
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Individual participant data (IPD)-level meta-analysis of randomised
controlled trials among dark-skinned populations to estimate the dietary
requirement for vitamin D

Author(s) Cashman, Kevin D.; Ritz, Christian

Publication date 2019-05-28

Original citation Cashman, K.D. and Ritz, C. (2019). 'Individual participant data (IPD)-
level meta-analysis of randomised controlled trials among dark-skinned
populations to estimate the dietary requirement for vitamin D'.
Systematic reviews, 8(1), 128. (17pp). doi:10.1186/s13643-019-1032-6

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13
643-019-1032-6
http://dx.doi.org/10.1186/s13643-019-1032-6
Access to the full text of the published version may require a
subscription.

Rights © The Author(s), 2019. This article is distributed under the terms of
the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public
Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated.
https://creativecommons.org/licenses/by/4.0/

Item downloaded
from

http://hdl.handle.net/10468/9130

Downloaded on 2020-06-06T00:58:56Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cork Open Research Archive

https://core.ac.uk/display/247752196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://libguides.ucc.ie/openaccess/impact?suffix=9130&title=Individual participant data (IPD)-level meta-analysis of randomised controlled trials among dark-skinned populations to estimate the dietary requirement for vitamin D
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1032-6
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1032-6
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1032-6
http://dx.doi.org/10.1186/s13643-019-1032-6
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/10468/9130


PROTOCOL Open Access

Individual participant data (IPD)-level
meta-analysis of randomised controlled
trials among dark-skinned populations to
estimate the dietary requirement for
vitamin D
Kevin D. Cashman1,2* and Christian Ritz3

Abstract

Background: Estimation of the dietary requirements for vitamin D is crucial from a public health perspective in
providing a framework for the prevention of vitamin D deficiency. It has been shown that pooling individual
participant-level data (IPD) from selected randomised controlled trials (RCTs) of white children and adults facilitated
the generation of more accurate estimates of the vitamin D requirement. Recent RCT data suggest the vitamin D
requirement of dark-skinned, particularly black, individuals, an at-risk group of vitamin D deficiency, is greater than
those of white counterparts. Thus, we wished to develop a study protocol for the conduct of an IPD-level meta-
analysis of vitamin D requirements using data from appropriate vitamin D RCTs in dark-skinned population
subgroups.

Methods: The study protocol details the steps needed within such an IPD meta-analysis which will include its
registration, constituent systematic review to identify all appropriate RCTs on the basis of pre-specified eligibility
criteria, the associated data collection, handling, and synthesis, as well as checking the integrity of the IPD, followed
by implementation of a one/two-stage IPD meta-analysis and derivation of vitamin D requirement estimates.

Discussion: As dark-skinned population subgroups are at increased risk of vitamin D deficiency, further
investigation of dietary recommendations for vitamin D in these subgroups is needed. We strongly believe that
application of an IPD-based meta-analysis is a highly strategic approach by which to undertake some of this further
investigation. Such IPD-based analysis, however, will need collaboration across the principal investigators of the
identified RCTs meeting with the eligibility criteria, and the availability of this study protocol will be important to
highlight the potential of IPD-based analysis for estimation of the dietary requirement for vitamin D for this
particular population subgroup as well as for other at-risk target populations.

Systematic review registration: PROSPERO International Prospective Register of Systematic Reviews (registration
number: CRD42018092343).

