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The role of immunity in all stages of stroke is increasingly being recognized, from the 
pathogenesis of risk factors to tissue repair, leading to the investigation of a range of 
immunomodulatory therapies. In the acute phase of stroke, proposed therapies include 
drugs targeting pro-inflammatory cytokines, matrix metalloproteinases, and leukocyte 
infiltration, with a key objective to reduce initial brain cell toxicity. Systemically, the early 
stages of stroke are also characterized by stroke-induced immunosuppression, where 
downregulation of host defences predisposes patients to infection. Therefore, strategies to 
modulate innate immunity post-stroke have garnered greater attention. A complementary 
objective is to reduce longer-term sequelae by focusing on adaptive immunity. Following 
stroke onset, the integrity of the blood–brain barrier is compromised, exposing central 
nervous system (CNS) antigens to systemic adaptive immune recognition, potentially 
inducing autoimmunity. Some pre-clinical efforts have been made to tolerize the immune 
system to CNS antigens pre-stroke. Separately, immune cell populations that exhibit a 
regulatory phenotype (T- and B- regulatory cells) have been shown to ameliorate post-
stroke inflammation and contribute to tissue repair. Cell-based therapies, established in 
oncology and transplantation, could become a strategy to treat the acute and chronic 
stages of stroke. Furthermore, a role for the gut microbiota in ischaemic injury has received 
attention. Finally, the immune system may play a role in remote ischaemic preconditioning-
mediated neuroprotection against stroke. The development of stroke therapies involving 
organs distant to the infarct site, therefore, should not be overlooked. This review will 
discuss the immune mechanisms of various therapeutic strategies, surveying published 
data and discussing more theoretical mechanisms of action that have yet to be exploited.
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INTRODUCTION

Stroke remains a major cause of morbidity and mortality worldwide (Krishnamurthi et al., 
2013). Despite the clear impact of acute ischaemic stroke (AIS) on patients, recombinant tissue 
plasminogen activator (tPA) is the only medication specifically approved for its treatment. 
Beyond a therapeutic window of 4.5 h, however, the benefits of thrombolysis are outweighed 
by its risks, with the incidence of haemorrhagic transformation increasing dramatically (Lees 
et al., 2010). Consequently, only a small percentage of patients receive tPA. Separately, mechanical 
thrombectomy is indicated for up to 6 h after the onset of ischaemic stroke symptoms, though 
recent trials have allowed for an extension to 24 h in selected patients (Robinson, 2018). 
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Additional agents for the treatment of AIS are now required, 
not only as adjuncts to increase the therapeutic potential of 
thrombolysis and thrombectomy, but also for patients who, 
for various reasons, cannot receive standard care. Ideally, such 
therapies, through curtailing damage to the brain post-stroke or 
contributing to long-term tissue remodelling, would improve 
patient survival and functional outcomes.

In the last few decades, hundreds of agents targeting numerous 
pathophysiological mechanisms have failed clinical trials 
(O’Collins et al., 2006). Yet from this research, important lessons 
have been learned. The role of immunity in all stages of stroke, 
for instance, is becoming better understood. Consequently, a 
range of immune-targeted therapies are now in development and 
testing (Malone et al., 2018).

A number of reviews have examined the individual 
components of the immune response to stroke, or the 
immunomodulatory agents currently enrolled in stroke 
clinical trials (Iadecola and Anrather, 2011; Smith et al., 2015; 
Drieu et al., 2018). However, many aspects of the immune 
response play multifaceted roles in stroke, and the interaction 
between the brain and immune system post-stroke is an 
ever-evolving picture. Future stroke treatment may involve 
a range of mechanical, immunological, and pharmacological 
therapies, all working in concert (Neuhaus et al., 2017). If 
clinically translated, strategies manipulating the immune 
response could play a crucial part. In this review, we provide 
an update on immune-targeted strategies in AIS, from the level 
of pathology to pre-clinical evidence and clinical trials. The 
aim of this review, therefore, is to discuss immunomodulatory 
therapeutic strategies in stroke (listed in Table 1), surveying 
published data and highlighting more theoretical mechanisms 
of action that have yet to be explored.

STROKE AND THE BLOOD–BRAIN 
BARRIER

The brain was long thought to be hidden from our immune 
system. This is in large part due to the lack of an obvious 
lymphatic system and the presence of a blood–brain barrier 
(BBB). This barrier separates the blood compartment from the 
central nervous system (CNS) at the level of brain endothelial 
cells, thus rigorously controlling immune cell trafficking 
between the CNS and the periphery (Wilson et al., 2010). 
Correspondingly, breakdown of this barrier may underlie the 
pathophysiology of immune-based CNS disorders. However, 
while the BBB is indeed compromised in some CNS disorders 
and brain injury, the recent discovery of meningeal lymphatics 
suggests that, even under basal conditions, the “immune 
privilege” of the brain is not as absolute as was once thought 
(Louveau et al., 2015).

The BBB is composed of specialized endothelial cells in 
capillaries and post-capillary venules of the brain and spinal 
cord, characterized by low pinocytotic activity and by complex 
tight junctions composed of transmembrane and cytoplasmic 
adhesion molecules (Serlin et al., 2015). These endothelial 
cells produce a basement membrane containing embedded 

pericytes. Another basement membrane, produced by astrocytes, 
constitutes together with the astrocytic end feet, the glia limitans 
perivascularis. While these two basement membranes are 
indistinguishable at the capillary level, they are separate at the 
level of post-capillary venules, where they form a perivascular 
space containing cerebrospinal fluid (CSF) and antigen-
presenting cells. Under basal conditions, leukocytes rarely 
penetrate the glia limitans but accumulate in this perivascular 
space during inflammation (as well as in the leptomeningeal 
and ventricular spaces) (Figure 1). Here, they fulfil an immune-
surveillance function by interacting with antigen-presenting 
bone marrow-derived macrophages and dendritic cells.

The fact that oxidative stress leads to BBB breakdown has 
been observed in various neurological diseases, including 
multiple sclerosis (MS) and stroke (Rosenberg, 2012). 
Oxidative stress is not associated with the ischaemic episode 
itself but rather with reperfusion, which, although essential 
to limit brain injury, also causes an initial breakdown of 
the BBB by activating matrix metalloproteinases (MMPs) 
and upregulating inflammatory mediators. In experimental 
studies, BBB opening is biphasic. The initial BBB breakdown 
occurs within 2–3 h of stroke onset, is associated with 
activation of MMP-2, and is accompanied by the development 
of vasogenic oedema (i.e., excess accumulation of fluid in the 
brain extracellular spaces). Following a partial recovery of BBB 
function, a second increase in BBB permeability, occurring 24 
to 48 h after stroke, is characterized by inflammatory processes 
with upregulation of inducible MMPs (MMP-3 and MMP-9) 
and cyclooxygenase (COX)-2, tight junction redistribution, 
and neutrophil infiltration (Jiang et al., 2018). It is worth 
mentioning that the biphasic profile of BBB opening has been 
questioned (as discussed in Merali et al., 2017), and the BBB 
might in fact be continuously opened for up to a week.

Although neutrophils are the first subset of leukocytes to 
appear in the ischaemic brain (detected within the first hour), 
these neutrophils are not found in parenchyma but remain in 
the cerebral microvessels, which they occlude (contributing to the 
no-reflow phenomenon) and from where they can damage the 
BBB by releasing proteolytic enzymes and reactive oxygen species 
(ROS). Neutrophils penetrate the CNS parenchyma mainly 
following the more damaging second opening of the BBB, which 
leads to severe endothelial damage, gross destruction of adjacent 
blood vessels, and in some cases haemorrhagic transformation 
(Perez-de-Puig et al., 2015).

Despite the relatively early opening of the BBB, lymphocytes 
are only detected within the ischaemic territory 24 h after 
stroke onset, their number increasing over the following days 
(Schroeter et al., 1994; Brait et al., 2010). Larger infarctions may 
be associated with earlier appearance of lymphocytes in the brain 
(Chu et al., 2014). Following stroke, antigen presentation to 
lymphocytes can rapidly occur in the spleen and lymph nodes, 
since BBB opening and cell damage following stroke enable CNS 
antigens to access the blood compartment early after the onset of 
ischaemia. Indeed, CNS antigens are found in the cervical lymph 
nodes 24 h after middle cerebral artery occlusion in mice (van 
Zwam et al., 2009), and the concentration of these antigens seems 
to correlate with stroke severity (Jauch et al., 2006). Brain-derived 
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antigens are also found in cervical lymph node cells expressing 
costimulatory major histocompatibility complex II (MHC-II) 
receptors in patients with acute stroke (Planas et al., 2012). This 
suggests that improving BBB function following stroke or at least 
preventing lymphocytes from entering the brain following their 
activation with brain antigens might improve functional outcome 
after stroke. The latter mechanism of action might explain 
why fingolimod was found to be effective in rodent models of 
stroke (Wei et al., 2011), reduced the risk of haemorrhagic 
transformation associated with delayed administration of tPA 
(Campos et al., 2013), and showed promising results in small 
clinical trials (Fu et al., 2014a; Fu et al., 2014b).

ACUTE POST-STROKE IMMUNE 
RESPONSES

In 87% of cases, stroke is due to a drastic reduction in cerebral 
blood flow (CBF) that results in metabolic and functional deficits. 
At a pathophysiological level, however, a much more complex web 
of interactions is seen. Following the onset of cerebral ischaemia, 
an orderly sequence of events involving the CNS, the lymphoid 
organs, the blood, and the wider vasculature is triggered (Iadecola 
and Anrather, 2011). Hypoperfusion causes an immediate 
deprivation of glucose and oxygen to the brain, leading to a fall 
in ATP production. Within minutes of the ischaemic insult, the 

TABLE 1 | Immunomodulatory therapeutic strategies in stroke.

