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A B S T R A C T

Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxo-
nomic structure of the viral communities present, as well as their potential metabolic functions. The type of
natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hy-
drothermal vents was quite different in comparison with the viruses present in sediments, with specific popu-
lations being present in greater abundance in the plume samples when compared with the sediment samples.
ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with
Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that
participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those
involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the
discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis,
DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase.
These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and
are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent commu-
nities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and
evolve under purifying selection, and are thus maintained in their genome.

1. Introduction

Hydrothermal vents are cracks or fissures in the seafloor from which
geothermally heated water emerges in a column form as the seawater
meets the magma (Ledesma, 2011; Tarasov et al., 2005). Despite hy-
drothermal vents having temperatures of up to 400 °C and a highly
reducing chemical nature (Kelley et al., 2005; Martin et al., 2008), they
are a source of bacteria and archaea with a high level of biodiversity;
which has been investigated using both culture dependent (Cary et al.,
1997; Harmsen et al., 1997; Jeanthon, 2000) and independent ap-
proaches (Xie et al., 2010; Anderson et al., 2011a; Anantharaman et al.,
2015; Zhang et al., 2016a; Pjevac et al., 2018; Cerqueira et al., 2018) A
recent report shows an inverse relationship between the abundance and

diversity levels in the microbial populations inhabiting hydrothermal
vents, suggesting the presence of specific microbial groups which are
very well established in these hyperthermophilic environments
(Anderson et al., 2017). Prokaryotes have to date been the best studied
microorganisms in vents (Huber et al., 2007; Dick et al., 2013; Sheik
et al., 2015; Poli et al., 2017; Dávila-Ramos et al., 2014), with reports
showing that bacteria and archaea communities residing in hydro-
thermal plumes are quite different from those present in sediments
primarily due to the fact that the plume is much colder and much more
strongly influenced by the background seawater (Dick et al., 2013; Ding
et al., 2017; Christakis et al., 2018).

In the case of the virome in these polyextremophilic ecosystems,
little is known about their taxonomic structure, their metabolism or
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their overall ecology (Sime-Ngando, 2014). Given the important of
viruses as microbial predators that are known to influence global bio-
geochemical cycles and to impact microbial evolution (Rohwer et al.,
2009), it is likely that they play an important role in the ecological
relationships with these unique microbial communities inhabiting
deep-sea hydrothermal vents. Viral mediated horizontal gene transfer is
known to occur on a widespread basis in the oceans (McDaniel et al.,
2010). Viruses are known to encode auxiliary metabolic genes (AMGs),
which play a crucial role in promoting biochemical and metabolic
processes (Beiko et al., 2005; Breitbart et al., 2007).

The viral abundance in active vents has been estimated to be
3.5×106 and 2.94×106 viruses per ml−1 from plume and sediment
samples, respectively (Ortmann and Suttle, 2005; Manini et al., 2007).
In spite of this, few viruses have to date been isolated from hydro-
thermal vents using classical techniques; those that have include; the
bacteriophages Bacillus virus W1 (BVW1), Geobacillus virus E1 (GVE1),
Geobacillus virus E2 (GVE2), Nitratiruptor phage (NRS-1) and Marinitoga
piezophila virus (MPV-1), TPV1 (Thermococcus prieurii virus 1) (Gorlas
et al., 2012; Romancer et al., 2006; Prangishvili, 2003; Lossouarn et al.,
2015). With advances in next generation sequencing based approaches,
it is clear that metagenomics will allow us gain a greater appreciation of
the virome in these hydrothermal vents. Metagenomic studies have
already shown that Siphoviridae, Myoviridae and Podoviridae are the
predominant viral families present in these ecosystems (Breitbart et al.,
2007; Millard et al., 2014; Anderson et al., 2017; Strazzulli et al., 2017),
and that viruses which infect archaea are present in high abundance
(Rice et al., 2001; Prangishvili, 2003; Geslin et al., 2003). Despite this,
further efforts are needed to increase our knowledge relating to the
virosphere that is present in hydrothermal vents; particularly with a
view to determining the potential function that these viruses may play
in these environments.

