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Abstract

Productivity among small- and medium-scale tilapia farms varies considerably.

The difference between the best performers and lower ones (yield gap), is affected

by differences in growth rate and feed conversion ratio (FCR). FCR at the farm

level is strongly influenced by survival of fish. In this study a systematic literature

review of two databases (ASFA and CAB-Abstracts) identified 1973 potentially

relevant articles. Data from 32 articles that met the inclusion criteria were anal-

ysed using linear mixed models for the most important factors with significant

contributions to growth [investigated through analysis of the thermal growth

coefficient (TGC)], survival and FCR of Nile tilapia. Increasing crude protein

(CP), dissolved oxygen (DO) and pH significantly decreased FCR and increased

TGC. Increasing stocking weight (SW) significantly improved both FCR and sur-

vival. Temperature had the largest effect on FCR followed by DO, pH and CP.

DO had the largest effect on TGC followed by CP and pH. This study confirms

that the optimal rearing temperature for Nile tilapia is between 27 and 32�C.
Improving management to optimize DO (> 5 mg/L), stocking density (3–5 fish/

m2), SW (> 10 g) and CP (25 � 30%) will improve performance and survival in

small- and medium-scale tilapia farming. However, it is hard to influence temper-

ature in ponds and cages while DO is largely influenced by aeration. Since many

small- and medium-sized farms do not have aeration, these major tilapia farming

systems could benefit from genetically improved strains selected for resilience to

highly fluctuating diurnal temperature and DO levels.

Key words: feed conversion efficiency, growth, survival, tilapia, yield gap.

Introduction

The supply of fish for human consumption has been

increasing at a rate of 3.2% per year since the 1970s until

2013. Aquaculture made a substantial contribution to this

increase, with inland finfish farming contributing 65% of

the increase in fish production from 2004 to 2014 (FAO

2016). Among the finfish, Nile tilapia (Oreochromis niloti-

cus) ranked second in terms of production volume next

to carps (grass carp, silver carp and common carp) with

a total production volume of 3.7 million tons worth

about 6 billion USD (FAO 2016). Nile tilapia is farmed

in more than 80 countries and in different production

systems ranging from artisanal to intensive systems (Nor-

man-L�opez & Bjørndal 2009). Tilapia is an important fish

species for home markets in Asia, South America and

Africa; the United States of America is the major export

market for tilapia (FAO 2016). Therefore, many selective

breeding programs have been established for Nile tilapia

(Neira 2010) including an important non-commercial

breeding program by WorldFish that developed the

genetically improved farmed tilapia (GIFT). The GIFT

strain has been disseminated to many countries (Komen

& Trinh Quoc 2014). According to Neira (2010), 10 out

of 17 Nile tilapia breeding programs had used the GIFT

strain as their base population.
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Nile tilapia production systems can be classified in terms

of input utilization as extensive, semi-intensive and inten-

sive farming systems. The earthen-pond production sys-

tems are the dominant ones practiced by small- and

medium-sized tilapia farms. Such farms typically produce

fish of 200–500 g weight targeting local markets. Larger fish

with harvest weights above 800 g are produced by large

farms that mostly use larger ponds with aeration, or cages

in lakes and reservoirs (Omasaki et al. 2016b, Hoong Yip

Yee, pers. comm., 2016). Currently there is a big difference

in productivity among many small- and medium-sized tila-

pia farms. The difference in productivity between the best

performing farms and low performing farms is defined as a

yield gap, the difference between achieved production and

that which is possible with optimal management. Many fac-

tors can contribute to differences in productivity but all

have their action ultimately in their effects on growth, sur-

vival and feed efficiency, and this can be summarized as a

difference in feed conversion ratio (FCR). There are large

differences in FCR and survival among many small- and

medium-sized tilapia farms.

FCR at the level of production units is defined as the

ratio of the total feed given divided by total biomass har-

vested. FCR is determined by individual feed efficiency

and survival, because fish that die during the grow-out

period eat feed until death, but do not contribute to the

total biomass harvested. Reported FCR values for tilapia

vary widely, ranging from 1.5 to 2.5 in pond environ-

ments and from 1.0 to 1.71 in cage environments (Rana

& Hassan 2013). Thoa et al. (2016) reported FCR values

of 1.08 and 1.89 in freshwater and saline water pond

environments, respectively. FCR is considered acceptable

when it is not higher than 2 (Craig 2009) but the accept-

able level can vary with the feed price. Feed cost is the

major cost in fish farming (El-Sayed 1999; Craig 2009)

representing over 50% of the variable costs during the

grow-out period (El-Sayed 1999). In places where the

feed price is high, a small increase in FCR could consid-

erably increase the variable cost. Therefore, underperfor-

mance in terms of FCR is a major concern for

aquaculture as it strongly and negatively affects the prof-

itability of fish farms.

Both primary determinants of FCR at the production

unit level, mortality and individual differences between fish

in converting feed to biomass, are strongly influenced by

the environment (de Verdal et al. 2018). Mortality, espe-

cially late mortality, is an important determinant of FCR.

Rates of mortality for Nile tilapia vary considerably, with

20–71% mortality being reported for Nile tilapia reared in

fertilized ponds with or without supplementary feeding

(Abdalla et al. 1996; Abdelghany & Ahmad 2002). Accord-

ing to Rana and Hassan (2013), the reported mortality var-

ies between 25 and 60% in pond environments. Trọng

et al. (2013) reported a mortality rate of 71–72% for the

cage culture environment, 48% for the pond nucleus envi-

ronment and 32% in the polyculture production environ-

ment in Vietnam. The economic effect of mortality

depends on the stage during which fish mortality happens.

Mortalities occurring during the later stages of the grow-

out phase have the largest economic impact due to the

accumulated cost of production. The amount of feed deliv-

ered at any one time is usually based on the estimated

standing stock of fish and the FCR is measured based on

the amount of feed fed and the biomass harvested. Overes-

timating the standing stock will increase the feed waste,

which has a negative effect on profit and environment,

while underestimating leads to underfeeding of the fish and

reduced production.

The wide range of FCR and mortality values reported

indicate a large difference between the best and worst per-

forming farms and suggest significant room for improve-

ment with respect to more efficient husbandry. The

investment in genetic improvement programs designed to

improve performance in farming systems is undermined by

these inefficiencies. Investigating the factors that contribute

to the reduced productivity of tilapia fish farms is critical

to providing the information needed to tackle the yield gap

problem. First, by determining whether husbandry

approaches can be optimized, and second, for those aspects

of the environment that cannot be managed, identifying

whether farmed strains can be genetically improved to be

more efficient in those environments.