Target Role in stroke pathology Proposed therapy

Astrocytes —Promote neurotoxicity through pro-inflammatory cytokine release (e.g., 
IL-15) and glial scar formation (Roy-O’Reilly and McCullough, 2017).

—Provide neuroprotection via reduced excitotoxicity, neurotrophin 
production, and angiogenic and synaptogenic effects (Wang et al., 
2018).

—CDK5-knockdown astrocyte cell therapy (Becerra-Calixto 
and Cardona-Gómez, 2017)

Macrophage/microglia —Increase ischaemic injury (M1 type) via release of ROS, NO, and pro-
inflammatory cytokines (e.g., TNF-α and IL-12) (Chiba and Umegaki, 
2013).

—Promote tissue repair (M2 type) via growth factors, anti-inflammatory 
cytokines (e.g., IL-4), and phagocytosis of dead cells (Kanazawa et al., 
2017).

—Minocycline (macrophage deactivator) (Lampl et al., 2007)
—Edaravone (free radical scavenger) (Chen et al., 2014)

Complement pathway —Contributes to neuronal cell death through C3a and C5a anaphylatoxins 
(Alawieh et al., 2015a).

—Contributes to subacute/chronic neurogenesis and repair (Alawieh and 
Tomlinson, 2016).

—CR2-Crry (complement inhibitor) (Alawieh et al., 2015b)
—B4Crry (complement inhibitor) (Alawieh et al., 2018)

Nitric oxide —Provides beneficial reductions in platelet aggregation and leukocyte 
adhesion as well as improved vascular tone and host defence (Kim 
et al., 2014).

—Directly neurotoxic in high levels (Venkataramana et al., 2015).

—Glyceryl trinitrate (nitric oxide donor) (Chen et al., 2017)

IL-1β —Promotes neurotoxicity through NF-κB-mediated generation of a pro-
inflammatory environment (Boutin et al., 2001).

—Anakinra (recombinant IL-1 receptor antagonist) (Smith 
et al., 2018)

TNF-α —Promotes BBB breakdown, leukocyte infiltration, and brain oedema 
(acute stage) (Amantea et al., 2009).

—Contributes to neuronal and microvasculature repair (chronic stage) 
(Amantea et al., 2009).

—Etanercept (TNF-inhibitor) (Tobinick et al., 2014)

COX/LO pathway —COX: PGE2 increases ischaemic injury (Iadecola and Gorelick, 2005). 
PGE1 contributes to post-stroke neurogenesis and angiogenesis (Ling 
et al., 2016).

—LO: LTC4 promotes BBB dysfunction (Baskaya et al., 1996).

—NS398 (COX-2 inhibitor) (Sugimoto and Iadecola, 2003)
—Montelukast (cysteinyl leukotriene receptor-1 antagonist) 

(Saad et al., 2015)

MMPs —Increased MMP activity causes neuronal apoptosis, BBB breakdown, 
leukocyte infiltration, and brain oedema (Rosell and Lo, 2008).

—Involved in late-stage neovascularization and neurovascular remodelling 
(Zhao et al., 2006). 

—Minocycline (MMP-9 inhibitor) (Murata et al., 2008)

Chemokines —Involved in acute ischaemic injury via increased leukocyte infiltration, 
ROS production, and BBB disruption (Chen et al., 2018a).

—Possible function in chronic stem cell recruitment to the infarct site 
(Wang et al., 2002).

—NR58-3.14.3 (pan-chemokine inhibitor) (Mirabelli-Badenier 
et al., 2011)

Adhesion molecules —Upregulation of selectins, immunoglobulins, and integrins post-stroke 
increase leukocyte infiltration with resulting infarct growth (Yilmaz and 
Granger, 2008).

—Enlimomab (anti-ICAM-1 antibody) (Investigators, 2001)
—Hu23F2G (anti-Mac-1 antibody) (Becker, 2002)
—Natalizumab (anti-VLA-4 antibody) (Elkins et al., 2017)
—Fingolimod (S1P receptor modulator) (Zhu et al., 2015)

Regulatory immune cells —Regulatory B and T-cells provide neuroprotection and enhance 
post-stroke repair through dampening excessive immune responses 
and producing anti-inflammatory cytokines (e.g., IL-10) (Liesz and 
Kleinschnitz, 2016; Bodhankar et al., 2013)

—IL-2/IL-2 antibody complex (Zhang et al., 2018)
—Adoptive cell transfer (Ren et al., 2011)

IL-15, interleukin-15; CDK5, cyclin-dependent kinase 5; ROS, reactive oxygen species; NO, nitric oxide; TNF-α, tumour necrosis factor alpha; IL-12, interleukin-12; IL-4, interleukin 4; 
NF-κB, COX, cyclooxygenase; LO, lipoxygenase; BBB, blood brain barrier; PGE2, prostaglandin E2; LTC4, leukotriene C4; MMP, matrix metalloproteinase; S1P, sphingosine 
1-phosphate; VLA-4, very late antigen-4; ICAM-1, intercellular adhesion molecule-1. 
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downstream processes of acidotoxicity, excitotoxicity, oxidative 
stress, and inflammation begin, giving rise to widespread neuronal 
cell death (Fann et al., 2013). The release of danger/damage-
associated molecular patterns (DAMPs) from dying neurons 
induces a new phase of innate inflammatory response (Figure 
2). Pattern-recognition receptor (PRR) activation on microglia 
results in the inflammasome-mediated production of interleukin 
1-beta (IL-1β) and tumour necrosis factor-α (TNF-α) (Marsh 
et al., 2009). The subsequent release of cytokines/chemokines 
from astrocytes and endothelial cells creates an inflammatory 
environment, containing IL-17, granzyme, ROS, and perforin 
(Fann et al., 2013). In the vasculature, platelets are activated 
alongside endothelial cells and proteins of the complement 

system (Iadecola and Anrather, 2011). Fibrin, the end-product of 
the coagulation cascade, traps leukocytes and platelets, forming 
microvascular occlusions (del Zoppo et al., 1991). A fall in the 
bioavailability of nitric oxide (NO), which normally inhibits 
platelet aggregation, exacerbates this intravascular plugging 
(Chen et al., 2017). Capillary occlusions are further promoted 
by pro-inflammatory signalling, the constriction of pericytes, 
and the translocation of the adhesion molecule P-selectin to cell 
membranes. As mentioned above, this combination of oxidative 
stress, inflammatory cytokines, downregulated endothelial 
junction proteins, and increased MMP activity increases BBB 
permeability (Engelhardt and Sorokin, 2009). In the perivascular 
space, proteins released from macrophages (ROS,  IL-1β, 

FIGURE 1 | Schematic representation of the blood–brain barrier (BBB) under healthy conditions (bottom part of the figure) and during its early breakdown following 
stroke (top part). The BBB is composed of a layer of endothelial cells with tight junctions composed of transmembrane and cytoplasmic adhesion molecules. These 
cells produce a basement membrane containing embedded pericytes. Astrocytes and their end feet constitute the glia limitans perivascularis. At the capillary level 
(left side of the figure), the endothelial basement membrane and the glia limitans are indistinguishable, but at the level of post-capillary venules (on the right), they are 
separated by a perivascular space containing cerebrospinal fluid (CSF) and antigen-presenting bone marrow-derived macrophages and dendritic cells. Following 
reperfusion, reactive oxygen species (ROS) cause an initial breakdown of the BBB by activating matrix metalloproteinases (MMPs) and upregulating inflammatory 
mediators. Stroke leads to an increased expression of integrin molecules on the leukocyte surface (not shown) and of the corresponding adhesion molecules 
on the endothelium. Leukocytes tether and roll onto the vascular endothelium before being activated by chemokines (not shown). They then firmly adhere to the 
endothelium and undergo either transcellular or paracellular diapedesis through the endothelial layer.
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FIGURE 2 | Immune response to stroke. Hypoperfusion causes an immediate deprivation of glucose and oxygen to the brain, leading to widespread neuronal cell 
death. The release of danger/damage-associated molecular patterns (DAMPs) from dying neurons results in the secondary activation of astrocytes and microglia. 
The release of chemokines/cytokines from glial cells generates an inflammatory environment featuring ROS, activated leukocytes, and the upregulated expression 
of adhesion molecules on endothelial cell membranes. Adhesion molecules such as E- and P-selectin mediate the initial tethering of circulating leukocytes to the 
endothelium. Separate surface molecules such as ICAM-1 and VCAM-1 then facilitate firm adhesion and transmigration. Neutrophils, entering the brain as early as 
1 h post-stroke, increase BBB permeability via MMPs, further exacerbating ischaemic injury. Monocytes, infiltrating 1–2 days later, function as tissue macrophages. 
The M1 macrophage/microglia phenotype increases ischaemic injury through the production of ROS and pro-inflammatory cytokines (TNF-α and IL-1β). The M1 
subtype also secretes cytokines [IL-12, IL-6, transforming growth factor beta 1 (TGF-β), and IL-23], which encourage the differentiation of infiltrated naïve CD4+ 
T-cells into pro-inflammatory Th1 and Th17 forms. Th1 cells, through release of interferon gamma (IFNγ), promote the cytotoxic activity of CD8+ T-cells. Th17 cells 
(as well as their γδ T-cell counterparts) further increase neutrophilic activity and enhance ischaemic through the production of IL-17. Ultimately, the pro-inflammatory 
milieu seen in the acute stages of ischaemic stroke gives way to a second, subacute anti-inflammatory phase typified by increased M2 microglial/macrophagic 
activity. The release of IL-10 from both glial cells and circulating Bregs encourages the generation of Tregs, a cell type that promotes neuroprotection and repair. 
Bregs may also play a role in the chronic immune response to stroke where they serve to reduce the effect of long-term antibody-mediated neurotoxicity.
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and  TNF-α) and mast cells (histamine and proteases) further 
degrade BBB structures (Iadecola and Anrather, 2011). Swelling of 
endothelial cells first causes protein extravasation and interstitial 
oedema. Detachment of endothelial cells from the basement 
membrane then results in unimpeded entry of free water 
and serum into the brain, ultimately leading to haemorrhage 
(Petrovic-Djergovic et al., 2016). A compromise in BBB integrity 
also allows leukocyte entry into the infarct site. Endothelial cell-
derived prostaglandins and chemoattractant molecules drive the 
trafficking process (Engblom et al., 2002; Huang et al., 2006). 
The infiltration of macrophages, neutrophils, and lymphocytes 
into the brain is mediated by interactions between high-avidity 
integrin molecules on the leukocyte surface and the corresponding 
ligands on the endothelium. The expression of such proteins, 
including vascular cell adhesion molecule-1 (VCAM-1) and 
intracellular adhesion molecule-1 (ICAM-1), is upregulated post-
stroke (Supanc et al., 2011). Activated leukocytes secrete a mix 
of collagenases, gelatinases, ROS, cytokines, leukotrienes, and 
platelet-activating factor, promoting vasoconstriction, platelet 
aggregation, and further neurotoxicity (Kim et al., 2016). As the 
ischaemic penumbra expands, a combination of fresh excitotoxic 
responses, oxidative stress, and mitochondrial dysfunction drives 
the next phase of both the local and systemic immune responses.