Keywords: Vitamin D requirements, Ethnic-related differences, Individual participant data-level meta-regression
analyses, Dietary Reference Values, RCT
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Background
Introduction
Vitamin D deficiency has significant implications for hu-
man health throughout life and impacts upon healthy
growth and development and successful ageing [1]. In
North America and Europe, African-American and other
dark-skinned racial/ethnic subgroups are at a much
higher risk of vitamin D deficiency compared to their
white counterparts. For example, the prevalence of
serum 25-hydroxyvitamin D (25(OH)D) < 30 nmol/L (a
threshold used by several authorities to represent in-
creased risk of vitamin D deficiency [2–5]) in white, His-
panic, and African-American individuals in the USA is
2.3%, 6.4%, and 24%, respectively [6]. Likewise in Europe,
recent reports show that dark-skinned racial/ethnic sub-
groups in Finland, Norway, and the UK have much
higher (3- to 71-fold) prevalence of serum 25(OH)D <
30 nmol/L than white populations [7, 8].
Dietary Reference Values (DRVs) for vitamin D are es-

timates of the dietary requirements for the vitamin. They
are estimated as vitamin D intakes that will maintain
serum 25(OH)D levels of either half (50%) or nearly all
(97.5%) of individuals over a predefined threshold; they
are found through inverse regression applied after hav-
ing fitted suitable linear or nonlinear regression models
that describe the dose-response relationship between
vitamin D intake and serum 25(OH)D [9, 10]. DRVs are
crucial from a public health perspective in providing a
framework for the prevention of vitamin D deficiency
and optimising vitamin D status of individuals [11]. Des-
pite the fact that DRVs for vitamin D have been
re-evaluated by several authorities in the past 7 years
(see [12, 13], for reviews), in most cases, these recom-
mendations were established for the entire population
and not delineated by ethnic subgrouping. Such recom-
mendations were based at the time on an assumption
that the requirements between white and other racial
groups do not differ, largely due to the absence of data;
an area identified as a key knowledge gap by a number
of authorities [2, 3, 14].
Recent data from a number of randomised controlled tri-

als (RCTs) that compared white versus black and other
dark-skinned population subgroups [15–17] suggest this as-
sumption may not be correct, which, in turn, may mean the
established dietary requirements for vitamin D will not pro-
vide the level of population protection expected for these
dark-skinned population subgroups with consequences for
the prevention of vitamin D deficiency. There have been
several RCTs of black (African-American/East African des-
cent) women and dark-skinned children (i.e. those with Fitz-
patrick skin types V and VI) aimed at establishing the
dietary requirement for vitamin D, but for the most part,
the estimates have been quite variable (20–52 μg/d, using
the 50 nmol/L threshold of serum 25(OH)D) [15–22].

Instead of relying on data from one specific study
undertaken in a particular context, it has been suggested
that by considering data from several studies ensures
greater representativity [3]. This approach has been
employed by a number of authorities who re-evaluated
their DRV for vitamin D [2–4], using a standard
meta-regression approach that relied on aggregate
(group mean) data. Based on the fitted meta-analysis
model, DRVs were derived using inverse regression. Re-
cently, it has, however, been suggested that an individual
participant data (IPD) meta-analysis would allow for the
estimation of more appropriate DRVs [23, 24]. Specific-
ally, the IPD meta-analysis reported by us recently [23]
resulted in estimated DRVs that were considerably dif-
ferent from those of the agencies that used the standard
meta-analysis approach.

Objective
The aim of this work is to describe a study protocol de-
tailing the steps for carrying out IPD meta-analysis of
randomised controlled trials of vitamin D supplementa-
tion in order to estimate the dietary requirement for
vitamin D for dark-skinned individuals.

Methods/design
Adherence to IPD guidelines
The current protocol follows the general guidance provided
recently as part of the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses)-IPD statement
[25]. In particular, the PRISMA-IPD method-related topics,
numbered 5 to 16 within the statement’s checklist, have
been considered carefully and integrated into the develop-
ment of the current protocol. The overall process can be
considered a set of sequential steps starting with a system-
atic review to identify the appropriate vitamin D RCTs and
terminating in statistical analyses that estimate the dietary
requirement for vitamin D in dark-skinned individuals, uti-
lising the pooled data from all included RCTs.

Registration
The IPD meta-analysis, which is described in this study
protocol, was registered with the PROSPERO Inter-
national Prospective Register of Systematic Reviews
(registration number: CRD42018092343; http://www.crd.
york.ac.uk/PROSPERO/display_record.php?ID=
CRD42018092343 RecordID = 92343).

