0.627 (0.038) 0.640 (0.047) 0.86 0.86 

qEEG: quantitative EEG; SP: spectral power; SF: spectral flatness; UCM: umbilical 

cord milking; DCC: delayed cord clamping; ICC: immediate cord clamping 
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5.3.3 Secondary Outcome Measures 

Whilst two infants in the ICC group had a severe IVH compared to one infant in 

the UCM group and no infant in the DCC group, the difference between groups 

was not statistically significant (P value 0.35). There was no difference in 

admission temperature, mean blood pressure on admission and at 6, 12, 18 and 24 

hours, or BPD (Table 5.5).  

 

Markers for systemic blood flow based on echocardiographic measurements did not 

differ significantly between groups (Table 5.5). Median (IQR) values for SVC flow 

were lowest in the ICC group 50 (47 to 77) and highest in the DCC with bedside 

resuscitation groups 106 (82.4 to 166). 
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Table 5.5 Secondary Outcome Measures  

n median (IQR)1 n median (IQR)1 n median (IQR)1 p-value2

Temperature (on admission) 12 36.3 (36.2 to 36.8) 14 36.4 (36 to 36.6) 18 36.6 (36.3 to 36.8) 0.24

Hb (g/dl) 12 hrs 12 16.6 (15.8 to 17.9) 14 17.1 (16.0 to 18.8) 18 15.7 (14.2 to 17.7) 0.46

MBP (mmHg) 6 hrs 9 30 (25.5 to 38) 14 31 (27.5 to 33) 15 34 (26 to 37) 0.41

MBP (mmHg) 12 hrs 12 34.5 (31 to 40) 13 32 (27 to 36) 16 33.5 (29 to 36.8) 0.50

MBP (mmHg) 18 hrs 10 36.5 (32 to 42) 14 33 (29.8 to 37) 16 33.5 (30.3 to 39) 0.33

MBP (mmHg) 24 hrs 12 38.5 (36.3 to 40.8) 14 36 (33.5 to 37.3) 18 38 (33 to 40.3) 0.22

LVO (mls/kg/min) 7 95 (89 to 129) 7 120 (85 to 156) 9 142 (67 to 236) 0.58

RVO (mls/kg/min) 7 149 (89 to 174) 7 137 (136 to 183) 9 232 (92.5 to 442) 0.37

SVC (mls/kg/min) 7 50 (47 to 77) 7 106 (82.4 to 166) 8 69 (30 to 117.8) 0.11

IVH severe: n (%) 12 2 (17) 14 0 (0) 18 1 (6) 0.353

BPD: n (%) 12 5 (42) 14 8 (57) 18 9 (50) 0.703

1unless otherw ise stated; 2from Kruskal-Wallis test unless otherw se stated; 3from Fisher's exact test

Hb- haemoglobin; MBP- mean blood pressure; LVO- left ventricular output; RVO- right ventricular output; SVC- superior vena cava flow ; IVH severe- intraventricular haemorrhage Grade III or IV; 

BPD- bronchopulmonary dysplasia

UCMICC DCC
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5.4 Discussion 

This prospective RCT assessed short-term neurological health in preterm infants < 32 

weeks gestation following 3 different cord clamping strategies. Monitoring 

commenced as early as possible, and EEG application was prioritized over NIRS. 

EEG  monitoring was achieved in 95% of infants by 6 hours, and 100% by 12 hours, 

which were the pre-specified primary outcome measurement times. NIRS data was 

available for 100% of infants at 6 and12 hours. Therefore, performing EEG and NIRs 

in the immediate newborn period is feasible in an interventional preterm infant study. 

 

There were no significant differences in cerebral oxygenation values or quantitative 

EEG features between groups at either 6 or 12 hours. Whilst two infants in the ICC 

group had a severe IVH compared to one infant in the UCM group and no infant in 

the DCC group, the difference between groups was not statistically significant. 

 

Until recently immediate cord clamping had been considered gold standard for 

preterm deliveries, as it allowed for immediate movement of the newborn infant to the 

resuscitation area for stabilization (273).  Renewed interest in the area has been led by 

studies proposing benefits for newborn infants by utilizing alternative cord clamping 

strategies, namely umbilical cord milking, and delayed cord clamping, which with the 

advent of mobile resuscitation trolleys allows for immediate support if required. 

Improved neonatal outcomes, without maternal side effects, are based on large 

retrospective review studies.  A recent Cochrane review (which included 15 studies, 

n= 738) by Rabe et al highlighted a 50% decrease in IVH of all grades when DCC is 

employed compared with ICC (262, 274-281). However there was no reduction in the 

incidence of severe IVH grades, which are more likely to result in long-term 
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neurodevelopmental problems. Also, the current evidence base is less robust for long-

term neurodevelopmental outcomes. The review was unable to comment on whether 

DCC affected the incidence of grade 3 or 4 IVH, and developmental scores at 7 

months were equivocal (262). In a meta-analysis of 3 trials (n=99) no difference in 

neurodevelopment outcomes at 18- 24 months was observed between ICC and DCC 

groups (282). Meta-analyses on UCM have found similar reductions in IVH when 

compared to ICC, without long-term neurodevelopmental benefits (1, 283).  Two 

large randomized controlled trials have recently been published. The APTS study 

compared ICC versus DCC and found no difference in a composite outcome which 

included death and a number of neonatal morbidities (284). Mortality alone was 

higher in the immediate group (9%) compared to the delayed group (6.4%) but this 

difference was no longer significant when correction for multiple comparisons took 

place. Duley and colleagues compared cord clamping at less than 20 seconds to 

delayed cord clamping with bedside resuscitation (285). They found a difference in 

death before discharge (ICC: 11%, DCC: 5%), but this was based on a small number 

of events with a wide confidence interval. Also, there are no clear differences between 

the groups in IVH or any other serious morbidity that would potentially explain a 

difference in mortality. The authors concluded that further trials assessing DCC with 

bedside resuscitation are urgently needed (285). 

 

Recent evidence from animal studies suggests that benefits from DCC result from a 

more stable haemodynamic transition (263, 264). Clamping the umbilical cord 

increases systemic peripheral resistance as the neonatal circulation abruptly switches 

from a parallel to a series circuit. Ideally pulmonary ventilation should precede cord 

clamping to enable pulmonary venous return to immediately replace umbilical venous 
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return and the large adverse changes in cardiac function that normally accompanies 

umbilical cord clamping can be avoided (263, 286). Increased fluctuations in cardiac 

output and immature cerebral vascular autoregulation might help explain the 

increased risk of IVH following ICC in premature infants (287). In a recent study in 

preterm lambs a smoother cardiovascular transition was observed when ventilation 

preceded cord clamping (263). Ventilation with delayed cord clamping was associated 

with less variability in carotid artery pressure, and carotid artery blood flow in 

newborn lambs. However, these findings do not explain why UCM should result in 

similar reduction in IVH rates. Our understanding of the physiological outcomes 

resulting from different cord clamping strategies remains limited, and our study aimed 

to investigate short-term neurological outcomes in such instances.   