Work over the last two decades has established some of

the main parameters for optimizing the environment for

rearing tilapias (Popma & Masser 1999; El-Sayed 2006;

Mjoun et al. 2010). However, there has been no compre-

hensive analysis of the actual performance of Nile tilapia in

farm systems that provide the critical information as to

how best to address the yield gap for this globally impor-

tant aquaculture resource – either through improved hus-

bandry or through selective breeding. The objective of this

study was to quantify the effects of the most likely environ-

mental and management factors on FCR, mortality and

growth of Nile tilapia and to identify the most important of

these factors associated with the yield gap.

Material and methods

Literature search

A systematic literature search was conducted for peer-

reviewed journal articles that had been published in English

in the ASFA (1971–2016) and CAB-Abstracts (1979–2016)
databases on the 7th of July 2016. We used the following

search terms and Boolean operators (‘feed efficiency’ OR

FCE OR ‘feed conversion’ OR FCR OR ‘growth rate’

OR survival OR mortality) AND (‘Nile tilapia’ OR
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‘Oreochromis niloticus’). Based on the above search terms,

we found 889 and 1739 articles from ASFA and CAB-

Abstract databases respectively. The two searches were

combined and duplicates were removed using EndNoteX7.

This resulted in 1973 articles, which were then checked

against the search terms in the title and abstract, which

resulted in 140 eligible peer-reviewed articles. From these

potentially relevant studies, 108 studies were excluded for

one of the following reasons: (i) because articles were not

accessible (21 studies), (ii) because they did not report a

sufficient proportion of the variables included in the differ-

ent models (20 studies), or (iii) because studies were out-

side the scope of this review. Studies on the effect of density

on survival during transportation, lethal dose of salinity,

compensatory growth with feed restriction and refeeding,

sex reversal, or varying crude protein levels during the

study period were considered as being outside the scope of

the review (Fig. 1). The data were extracted from the

remaining studies for analysis.

Data extraction and statistical analysis

We extracted data on the following variables: study (since

each study can be regarded as a separate element), ‘study

length’, which is the grow-out period studied, stocking

density, feeding rate, feeding frequency, levels of crude pro-

tein (CP) in the diet expressed as percentage, stocking

weight (SW), which is the weight at the beginning of the

experiments, harvest weight (HW), water temperature, pH,

dissolved oxygen (DO), salinity, ammonia, nitrate, nitrite,

growth and survival. We also extracted FCR or calculated it

as the inverse of total biomass harvested/total feed given.

Based on the number of treatments within experiments in

an article, multiple data records or results of treatments

were extracted from each article. In most of the studies, the

numbers of fish used in the experiments or the standard

errors were not reported and thus we gave equal weight to

all the studies.

From the extracted variables CP, water temperature, pH

and DO are environmental variables while the rest are man-

agement variables. FCR, survival and growth rate are the

key determinants of productivity. To allow for comparisons

across studies on growth rate, we calculated the thermal

growth coefficient (TGC) as
ffiffiffiffiffiffi

Wt
3
p � ffiffiffiffiffiffiffi

W0
3
pð Þ= T � tð Þ½ ��

1000 where Wt and Wo are final and initial weights, respec-

tively, T is the average temperature during the growth per-

iod and t is the length of the growth period (Jobling, 2003).

Therefore, the key traits analysed in this study were FCR,

survival and TGC.

We first did a principal component analysis (PCA) using

prcomp package in R software (R Core Team, 2015) to

explore the explanatory variables. If variables were missing

for some studies, we used the mean values for those vari-

ables and used all the 32 studies in the PCA. Next, we per-

formed linear mixed models to estimate the effects of the

explanatory variables on FCR, survival and TGC. The

explanatory variables were study, study length, stocking

density, SW, CP levels, DO, temperature, pH, feeding rate,

feeding frequency, the quadratic terms of CP levels, DO,

temperature and pH. Only a few studies reported salinity,

ammonia, nitrate and nitrite and therefore the effects of

these variables were not investigated. Linear mixed models

were used to account for the variation in studies and study

was fitted as a random variable, whereas the rest were fitted

as fixed effects. All models were analysed using the lme4

package (Bates et al. 2015) for R software (R Core Team,

2015). The significance of fixed effects was based on the

approximate Student’s t-test (Bates et al. 2015). The

Number of search results 
CAB-Abstract 1738

Number of papers excluded based 
on multiple occurrences 654 

Number of search 
results ASFA 889

Number of potentially relevant papers 
based on title/abstract 140

Number of papers excluded with 
reasons 108

Number of papers excluded based 
on title/abstract 1833

Number of potentially relevant papers 
after removal of duplicates 1973

Number of included papers 32

Figure 1 Flow diagram of article selection process.
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non-significant effects were removed stepwise, leaving out

the factor with the highest P-value.

FCR

The majority of papers reported DO, but pH, feeding rate

and feeding frequency were not reported in all the studies.

Hence three separate analyses were undertaken, each with a

different model.

Model 1 was used for studies that reported study length

(L), stocking density (D), SW, CP, DO and temperature

(T). The final analysis was based on 179 data records from

28 studies that report FCR:

FCR ¼ b0 þ b1 � Lþ b2 � Dþ b3 � SW þ b4 � CP þ b5
� DOþ b6 � T þ b7 � CP2 þ b8 � DO2 þ b9
� T2 þ Study þ e

ð1Þ
After removing the non-significant effects, the reduced

model was:

FCR ¼ b0 þ b1 � SW þ b2 � CP þ b3 � DOþ b4 � T

þ b5 � T2 þ Study þ e

ð1:1Þ
Model 2 used a subset of 23 studies out of the 27 used in

model 1 that also reported pH which resulted in 141 data

records:

FCR ¼ b0 þ b1 � Lþ b2 � Dþ b3 � SW þ b4 � CP þ b5
� DOþ b6 � T þ b7 � pH þ b8 � CP2 þ b9
� DO2 þ b10 � T2 þ b11 � pH2 þ Study þ e

ð2Þ
After removing the non-significant effects, the reduced

model was:

FCR ¼ b0 þ b1 � CP þ b2 � DOþ b3 � T þ b4 � pH

þ b5 � T2 þ Study þ e

ð2:1Þ
Model 3 used a second subset of 11 studies out of the 27

used in model 1 that also reported feeding rate and feeding

frequency which resulted in 67 data records:

FCR ¼ b0 þ b1 � Lþ b2 � Dþ b3 � SW þ b4 � CP þ b5
� DOþ b6 � T þ b7 � Feeding rateþ b8
� feeding freq.þ b9 � CP2 þ b10 � DO2 þ b11
� T2 þ Study þ e

ð3Þ
After removing the non-significant effects, the reduced

model was:

FCR ¼ b0 þ b1 � Dþ b2 � SWþ b3 � CP þ b4 � DO
þ b5 � T þ b6 � Feeding rateþ Study þ e

ð3:1Þ

In all of three models, FCR equals feed conversion

ratio, b0 is the overall intercept, b1 to b10 are the

regression coefficients of the different explanatory vari-

ables on FCR, Study is a random study effect assumed

to be normally distributed (Nð0; r2study), ɛ is a residual

random error assumed to be normally distributed

(Nð0; r2e ), r2study is the variance due to study and r2e is

the residual variance.

Survival

Model 4 was used to investigate the effect of study length,

stocking density, SW, CP, DO and temperature on survival,

based on 187 data records from 29 studies:

Survival ¼ b0 þ b1 � Lþ b2 � Dþ b3 � SW þ b4 � CP

þ b5 � DOþ b6 � T þ b7 � CP2 þ b8 � DO2

þ b9 � T2 þ Study þ e

ð4Þ

The effects of CP, DO and temperature were not signifi-

cant which led to the following reduced model:

Survival ¼ b0 þ b1 � SWþ Study þ e ð4:1Þ

b0 is the overall intercept, b1 is the regression coefficient

of SW on survival, Study is a random study effect assumed

to be normally distributed (Nð0; r2study), ɛ is a residual ran-
dom error assumed to be normally distributed (Nð0; r2e ),
r2study is the variance due to study and r2e is the residual

variance.

A few studies on survival reported pH, feeding rate and

feeding frequency, hence a separate set of analyses was done

to investigate the effect of these explanatory variables, but

none of them were significant and details of these models

are not presented here.

TGC

Model 5 was used to investigate the effect of study length,

stocking density, SW, CP and DO on TGC. This model was

fitted on 192 data records from 29 studies that reported

TGC:

TGC ¼ b0 þ b1 � Lþ b2 � Dþ b3 � SW þ b4 � CP þ b5
� DOþ b6 � CP2 þ b7 � DO2 þ Study þ e

ð5Þ

After removing the non-significant effects, the reduced

model was:

Reviews in Aquaculture, 1–18
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TGC ¼ b0 þ b1 � Lþ b2 � Dþ b3 � CP þ b4 � DO
þ Study þ e

ð5:1Þ
Model 6 was applied to a subset of 23 studies out of the

29 studies used in model 5 that also reported pH resulted

in 155 data records:

TGC ¼ b0 þ b1 � Lþ b2 � Dþ b3 � SW þ b4 � CP þ b5
� DOþ b6 � pH þ b7 � CP2 þ b8 � DO2 þ b9
� pH2 þ Study þ e

ð6Þ
After removing the non-significant effects, the reduced

model was:

TGC ¼ b0 þ b1 � Dþ b2 � CP þ b3 � DOþ b4 � pH
þ Study þ e

ð6:1Þ
Few studies reported feeding rate and feeding frequency

together with TGC, hence we did a separate set of analyses,

each with a different model, to investigate the effect of these

variables on TGC.

Model 7 used another subset of 14 studies from model 5

that reported feeding rate and feeding frequency in addi-

tion to the other variables fitted in model 5, which resulted

in 86 data records:

TGC ¼ b0 þ b1 � Lþ b2 � Dþ b3 � SW þ b4 � CP þ b5
� DOþ b6 � feeding rateþ b7 � Feeding freq.

þ b8 � CP2 þ b9 � DO2 þ Study þ e

ð7Þ

After removing the non-significant effects, the reduced

model was:

TGC ¼ b0 þ b1 � feedingrateþ Study þ e ð7:1Þ

With TGC being thermal growth coefficient, b0 is the

overall intercept, b1 to b9 are the regression coefficients of

the different variables on TGC, Study is a random effect

assumed to be normally distributed (Nð0; r2study), ɛ is a

residual random error assumed to be normally distributed

(Nð0; r2e ), r2study is the variance due to study and r2e is the

residual variance.

The studies used in each model are given in Appendix 1.

Results

Principal component analysis

The first two principal components explained 42% of the

variation in the whole data set. The correlations among

DO, pH and feeding rate were positive. Stocking density

and temperature were negatively correlated with DO, pH

and feeding rate, whereas SW was negatively correlated

with CP, DO, pH and feeding rate. Study length was nega-

tively correlated with CP, feeding rate and DO (Fig. 2).

Feed conversion ratio

The linear effects of CP, DO and temperature on FCR were

significant in all three models (1, 2 and 3, P < 0.05, Fig. 3a),

whereas the quadratic term of temperature was significant in

model 1 and 2 but not in model 3 when corrected for feeding

rate (Table 1). The positive quadratic term of temperature

in models 1 and 2 indicated that the relationship between

FCR and temperature was not linear as demonstrated clearly

in Figure 3b. The FCR was above 2.0 when the temperature

was below 26°C and above 33°C. Optimum FCR was

between 27°C and 32°C. FCR increased dramatically when

the temperature drops below 25°C and reaching 4.4 at 20°C.
Increasing levels of CP (15�50.7%) and DO

(1�11.1 mg/L) decreased FCR in all three models

(P < 0.05, Table 1, Fig. 3a), as did increasing pH

(6.42�8.3) in model 2 (P < 0.001, Table 1, Fig. 3c). Other

variables tested in more than one model did not show a

consistency of response or were not significant. FCR

increased significantly with increasing stocking density

when corrected for feeding rate in model 3 (P = 0.017), but

was not significant (P > 0.05) in model 1 and 2. The effect

of SW on FCR was significant and positive (0.003,

P < 0.001) in model 1, not significant in model 2

(P = 0.084) but significant and negative (�0.016,

P = 0.017, Table 1) when corrected for feeding rate in

model 3. In model 1 and 2 the SW range is similar while in

model 3 it is much smaller. The difference in the sign of

coefficients of SW in model 1 and 2 is most likely due to the

difference in SW ranges in the two models (0.003–311 g

and 0.012–110 g, Table 1). The effect of feeding frequency,

the quadratic terms of CP levels, DO and pH on FCR were

not significant (P > 0.05) in any of the three models.