As previously mentioned viruses are known to play an essential role
in biogeochemical cycles (Rohwer et al., 2009; Weitz and Wilhelm,
2012; Mizuno et al., 2016). Viral AMGs can complement metabolic
pathways that are present in bacteria, and following acquisition can
remain in the prokaryotic genomes by natural selection, and conse-
quently enhance the fitness of bacterial strains that host these viral
genes (Anderson et al., 2011b; Anderson et al., 2014; He et al., 2017).
However there is little knowledge about the kind of natural selection
that is important in the evolution of these auxiliary metabolic genes. In
addition, lysogenic viruses can also have a significant impact on their
bacterial hosts, by inducing cell lysis process within the host; and
thereby modifying the microbial food web and energy transfer to higher
trophic levels (Williamson et al., 2008; Rastelli et al., 2017).

In the last few years a good deal of metagenomic sequence data has
been generated from the microbiota of hydrothermal vents (Zhang
et al., 2016b). However, generating detailed analysis that allows us to
exploit all the information that is available is currently a bottleneck for
scientists. With this in mind, we focused on ten publically available
metagenomic data sets deposited in the National Center Biotechnology
Information (NCBI), which we investigated to analyze the taxonomic
structure of the viromes in hydrothermal vents from which they data
had been obtained. We found that ssDNA viruses predominate in se-
diments, whereas dsDNA are more abundant in plumes. In addition we
analyze these metagenomes for potential metabolic functions and for
the presence and integrity of metabolic pathways potentially involved
biogeochemical cycles, and uncovered some specific and complete
pathways involved in nitrogen, sulfur, carbon and iron biogeochemical
cycles. Following the functional analysis of the viral sequences the most
abundant were capsid sequences of bacteriophages, and few carbohy-
drates and AMGs. Finally the type of natural selection was analyzed on
capsids and on two AMGs, which appear to generally evolve under
purifying selection, but with a few sites in the AMGs appearing to be
under episodic selection.
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2. Materials and methods

2.1. Metagenomic data from hydrothermal vents

Ten publically available metagenomic data sets obtained from se-
quence-based metagenomic studies in hydrothermal vents were col-
lected from the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) database (Leinonen et al., 2010). Table 1
summarizes details of these metagenomic sequences. These datasets
were chosen because they were derived from shotgun metagenomic
projects in hydrothermal vents and were generated from the Illumina
Next-Generation Sequencing platform, that typically produces homo-
geneous and high quality sequences.

2.2. Sequence quality analysis

Sequence quality control (QC) analysis was performed using the
FastQC program (Bioinformatics, 2011). The quality trimming
threshold was set to a 30 Q score (corresponds to an 0.001 error rate).
Adapters were removed using Trimmomatic software (Bolger et al.,
2014). Subsequently, duplicated sequences were eliminated using CD-
HIT-DUP software with a maximum mismatch number of -e 0.03
(Huang et al., 2010) since during amplification processes some se-
quences are artificially produced (Gomez-Alvarez et al., 2009). After
sequence quality control a sequence set was obtained and used in the
subsequent analysis.

2.3. Viral taxonomic analysis of metagenomes

Sequences were assembled and contigs were obtained using
MegaHit software, which uses an assembly algorithm based on Bruijn
graphs, using paired-end mode, k min=21, k max=131, k step= 10
(Li et al., 2016). The assembled sequences were compared with a pre-
viously constructed database that contains approximately 6000 virus
genomes available in NCBI (non-redundant nucleotide database).
Briefly, to generate the local database, the virus genomes collected from
NCBI were indexed using standalone BLASTn.