Ethics approval
Approval by a research ethics committee to conduct this
meta-analysis will not be required because it involves
statistical analyses of de-identified data that have already
been collected for a separate purpose.
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Systematic review to identify eligible papers
Eligibility criteria
The eligibility criteria used are closely aligned with the
ones used in a recent IPD of dietary vitamin D require-
ments in white individuals [23]. Specifically, the present
IPD meta-analysis will rely on predefined criteria previ-
ously used by the Institute of Medicine (IOM) in their
2011 Dietary Reference Intake (DRI) exercise [2] in terms
of selection of RCTs considered most appropriate to ad-
dress the specific question of setting dietary requirements
for vitamin D to meet pre-specified 25(OH)D thresholds.
This means in particular that priority is given to the iden-
tification of the intake values to maintain serum 25(OH)D
concentrations above chosen cut-offs when ultraviolet B
(UVB)-induced skin synthesis of vitamin D is absent or
markedly diminished. This approach also aligns with that
taken by the IOM [2], the Nordic Council of Ministers
(NORDEN) [4], and, more recently, the Scientific Advis-
ory Committee on Nutrition (SACN) [14] and the Euro-
pean Food Safety Authority (EFSA) [3].
Within the Population Intervention Comparison Out-

come (PICO) framework [26], the populations of interest
in this study are specified as dark-skinned male and fe-
male children and adults, but excluding studies in in-
fants, toddlers, and pregnant or lactating women as
these are life-stage groups that have special consider-
ations in relation to vitamin D [23]. In the present
protocol, ‘dark-skinned’ is being defined as those popula-
tions with Fitzpatrick skin types of V and VI. However,
being aware that Fitzpatrick skin type is not always mea-
sured or reported within studies of dark-skinned individ-
uals, should that be the case in identified studies,
particular emphasis will be placed on studies which were
performed in black individuals, as this is the population
group most studied to-date in terms of vitamin D re-
quirements [15–22]. There is a lack of global consensus
on racial and ethnicity categories; there are no World
Health Organisation- or United Nations Educational,
Scientific and Cultural Organisation (UNESCO)-defined
terms. Recently, a systematic review of knowledge gaps
concerning disease risk in individuals with darker skin
has identified the lack of clear definitions in relation to
race and ethnicity as a major knowledge gap in the lit-
erature [27].
Studies on animals, and patient groups with diseases

that are assumed to affect vitamin D metabolism (as out-
lined in detail elsewhere [26]) and/or response to vita-
min D supplementation, will be excluded. The following
inclusion and exclusion criteria will be applied:

(1) Intervention: vitamin D3 administered orally on a
daily basis—which can be via daily supplements or
fortified foods. Inclusion of RCT arms will be
limited to a maximum supplemental dose of

vitamin D3 of 4000 IU (100 μg)/day. Those RCT
arms with higher supplemental doses of vitamin D3

will be excluded. This selection of upper maximum
dose aligns with that used recently by EFSA [3] and
takes account of the tolerable upper intake level
(UL) for vitamin D of 4000 IU/day for those aged
upwards of 9 and 11 years, as set by EFSA [28] and
IOM [2], respectively. It also allows for a trend
among adults, irrespective of race/ethnicity, for
increasing use of higher dose vitamin D
supplements [29].
Inclusion of vitamin D3, not vitamin D2, on the basis
that the IOM DRI committee and EFSA used studies
with vitamin D3 in their regression analyses, upon
which DRI/DRV values were set [2, 3], and, while
there is still some debate, there is evidence that the
relative potency of vitamin D2 in terms of raising
serum total 25(OH)D is lower than that achieved
with vitamin D3 [30, 31]. While the IOM only
selected studies which provided vitamin D alone and
not with co-administration of calcium [2], both
NORDEN [4] and EFSA [3] allowed studies which
co-administered calcium to be included. We have
provided RCT data to suggest that calcium intake
does not influence the response of serum 25(OH)D
to vitamin D supplementation [32] and DRVs for
vitamin D are established under the assumption that
calcium intake is adequate [2–4, 14]. Thus, we are
prioritising the approach of NORDEN and EFSA over
that of IOM in the present work and will allow RCTs
that provided vitamin D alone or co-administered
with calcium to be included.