In summary, FCR decreased with increasing CP, DO and

pH, and was optimal in a temperature range from 27.0–

32.0�C. Results were inconsistent for stocking density and

SW. Among the environmental variables, temperature had

the largest effect on FCR followed by DO and pH.

Survival

The analysis of model 4 showed a significant effect of only

SW (P = 0.025, the linear equation is: Survival ¼
89:767þ 0:03� SW) on survival and no significant effect

of any of the other variables (P > 0.05). Survival increased

by 0.03% per gram increase in SW. Increasing stocking

weight from 5 to 50 g would improve survival by 1.4%

Reviews in Aquaculture, 1–18
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(Fig. 4). The effects of feeding frequency, feeding rate and

pH on survival were not significant for the range of values

investigated (results not shown).

Thermal growth coefficient (TGC)

TGC increased with increasing levels of CP (15�50.7%)

and DO (1�11.1 mg/L) tested in models 5 and 6

(P < 0.05, Tables 2, Fig. 5a) but when corrected for feeding

rate in model 7 these effects became not significant. TGC

increased with increasing pH (6.42 � 8.2) in model 6

(P = 0.001, Table 2, Fig. 5b) and feeding rate (2�60%) in

model 7 (P = 0.030, the linear equation is: TGC ¼ 0:611

þ0:01� feeding rate).

Increased stocking density decreased TGC significantly in

models 5 and 6 (P < 0.05) but not in model 7 (P > 0.05)

which included feeding rate. The effect of study length on

TGC was significant in model 5 (P < 0.001), but not in

models 6 and 7 (P > 0.05). The effect of feeding frequency

and the quadratic term of CP levels on TGC were not signifi-

cant (P > 0.05). In summary, TGC increased with increasing

CP, DO and pH and decreased with increasing stocking den-

sity and study length, although not in every analysis. Among

the environmental variables DO had the largest effect on

TGC while, as expected, feeding rate had the largest effect on

TGC from the management variables investigated.

Discussion

The main environmental and management factors influenc-

ing survival, FCR and growth of Nile tilapia in the 32 papers

identified in a systematic literature survey were DO, temper-

ature, pH, CP, SW, feeding rate and stocking density.

Ammonia, nitrite, nitrate and salinity are important water

quality parameters worth of inclusion in the analysis but

data on these parameters were only available in few studies

and therefore these parameters were not investigated. We

discussed the main environmental and management factors

influencing yield gap focusing mainly on pond production

which is the predominant production system. The PCA

analysis showed a correlation between explanatory variables.

Pearson correlations between the explanatory variables were

non-significant to weak or moderate correlations. The high-

est correlation between stocking density and stocking weight

was 0.57 (P < 0.01). Using median values of the significant

variables and coefficients from Table 1, model 1 and varying

Figure 2 Loading plot from principal component analysis of all the data points from 32 studies.
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(a) (b)

(c)

Figure 3 (a) The effect of dissolved oxygen on FCR calculated based on the coefficient estimates from Table 1, model 1 and median values

(SW=9.3, CP=34% and Temp. = 28�C) for other variables. The linear equation is: FCR ¼ 32:4þ 0:003� 9:3� 0:029� 34� 0:102� DO

�1:99� 28þ 0:034� 282, Modelled, Raw data. (b) The effect of temperature on FCR calculated based on the coefficient estimates from

Table 1, model 1 and median values (SW=9.3, CP=34%, and DO=6.05) for other variables. The linear equation is: FCR ¼ 32:4þ 0:003�
9:3� 0:029� 34� 0:102� 6:05� 1:99� Temp:þ 0:034� Temp:2, Modelled Raw data. (c) The effect of pH on FCR calculated based on

the coefficient estimates from Table 1, model 2 and median values (CP=31%, DO=6.05 and Temp. = 28�C) for other variables. The linear equation is:

FCR ¼ 38:615� 0:034� 31� 0:101� 6:05� 2:107� 28� 0:579� pHþ 0:036� 282, Modelled Raw data.
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DO from the lowest values to the highest value improved

FCR by 50%. Using median values of the significant vari-

ables and coefficients from Table 1, model 1 and varying

temperature from 20 to 29.5�C improved FCR by 68%.

Using median values of the significant variables and coeffi-

cients from Table 1, model 2 and varying pH from the low-

est values to the highest value improved FCR by 46%. Using

the median values of the significant variables from Table 2,

model 5 for DO and from Table 2, model 6 for pH and

varying DO and pH levels from minimum to maximum

improved TGC by 88 and 52% respectively (Fig. 5a,b).

These results are now discussed with a view to determine

whether changes to husbandry practices can reduce the yield

gap or whether it is possible to provide solutions through

selective breeding for those variables that are difficult or

impossible to control in given farming systems.

Tilapia farmers practice and the effects of husbandry

management

Stocking weight and study length

In this study, we found significant effects of stocking weight

(SW) on FCR, when corrected for feeding rate, and on

Figure 4 The effect of stocking weight on survival. The fitted line was

based on the estimated coefficients from model 5 and varying stocking

weight from 4 to 50 g. The resulting equation is: Survival ¼ 89:767þ
0:03� stocking weight, Modelled Raw data.
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survival, with survival (Fig. 4) and FCR (Fig. 6) increasing

with increasing SW. It is clearly seen from Figure 4 that

increasing SW increased survival in the range of SW 4 to

10 g, whereas the relationship looks like a sigmoid curve

when considering the whole range from 4 to 50 g. Fesse-

haye et al. (2006) found significant mortality due to size

dependent cannibalism for Nile tilapia weighing 0.03 to

15.08 g. They found a sigmoid relationship between preda-

tor to prey weight ratio and the probability of prey being

killed. This would explain the sigmoid relationship between

SW and survival. Stocking fish larger than 10 g and graded

for size uniformity could help to avoid size dependent

Table 2 Regression coefficient estimates � standard errors given to one decimal place for factors that affect TGC for Models 5 and 6.