 

Our study displayed different patterns, although not significant, in preterm infant 

brain oxygenation following alternative cord clamping strategies. There were no 

significant differences in cortical activity when measured by a comprehensive set of 

quantitative EEG measures. Fewer severe IVHs occurred in the placental transfusion 

groups, but we acknowledge that there were low numbers and this finding was not 

statistically significant. Cerebral activity and maturation did not differ between the 

groups, which may reflect low study numbers, or alternatively, different cord 

clamping strategies may not affect cerebral activity at the time points assessed in our 

study.  

 

There were no differences for maternal complications, neonatal stabilisation 

interventions, neonatal temperature, blood glucose, or phototherapy days. This is 

important as current recommendations now advise neonatal units to take part in 
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studies, which assess alternative cord clamping strategies (267). This study highlights, 

as an aside, the feasibility of safely conducting a single centre RCT with UCM and 

DCC with bedside resuscitation as experimental arms.  

 

EEG monitoring was commenced as early as possible post delivery. However, only 

16% (7/44) had EEG applied in the DR. All infants were < 32 weeks and were 

commenced on positive end expiratory pressure (PEEP) following delivery. The small 

preterm cranial sizes, and the position of the neonatologist’s hands around the infants’ 

head in order to apply effective PEEP, meant that it was virtually impossible to apply 

EEG electrodes without interference. Therefore, EEG monitoring was only 

commenced in larger, stable infants in the DR to ensure that newborn stabilisation 

was not affected. It was subsequently applied when the newborns were stabilised in 

the neonatal unit.  

 

There are a number of limitations to this study. Firstly, the study was not powered to 

an appropriate level to display superiority between cord clamping strategies based on 

our primary outcome measures. We recruited small study numbers as it was designed 

as a single center study and studies have not been previously conducted which utilized 

EEG and NIRS in similar circumstances on which to calculate sample sizes. Of note, 

because of limitations in spatial EEG recording, we did not examine specific 

maturational features of the EEG that are known to correlate with poor outcomes, 

such as mechanical delta brushes, and positive rolandic sharp waves. Our analysis of 

the EEG was based entirely on the quantitative features of one central cerebral 

channel of EEG. The number of infants in each group with a comprehensive set of 

EEG recording electrodes was too small to analysis as a subset set for this study.  
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Secondly, our infants were not evenly randomized among interventional groups. This 

was as a result of multiples being randomized to the same intervention and a higher 

number of multiples receiving UCM. Finally, some research groups now believe that 

there is ample evidence for the benefits of UCM and DCC such that ICC should no 

longer be included in such studies. The recent results of the APTS and CORD trial 

have provided further information, which may be informative to future trials in this 

area.  

 

In conclusion, preterm infant neuromonitoring is feasible as part of a RCT with a 

short term surrogate of brain health as a primary outcome determined in the first 12 

hours of life. Acquiring data on brain activity and cerebral oxygenation at predefined 

times was feasible. There were no differences in quantitative EEG measures and 

cerebral oxygenation values between cord management strategies at 6 and 12 hours. 

Although our study numbers were small, rates for severe IVH differed among 

different cord clamping strategies. These findings did not reach statistical 

significance, but do add to our understanding of the short-term neurological outcomes 

following different cord clamping strategies. 
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Chapter 6  

Conclusion and future directions 

 

6.1 Conclusions 

Neonatal mortality has decreased significantly in recent decades (271). As more 

infants survive following preterm delivery and birth asyphxia, achieving the best 

possible neurological outcomes for survivors is paramount. Whilst EEG has an 

essential role within the NICU in newborn neurological monitoring following birth 

asyphxia, and more recently in monitoring preterm infants, it is not routinely initiated 

in the immediate newborn period, and at present has no role during newborn 

stabilisation.  

 

The studies performed and presented as part of this thesis set out to determine if 

firstly it was feasible to perform newborn EEG in the DR, and secondly to assess 

what information it provides about newborn brain activity in the immediate postnatal 

period. The potential role for preterm infant neuromonitoring in the immediate 

newborn period was also explored as part of an interventional preterm infant RCT.  

 

Monitoring brain activity in term infants in the DR is feasible and can be obtained in 

the first minutes of life by an experienced user. Continuous mixed frequency EEG can 

be seen in all infants, and quantitative features have now been described for the first 

time. The quantitative features reported represent infants during the immediate 

newborn period following the establishment of functional residual capacity, and 
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stabilisation of tidal volumes and end tidal CO2, in term infants following elective 

caesarean section.  

 

Preterm infant neuromonitoring is also feasible in the immediate newborn period. The 

acquisition of EEG is not as straightforward as in healthy term infants with current 

application techniques. However, it is possible to obtain information on brain activity 

and cerebral oxygenation during the first hours of life. In the study reported, the 

majority of infants had information available early, within hours of birth.  

 

6.2 Future directions 

6.2.1 EEG as a biomarker for brain health in the immediate newborn period 

Brain activity can be monitored in the immediate newborn period, and normative 

values have now been produced. This information is hugely important, beneficial and 

may help guide resuscitation teams and to determine the need for immediate passive 

cooling. Thoresen et al coined the phrase ‘time is brain’ in relation to the timing of 

cooling for neuroprotection (151). We strongly believe that EEG in the DR could help 

identify those infants who would benefit most from early neuroprotective strategies.   

 

However, we still have a way to go before EEG monitoring is routine in the DR. 

Signal interpretation is difficult but huge advances have already been made in 

quantitative analysis of the neonatal EEG and we now have algorithms that can 

accurately grade the EEG in term and preterm newborns (180, 255, 288-292). 

Multiple channels of EEG are not required to assess the grade of EEG baseline 

activity in the DR, one channel of good quality EEG is perfectly acceptable to assess 

amplitude, continuity and frequency of the EEG.  EEG sensors are constantly 
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evolving and newer disposable single application sensors are now available also 

making EEG electrode acquisition more feasible. 

EEG has long been considered just too difficult to deploy in environments like the DR 

and NICU. There have been major recent advances to the adoption of EEG in the 

NICU primarily due to technological advances (204). Modern machine learning 

techniques are also advancing rapidly and will soon be able to provide non EEG 

experts with the help needed to assist in the interpretation of EEG patterns on a 

24/7/365 basis. These difficulties should no longer be a barrier to the adoption of EEG 

in the DR and we believe further studies on EEG in the immediate newborn period are 

essential.   

In conclusion, the time is now right to advance the objective monitoring of 

neurological function of newborn infants in the DR and more research is clearly 

warranted. Future studies assessing infants following normal vaginal deliveries are a 

logical next step, and ultimately studies assessing EEG in the immediate newborn 

period following suspected HIE are warranted.  