THERAPEUTIC STRATEGIES TARGETING 
ASTROCYTES AND MICROGLIA

Astrocytes undergo numerous changes post-ischaemia, including 
rapid swelling, increased intracellular calcium signalling, and 
upregulated expression of glial fibrillary acidic protein (GFAP) 
(Petrovic-Djergovic et al., 2016). The astroglial response begins 
in the infarct site as early as 4 h post-stroke, reaching peak 
activity around day 4 (Kim et al., 2016). Although this “reactive 
gliosis” contributes to long-term healing, the initial formation 
of the glial scar is thought to be detrimental. The scar acts 
as both a physical and chemical barrier to axonal re-growth, 
preventing reinnervation (Barreto et al., 2011). Several studies 
have shown that decreased astrogliosis correlates with reduced 
infarct size (reviewed in Barreto et al., 2011). Separate research 
has highlighted how astrocytes can play a similarly detrimental 
role in AIS as traditional leukocytes, increasing interest in 
immunomodulatory strategies targeting these cells. Astrocytes 
have been shown to express various pro-inflammatory mediators 
in the acute phase including cytokines, chemokines, and inducible 
nitric oxide synthase (iNOS) (Dong and Benveniste, 2001). 
Astrocyte-derived IL-15, for example, augments cell-mediated 
immunity post-stroke, promoting ischaemic injury (Roy-O’Reilly 
and McCullough, 2017). More recent work, however, points to 
astrocytes as promising therapeutic targets for neuroprotection 
and neurorestoration (Liu and Chopp, 2016). Fundamentally, the 
glial scar divides the site of injury from surrounding viable tissue, 
hindering infarct growth. During the acute phase, astrocytes also 
limit neuronal cell death by reducing excitotoxicity and releasing 
neurotrophins (Liu and Chopp, 2016). Finally, astrocytes 
contribute to the chronic processes of angiogenesis, neurogenesis, 
and synaptogenesis (Wang et al., 2018). As for many other immune 

targets in AIS, the manipulation of the astrocytic response may 
involve a combination of pharmacological [e.g., cyclin-dependent 
kinase 5 (CDK5) inhibitors] and cell-based therapies (Becerra-
Calixto and Cardona-Gómez, 2017).

In the resting state, microglia exhibit a ramified appearance. 
However, in the event of acute brain injury, they undergo a 
morphological transformation to an active amoeboid state, 
making them virtually indistinguishable from circulating 
macrophages (Kim et al., 2016). Microglia activate within 
minutes of brain ischaemia, with products detectable as early as 
1 h post-stroke (Xu and Jiang, 2014). Peripheral macrophages 
infiltrate 1–2 days later, reaching peak levels 3–7 days after the 
onset of ischaemia (Xu and Jiang, 2014). Overall, microglial 
activity predominates in the early stages of ischaemia, while 
blood-derived cells contribute more to the subacute and 
chronic phases of neuroinflammation. The destructive effects of 
microglia/macrophages in AIS are well documented (Chiba and 
Umegaki, 2013). Other studies, however, in which the selective 
ablation of microglial cells leads to worsened stroke outcomes 
suggest a protective function (Lalancette-Hébert et al., 2007). 
Indeed, blocking macrophage infiltration abolished long-term 
behavioural recovery and led to reduced anti-inflammatory 
signalling in the brain (Wattananit et al., 2016). Importantly, 
the overall net effect of microglia/macrophages in AIS depends 
on the M1/M2 polarization status. It has been demonstrated 
that the anti-inflammatory M2 phenotype gives way to the pro-
inflammatory M1 phenotype during disease progression (Xu and 
Jiang, 2014). The shift between the M1 and M2 subtypes depends 
on specific cytokine signals from the local inflammatory milieu. 
Several molecular switches, such as triggering receptor expressed 
on myeloid cells 2 (TREM2), have been shown to control the 
functional polarization in the setting of AIS, making them 
potential immunomodulatory targets (Kawabori et al., 2015). At 
pre-clinical level, agents that prevent microglial activation, such 
as minocycline, hyperbaric oxygen, or the free radical scavenger, 
edaravone, are neuroprotective, possibly as a result of reduced 
M1 activity (Chen et al., 2014). Minocycline, a semi-synthetic 
tetracycline compound, progressed to human trials. Two phase 
II open-label, placebo-controlled trials concluded that the drug 
was safe and significantly improved clinical outcome (Lampl 
et al., 2007; Padma Srivastava et al., 2012). In a third study, 
however, minocycline did not prove efficacious (Kohler et al., 
2013). Evidently, a more nuanced understanding of the M1/M2 
phenomenon in AIS is needed, alongside a greater appreciation 
of the differences between resident microglia and circulating 
macrophages. Some authors contend that microglia/macrophages 
may yet prove an attractive immunomodulatory target in the 
context of cell-based therapies (Kanazawa et al., 2017).

THERAPEUTIC STRATEGIES TARGETING 
INFLAMMATORY MEDIATORS

The Complement Pathway
The proteins and receptors of the complement pathway, 
once thought to be restricted to immune cells, are now 
known to be expressed by neurons, microglia, and astrocytes 
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(Alawieh et al., 2015a). The complement pathway contributes 
to neuroinflammation in the initial phase of AIS (Iadecola 
and Anrather, 2011), but other studies indicate a second 
function for these proteins in the subacute and chronic 
stages, predominantly in post-stroke neurogenesis and repair 
(Alawieh and Tomlinson, 2016). As with many facets of the 
immune response to stroke, the dual role of complement has 
hindered the development of effective therapies. A number 
of pre-clinical studies have shown that the anaphylatoxins 
C3a and C5a promote tissue inflammation and neurotoxicity. 
Administration of a C3a receptor antagonist in a mouse model 
of stroke, for example, reduced infarct size and improved 
neurological outcome, while similar results were seen in C3a−/− 
mice (Mocco et al., 2006a). C3a receptor antagonism has also 
been shown to promote neuroblast formation, curb T-cell 
infiltration, and lead to better overall histologic and functional 
outcomes (Ducruet et al., 2012). Use of a C5a receptor blocker, 
meanwhile, significantly reduced infarct volume and improved 
neurological outcomes 24 h after ischaemia (Kim et al., 2008). 
Evidence also exists for a pathological role for complement in 
human stroke. Patients deficient in mannose-binding lectin, for 
example, display smaller infarct size (Osthoff et al., 2011). The 
plasma levels of complement proteins are also raised following 
AIS (Cojocaru et al., 2008). Despite these findings, none of the 
complement inhibitors tested pre-clinically have progressed 
to clinical trials. Several concerns remain around these 
drugs including poor bioavailability, questionable efficacy, 
increased risk of infection, and potential interference with 
homeostatic function. As a result, several other complement 
receptor-based inhibitors [e.g., soluble complement receptor 
1 (sCR1) and sialyl Lewis x glycosylated soluble complement 
receptor 1 (sCR1sLex)] have been developed. However, 
while sCR1 reduced ischaemic injury in mice, it failed to 
provide the same neuroprotection in a non-human primate 
model of stroke (Huang et al., 1999; Mocco et  al., 2006b). 
Similarly, while sCR1sLex decreased cerebral infarct volume 
and inhibited platelet/neutrophil accumulation in mice, 
the effect was not replicated in either rats or non-human 
primates (Huang et al., 1999; Ducruet et al., 2007). No further 
development of sCR1sLex has been reported. More promise 
has been shown by compounds attached to a recombinant 
form of complement receptor type 2 (CR2). Both CR2-Crry 
(an inhibitor of all complement pathways) and CR2-fH (an 
inhibitor of the alternative pathway) significantly reduced 
infarct size, apoptotic cell death, and neurological deficits in 
a mouse model of transient middle cerebral artery occlusion 
(tMCAO) (Alawieh et al., 2015b). The same research group 
observed improved long-term motor and cognitive recovery 
using B4Crry, another site-targeted inhibitor (Alawieh 
et  al., 2018). Separately, recent evidence has shown that tPA 
upregulates complement cascade activity in ischaemic stroke 
models through plasmin-mediated cleavage of the C3 protein. 
The resulting C3a anaphylatoxin promotes post-ischaemic 
brain haemorrhage and cerebral oedema. Inhibition of the C3a 
receptor, however, abrogates such adverse effects, indicating a 
potential role for complement inhibitors as adjuncts to tPA. 
Currently, the risk of haemorrhagic transformation limits the 

clinical use of thrombolysis. However, complement inhibition 
could enhance the therapeutic window of tPA through the 
mechanism described above (Zhao et al., 2017).