Model 5

29 (192)†
Model 6

24 (155)†

Parameters Parameter range Coefficient � SE Parameter range Coefficient � SE

Intercept 0.4 � 0.2* �1.1 � 0.4*

Study length (days) 25–196 �0.0 � 0.0*

Stocking density (kg m�3) 0.003–41.4 �0.0 � 0.0** 0.003–39.0 �0.0 � 0.0*

CP (%) 15–50.7 0.0 � 0.0** 15–50.7 0.0 � 0.0*

DO (mg/L) 1–11.1 0.1 � 0.0** 1–11.1 0.1 � 0.0**

pH NA NA 6.42–8.2 0.2 � 0.1***

Study variance 0.158 0.200

Residual variance 0.027 0.024

†The number of studies and data records (in parentheses) utilized in each model are given below the model number and the studies are listed in detail

in Appendix 1. Significance levels are indicated as *P < 0.05, **P < 0.01, ***P < 0.001.

(a) (b)

Figure 5 (a) The effect of dissolved oxygen on TGC. The modelled data were calculated based on the coefficient estimates from Table 2, model 5 and

median values (study length = 70 days, stocking density = 0.894 and CP = 34%) for other variables. The resulting linear equation is:

TGC ¼ 0:436� 0:003� 70� 0:014� 0:894þ 0:010� 34þ 0:047� DO, Modelled Raw data. (b) The effect of pH on TGC. The modelled data

were calculated based on the coefficient estimates from Table 2, model 6 and median values (stocking density = 0.894 and CP=34%) for other variables,

resulting in the following equation: TGC ¼ �1:128� 0:011� 0:894þ 0:01� 34þ 0:047� DOþ 0:191� pH
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cannibalism at smaller SW. The ranges of stocking density

tested in our models were from 0.003 to ~22–41 kgm�3.

When keeping DO constant at 3 mg/L or 5 mg/L and vary-

ing stocking density from 1 � 20 fish per cubic meter, FCR

and TGC hardly changed indicated by the almost flat lines

(Figs 7 and 8). However, when keeping stocking density

constant and increasing DO from 3 to 5 mg/L, FCR

reduced from 2.3 and 2.4 to 2.0 and 2.1 and TGC increased

from 0.77 to 0.88 (Figs 7 and 8).

Under small-holder tilapia farm conditions diurnal DO

fluctuation is very high. Therefore, stocking densities of 3–
5 fish of size larger than 10 g per square meter would give a

better result than stocking smaller and/or more fish (Figs 6,

7 and 8).

The effect of study length on FCR was not significant

while it was significant on TGC in model 5 while not signif-

icant in models 6 and 7. This is due to the fact that the

analysis with model 5 has more data points with short

study length. When two studies with short study length

(El-Sayed & Teshima 1992; Tran-Duy et al. 2008) were

removed, the effect of study length on TGC turned from

statistically significant to non-significant. These studies are

highly influential because the study length is relatively short

at 25–30 days (average study length was 87.44 days) and

the studies contributed 19 data points to the analysis.

Stocking density, corrected for feeding rate, had a signifi-

cant effect on FCR (model 3), but it was not significant in

model 1 and 2. It also had a significant effect on TGC

(model 5 and 6). Increasing stocking density negatively

affected both FCR and TGC. This agrees with what is gen-

erally observed in aquaculture (Ellis et al. 2002; Papout-

soglou et al. 2006; Li et al. 2012). Our estimates of the

regression of stocking density on FCR (0.097) and stocking

density on TGC (�0.014) suggest that increasing stocking

density by one unit would lead to an increase in FCR by

about 0.01 kg feed per kg biomass harvest and a reduction

in TGC by 0.014.

Figure 6 The effect of SW and dissolved oxygen on FCR using coeffi-

cients from Table 1, model 1 and the median values (CP=34%,

T = 28�C) for the variables while varying SW from 5 to 60 g and fixing

dissolved oxygen (DO) at 3mgl-1(hypoxia) or 5mgl-1 (normoxia)

(FCR ¼ 32:4þ 0:003� SW � 0:029� 34� 0:102� DO� 1:999

�T þ 0:034� T2Þ, DO 3 mg/l 5 mg/l.

Figure 7 The effect of stocking density on FCR in low oxygen (3 mg/l)

and high oxygen (5 mg/l) levels. FCR was calculated based on the coef-

ficient estimates from Table 1, model 3 and varying the density level for

5 g and 10 g fish, fixing dissolved oxygen level to 3 or 5 mg/l and med-

ian values (stocking density = 0.06, CP=34%, Temp. = 26�C and feed-

ing rate = 4% of body weight) for the other variables (FCR ¼ 8:728

þ0:097� 0:06� 0:016� SW � 0:048� 34� 0:165� DO� 0:163�
26þ 0:047� 4Þ, DO.SW ● DO 3 mg/l, SW 10 g ▲ DO 3 mg/l, SW 5 g

■ DO 5 ml/l, SW 10 g + DO 5 mg/l, SW 5 g.

Reviews in Aquaculture, 1–18

© 2019 The Authors. Reviews in Aquaculture Published by John Wiley & Sons Australia, Ltd10

S. B. Mengistu et al.



Under small-scale tilapia production systems, stocking

density, number of fish per square meter and stocking size

differ from country to country. In Malaysia, five fish of 5 g

per square meter are stocked (Azlan Bin Azizan, pers.

comm., 2017); in China, 4–6 fish of 4 g on average are

stocked per square meter in summertime, while in the win-

ter time they stock bigger fish, on average 18 g (Liu et al.

2013). In the Philippines, stocking density in extensive pro-

duction systems is less than one fish of 10–20 g per square

meter, in semi-intensive systems it is 1–5 and in intensive

systems it is 5–10 fish of the same size, but in intensive sys-

tems using aeration, the preferred stocking size by farmers

is five to twenty grams (Romana-Eguiaa et al. 2013). The

growth period varies from two to nine months depending

on the targeted market niche (Rana & Hassan 2013, Hoong

Yip Yee, pers. comm., 2016) and therefore the length of the

growth period, that is study length in this study, is not so

much determined by its effect on FCR and TGC. The

stocking density in Thailand is two to five fish (Bhujel

2013). The effect of stocking density is dependent on DO

levels. Figs 7 and 8 suggest that 3–5 fish would give better

FCR and TGC in a low oxygen environment. The above

stocking densities used in different countries are in agree-

ment with this study and will result in good FCR and TGC.

Feeds and feeding

FCR (models 1, 2 and 3) and TGC (models 5 and 6)

improved with increasing CP. Model 3 and model 7 showed

that both FCR and TGC increased with increasing feeding

rate. The effect of feeding rate on FCR and TGC is well

described in the literature (e.g. review by de Verdal et al.