 

6.2.2 Neuromonitoring as an outcome measure in preterm infant studies 

Developmental outcomes are the most commonly accepted outcome measures for 

interventional preterm infant studies. However, developmental outcomes are difficult 

to interpret as they are inherently multifactorial, and not solely dependent on a single 

intervention in the newborn period.  

 

Neuromonitoring in the immediate newborn period has the potential to provide 

critical real time information on preterm infant outcomes in infant studies. To date 

many investigators have concentrated on NIRS due to the simplicity of its application 
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and interpretation. EEG, however, which has proven efficacy in the management of 

term and preterm infants has been largely ignored, as its application and interpretation 

is perceived as complicated in preterm infant studies. This thesis has confirmed that 

EEG is feasible in preterm infant studies, and the information obtained is easily 

interpreted in a research setting. 

 

Advances in our understanding of preterm brain activity have led to a number studies 

describing EEG characteristics which correspond to developmental outcomes.  

Continuous displays of inter-burst interval duration, which differs with gestational 

age, has been cited as useful prognostic measure in preterm infants in the near future 

(171, 180). The most common EEG biomarkers associated with poor outcomes are 

seizures, positive rolandic sharp waves, EEG suppression/increased interburst 

intervals, mechanical delta brush activity, and other deformed EEG waveforms, 

asymmetries, and asynchronies (154).  A recent study assessing quantitative analysis 

of physiological signals, combined with gestational and graded EEG, displayed 

potential for predicting mortality or delayed neurodevelopment at 2 years of age 

(193). 

 

Therefore, infant neuromonitoring, and specifically brain activity has an important 

future role as short term outcome measures in preterm infant clinical trials. It is hoped 

that the information gathered in this thesis will contribute to international practice in 

this area.  
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8.0 Appendix 2: Parent information and Consent 

                                                  
 

 

 
BabySAFEE Consent Form Stage 1b                 Version 2.0 25 JAN 2016 P a g e  1  o f  2  

 

CONSENT BY SUBJECT FOR PARTICIPATION IN A RESEARCH PROTOCOL 

 
Study Number:                Patient Name:          

 

Title of Protocol:  

BabySAFEE: Study of Ante and Intra partum Fetal Electrocardiogram and Electroencephalography 

 

You are being asked to participate in a research study.  The doctors at University College Cork and Cork University 

Maternity Hospital (CUMH) study the nature of disease and attempt to develop improved methods of diagnosis and 

treatment.  In order to decide whether or not you want to be a part of this research study, you should understand 

enough about its risks and benefits to make an informed judgement.  This process is known as informed consent.  This 

consent form gives detailed information about the research study which will be discussed with you.  Once you 

understand the study, you will be asked to sign this form if you wish to participate. 

 

More Information about our study: 

  

What is an EEG? 

EEG stands for electroencephalography (EEG). It is a recording of the electrical activity of the brain and is 

captured using electrodes that are attached to the scalp. Electrodes are like small stickers and are easily removed 

with water or baby oil after use. 

 

What you are being asked to do? 

Enrol in our study. We are asking for your permission, to place a small set of electrodes on your baby’s scalp to 

allow us to record the electrical activity of their brain in the moments immediately after birth. We will also place 

two sticky patches on either shoulder of your baby to allow us to record your baby’s heart rate or ECG 

(electrocardiogram). EEG and ECG monitoring is routinely carried out in the Neonatal Unit of Cork University 

Maternity Hospital and causes no discomfort for the baby. We are also asking your permission to collect a sample 

of about 12mls of blood from the placenta immediately after birth. This sample will be used to measure 

biomarkers (chemicals in the blood) such as copeptin which may help us to analyse the EEG recording.  

 

How will we monitor your baby? 

After caesarean section babies are normally placed on a resuscitaire, which is like a high table, immediately after 

birth for a period of up to ten minutes. After vaginal delivery babies are placed ‘skin to skin’ with their mother. 

During this time a few small stickers (electrodes) will be placed on your baby’s head. Sometimes we cover these 

electrodes with a small hat or cap. We will record the EEG signal for a period of approximately 5- 10 minutes. If 

it is not possible to place the electrodes immediately after vaginal deliveries the recording will be postponed until 

your baby is being weighed and dressed. Taking part in this study will not interfere with ‘skin to skin’ time or 

initiating breastfeeding.  

EEG monitoring is a safe and accurate technique for monitoring brain activity in babies. We would also like to 

keep a copy of this EEG recording and some clinical information taken from your and your baby’s medical notes. 

 

What are biomarkers and how are the samples taken? 

Biomarkers are chemicals that can be found in the blood during times of stress, such as copeptin. Higher levels of 

copeptin can be detected after vaginal deliveries compared with caesarean deliveries. Copeptin levels will allow 

us to interpret your baby’s EEG reading more accurately.  

After your placenta has been delivered a small sample of blood will be taken from it through the vessels in the 

umbilical cord. This sample will be frozen and sent for analysis. This study does not involve any extra blood 

sampling for you or your baby.  

 

       Potential risks and benefits: 

The risks involved in this procedure are minimal, EEG monitoring is safe and painless and is routinely carried out 

in CUMH. 
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BabySAFEE Consent Form Stage 1b                 Version 2.0 25 JAN 2016 P a g e  2  o f  2  

Confidentiality: 

The records of this study will be kept confidential. Interesting findings from this research may be published in 

medical journals publications and presentations. All information on you and your baby will be kept anonymously 

and stored securely and only people involved in the study will have access to this information. Only personnel 

working at your hospital will have access to personal details about you or your baby and these will be stored 

securely in a locked cabinet in a restricted area accessible only to study personnel. We will not include any 

information that will make it possible to identify you as a subject. When required by law, the records of this 

research may be reviewed by government agencies and sponsors of the research. 

 

Aim of the study 

We aim collect EEG and ECG recordings during this study that will be used to identify methods to improve 

monitoring during labour and delivery.  

 

Voluntary Nature of the Study: 

Participation in this study is voluntary and you may withdraw consent at any time without affecting the medical 

care of you or your baby. 

 

Contacts and Questions: 

      Contact the Principal Investigator Dr Mairead O’Riordan Phone: 087 2329572 

      You will be given a copy of this form to keep for your records. 

 

 

AGREEMENT TO CONSENT 

The research project and the treatment procedures associated with it have been fully explained to me.  All 

experimental procedures have been identified and no guarantee has been given about the possible results.  I have had 

the opportunity to ask questions concerning any and all aspects of the project and any procedures involved.  I am 

aware that participation is voluntary and that I may withdraw my consent at any time.  I am aware that my decision 

not to participate or to withdraw will not restrict my access to health care services normally available to me.  

Confidentiality of records concerning my involvement in this project will be maintained in an appropriate manner.  

When required by law, the records of this research may be reviewed by government agencies and sponsors of the 

research. 

I understand that the sponsors and investigators have such insurance as is required by law in the event of injury 

resulting from this research. 

I, the undersigned, hereby consent to participate as a subject in the above described project conducted at the Cork 

Teaching Hospitals.  