For the identification of the viral sequences from all the assembled
sequences, a comparison with the local database was performed using
the following parameters: number of aligments= 20, e-value= 0.0001
and word size= 11. The best twenty scoring BLAST hits were parsed
and taxonomically assigned using MEGAN 5.10.6 software (Huson
et al., 2007). For the virus taxonomic classification, the method of the
lowest common ancestor (LCA) was used using the following para-
meters: minimum support= 2, minimum score= 70, top percent= 10;
this reduced the risk of obtaining false positive or false negative taxo-
nomic assignments (Huson et al., 2016). When taxonomic profiles were
obtained, matrix abundances were generated and later processed in R
software (version 3.2.3). Finally, plots were also done in R software
with the libraries ggplot2 and RColorBrewer 175 (Team, 2013) (www.
ColorBrewer.org).

Hierarchical clustering analysis was addressed to compare virome
relative abundance of the data with other viromes deposited in
Metavir2 (Roux et al., 2014). The hierarchical clusters were obtained
using the heatmap2 package in R based in the hclust library, which
evaluates the dissimilarity between the relative abundances of the virus
families using distance matrix methods (Becker et al., 1988). To con-
duct this hierarchical clustering analysis, 21 viromes previously de-
posited in Metavir2 were collected (Table 2). Overall, the clustering
analysis included the virus relative abundance obtained from the ten
hydrothermal vent metagenomes (previously mentioned in section 2.1)
and these 21 viromes.

2.4. Functional analysis of metagenomic sequences

The assembled contigs were uploaded to the MG-RAST server (Glass

and Meyer, 2011) and the functional annotation was obtained in the
classification of subsystem technology platform (SEED), which is a ca-
tegorize system that includes five hierarchical levels of functional an-
notation. For the viral functional annotation on MG-RAST server, only
the viral domain sequences in the RefSeq database were selected to
avoid the inclusion of contigs from microbial sequences in the func-
tional analysis. The viral functions were obtained according to the
classification at level 3 of the subsystems database with an e-value
threshold of 1-e−5. The AMGs were identified using the same viral
functional analysis.

Multigenomic entropy based score (MEBS) software (Anda et al.,
2017) (FDR 0.0001) was used to identify the completeness of metabolic
pathway involved in the biogeochemical cycles within the metage-
nomic datasets, all contigs from each sample were used in this analysis.

2.5. Natural selection analysis

Using only viral sequences obtained from the MG-RAST server we
evaluated the natural selection sites by different methods. To obtain the
virus sequences from the metagenomics contigs, the RefSeq database
was used.

Fixed-effects likelihood (FEL) and random effects likelihood (REL)
were used to conduct the natural selection analysis. These algorithms
use the principles of maximum likelihood to estimate the proportion of
synonymous and non-synonymous rates of each nucleotide site (Pond
and Frost, 2005). These methods detect natural selection in a coding
gene, identifying higher non-synonymous substitution rates (dN when
an amino acid changes) in relation to synonymous substitution rates
(dS, silent mutations) that are considered neutral. This relation is re-
presented as:

=ω dS dN/ (1)

while mixed effect model of evolution (MEME) allows the dis-
tribution of ω to vary site by site (fixed effects) and also branch by
branch in a site. In addition, the method identifies the two types of
episodic and constant natural selection (Murrell et al., 2012). The
presence of natural selection was also evaluated, which makes a global
comparison of dS/dN rates with “evolutionary fingerprint” software in
Datamonkey server. This software is based on certain sites in genes
evolving rapidly or resisting the change of natural election. These sites
are typically called an “evolutionary fingerprint” (Pond et al., 2009).