Nitric Oxide
The protective functions of NO in AIS include regulation of 
vascular tone, inhibition of platelet aggregation, prevention 
of leukocyte adhesion, and host defence (Kim et al., 2014). 
High levels of nitric oxide, however, have been shown to be 
neurotoxic (Venkataramana et al., 2015). NO is generated in 
vivo through nitric oxide synthase (NOS), and though all three 
isoforms (endothelial NOS, neuronal NOS, and inducible NOS) 
have been implicated in AIS, iNOS in particular contributes to 
neuroinflammatory processes (Iadecola et al., 1995). Inhibition/
knockdown of the iNOS enzyme has been shown to be 
neuroprotective, and separate studies in which iNOS generation 
was indirectly reduced have supported this hypothesis (Zhao et 
al., 2000; Han et al., 2002; Coughlan et al., 2005; Park et al., 2006). 
Due to a possible role in both neuroprotection and neurotoxicity, 
a number of NO-based therapies have been suggested for 
the treatment of AIS, including NO donors, l-arginine (NO 
precursor), and iNOS inhibitors (Chen et al., 2017). To date, only 
glyceryl trinitrate (GTN), an NO donor commonly used in the 
management of angina, has progressed to clinical trials. A recent 
systematic review, however, highlighted that despite reductions 
in blood pressure, there is insufficient evidence to recommend 
GTN in AIS (Bath et al., 2017). Further pre-clinical evidence is 
required before other NO-based candidate therapies can progress 
to the clinical stage.

Pro-Inflammatory Cytokines
The levels of IL-1β in the brain are upregulated over 40-fold within 
the first 24 h after AIS (Clausen et al., 2005). The pathogenic role 
of IL-1β in rodent models of stroke is well established; exogenous 
administration of IL-1β increased brain oedema, while IL-1α/β 
double-knockout mice showed ameliorated infarct size (Boutin et al., 
2001). Separately, deficiency or inhibition of the IL-1 receptor 
(IL-1R1) improved long-term functional outcomes (Basu et al., 
2005). Similarly, overexpression or treatment with IL-1Ra proved 
neuroprotective (Yang et al., 1997; Mulcahy et al., 2003). A recent 
systematic review concluded that anakinra, a recombinant 
IL-1 receptor antagonist (IL-1Ra), reduced infarct volume by 
36.2% in experimental models of ischaemic stroke (McCann 
et al., 2016). In human studies, a phase II trial in 2005 showed 
anakinra to be safe and well tolerated in AIS patients (Emsley 
et al., 2005). With the replacement of the intravenous formulation  
by a subcutaneous injection, the effects of anakinra have since 
been re-investigated at a twice-daily dose (Sobowale et al., 2016). 
Although anakinra significantly decreased plasma levels of IL-6 
and C-reactive protein, a possible negative interaction between 
IL-1Ra and tPA was revealed (Smith et al., 2018). Further pre-
clinical and clinical studies are therefore required to determine 
whether anakinra or other IL-1 based therapies could be safely 
used as an adjunct in AIS treatment. Separately, reports of a 
potential neuroprotective role of IL-1β post-stroke must be 
re-examined (Amantea et al., 2010). Suggested mechanisms for 
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this beneficial effect include the IL-1β-mediated release of high-
mobility group box 1 (HMGB1) from reactive astrocytes as well 
as the production of neurotrophic factors (Hayakawa et al., 2010; 
Hewett et al., 2012).

TNF-α can be found in the CSF and serum of patients 
within 24 h of the onset of ischaemia (Zaremba and Losy, 
2001; Lambertsen et al., 2012). The circulating levels of TNF-α 
are correlated with infarct size and the severity of neurological 
impairment. Inhibition of TNF-α also protects the brain against 
ischaemic injury (Chiba and Umegaki, 2013). Conversely, pre-
treatment with recombinant TNF-α proved neuroprotective, 
while mice lacking TNF-α receptors showed larger infarct size 
(Bruce et al., 1996; Ginis et al., 2002). Arguably, the action of 
TNF-α depends on timing. In the early stages of stroke, TNF-α 
promotes BBB breakdown, leukocyte infiltration, and brain 
oedema, while further along the timeline, it mediates neuronal 
and microvasculature repair (Amantea et al., 2009). The location  
of TNF-α release could also be a factor; increased production 
in the striatum, for instance, promotes neurodegeneration, 
whereas release in the hippocampus promotes neuroprotection 
(Sriram and O’Callaghan, 2007). Separately, receptor subtype, 
gene polymorphism, or cell signalling pathways could determine 
what type of response TNF-α causes (Pradillo et  al., 2005; Cui 
et al., 2012). To date, no clinical trials of TNF-α-based therapies 
in AIS have been published. However, etanercept, a biologic 
TNF-α inhibitor, has been studied experimentally in the setting 
of traumatic brain injury and clinically for the treatment of 
stroke-induced neurological dysfunction (Wang et al., 2013). In 
both studies, etanercept attenuated motor deficits. In humans, 
a single perispinal dose also improved psychological outcomes 
and reduced post-stroke complications (Tobinick et al., 2014). 
As TNF-α receptor inhibitors, such as etanercept, are already 
licensed for the treatment of certain autoimmune diseases, 
clinical trials in AIS could be expedited. The possibility of anti-
TNF-α therapies leading to increased infection rates in the setting 
of stroke, however, would have to be addressed (Zeng et al., 2013).

Cyclooxygenase/Lipoxygenase Pathways
Arachidonic acid metabolites from the COX or lipoxygenase 
(LO) pathways play a role in stroke injury (Yagami et al., 
2016). Increased phospholipase A2 (PLA2) activity has been 
documented in several experimental models of stroke, while mice 
lacking PLA2 showed improved disease outcomes (Bonventre 
et al., 1997; Muralikrishna Adibhatla and Hatcher, 2006). 
Inhibition of COX-1/COX-2 enhanced survival of neurons in 
mouse hippocampus, suggesting the enzyme has a neurotoxic 
activity (Candelario-Jalil et al., 2003). Likewise, the delayed 
administration of COX-2 inhibitor NS398 reduced infarct volume 
and neurological deficits in an experimental model of stroke, 
whereas COX-2 overexpression exacerbated ischaemic injury 
(Doré et al., 2003; Sugimoto and Iadecola, 2003). Development 
of COX-2 inhibitors for the treatment of cerebral ischaemia was 
hindered by the finding that long-term use of COX-2 inhibitors 
themselves increased the risk of stroke (though strategies to 
prevent this adverse effect may yet be achieved) (Huang et al., 
2016). Separately, leukotriene C4 (LTC4), an end-product of 

the 5-LO enzyme pathway, may play a more pronounced role in 
BBB dysfunction than do products of the COX pathway, with a 
biphasic expression pattern closely correlated to BBB opening 
(Rao et al., 1999). Use of a 5-LO inhibitor in an experimental 
model of transient ischaemia led to decreased brain levels of LTC4 
and reduced cerebral oedema (Baskaya et al., 1996). Likewise, 
montelukast, a cysteinyl leukotriene receptor-1 antagonist 
licensed clinically for use in asthma, ameliorated hippocampal 
injury (Saad et al., 2015). The protective effect, however, could 
not be replicated in 5-LO knockout mice, casting doubt on 
leukotriene involvement in infarct development (Kitagawa et 
al., 2004). As for the COX pathway, a possible neuroprotective 
function has been argued. COX-1-deficient mice, for example, 
showed increased susceptibility to ischaemic injury, possibly as a 
result of compromised CBF (Iadecola et al., 2001). Several studies 
have highlighted a neuroprotective effect of prostaglandin E1, 
while accumulating evidence also demonstrates the beneficial 
effects of Prostaglandin E2 receptor 2/4 (EP2/EP4) receptor 
activation (Huang et al., 2016; Ling et al., 2016). The development 
of pharmacological agents targeting arachidonic acid (AA) 
metabolites in stroke may therefore yet move away from COX-2 
inhibition towards manipulation of downstream EP receptors in 
the acute post-stroke phase.

Matrix Metalloproteinases
MMPs, a family of zinc-binding endopeptidases, become 
dysregulated in the setting of AIS. Increased MMP activity 
leads to neuronal apoptosis, BBB breakdown, leukocyte 
infiltration, brain oedema, and, under certain circumstances, 
haemorrhage (Rosell and Lo, 2008). Various MMPs, including 
MMP-2, MMP-3, MMP-7, and MMP-9, have been implicated 
in infarct growth. MMP-2, which is constitutively expressed 
in the brain, contributes to ischaemic damage in the early 
stages (<24 h) through extracellular matrix disruption, tight 
junction protein degradation, and oxidative stress injury 
(Gasche et al., 2001; Yang et al., 2007). Conversely, MMP-9, 
an inducible enzyme secreted by microglia, macrophages, 
and infiltrating neutrophils, mediates the more intense and 
irreversible damage to the BBB associated with haemorrhage 
(Montaner et al., 2001). MMP-9, upregulated 15–48 h after 
the onset of ischaemia, has also been intimately linked to 
stroke pathology, with higher serum levels, a predictor of 
poor disease outcome (Abdelnaseer et al., 2017). Studies of 
MMP-9 knockout/inhibition highlighted decreased infarct 
volume and an overall reduction in ischaemic damage (Asahi 
et al., 2001; Gu et al., 2005). The same neuroprotective effect, 
however, was not noted in mice lacking MMP-2, leading 
to the theory that the enzyme is instead involved in post-
stroke repair (Lucivero et al., 2007). Indeed, a wealth of 
evidence now points to a role for MMPs in processes such as 
neovascularization and neurovascular remodelling (Lee et al.,  
2006, Zhao et al., 2006). Treatment with MMP inhibitors at 7 days, 
for example, increased brain injury, impaired functional 
outcome, and reduced remodelling of the infarct site (Zhao 
et al., 2006). As a result, the clinical translation of therapies 
targeting MMPs may involve administration of modulators 
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in the subacute stages of stroke that promote longer-term 
recovery. Separately, studies suggest MMP-9 is responsible for 
haemorrhagic transformation associated with tPA therapy, as 
levels of the enzyme are elevated in response to thrombolysis 
(Ning et al., 2006). As a result, MMP-9 inhibitors (e.g., 
minocycline) may yet find a role in the acute phase of AIS 
therapy as adjuncts to lengthen the therapeutic window for 
thrombolysis (Murata et al., 2008).