I, the undersigned, agree to donate a sample of my baby’s umbilical cord blood for this research project. I understand 

that this sample will be retained for up to two years and discarded after analysis.  I have received a copy of 

investigator(s) listed above.  If I have further queries concerning my rights in connection with the research, I can 

contact the Clinical Research Ethics Committee of the Cork Teaching Hospitals, Lancaster Hall, 6 Little Hanover 

Street, Cork. 

 

After reading the entire consent form, if you have no further questions about giving consent, please sign where 

indicated. 

 

 

Investigator:                                                      

         Signature of Subject, Parent or Guardian 

 

             

         Signature of Subject, Parent or Guardian 

 

         

Witness:                                                 Date:                           
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Respiratory function monitoring in babies after an elective 

caesarean section: can it predict the risk for transient tachypnea 

of the newborn? 
 

Dear Parents, 

The team at Cork University Maternity Hospital are committed to providing the best care 

possible for you and your baby. Babies born by Caesarean Section have been shown to have 

an increased incidence of respiratory problems. These include transient tachypnoea of the 

newborn (wet lung) where the baby’s breathing can be rapid. This can sometimes requires 

admission into the special care baby unit where they are monitored and sometimes require 

oxygen and other breathing  support.  

The purpose of this study: 

The purpose of our study is to assess your baby’s respiratory breathing pattern in the first 

ten minutes of life and then once again after 1-2 hours. We aim to identify any indicators 

which would be used to predict those that might need admission to the unit. 

How will we monitor your baby? 

Infants will be placed on the resuscitaire immediately after birth for a period of up to  ten 

minutes which is the normal process. During this time a facemask connected to a monitor 

will be placed over your baby’s mouth and nose and their breathing patterns recorded. 

Respiratory function monitoring is a safe and accurate technique for monitoring lung 

function in babies.  The measurement causes no discomfort for the baby. 

One to two hours later we will reassess your baby’s respiratory function. This time frame has 

been chosen to allow flexibility so we do not interrupt feeding or bonding between you and 

your baby. Measurements will be taken in the same manner as at the time of delivery. 

What happens if your baby requires resuscitation at birth? 

A paediatric doctor will be present at your caesarean section which is usually not the case 

with elective sections. They will be present to assess and treat your baby. The monitor does 

not interfere with normal care or need for resuscitation. 

Confidentiality: 

While we aim to have this work presented and published internationally, your baby’s 

information will remain secure. No confidential details will be published or disclosed to 

anyone outside the study. 

 



 138 

 

Voluntary participation: 

You are asked for voluntary consent for you and your baby to participate in this study. If you 

decide not to participate it will not have any effect on your baby’s medical care. If you do 

give consent, you are still free to withdraw from the study at any time. You do not have to 

give a reason. 

 

 

 

Research Team: 

Professor Gene Dempsey, Consultant Neonatologist, Cork University Maternity Hospital 

Dr Julie De Meulemeester, Registrar in Neonatology, Cork University Maternity Hospital 

Dr Lisa Dann, SHO in Neonatology, Cork University Maternity Hospital 

Dr Elena Pavlidis, Clinical Research Fellow, Department of Paediatrics and Child Health 



 139 

Dr Daragh Finn, Clinical Research Fellow, INFANT Research Centre 

Ita Herlihy, Clinical Research Nurse, INFANT  Research Centre 

 

Consent Form 
 

 

 

I have read the information leaflet and had all my questions answered for me............... 

I consent for my baby to be included in the study............................................................. 

I understand that I can withdraw consent at any time...................................................... 

I consent for my baby’s data to be used for the purposes of the study............................ 

 

 

Name of the baby:                                                                                                                                 _ 

Name of the parent:                                                                                                                              _ 

Signature of the parent:                                                                                                                       _ 

Date:                                                                                                                                                         _ 

 

Name of the researcher:                                                                                                                       _ 

Signature of the researcher:                                                                                                                _ 

Date:                                        _                                                                                                               _ 
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Clamping the Umbilical cord in Premature Deliveries (CUPID): A Randomised 

Controlled Pilot Trial  

Parent Information Leaflet  
 

You are being invited to give your permission for you and your baby to take part in a clinical research study. Before 

you decide it is important for you to understand why this research is being done and what it will involve. This process 

is known as informed consent. This leaflet gives detailed information about the research study, which will be 

discussed with you.  Once you understand it fully, you will be asked to sign a consent form if you are happy to take 

part. A copy of this information leaflet will be given to you to keep. If anything is unclear, or if you would like more 

information, please do not hesitate to ask us. Take all the time you need to decide if you are to take part.  

 

Why have you been invited to take part? 

Your baby is at risk of being born prematurely and so this is why the doctors have provided you with this information.  

Being born prematurely puts your baby at a higher risk of having immediate and future medical problems. The doctors 

at Cork University Maternity Hospital are trying to find the best ways to care for premature babies and their mothers’. 

One of the ways to do this is through research studies like this one.  

 

What is the study about? 

At present your baby receives all of his/her blood and oxygen from you via your placenta. The connection between 

your placenta and your baby is known as the umbilical cord. After your baby is born you are still connected until the 

doctor cuts the umbilical cord. He/she does this by placing two clamps over the cord and then cutting the cord in 

between the two clamps. We believe the timing and way in which the doctor clamps the cord may be important for 

babies born prematurely and this study is investigating what the best approach is for you and your baby.  

 

What are the different approaches to clamping the cord?  

There are three options: 

1. Immediate cord clamping: The cord will be clamped immediately (less than 20 seconds) after delivery.  

2. Delayed cord clamping: The cord will be clamped after one minute. This approach allows for extra blood to 

flow from you, and your placenta into your baby before being separated. If your baby needs help to adapt after 

delivery this will not be affected, as this help will be provided at the bedside on a mobile trolley while you and 

your baby are still attached by the umbilical cord.  

3. Umbilical Cord Milking: The doctor can ‘milk’ the cord and then clamp it. This means that the doctor will 

push blood down the umbilical cord towards your baby a few times after delivery, and then clamp the cord.  

 

Why is it important to find out which approach is best? 

Right now it is not clear which approach is best for you and your baby. Recently, studies from other countries have 

shown that by increasing the amount of blood your baby receives from you after delivery, either by delaying the 

clamping of the cord or by milking it, may result in better short term outcomes for premature babies. These include 

higher blood pressures, which are good for premature babies, less bleeds seen on head ultrasounds and less blood 

transfusions. These findings are all positive but we still do not know if they result in better long-term neurological 

outcomes for premature babies. Therefore, at present it is not clear what the best approach is, and more studies are 

required to find out. The majority still practice immediate cord clamping.  

 

How will we decide what approach is best? 