3. Results and discussion

3.1. Viral communities in sediments and deep-water from hydrothermal
vents

In an attempt to gain additional knowledge on the viral commu-
nities present in hydrothermal vents, for which there is currently quite
limited information available; this study focused on comparing the viral
populations in ten virospheres from metagenomics datasets available
for ten different hydrothermal vents located in different geographical
zones. The structure of the viral populations in each of the ten locations
is sampled divided in plumes and sediments (Fig. 1). The most re-
presentative viral communities in both sample types belong to the
Caudovirales order, with 70–80% of the assembled contigs being clas-
sified into three main families namely the Siphoviridae, Podoviridae and
Myoviridae. Bacteriophages (Myoviridae family) showed the higher re-
lative abundance in samples ranging from 50 to 60% in the plumes and
30–70% in the sediments.

It is well established that bacteriophages are the most abundant
viruses found in environmental samples from soil, freshwater and
marine ecosystems, and are known to actively regulate the ecological
dynamics of the bacteria populations within these environments (Dick
et al., 2013; Sepulveda et al., 2016; Hayes et al., 2017; Tetz and Tetz,
2018). The results here appear to indicate that based on the levels of
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bacteriophage present that they are also likely to play a significant
ecological contribution in hydrothermal vent ecosystems. The second
cluster of viral families with the highest representation in the virome
profiles, were the Mimiviridae, Phycodnaviridae and Poxviridae (Fig. 1).
This is not surprising perhaps given that Mimiviridae and Phycodnavir-
idae have previously been reported in aquatic environments, with some
members of these families being discovered in hot spring environments
such as in Yellowstone (Zhang et al., 2015).

Single strand DNA (ssDNA) viruses were exclusively detected in the
sediment samples, with Microviridae being the family with highest
abundance. This finding is consistent with reports of ssDNA viruses
being found in freshwater sediments (Hewson et al., 2012; Roux et al.,
2012a) and in deep sea samples (Yoshida et al., 2018). ssDNA viruses
are considered as allochthonous viruses in marine sediments since it is
believed that they are deposited in the benthic zones through sedi-
mentation (Hewson et al., 2012). dsDNA viruses tend to be pre-
ferentially detected in environmental samples due to a methodological
bias in the multiple displacement amplification technique employed,
which results in a preferential amplification of dsDNA viruses
(Anderson et al., 2014). In the two metagenome data sets from the
Southwest Indian Ocean (SRR3136143 and S3133481) included in this
work, this type of amplification was not used, and consequently ssDNA
viruses were detected. In the Indian samples, Gokushovirus was one of
the ssDNA virus subfamily which was found, that correlates with the
16S ribosomal gene analysis carried out by Anderson et al. (2014)
where Chlamydiales, the natural host of Gokushovirus (Roux et al.,
2012b; Labonté and Suttle, 2013) were shown to be present (Anderson
et al., 2014).

The way in which the presence of viral genomes has been calculated
has often involved staining the viral capsids with SYBR green, which
allows a direct quantification of the amount of viral particles in any
given sample. However recent studies have shown that quantification of
viral particles with a ssDNA genome has been underestimated in dif-
ferent environments, particularly in marine sediments (Yoshida et al.,
2018). It has been estimated that there are between 1× 108 to 3× 109

copies of viral genomes per cm3 in sediments, an amount which is
higher than for dsDNA viruses. Given that ssDNA viruses are likely to
play an important role in regulating bacterial mortality levels and in
ecological succession occurring in prokaryotic communities in deep-sea
sediments, further efforts should be made to study the taxonomic
structure of these viral populations without methodological biases.

There is currently a lack of knowledge about the structure and
ecology of ssDNA viruses in these deep-sea environments. However, it
could be inferred that the viral communities within the hydrothermal
vents are likely to be stratified in the same way that has been reported
for bacterial communities (Dick et al., 2013).

There is however little data currently available regarding virosphere
stratification in deep sea hydrothermal vents. To address this, we per-
formed a comparison in virome composition between samples be-
longing to deep-hydrothermal vents (plumes and sediments), with other
samples from deep-sea water (water and sediments) (Fig. 2). The
clustering analysis included 21 new datasets from the Metavir2 data-
base, and ten metagenomics datasets from the analysis of deep hydro-
thermal vents, and aimed to establish whether stratification of the
virome is maintained independently of their hydrothermal vent origin.
The clustering clearly indicates different viral families in the deep sea.
While ssDNA viruses (Circoviridae Microviridae and Geminiviridae) are
predominantly present in the sediment samples, the dsDNA viruses
(Myoviridae, Siphoviridae and Podoviridae) are present in high abun-
dance in the deep water samples (Fig. 2).