Chemokines
Chemoattractant molecules are expressed by a range of cell 
types in AIS, including circulating immune cells, activated 
microglia, endothelial cells, astrocytes, and neurons (Kim 
et al., 1995b; Che et al., 2001). Chemokines, the expression 
of which are upregulated post-stroke, play a detrimental 
role in the early stages through leukocyte infiltration, ROS 
production, and BBB disruption (Kawabori and Yenari, 2015; 
Chen et al., 2018a). Mice lacking CCL5 or the neuronally 
expressed CX3CL1 (fractalkine), for example, showed 
reduced infarct size (Soriano et al., 2002; Terao et al., 2008). 
Similarly, inhibition of CXCL8 provided neuroprotection in 
transient brain ischaemia (Garau et al., 2005). Likewise, the 
genetic deletion of both CCR2 and CX3CR1 receptors proved 
neuroprotective in a ferric chloride model of ischaemia 
(Cisbani et al., 2018). However, evidence now also points to 
a second, neuroprotective function for chemokines in AIS, 
possibly as a result of increased stem cell recruitment to the 
infarct site (Wang et al., 2002). Several therapeutic strategies 
targeting chemokines—including small molecule receptor 
antagonists, neutralizing antibodies, pathogen-derived 
receptor antagonists, and modified chemokines—have been 
trialled in AIS, with moderate success (reviewed in Mirabelli-
Badenier et al., 2011). Administration of an anti-MIP-3α 
antibody in rats, for example, reduced infarct size while TAK-
779, a nonpeptide CCR5 antagonist, protected mice against 
focal cerebral ischaemia (Takami et al., 2002; Terao et al., 
2009). Similarly, the pan-chemokine specific inhibitor NR58-
3.14.3 also improved outcome in experimental stroke, while 
anti-CCL2 and CXCL8 antibodies decreased brain oedema 
and BBB permeability, respectively (Mirabelli-Badenier 
et al., 2011). Furthermore, the viral peptide, macrophage 
inflammatory protein-1α (MIP-II) (a chemokine analogue 
of MIP-II encoded by human herpesvirus-8 DNA), proved 
neuroprotective against focal cerebral ischaemia in mice 
(Takami et al., 2001). Despite these successes, however, 
issues preventing the clinical translation of chemokine-
targeted therapies remain, including the correct timing 
of administration and drug concentration. While some 
research has shown the benefit of broad-spectrum chemokine 
inhibition, the risks that blanket-blocking the system poses 
to host defence and neuroprotective immune cell recruitment 
has also yet to be resolved (Lee et al., 2015). As a result, drugs 
such as JWH-133, which inhibit CXCL2-mediated neutrophil 
migration to the CNS without affecting the response in the 
periphery, may provide the way forward (Mirabelli-Badenier 
et al., 2011).

THERAPEUTIC STRATEGIES TARGETING 
LEUKOCYTE INFILTRATION

E-, L-, and P-selectins, a family of transmembrane glycoproteins, 
have all been implicated in leukocyte trafficking in AIS (Yilmaz 
and Granger, 2008). In animal models, the selective blockade 
of E- or P-selectin resulted in improved neurological outcome 
(Huang et al., 2000; Mocco et al., 2002). Similarly, P-selectin-
deficient mice showed decreased BBB breakdown (Jin et al., 
2010). However, the use of an anti-L-selectin antibody in a 
rabbit model of stroke did not reduce ischaemic injury (Yenari 
et al., 2001).

Among the immunoglobulin superfamily, ICAM-1 and 
VCAM-1 have been the most studied in the setting of AIS 
(Stanimirovic et al., 1997). These molecules facilitate the adhesion 
of leukocytes to the endothelial wall and extravasation into the 
infarct site. The results of both in vitro experiments and human 
studies confirm increased ICAM-1 expression under conditions 
of ischaemia (Hess et al., 1994; Bitsch et al., 1998). As ICAM-1 
levels peak at 12–48 h post-stroke, they are ideal targets for the 
acute phase. Studies of ICAM-1 deficiency/inhibition showed 
reduced ischaemic injury and decreased leukocyte infiltration 
(Kitagawa et al., 1998; Kanemoto et al., 2002; Vemuganti et al., 
2004). ICAM-1 knockout mice also displayed reduced infarct 
size, as well as improvements in CBF and neurological function 
(Connolly et al., 1996). A phase III clinical trial of anti-ICAM-1 
antibody enlimomab, however, failed to replicate these results, 
with the antibody-treated group reporting higher mortality 
(Investigators, 2001). Increased neutrophil activity in enlimomab-
treated patients has been attributed to the antigenicity of the 
murine antibody used. As a result, the benefit of ICAM-1 
modulation in AIS awaits confirmation. Likewise, there remains 
doubt as to the validity of VCAM-1 as an immunomodulatory 
target. Several groups have shown improved stroke outcomes in 
association with decreased VCAM-1 expression (Zhang and Wei, 
2003; Cervera et al., 2004). A study of VCAM-1 knockdown, for 
example, led to decreased T lymphocyte infiltration and reduced 
infarct volume (Liesz et al., 2011). However, use of an anti-
VCAM-1 antibody did not prove neuroprotective in either rats 
or mice, casting further doubt on the viability of this target in AIS 
(Justicia et al., 2006).

Integrin molecules, such as leukocyte function-associated 
antigen-1 (LFA-1 or CD11a/CD18), macrophage-1 (Mac-1 
or CD11b/CD18), and very late adhesion molecule-4 (VLA-4 
or CD49d), facilitate the binding of leukocytes to areas of 
activated endothelium in AIS (Iadecola and Anrather, 2011). 
The expression of CD11a/CD18 is upregulated in stroke patients 
(Kim et al., 1995a). In an experimental model of CD11a/CD18 
deficiency, reductions in infarct volume and neurological deficit 
were noted (Arumugam et al., 2004). Administration of an anti-
CD11b antibody produced the same result (Chen et al., 1994). 
Likewise, in mice lacking CD18 or Mac-1, reduced infarct 
size, decreased neutrophil infiltration, and decreased mortality 
were shown (Prestigiacomo et al., 1999; Soriano et al., 1999). 
The use of Hu23F2G, an anti-Mac-1 antibody, caused a similar 
amelioration of ischaemic injury (Yenari et al., 1998). In the 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Immunomodulatory Therapeutic Strategies in StrokeMalone et al.

10 June 2019 | Volume 10 | Article 630Frontiers in Pharmacology | www.frontiersin.org

phase III clinical  trial  “LeukArrest,” however, Hu23F2G did not 
prove neuroprotective (Becker, 2002). A second human study—
Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN)—
instead investigated the effect of Mac-1 inhibitor, UK-279,276 
(neutrophil inhibitor factor), in AIS patients (Krams et al., 2003). 
Again, however, despite good pre-clinical evidence, ASTIN failed 
to meet the predetermined endpoint of a 3-point additional 
mean recovery on the Scandinavian Stroke Scale, and the study 
was terminated early (Jiang et al., 1995). Plausible confounding 
factors in both trials include the timing of drug administration, 
differences in integrin molecules between humans and rodents, and 
the variability in reperfusion in human stroke vs. animal models 
(Jickling et al., 2015). On this last point, it has been noted that anti-
integrin therapies provide more benefit in transient compared with 
permanent models of ischaemia in animals (Zhang et al., 1995). The 
observation that an anti-Mac-1 antibody extends the therapeutic 
window of tPA suggests a possible place for these therapies as an 
adjunct in AIS treatment (Zhang et al., 2003). Another integrin-
based therapy, which has progressed to the clinical trial stage 
is natalizumab—an anti-VLA-4 antibody used to attenuate 
neuroinflammation in relapsing-remitting MS. The “ACTION” 
trial (phase II) explored the safety and efficacy of natalizumab in 
stroke (Elkins et al., 2017). While natalizumab did not affect infarct 
volume, improvements in functional outcomes at 30 days warranted 
further investigation. The follow-up phase IIb trial, however, did 
not meet its primary or secondary endpoints. This likely concludes 
the investigation into natalizumab in AIS at this time.

Perhaps, as a result of poor clinical translation, research into 
strategies targeting leukocyte infiltration in AIS has shifted 
away from global inhibition to specific subsets. Therapies aimed 
at reducing T-cell extravasation, for example, have received 
increased interest. Fingolimod, a sphingosine-1-phosphate 
receptor modulator used in the treatment of relapsing-remitting 
MS, is one such treatment. A wealth of pre-clinical evidence now 
supports the benefits of fingolimod on AIS outcome (Liu et al., 
2013). The suppression of T-cell infiltration into the CNS plays a 
role in this efficacy, though other mechanisms such as decreased 
BBB dysfunction, reduced microglial activation, and direct 
neuroprotection are also likely to be involved (Kraft et al., 2013; Li 
et al., 2016). At the clinical level, fingolimod has been investigated 
in a small number of pilot studies (either alone or in combination 
with thrombolysis). Both studies confirmed a beneficial effect of 
fingolimod on infarct size, rates of haemorrhagic transformation, 
and neurological function (Fu et al., 2014b; Zhu et al., 2015).