2018). As in terrestrial animals, protein plays a vital role in

fish. It constitutes about 65–75% of fish body weight on dry

matter basis (Halver & Hardy 2002). Fish require protein for

growth, development and reproduction. Protein deficient

feeds can negatively affect growth or lead to interruption of

growth and loss of weight (Halver & Hardy 2002). Feed cost

constitutes the major portion of the variable cost in fish

farming (El-Sayed 1999) and protein is the most expensive

feed ingredient. Profitability is a key factor in any commercial

fish farming system. Therefore cost effective feed composition

that can satisfy nutritional requirements and feed manage-

ment that can optimize FCR and TGC is crucial.

The CP requirement for starter, grower and finisher fish

is 30–35%, 30–32% and 28–30% respectively (FAO, 2018).

Least-cost feed contains 20, 25 and 30 CP levels for finisher,

grower and starter, respectively, at a feeding rate of 1.5–5%
body weight and 3–4 feeds per day (Ng & Romano 2013).

El-Saidy and Gaber (2005) found that the economic opti-

mum is at 25% CP and feeding rate of 2% compared with

30% CP and 2% feeding rate for adult Nile tilapia reared in

concrete tanks. According to a review by El-Sayed (2013),

most smallholder farmers in sub-Saharan Africa fertilize

their ponds to boost natural feed. In addition, some farm-

ers use farm-made feed, cotton seed cake, wheat bran, rice

bran or maize bran for supplementary feeding. In Thailand

and the Philippines, small-holder tilapia farmers fertilize

their ponds and use commercial feed, cereal brans, restau-

rant wastes or bakery wastes as supplementary feeding

(Bhujel 2013; Romana-Eguiaa et al. 2013). According to a

review by Rana and Hassan (2013), the CP content of tila-

pia feed used ranges between 16 and 32%. CP and feeding

rate can be easily managed to optimize production and

should be kept at the optimum level to maximize profit

and minimize yield gap. The optimum feeding rate is the

rate that gives the lowest FCR, this feeding rate is lower

than the feeding rate required for maximum growth (for

instance in salmon and trout Lovell 1989). With respect to

CP, in olive flounder, Kim et al. (2002) found that growth

increased with increasing CP levels up to 55% and then

decreased with further increase in CP. This would suggest a

Figure 8 The effect of stocking density on TGC in low oxygen (3 mg/l)

and high oxygen (5 mg/l) levels. TGC was calculated based on the coef-

ficient estimates from Table 2, model 5 and varying the density level for

5 g and 10 g fish, fixing dissolved oxygen level to 3 or 5 mg/l and med-

ian values (study length = 70, CP=34%) for the other variables

(TGC ¼ 0:436� 0:003� 70� 0:014� Dþ 0:011� 34þ 0:56� DOÞ,
DO. SW ● DO 3 mg/l, SW 10 g ▲ DO 3 mg/l, SW 5 g ■ DO 3 mg/l,

SW 10 g + DO 5 mg/l, SW 10 g DO 5 mg/l, SW 5 g.
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non-linear relationship between growth and CP. Therefore,

we would expect also a non-linear relationship between

FCR and CP. However, we found a linear relationship

between CP and FCR within the range of values tested.

Most of the studies used in this systematic review may have

used CP levels close to the optimal or lower than the opti-

mal levels with respect to FCR. If feed cost is increasing

with CP, the economic optimum CP would be even lower

than the CP that results in minimum FCR. Feed cost is the

major cost in fish farming (El-Sayed 1999; Craig 2009) and

among the feed ingredients CP is the most expensive.

Therefore, feeding should be optimized to the level where

marginal feed cost is equal to marginal revenues and where

yield gap is minimal.

The effects of farm-made feeds, supplementary feeds and

pond fertilization on yield gap were not investigated in our

analysis. Farm-made feeds may vary in their nutrient con-

tent depending on the ingredients used. The CP content,

CP source (NRC, 2011) and CP to energy ratio can affect

feed efficiency (Kabir et al. 2019). Algae is a natural feed

source for tilapia and the contribution of algae to tilapia

growth is estimated to be between 40 and 68% in small-

holder tilapia farms (Kabir et al. 2019). The amount of

pond fertilization affects algae production in the pond. To

reduce yield gap feeds should contain the optimum amount

of nutrients and Bhujel (2014) recommends to maintain

Secchi disc visibility at 30–40 cm depth for appropriate

amounts of algae. If future studies include information on

the type of farm made feeds, CP contents, CP source, CP to

energy ratio and Secchi disc visibility, future meta-analyses

could include these parameters to quantify the contribution

of these factors to the yield gap, which would help in fur-

ther minimizing the yield gap.

Environmental factors

Dissolved oxygen

In this study, we found significant effects of DO on FCR

(models 1, 2 and 3) and on TGC (models 5 and 6) with

FCR and TGC improving with increasing DO. The effect of

the quadratic term of DO on FCR was not significant. Here

we found only a significant linear association between DO

and FCR, whereas the relationship might actually be curvi-

linear since there will be a DO level beyond which FCR will

no longer improve. The reason that we did not find a curvi-

linear relation might be due to a lack of data points in the

lower concentration range. Interestingly, DO had no signif-

icant effect on survival, at least not in the studies that were

analysed in this paper. Our estimate of the regression of

DO on FCR (-0.111) and DO on TGC (0.056) suggests that

decreasing DO from the highest level investigated 11 mg/L

to 3 mgL, which is the minimum level required for tilapia

production, would lead to an increase in 0.9 unit FCR (e.g.

From 1 to 1.9) and to a reduction in 0.4 unit TGC. Using

median values of the significant variables and coefficients

from Table 1, model 2 and varying DO from 1 to

10.88 mg/L improved FCR by 50% (Figs 3a). Using coeffi-

cients and the median values of the significant variables

from Table 2, model 5 and varying DO from 1 to

11.05 mg/L improved TGC by 88% (Figs 5a). The effect of

DO on FCR is larger than the effect of pH, but lower than

the effect of temperature, whereas the effect of DO on TGC

is larger than the effect of pH.

DO is one of the main limiting environmental variables

that affect fish performance. Low DO affects feed intake

negatively (Wang et al. 2009) and reduces digestibility

(Tran-Duyn et al. 2012). At high DO, feed assimilation is

improved, which may be due to improved blood flow to

the gastrointestinal tract (Axelsson et al. 2002) and lower

energy cost of feed digestion and absorption of nutrients

(Duan et al. 2011). Therefore, more energy is available for

growth. Tran et al. (2016) found Nile tilapia performed sig-

nificantly less in terms of final body weight, specific growth

rate and FCR under hypoxia (3mgL�1) compared with

under normoxia 5 mg/L which is 50% of saturation. They

also found that hypoxia affected intestinal morphology

negatively. Therefore, optimum DO is a very important

environmental factor for improving FCR and TGC.