If you decide to take part we will take a blood sample from you the day after your delivery. This will help us decide 

which approach benefits mothers best. Your baby will have a number of tests all of which are routine investigations in 

premature infants. They include EEG, Cranial ultrasounds, brain oxygen monitoring, and Echo. These are all 

monitoring methods used in the intensive care unit.  They will help us decide which approach benefits babies best, by 

looking at your baby’s brain and heart function during the first days after delivery.  

 

 



 141 

                                                  
 

 
 

2 

 

What is EEG?  
EEG stands for electroencephalography. It is a recording of the electrical activity of the brain and is captured using 

electrodes that are attached to the scalp. Electrodes are like small stickers and are easily removed with water or baby 

oil after use. They take about 10 minutes to apply and after this they will be left in place for the first few days of life. 

Our EEG system also uses video to help us study movement patterns during sleep. This video recording is strictly 

confidential and will not be used for any other purposes.  
 

What are cranial ultrasounds? 

You have seen your baby on ultrasound during your pregnancy. We will use a similar but much smaller device to look 

at your baby’s brain by ultrasound. All premature babies have a head ultrasound in the first few days of life. As part of 

the study your baby will have an extra one a few hours after being born. 

 

What is NIRS? 

Near Infrared Spectrometry (NIRS) is a method that is widely used for assessing the oxygen supply to the brain. NIRS 

is a test that picks up the oxygen level in the baby’s brain. Similar to the EEG attachments, the NIRS probe (a small 

sticker) will also be applied to your baby’s forehead and will be kept in place for the first few days of life. Once both 

tests (EEG and NIRS) are complete, these attachments will be safely removed from your baby’s head.  

 

What is echocardiography? 

We will use the ultrasound probe to look at your baby’s heart and the blood flow entering and leaving the heart.  

 

It is important to note that these methods of monitoring are standard methods of assessment of preterm infants.  

 

If I enter the study how will you decide what approach to clamping the cord will be taken? 

This is decided through a process called randomisation. This means that the approach will be assigned randomly after 

you have consented to take part in the study. Your baby will have an equal chance of being assigned to each of the 

three approaches outlined above. 

 

What will happen if I do not enter the study? 

Your baby will still have their cord clamped by one of the three approaches mentioned above. There is no hospital 

policy on umbilical cord clamping so any of these approaches may occur.   

 

Are there any risks to my baby by entering the study? 

No. There is some evidence that babies that have delayed cord clamping or umbilical cord milking can become more 

jaundiced than babies whose cords are clamped immediately. However, there is no evidence that they require more 

treatment, or that it causes any harm to babies.   

 

Voluntary Nature of the Study: 

Participation in this study is voluntary and you may withdraw consent at any time without affecting the medical care of 

you or your baby. You can also ask to speak with a member of the research team at any time during the study and we 

would be happy to answer any questions that you may have.   

 

Confidentiality: 

The records of this study will be kept confidential. Interesting findings from this research may be published in medical 

journal publications and presentations. All information on you and your baby will be kept anonymously and stored 

securely and only people involved in the study will have access to this information. Only personnel working on the 

study will have access to personal details about you or your baby and these will be stored securely in a locked cabinet 

in a restricted area accessible only to study personnel. We will not include any information that will make it possible to 

identify you as a subject.  
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Contact Details for Chief Investigator: 

 

 

         Prof Eugene Dempsey 

    Consultant Neonatologist 

    INFANT Research Centre 

    Cork University Maternity Hospital 

    Wilton 

    Ireland 

    Tel: 0214920500 

 

 

  

 
 

  

Version 2.1 
23/10/2015 
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  We reviewed the current available literature on this 
important aspect of newborn care, in an effort to uncover 
the evidence to support the use of VR in the DR. We re-
viewed (1) how to determine which infants may benefit 
from VR, (2) the indication and frequency of VR in the 
DR, (3) which fluid should be used, and, lastly (4) wheth-
er there is a role for placental transfusion in such infants. 

  How to Determine Which Infants Require VR 

 In newborn term and preterm infants, the practice of 
VR is often considered to be beneficial, for instance, in 
severe arterial hypotension or severe metabolic acidosis 
in the context of neonatal shock  [2, 3] . Shock is caused by 
an acute failure of circulatory function and is character-
ized by inadequate tissue and organ perfusion  [4] , and is 
most commonly caused by an asphyxial insult and/or hy-
povolaemia in newborn infants where there may/may not 
be obvious blood loss and also in the setting of sepsis.

  VR can be lifesaving for newborn infants with hypo-
volaemic shock or sepsis. However, infants who sustain 
an acute perinatal asphyxial insult, not secondary to acute 
blood loss, are generally euvolaemic  [2] . In cases of intra-
uterine hypoxia, there is often an increased blood volume 
 [5, 6] . VR in such infants may lead to volume overload 

and worsen cardiovascular compromise in infants who 
may have impaired myocardial contractility  [2, 7] . How-
ever, in a compromised term neonate in the DR, distin-
guishing an infant with hypovolaemic shock from a nor-
movolaemic infant with asphyxia is challenging.

  ILCOR advises clinical assessments of peripheral per-
fusion to differentiate between the normovolaemic and 
hypovolaemic state  [1] . In the 2010 ILCOR report as well 
as in the 2015 European Resuscitation Committee (ERC) 
guidelines, the colour of the mucous membranes was said 
to be a useful clinical discriminator  [8, 9] . In the case of 
hypovolaemic shock, these membranes will be pale, but 
in the case of asphyxia, they may have a “normal” colour 
 [10] . However, assessments such as capillary refill time, 
colour, and palpation of peripheral pulses are subjective, 
and there can be significant inter-rater variability, as 
highlighted by several investigators  [11, 12] . Assessments 
based on the colour of the mucous membranes, although 
specific if oxygen saturations are <70%, are still subjec-
tive, and are associated with a low sensitivity  [13] , making 
it difficult to clinically determine the underlying aetiology 
of newborn shock.

  Objective measures of newborn circulatory status are 
an important component of assessing infants with shock 
in the DR, both for diagnosing circulatory failure and to 
monitor the response to treatment. We will discuss the 

 Table 1.  Objective monitors for assessing newborn circulatory status in the DR

Normative values
established for
term infants1

Normative values
established for
preterm infants2

Accuracy Comments

Pulse oximetry HR + + + gold standard monitor for assessing HR in the DR; may 
be unreliable during CPR

ECG HR + + + quicker data acquisition than pulse oximetry but may 
require extra personnel

Doppler US HR + + + a novel method for accurate data acquisition but extra 
trained personnel required

BP + – – accurate measurements not feasible in the DR setting

ECHO-LVO/RVO + – + supplies valuable information but extra trained 
personnel required

NICOM-LVO + – – limited as only trends in CO can be appreciated; further 
studies advised

 BP, blood pressure; CO, cardiac output; DR, delivery room; ECHO, echocardiogram; ECG, electrocardiogram; HR, heart rate; LVO, 
left ventricular output; RVO, right ventricular output; NICOM, non-invasive cardiac-output monitoring; US, ultrasound.