Regardless of the clustering of sediments and water samples, there
are differences in the viromes that allow the samples that come from
hydrothermal vents to be distinguished from other deep sea samples.
This suggests that the viral communities of hydrothermal vents are
distinct and represent unique extremophilic systems from which novel
viruses may be discovered. In addition, we observed an absence ofTa
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archaeal viruses (Fuselloviridae) in the metagenome data sets from the
plume, sediment and deep-water samples; which have previously been
reported in terrestrial high temperature environments such as the hot
springs in the Yellowstone National Park (Munson-McGee et al., 2018).
Therefore, it appears likely that hydrothermal vents may harbor a dif-
ferent viral structure that terrestrial hydrothermal ecosystems.

3.2. Biogeochemical cycles in hydrothermal vents

Coupled with the lack of information regarding the structure and
composition of the virome in hydrothermal vents, the functional ana-
lysis of these communities has to date also received very little attention.
However, it is clear that the functional analysis of these communities is
likely to uncover a vast array of novel genes from viruses inhabiting
hyperthermophilic environments such as hydrothermal vents, which
may have important biotechnological applications, such as biocatalysts
that are active at elevated temperatures (Frock and Kelly, 2012). In
recent years, a number of genes has been identified and characterized
from deep-sea viromes, including the (PsbA) gene encoding the D1
protein in photosystem II and the NarG, NarH, and NarJ viral nitrate
reductase genes involved in the biogenesis of respiratory nitrate from
hydrothermal vents (He et al., 2017; Garin-Fernandez et al., 2018).
Thus, functional bioprospecting of these environments could provide an
opportunity to discovery truly novel proteins.

The metagenomics data sets were firstly analyzed for the com-
pleteness of metabolic pathways which are involved in biogeochemical
cycles involving carbon, nitrogen, iron and sulfur (Fig. 3), given that as
previously mentioned viruses as known to play an important role in the
natural recycling of these chemical elements (Weitz and Wilhelm,
2012). This analyses allowed identification of the main pathways used
by the microbial community in hydrothermal vents in both the plumes
and the sediments samples. This is likely to be directly related to the
metabolic activities of microbial communities which are present, which
mainly consist of populations involved in carbon fixation and, those
involved in redox reactions of nitrogen, sulfur and iron (Eecke et al.,

2012; Dick et al., 2013).
This analysis revealed 30 metabolic pathways mainly for nitrogen

and sulfur with a completeness of between 80 and 100% in all the
metagenomes analyzed (Fig. 3) indicating that the relevant biochemical
pathways were present in both the plume water and sediment samples.
Amongst these are pathways that are likely to play key ecological roles
in the degradation of sulfured compounds in nature, such as: di-
methylsulfoniopropionate (DMSP) oxidation, sulfoacetate oxidation,
dimethylsulfone oxidation, cysteate oxidation, alkanesulfonate de-
gradation, tetrathionate oxidation and carbon disulfide oxidation. In-
terestingly, others sulfur-related pathways such as those involved in
sulfoquinovosyl diaglycerol (SQDG) biosynthesis and homotaurine de-
gradation were also present in the metagenomes from both the sedi-
ments and the plumes. Genes involved in the pathway for sulfite oxi-
dation was also present with a completeness of between 60 and 70% in
all the samples with the exception of the sediment sample from
Southwest India (SRR2133481).