In non-aerated ponds, DO levels fluctuate during the day

and will be somewhere 0 – 15 mg/L with the highest values

in the afternoon and the lowest values just before sunrise

(Bhujel 2014). However, DO level should be kept at least

5 mg/L and when it drops to ≤ 3 mg/L, feeding should be

stopped and remedial action should be taken to improve the

DO levels (Stickney 2017). Pond aeration keeps DO at an

acceptable level with minimal fluctuations. However, DO is

often beyond control in many small-scale farms where aera-

tion for fishponds is not available or too expensive.

In areas where aeration is available, ponds should be aer-

ated during critical times of the day especially early in the

morning and on cloudy days. Managing the algae load in

the water to optimal levels also helps in minimizing the DO

demand during the night and prevents a large drop of DO.

Usually DO is not a problem in flowing rivers due to ample

water movement, in lakes it can become a problem when it

is highly eutrophic which results in algae bloom and

hypoxia during nights. If aeration of ponds is not possible,

it is clear that there is a need for fish that are resilient to

low DO levels during parts of the day with low FCR and

high TGC despite the extreme DO variation.

Temperature

Temperature had a significant effect on FCR (models 1, 2

and 3), while it had no significant effect on survival (model

4). The significant positive quadratic term clearly showed

that the relationship between FCR and temperature is non-
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linear. FCR was optimum between 27 and 32.0�C and

increased significantly when the temperature dropped

below 25�C reaching 4.4 at 20�C (Fig. 3b). Nile tilapia per-

forms best in the upper end of the optimal temperature

range of 27–32�C, which is in agreement with older reports

quoting 29–31�C being the optimal temperature range for

Nile tilapia (Popma & Lovshin 1996; Popma & Masser

1999). Note that the quadratic term of temperature was not

significant in model 3 when accounting for feeding rate,

which is most likely due to the fact that feeding rate was

adjusted for temperature in the studies concerned. Using

median values of the variables and coefficients

from Table 1, model 1 and increasing temperature from 20

to 29.5�C improved FCR by 68%, which was the highest

effect compared with DO and pH (Fig. 3b). Increasing

temperature within the tolerable range increases

appetite, food consumption rate and accelerates digestion

of feed (Brett & Groves 1979; Jobling 1993). Management of

water temperature in ponds and cages is not practical; thus,

optimizing temperature is not possible. Therefore, it can be

concluded that it is important to select fish under condi-

tions that are similar to the prevailing temperatures in

commercial environments to optimize FCR.

pH

Our estimates of the regression of pH on FCR (�0.548)

and pH on TGC (0.191) suggest that increasing pH by one

unit from 6.42 to 7.42 would improve FCR by about 0.5

unit and TGC by 0.2 unit, respectively. Using median val-

ues of the significant variables and coefficients from

Table 1, model 2 and varying pH from 6.42 to 8.3

improved FCR by 46%. Using values from Table 2, model

6 and the same approach as above, increasing pH from 6.42

to 8.2 improved TGC by 52%. The factors pH and DO had

a comparable effect on FCR, whereas the effect of pH on

TGC is half of the effect of DO on TGC. In line with our

analysis, Popma and Masser (1999) found the best FCR

and growth in a pH range from 7 to 9. However, un-

ionized ammonia, which is toxic to fish, increases with

increasing pH and water temperature (Randall & Tsui

2002). Therefore, in order to achieve best results pH should

be maintained between 7 and 8. This can be practically

achieved in ponds using lime (Calcium carbonate

(CaCO3)) (Lekang 2013).

Among the environmental factors pH can be easily man-

aged to optimize growth, FCR and survival. Small-scale

farmers manage water pH using lime, particularly under

intensive pond production systems, while usually pH is not

a problem for river cage production systems, where water

exchange is sufficient to maintain pH at optimum levels.

Aeration can also help to reduce the amount of carbon

dioxide that would otherwise interact with water and pro-

duce carbonic acid.

Implications for management and breeding

We conclude that CP, DO, water temperature, pH, stocking

density and feeding rate are the most important variables

to take into account to reduce the yield gap in tilapia farm-

ing. Ammonia, nitrite, nitrate, salinity and Secchi disc visi-

bility are important water quality parameters but they were

not investigated due to very few studies reporting these

parameters. However, optimizing DO, pH, stocking density

and feeding rate positively affects ammonia, nitrite, nitrate,

except for salinity. Low DO and high ammonia are not

problematic in flowing rivers due to ample water move-

ment. Salinity is a problem in areas with brackish water

because Nile tilapia is a fresh water fish and less tolerant to

salinity compared with other Oreochromis spp. (Watanabe

et al. 1985). Temperature is practically beyond control in

most farms. Tilapia farms should give emphasis to manag-

ing optimal stocking density and feeding rate. DO and pH

are largely influenced by aeration and liming could

improve pH when tilapia are grown in ponds. At present

large numbers of small-scale farmers have no means to aer-

ate their ponds, either because it is too expensive, or

because they have no access to cheap electricity. Breeding

programs should consider this. Selection for higher growth

rate will increase feed intake and consequently oxygen con-

sumption (Omasaki et al. 2017). As the selection environ-

ment is usually well managed, with optimal conditions in

terms of DO, pH and CP, there is a risk for genotype by

environment interaction (GxE) when improved strains are

used in low-input ponds and a yield gap is expected

because of lower production than what is genetically possi-

ble in an optimum environment.

In the GIFT breeding program, Ponzoni et al. (2011)

reported a genetic gain of 10–15% per generation for

growth. In the presence of GxE interaction, the same gain

might not be attained in the production environment when

DO and temperature are far from the optimum levels and

create a large difference with the selection environment.

Estimates of the degree of GxE for growth in Nile tilapia

between different rearing environments are inconclusive

(Sae-Lim et al. 2016). Charo-Karisa et al. (2006) found a

low genetic correlation �0:27� 0:69ð Þ for body weight of

fry between ponds. Trọng et al. (2013) compared the

growth of GIFT Nile tilapia reared in river cages, aerated

nucleus ponds and non-aerated low-input ponds, and

found a high genetic correlation (0.83) for daily growth

coefficient (DGC). Eknath et al. (2007) found high genetic

correlations (0.76�0.99) among different pond environ-

ments and medium to high genetic correlation (0.36�0.82)

between pond and cage environments. Bentsen et al.