1 In the immediate newborn period; 2 <32 weeks’ gestation in the immediate newborn period.
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methods used for heart rate (HR) and blood pressure (BP) 
assessment in the DR, and also newer modalities such as 
echocardiography (ECHO), perfusion index (PI), and 
non-invasive cardiac monitoring (NICOM) ( Table 1 ).

  Assessment of newborn HR has been the mainstay to 
assess effective newborn transition and to gauge the need 
for resuscitatory interventions in the DR  [1] . Methodolo-
gies include assessment by stethoscope auscultation, pal-
pation, pulse oximetry, electrocardiogram (ECG), and 
Doppler ultrasound. While the clinical assessment of HR 
by auscultation at the apex with a stethoscope is more ac-
curate than the assessment of umbilical pulsations  [14] , 
these methodologies are often inaccurate compared with 
other objective methods, such as pulse oximetry and ECG 
 [9] . A recent commentary has highlighted that a pro-
longed time period to auscultate may provide a more ac-
curate HR  [15] .

  Assessing HR from pulse oximetry readings provides 
real-time accurate information  [16] , but there can be de-
lays in signal acquisition of between 1 and 2 min  [17] , and 
especially in low-perfusion states  [18] . Whilst pulse oxim-
etry is easy to apply by using a single probe, preferably on 
the right hand (pre-ductal) of the neonate, in depressed 
neonates with poor cardiac output, lack of signal may be 
confused with handling errors or device failure, and hence 
distract from managing the clinical state of the infant. In 
addition to the HR, pulse oximetry also provides oxygen 
saturation data on a continuous basis. Similarly to the 
abovementioned errors associated with obtaining oxygen 
saturation signals, pulse oximetry-derived HR can be ad-
versely affected by improper application, movement arti-
fact, or poor peripheral perfusion, and so may not be reli-
able while performing chest compressions  [19] .

  Evaluation of the HR by means of ECG has been shown 
to provide more accurate HR values, in a shorter time 
than pulse oximetry HR in the DR, and it is less prone to 
movement artifact. Katheria et al.  [20]  reported median 
times for acquiring a signal from ECG and pulse oximetry 
of 4 and 32 s following application, respectively. Howev-
er, obtaining an ECG requires the application of 3 chest 
leads; this may itself take up to 20s  [20] . In practice, a 
baby’s wet skin may also pose a challenge, as not all ECG 
leads stick well to a wet surface and so the task of applying 
the leads may require additional personnel. Furthermore, 
pulseless electrical activity can present with a visible ECG, 
but no cardiac output, even though this is an extremely 
rare occurrence in the newborn.

  Hutchon  [21]  showed that measurement of the neona-
tal HR by Doppler ultrasound is possible, and can easily 
be seen as an extension of fetal HR monitoring until pulse 

oximetry readings are available. Measurements are accu-
rate and comparable with ECG HR values  [22] . This ap-
proach may be challenging, as clinical expertise is re-
quired for accurate ultrasound assessments and, at pres-
ent, continuous measurements are not practical. In 
conclusion, the assessment of HR is important. To date, 
the accuracy of routinely applied methods varies, with 
palpation and auscultation being the least accurate and 
ECG being the most accurate  [23] .

  Neonatal oscillometric BP monitoring is another ob-
jective methodology that has been investigated during 
neonatal transition, although not widely used clinically. 
A number of studies have shown that BP measurements 
are obtainable in the DR  [24, 25] . However, such non-
invasive BP measurements are not reliably consistent, es-
pecially in preterm neonates, and invasive BP monitoring 
is not practical in the DR setting  [3] . Thus, BP acquisition 
and values obtained in the DR may not be clinically useful 
in assessing the circulatory status of newborn infants.

  A recent review identified 4 studies of cardiac-output 
ECHO monitoring during term newborn stabilization 
 [24] . These studies confirm that ECHO assessment of 
neonatal transition (ductal haemodynamics, and changes 
in right and left ventricular outputs) is feasible as an ob-
jective adjunct to determining newborn haemodynamic 
status  [26–28]  . Normative ECHO values for left ventricu-
lar output and stroke volume in the first 15 min of life 
have been determined  [27, 29] . Therefore, in theory, 
ECHO could help distinguish between infants who pres-
ent with low-output cardiac failure in the setting of hypo-
volaemic shock, and high-output failure in the setting of 
asphyxia. However, studies have yet to assess whether 
ECHO analysis could help in determining the aetiology 
of newborn shock or volume responsiveness in the new-
born period, and whether this approach is indeed useful 
to guide clinical decision-making  [30] .

  Weisz et al.  [31]  described a method which provides 
non-invasive continuous cardiac-output monitoring 
(NICOM). This technology is based on the assumption 
that changes in the resistance to electrical currents cap-
tured by electrodes on the thorax are directly related to 
changes in aortic volume during different stages of the 
cardiac cycle. NICOM measurements correlate well with 
timed ECHO measurements in neonates  [31] . However, 
NICOM underestimates the actual cardiac-output value 
(47% error reported)  [31] . Therefore, it may be more use-
ful in monitoring trends in cardiac output. It is not de-
signed to help in discriminating between causes of new-
born shock or volume responsiveness in the newborn pe-
riod, and a systematic review of NICOM confirmed that 
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it is not accurate in determining volume responsiveness 
in paediatric patients  [30] . Katheria et al.  [32]  document-
ed increasing cardiac outputs on NICOM over the first 5 
min of life in term infants during delayed umbilical-cord 
clamping, and, although feasible, at present, NICOM is 
not a valuable tool for assessing infants in the DR.

  PI monitoring is a non-invasive method of assessing 
peripheral perfusion and provides continuous values. 
These values are derived from and displayed by a pulse 
oximeter, which utilizes an extra wavelength emission in 
its calculations to distinguish between the pulsatile and 
non-pulsatile components of arterial blood, and produc-
es a real-time measure of peripheral perfusion  [33] . The 
PI has been utilized to assess infants in a number of clin-
ical domains in the NICU setting  [34] . These include elec-
tive screening for congenital cardiac disease  [35] , predict-
ing low systemic blood flow  [36] , and assessing perfusion 
following blood transfusion  [37] . Values for PI are also 
easily obtained in the DR  [38] . However, they are highly 
variable in the immediate newborn period, for both term 
and preterm infants, which limits the use of PI in assess-
ing newborn circulatory status in the DR  [38, 39] .

  Near-infrared spectrospcopy (NIRS) may be a useful 
adjunct, and there have been a number of recent DR-ori-
entated studies addressing the use of NIRS  [40, 41] . It is 
easy to apply and there is very little delay in signal acqui-
sition. NIRS has been utilized to assess the adequacy of 
peripheral oxygenation  [42] . Wardle et al.  [43]  evaluated 
oxygen delivery and consumption in the forearm of 30 
preterm babies, 15 of whom were hypotensive by Watkins 
criteria. They identified a lower oxygen delivery and con-
sumption in the hypotensive babies. However, NIRS has 
yet to demonstrate that its use results in improved out-
comes for term and preterm infants.