Regarding the pathways involved in nitrogen metabolism a com-
pleteness of between 80 and 100% was observed in all metagenomes,
with pathways involved in nitrate reduction (I-X), ammonia oxidation
II, nitrate reduction, nitrate reductase (nirBD), and the superpathway
ammonia being present. Genes involved in methanogenesis pathways
were also present in all the metagenomics datasets including those for
methanogenesis energy conversion, methanopterin (MTP) methano-
genesis, dimethylsulfide (DMS) methanogenesis. However, other com-
plete methanogenesis pathways were poorly represented in all datasets
samples with only the 30% of the genes distinguishable for these
pathways, while the completeness of the biochemical pathway involved
in the conversion of CO2 into methane was in the range of 80–90% of
the pathway being present.

These results demonstrate that nitrogen, carbon and sulfur biogeo-
chemical cycles participate in metabolic processes with a high ecolo-
gical significance in microbial communities present in hydrothermal
vents since the bacterial genomes contain a high percentage all the
enzymes that participate as biocatalysts in these catabolic and anabolic

Fig. 1. Viral taxonomic composition in ten samples, which were obtained from SRA database, where correspond to six of plumes and four of sediments of deep
hydrothermal vents. Relative abundance (number of contigs) of viral families dsDNA and ssDNA viruses are shown.
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processes (Anantharaman et al., 2015).

3.3. Functional analysis viral in plumes and sediments from hydrothermal
vents

A functional analysis using MG-RAST was then performed to spe-
cifically examine the metabolic profiles in the viral communities. In
general, the prophage (capsid) was the more abundant category ob-
served (e-value of 1e−5), which is to be expected since these protein
structures are abundant in viruses (Brum et al., 2016). This metabolic
function for phase capsid synthesis was dominant in both, plume and
sediment samples with 3750 and 230 sequences being present, re-
spectively.

Genes encoding other functions including those involved in lytic
and lysogenic viral cycles and, those involved in DNA repair and

replication, such as the Rlt-like protein and genes involved in phosphate
metabolism were also commonly found (e-value of 1e−5) (Fig. 4). There
was a lesser diversity in the metabolic functions in the viral genomes
recovered from the sediment samples.

Not only were the metabolic functions less diverse, but the number
of contigs (genes) associated with a specific metabolic function was
lower. While in the plume samples there were 1496 contigs associated
with virion structure, only 214 were identified in the sediment samples.
The same was true for DNA metabolism, with 883 and 347 coding se-
quences being identified in plume and sediment samples, respectively;
with a e-value of 1e−5.

Finally, some biochemical functions were exclusively observed in
viral communities from plumes, such as phosphorus uptake, folate
biosynthesis, macromolecular synthesis, ribonucleotide reductase and
Type II ATP dependent DNA topoisomerases, amongst others. All these

Fig. 2. Heat map of the viral communities, in deep-hydrothermal vents, and samples from deep sea. This clustering reveals two clades, one corresponding to
sediments (red) and the other clade correspond to water (blue). Samples with IDs in green font are from Metavir2 and samples with IDs in black font are from the SRA
database. Circles in light blue are samples from water, while circles in brown are samples from sediments. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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are relevant for DNA replication in viral particles.
Genes involved in folate biosynthesis (thymidylate synthase thyX,

(TS) was another predominant function observed in the plume datasets.
This enzyme is necessary to catalyze the conversion of deoxyuridine
monophosphate (dUMP) to deoxythymidine monophosphate (dTMP),
and participates in the folate cycle. It is also essential in the synthesis of
methionine, together with methylation reactions (Graziani et al., 2004;
Leduc et al., 2007). Thymidylate synthases have previously been re-
ported in viruses such as Phycodnaviridae (Graziani et al., 2004), Her-
pesviridae and Caudovirales (Stern et al., 2010).