(2) RCTs with vitamin D metabolites (25(OH)D and
1,25(OH)2D) and analogues (e.g. alfacalcidol) as the
intervention will be excluded, as well as RCTs in
which the vitamin D was not administered via an
oral route. RCTs, which supplied vitamin D in
weekly or less frequently (e.g. monthly, quarterly,
annually) doses, will also be excluded.

(3) Outcome and comparator/comparison: reported
serum or plasma 25(OH)D concentration following
supplementation in at least one vitamin D
intervention group and one control/placebo group
should be available. In a systematic review of
existing and potentially novel functional markers of
vitamin D status, circulating 25(OH)D has been
shown as a robust and reliable marker [33]. In
addition, serum 25(OH)D was used as a functional
indicator of vitamin D status by authorities briefed
with establishing DRV for vitamin D [2–4, 14].
Studies with no data on measured serum or plasma
25(OH)D will be excluded. A conversion factor of
2.496 nmol/L = 1 ng/mL will be used to standardise
all circulating concentration to nmol/L.
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(4) The study duration should be at least 6 weeks as
serum 25(OH)D concentrations in adult and elderly
subjects only reach equilibrium after 6–8 weeks of
vitamin D supplementation [34]. Studies of a
duration less than 6 weeks will be excluded.

(5) Only studies conducted during, or at least
incorporating, winter to ensure minimal impact of
UVB on the vitamin D intake-25(OH)D dose-
response relationship, and thus the calculated vita-
min D intake requirements to achieve serum
25(OH)D thresholds, will be included. EFSA in their
recent vitamin D DRV analyses defined a period of
assumed minimal endogenous vitamin D synthesis
at latitudes ≥ 40° N (covering much of Europe) as of
October through April [3]. Thus, we will only in-
clude data from an RCT if it took place entirely
within the window of October and April or has an
intermediate sampling point within this winter
period and of at least 6 weeks of vitamin D
supplementation.

(6) Assessment of vitamin D intakes will be based on a
food frequency questionnaire, a dietary history, a 24-h
recall for ≥ 3 days, or a food record or diary for ≥ 3
days, as per [26]. We will use the total vitamin D in-
take, which is the total vitamin D intake from the diet
as well as that from any supplemental vitamin D dose
provided in the RCT [35–37]. The use of total vitamin
D intake to derive DRV has been prioritised by expert
agencies and bodies [2–4, 14]. Thus, RCTs that have
not assessed habitual vitamin D intake in study partici-
pants will be excluded.

Identification of studies: information sources and search
strategy
We will search three online databases (PubMed, Ovid
Medline, and Embase) as well as three trial registries
(ClinicalTrials.gov, Cochrane Central Register of Con-
trolled Trials (CENTRAL), and the International Stand-
ard Randomized Controlled Trials Number (ISRCTN)
registry) using electronic search strategies. We will
present our full final electronic search strategy, including
search strings, using Medline as an exemplar. These
searches will be supplemented by searches of review/sys-
tematic review articles and reference lists of trial publi-
cations as well as from the key international vitamin D
DRV/DRI reports over the last 7 years [2–4, 14]. Studies
that fulfil the above inclusion criteria and were not
already retrieved from the database search will be added.