  In summary, there appears to be no single failsafe or 
reliable clinical or electronic modality that accurately de-
lineates haemodynamic status in the healthy or sick neo-
nate during transition. Objective HR assessment remains 
important. The typical description of acute blood loss or 
hypovolaemic circulation has been that “pallor of the 
mucous membranes and skin is nearly always present” 
 [44, 45] . We contend that this clinical sign is a very poor 
discriminator between acute blood loss and asphyxia, 
and that the utilization of other objective parameters 
(BP, ECHO, NICOM, and PI) may allow for better dis-
crimination between these 2 broad categories in the fu-
ture. However, the sensitivity and specificity of these pa-
rameters, individually or collectively, remains to be de-
termined.

  The Frequency of VR in the DR 

 Although the incidence of neonatal shock remains un-
known, <1% of newborn infants require advanced resus-
citative measures, including chest compression, drug ad-
ministration, and fluid boluses during newborn stabiliza-
tion  [46] . Wyckoff et al.  [2]  described a cohort of 37,972 
infants of >34 weeks’ gestation delivered over a 30-month 
period, 28 of whom (0.07%) received intensive CPR. This 
was defined as the need for >60 s of positive pressure ven-
tilation and chest compressions, with or without the ad-
ministration of medications. Five infants did not respond 
to these interventions (including VR in at least 4 of these 
cases) and died in the DR. Of the remaining 23 infants ad-
mitted to the NICU, 13 had received VR. Therefore, in this 
cohort of infants delivered at >34 weeks’ gestation, only 
0.04% (4.4/10,000) received VR in the DR. The authors 
compared the infants that had received VR ( n  = 13) with 
those who had not ( n  = 10). The patients who received 
volume were more likely to have low Apgar scores (Apgar 
<2 at 5 and 10 min), to have a lower cord pH, and to have 
received adrenaline in the DR and their mean resuscita-
tion times were longer in duration (8 vs. 4 min). The mean 
BP on admission was lower (32 vs. 49 mm Hg) and initial 
haematocrit was also lower (41 vs. 54) in the group who 
received volume. In the 13 infants who received VR, the 
clinical indication for the initial use of volume was an in-
adequate HR despite CPR and adrenaline administration 
in 10 cases, and poor perfusion coupled with a clinical 
suspicion of acute blood loss in the other 3. It is difficult 
to tease out the underlying aetiology of shock from this 
retrospective study, other than to say that the majority of 
infants who received volume were hypotensive on arrival 
to the NICU, but the majority of those who did not receive 
volume were not. The aetiology of newborn shock is mul-
tifactorial, and determining the difference between acute 
blood loss and asphyxia based on BP values upon admis-
sion is challenging. From this retrospective study, one can 
conclude that sicker babies (lower Apgar score, lower cord 
pH, in receipt of adrenaline) are more likely to receive VR, 
which is consistent with current resuscitation guidelines.

  Overall, there is rather limited information available 
and there are no comparative studies to assess variations 
in practice between neonatal centers. We know that VR 
is rare, but there is a paucity of available research to quan-
tify just how often it occurs. Future resuscitation commit-
tees should reach a consensus on a definition for newborn 
shock if studies are to be of value. Without further data, 
it will be challenging to perform comparative studies or 
best-practice reviews on VR in the DR.
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  What Agent Should Be Administered in 

Hypovolaemic Neonates? 

 International guidelines generally advise that, when 
hypovolaemic shock is suspected, emergency un-cross-
matched O-Rhesus-negative blood should be adminis-
tered whenever available ( Table 2 )  [1] . If not, isotonic 
crystalloid fluids should be given. Colloid infusions such 
as albumin are no longer advised as a treatment option 
during DR stabilizations  [9, 44] . However, the suggestion 
stems from extrapolation of data from studies on animal 
models and older children, as there is a paucity of neona-
tal or DR studies. The ideal amount to be transfused is 
unclear, but an initial 10–20 mL/kg may be appropriate, 
considering that DCC may result in an additional 30% 
blood transfer.

  Whole blood provides volume, oxygen-carrying ca-
pacity, and colloids, and is the most rational agent to ad-
minister in the setting of acute blood loss. Transfusion of 
blood products carries a small risk of infectious transmis-
sion (in the order of viral contamination in 1/1–1.3 new-
borns)  [47] , which may be particularly harmful towards 
extremely-low-birth-weight infants who are already im-
munologically compromised and neurodevelopmentally 
vulnerable  [48] . Haemolytic transfusion reactions are 
rare in newborn infants  [49] . We recently reviewed our 
own practice (Medical Centre, University College Cork, 
Cork, Ireland) in relation to the administration of emer-
gency un-cross-matched blood in the DR. Over a 5-year 
period, there were 42,657 births, and 6 infants (1.4/10,000 
live births) received an emergency blood transfusion in 
the DR  [50] . Neither delayed cord clamping nor milking 
was routinely practiced in our DR in this time frame. The 
indication for administration of whole blood was based 
on a non-response to intensive CPR and a history of pos-

sible blood loss (e.g., vasa previa, fetomaternal haemor-
rhage, or placental abruption). However, generally speak-
ing, whole blood is not readily available and the adminis-
tration of crystalloid occurs in the first instance. This 
figure is greater than the DR volume administration rate 
reported by Wyckoff et al.  [2] , where 3 infants received 
volume because of concerns about acute blood loss 
(0.8/10,000).

  There is no data from DR resuscitations comparing the 
efficacy of crystalloid or colloid agents. Albumin is the 
most abundant protein in plasma, and, during normal 
homeostasis, is responsible for maintaining 60–80% of 
colloid osmotic pressure. Much of the data on crystalloid 
or colloid use has been derived from the management of 
preterm infants at risk of/with established hypotension 
 [51] . Neonatal studies to date performed outside the DR 
setting have displayed no difference in efficacy between 
colloid and crystalloid infusions  [52, 53] , and crystalloids 
are generally the preferred agent for many practical rea-
sons: they are readily available, cheaper, and carry a low-
er risk of infectious complications  [45] . Synthetic colloid 
volume expanders are as effective as albumin, have no 
infectious risks, and are readily available  [54] . However, 
they are also expensive compared to crystalloids, and 
concerns have been raised in the past regarding different 
solutions disturbing paediatric coagulation systems  [55] . 
Therefore, when whole blood is not available, the admin-
istration of crystalloid volume is advised for the treatment 
of newborn hypovolaemic shock.