STROKE-INDUCED IMMUNODEPRESSION

The early activation of the peripheral immune system post-stroke 
gives way 2 days after initial ischaemia to a second phenomenon 
termed stroke-induced immunodepression (SIID). Theoretically, 
SIID may have evolved as an adaptive response, protecting the 
CNS from harmful autoimmune responses. The active depression 
of immune defence mechanisms, however, dramatically increases 
the susceptibility of the host to infection. Indeed, large studies 
have estimated approximately 30% of stroke patients contract 
infections, the most prevalent of which are urinary tract 

infections (UTIs) and pneumonia (Westendorp et al., 2011). 
Microorganisms routinely implicated in post-stroke infection 
include Staphylococcus aureus, Pseudomonas aeruginosa, 
Klebsiella pneumoniae, and Escherichia coli. Anatomical factors 
seem to be important in post-stroke infection. The extent 
of lesion size, for example, is associated with occurrence of 
pneumonia, though whether infarct location influences events 
remains unclear (Minnerup et al., 2010). The fact that most cases 
of pneumonia and UTI are diagnosed within the first few days 
after stroke, however, implies SIID is involved and that infections 
are not simply a manifestation of poor patient care (Westendorp 
et al., 2011). Regarding outcome, almost all major studies of post-
stroke infection have shown a significant impact of infection on 
functional outcome and patient mortality (Vermeij et al., 2018). 
As a result, strategies that aim to prevent or cure such infections 
are currently receiving greater interest.

SIID is typified by lymphopenia, increased levels of anti-
inflammatory cytokines such as IL-10 and transforming growth 
factor beta 1 (TGF-β), and splenic atrophy (Kamel and Iadecola, 
2012). Mechanistically, the CNS causes immunological changes 
through a variety of humoral and neural pathways, including the 
sympathetic nervous system (SNS), the parasympathetic nervous 
system (PNS), and the hypothalamic–pituitary–adrenal (HPA) 
axis (Brambilla et al., 2013). Glucocorticoids, end-products of 
HPA axis activation, curb the peripheral immune response post-
stroke through promoting lymphopenia, impairing lymphocyte/
neutrophil function, and deactivating macrophages (Prass et al., 
2003; Mracsko et al., 2014). Glucocorticoid receptor blockade 
reduced splenocyte apoptosis and corrected lymphopenia in an 
experimental model of stroke, though this antagonism did not 
prevent pneumonia (Prass et al., 2003). The beneficial effect of 
glucocorticoid blockade on lymphocyte counts was confirmed 
in a further mouse study, though this intervention did increase 
levels of the SNS mediator, metanephrine (Mracsko et al., 
2014). Both of these studies suggest that modulation of the 
glucocorticoid pathway can reduce the manifestation of SIID, 
though whether this leads to reduced incidence of infection or 
deleterious signalling elsewhere still needs to be reconciled.

Increased transmission in the PNS, chiefly through vagal nerve 
activity, is also capable of altering peripheral immune function. 
Studies have shown the detrimental effect that acetylcholine 
(ACh), secreted by both parasympathetic nerves and splenic 
memory T cells, has on macrophage function (Rosas-Ballina 
et al., 2011; Trakhtenberg and Goldberg, 2011). Activation 
of nicotinic acetylcholine receptor α7 (nAChRα7) results in 
decreased pro-inflammatory cytokine secretion, predisposing 
the host to infection (Rosas-Ballina et al., 2011; Trakhtenberg 
and Goldberg, 2011). As of yet, however, therapies targeting the 
PNS have focused more on reducing innate immune function at 
the infarct site (Kox and Pickkers, 2015).

One branch of the autonomic nervous system that modulates 
peripheral immune function post-stroke and has progressed to 
human studies is the SNS. Increased levels of adrenaline and 
noradrenaline post-ischaemia skews leukocytes towards an anti-
inflammatory phenotype, while also disabling hepatic invariant 
natural killer T cells (iNKT) in mice (Chamorro et al., 2012). 
The latter cell type in particular has been shown to be pivotal in 
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host defence against post-stroke infection (Wong et al., 2011). 
The inhibition of iNKT function, however, can be reversed 
pharmacologically through administration of the glycolipid, 
α-galactosylceramide, or beta blockers such as propranolol (Shi 
et al., 2018). In the clinic, the beneficial effects of beta blockers on 
infection rates and early mortality have been replicated several 
times (Dziedzic et al., 2007; Sykora et al., 2015). Controversially, 
separate studies showed a negative effect of beta blockers, 
coupled with higher rates of adverse events (Westendorp et al., 
2016). In theory, beta blockers could affect CBF or aggravate pro-
inflammatory responses in the brain. Evidently, further studies 
into immunomodulatory therapies of the SNS are required.

In terms of post-stroke infection outcomes, the most recent 
systematic reviews of prophylactic antibiotic therapy suggest 
that this approach is not effective (Vermeij et al., 2018). 
Despite a meta-analysis finding that preventative antibacterial 
drugs reduced overall infection rates, no effect on functional 
outcome (modified Rankin scale) or mortality was seen (Zheng 
et al., 2017). Importantly, however, the pathophysiology of 
post-stroke infection is still poorly understood, while certain 
classes of antibiotics (e.g., fluoroquinolones) have known 
neurotoxic properties. The use of prophylactic antibiotic therapy, 
therefore, may yet prove effective in certain patient subgroups. 
Nevertheless, in order to achieve improved functional outcomes, 
a combination of antibiotics and immunomodulatory drugs 
could show greater promise.

BRAIN ANTIGEN TOLERIZATION

Increased permeability in the BBB, coupled with significant levels 
of cell death, results in greater exposure and presentation of brain 
antigens to the immune system. This can lead to the generation 
of autoimmune B- and T-cell responses. A likely function of 
SIID is to reduce the number of auto-reactive IFN-γ-secreting 
T-cells; this was demonstrated in a 2D2 transgenic mouse model 
where the T-cell receptor is specific for myelin oligodendrocyte 
glycoprotein (MOG), a CNS antigen (Römer et al., 2015). 
Clinical evidence demonstrates a strong correlation between Th1 
responses and poorer stroke outcome up to 3 months later in 
humans (Becker et al., 2011). The definition of Th1 responses in 
this clinical study was a higher ratio of IFN-γ to TGF-β secretion 
by T-cells when stimulated with a range of self-antigens including 
myelin basic protein (MBP); however, the magnitude of each 
of these responses was not reported. Modulation of immunity 
towards a Th1 phenotype is favoured during the inflammatory 
response to bacteria; Th1 responses to MBP, in particular, were 
more prevalent in stroke patients with pneumonia (Becker et al., 
2011). It is unclear if these autoreactive cells are involved in short- 
or long-term pathogenesis or, instead, act as a severity marker or 
are associated effects of the stroke. Some studies suggest a role of 
autoreactive Th1 in poor outcome (Zierath et al., 2010), whereas 
other studies demonstrate no impact (Römer et al., 2015). 
However, the self-antigen specificity of the response is clear as 
memory immunity to foreign antigens such as tetanus toxoid did 
not associate with outcome (Becker et al., 2011). It is possible 
that a Th1 response could indeed be driving T-cell cytotoxicity 

in the brain, similar to other autoimmune pathologies, such 
as type 1 diabetes. Immune-based therapies that modulate the 
T-cell phenotype away from a cytotoxic response towards a 
more tolerized response, possibly mediated by Treg, might have 
application in stroke.

Previous therapies attempted to induce antigen-specific 
tolerance to E-selectin or to MBP via repeated mucosal 
administration. Induction of a Treg response to MBP in Lewis 
rats before stroke resulted in an improved outcome at early, but 
not late (3 months) time points after stroke (Gee et al., 2009). 
This could be due to the inherent plasticity of T-cell phenotypes, 
particularly between Treg and Th17, as the latter type is known 
to be pathogenic in autoimmune CNS diseases [such as the MS 
mouse model and experimental autoimmune encephalomyelitis 
(EAE)] (Jadidi-Niaragh and Mirshafiey, 2011). Increased IL-6 
expression during infection could promote Treg cells to switch to 
a more Th17 function (Kimura and Kishimoto 2010). E-selectin 
is only expressed in blood vessels upon activation. It has therefore 
been hypothesized that induction of a regulatory T-cell response 
to E-selectin would be specifically directed to blood vessels 
undergoing activation in the brain and thereby reduce the risk 
of stroke (Hallenbeck, 2010). However, induction of mucosal 
tolerance requires repeated low-dose administration and takes 
time to develop. Although pre-clinical results provided some 
proof-of-principle and clinical studies were initiated in 2003 and 
terminated in 2010 (NCT00069069), no clinical data on safety or 
potency have yet been published. Overall, induction of antigen-
specific Treg using mucosal tolerance has suffered from logistical 
(repeated doses required) as well as clinical efficacy issues.

Non-antigen-specific approaches are also being evaluated. 
These cell therapies could act in a more systemic, regenerative 
manner by targeting reparative, anti-inflammatory processes, 
which contribute to recovery from disease and co-morbidities and 
thereby may have a multi-dimensional effect on disease. Phase II/
III clinical trials are ongoing in ischaemic stroke patients to assess 
MultiStem, in vitro expanded multipotent adult progenitor bone 
marrow cells that do not require human leukocyte antigen (HLA) 
matching (Hess et  al., 2014; Osanai et al., 2018). Favourable 
safety and tolerability have been observed (Hess et al., 2014), 
with a time window (24–36 h) beyond that of recombinant tissue 
plasminogen activator (rt-PA) and endovascular thrombectomy. 
MultiStem treatment did not demonstrate a significant 
difference to placebo treatment for the primary endpoint of 
Global Stroke Recovery Assessment or secondary endpoints 
relating to disability, neurologic deficit, and activities of daily 
living. However, some (15.4%) patients achieved an improved 
outcome, and life-threatening adverse events and mortality were 
lower in the treated group. MultiStem-treated patients showed a 
significant decrease in the number of circulating CD3+ T-cells, 
possibly suggesting a decrease in inflammation. Earlier treatment 
(24–36 h post-stroke) exhibited more favourable outcome than 
did delayed treatment. Therefore, although the trial failed to 
achieve the primary or secondary outcomes, it provides positive 
evidence of the potential of cell-therapy-based approaches, 
including multipotent adult progenitor cells (MAPCs), while 
also suggesting that timing is important to success (Mays and 
Deans, 2016). Elsewhere, various cell immunotherapy strategies 
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are being assessed to treat other autoimmune diseases. Adoptive 
transfer of ex vivo expanded polyclonal Treg for type 1 diabetes, 
for example, has been demonstrated to be safe, underlying future 
clinical testing (Bluestone et al., 2015).