Study selection and inclusion
Study selection will be independently conducted by two
pre-specified investigators from among the wider IPD
team, first by a screen of the titles and abstracts,
followed by a review of the full text of potentially

relevant studies. The two investigators will separately de-
termine which RCTs meet the eligibility criteria (no re-
viewer may assess an RCT on which he or she is listed
as a co-author) and be included. Disagreements about
study inclusion will be resolved by consensus. Informa-
tion on the number of records identified, abstracts and
full-text articles screened, and articles excluded and in-
cluded will be provided. All retrieved trials excluded
from the review will be given reasons for exclusion as
follows: not a RCT; not vitamin D3 or unclear; not a
daily dose; a dose of supplemental vitamin D3 > 4000 IU/
d; less than 6 weeks in duration; sampling outside the
pre-specified time period; conducted in a location less
than 39.9o, in infants, toddlers, pregnant or lactating
women, or a patient group in which vitamin D metabol-
ism is altered; no circulating 25(OH) D data; and no ha-
bitual vitamin D intake data.

Data collection processes, data items, and IPD integrity
For each eligible RCT, the collaboration will be re-
quested and negotiated with the principal investigator
[38]. For willing collaborators, the terms of collaboration
will be specified in a data transfer agreement, signed by
representatives of the data provider and of the recipients
(Cork Centre for Vitamin D and Nutrition Research,
University College Cork and Department of Nutrition,
Exercise and Sports, University of Copenhagen). Data
will be de-identified at source before transfer by email.
The IPD request will include the following variables,
where available: baseline data for age, sex, racial or eth-
nic origin, body weight, BMI, serum 25(OH)D, study al-
location (vitamin D versus placebo), habitual vitamin D
intake, total vitamin D intake, month of baseline and
intermediate/endpoint blood sampling, and compliance
as well as endpoint (or equivalent) serum 25(OH)D. On
receipt, a pre-specified investigator will assess the data
integrity by performing internal consistency checks and
by attempting to replicate results of the analysis for
group mean/median circulating 25(OH)D response to
supplemental vitamin D, as published in the RCT report.
Study authors will be contacted to provide missing data
and to resolve queries arising from these integrity
checks. Once queries have been resolved, clean data will
be uploaded to the main study database, which will be
held in Excel® V15.30 (Microsoft Corporation, USA).

Risk of bias assessment for individual studies
An assessment of the risk of bias in the included RCTs
will be performed using the Cochrane Collaboration’s
tool for assessing the risk of bias [39]. Two pre-specified
investigators will independently assess study quality. Dis-
crepancies will be resolved by consensus.
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Specification of outcomes and effect measures
Serum 25(OH)D concentration will be the sole outcome
considered in the IPD meta-analysis. Likewise, total vita-
min D intake will be the only predictor considered. The
estimated vitamin D intakes (and corresponding 95%
confidence intervals) required to keep specified propor-
tions of individuals over a range of pre-specified serum
25(OH)D thresholds will be the effect measures of
interest.

Synthesis and statistical methods
As the primary analysis, a one-stage IPD meta-analysis
will be carried out [40, 41]. Previously, both linear and
nonlinear dose-response models for describing the rela-
tionship between serum 25(OH)D and total vitamin D
intake have been used [9, 10, 15–19, 35, 36]. We will
consider both types of model as the latter have been
suggested to better accommodate the results from RCTs
using higher supplemental doses of vitamin D (i.e. up to
2000/4000 IU/day) [2, 3].
Assuming a linear dose-response relationship will imply

that the one-stage IPD meta-analysis corresponds to fitting a
linear mixed model with vitamin D intake as the fixed effect
and study-specific random intercept and slope effects. In
contrast, assuming a nonlinear dose-response relationship
will lead to a nonlinear mixed-effects model for the
one-stage IPD meta-analysis. Specifically, we will assume a
three-parameter asymptotic regression model of the form
y = b2 + b0 · [1- exp.(−x/b1)] (with the three parameters b0,
b1, and b2), which has been used previously [10], for the
fixed-effects part and, if possible, study-specific random ef-
fects assigned to all three parameters. Nonlinear mixed-ef-
fects models may be more difficult to fit than linear mixed
models due to the more complex estimation procedures
(Lindstrom-Bates linearization or quadrature methods [42],
resulting in a lack of convergence or convergence to
sub-optimal parameter estimates. Therefore, we will use
two-stage IPD meta-analysis as a sensitivity analysis: It may
be less difficult to fit nonlinear dose-response regression
models separately per study as it only involves (nonlinear)
least squares estimation.