(2012) found high genetic correlations (0.53�0.99,

mean = 0.89) for body weight between different environ-

ments. Robertson (1959) suggested that GxE interactions
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are biologically meaningful when the genetic correlation

between environments is less than 0.8. GxE interactions

with genetic correlations between environments of 0.8 or

higher are considered not strong. However, if indeed the

true genetic correlation is 0.8, it means that only 80% of

the maximum possible genetic gain can be achieved in the

production environment when selection is in the nucleus

environment and information of only the selection envi-

ronment is used in genetic evaluations (Mulder & Bijma

2005). Use of half-sib information from the production

environment would reduce the loss in selection response

(Brascamp et al. 1985; Mulder & Bijma 2005). Omasaki

et al. (2016a) compared growth of Nile tilapia in a

commercial monosex environment and a mixed sex

nucleus environment and found significant GxE (genetic

correlation = 0.59) which was probably caused by the

methyl-testosterone treatment to produce monosex fry.

They recommend to use sib information from the monosex

production environment, similar to the general recommen-

dation by Mulder and Bijma (2005). Lower prices for geno-

typing may make it easier to include information of

commercial animals in genetic evaluations and reduce the

yield gap when using genomic selection (for instance see

Mulder 2016).

Conclusion

We found that temperature had the largest effect on FCR

followed by DO, pH and CP, whereas DO had the largest

effect on TGC followed by CP and pH. Attempting tilapia

farming in regions outside the optimal temperature range

would have a negative effect on production efficiency

unless the strains used are selected for such temperature

range. Among the management variables, feeding rate had

the largest effect on FCR and TGC followed by stocking

density, study length and SW. Management could control

these variables. Based on this review analysis we recom-

mend optimizing management in terms of stocking den-

sity (3� 5fishm�2), SW (> 10 g), CP (25� 30%), DO

(> 5 mg/L) and pH (7� 8). This will improve FCR, sur-

vival and growth rate and reduce the yield gap in tilapia

farming. Temperature has a very large effect on FCR, but

it is hard to influence water temperature. DO is largely

influenced by aeration when tilapia are grown in ponds.

Since many small and medium sized farms do not have

aeration, these major tilapia farming systems could benefit

from genetically improved strains selected for resilience to

highly fluctuating diurnal temperature and DO levels.
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APPENDIX 1: List of studies that were the source of data included for each analysis

Model 1.

Investigated factor: FE; number of studies/number of data records: 28/179

Abdel-Tawwab et al. (2014)1, Abdel-Tawwab et al. (2015)1, Abou et al. (2007)1, Al-Hafedh (1999)1, Alhassan et al. (2012)1, 2, Ali et al. (2008)1,

Azaza et al. (2008)1, Azaza et al. (2013)1, Azaza et al. (2015)1, Azevedo et al. (2015), Bahnasawy (2009), 2, Biswas and Takeuchi (2003)1, 2, El-

Sayed and Teshima (1992), El-Sherif and El-Feky (2009)1,2, Garcia et al. (2013)1, Huang et al. (2015) 1, 2, Kamal and Mair (2005)1, Kapinga et al.

(2014)1, 2, Kaya and Bilg€uven (2015)1, 2, Kpundeh et al. (2015)2, Lanna et al. (2016)1, Mohammad et al. (2015)1, Mohammadi et al. (2014)1, Ridha

(2006)2, Santiago et al. (1987)1, 2, Sweilum et al. (2005)1, 2, Tran-Duy et al. (2008)1, Yi et al. (1996)1

Model 2.

Investigated factor: FE; number of studies/number of data records: 23/141

Studies mentioned for model 1 above that are marked with superscript 1

Model 3

Investigated factor: FE; number of studies/number of data records: 11/67

Studies mentioned for model 1 above that are marked with superscript 2

Model 4

Investigated factor: Survival; number of studies/number of data records: 29/187

Abdel-Tawwab et al. (2014, 2015), Abou et al. (2007), Al-Hafedh (1999), Alhassan et al. (2012), Azaza et al. (2008, 2015), Azevedo et al. (2015),

Bahnasawy (2009), Biswas and Takeuchi (2003) El-Sayed and Teshima (1992), El-Sherif and El-Feky (2009), Garcia et al. (2013), Garc�ıa-Trejo et al.

(2016), Huang et al. (2015), Kamal and Mair (2005), Kapinga et al. (2014), Kaya and Bilg€uven (2015), Kpundeh et al. (2015), Lanna et al. (2016),

Likongwe et al. (1996), Mohammad et al. (2015), Mustapha et al. (2014), Ridha (2006), Santiago et al. (1987), Sweilum et al. (2005), Tran-Duy

et al. (2008), Yakubu et al. (2013), Yi et al. (1996)

Model 5

Investigated factor: TGC; number of studies/number of data records: 29/192

Abdel-Tawwab et al. (2014)3, Abdel-Tawwab et al. (2015)3, Abou et al. (2007)3, Al-Hafedh (1999)3, Alhassan et al. (2012)3, 4, Ali et al. (2008)3,

Azaza et al. (2008)3, Azaza et al. (2013)3, Azaza et al. (2015), Bahnasawy (2009)3, 4 Biswas and Takeuchi (2003)3, 4 El-Sayed and Teshima (1992),

El-Sherif and El-Feky (2009)3, 4, Garcia et al. (2013)3,4 Garc�ıa-Trejo et al. (2016), Huang et al. (2015)3, 4, Kapinga et al. (2014)3, 4, Kaya and

Bilg€uven (2015)3, 4, Kpundeh et al. (2015)4, Lanna et al. (2016)3, Likongwe et al. (1996)3, 4, Mohammad et al. (2015)3, Mohammadi et al. (2014)3

Ridha (2006)4, Santiago et al. (1987)3,4, Sweilum et al. (2005)3,4, Tran-Duy et al. (2008)3, Yakubu et al. (2013)3,4, Yi et al. (1996)3

Model 6

Investigated factor: TGC; number of studies/number of data records: 24/155

Studies mentioned for model 6 above that are marked with superscript 3

Model 7

Investigated factor: TGC; number of studies/number of data records: 14/86

Studies mentioned for model 6 above that are marked with superscript 4
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