Alternatives to adoptive cell transfers are also being developed. 
Modulating the IL-2/CD25 axis in favour of Treg growth and 
away from activated and/or effector T-cells has been shown to be 
safe and potent in clinical trials across 11 autoimmune diseases 
(Rosenzwajg et al., 2018). It is now being clinically assessed in 
patients with stable ischaemic heart disease and acute coronary 
syndromes (NCT03113773) (Zhao et al., 2018). Repeated systemic 
administration of tolerizing-inducing formulations, such as 
nanoparticle-based delivery of aryl hydrocarbon receptor ligands 
and β-cell antigens, has demonstrated pre-clinical efficacy in a mouse 
model of type 1 diabetes (Yeste et al., 2016). Given that the pathology 
of ischaemic stroke has clear differences with these more chronic 
autoimmune diseases, with respect to the involvement of rapid 
immune depression and infection, successful immunotherapies 
for other autoimmune disease may not directly translate to AIS. 
However, lessons learned from all of these cell and immune therapies 
should be beneficial in developing efficacious immunotherapies that 
re-establish tolerance for long-term protection against stroke and 
potentially prevent decreased cognition in the stroke patient.

REGULATORY IMMUNE CELL 
STRATEGIES

Peripheral immune cells, which may contribute to the repair of the 
injured brain, include cells of both the innate and adaptive immune 
systems. M2- but not M1-type macrophages have been considered 
as promising target to enhance angiogenesis and neurovascular 
unit remodelling after stroke by producing factors such as vascular 
endothelial growth factor (VEGF), IL-8, Insulin-like growth factor 
1 (IGF-1), and TGF-β (Willenborg et al., 2012; Nakamura et al., 
2016). Neutrophils, although typically considered cells that induce 
damage in the acute phase of stroke (Amulic and Hayes, 2011; Herz 
et al., 2015), can also be involved in neural network remodelling 
in the latter stages. Through degradation of extracellular matrix, 
neutrophils release VEGF and TGF-β. In addition, neutrophils 
possess the ability to clear dead cells, debris, and bacteria, creating 
a better microenvironment for repair (Zlokovic, 2006; McDonald 
et al., 2010; Corps et al., 2015). With the use of genetically modified 
animals or lymphocyte depletion in animal stroke models (Rag−/− 
and SCID mice), the important role that lymphocytes play has been 
shown. Animals lacking lymphocytes had significantly smaller 
infarcts than had wild-type (WT) mice (Yilmaz et al., 2006; Hurn 
et al., 2007). Depletion of T-cells (both CD4+ and CD8+ subtypes) 
significantly reduced infarct volumes. Depletion of B-cells, on the 
other hand, had no effect on the infarct volumes 24 h after stroke 
induction (Yilmaz et al., 2006). This could indicate that T-cells but 
not B-cells play a role in post-stroke neural damage. Interestingly, 
in a separate study, B-cell knockout mice (µMT−/− mice) showed 
larger infarcts than did WT mice, suggesting that B-cells may have 
a protective function (Ren et al., 2011). Specifically, one subset of 
B-cells, IL-10-producing regulatory B-cells, may play an important 
role in neuroprotection.

Regulatory B-cells were shown to play a protective 
role in autoimmune animal models such as MS (EAE), 
rheumatoid arthritis [collagen-induced arthritis (CIA)], type 
1 diabetes, and systemic lupus erythematous by dampening 
pro-inflammatory T-cells and enhancing the expansion of 
regulatory T-cells (Yang et al., 2013; Tedder, 2015). The main 
protective effect of regulatory B-cells is mediated through 
IL-10 production. The role of regulatory B-cells in stroke is 
still under investigation; however, a study where transfer of 
WT B-cells into B-cell knockout mice, when compared with 
mice receiving IL-10−/− B-cells, 24 h before the induction 
of stroke showing reduced infarct volume suggests a strong 
role of IL-10-producing B-cells (Ren et al., 2011). Chen et 
al. have shown that CD5+CD1dhi B10 cells are enriched in 
the ipsilateral versus contralateral hemisphere of mice at 
48 h post-stroke, as well as circulating regulatory B-cells (Chen 
et al., 2012). Adoptive transfer of in vitro-induced regulatory 
B-cells to mice 24 h before the induction of stroke resulted 
in increased regulatory T-cell subsets (CD4+Foxp3+ and 
CD8+CD122+). Compared with that of animals without 
stimulated B-cells, infarct volume decreased (Bodhankar et al., 
2015). If regulatory B-cells were to be considered for adoptive 
transfer in stroke, however, the purity of the population would 
need to be very high. Otherwise, non-regulatory B-cells could 
exacerbate post-stroke damage through antibody-mediated 
neurotoxicity (Doyle et al., 2015).

Regulatory T-cells are an important cell subset playing an 
active regulatory role in the brain after stroke. These cells 
(CD25+Foxp3+), which constitute approximately 10% of 
peripheral CD4+ T-cells, are essential for the promotion of 
immunosuppression through production of cytokines such as 
IL-10, TGF-β, and IL-35 (Zouggari et al., 2009; Wan, 2010). 
The protective role of Tregs after cerebral ischaemic injury 
has been shown in multiple studies (Liesz et al., 2009; Li et 
al., 2013; Liesz and Kleinschnitz, 2016). Regulatory T-cells 
function through dampening excessive immune responses 
and also through promoting the generation of new neuroblasts 
(Wan, 2010). Induction of immunosuppressive environments 
by recruitment of suppressive immune cells after ischaemia 
can reduce inflammation and decrease neural injury. The 
challenge of the low frequency of regulatory cells, however, has 
thus far restricted their clinical utility. In addition, questions 
remain as to how and when Tregs move from the periphery 
to the brain, a factor that may determine the therapeutic 
window. Although in vivo studies in mice have shown that it 
is possible to increase the frequency of regulatory cells [e.g., 
treatment with IL-2/IL-2 antibody complex increased Treg and 
protected against transient ischaemic attack (TIA)], the safety 
of this therapy in patients has yet to be established (Zhang et 
al., 2018). Further studies are needed to fully understand both 
the timing and frequency of suppressive cell infiltration into 
the infarcted brain. The methods of regulatory cell induction 
will also be crucial to evaluate in a clinical setting. Overall, 
a more comprehensive understanding of regulatory immune 
responses at different stages of stroke pathology will aid 
the design of safer and more effective immunomodulatory 
strategies.
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THE ROLE OF THE GUT IN STROKE: 
TARGETING PERIPHERAL IMMUNE 
SYSTEMS

The bidirectional brain–gut interaction has received increased 
attention with respect to several neurologic and psychiatric 
diseases. Gut microbiota signal to the CNS via neural, 
immunologic, hormonal, and metabolic pathways, whereas 
the CNS alters the intestine by regulating gut motility and 
secretion as well as via the enteric nervous system. Maintenance 
of this symbiosis is critical to health; for example, unwanted 
gut permeability and influx of bacterial components and other 
danger-signalling molecules (DAMPs) can activate the immune 
system. At worst, such infiltration can cause bacteraemia, sepsis, 
and death.

An association between brain autoimmunity and intestinal 
microbiota was first discussed with respect to EAE (Wekerle, 
2017). Pre-clinical studies that assess the impact of the gut 
microbiota on CNS damage generally involve the use of germ-free 
(GF) mice or treatment with antibiotic cocktails to deplete drug-
sensitive bacterial strains. With respect to stroke, it is proposed 
that infarcted brain tissue can affect intestinal function and 
immunity via the adrenergic system and/or HPA axis. It has been 
reported that both T- and B-cell numbers are significantly reduced 
in Peyer’s patches in mice post-stroke, suggesting a link between 
the CNS and the gut-associated lymphoid tissue (GALT) (Schulte-
Herbrüggen et al., 2009). Increased intestinal permeability may 
promote bacterial invasion to non-gut organs. Increased bacterial 
load in mesenteric lymph nodes has been reported after MCAO 
(Caso et al., 2009). In a mouse model of ischaemic stroke, post-
stroke infection was not seen in mice born and raised in GF 
facilities but was observed in those housed from birth in specific-
pathogen-free (SPF) facilities. It was demonstrated in the same 
study that the source of disseminated bacteria in the infected cases 
was indeed the host small intestine (Stanley et al., 2016). Such 
bacterial translocation also induces inflammation and promotes 
Th1 and Th17 responses, all of which are normally required to clear 
a systemic bacterial infection. As discussed previously, however, 
these Th1 responses are associated with poorer stroke outcome. 
An elegant paper by Singh et al. showed how large stroke lesions 
lead to gut microbiota dysbiosis, which in turn worsens stroke 
outcome via immune-mediated mechanisms including intestinal 
lymphocyte migration to the ischaemic brain (Singh et  al., 
2016). Faecal microbial transplantation, however, normalizes 
this stroke-induced dysbiosis and improves stroke outcome. 
In the same study, it was highlighted that stroke specifically 
reduces microbiota species diversity and causes overgrowth of 
Bacteroidetes, a phenomenon associated with intestinal barrier 
dysfunction and reduced intestinal motility. Effectively, the 
microbiota composition may impact stroke severity. For example, 
altering the ratio of Firmicutes to Bacteroides in young mice to 
resemble the ratio observed in old mice before MCAO increased 
mortality and decreased behavioural performance (Spychala et al., 
2018). An “aged” microbiota composition enhanced systemic 
inflammation when transplanted into young mice. Transplanted 
mice also had lower levels of short-chain fatty acids (SCFAs). These 

bacterially produced small molecules are important modulators 
that stabilize the gut epithelial barrier and modulate immune 
responses (Spychala et al., 2018). This study again suggests that 
the gut microbiota can affect stroke outcome in a mouse model. 
Aberrations to gut microbiota may not only significantly decrease 
survival, however, but also lead to acute colitis and other post-
stroke sequelae (Winek et al., 2016a). However, translational 
caveats inherent to microbiota research in general are also true for 
stroke research. The differences in the anatomy, physiology, genetic 
heterogeneity, diet, and housing of mice compared with humans 
must be appreciated to prevent incorrect translation of findings 
in rodent gut microbiota models to human disease (Winek et al., 
2016b). Instances where antibiotic-induced alterations to the 
gut microbiota reduced ischaemic injury should also be further 
explored (Benakis et al., 2016). Overall, more clinical studies are 
required to truly evaluate the role of the microbiota in post-stroke 
responses and to define strategies of how this response can be 
modified for improved patient outcomes.