Furthermore while proteins involved in carbohydrate metabolism
were not abundant; we did however identify a GDP-L-fucose synthase
from Prochlorococcus phage P-SSM2, which is known to be involved in
the biochemical synthesis of oligosaccharides (Han et al., 2012). These
enzymes have been reported in Caudovirales, Herpesviruses, Poxviruses,
Baculoviruses and Phycodnaviruses (Markine-Goriaynoff et al., 2004;
Graves et al., 2001); but have not been reported from extreme en-
vironments as the virosphere from hydrothermal vents has to date not
been extensively studied from a biotechnological standpoint.

This functional analysis also allowed the identification in high
abundance of genes involved in auxiliary metabolic functions, with
cytitidyltransferase and ribonucleotide reductase genes being the most
abundant within the class Clustering-based subsystem. The former

encode for nucleotidyl transferases which are typically involved in the
transfer of phosphorus-containing groups, and have been reported in
Prochlorococcus phage P-SSM2 (Sullivan et al., 2005; Sullivan et al.,
2010; Aylward et al., 2017). Ribonucleotide reductases are involved in
nucleotide biosynthesis and have previously been reported in many
viral genomes (Sakowski et al., 2014). Moreover, phoH genes which are
related to the acquisition of phosphate (Goldsmith et al., 2011) were
observed but at lower abundances. These genes have also been pre-
viously widely reported in bacteriophages (Lindell et al., 2004).

3.4. Analysis of natural selection on auxiliary metabolic genes

In general, in the functional analysis of viruses the most abundant
genes that were identified corresponded to those encoding for structural
parts of the virion together with those involved in some metabolic
auxiliary functions. There is particular interest in the latter sets of genes
since it is known that they encode for AMGs, which are known to be
involved in promoting biochemical processes and in doing so improving
the fitness of their bacterial hosts; by potentially facilitating adaptation
within these bacteria/archaea due to the adverse conditions present in
the hydrothermal vents ecosystems (Anderson et al., 2011b; He et al.,
2017). An example of the role that AMGs play has been reported in
cyanobacteria, where cyanophage express their host's photosynthetic

Fig. 3. Clustering hierarchical of pathways of the carbon and sulfur metabolism. Hierarchical heat map is shown, where the most pathway in biogeochemical cycles is
marked in red colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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genes during the lytic cycle of infection (Clokie et al., 2006), to po-
tentially either support the host or to redirect the cyanobacterial host
metabolism to support phage DNA biosynthesis (Thompson et al.,
2011). Interestingly AMGs were found in high abundance during our
functional analysis and given that it has been suggested that these genes
may have evolved under purifying selection in hydrothermal vents
(Anderson et al., 2014); a selection analysis was performed to de-
termine which evolutionary processes dominate in the evolution of
AMGs in extreme deep-sea environment. There have been very few
reports of this in the literature and thus there is a deficit in our

knowledge in relation to the evolution of viral genes in deep-sea eco-
logical niches.

Concerning the AMGs, two genes with the higher relative abun-
dance in the viral genomes were chosen, namely the cytitidyltransferase
and ribonucleotide reductase genes. Fifty-one and sixty three genes
encoding for these enzymes respectively were found and subsequently
subjected to potential natural selection analysis. While no potential
sites were identified using the REL software; however the use of MEME
resulted in the detection of three and six potential sites respectively in
the cytitidyltransferase genes. All these sites were predicted with

Fig. 4. Viral functional annotation from plumes and sediments of hydrothermal vents. The most abundant correspond to capsids of phages.
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statistical significance levels (p < 0.05). The three codons that were
identified that may be under positive selection (pervasive selection)
using FEL were located in positions 52, 114 and 407 (Table 3); while
with MEME (episodic selection), six positions were identified namely;
125, 126, 407, 659, 753 and 1213 (Table 4). In the case of the ribo-
nucleotide reductase genes, no evidence of positive selection was found
using MEME, REL and FEL software.