Derivation of estimated DRVs
Estimation of required vitamin D intakes to maintain 50,
90, 95, and 97.5% of the participants’ above serum
25(OH)D thresholds of 25, 30, 40, and 50 nmol/L (where
feasible) will be achieved by means of inverse regression
applied to the predicted mean dose-response curve and
the lower boundary of its prediction band. Standard errors
and 95% CIs on these derived estimates will be obtained
using a bootstrap procedure with 1000 replications, as de-
scribed previously [9, 23].

Additional analyses
To reduce heterogeneity between studies, we will carry a
number of additional IPD meta-analyses where add-
itional covariates are included as fixed effects in the
mixed model.

Body mass index BMI has been inversely associated with
circulating 25(OH)D [43]. Neither IOM nor NORDEN in-
cluded BMI in their models [2, 4], and while EFSA tested
an effect of BMI, it was not included as a covariate in their
final model [3]. Recently, the inclusion of BMI as an add-
itional covariate showed minimal alteration in estimates
[23]. However, all of these analyses were of predominantly
white individuals. Therefore, we will include BMI as an
additional covariate in our analysis.

Age The IOM found no evidence of an age effect on the
response of serum 25(OH)D to increasing vitamin D in-
take and therefore included summary data from RCTs in
both children and adults within their total dataset [2].
NORDEN likewise combined data from RCTs in chil-
dren and in adults [4], while EFSA tested the impact of
restricting the dataset to only adult RCT arms and ex-
cluding those from children. EFSA concluded that the
overall estimates did not significantly change compared
to the full dataset including children and accordingly
retained data on children and on adults in their analyses
[3]. It is possible that age, as a surrogate for body size,
may impact on the DRV estimates, and in fact, EFSA
suggested that children tended to achieve the same
mean serum 25(OH)D concentrations as the adults at a
lower total intake [3]. Therefore, we will include age as
an additional covariate in our analysis.

Compliance Compliance to vitamin D supplements has
been reported as being lower in dark-skinned than in
white participants in some RCTs [15, 17]. Compliance
below 85–95% may affect estimated DRVs. Therefore,
additional meta-analyses for different levels of compli-
ance will also be carried out.

Statistical software
All analyses will be conducted using R version 3.5.0 (R
Core Team, Vienna, Austria) and the R extension pack-
ages ‘boot’ for bootstrapping; ‘medrc’, ‘lme4’ [44], and
‘nlme’ [45] for the one-stage IPD meta-analysis; and
‘metafor’ for the two-stage IPD meta-analysis [46]. The
Additional file 1 contains R code examples both for
linear and nonlinear models.

Discussion
In light of recent findings showing that dark-skinned
population subgroups are at increased risk of vitamin D
deficiency [6–8], a more comprehensive investigation of
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dietary recommendations for vitamin D in these sub-
groups is much needed. The present study protocol out-
lines IPD meta-analyses that will allow us to estimate
relevant DRVs while utilising all the data that are avail-
able on dark-skinned population subgroups.
This will be a collaborative effort involving collabor-

ation with investigators of the eligible RCTs. The present
protocol may also facilitate the contact with investigators
in terms of gauging how much IPD should be provided
and whether the investigators would in theory be willing
to share the data.
Finally, beyond its importance in its own right, the

protocol will also be of value to a wider audience in
terms of highlighting the utility of the IPD meta-analysis
for estimating dietary requirement estimates for vitamin
D in other at-risk target population subgroups.

Additional file

Additional file 1: R code examples for the one-stage and two-stage IPD
meta-analyses using linear and nonlinear models. (DOCX 14 kb)
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