ISCHAEMIC PRECONDITIONING

Significant interactions between the stroke and the periphery 
are also at play in remote ischaemic preconditioning (RIPC). 
Originally discovered by Murray and colleagues, preconditioning 
is a procedure by which a noxious stimulus is applied to a tissue 
or organ below the threshold of damage (Murry et al., 1986). 
After a recovery period, organs such as the brain develop a 
tolerance to the same or even different noxious stimuli given 
above the threshold of damage. Various types of preconditioning 
stimuli have been used experimentally to protect the brain, 
heart, liver, kidney, and other organs. Chief among these are 
ischaemic preconditioning (in which the blood supply to a 
target organ is temporarily interrupted before introducing a 
longer infarct) and hypoxic preconditioning (in which animals 
are exposed to oxygen levels around 8% to 9% for a few hours). 
However, achieving ischaemic or hypoxic preconditioning in the 
brain itself would be more challenging and less practical than in 
other organs. Therefore, experimental and clinical evidence that 
shows robust tolerance can be achieved in the brain by inducing 
ischaemia–reperfusion in a distant (remote) non-vital organ has 
attracted a great deal of attention (Hess et al., 2013; Chen et al., 
2018c). Both local preconditioning and RIPC protect the brain 
either rapidly after stimulation (known as early, first-window, 
or classical preconditioning) or after a 24-h delay to induce 
protection lasting at least 48 h (known as delayed or second-
window preconditioning). The complex mechanisms underlying 
early and delayed protection differ, with evidence for both 
humoral and neurogenic mechanisms (many of which are shared 
between local preconditioning and RIPC). Most mechanisms 
(i.e., intracellular signalling cascades, role of mitochondria, 
and activation of neural pathways) are beyond the scope of this 
review, and the next section will focus instead on the evidence 
that inflammation and immunomodulation also play a role.

RIPC prevents BBB breakdown following stroke (Wei et al., 
2012) and regulates inflammatory gene expression in the blood 
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(Konstantinov et al., 2004), whereas blocking pro-inflammatory 
signalling pathways abolishes ischaemic tolerance to focal 
stroke in response to hypoxic preconditioning (Stowe 
et  al., 2012; Selvaraj et al., 2017). Molecular inflammatory 
mechanisms underlying different brain preconditioning 
modalities were recently reviewed (Garcia-Bonilla et al., 
2014), and there is a large body of evidence implicating the 
innate immune system in preconditioning (Amantea et al., 
2015). The adaptive immune response may also play a role, 
as RIPC results in dramatic changes in T- and B-lymphocyte 
subsets in the spleen, while splenectomy attenuates the 
protective effect of RIPC on ischaemic brain injury (Chen 
et al., 2018b). Because similar neuroinflammatory pathways 
and lymphocytes underlie the pathophysiology of both MS, 
a progressive condition, and ischaemic stroke, which occurs 
more acutely (Paterno and Chillon, 2018), it is interesting 
to note that local preconditioning and RIPC also seem to 
be effective in the context of EAE (Camara-Lemarroy et al., 
2018). Mice that underwent hypoxic preconditioning show 
fewer CD4+ T-cells and a delayed Th17-specific cytokine 
response, as well as increased numbers of Tregs and IL-10 
following EAE induction (Esen et al., 2016). This effect on 
Tregs is reminiscent of observations in the kidney, where 
local ischaemic preconditioning leads to an increase in 
CD4+CD25+FoxP3+ and CD4+CD25+IL-10+ Tregs (Cho 
et al., 2010; Kinsey et al., 2010). These Treg cells seem to be 
able to suppress conventional T-cells with diverse antigen 
specificities (Corthay, 2009), suggesting that an increase in 
Treg number due to preconditioning in one organ might be 
protective in another and might therefore also play a role in 
RIPC. Alternatively, preconditioning might affect neutrophils 
(Shimizu et al., 2010), monocytes/macrophages (McDonough 
and Weinstein, 2016), or lymphocytes other than Tregs, in 
particular immunosuppressive B-cells (Monson et al., 2014). 
RIPC has been shown to alter the CD8+ T-cell, B-cell, NKT-cell, 
and monocyte response after stroke (Liu et al., 2016). Exercise-
induced neuroprotection is another form of preconditioning 
that also seems to involve immunomodulation (Ding et al., 
2005), and multiple reports point to a role of B-cells (reviewed 
in Selvaraj et al., 2016).

Because of the unpredictable nature of stroke, the clinical 
relevance of preconditioning is unclear, and RIPC is most 
likely to be performed under specific circumstances, such 
as during coronary bypass surgery or in patients undergoing 
carotid endarterectomy (Walsh et al., 2010). However, the 
potential clinical effectiveness of hypoxia- and ischaemia-
induced tolerance to stroke is supported by the protective 
effect of living at higher altitude on stroke mortality (Faeh et 
al., 2009), and by observations that transient ischaemic attacks 
(TIAs) are associated with reduced severity of subsequent 
stroke (Weih et al., 1999). Furthermore, remote ischaemic 
conditioning performed during (“perconditioning”) (Schmidt 
et al., 2007) or after (“postconditioning”) (Kerendi et al., 
2005) the ischaemic episode in the target organ also seems 
to be effective in animal models of myocardial infarction, 
suggesting that mechanisms underlying preconditioning 
might also be utilized after a stroke has occurred. Indeed, a 

recent study showing that remote ischaemic postconditioning 
administered 5 days after stroke reverses peripheral post-
stroke immunosuppression and leads to a gradual functional 
improvement over an observation period of 3 months suggests 
that this approach not only may be protective but also may in 
fact promote recovery, lessening the importance of identifying 
the critical therapeutic time window (Doeppner et al., 2018).

CONCLUSION

Despite the benefits that thrombolysis and mechanical 
thrombectomy offer in AIS care, new agents are now required 
both as adjuncts and as separate therapies. Table 1 highlights 
various immunomodulatory therapeutic strategies considered 
in the treatment of AIS to date. In an era of increasingly 
complex biomedical research, such strategies feature not 
only small molecule drugs but also monoclonal antibodies 
and, more recently, cell-based therapies. Although advanced 
biological therapies offer several advantages over their chemical 
counterparts (e.g., increased target specificity and reduced 
toxicity), the issues of cost, patient access, formulation, and 
unexpected immune reactions still need to be reconciled in the 
setting of stroke.

A separate dichotomy identifiable in the list of 
immunomodulatory therapeutic strategies available is whether 
the mechanism underlying each treatment reduces neurotoxicity 
or instead promotes neurorestoration and tissue repair. Many 
of the drugs trialled to date (anakinra and etanercept) target 
innate immunity, a portion of the immune response responsible 
for widespread neurotoxicity in the acute phase of the disease. 
Arguably, however, even if such therapies eventually proved 
effective, their widespread clinical use could be limited to 
tPA adjuncts by time alone. Conversely, therapies affecting 
the adaptive immune response (Tregs and Bregs), involved 
predominantly in repair processes, could be administered over a 
longer therapeutic window. In this regard, therapeutic strategies 
not bound by time constraints (e.g., postconditioning) could 
offer the most flexibility of all.

One aspect of ischaemic preconditioning, which resonates 
strongly in current stroke research, is the effect that changes to 
the periphery could have on both the CNS and the post-stroke 
organism at large. In this regard, the development of drugs 
that could abrogate SIID or bolster the host defence against 
post-stroke infection has received intense focus, especially in 
the era of antibiotic resistance. Separately, the role of the gut 
microbiota and the brain–gut axis plays in stroke recovery has 
been elucidated. Here, novel therapies that could either control 
post-stroke dysbiosis or modify gut-induced neuroinflammation 
could improve stroke outcome. The skewing of the peripheral 
immune response with a view to reduced brain injury could 
also be exploited through the phenomenon of brain antigen 
tolerization.

As part of the last several decades of pre-clinical and 
clinical stroke research, a wealth of information on the 
immune involvement in AIS has been discovered. As a 
result, the field has progressed from the initial belief that 
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some innate or adaptive immune components exacerbate 
ischaemic insult to the current understanding that many 
immune elements play multi-faceted roles in both stroke-
induced damage and post-stroke repair. A greater appreciation 
of the intimate, bi-directional communication between the 
CNS and the immune system post-stroke has helped clarify 
how such functional polarization occurs. Meanwhile, the 
concept of SIID, potentially responsible for a significant 
portion of stroke patient mortality, has attracted attention to 
immunomodulatory therapeutic strategies in AIS. Given the 
shortcomings of neuroprotection trials, such strategies will no 
doubt continue to receive increased interest in the future.
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