  The volume to be infused and the rate of infusion have 
not been studied in neonates. However, it should be not-
ed that there is animal data which raises a number of 
concerns related to the rapid administration of volume 
expanders  [7, 56] . Wyckoff et al.  [7]  compared 5% albu-
min, normal saline, and no volume on the development 

 Table 2.  Volume resuscitation agents in hypovolaemic shock

Availability Efficacy Risk Cost Recommendation

O-Rhesus-negative blood centre-
dependent

most efficacious low a valuable
resource

gold standard treatment for 
hypovolaemic shock

Crystalloid (NaCl 0.9%) readily equal to albumin none – first-line agent when whole 
blood is not available

Albumin readily equal to crystalloid and
synthetic volume expander

low + not recommended

Synthetic volume expander readily equal to albumin low + not recommended
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of pulmonary oedema and the restoration of mean arte-
rial pressure during the resuscitation of asphyxiated pig-
lets. Volume administration in these animals did not im-
prove mean arterial BP. The authors demonstrated an 
increased risk of pulmonary oedema in the piglets when 
albumin was administered compared to the control ani-
mals. Another study evaluated the effect of rapid volume 
administration on coagulation haemostasis in piglets, 
comparing 4 different fluids including normal saline and 
albumin  [56] . These piglets were not hypovolaemic. All 
fluids administered caused a significant weakening of 
clot strength, suggesting that rapid volume administra-
tion can impact upon the coagulation profile. Therefore, 
the potential side effects of the rapid administration of 
crystalloids or colloids in the DR setting need to be care-
fully considered.

  Is There a Role for Placental Transfusion in 

Compromised Infants? 

 The 2015 ILCOR and ERC guidelines advocate de-
layed cord clamping (DCC, for at least 1 min) in uncom-
promised term and preterm infants  [1, 9] . This is based 
on a plethora of benefits outlined in recent Cochrane re-
views for both term and preterm infants, such as reduced 
incidences of anemia, hypotension, and intraventricular 
haemorrhage following DCC  [57, 58] . However, the au-
thors advise that, until further evidence is available, pla-
cental transfusion should be discontinued in infants who 
are not breathing, so that resuscitation measures are not 
delayed  [1] . They acknowledge that even though there is 
compelling physiological data from animal studies to 
suggest many benefits to resuscitating depressed new-
borns whilst on the cord, such a recommendation has not 
been formulated in the ILCOR or ERC guidelines due to 
the lack of human studies on the feasibility and safety of 
this approach  [59, 60] . First-in-human studies are cur-
rently underway.

  Newborns that require resuscitation at birth are at a 
higher risk of brain injury and death, and some commen-
tators have argued that these infants may receive the 
greatest benefit from DCC  [61] . In the setting of hypovo-
laemic shock, fresh whole blood which supplies volume 
expansion, colloid expansion, and oxygen-carrying ca-
pacity may be considered an ideal agent  [62] . The benefits 
of DCC are thought to result from a number of physio-
logical processes that include (1) the placental transfer of 
blood, (2) accommodating a more stable haemodynamic 
transition from fetal life, and (3) a transfer of stem cells.

  The volume and rate of delivery of placental blood as 
a result of DCC was thought to be increased if the infant 
was placed in a superior position relative to the placenta 
when uterine contractions are present and if newborn 
respiration has commenced  [63–65] . However, recent 
studies suggest that the position of the newborn may not 
have much influence on the volume of blood transfused 
 [66, 67] . Placental transfusion can result in a direct intra-
vascular transfusion of 30–40% of the total neonatal 
blood volume  [63–65, 68] . For infants with hypovolaemic 
shock, DCC could be an important first step in their re-
suscitation, if early identification was possible  [69] . For 
preterm infants (<32 weeks’ gestaion), an increase in total 
blood volume results in higher BP and a reduced need for 
inotropic support, with no significant side effects  [57] . 
Conversely, it is unknown whether asphyxiated infants 
will benefit from placental transfusion and whether DCC 
could be deleterious due to the potential for volume over-
load, polycythemia, and the possible delay in establishing 
positive pressure ventilation  [70] .

  DCC may facilitate a more stable haemodynamic tran-
sition for compromised infants  [61] . In preterm infants, 
it was associated with a 50% reduction in intraventricular 
haemorrhage (although not significant for grade 3 or 4), 
which can be explained by the increase in fluctuations of 
cardiac output which follow immediate cord clamping 
 [57, 71, 72] .

  DCC also increases the transfer of haematopoietic 
stem cells, endothelial cell precursors, mesenchymal pro-
genitors, and pluripotent lineage stem cells  [73] . Stem cell 
therapies are under investigation for the early treatment 
of developmental brain injury, including perinatal as-
phyxia and preterm birth  [74, 75] . The evidence to date 
supports that cord blood cells may provide neuro-protec-
tive benefits due to their actions on a range of comple-
mentary biochemical pathways that become dysregulated 
in response to perinatal asphyxia  [76] . Autologous umbil-
ical-cord blood mononuclear cells in asphyxiated new-
born lamb and rat models restore normal brain metabo-
lism, and reduce brain inflammation, astrogliosis, and 
neuronal apoptosis  [74, 77, 78] . Studies to date have con-
centrated on autologous transfusions, and the placental 
transfusion of stem cells by DCC has yet to be studied in 
vivo. Therefore DCC for infants in need of resuscitation 
cannot be recommended based on the transfer of stem 
cells alone  [76] .

  Strategies that allow for placental transfusions but do 
not delay resuscitative measures are currently under eval-
uation, as mentioned earlier. Newborn resuscitation at 
the bedside while the cord is still attached is now feasible 
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with the introduction of mobile resuscitation trolleys 
 [79] . Another strategy that allows for placental transfu-
sion at birth and does not delay neonatal resuscitation is 
umbilical-cord milking, which has the advantage of trans-
fusing similar volumes without delaying routine neonatal 
resuscitation  [80] . Short-term benefits similar to those 
with DCC for preterm infants have been reported  [81] . 
However, there is still a dearth of knowledge about um-
bilical-cord milking, with concerns that multiple strip-
ping of the cord could release harmful cytokines or cel-
lular debris into the infant’s circulation so, at present, 
guidelines do not recommend it following term or pre-
term deliveries  [61] .

  While DCC may be appropriate when haemorrhagic 
shock is presumed, the same difficulties in distinguishing 
such infants from other compromised infants remain. 
Further research on stem cell transplants, bedside resus-
citation measures, and umbilical-cord milking are war-
ranted.

  Conclusion 

 In a setting with presumed or obvious blood loss such 
as placental abruption or fetal-to-maternal transfusion, 
VR therapy may indeed have an important role to play. 
However, for other clinical scenarios such as asphyxia, 
the current set of clinical and technical tools makes it dif-
ficult to differentiate the haemodynamically compro-

mised infant who will benefit from volume therapy from 
the normovolaemic asphyxiated infant who may, poten-
tially, be further compromised by volume therapy. When 
the decision to treat is made, fresh whole blood should be 
used if available, and crystalloid solutions if not. DCC re-
mains the most obvious source for immediate transfusion 
in such infants but, currently, it is unknown if DCC is 
beneficial in the setting of haemorrhagic shock, and fur-
ther work is needed to assess whether DCC with ventila-
tory support results in better outcomes for compromised 
infants at birth.
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