Given the difficult in identifying complete genes in the viral gen-
omes, as well as considering the limited number of sequences present,
the replacement rates using evolutionary fingerprint was compared
with the data of those sequences encoding viral capsid proteins and
cytitidyltransferase. This analysis revealed that the substitution rates
dN/dS evolved under a purifying selection (negative selection), as
predicted by FEL, REL and MEME. However, in the sequences analyzed
some changes in the non-synonymous replacement rates were observed,
but these variations were subtle without exceeding the value of neu-
trality (Fig. 5).

In the case of AMGs, evolution under negative selection was gen-
erally also observed. This is similar to previous reports indicating that
viral genes in hydrothermal system are subject to purifying selection
(Anderson et al., 2011a). However, it has also been reported that the
AMGs when they are transferred from the virus to their host, can evolve
under positive selection (Anderson et al., 2014).

Hydrothermal vents are dynamic and fluent ecosystems, but only a
small number of positions in the genes analyzed were identified as
having evolved under episodic selection. This indicates that there are
periods where alternating conservative selection acts and, periods of
change which favor the accumulation of non-synonymous mutations
thereby allowing certain adaptive advantages in those genes. This is the
first analysis confirming that some genes evolve under episodic selec-
tion, and that the frequency of non-synonymous substitution indicates
episodes of rapid evolution.

4. Conclusions

The structure of the virome in the hydrothermal vents allows us to
distinguish specific populations and those that were present in greater
abundance in the plume samples when compared with those of the
sediments. The main difference in the structure appears to be due to the
presence of ssDNA genomes such as Circoviridae and Microviridae in the
sediment samples. In addition the viromes of the vents are very similar
to other samples that have previously been analyzed from deep waters,
where Caudovirales are ubiquitous. Genes that participate in metabolic
pathways that contribute to the production of carbon, nitrogen and
sulfur in the hydrothermal vents, were found in greater abundance,
when compared with those involved in the oxygen cycle; indicating the
types of viral populations that may be participating directly or in-
directly in these cycles. On the other hand, in the functional profile of
the viromes, we found that the most represented genes were those
encoding for proteins involved in bacteriophage capsid synthesis, phage
packaging machinery, DNA synthesis, nucleotide synthesis, DNA repair,
as well as auxiliary metabolic functions. The AMGs (cytitidyltransferase
and ribonucleotide reductase from viruses) which participate in the
synthesis of phospholipids and are essential for the synthesis of

Table 3
Sites under positive selection in Cytitidiltranferase with FEL p= 0.05.

Codon dS dN dN/dS p-value

52 0 0.7687 Infinite 0.03576
114 0 1.2061 Infinite 0.03568
407 0 1.1755 Infinite 0.00374

Table 4
Sites under episodic selection in Cytitidiltransferese with MEME p=0.05.

Codon a β Pr [β=β+] β+ Pr [β=β+] p-value

125 0.0507 0 0.5965 2.03945 0.403492 0.014053
126 0.0907 0.0285 0.7905 7.03581 0.209416 0.0303779
407 0 0 1.0001e-09 0.380733 1 0.00920052
659 0.1596 0.1022 0.82767 139.081 0.17233 0.0326676
753 0.2383 0 0.636865 79.5711 0.363135 0.00641633
965 0 0 0.644192 40.2061 0.355808 0.00698377
1213 0 0 0.605042 1.19307 0.394958 0.0426682

Fig. 5. Comparison of the evolutionary fingerprint dS/dN rates. The estimated distribution of the dS/dN values is shown. The diagonal indicates the neutrality state.
Values located above the diagonal indicative positive selection, while values located below the diagonal indicate negative selection. A) Cytitidyltransferase genes B)
Ribonucleotide reductase genes. All dN/dS rates are under purifying selection (negative selection).
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nucleotides respectively, are likely to contribute to enhancing the fit-
ness of their hosts within the hydrothermal vents as previously pro-
posed (Anderson et al., 2011b; Anderson et al., 2014). The evolutionary
analysis suggests that these AMGs are highly conserved and evolve
under purifying selection, and are thus maintained in their genome.
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